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On Polish Groups of Finite Type

by

Hiroshi Ando and Yasumichi Matsuzawa

Abstract

Sorin Popa initiated the study of Polish groups which are embeddable into the unitary
group of a separable finite von Neumann algebra. Such groups are called of finite type
or said to belong to the class Ufin. We give necessary and sufficient conditions for Polish
groups to be of finite type, and construct examples of such groups for I∞ and II∞ von
Neumann algebras. We also discuss permanence properties of finite type groups under
various algebraic operations. We close the paper with some questions concerning such
groups.
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§1. Introduction

In this paper we consider the following problem. Denote by U(M) the unitary

group of a von Neumann algebra M .

Problem. Determine a necessary and sufficient condition for a Polish group G to

be isomorphic as a topological group to a strongly closed subgroup of some U(M),

where M is a separable finite von Neumann algebra.

S. Popa defined a Polish group to be of finite type if it has this embedding

property. Denote by Ufin the class of all finite type Polish groups. He initiated the

study of this class in an attempt to enrich the study of rapidly developing cocycle
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superrigidity theory (cf. [8, 16, 18]). In particular, he proposed in [18] the problem

of studying and characterizing the class Ufin.

Secondly, this problem is motivated by our previous work [1] on infinite-

dimensional Lie algebras associated with such groups: Let M be a finite von Neu-

mann algebra on a Hilbert space H. Let G be a strongly closed subgroup of U(M)

and M be a set of all densely defined closed operators on H which are affiliated

to M . It is known that the set

Lie(G) := {A∗ = −A ∈M ; etA ∈ G for all t ∈ R}

is a complete topological Lie algebra with respect to the strong resolvent topology

(see also the related work of D. Beltiţă [3]). Since these Lie algebras turn out to be

non-locally convex in general when M is nonatomic, they are quite exotic as Lie

algebras and their properties are poorly known. Therefore it would be interesting

to find non-trivial examples of such groups.

We give an answer in Theorem 2.7 to the above Problem with the aid of pos-

itive definite functions on groups and their GNS representations, and characterize

locally compact groups or amenable Polish groups of finite type via compatible

bi-invariant metrics in Proposition 2.20 and Theorem 2.22 (the former is known,

but we give a new proof). Combined with Popa’s result [18], Theorem 2.7 gives a

necessary and sufficient condition for a Polish group to be isomorphic to a closed

subgroup of the unitary group of a separable II1 factor. We then give examples of

Polish groups of finite type using noncommutative integration of E. Nelson [17].

Finally we discuss some hereditary properties of finite type groups and pose some

questions concerning Polish groups of finite type.

Notation. In this paper we often say a von Neumann algebra M is separable if

it has a separable predual, especially when the Hilbert space on which M acts is

implicit. This is known to be equivalent to the condition that M has a faithful

representation on a separable Hilbert space. We denote by Proj(M) the lattice of

all projections in M . A von Neumann algebra is said to be finite if it admits no

nonunitary isometry. When we consider a group G, its identity is denoted by eG.

However, we also use 1 for the identity when we consider a concrete subgroup

of the unitary group of a von Neumann algebra. We always regard the unitary

group of a von Neumann algebra as a topological group with the strong operator

topology.

§2. Polish groups of finite type and their characterization

In this section, we characterize Polish groups of finite type via positive definite

functions. We then characterize when locally compact groups or amenable Polish
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groups are of finite type via compatible bi-invariant metrics. To this end, we review

the notions of SIN-groups, bi-invariant metrics and unitary representability.

§2.1. Polish groups of finite type

Recall that a Polish space is a separable completely metrizable topological space,

and a Polish group is a topological group whose topology is Polish.

We now introduce finite type groups after Popa [18].

Definition 2.1. A Hausdorff topological group is called of finite type if it is iso-

morphic as a topological group to a closed subgroup of the unitary group of a

finite von Neumann algebra.

Remark 2.2. Popa [18] requires the topological group of finite type to be Polish,

whereas our definition of finiteness does not require any countability. We will show

in Theorem 2.7 that a Polish group G of finite type in our sense satisfies Popa’s

definition of finite type group. That is, G is isomorphic to a closed subgroup of

the unitary group of a finite von Neumann algebra acting on a separable Hilbert

space.

All second countable locally compact Hausdorff groups and the unitary group

of a von Neumann algebra acting on a separable Hilbert space are Polish groups.

Furthermore, separable Banach spaces are Polish groups when viewed as additive

groups. We denote the class of all Polish groups of finite type by Ufin.

Note that since a von Neumann algebra is finite if and only if its unitary group

is complete with respect to the left uniform structure, Polish groups of finite type

are necessarily complete. Thus we have the following simple consequence.

Proposition 2.3. The unitary group of a von Neumann algebra M acting on a

separable Hilbert space is of finite type if and only if M is finite.

Other examples of Polish groups of finite type are given later.

