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Abstract

In this paper we study a generalization of the Jacquet module of a parabolically induced
representation and construct a filtration on it. The successive quotients of the filtration
are written by using the twisting functor.
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§1. Introduction

The Jacquet module of a representation of a semisimple (or reductive) Lie group

was introduced by Casselman [Cas80]. One of the motivations of considering the

Jacquet module is to investigate homomorphisms to principal series representa-

tions. The space of homomorphisms to principal series representations is an im-

portant invariant of a representation.

One of the powerful tools to study the Jacquet module of a parabolically

induced representation is the Bruhat filtration [CHM00]. This is a filtration on

the Jacquet module defined by the Bruhat decomposition. Casselman–Hecht–

Miličić [CHM00] used the Bruhat filtration to determine the dimension of the

(moderate-growth) Whittaker model of a principal series representation (another

proof of Kostant’s result [Kos78, Theorem I, Theorem J]). In this paper, we study

the Bruhat filtration and show that its successive quotients are described by the

twisting functor defined by Arkhipov [Ark04]. The successive quotients become
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“twisted” inductions, which have the same character as that of an induced repre-

sentation but a different module structure.

Moreover, we investigate its generalization, which is related to the Whittaker

model. In [Cas80], Casselman suggested generalizing the notion of the Jacquet

module. For this generalized Jacquet module, we can also define a Bruhat filtra-

tion and the successive quotients of the filtration are described in terms of the

generalized twisting functor.

This result gives a strategy to determine all Whittaker models of a parabolically

induced representation. To determine it, it suffices to study the successive quotients

and extensions of the filtration. In a special case, we can carry out these steps.

Now we state our results precisely. Let G be a connected semisimple linear

Lie group, G = KA0N0 an Iwasawa decomposition and P0 = M0A0N0 a minimal

parabolic subgroup and its Langlands decomposition. As usual, the complexifi-

cations of the Lie algebras is denoted by the corresponding German letter (for

example, g = Lie(G)⊗RC). Fix a character η of N0 and denote its differential also

by η. Then for a representation V of G, the generalized Jacquet modules J ′η(V ) and

J∗η (V ) are defined as follows. Let VK-finite be the space of K-finite vectors in V .

Definition 1.1. Let V be a finite-length moderate growth Fréchet representation

of G (see Casselman [Cas89, p. 391]). We define g-modules J ′η(V ) and J∗η (V ) by

J ′η(V ) =

{
v ∈ V ′

∣∣∣∣ for some k and for all X ∈ n0,

(X − η(X))kv = 0

}
,

J∗η (V ) =

{
v ∈ (VK-finite)∗

∣∣∣∣ for some k and for all X ∈ n0,

(X − η(X))kv = 0

}
,

where V ′ is the continuous dual space of V and (VK-finite)∗ is the full dual space

HomC(VK-finite,C). If η is the trivial representation, J ′η (resp. J∗η ) is denoted by J ′

(resp. J∗). The module J∗(V ) is called the Jacquet module of V .

(We will use the notation Y ∗ = HomC(Y,C) for any C-vector space Y through-

out this paper.)

In this paper, we consider J ′η(V ) and J∗η (V ) when V is a parabolically induced

representation. Let P be a parabolic subgroup containing P0 and take a Langlands

decomposition P = MAN such that A0 ⊃ A. For λ ∈ a∗ and an irreducible

representation σ of M , we define I(σ, λ) = IndGP (σ ⊗ eλ+ρ) where ρ ∈ a∗ is the

half sum of positive roots. In this paper, we deal with J ′η(I(σ, λ)) and J∗η (I(σ, λ)).

First we discuss J ′η(I(σ, λ)). By definition, I(σ, λ) is realized as the space of

C∞-sections of a certain vector bundle on G/P . Hence an element of its continuous

dual space is regarded as a distribution on G/P . Using the Bruhat decomposition
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on G/P , we can get a filtration {Ii} of J ′η(I(σ, λ)), which is called the Bruhat

filtration. The first aim of this paper is to understand the structure of Ii/Ii−1.

We give a precise definition of Ii. Let W (resp. WM ) be the little Weyl group

of G (resp. M). Then N0-orbits on G/P are parameterized by W/WM . Let W (M)

be a subset of W consisting of w such that w(α) is positive for any positive re-

stricted root α of M . Then W (M)
∼−→W/WM . Enumerate W (M) = {w1, . . . , wr}

so that
⋃
j≤iN0wjP/P is a closed subset of G/P . Now we define a submodule

Ii ⊂ J ′η(I(σ, λ)) by

Ii =
{
x ∈ J ′η(I(σ, λ))

∣∣∣ suppx ⊂
⋃
j≤i

N0wjP
}
.

To describe Ii/Ii−1, we need a functor Twi,η which is a generalization of

the twisting functor [Ark04]. The generalized twisting functor Tw,η is defined as

follows. Let n0 be the nilradical of the parabolic subalgebra opposite to p0 and

{e1, . . . , el} a basis of Ad(w)n0 ∩ n0 such that each ei is a root vector with respect

to h, where h is a Cartan subalgebra of g which contains a0. Moreover, we choose ei
such that

⊕
i≤j−1 Cei is an ideal of

⊕
i≤j Cei for all j. Let U(g) be the universal

enveloping algebra of g and U(g)ei−η(ei) the localization of U(g) with respect to

the multiplicative set {(ei − η(ei))
n | n ∈ Z>0}. Put

Sw,η = (U(g)e1−η(e1)/U(g))⊗U(g) · · · ⊗U(g) (U(g)el−η(el)/U(g)).

Then Sw,η is a U(g)-bimodule and its U(g)-bimodule structure is independent of

the choice of {e1, . . . , el}. The twisting functor Tw,η is an end-functor of the cate-

gory of g-modules, defined by Tw,ηV = Sw,η ⊗U(g) (wV ) for a g-module V , where

wV is the representation twisted by w (i.e., Xv = Ad(w)−1(X) · v for X ∈ g and

v ∈ wV , where the dot means the original action). If η is the trivial representa-

tion, then Tw,η is equal to the twisting functor defined by Arkhipov [Ark04]. In

this case, we denote it by Tw.

Now we give the theorem.

Theorem 1.2 (Theorems 4.7 and 6.1). The filtration {Ii} has the following prop-

erties.

(1) If the character η is not unitary, then J ′η(Ii/Ii−1) = 0 for each i = 1, . . . , r.

Therefore, J ′η(I(σ, λ)) = 0.

(2) Assume that η is unitary. The module Ii/Ii−1 is nonzero if and only if η is

trivial on wiNw
−1
i ∩N0 and J ′

w−1
i η

(σ ⊗ eλ+ρ) 6= 0.

(3) If Ii/Ii−1 6= 0 then Ii/Ii−1 ' Twi,η(U(g)⊗U(p) J
′
w−1
i η

(σ ⊗ eλ+ρ)) where n acts

on J ′
w−1
i η

(σ ⊗ eλ+ρ) trivially.
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Here are some remarks on notation. As wi ∈W (M), we have Ad(wi)(m∩ n0)

⊂ n0. Hence we can define a character w−1
i η of m∩n0 by (w−1

i η)(X) = η(Ad(wi)X).

Using this character, we can define an m⊕ a-module J ′
w−1
i η

(σ ⊗ eλ+ρ).

Under the assumptions that P is a minimal parabolic subgroup, and that σ

is the trivial representation, I(σ, λ) has the unique Langlands quotient and η is

the trivial representation, this theorem is proved in [Abe08]. The proof we gave

in [Abe08] was algebraic, while we give an analytic and geometric proof in this

paper.

