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q-Convexity Properties of the Coverings
of a Link Singularity

by

Mihnea Colţoiu, Cezar Joiţa and Mihai Tibăr

Abstract

We prove that for a germ of normal isolated singularity (Y, y0) obtained by contracting
a curve, if the fundamental group of the link singularity is infinite then the universal
covering of Y \ {y0} can be written as the union of n− 1 Stein open subsets.
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§1. Introduction

Let (Y, y0) be the germ of a normal 2-dimensional singularity and let K be the

associated link singularity. It was shown in [4] that if π1(K) is an infinite group

then the universal covering of Y \ {y0} is Stein for Y small enough.

In this paper we generalize this result to the case when (Y, y0) is a normal

isolated singularity of dimension n ≥ 2 obtained by contracting a complex curve.

More precisely we prove:

Theorem. Suppose that (Y, y0) is a germ of normal isolated singularity obtained

by contracting a curve, dim(Y ) = n ≥ 2, and let K be the corresponding link

singularity. If π1(K) is infinite then the universal covering space of Y \ y0 for Y

small can be written as the union of n − 1 Stein open subsets. In particular it is

(n− 1)-complete.
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M. Colţoiu: Institute of Mathematics of the Romanian Academy, P.O. Box 1-764,
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The theory of q-convexity was introduced by A. Andreotti and H. Grauert

in [1] and is one of the basic tools in the study of the geometry of non-compact

complex spaces.

§2. Preliminaries

For the following result see [15].

Theorem 1. Let X be a complex space and p : Y → X a covering. If X is Stein

then Y is Stein as well.

Theorem 2 was proved by Y. T. Siu in [14].

Theorem 2. If X is a complex space and Y is a Stein subspace then there exists

an open Stein subset U of X such that Y ⊂ U .

Definition 1. Suppose that X is a Stein space and U is an open subset. We say

that U is Runge in X (or that the pair (U,X) is Runge) if U is Stein and the

restriction map O(X)→ O(U) has dense image.

The following lemma is standard.

Lemma 1. Suppose that X is a complex space and {Xn}n≥1 is an increasing se-

quence of Stein open subsets of X. If each pair (Xn, Xn+1) is Runge then
⋃
n≥1Xn

is Stein.

For the next lemma see [10].

Lemma 2. Suppose that X is a Stein space and φ : X → R is a plurisubharmonic

function. Then for any r ∈ R the open set U = {x ∈ X : φ(x) < r} is Runge in X.

The lemma below follows from the fact that for a connected locally irreducible

complex space the complement of a complex subspace of positive codimension is

connected.

Lemma 3. Suppose that π : X → Y is a proper morphism of complex spaces and

that there exists a discrete subset A of Y such that π : X \ π−1(A) → Y \ A is a

biholomorphism. If X is locally irreducible then Y is locally irreducible as well.

The following result is Theorem 2 in [13].

Theorem 3. Let X be a locally irreducible Stein complex space of pure dimen-

sion 2 with isolated singularities and A ⊂ X a closed complex subvariety without

isolated points. Then X \A is Stein.

Remark. In [3] it was proved that if dim(X) = n ≥ 2 then X \A is the union of

n− 1 Stein open subsets.
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Using Theorem 3 and Lemma 3 we obtain:

Corollary 1. Let X be a locally irreducible complex space of dimension 2 and

A ⊂ X a 1-dimensional closed complex subspace. Assume that X is a proper

modification of a Stein space at a discrete set of points, A is connected, has at

least one non-compact irreducible component, and X \A has no compact subspaces

of positive dimension. Then X \A is Stein.

For the following proposition see [12, Remark a), p. 165].

Proposition 1. Suppose that X is a 1-convex complex space and its exceptional

set A is 1-dimensional. Then A has a neighborhood that can be embedded into a

space Cn × Pm.

The following theorem follows immediately from Theorem 2.4 in [12] using

desingularization:

Theorem 4. Let X be a 1-convex manifold which is embeddable into a space

Cn × Pm. Then there exist an open 1-convex neighborhood V of the exceptional

set and a complex projective manifold Z such that V is an open subset of Z.

The following theorem was proved in [2] and [9].

Theorem 5. Let π : X → T be a proper holomorphic surjective map of com-

plex spaces, let t0 ∈ T be any point, and denote by Xt0 := π−1(t0) the fiber of

π at t0. Assume that dimXt0 = 1. Let σ : X̃ → X be a covering space and

let X̃t0 = σ−1(Xt0). If X̃t0 is holomorphically convex, then there exists an open

neighborhood Ω of t0 such that (π ◦ σ)−1(Ω) is holomorphically convex.