§2.2. Positive definite functions

A complex valued function f on a Hausdorff topological group G is called positive

definite if for all g1, . . . , gn ∈ G and for all c1, . . . , cn ∈ C,

n∑
i,j=1

c̄icjf(g−1
i gj) ≥ 0.

If a complex valued function f on G is invariant under inner automorphisms, that

is,
f(hgh−1) = f(g), ∀g, h ∈ G,

then f is called a class function.
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It is well-known that there is a one-to-one correspondence between the set

of all continuous positive definite functions on a topological group and the set

of unitary equivalence classes of cyclic unitary representations of the group. More

precisely, for each continuous positive definite function f on a topological group G,

there exists a triple (πf ,Hf , ξf ) consisting of a cyclic unitary representation πf in

a Hilbert space Hf and a cyclic vector ξf in Hf such that

f(g) = 〈ξf , πf (g)ξf 〉, g ∈ G,

and this triple is unique up to unitary equivalence. The triple is called the GNS

triple associated to f . Note that if G is separable, then so is Hf .

The GNS triple is of the following form for each continuous positive definite

class function.

Lemma 2.4. Let f be a continuous positive definite class function on a topolog-

ical group G and (π,H, ξ) be its GNS triple. Then the von Neumann algebra M

generated by π(G) is finite and the linear functional

τ(x) := 〈ξ, xξ〉, x ∈M,

is a faithful normal tracial state on M . In particular M is countably decomposable.

Proof. It is clear that τ is a normal state on M . Since f is a class function, it

is easy to see that τ is tracial on the strongly dense ∗-subalgebra of M spanned

by π(G). Therefore by normality, τ is tracial on M . Hence we have only to check

the faithfulness of τ . Assume τ(x∗x) = 0. Since τ is a trace, we have

‖xπ(g)ξ‖2 = τ(π(g)∗x∗xπ(g)) = 0

for all g ∈ G. By the cyclicity of ξ, x must be 0.

Example 2.5 (I. J. Schoenberg [19]). Let H be a complex Hilbert space. Note

that H is an additive group. Then the function f defined by f(ξ) := e−‖ξ‖
2

(ξ ∈ H)

is a positive definite (class) function on H.

Example 2.6 (I. J. Schoenberg [19]). For all 1 ≤ p ≤ 2 the function fp defined

by fp(a) := e−‖a‖
p
p (a ∈ lp) is a positive definite (class) function on the separable

Banach space lp.

For more details about positive definite class functions, see [12].

§2.3. The first characterization

We now characterize Polish groups of finite type.
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Theorem 2.7. For a Polish group G the following are equivalent:

(i) G is of finite type.

(ii) G is isomorphic as a topological group to a closed subgroup of the unitary

group of a finite von Neumann algebra acting on a separable Hilbert space.

(iii) The family F of continuous positive definite class functions on G generates a

neighborhood basis of the identity eG of G. That is, for each neighborhood V

of the identity, there are functions f1, . . . , fn ∈ F and open sets O1, . . . ,On
in C such that

eG ∈
n⋂
i=1

f−1
i (Oi) ⊂ V.

(iv) There exists a positive, continuous, positive definite class function which gen-

erates a neighborhood basis of the identity of G.

(v) The family F of continuous positive definite class functions on G separates

the identity of G and closed subsets A with A 63 eG. That is, for each closed

subset A with A 63 eG, there exists f ∈ F such that

sup
x∈A
|f(x)| < |f(eG)|.

(vi) There exists a positive continuous positive definite class function which sepa-

rates the identity of G and closed subsets A with A 63 eG.

Proof. (iv)⇔(vi)⇒(v)⇒(iii) and (ii)⇒(i) are trivial.

(iii)⇒(ii). Since G is first countable, there exists a countable subfamily {fn}n
of F which generates a neighborhood basis of the identity of G. Let (πn, ξn,Hn) be

the GNS triple associated to fn and Mn be a von Neumann algebra generated by

πn(G). Since each Mn is finite, the direct sum M :=
⊕

nMn is also finite and acts

on a separable Hilbert space H :=
⊕

nHn (see the remark before Lemma 2.4).

Put π :=
⊕

n πn, then π is an embedding of G into U(M). The image of π is closed

in U(M), as both G and U(M) are Polish.

(i)⇒(iii). Let π be an embedding of G into the unitary group of a finite

von Neumann algebra M . Since each finite von Neumann algebra is the direct

sum of countably decomposable finite von Neumann algebras, we can take a

family of countably decomposable finite von Neumann algebras {Mi}i∈I with

M =
⊕

i∈IMi. In this case π is also of the form π =
⊕

i∈I πi, where each

πi : G→ U(Mi) is a continuous group homomorphism. Let τi be a faithful normal

tracial state on Mi and (ρi, ξi,Hi) be its GNS triple as a C∗-algebra. Here each ρi
is an isomorphism from Mi into B(Hi) and

τi(x) = 〈ξi, ρi(x)ξi〉, x ∈Mi.
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Now set fi := τi ◦ πi. Then each fi is a continuous positive definite class function

on G and {fi}i∈I generates a neighborhood basis of the identity eG of G.