Next we consider J∗η (I(σ, λ)). For a U(g)-module V , put Γη(V ) = {v ∈ V |
for some k and for all X ∈ n0, (X − η(X))kv = 0} and C(V ) = ((V ∗)h-finite)∗. We

prove the following theorem.

Theorem 1.3 (Theorem 7.5). There exists a filtration 0 = Ĩ0 ⊂ Ĩ1 ⊂ · · · ⊂ Ĩr =

J∗η (I(σ, λ)) such that Ĩi/Ĩi−1 ' Γη(C(Twi(U(g)⊗U(p) J
∗(σ⊗eλ+ρ)))) where n acts

on J∗(σ ⊗ eλ+ρ) trivially.

Let us discuss an application. The space Whη(D) of Whittaker vectors for

a U(g)-module D is defined by Whη(D) = {x ∈ D | (X − η(X))x = 0 for

all X ∈ n0}. If V is a moderate growth Fréchet representation of G, an ele-

ment of Whη(V ′) corresponds to a moderate growth homomorphism V → IndGN0
η

and an element of Whη((VK-finite)∗) corresponds to an algebraic homomorphism

VK-finite → IndGN0
η. In particular, when η is the trivial representation, these

correspond to homomorphisms to principal series representations. Obviously, we

have Whη(V ′) = Whη(J ′η(V )) and Whη((VK-finite)∗) = Whη(J∗η (V )). Hence us-

ing the above theorems, we can determine the dimension of Whη(I(σ, λ)′) and

Whη((I(σ, λ)K-finite)∗) if λ satisfies some (generic) condition.

Let us give such a formula. Let Σ (resp. ΣM ) be the restricted root system

for (G,A0) (resp. (M,M ∩A0)), Σ+ the positive system of Σ corresponding to N0,

and Π ⊂ Σ the set of simple roots determined by Σ+. For α ∈ Σ, the coroot of

α is denoted by α̌. Put Σ+
M = ΣM ∩ Σ+. Let W̃ (resp. W̃M ) be the (complex)

Weyl group of g (resp. m). Let µ̃ ∈ (m ∩ h)∗ be the infinitesimal character of σ.

Using the decomposition h = a ⊕ (m ∩ h), we regard (m ∩ h)∗ ⊂ h∗. Let ∆ be

the root system for (g, h). Put Σ+
η = (

∑
η|gβ 6=0, β∈Π Zβ) ∩ Σ+. Let ρ0 ∈ a∗0 be the

half sum of positive roots counted with multiplicities. Recall that ν ∈ (m∩ a0)∗ is

called an exponent of σ if ν + ρ0|m∩a0 is an (m∩ a0)-weight of σ/(m∩ n0)σ. Using

a0 = (m ∩ a0)⊕ a, we regard ν as an element of a∗0. We also have a∗ ⊂ a∗0.

Theorem 1.4 (Theorems 8.8 and 8.16). For λ ∈ a∗ and an irreducible represen-

tation σ of M , the following formulas hold.
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(1) Assume that for any w ∈ W such that η|wNw−1∩N0
= 1, the following two

conditions hold:

(a) 〈α̌, λ+ ν〉 6∈ Z≤0 for each exponent ν of σ and α ∈ Σ+ \ w−1(Σ+
M ∪ Σ+

η ).

(b) λ− w̃(λ+ µ̃)|a /∈ Z≤0((Σ+ \ Σ+
M ) ∩ w−1Σ+)|a \ {0} for all w̃ ∈ W̃ .

Then

dim Whη(I(σ, λ)′) =
∑

w∈W (M), η|wNw−1∩N0
=1

dim Whw−1η(σ′).

(2) Assume that (λ+ µ̃)− w̃(λ+ µ̃) 6∈ Z∆ for all w̃ ∈ W̃ \ W̃M . Then

dim Whη((I(σ, λ)K-finite)∗) =
∑

w∈W (M)

dim Whw−1η((σM ∩K-finite)∗).

For σ finite-dimensional, we have the following theorem announced by

T. Oshima (a talk at National University of Singapore, January 11, 2006). Let

∆M be the root system for (m⊕ a, h) and take a positive system ∆+
M compatible

with Σ+
M . Put ρ̃M = (1/2)

∑
α∈∆+

M
α. For subsets Θ1,Θ2 of Π, put ΣΘi = ZΘi∩Σ,

W (Θi) = {w ∈ W | w(Θi) ⊂ Σ+}, WΘi the Weyl group of ΣΘi and W (Θ1,Θ2) =

{w ∈W (Θ1) ∩W (Θ2)−1 | w(ΣΘ1
) ∩ΣΘ2

= ∅}. The parabolic subgroup P defines

a subset of Π, denoted by Θ. Let w0 ∈W be the longest element.

Theorem 1.5. Assume that σ is an irreducible finite-dimensional representation

of M with highest weight ν̃. Let dimM0
(λ + ν̃) be the dimension of a finite-

dimensional irreducible representation of M0A0 with highest weight λ+ ν̃.

(1) Assume that for all w ∈ W such that η|wN0w−1∩N0
= 1 the following two

conditions hold:

(a) 〈α̌, λ+ w0ν̃〉 6∈ Z≤0 for all α ∈ Σ+ \ w−1(Σ+
M ∪ Σ+

η ).

(b) λ− w̃(λ+ ν̃ + ρ̃M )|a /∈ Z≤0((Σ+ \ Σ+
M ) ∩ w−1Σ+)|a \ {0} for all w̃ ∈ W̃ .

Then

dim Whη(I(σ, λ)′) = #W (supp η,Θ)× dimM0(λ+ ν̃).

(2) Assume that (λ+ ν̃)− w̃(λ+ ν̃) 6∈ ∆ for all w̃ ∈ W̃ \ W̃M . Then

dim Whη((I(σ, λ)K-finite)∗) = #W (supp η,Θ)×#Wsupp η × dimM0(λ+ ν̃).

We summarize the content of this paper. In §2, we introduce the Bruhat

filtration. From §2 to §6 we study the module J ′η(I(σ, λ)). In §3 we prove that

successive quotients of the Bruhat filtration are zero under some conditions. The

structure of the successive quotients is investigated in §4. We give the definition

and properties of the generalized twisting functor in §5, and in §6 we reveal the
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relation between the twisting functor and the successive quotients. We complete

the proof of Theorem 1.2 in that section. Theorem 1.3 is proved in §7. In §8, the

dimension of the space of Whittaker vectors is determined, and Theorems 1.4 and

1.5 are proved.

List of symbols

suppG η = supp η §2, 425 I(σ, λ) §2, 427

L §2, 427 W (M) §2, 427

r §2, 427 Ii §2, 427

Ui §2, 427 Oi §2, 427

Resi §2, 428 δi §2, 428

P(Oi) §2, 428 ηi §2, 428

Di(X) §2, 430 R′i(X) §3, 433

R(X) §3, 434 δi(E, f, u
′) §3, 434

L(X) §3, 435 Whη(V ) §3, 438

Φw,w′ §4, 439 H §4, 440

Pη = MηAηNη §4, 442 pη = mη ⊕ aη ⊕ nη §4, 442

lη §4, 442 Nη §4, 442

nη §4, 442 Σ+
η ,Σ

−
η §4, 442

D(X,λ) §4, 444 ghα §5, 446

u0 §5, 446 u0 §5, 446

u0,w̃ §5, 446 Sek−ψ(ek) §5, 446

Tw̃,ψ §5, 446 Ji §6, 448

J(V ) §7, 450 O′P0
§7, 450

O′
P0

§7, 450 D′(V ) §7, 450

C(V ) §7, 450 Γη(V ) §7, 450

Ĩi §7, 452 γ1, γ2, γ3, γ4 §8, 453

W (Θ) §8, 465 W (Θ1,Θ2) §8, 465

WΘ §8, 465 D′(U,L) §A, 467

T (M,L) §A, 467

Notation

Throughout this paper we use the following notation. As usual we denote the ring

of integers, the set of non-negative integers, the set of positive integers, the real

number field and the complex number field by Z,Z≥0,Z>0,R and C, respectively.