Lemma 4. Suppose that X is a Stein space and U and V are two Stein open

subsets of X. If (U,X) is Runge then (U ∩ V, V ) is also Runge.

Proof. Let K ⊂ U ∩ V be a compact set. We have to show that there exists a

plurisubharmonic function φ : V → R with K ⊂ {x ∈ V : φ(x) < 0} b U ∩ V . Let

φ1 : X → R be a plurisubharmonic function such that K ⊂ {x ∈ X : φ1(x) < 0}
b U and φ2 : V → R a plurisubharmonic exhaustion function such that φ2|K < 0.

Then φ = max{φ1, φ2} has the desired property.

Corollary 2. Suppose that X is a complex space and Ω1, Ω2, U1 and U2 are open

Stein subspaces of X such that U1, U2 ⊂ Ω1 ∩ Ω2. If (U1,Ω1) and (U2,Ω2) are

Runge then U1 ∩ U2 is Runge in both Ω1 and Ω2.

The next lemma was proved in [4].
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Lemma 5. Let X be a Stein space and let Y , U be Stein open subsets such that

X = U ∪ Y . Assume that (Y ∩ U,U) is Runge. Then (Y,X) is also Runge.

Theorem 6 was proved in [5]; for a more general result see [6].

Theorem 6. Suppose that X and Y are complex analytic subsets of some neigh-

borhood U of the origin in Cn such that 0 ∈ Y , Y ⊂ X and X \ Y is smooth. If

the dimension of each component of X \ Y is ≥ n and if Y is defined in X by k

holomorphic equations, then the pair (Xε \ {0}, Yε \ {0}) is (n− k − 1)-connected

for ε > 0 small enough.

In the above theorem Xε = {x ∈ X : ‖x‖ ≤ ε} and similarly for Yε. We also

recall the following definition:

Definition 2. A pair (X,A) with A
i
↪→ X is called k-connected if i∗ : πj(A, {a})

→ πj(X, {a}) is bijective for j < k and surjective for j = k, for all a ∈ A.

Corollary 3. Suppose that X is a locally irreducible complex space such that all

of its irreducible components have dimension at least n, and let Y be a subspace

of X. If X \Y is smooth and Y is locally defined in X by at most n−2 holomorphic

equations, then Y is locally irreducible.

We shall need the following:

Definition 3. Let L be a connected 1-dimensional complex space and
⋃
Li be

its decomposition into irreducible components. Then L is called an infinite Nori

string if all Li are compact and L is not compact.

Definition 4. (a) If Ω is an open subset of Cn, and ψ : Ω → R is a smooth

function, then ψ is called strictly q-convex if its Levi form has at least n−q+1

positive eigenvalues at every point.

(b) Suppose that X is a complex space. A function φ : X → R is called strictly

q-convex if for every a ∈ X there exists an embedding of a neighborhood U

of a as a closed analytic subset of an open subset Ω of Cn, for some n, and a

smooth strictly q-convex function ψ : Ω→ R such that ψ|U = φ.

(c) A complex space X is called q-complete if there exists a strictly q-convex

exhaustion function φ : X → R (i.e. {x ∈ X : φ(x) < c} b X for every c ∈ R).

§3. The results

Proposition 2. Suppose that Z is a complex projective variety with dim(Z) = n

and Y is a closed subvariety of Z with dim(Y ) = k such that Sing(Z) ⊂ Sing(Y )
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and k ≤ (n − 1)/2. Then there exists a principal hypersurface H of Z such that

Y ⊂ H and Sing(H) ⊂ Sing(Y ).

Proof. Let L be a positive line bundle on Z and let I the ideal of Y . It follows (see

for example [8]) that there exists m0 ∈ N such that for any m ≥ m0 the canonical

map ψx : Γ(Z, I ⊗ Lm)→ Γ(Z, I/mxI ⊗ Lm) is surjective for every x ∈ Y . If x is

a regular point of Y then Γ(X, I/mxI ⊗ Lm) = Γ(X, I ⊗O/mx ⊗ Lm) is a vector

space of dimension n−k. It follows that for such a point dim(Ker(ψx)) = N−n+k

where N = dim(Γ(Z, I ⊗ Lm)).