(iii)⇒(iv). Let {fn}n be a countable family of continuous positive definite class

functions generating a neighborhood basis of the identity of G with fn(eG) = 1.

Set

f ′n(g) := eRe(fn(g))−1 = e−1
∞∑
k=0

1

k!
[Re(fn(g))]

k
, g ∈ G.

Then {f ′n}n is not only a family of continuous positive definite class functions

generating a neighborhood basis of the identity of G with f ′n(eG) = 1 but also a

family of positive functions. Define a positive, continuous, positive definite class

function by f(g) :=
∑
n f
′
n(g)/2n (g ∈ G). It is easy to see that f generates a

neighborhood basis of the identity of G.

Remark 2.8. The proof of the above theorem is inspired by Theorem 2.1 of

S. Gao [10].

Remark 2.9. Popa (Lemma 2.6 of [18]) showed that a Polish group G is of finite

type if and only if it is isomorphic to a closed subgroup of the unitary group

of a separable II1 factor. Therefore Theorem 2.7 gives a necessary and sufficient

condition for a Polish group to be isomorphic to a closed subgroup of the unitary

group of a separable II1 factor.

§2.4. SIN-groups and bi-invariant metrics

To discuss further properties of finite type groups, we consider the notions of

SIN-groups, bi-invariant metrics and unitary representability.

A neighborhood V of the identity of a topological group G is called invariant

if it is invariant under all inner automorphisms, that is, gV g−1 = V for all g ∈ G.

A SIN-group is a topological group which has a neighborhood basis of the identity

consisting of invariant neighborhoods. Note that a locally compact Hausdorff SIN-

group is unimodular.

A bi-invariant metric on a group G is a metric d which satisfies

d(kg, kh) = d(gk, hk) = d(g, h), ∀g, h, k ∈ G.

It is known that a first countable Hausdorff topological group is SIN if and only if

it admits a compatible bi-invariant metric.

As Popa [18] pointed out, one of the most important properties of Polish

groups of finite type is the existence of a compatible bi-invariant metric.

Lemma 2.10. Each Polish group of finite type has a compatible bi-invariant met-

ric. In particular, it is SIN.
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Proof. It is enough to show that for every finite von Neumann algebra M acting on

a separable Hilbert space H the unitary group U(M) has a compatible bi-invariant

metric. Let τ be a faithful normal tracial state on M . Then

d(u, v) := τ((u− v)∗(u− v))1/2, u, v ∈ U(M),

is a compatible bi-invariant metric on U(M).

§2.5. Unitary representability

A Hausdorff topological group is called unitarily representable if it is isomorphic

as a topological group to a subgroup of the unitary group of a Hilbert space. All

locally compact Hausdorff groups are unitarily representable via the left regular

representation. It is clear that a Polish group of finite type is necessarily unitarily

representable. The following characterization of unitary representability can be

found e.g. in Gao [10].

Lemma 2.11. For a Polish group G the following are equivalent.

(i) G is unitarily representable.

(ii) There exists a positive, continuous positive definite function which separates

the identity of G and closed subsets A with A 63 eG.

§2.6. Simple examples

All of the following examples are well-known. The first three examples are locally

compact groups.

Example 2.12. Any compact metrizable group is a Polish group of finite type.

This follows from the Peter–Weyl theorem.

Example 2.13. Any abelian second countable locally compact Hausdorff group is

a Polish group of finite type. Indeed its left regular representation is an embedding

into the unitary group of a Hilbert space and the von Neumann algebra generated

by its image is commutative (in particular, finite).

Example 2.14. Any countable discrete group is a Polish group of finite type, for

its left regular representation is an embedding into the unitary group of a finite

von Neumann algebra.

The following two examples suggest there are few other examples of locally

compact groups of finite type.
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Example 2.15. Let G :=
{( x y

0 1

)
∈ GL(2,K) ; x ∈ K×, y ∈ K

}
be the ax + b

group, where K = R or C. By easy computations, we have(
a b

0 1

)(
x y

0 1

)(
a b

0 1

)−1

=

(
x −bx+ ay + b

0 1

)
,

so that the conjugacy class C
(( x y

0 1

))
of
( x y

0 1

)
is

C

((
x y

0 1

))
=



{(
x ]

0 1

)
; ] ∈ K

}
(x 6= 1),

{(
1 ]

0 1

)
; ] ∈ K×

}
(x = 1, y 6= 0),

{(
1 0

0 1

)}
(x = 1, y = 0).

Thus for each n ∈ N there exists a matrix hn ∈ G such that hngnh
−1
n =

(
1 1
0 1

)
,

where gn :=
(

1 1/n
0 1

)
. Clearly, gn → 1 and hngnh

−1
n 9 1. This implies that the

ax + b group does not admit a compatible bi-invariant metric. Hence it is not of

finite type.