Let G be a connected semisimple linear Lie group and g the complexification

of its Lie algebra. Fix a Cartan involution θ of G and denote its derivation by

the same letter θ. Let g = k ⊕ s be the decomposition of g into the +1 and

−1 eigenspaces for θ. Set K = {g ∈ G | θ(g) = g}. Let P0 = M0A0N0 be a
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minimal parabolic subgroup and its Langlands decomposition such that M0 ⊂ K

and Lie(A0) ⊂ s. Denote the complexifications of the Lie algebras of P0,M0, A0, N0

by p0,m0, a0, n0, respectively. Take a parabolic subgroup P which contains P0 and

denote its Langlands decomposition by P = MAN . Here we assume A ⊂ A0. Let

p,m, a, n be the complexifications of the Lie algebras of P,M,A,N . Put P0 = θ(P0),

N0 = θ(N0), P = θ(P ), N = θ(N), p0 = θ(p0), n0 = θ(n0), p = θ(p) and n = θ(n).

In general, we denote the dual space HomC(V,C) of a C-vector space V by V ∗.

Let Σ ⊂ a∗0 be the restricted root system for (g, a0) and gα the root space for α ∈ Σ.

Then
∑
α∈Σ Rα is a real form of a∗0. We denote the real part of λ ∈ a∗0 with re-

spect to this real form by Reλ and the imaginary part by Imλ. Let Σ+ be the

positive system determined by n0. Put ρ0 =
∑
α∈Σ+(dim gα/2)α and ρ = ρ0|a.

The positive system Σ+ determines the set Π of simple roots. Fix a total order on∑
α∈Σ Rα such that the following conditions hold: (1) If α > β and γ ∈

∑
α∈Σ Rα

then α + γ > β + γ. (2) If α > 0 and c is a positive real number then cα > 0.

(3) For all α ∈ Σ+ we have α > 0. Write W for the little Weyl group for (g, a0), e

for the unit element of W and w0 for the longest element of W . For w ∈W , we fix

a representative in NK(a) and denote it also by w. For α ∈ Σ, let α̌ be its coroot.

Let t0 be a Cartan subalgebra of m0 and T0 the corresponding Cartan sub-

group of M0. Then h = t0⊕a0 is a Cartan subalgebra of g. Let ∆ be the root system

for (g, h) and take a positive system ∆+ compatible with Σ+, i.e., if α ∈ ∆+ is such

that α|a0 6= 0 then α|a0 ∈ Σ+. Let ghα be the root space of α ∈ ∆ and W̃ the Weyl

group of ∆. Put ρ̃ = (1/2)
∑
α∈∆+ α. By the decompositions (m ∩ a0)∗ ⊕ a∗ = a∗0

and t∗0 ⊕ a∗0 = h∗, we always regard a∗ ⊂ a∗0 ⊂ h∗.

We use the same notation for M , i.e., ΣM is the restricted root system of M ,

Σ+
M = ΣM ∩Σ+, WM is the little Weyl group of M , ∆M is the root system of M ,

∆+
M = ∆M ∩ ∆+, W̃M is the Weyl group of M and wM,0 is the longest element

of WM .

We can define an anti-isomorphism of U(g) by X 7→ −X for X ∈ g. We denote

this anti-isomorphism by u 7→ ǔ.

For a g-module V and g ∈ G, we define a g-module gV as follows: The

representation space is V and the action of X ∈ g is X · v = (Ad(g)−1X)v for

v ∈ gV .

For ξ = (ξ1, . . . , ξl) ∈ Zl, put |ξ| = ξ1 + · · ·+ ξl.

§2. Parabolic induction and the Bruhat filtration

Fix a character η of n0 and put suppG η = supp η = {α ∈ Π | η|gα 6= 0}. The

character η is called non-degenerate if supp η = Π. We denote the character of N0

whose differential is η by the same letter η.
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Definition 2.1. Let V be a finite-length moderate growth Fréchet representation

of G (see Casselman [Cas89, p. 391]). We define g-modules J ′η(V ) and J∗η (V ) by

J ′η(V ) =

{
v ∈ V ′

∣∣∣∣ for some k and for all X ∈ n0,

(X − η(X))kv = 0

}
,

J∗η (V ) =

{
v ∈ (VK-finite)∗

∣∣∣∣ for some k and for all X ∈ n0,

(X − η(X))kv = 0

}
,

where V ′ is the continuous dual space of V .

Put J ′(V ) = J ′0(V ) and J∗(V ) = J∗0 (V ) where 0 is the trivial representa-

tion of n0. The module J∗(V ) is the (dual of the) Jacquet module defined by

Casselman [Cas80]. By the automatic continuity theorem [Wal83, Theorem 4.8],

we have J ′(V ) = J∗(V ). The correspondences V 7→ J ′η(V ) and V 7→ J∗η (V ) are

functors from the category of G-modules to the category of g-modules.

Remark 2.2. The character η : n0 → C gives a C-algebra homomorphism U(n0)

→ C. We denote this homomorphism again by η and let Ker η be its kernel. Then

the following conditions are equivalent:

(1) For some k and for all X ∈ n0, (X − η(X))kv = 0.

(2) For all X ∈ n0 there exists k such that (X − η(X))kv = 0.

(3) For some k, (Ker η)kv = 0.

In fact, this holds for any nilpotent Lie algebra. Obviously, (3) implies (1) and

(1) implies (2). We prove that (2) implies (3) by induction on dim n0. Replacing

V with V ⊗ (−η), we may assume η = 0. Take a codimension 1 ideal c ⊂ n0 and

X ∈ n0 \ c. Then ckv = 0 for some k by inductive hypothesis. Put V ′ = U(n0)v.

Then V ′ = U(c)U(CX)v. By (2), U(CX)v is finite-dimensional. Since c is an ideal,

ckU(CX)v ⊂ U(n0)ckv = 0. Hence V ′ is finite-dimensional. Since each finite-

dimensional irreducible representation of a nilpotent algebra is a character, V ′

is given by an extension of characters. By the assumption (2), each irreducible

subquotient of V ′ is trivial. Hence nk
′

0 v = 0 for some k′.

In this paper, we study the module J ′η(V ) for a parabolically induced repre-

sentation V . An element of a∗ is identified with a character of A. We denote the

character of A corresponding to λ + ρ by eλ+ρ where λ ∈ a∗. For an irreducible

moderate growth Fréchet representation σ of M and λ ∈ a∗, put

I(σ, λ) = C∞- IndGP (σ ⊗ eλ+ρ).

(For moderate growth Fréchet representations, see Casselman [Cas89].) The rep-

resentation I(σ, λ) has a natural structure of a moderate growth Fréchet repre-
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sentation. Denote its continuous dual space by I(σ, λ)′. Let L be a vector bundle

on G/P attached to the representation σ ⊗ eλ+ρ. Then I(σ, λ) is the space of

C∞-sections of L.

Remark 2.3. A C∞-section of L corresponds to a σ-valued C∞-function f on

G such that f(gman) = σ(m)−1e−(λ+ρ)(log a)f(g) for g ∈ G, m ∈ M , a ∈ A,

n ∈ N . In particular a C∞-function on G/P corresponds to a right P -invariant

C∞-function on G. We use this identification throughout this paper.