We consider the diagram

R ↪→ Reg(Y )× Γ(Z, I ⊗ Lm)
p2−−−−→ Γ(Z, I ⊗ Lm)

p1

y
Reg(Y )

where R = {(x, s) ∈ Reg(Y )×Γ(Z, I⊗Lm) : ds(x) = 0}. Then dim(R∩p−11 (x)) =

N − n + k for every x ∈ Reg(Y ) and hence dim(R) ≤ N − n + 2k. We assumed

that k ≤ (n−1)/2 and therefore dim(R) < N . We deduce that p2(R) has measure

zero. If s is a section in Γ(Z, I ⊗ Lm) \ p2(R) and we set H = {x ∈ X : s(x) = 0}
then H is smooth at every point of Reg(Y ). Also it follows from Bertini’s theorem

(see [7]) that for almost every s the hypersurface H is smooth at every point of

Z \ Sing(Z), hence at every point of Z \ Y . We conclude that Sing(H) ⊂ Sing(Y )

for almost every s ∈ Γ(Z, I ⊗ Lm).

Lemma 6. Suppose that C is a 1-dimensional connected compact complex space

such that C has an irreducible component which is not locally irreducible. Then

there exists a connected infinite Nori string C̃ and an unbranched covering map

p : C̃ → C.

Proof. Let C1 be an irreducible component of C and x0 ∈ C1 a point such that C1
x0

,

the germ of C1 at x0, is not irreducible. Let
⋃
i∈I1 Ci,x0

be the decomposition of

C1
x0

into irreducible components (according to our assumption, I1 has at least two

elements), and
⋃
i∈I Ci,x0 the decomposition of Cx0 into irreducible components

with I1 ⊂ I. Let U and V be open neighborhoods of x0 such that U ⊂ V and

there exist closed analytic subsets Ci, i ∈ I, of V , which are representatives for

Ci,x0
. We pick an index j ∈ I1 and let C ′ =

⋃
i∈I\{j} Ci, which is a closed analytic

subset of V . Let F := ((C \ U) t C ′ t Cj)/∼ where the equivalence relation is

defined as follows. Let x ∈ (C \U)∩V . Note that (C \U)∩V = (C ′ \U)∪ (Cj \U)

and that C ′ \U and Cj \U are disjoint. Then if x ∈ C ′ \U we identify it with the

corresponding point in C ′, while if x ∈ Cj \U we identify it with the corresponding
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point in Cj . We have a projection τ : F → C whose fiber above x0 has exactly two

elements, P ∈ C ′ and Q ∈ Cj , and τ : F \{P,Q} → C \{x0} is a biholomorphism.

Note that F is connected and compact.

Let now {Fk}k∈Z be 1-dimensional complex spaces, each biholomorphic to F

via πk : Fk → F and Pk = π−1k (P ), Qk = π−1k (Q). We set C̃ = (
⊔
Fk)/∼ where

Qk is identified with Pk−1. If we put p : C̃ → C, p(x) = τ(πk(x)) for each

x ∈ Fk \ {Pk, Qk} and p(Qk) = x0, we obtain an unramified covering. Obviously,

C̃ is a connected infinite Nori string.

Remark. Let Tk be the equivalence class of Fk in C̃ and zk be the unique inter-

section point of Tk and Tk+1 (i.e. zk is the equivalence class of Qk). The identity

map F → F induces a biholomorphism Tk → F which in turn induces a biholo-

morphism gk : Tk → Tk+1. Then g : C̃ → C̃, g|Tk
= gk, is a (well-defined) covering

transformation map.

Proposition 3. Let X and Y be two n-dimensional normal complex spaces,

n ≥ 3, y0 ∈ Y and π : X → Y a proper holomorphic map such that C = π−1(y0)

is a connected 1-dimensional complex space and π : X \C → Y \ {y0} is a biholo-

morphism. Assume that H1(C) is infinite and that there exists a locally irreducible

2-dimensional complex subspace S of X with isolated singularities such that C ⊂ S.

Then there exist an open neighborhood W of C in X and an unbranched covering

p : W̃ →W such that p−1((S \ C) ∩W ) is Stein.

Proof. We consider the decomposition C =
⋃
Ci into irreducible components.

Because H1(C) is infinite we distinguish three possible cases:

1. All irreducible components Ci are locally irreducible, their graph is a (con-

nected) tree, and at least one them has genus greater than or equal to 1.

2. There exists an irreducible component Ci0 which is not locally irreducible.

3. All irreducible components Ci are locally irreducible, and their graph contains

a cycle.