Example 2.16. The special linear group SL(n,K) (n ≥ 2) is not of finite type

since the map ( a b0 1 ) 7→
(
a b
0 a−1

)
is an embedding of the ax+ b group into SL(2,K).

Hence the general linear group GL(n,K) (n ≥ 2) is not of finite type either.

Next we consider abelian groups. Note that an abelian topological group is of

finite type if and only if it is unitarily representable.

Example 2.17. Any separable Hilbert space is a Polish group of finite type. This

follows from Example 2.5 and Theorem 2.7.

Example 2.18. A separable Banach space lp (1 ≤ p ≤ ∞) is a Polish group of

finite type if and only if 1 ≤ p ≤ 2. The “if” part follows from Example 2.6 and

Theorem 2.7, but the “only if” part is non-trivial. For details, see [15].

Here is another counterexample.

Example 2.19. The separable Banach space C[0, 1] of all continuous functions

on the interval [0, 1] is a Polish group but not of finite type. Indeed, since every

separable Banach space is isometrically isomorphic to a closed subspace of C[0, 1],

if C[0, 1] were of finite type, then any separable Banach space would be a Polish

group of finite type. But this is a contradiction to the previous example.
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§2.7. Application to locally compact groups

It is known that a second countable locally compact group is of finite type if and

only if it is a SIN-group (see e.g., Theorem 13.10.5 of J. Dixmier [4]). We give a

new proof of this fact using Theorem 2.7. We thank the referee for indicating the

above source.

Proposition 2.20. A second countable locally compact Hausdorff group is of

finite type if and only if it is SIN.

Proof. Let G be a second countable locally compact Hausdorff SIN-group, µ be

the Haar measure on it and λ be its left-regular representation. For each compact

invariant neighborhood U of the identity, we define a continuous positive definite

function ϕU on G by

ϕU (g) := 〈χU , λ(g)χU 〉 = µ(U ∩ gU), g ∈ G.

Note that, for each g, h, x ∈ G, we have

h−1x ∈ U ⇔ x ∈ hU = Uh ⇔ xh−1 ∈ U,

and

(gh)−1x ∈ U ⇔ x ∈ ghU = gUh ⇔ xh−1 ∈ gU.

Also note that a locally compact SIN-group is unimodular. Thus we see that

ϕU (h−1gh) = 〈λ(h)χU , λ(gh)χU 〉 =

∫
G

χU (h−1x)χU ((gh)−1x) dµ(x)

=

∫
G

χU (xh−1)χgU (xh−1) dµ(x) =

∫
G

χU (x)χgU (x) dµ(x)

=

∫
G

χU (x)χU (g−1x) dµ(x) = ϕU (g),

so ϕU is a class function. It is not hard to check that the family {ϕU}U generates a

neighborhood basis of the identity. This completes the proof by Theorem 2.7.

Remark 2.21. (1) R. V. Kadison and I. Singer [14] proved that every connected

locally compact Hausdorff SIN-group is isomorphic as a topological group to a

topological group of the form Rn ×K, where K is a compact Hausdorff group.

(2) K. Hofmann, S. Morris and M. Stroppel [13] proved that a totally discon-

nected locally compact Hausdorff group is SIN if and only if it is a strict projective

limit of discrete groups.
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§2.8. A characterization for amenable groups

Next, we characterize (not necessarily locally compact) amenable Polish groups of

finite type. Recall that a Hausdorff topological group G is amenable if RUCB(G)

admits a left-translation invariant positive functional m ∈ RUCB(G)∗ with m(1) =

1, where RUCB(G) is the complex Banach space of all right-uniformly continuous

bounded functions on G. Such an m is called an invariant mean.

Theorem 2.22. A unitarily representable amenable Polish group is of finite type

if and only if it is SIN.

Proof. Let G be a unitarily representable amenable Polish SIN-group and let f be

a positive, continuous positive definite function on G which separates the identity

of G and closed subsets A with A 63 eG (see Lemma 2.11). We may and do assume

f(eG) = 1. For each x ∈ G, we define a positive function Ψx,f : G→ [0, 1] by

Ψx,f (g) := f(g−1xg), g ∈ G.

We show that Ψx,f ∈ RUCB(G). Fix an arbitrary ε > 0. Since the positive definite

function f is right-uniformly continuous, there exists a neighborhood V of eG such

that

|f(g)− f(h)| < ε

holds whenever g, h ∈ G satisfy hg−1 ∈ V . There exists a neighborhood W of eG
such that W = W−1 and W ·W ⊂ V . Since G is SIN, there exists an invariant

neighborhood U of eG with U ⊂ W . Let g, h ∈ G satisfy hg−1 ∈ U . By the

invariance of U , we have h ∈ Ug = gU and therefore g−1h ∈ U . Then

(h−1xh)(g−1xg)−1 = h−1xhg−1x−1g ∈ h−1xUx−1g = h−1Ug = Uh−1g

= U(g−1h)−1 ⊂W ·W−1 ⊂ V,

which implies

|Ψx,f (h)−Ψx,f (g)| = |f(h−1xh)− f(g−1xg)| < ε.