We use the notation of Appendix A. We can regard J ′η(I(σ, λ)) as a subspace of

D′(G/P,L) as follows. Let G/P =
⋃
γ Uγ be an open covering such that L is trivial

on Uγ . For each γ, C∞c (Uγ ,L) is identified with a subspace {ϕ ∈ C∞(G/P,L) |
ϕ|(G/P )\Uγ = 0} of C∞(G/P,L) = I(σ, λ). Hence an element of I(σ, λ)′ gives

an element of (C∞c (Uγ ,L))′. By the definition of D′(G/P,L), the collection of

these elements in (C∞c (Uγ ,L))′ over γ’s patches together to give an element of

D′(G/P,L). Hence we get I(σ, λ)′ → D′(G/P,L). It is easy to see that this is an

injective g-module homomorphism.

Set W (M) = {w ∈W | w(Σ+
M ) ⊂ Σ+}. Then it is known that the multiplica-

tion map W (M)×WM →W is bijective [Kos61, Proposition 5.13]. By the Bruhat

decomposition, we have

G/P =
⊔

w∈W (M)

N0wP/P.

(Recall that we fix a representative of w ∈W , see Notation.) Enumerate W (M) =

{w1, . . . , wr} so that
⋃
j≤iN0wjP/P is a closed subset of G/P for each i. (For

example, choose wi such that dim(N0w1P/P ) ≤ · · · ≤ dim(N0wrP/P ).) Then we

can define a submodule Ii of J ′η(I(σ, λ)) by

Ii =
{
x ∈ J ′η(I(σ, λ))

∣∣∣ suppx ⊂
⋃
j≤i

N0wjP/P
}
.

The filtration {Ii} is called a Bruhat filtration [CHM00]. In the rest of this section,

we study the modules Ii/Ii−1. Put Ui = wiNP/P and Oi = N0wiP/P . By the

lemma below, Ui is an open subset of G/P containing Oi, and Ui∩Oj = ∅ if j < i.

Lemma 2.4. Let w,w′ ∈W and assume that wN0P ∩N0w
′P 6= ∅. Then w′ ≥ w

with respect to the Bruhat order.

Proof. Take H ∈ Lie(A0) such that α(H) < 0 for all α ∈ Σ+ and put at = exp(tH)

for t ∈ R>0. Then limt→∞ atna
−1
t = 1 for all n ∈ N0. By assumption, there exists

n ∈ N0 such that wnP/P ∈ N0w
′P/P ⊂ G/P . Since N0w

′P/P ⊂ G/P is stable
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under the action of A0, we have (watw
−1)wnP/P ∈ N0w

′P/P . Since at ∈ A0 ⊂ P ,

we have watna
−1
t P/P ∈ N0w

′P/P . Hence wP/P = limt→∞ watna
−1
t P/P ∈

N0w′P/P where N0w′P/P is the closure of N0w
′P/P in G/P , proving the lemma.

Hence, the restriction map Resi : Ii → D′(Ui,L) induces an injective map

Resi : Ii/Ii−1 → D′(Ui,L).

Moreover, Im Resi ⊂ TOi(Ui,L) where TOi(Ui,L) is the space of tempered L-

distributions on Ui with respect to G/P whose supports are contained in Oi.

The map n 7→ nwiP/P yields isomorphisms wiNw
−1
i ' Ui and wiNw

−1
i ∩N0

' Oi. Since the exponential map exp: Ad(wi)n → wiNw
−1
i is a diffeomorphism,

the space Ui is diffeomorphic to a Euclidean space and Oi is a subspace of Ui. More-

over, since wiNw
−1
i ' (wiNw

−1
i ∩N0)(wiNw

−1
i ∩N0), a basis of Ad(wi)n∩n0 satis-

fies the conditions of Appendix A.2. Hence TOi(Ui,L) ↪→ U(Ad(wi)n∩n0)D′(Oi,L)

' U(Ad(wi)n ∩ n0)⊗C D′(Oi,L) by Proposition A.3.

Fix a Haar measure on wiNw
−1
i ∩N0. We define δi ∈ D′(Oi,L) by

〈δi, ϕ〉 =

∫
wiNw

−1
i ∩N0

ϕ(nwi) dn

for ϕ ∈ C∞c (Oi,L). Recall that Ui has the structure of a vector space and Oi is a

subspace. Let P(Oi) be the ring of polynomials onOi (cf. [CG90] or Appendix A.3).

Define a C∞-function ηi on Oi by ηi(nwiP/P ) = η(n) for n ∈ wiNw−1
i ∩N0. For a

C∞-function f on Oi and u′ ∈ σ′, we define f ⊗ u′ ∈ C∞(Oi, σ
′) by (f ⊗ u′)(x) =

f(x)u′. Since wi ∈W (M), Ad(wi)(m ∩ n0) ⊂ n0. Hence we can define a character

w−1
i η of m∩ n0 by (w−1

i η)(X) = η(Ad(wi)X). Using this character, we can define

the Jacquet module J ′
w−1
i η

(σ ⊗ eλ+ρ) of the MA-representation σ ⊗ eλ+ρ. It is an

m⊕ a-module. Put

I ′i =

{ l∑
k=1

Ek(((fkη
−1
i )⊗ u′k)δi)

∣∣∣∣ Ek ∈ U(Ad(wi)n ∩ n0), fk ∈ P(Oi),

u′k ∈ J ′w−1
i η

(σ ⊗ eλ+ρ)

}
.

(Recall that Ad(wi)n ∩ n0 is a normal direction to Oi in Ui.) The space I ′i is a

U(g)-submodule of D′(Ui,L). Our aim is to prove that if Ii/Ii−1 6= 0 then Resi
gives an isomorphism Ii/Ii−1 ' I ′i.

Remark 2.5. Since wi ∈ W (M), it follows that Ad(wi)(m ∩ n0) ⊂ n0 and

Ad(wi)(m ∩ n0) ⊂ n0. Hence

Ad(wi)m ∩ n0 = (Ad(wi)(m ∩ n0)⊕Ad(wi)(m ∩ n0)) ∩ n0 = Ad(wi)(m ∩ n0).
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By the same argument,

Ad(wi)m ∩ p0 = Ad(wi)(m ∩ p0).

We use these formulas frequently.

Lemma 2.6. (1) Ad(wi)(n⊕ (m ∩ n0)) is a subalgebra.

(2) Ad(wi)(n⊕ (m∩ n0)) = (Ad(wi)n∩ n0)⊕ (Ad(wi)(n⊕m)∩ n0) and both direct

summands are subalgebras.

(3) Ad(wi)(m⊕n)∩n0 = (Ad(wi)n∩n0)⊕(Ad(wi)m∩n0) and both direct summands

are subalgebras.

Proof. (1) This subspace is the nilpotent radical of a minimal parabolic subalgebra.

(2) We have

Ad(wi)(n⊕ (m∩ n0)) = (Ad(wi)(n⊕ (m∩ n0))∩ n0)⊕ (Ad(wi)(n⊕ (m∩ n0))∩ n0).

By Remark 2.5, Ad(wi)(n⊕(m∩n0))∩n0 = (Ad(wi)n∩n0)⊕(Ad(wi)(m∩n0)∩n0) =

Ad(wi)n ∩ n0. We also have Ad(wi)(m⊕ n) ∩ n0 = (Ad(wi)(n⊕ (m ∩ n0)) ∩ n0)⊕
(Ad(wi)(m ∩ n0) ∩ n0) = Ad(wi)(n⊕ (m ∩ n0)) ∩ n0 since Ad(wi)(m ∩ n0) ⊂ n0.

(3) This is obvious.