Case 1. In this case let p : C̃ → C be a connected holomorphically convex covering

of C that has at least one non-compact irreducible component. There exists such

a covering because at least one irreducible component of C has genus greater than

or equal to 1. We also choose an open neighborhood W1 of C in X such that W1

has a continuous deformation retraction onto W1∩S and W1∩S has a continuous

deformation retraction onto C. We extend the covering p : C̃ → C to a covering

p : W̃1 → W1, which in turn induces a covering p : S̃ → S ∩W1. We apply Theo-

rem 5 to deduce that we can find a neighborhood W of C in X such that p−1(W ) is

holomorphically convex and therefore p−1(S∩W ) is holomorphically convex. Note
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that every compact 1-dimensional subspace of p−1(S ∩W ) is included in C̃ and

therefore p−1(S ∩W ) is a proper modification of a Stein space at a discrete set of

points. Corollary 1 then implies that p−1(S ∩W ) \ C̃ = p−1((S \C)∩W ) is Stein.

Case 2. We apply Lemma 6 to get a covering space p : C̃ → C such that C̃

is an infinite Nori string. As in Case 1, we choose an open neighborhood W1 of

C in X such that W1 has a continuous deformation retraction on W1 ∩ S and

W1 ∩ S has a continuous deformation retraction in S onto C, and we extend p to

a covering p : W̃1 → W1 which induces a covering p : S̃ → S ∩W1. At the same

time the covering transformation map g extends to a covering transformation map

g : S̃ → S̃. We are using here the notation of the proof of Lemma 6 and of the

Remark that follows. Let U0 ⊂ S̃ be a strictly pseudoconvex, relatively compact

neighborhood of T0. For k ∈ Z, k > 0, we denote by g(k) the k-th iterate g ◦ · · · ◦ g
and for k ∈ Z, k < 0, we put g(k) = (g−1)(k). We set Uk = g(k)(U0). Then Uk
is a strictly pseudoconvex neighborhood of Tk. Shrinking U0 we can assume that

U0 ∩
⋃
|k|≥2 Uk = ∅ and that p|U0∩U1

and p|U0∩U−1
are 1-1. In particular U0 does

not contain any Tk, k 6= 0. It follows, obviously, that Up ∩ Uq = ∅ if |k − p| > 1.

By Corollary 1, Uk \ Tk−1 and Uk+1 \ Tk+2 are Stein open subsets of S̃. We now

choose an open Stein neighborhood B0 of z0 such that B0 ⊂ U0 ∩ U1 and B0 is

Runge in both U0 \ T−1 and U1 \ T2 (see Corollary 2). Moreover we assume that

there exists an open Stein neighborhood V1 of y0 in Y such that V1 ⊃ p(B0). It

follows from Lemma 4 that B0 \ C̃ is Runge in both U0 \ C̃ and U1 \ C̃. We set

Bk = g(k)(B0). Note that p(Bk) = p(B0) for every k ∈ Z, and Bk \ C̃ is Runge in

both Uk \ C̃ and Uk+1 \ C̃.

We choose a strictly plurisubharmonic exhaustion function φ : V1 → R for V1
such that φ(y0) = 0 and φ(y) > 0 for y ∈ V1 \ {y0}. Let ε > 0 be such that

V = {y ∈ V1 : φ(y) < ε} b p(B0). We claim that (p ◦ π)−1(V ∩ S) \ C̃ is Stein. To

prove this we consider for k, l ∈ Z, l < k, Ωk,l = (
⋃k
j=l Uj) ∩ ((p ◦ π)−1(V ∩ S))

and Mk,l = Ωk,l \ C̃. Note that since p(∂Uj1 ∩ ∂Uj2) ∩ B0 = ∅ for j1 6= j2, each

Ωk,l is a strictly pseudoconvex, relatively compact open subset of S̃. Its maximal

compact 1-dimensional subvariety is Tl ∪ · · · ∪Tk, which is exceptional. Hence Ωk,l
is 1-convex. On the other hand C̃ ∩Ωk,l = (

⋃k
j=l Tj)∪ (Tk+1∩Ωk,l)∪ (Tl−1∩Ωk,l).