Hence Ψx,f is right-uniformly continuous and we have Ψx,f ∈ RUCB(G)+. Let

m ∈ RUCB(G)∗ be an invariant mean. Put

ψf (x) := m(Ψx,f ), x ∈ G.

Then ψf (x) is clearly a positive, positive definite class function on G with ψf (eG)

= 1. We show that ψf is continuous. Since m is continuous, it suffices to show that
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G 3 x 7→ Ψx,f ∈ RUCB(G)+ is continuous. Let x, y ∈ G. By Krein’s inequality,

‖Ψx,f −Ψy,f‖2 = sup
g∈G
|f(g−1xg)− f(g−1yg)|2

≤ 2 sup
g∈G
|1− Re f(g−1yx−1g)| = 2 sup

g∈G
|1− f(g−1yx−1g)|.

Fix ε > 0. Since f is right-uniformly continuous, there exists an invariant neigh-

borhood V of eG such that |f(x) − f(y)| < ε for x, y ∈ G with yx−1 ∈ V . Then

for x, y ∈ G with yx−1 ∈ V , we have g−1yx−1g ∈ g−1V g = V . Consequently,

|1− f(g−1yx−1g)| = |f(eG)− f(g−1yx−1g)| < ε.

Hence

‖Ψx,f −Ψy,f‖2 ≤ 2ε.

Therefore G 3 x 7→ Ψx,f ∈ RUCB(G)+ is continuous, hence so is ψf . We next

show that ψf separates the identity of G and closed subsets A with A 63 eG. Fix

such an A. Since Ac = G \A is an open neighborhood of eG, there exists an open

invariant neighborhood V of eG contained in Ac. Then A ⊂ V c and eG /∈ V c. Since

f separates eG and V c, we have

δ := sup
g∈V c

|f(g)| < 1.

It then follows, by the invariance of V c, that for x ∈ V c,

‖Ψx,f‖ = sup
g∈G
|f(g−1xg)| ≤ sup

g∈V c

|f(g)| ≤ δ,

which implies

sup
x∈A
|ψf (x)| ≤ sup

x∈V c

|ψf (x)| = sup
x∈V c

|m(Ψx,f )| ≤ sup
x∈V c

‖Ψx,f‖ ≤ δ < 1.

Therefore ψf separates A and eG. This completes the proof by Theorem 2.7.

Remark 2.23. The above proof is inspired by the proof of Theorem 2.13 of

J. Galindo [9].

§3. More examples of finite type groups

In this section we will give other examples of Polish groups of finite type. To

construct them we start not from finite von Neumann algebras, but from semifinite

ones, say of type I∞ or of type II∞. At the end of this section we also review other

known examples of Polish groups of finite type.



400 H. Ando and Y. Matsuzawa

§3.1. L2-unitary groups U(M)2

Let M be a semifinite von Neumann algebra on a Hilbert space H equipped with

a normal faithful semifinite trace τ . A densely defined, closed operator T on H is

said to be affiliated to M if uTu∗ = T for all u ∈ U(M ′). Denote by M the set of

all densely defined, closed operators on H which are affiliated to M . Recall that

L2(M, τ) is a Hilbert space completion of the space nτ := {x ∈ M ; τ(x∗x) < ∞}
with the inner product

〈x, y〉 := τ(x∗y), x, y ∈ nτ .

We define ‖x‖2 := τ(x∗x)1/2 for x ∈ L2(M, τ).

Definition 3.1. We call U(M)2 := {u ∈ U(M); 1−u ∈ L2(M, τ)} the L2-unitary

group of (M, τ).

Note that when M is not a factor, U(M)2 also depends on the choice of τ .

We will show the following theorem.

Theorem 3.2. Let M be a separable semifinite von Neumann algebra with a nor-

mal faithful semifinite trace τ . Then U(M)2 is a Polish group of finite type, where

the topology is determined by the metric

d(u, v) := ‖u− v‖2, u, v ∈ U(M)2.

To prove the theorem, we need some preparations. We consider M to be

represented on H = L2(M, τ) by left multiplication. Recall that a closed operator

T ∈M on L2(M, τ) is called τ -measurable if for any ε > 0, there exists a projection

p ∈ M with ran(p) ⊂ dom(T ) and τ(1 − p) < ε. Note that L2(M, τ) can be

identified with the set of closed, densely defined and τ -measurable operators T

such that

‖T‖22 := τ(|T |2) =

∫ ∞
0

λ2 dτ(e(λ)) <∞,

where e(·) is the spectral measure of |T | = (T ∗T )1/2 and T = u|T | is the polar

decomposition of T (for more details about noncommutative integration, see Vol. II

of [20]).