Lemma 2.7. Let E1, . . . , En be a basis of Ad(wi)n ∩ n0 such that each Es is a

restricted root vector for some root (say αs) and F ∈ Ad(wi)(n ⊕ m) ∩ n0. For

ξ = (ξ1, . . . , ξn) ∈ Zn≥0, set Eξ = Eξ11 · · ·Eξnn . Then for all c ∈ C we have

[(F − c)k, Eξ] ∈
( ∑
ξ′∈A(ξ)

CEξ
′
)
U(Ad(wi)(n⊕m) ∩ n0)

⊂ U(Ad(wi)(n⊕ (m ∩ n0)))

where A(ξ) = {ξ′ ∈ Zn≥0 | |ξ′| < |ξ|, or (|ξ′| = |ξ| and
∑
ξ′iαi >

∑
ξiαi)}.

Proof. Notice that αs is negative.

We may assume k = 1. We argue by induction on |ξ|. We have

[F − c, Eξ] = [F,Eξ] =

n∑
s=1

ξs−1∑
l=0

Eξ11 · · ·E
ξs−1

s−1 E
l
s[F,Es]E

ξs−l−1
s E

ξs+1

s+1 · · ·Eξnn .

Hence, it is sufficient to prove

Eξ11 · · ·E
ξs−1

s−1 E
l
s[F,Es]E

ξs−l−1
s E

ξs+1

s+1 · · ·Eξnn

∈
( ∑
ξ′∈A(ξ)

CEξ
′
)
U(Ad(wi)(n⊕m) ∩ n0).

We may assume that F is a restricted root vector. If [F,Es] ∈ Ad(wi)n ∩ n0 then
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the left hand side is in U(Ad(wi)n ∩ n0) and its a0-weight is greater than that

of Eξ. Hence it belongs to
∑
ξ′∈A(ξ) CEξ

′
.

Assume that [F,Es] ∈ Ad(wi)(n ⊕ m) ∩ n0. Define ξ(1), ξ(2) ∈ Zn by ξ(1) =

(ξ1, . . . , ξs−1, l, 0, . . . , 0) and ξ(2) = (0, . . . , 0, ξs−l−1, ξs+1, . . . , ξn). Using inductive

hypothesis, we have

Eξ
(1)[

[F,Es], E
ξ(2)
]
∈ Eξ

(1)
( ∑
ξ′∈A(ξ(2))

CEξ
′
)
U(Ad(wi)(n⊕m) ∩ n0)

⊂
( ∑
ξ′∈A(ξ(1)+ξ(2))

CEξ
′
)
U(Ad(wi)(n⊕m) ∩ n0)

⊂
( ∑
ξ′∈A(ξ)

CEξ
′
)
U(Ad(wi)(n⊕m) ∩ n0).

On the other hand,

Eξ
(1)

Eξ
(2)

[F,Es] ∈
( ∑
|ξ′|≤|ξ(1)+ξ(2)|

CEξ
′
)

[F,Es]

⊂
( ∑
|ξ′|≤|ξ(1)+ξ(2)|

CEξ
′
)

(Ad(wi)(n⊕m) ∩ n0).

Since |ξ(1) + ξ(2)| = |ξ| − 1 < |ξ|, we get the assertion.

Let X be an element of the normalizer of Ad(wi)n∩ n0 in g. For f ∈ C∞(Oi)

we define Di(X)f ∈ C∞(Oi) by

(Di(X)f)(nwi) =
d

dt
f(exp(−tX)n exp(tX)wi)

∣∣∣∣
t=0

where n ∈ wiNw−1
i ∩N0.

Lemma 2.8. Fix f ∈ C∞(Oi), u
′ ∈ (σ ⊗ eλ+ρ)′ and X ∈ g.

(1) If X ∈ a0, then X normalizes Ad(wi)n ∩ n0 and

X((f ⊗ u′)δi) = ((Di(X)f)⊗ u′)δi + (f ⊗ ((Ad(wi)
−1X)u′))δi

+ (wiρ0 − ρ0)(X)(f ⊗ u′)δi.

(2) If X ∈ Ad(wi)(m ∩ n0) or X ∈ m0, then X normalizes Ad(wi)n ∩ n0 and

X((f ⊗ u′)δi) = ((Di(X)f)⊗ u′)δi + (f ⊗ ((Ad(wi)
−1X)u′))δi.

Proof. First we prove that X normalizes Ad(wi)n ∩ n0. If X ∈ m0 + a0, then

X normalizes each restricted root space. Hence, X normalizes Ad(wi)n ∩ n0. If

X ∈ Ad(wi)(m ∩ n0), then X ∈ n0 by Remark 2.5. Hence, X normalizes n0. Since

m normalizes n, X normalizes Ad(wi)n.
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Put gt = exp(tX) for t ∈ R. Set D(t) = |det(Ad(gt)
−1|Ad(wi)n∩n0

)|. Take

ϕ ∈ C∞c (Ui,L) and regard ϕ as a σ-valued C∞-function on wiNP (Remark 2.3).

In each case, w−1
i gtwi ∈ P . Hence ϕ(xw−1

i gtwi) = (σ ⊗ eλ+ρ)(w−1
i gtwi)

−1ϕ(x).

Then

〈X((f ⊗ u′)δi), ϕ〉 = 〈(f ⊗ u′)δi,−Xϕ〉

=
d

dt

∫
wiNw

−1
i ∩N0

u′(ϕ(gtnwi))f(nwi) dn

∣∣∣∣
t=0

=
d

dt

∫
wiNw

−1
i ∩N0

u′(ϕ((gtng
−1
t )wi(w

−1
i gtwi)))f(nwi) dn

∣∣∣∣
t=0

=
d

dt

∫
wiNw

−1
i ∩N0

u′((σ ⊗ eλ+ρ)(w−1
i gtwi)

−1ϕ((gtng
−1
t )wi))f(nwi) dn

∣∣∣∣
t=0

=
d

dt

∫
wiNw

−1
i ∩N0

u′((σ ⊗ eλ+ρ)(w−1
i gtwi)

−1ϕ(nwi))f(g−1
t ngtwi)D(t) dn

∣∣∣∣
t=0

=
d

dt

∫
wiNw

−1
i ∩N0

((w−1
i gtwi)u

′)(ϕ(nwi))f(g−1
t ngtwi)D(t) dn

∣∣∣∣
t=0

.

This implies

X((f ⊗ u′)δi) = ((Di(X)f)⊗ u′)δi + (f ⊗ ((Ad(wi)
−1X)u′))δi

+
d

dt
|det(Ad(gt)

−1|Ad(wi)n∩n0
)|
∣∣∣∣
t=0

((f ⊗ u′)δi).

(1) Assume that X ∈ a0. Since wi ∈ W (M), we have wiNw
−1
i ∩ N0 =

wiN0w
−1
i ∩N0. This implies that det(Ad(gt)

−1|Ad(wi)n∩n0
) = et(wiρ0−ρ0)(X).

(2) First assume that X ∈ m0. Since M0 3 g 7→ det(Ad(g)−1|Ad(wi)n∩n0
) is

a 1-dimensional representation, it is unitary since M0 is compact. Hence we have

|det(Ad(gt)
−1|Ad(wi)n∩n0

)| = 1. Next assume X ∈ Ad(wi)m ∩ n0. Then ad(X) is

nilpotent. Hence, Ad(gt) − 1 is nilpotent. This implies det(Ad(gt)
−1|Ad(wi)n∩n0

)

= 1.

Lemma 2.9. Let x ∈ TOi(Ui,L). Assume that there exists a positive integer k

such that (X − η(X))kx = 0 for all X ∈ Ad(wi)p ∩ n0. Then x ∈ I ′i. In particular

Im Resi ⊂ I ′i.