Because Ωk does not contain Tk+1 or Tl−1 it follows from Corollary 1 that Mk,l is

Stein. Note now that Mk+1,l = Mk,l ∪ ((Uk+1 ∩ (p ◦ π)−1(V ∩ S)) \ C̃) and that

Mk,l∩((Uk+1∩(p◦π)−1(V ∩S))\C̃) = (Bk∩(p◦π)−1(V ∩S))\C̃, which by Lemma 2

is Runge in (Uk+1 ∩ (p ◦ π)−1(V ∩ S)) \ C̃. We deduce from Lemma 5 that Mk,l is

Runge in Mk+1,l. Similarly Mk,l is Runge in Mk,l−1. Therefore Mk,−k is Runge in

Mk+1,−k−1 for every k ∈ Z, k > 0. As (p ◦ π)−1(V ∩ S) \ C̃ =
⋃∞
k=1Mk+1,−k−1 it

follows from Lemma 1 that (p ◦ π)−1(V ∩ S) \ C̃ is Stein as claimed.
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Case 3. Let C1, . . . , Ck be irreducible components of C such that their graph

forms a minimal cycle (i.e. no proper subset of {C1, . . . , Ck} forms a cycle). We

contract C2 ∪ · · · ∪ Ck in X to obtain a normal complex space X ′. Let S′ and C ′

be the images of S and C respectively. It follows from Lemma 3 that S′ is locally

irreducible. Notice at the same time that C ′ is not locally irreducible anymore and

hence we can apply Case 2. We obtain a neighborhood W ′ of C ′ and a covering

map p′ : W̃ ′ → W ′ such that p′−1((S′ \ C ′) ∩ W ′) is Stein. We pull back this

covering via the contraction map to obtain a covering for a neighborhood of C

with the desired property.

Theorem 7. Suppose that (Y, y0) is a germ of normal isolated singularity obtained

by contracting a curve, dim(Y ) = n ≥ 2, and let K be the corresponding link

singularity. If π1(K) is infinite, then the universal covering space of Y \ y0 for Y

small can be written as the union of n − 1 Stein open subsets. In particular it is

(n− 1)-complete.

Proof. If dim(Y ) = 2 the theorem was proved in [4]. Hence we assume that

dim(Y ) ≥ 3. Let π : X → Y be a local resolution of singularities and C the excep-

tional curve. As we are assuming that n ≥ 3 it follows that H1(C) is infinite since

π1(C) is infinite (note that C has real codimension> 2 inX so π1(X) = π1(X\C)).

On the other hand from Proposition 1 it follows that C has a strictly pseudocon-

vex neighborhood which can be embedded into a space Cn × Pm, and then by

Theorem 4, there exist an open 1-convex neighborhood V of the exceptional set

and a complex projective manifold Z such that V is an open subset of Z. We will

show now that we can find a two-dimensional locally irreducible subvariety S of Z

such that Sing(S) ⊂ Sing(C) and Z \ S is the union of n − 2 Stein open subsets.

The local irreducibility will follow from Corollary 3 if we can choose S to be a lo-

cal set-theoretic complete intersection. To obtain S we apply Proposition 2, n− 2

times, to we obtain a sequence of projective varieties H1 ⊃ · · · ⊃ Hn−2 =: S ⊃ C

such that Hj+1 is a principal hypersurface in Hj and Sing(Hj) ⊂ Sing(C). Each

Hj \Hj+1, j = 1, . . . , n−3, is Stein and Theorem 2 implies that there exists a Stein

open subset Ωj+1 of Z such that Ωj+1 ∩Hj = Hj \Hj+1. If we put Ω1 = Z \H1

we get Z \ Hn−2 = Z \ S = Ω1 ∪ · · · ∪ Ωn−2. In particular, since V is strictly

pseudoconvex, V \ S is the union of n− 2 Stein open subsets.

We now apply Proposition 3 to find a strictly pseudoconvex neighborhood W

of C inX such that on one handW \S = W1∪· · ·∪Wn−2 whereWj , j = 1, . . . , n−2,

are Stein open subsets of X and on the other hand there exists an (unbranched)

covering space p : W̃ →W for which p−1((S \ C) ∩W ) is Stein.

It remains to notice is that W̃j := p−1(Wj), j = 1, . . . , n − 2, are Stein

(see Theorem 1) and, at the same time, by Theorem 2 there exists a Stein open
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subset W̃n−1 of W̃ such that W̃n−1 ∩ p−1(S) = p−1((S \ C) ∩ W ). Obviously

W̃ = W̃1 ∪ · · · ∪ W̃n−1 and hence W̃ is the union of n− 1 Stein open sets. As the

universal covering Ŵ of W is a covering of W̃ , Theorem 1 implies that Ŵ is the

union of n − 1 Stein open sets. The (n − 1)-completeness of Ŵ follows from [11,

Satz 2.3].
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[4] M. Colţoiu and M. Tibăr, Steinness of the universal covering of the complement of
a 2-dimensional complex singularity, Math. Ann. 326 (2003), 95–104. Zbl 1039.32038
MR 1981613

[5] H. Hamm, Lokale topologische Eigenschaften komplexer Räume, Math. Ann. 191 (1971),
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