Lemma 3.3. Let M be a semifinite von Neumann algebra with a normal faithful

semifinite trace τ . Then U(M)2 is a topological group.

Proof. This can be shown directly, using the equalities

‖x∗‖2 = ‖x‖2, ‖uxv‖2 = ‖x‖2,

for all x ∈ L2(M, τ) and u, v ∈ U(M).
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Lemma 3.4. Let M be a semifinite von Neumann algebra with a normal faithful

semifinite trace τ . Let U be a densely defined closed τ -measurable operator on

L2(M, τ) affiliated to M . Then dom(U) ∩M is dense in L2(M, τ).

Proof. Let ε > 0. Let ξ ∈ L2(M, τ). Since M ∩ L2(M, τ) is dense, there exists

ξ0 ∈M ∩L2(M, τ) such that ‖ξ − ξ0‖2 < ε. On the other hand, the measurability

of U implies the existence of an increasing sequence {pn}∞n=1 of projections in M

such that pnL
2(M, τ) ⊂ dom(U) for all n and pn ↗ 1 strongly. Therefore there

exists n0 ∈ N such that

‖ξ0 − pn0
ξ0‖2 < ε.

By the choice of ξ0, pn0
ξ0 ∈ dom(U) ∩M and

‖ξ − pn0
ξ0‖2 ≤ ‖ξ − ξ0‖2 + ‖ξ0 − pn0

ξ0‖2 ≤ ε+ ε = 2ε.

Since ε is arbitrary, it follows that dom(U) ∩M is dense in L2(M, τ).

Lemma 3.5. Let M be a semifinite von Neumann algebra with a normal faithful

semifinite trace τ . Then d is a complete metric on U(M)2.

Proof. Suppose {un}∞n=1 is a d-Cauchy sequence in U(M)2. Since L2(M, τ) is com-

plete, there exists V ∈ L2(M, τ) such that ‖(1−un)−V ‖2 → 0. Define U := 1−V .

Then ‖U−un‖2 → 0. We show that U is bounded and moreover U ∈ U(M)2. Since

U is closed and dom(U) ∩M is dense by Lemma 3.4, to prove the boundedness

of U it suffices to show that U is isometric on dom(U)∩M . Let ξ ∈ dom(U)∩M .

Since ξ is bounded, we have

‖(U − un)ξ‖22 = τ(ξ∗(U − un)∗(U − un)ξ) = τ((U − un)ξξ∗(U − un)∗)

≤ ‖ξ‖2τ((U − un)(U − un)∗) = ‖ξ‖2‖U − un‖22 → 0,

which implies

‖Uξ‖2 = lim
n→∞

‖unξ‖2 = ‖ξ‖2

for all ξ ∈ dom(U) ∩M . Therefore U |dom(U)∩M is isometric and U is bounded.

Since ‖U∗−u∗n‖2 = ‖U−un‖2, U∗ is an isometry too, which means U is a unitary.

Finally, it is clear that U = 1− V ∈ U(M)2.

Proof of Theorem 3.2. Since M is separable, the separability of U(M)2 follows

from the separability of L2(M, τ). Therefore by Lemma 3.5, U(M)2 is a Polish

group. By Schoenberg’s theorem (see Example 2.5),

ϕ(u) := e−‖1−u‖
2
2 , u ∈ U(M)2,
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is a continuous, positive definite class function on U(M)2. It is easy to see that

ϕ generates a neighborhood basis of the identity of U(M)2. Therefore the claim

follows from Theorem 2.7.

Remark 3.6. U(M)′′2 = M.

Proof. Clearly U(M)′′2 ⊂M . Let p be a finite projection in M . Then 2p ∈ L2(M, τ)

and 1− 2p ∈ U(M)2. Therefore p ∈ U(M)′′2 . Since M is semifinite, M is generated

by finite projections. Therefore U(M)′′2 = M .

When M = B(H), U(M)2 is the well-known example of a Hilbert–Lie group

and is denoted by U(H)2.

§3.2. Nonisomorphic properties of U(M)2

J. Feldman [7] gave a complete description of group isomorphisms between the

unitary groups of type II1 von Neumann algebras. In particular, in the proof of

Theorem 4 of [7], he uses the following simple observation: if p is a projection in a

von Neumann algebra M , then up := 1− 2p is a self-adjoint unitary in M . Using

this correspondence, he deduces that a group isomorphism π : U(M1) → U(M2)

between type II1 von Neumann algebras M1,M2 induces an order isomorphism be-

tween their projection lattices, thereby proving that π lifts to a ring ∗-isomorphism

π : M1 →M2 (which may not preserve scalar multiplication) such that

π(u) = θ(u)π(u) for all u ∈ U(M1),

where θ is a multiplicative map from U(M1) to Z(U(M2)). Let H be an infinite-

dimensional Hilbert space. Using his idea, we show that when M is a II∞ factor and

N is a finite von Neumann algebra, then U(M)2, U(H)2 and U(N) are mutually

nonisomorphic. In this subsection, no separability assumptions are required.