Proof. Let Es and αs be as in Lemma 2.7. For ξ = (ξ1, . . . , ξn) ∈ Zn≥0, set Eξ =

Eξ11 · · ·Eξnn . Since x ∈ TOi(Ui,L) ↪→ U(Ad(wi)n ∩ n0)D′(Oi,L), there exist xξ ∈
D′(Oi,L) such that x =

∑
ξ E

ξxξ (finite sum).

First we prove xξ ∈ (P(Oi)η
−1
i ⊗ (σ⊗ eλ+ρ)′)δi by backward induction on the

lexicographic order of (|ξ|,−
∑
s ξsαs). Fix a nonzero element F ∈ Ad(wi)n ∩ n0.

Then (F − η(F ))kx =
∑
ξ[(F − η(F ))k, Eξ](xξ) +

∑
ξ E

ξ((F − η(F ))kxξ). Assume
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that (F − η(F ))kx = 0. Define the set A(ξ) as in Lemma 2.7. By that lemma,∑
ξ

Eξ((F − η(F ))kxξ) = −
∑
ξ

[(F − η(F ))k, Eξ](xξ)

∈
∑
ξ

( ∑
ξ′∈A(ξ)

CEξ
′
)
U(Ad(wi)(n⊕m) ∩ n0)(xξ).

Put B(ξ) = {ξ′ | |ξ′| > |ξ|, or (|ξ′| = |ξ| and
∑
ξ′sαs <

∑
ξsαs)}. Notice that

U(Ad(wi)(n⊕m)∩n0)(xξ) ⊂ D′(Oi,L). Since we have U(Ad(wi)n∩n0)D′(Oi,L) '
U(Ad(wi)n ∩ n0)⊗D′(Oi,L), it follows that

(F − η(F ))kxξ ∈
∑

ξ′∈B(ξ)

U(Ad(wi)(n⊕m) ∩ n0)(xξ′).

By inductive hypothesis, xξ′ ∈ (P(Oi)η
−1
i ⊗ (σ ⊗ eλ+ρ)′)δi for all ξ′ ∈ B(ξ).

Hence we have (F − η(F ))kxξ ∈ (P(Oi)η
−1
i ⊗ (σ ⊗ eλ+ρ)′)δi. Therefore xξ ∈

(P(Oi)η
−1
i ⊗ (σ ⊗ eλ+ρ)′)δi by Corollary A.5.

Hence, we can write x =
∑
ξ E

ξ
∑
l(fξ,lη

−1
i ⊗u′ξ,l)δi (finite sum), where fξ,l ∈

P(Oi) and u′ξ,l ∈ (σ ⊗ eλ+ρ)′. Moreover, we may assume that fξ,l is an a0-weight

vector with respect to Di and {fξ,l}l is linearly independent for each ξ. We prove

u′ξ,l ∈ J ′w−1
i η

(σ ⊗ eλ+ρ). Take F ∈ m ∩ n0. By Lemma 2.8,

(Ad(wi)F − η(Ad(wi)F ))kx

=
∑
ξ,l

[(Ad(wi)F − η(Ad(wi)F ))k, Eξ]((fξ,lη
−1
i ⊗ u

′
ξ,l)δi)

+
∑
ξ,l

Eξ
k∑
p=1

(
k

p

)
(((Di(Ad(wi)F ))p(fξ,l)η

−1
i )⊗ (F − η(Ad(wi)F ))k−p(u′ξ,l))δi

+
∑
ξ,l

Eξ(fξ,lη
−1
i ⊗ (F − η(Ad(wi)F ))ku′ξ,l)δi.

Now we prove u′ξ,l ∈ J ′w−1
i η

(σ⊗ eλ+ρ) by backward induction on the lexicographic

order of (|ξ|,−
∑
ξsαs,−wt fξ,l) where wt fξ,l is the a0-weight of fξ,l with respect

to Di. Take k such that (Ad(wi)F − η(Ad(wi)F ))kx = 0. Then∑
ξ,l

Eξ(fξ,lη
−1
i ⊗ (F − η(Ad(wi)F ))ku′ξ,l)δi

= −
∑
ξ,l

[(Ad(wi)F − η(Ad(wi)F ))k, Eξ]((fξ,lη
−1
i ⊗ u

′
ξ,l)δi)

−
∑
ξ,l

Eξ
k∑
p=1

(
k

p

)
(((Di(Ad(wi)F ))p(fξ,l)η

−1
i )(F − η(Ad(wi)F ))k−p(u′ξ,l))δi.
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Consequently,

(fξ,l ⊗ (F − η(Ad(wi)F ))k(u′ξ,l))δi

∈
∑

ξ′∈B(ξ), l′

U(Ad(wi)(n⊕m) ∩ n0)((fξ′,l′η
−1
i ⊗ u

′
ξ′,l′)δi)

+
∑

wt fξ′,l′<wt fξ,l

∑
p

(((Di(Ad(wi)F ))pfξ′,l′η
−1
i )⊗ (U(CF )u′ξ′,l′))δi.

By inductive hypothesis, (F − η(Ad(wi)F ))ku′ξ,l ∈ J ′w−1
i η

(σ ⊗ eλ+ρ). This implies

that u′ξ,l ∈ J ′w−1
i η

(σ ⊗ eλ+ρ).

In fact, Im Resi = I ′i if Im Resi 6= 0. This is proved in Section 4.

§3. Vanishing lemma

In this section, we fix i ∈ {1, . . . , r} and a basis {e1, . . . , el} of Ad(wi)n ∩ n0.

Here we assume that each es is a restricted root vector and denote its root by αs.

Moreover, we assume that
⊕

s≤t−1 Ces is an ideal of
⊕

s≤tCes for all t = 1, . . . , l.

By the decomposition (as groups)

N0/[N0, N0] ' ((wiPw
−1
i ∩N0)/(wiPw

−1
i ∩ [N0, N0]))

× ((wiNw
−1
i ∩N0)/(wiNw

−1
i ∩ [N0, N0]))

where [·, ·] is the commutator group, we can define a character η′ of N0 by η′(n) =

η(n) for n ∈ wiPw−1
i ∩ N0 and η′(n) = 1 for n ∈ wiNw−1

i ∩ N0. First, we prove

the following lemma. This gives a necessary condition for Ii/Ii−1 6= 0.

Lemma 3.1. Let X ∈ n0. Then for all x ∈ I ′i there exists a positive integer k

such that (X − η′(X))kx = 0.

For the proof, we need some notation and lemmas. For X ∈ Ad(wi)n∩ n0, we

define a differential operator R′i(X) on Oi by

(R′i(X)ϕ)(nwiP/P ) =
d

dt
ϕ(n exp(tX)wiP/P )

∣∣∣∣
t=0

where n ∈ wiNw
−1
i ∩ N0. (Recall that wiNw

−1
i ∩ N0 ' Oi via the map n 7→

nwiP/P .)

For X ∈ g, we define a differential operator R(X) on G by

(R(X)ϕ)(g) =
d

dt
ϕ(g exp(tX))

∣∣∣∣
t=0
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for a C∞-function ϕ on G. We define R′i(E) (E ∈ U(Ad(wi)n ∩ n0)) and R(E)

(E ∈ U(g)) in the usual way. For E ∈ U(g), f ∈ C∞(Oi) and u′ ∈ (σ⊗ eλ+ρ)′, we

define δi(E, f, u
′) ∈ D′Oi(Ui,L) by

〈δi(E, f, u′), ϕ〉 =

∫
wiNw

−1
i ∩N0

f(nwi)u
′((R(Ad(wi)

−1E)ϕ)(nwi)) dn

where ϕ ∈ C∞c (Ui,L) and we regard ϕ as a function on wiNP (Remark 2.3).