Proposition 3.7. Let M be a II∞ factor. Then U(M)2 is not isomorphic to

U(H)2.

Proof. Let τ be a normal faithful semifinite trace on M , and Tr be the usual

operator trace on H. We denote the corresponding trace 2-norms by ‖ · ‖2,τ and

‖ · ‖2,Tr, respectively. For contradiction, suppose there exists a topological group

isomorphism ϕ : U(M)2 → U(H)2. Let p be a nonzero finite-rank projection in

B(H). Then 1− 2p ∈ U(H)2 and let

q :=
1

2
(1− ϕ−1(1− 2p)).

It is easy to see that q ∈ L2(M, τ) is a nonzero finite projection in M . Let k ∈ N.
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Since M is a II∞ factor, there exists a projection 0 < qk ≤ q in M such that

limk→∞ τ(qk) = 0. Define pk := 1−ϕ(1−2qk)
2 . Since

‖qk‖22,τ = τ(qk)→ 0 (k →∞),

we have 1− 2qk → 1 in U(M)2, which in turn means

1− 2pk = ϕ(1− 2qk)→ ϕ(1) = 1 in U(H)2.

However, since the topology of U(H)2 is given by the operator trace 2-norm,

2 ≤ ‖2pk‖2,Tr = ‖1− (1− 2pk)‖2,Tr → 0 (k →∞).

This is clearly a contradiction. Therefore U(M)2 6∼= U(H)2.

Proposition 3.8. Let M be a type I∞ or type II∞ factor, and N be a finite von

Neumann algebra. Then U(M)2 is not isomorphic onto U(N).

Proof. Let τ be a normal faithful semifinite trace on M . Let u ∈ Z(U(M)2), so

u commutes with every element in U(M)2. Then p ∈ M , u(1 − 2p) = (1 − 2p)u

for any finite projection p ∈ M . Therefore u commutes with all finite projections

inM . SinceM is generated by its finite projections, it follows that u ∈ Z(M) = C1.

Since u − 1 ∈ L2(M, τ), this forces u = 1. Therefore the center of U(M)2 is {1},
while the center of U(N) contains C1.

Remark 3.9. We thank the referee for communicating the above simple proof

and calling our attention to [7].

§3.3. Other known examples

The class Ufin has not yet been studied well. However, there are some known

examples other than the ones presented in §2.6.

Example 3.10 (Normalizer groups NM (A) and N (E)). Let A be an abelian von

Neumann subalgebra of a separable II1 factor M . The normalizer group NM (A)

of A, defined by

NM (A) := {u ∈ U(M); uAu∗ = A},
is clearly a strongly closed subgroup of U(M) and hence belongs to Ufin. This group

has drawn much attention of specialists, especially when A is maximal abelian and

NM (A) generates M as a von Neumann algebra. In that case, A is called a Cartan

subalgebra. Similarly, the normalizer group N (E) for a normal faithful conditional

expectation E : M → N onto a von Neumann subalgebra N ,

N (E) := {u ∈ U(M); uE(x)u∗ = E(uxu∗) for all x ∈M},

is also of finite type.
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Example 3.11 (The full group [R]). Let R be a II1 countable equivalence rela-

tion on a standard probability space (X,µ). A. Furman [8, §2] showed that the

full group [R] equipped with so-called uniform topology is a Polish group of finite

type.

§4. Hereditary properties of finite type groups

In this section, we discuss permanence properties of the class Ufin under several

algebraic operations. In summary, we will observe the following permanence prop-

erties of finite type groups:

Operation Ufin?

Closed subgroup H < G YES

Countable direct product
∏

n≥1 Gn YES

Semidirect product G oH NO

Quotient G/N NO

Extension 1→ N → G→ K → 1 NO

Projective limit lim
←−

Gn YES

As can be seen from the above table, the finiteness property is delicate and can

easily break down under natural operations.

Remark 4.1 (Ultraproducts of metric groups). Let {(Gn, dn)}∞n=1 be a sequence

of finite type Polish groups with a compatible bi-invariant metric. It is not difficult

to show that the ultraproduct (Gω, dω) of {(Gn, dn)}∞n=1 along a free ultrafilter

ω ∈ βN \ N is a completely metrizable topological group of finite type, but not

Polish in general. We will discuss topological groups which are embeddable into

the unitary group of a (not necessarily separable) finite von Neumann algebra

elsewhere.

§4.1. Closed subgroups and countable direct products

It is clear the class Ufin is closed under taking a closed (or even Gδ) subgroup.

Since a countable direct sum of separable finite von Neumann algebras is again

separable and finite, the class Ufin is closed under countable direct products.

§4.2. Extensions and semidirect products

The class Ufin is not closed under extensions or semidirect products:

Proposition 4.2. There exists a Polish group G not of finite type, which has a

closed normal subgroup N such that N and the quotient group G/N are of finite

type.
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Proof. Let G be the ax + b group (see Example 2.15). Since G does not have

a compatible bi-invariant metric, it is not of finite type. On the other hand, G

can be written as a semidirect product G = K o K×, where K× acts on K by

multiplication. Therefore the exact sequence

0→ K→ G→ K× → 1

gives a counterexample for the extension case.

Note that the above example also shows that the class Ufin is not closed under

semidirect products.

§4.3. Quotients

The class Ufin is not closed under quotients:

Proposition 4.3. There exists an abelian Polish group G of finite type and a

closed subgroup N such that the quotient G/N is not of finite type.

Proof. Consider the separable Banach space A := l3 as an additive Polish group.

As we saw in Example 2.18, lp (1 ≤ p ≤ ∞) is unitarily representable if and only

if 1 ≤ p ≤ 2. On the other hand, every separable Banach space is isomorphic to

a quotient of `1 (see e.g., Theorem 5.1 of [6]). In particular, although not of finite

type, A = `3 is a quotient of G := `1 by a closed subgroup.

Remark 4.4. Note that even for abelian Polish groups, the situation can be worst

possible. It is known (Chapter 4 of [2]) that there exists an abelian Polish group

A which has no nontrivial unitary representation. Such a group is called strongly

exotic. On the other hand, S. Gao and V. Pestov [11] proved that any abelian

Polish group is a quotient of `1 by a closed subgroup N . Therefore, strongly exotic

groups are also quotients of finite type Polish groups.

§4.4. Projective limits

The class Ufin is closed under projective limits:

Proposition 4.5. Let {Gn, jm,n : Gm → Gn (n ≤ m)}∞n,m=1 be a projective

system of Polish groups of finite type. Then G = lim
←−

Gn is a Polish group of finite

type.

Proof. Since the connecting maps jm,n are continuous, it is clear that G can be

seen as a closed subgroup of
∏
n∈NGn. Since the finiteness property passes to

direct products,
∏
n∈NGn is also a Polish group of finite type. Therefore its closed

subgroup G is also Polish of finite type.
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§5. Some questions

Finally let us discuss some questions to which we do not have answers at this

stage. Let Uinv denote the class of Polish groups with a compatible bi-invariant

metric. As we saw in Example 2.18, Uinv is strictly larger than Ufin (l3 is in Uinv

but not in Ufin). Therefore the unitary representability is indispensable (this was

also pointed out by Popa). Furthermore, there exists a more interesting example.

Recently L. van den Dries and S. Gao [5] constructed a Polish group G with

a compatible bi-invariant metric, which does not have Lie sums (see [5] for the

definition). On the other hand, we proved in [1] that each group in Ufin has Lie

sums. Thus G is not of finite type. Therefore it would be desirable to consider the

following questions (the latter was posed by Popa [18, §6.5]):

Question 5.1. Is van den Dries–Gao’s Polish group unitarily representable?

Question 5.2 (Popa). Is every unitarily representable Polish SIN-group of finite

type?

Hopefully Theorem 2.7 will play a role in solving the above questions. Also,

since lp belongs to Ufin if and only if 1 ≤ p ≤ 2, it is worth considering

Question 5.3. Let H be a separable infinite-dimensional Hilbert space. Does

U(H)p := {u ∈ U(H); 1 − u ∈ Sp(H)} belong to Ufin for some 1 ≤ p < 2?

Here Sp(H) denotes the space of Schatten p-class operators.

Finally, let us recall another candidate for a counterexample to Question 5.2.

A finite von Neumann algebra N equipped with a normal faithful tracial state τ

is said to have property (T) if for each ε > 0, there exists a finite set F ⊂ N and

δ > 0 such that whenever ϕ : N → N is a unital completely positive τ -preserving

map satisfying ‖ϕ(x) − x‖2 < δ for all x ∈ F , then ‖ϕ(a) − a‖2 ≤ ε‖a‖ for all

a ∈ N .

Let M be a separable II1 factor with property (T), and Aut(M) be the Polish

group of all ∗-automorphisms of M equipped with the pointwise ‖ · ‖2-convergence

topology. Due to property (T), this topology coincides with the topology of uniform

‖ · ‖2-convergence on the closed unit ball M1. Since the latter topology is given by

the bi-invariant metric d defined by

d(α, β) := sup
x∈M1

‖α(x)− β(x)‖2, α, β ∈ Aut(M),

Aut(M) is a Polish SIN-group. By considering the standard representation,

Aut(M) is unitarily representable as well. Therefore it would be interesting to
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check if Aut(M) is actually of finite type or not. (Added in proof: After this arti-

cle was accepted for publication, the affirmative answer to the above question was

communicated to us by Uffe Haagerup.)
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