Lemma 3.2. We have the following properties:

(1) δi(XE, f, u
′) = δi(E,R

′
i(−X)(f), u′) for X ∈ Ad(wi)n ∩ n0.

(2) δi(EX, f, u
′) = δi(E, f,Ad(wi)

−1Xu′) for X ∈ Ad(wi)p.

(3) The map C∞(Oi)⊗U(Ad(wi)n∩n0)U(g)⊗U(Ad(wi)p)wi(σ⊗eλ+ρ)′ → D′Oi(Ui,L)

defined by f ⊗ E ⊗ u′ 7→ δi(E, f, u
′) is injective.

Proof. (1) and (2) are obvious. To prove (3), the same argument in the proof of

Proposition A.3 can be applied.

Lemma 3.3. Let E ∈ g, E′ ∈ U(g), f ∈ C∞(Oi) and u′ ∈ (σ ⊗ eλ+ρ)′. Then

Eδi(E
′, f, u′) =

∑
(k1,...,kl)∈Zl≥0

δi

(
(ad(el)

kl · · · ad(e1)k1E)E′, f

l∏
s=1

(−xs)ks
ks!

, u′
)
,

where xi is a polynomial on Oi given by exp(a1e1) · · · exp(alel)wiP/P 7→ ai.

(Notice that the right hand side is a finite sum since ad(ei) is nilpotent.)

Proof. We remark that (a1, . . . , al) 7→ exp(a1e1) · · · exp(alel) yields a diffeomor-

phism Rl ' wiNw
−1
i ∩ N0, and a Haar measure of wiNw

−1
i ∩ N0 corresponds

to the Euclidean measure of Rl. Take ϕ ∈ C∞c (wiNP, σ ⊗ eλ+ρ). Put n(a) =

exp(a1e1) · · · exp(alel) for a = (a1, . . . , al). By the definition, the action of E ∈ g

and Ri(E
′) (E′ ∈ g) commute with each other. For E ∈ g, we have

〈Eδi(E′, f, u′), ϕ〉

=

∫
Rl
u′(((−E)R(Ad(wi)

−1E′)ϕ)(n(a)wi))f(n(a)wi) da

=
d

dt

∫
Rl
u′(R(Ad(wi)

−1E′)ϕ)(exp(tE)n(a)wi))f(n(a)wi) da

∣∣∣∣
t=0

=
d

dt

∫
Rl
u′(R(Ad(wi)

−1E′)ϕ)(n(a) exp(tAd(n(a))−1E)wi))f(n(a)wi) da

∣∣∣∣
t=0

.
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The formula

Ad(n(a))−1E = e− ad(alel) · · · e− ad(a1e1)E

=
∑

(k1,...,kl)∈Zl≥0

(−a1)k1

k1!
· · · (−al)

kl

kl!
ad(el)

kl · · · ad(e1)k1E

gives the lemma.

For k = (k1, . . . , kl), we denote the operator ad(el)
kl · · · ad(e1)k1 on g by

ad(e)k and the polynomial ((−x1)k1/k1!) · · · ((−xl)kl/kl!) ∈ P(Oi) by fk; here the

polynomial xi is defined in Lemma 3.3.

Lemma 3.4. Let k = (k1, . . . , kl) ∈ Zl≥0 and X ∈ n0. Assume that ad(e)kX ∈
Ad(wi)n ∩ n0. Then R′i(ad(e)kX)fk = 0.

Proof. We may assume that X is a restricted root vector and denote its restricted

root by α. We consider the a0-weight with respect to Di. The polynomial fk is

an a0-weight vector of weight −
∑
s ksαs. This implies that R′i(ad(e)kX)fk is an

a0-weight vector of weight α. However, P(Oi) has a decomposition into the direct

sum of a0-weight spaces and its weight belongs to {
∑
β∈Σ+ bββ | bβ ∈ Z≤0} 63 α.

Hence, R′i(ad(e)kX)fk = 0.

For f ∈ P(Oi) and X ∈ n0 we define L(X)(f) by

L(X)(f)(nwi) =
d

dt
f(exp(−tX)nwi)

∣∣∣∣
t=0

.

Recall that the C∞-function ηi on Oi is defined by ηi(nwiP/P ) = η(n) for

n ∈ wiNw
−1
i ∩ N0, and the character η′ of N0 is defined by η′(n) = η(n) for

n ∈ wiPw−1
i ∩N0 and η′(n) = 1 for n ∈ wiNw−1

i ∩N0.

Lemma 3.5. Let X ∈ n0 be a restricted root vector. For f ∈ P(Oi) and u′ ∈
J ′
w−1
i η

(σ ⊗ eλ+ρ), we have

(X − η′(X))δi(1, fη
−1
i , u′) = δi(1, L(X)(f)η−1

i , u′)

+
∑

ad(e)kX∈Ad(wi)n0∩n0

δi(1, ffkη
−1
i , (Ad(wi)

−1(ad(e)kX)− η′(ad(e)kX))u′).

(Again the sum on the right hand side is finite.)

In particular, if X ∈ Ad(wi)n ∩ n0, then

(X − η′(X))δi(1, fη
−1
i , u′) = δi(1, L(X)(f)η−1

i , u′).
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Proof. We have

Xδi(1, fη
−1
i , u′) =

∑
k∈Zl≥0

δi(ad(e)kX, ffkη
−1
i , u′).

by Lemma 3.3. Since ad(e)kX belongs to n0 and is a restricted root vector, we

have either ad(e)kX ∈ Ad(wi)n0 ∩ n0 or ad(e)kX ∈ Ad(wi)n0 ∩ n0. Recall that

Ad(wi)n0 ∩ n0 = Ad(wi)n ∩ n0 since wi ∈ W (M). Assume that ad(e)kX ∈
Ad(wi)n ∩ n0. By the definition of ηi and η′, we have R′i(− ad(e)kX)(η−1

i ) =

η(ad(e)kX)η−1
i = η′(ad(e)kX)η−1

i . Hence, using Lemma 3.4,

δi(ad(e)kX, ffkη
−1
i , u′) = δi(1, R

′
i(− ad(e)kX)(ffkη

−1
i ), u′)

= δi(1, R
′
i(− ad(e)kX)(f)fkη

−1
i , u′)

+ η′(ad(e)kX)δi(1, ffkη
−1
i , u′).

Next assume that ad(e)kX ∈ Ad(wi)n0 ∩ n0. For h ∈ P(Oi), define h̃ ∈ P(Ui)

by h̃(nn0wiP ) = h(nwiP ) for n ∈ wiNw−1
i ∩ N0 and n0 ∈ wiNw−1

i ∩ N0. Then

(R′i(Y )h)∼ = R(Ad(wi)
−1Y )h̃ for all Y ∈ Ad(wi)n0 ∩ n0. Since f̃(pnwi) = f̃(pwi)

for p ∈ wiNPw−1
i and n ∈ wiN0w

−1
i ∩N0, we have R(Ad(wi)

−1(− ad(e)kX))(f̃)

= 0. By Lemma 3.2(2),

δi(ad(e)kX, ffkη
−1
i , u′) = δi(1, ffkη

−1
i ,Ad(wi)

−1(ad(e)kX)u′)

= δi(1, R(Ad(wi)
−1(− ad(e)kX))(f̃)|Oifkη−1

i , u′)

+ δi(1, ffkη
−1
i ,Ad(wi)

−1(ad(e)kX)u′).

By the same calculation as in the proof of Lemma 3.3,

L(X)(f)∼ = L(X)(f̃) =
∑

k∈Zl≥0

R(Ad(wi)
−1(− ad(e)kX))(f̃)f̃k.

Hence∑
k∈Zl≥0

δi(1, R(Ad(wi)
−1(− ad(e)kX))(f̃)|Oifkη−1

i , u′)

= δi(1, (L(X)(f))∼|Oiη−1
i , u′) = δi(1, L(X)(f)η−1

i , u′).

These imply that

(X − η′(X))δi(1, fη
−1
i , u′) = δi(1, L(X)(f)η−1

i , u′)

+
∑

ad(e)kX∈Ad(wi)n0∩n0

δi(1, ffkη
−1
i ,Ad(wi)

−1(ad(e)kX)u′)

+
∑

ad(e)kX∈Ad(wi)n∩n0

η′(ad(e)kX)δi(1, ffkη
−1
i , u′)− η′(X)δi(1, fη

−1
i , u′).
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Since η′ is a character, if k 6= (0, . . . , 0) then η′(ad(e)kX) = 0. Hence∑
k∈Zn≥0

η′(ad(e)kX)δi(1, ffkη
−1
i , u′) = η′(X)δi(1, fη

−1
i , u′).

This implies( ∑
ad(e)kX∈Ad(wi)n∩n0

η′(ad(e)kX)δi(1, ffkη
−1
i , u′)

)
− η′(X)δi(1, fη

−1
i , u′)

= −
∑

ad(e)kX∈Ad(wi)n0∩n0

η′(ad(e)kX)δi(1, ffkη
−1
i , u′),

proving the lemma.

Proof of Lemma 3.1. Since ad(n0) is nilpotent, the subspace

{x ∈ I ′i | for some k and for all X ∈ n0, (X − η′(X))kx = 0}

is g-stable. Hence we may assume that x = ((fη−1
i ) ⊗ u′)δi = δi(1, fη

−1
i , u′) for

some f ∈ P(Oi) and u′ ∈ J ′
w−1
i η

(σ ⊗ eλ+ρ).

Now define V = U(Ad(wi)
−1n0 ∩ n0)u′ ⊂ J ′

w−1
i η

(σ ⊗ eλ+ρ) where n acts on

J ′
w−1
i η

(σ⊗eλ+ρ) trivially. Then V is finite-dimensional. Since n acts on V trivially,

X− (w−1
i η′)(X) acts on V as a nilpotent operator for X ∈ Ad(wi)

−1n0∩n0 by the

definition of η′. By applying Engel’s theorem for V ⊗(−w−1
i η′), there exists a filtra-

tion 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vp = V such that (Vs/Vs−1)⊗ (−w−1
i η′|Ad(wi)−1n0∩n0

) is

the trivial representation of Ad(wi)
−1n0∩n0. Then Vs/Vs−1 ' w−1

i η′|Ad(wi)−1n0∩n0

for all s = 1, . . . , p. We prove the lemma by induction on p = dimV .

We may assume that X is a restricted root vector. By Lemma 3.5,

(X − η′(X))δi(1, fη
−1
i , u′) ∈ δi(1, L(X)(f)η−1

i , u′)

+
∑

h∈P(Oi), v′∈Vp−1

Cδi(1, hη−1
i , v′).

Since f is a polynomial, (L(X))c(f) = 0 for some positive integer c. Then we

have (X−η′(X))cδi(1, fη
−1
i , u′) ∈

∑
h∈P(Oi), v′∈Vp−1

Cδi(1, hη−1
i , v′). By inductive

hypothesis, the lemma follows.

From the lemma, we get the following vanishing lemma. Recall that we define

the character w−1
i η of m ∩ n0 by (w−1

i η)(X) = η(Ad(wi)X) and we have the

injective homomorphism Resi : Ii/Ii−1 → I ′i.
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Lemma 3.6. Assume that Ii/Ii−1 6= 0. Then:

(1) The character η is unitary.

(2) The character η is zero on Ad(wi)n ∩ n0. (This is equivalent to η = η′.)

(3) The module J ′
w−1
i η

(σ ⊗ eλ+ρ) is not zero.

Proof. (2) By Lemma 3.1 and the definition of J ′η, if Ii/Ii−1 6= 0 then η = η′.

(3) This is clear from Lemma 2.9.

(1) It is sufficient to prove that if η is not unitary then J ′η(V ) = 0 for all

irreducible representations V of G. By Casselman’s subrepresentation theorem, V

is a subrepresentation of a principal series representation. Since J ′η is an exact

functor, we may assume V is a principal series representation IndGP0
(σ0 ⊗ eλ0+ρ0).

Take the Bruhat filtration {Ii} of J ′η(V ). We will prove Ii/Ii−1 = 0 for all i.

By (2), if η is non-trivial on wiN0w
−1
i ∩N0 then Ii/Ii−1 = 0. Hence we may assume

that η is not unitary on wiN0w
−1
i ∩ N0. In this case, by the same argument as

in the classical case (for example, see Schwartz’s book [Sch66, Ch. VII, §4]), a

nonzero element of I ′i is not tempered. Hence Ii/Ii−1 = 0.

Remark 3.7. In the next section it is proved that the conditions of Lemma 3.6

are also sufficient (Theorem 4.7).

Remark 3.8. If Π = supp η, Lemma 3.6 follows from [CHM00, Theorem 5.12].

Definition 3.9 (Whittaker vectors). Let V be a U(n0)-module. We define a vec-

tor space Whη(V ) by

Whη(V ) = {v ∈ V | Xv = η(X)v for all X ∈ n0}.

An element of Whη(V ) is called a Whittaker vector.

Lemma 3.10. Assume that η|Ad(wi)n∩n0
= 0. Then

Whη

({∑
s

(fsη
−1
i ⊗ u

′
s)δi | fs ∈ P(Oi), u

′
s ∈ J ′w−1

i η
(σ ⊗ eλ+ρ)

})
= {(η−1

i ⊗ u
′)δi | u′ ∈Whw−1

i η(σ ⊗ eλ+ρ)}.

Proof. By assumption, we have η = η′. Hence the right hand side is a subspace of

the left hand side by Lemma 3.5.

Take x =
∑
s(fsη

−1
i ⊗ u′s) =

∑
s δi(1, fsη

−1
i , u′s) ∈ Whη(I ′i). We assume

that {u′s} is linearly independent. Take X ∈ Ad(wi)n ∩ n0. It then follows that∑
s δi(1, L(X)(fs)η

−1
i , u′s) = 0 by Lemma 3.5. Hence L(X)(fs) = 0. This implies

fs ∈ C.
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From the above argument, x = δi(1, η
−1
i , u′) for some u′ ∈ J ′

w−1
i η

(σ ⊗ eλ+ρ).

Take X ∈ Ad(wi)(m ∩ n0). By Lemma 3.5, we have

δi(1, η
−1
i , (Ad(wi)

−1X − η(X))u′) ∈
∑

k6=0, uk∈J′
w
−1
i

η
(σ⊗eλ+ρ)

Cδi(1, fkη−1
i , uk).

If k 6= 0 then the degree of fk is greater than 0. So the left hand side must be 0.

Hence (Ad(wi)
−1X − η(X))u′ = 0, proving the lemma.

The following lemma is well-known, but we give a proof for the reader’s con-

venience (cf. Casselman–Hecht–Miličić [CHM00], Yamashita [Yam86]).

Lemma 3.11. Assume that supp η = Π.

(1) Whη(I(σ, λ)′) ↪→Whη(I ′r), where the homomorphism is induced by Resr.

(2) For all x ∈ Whη(I ′r), there exists u′ ∈ Whw−1
r η((σ ⊗ eλ+ρ)′) such that x =

(η−1
r ⊗ u′)δr.

Recall that r = #W (M) = #(W/WM ) and wM,0 is the longest element of

the little Weyl group of M .

Proof. Assume that i < r. Then wiwM,0 is not the longest element of W . There

exists a simple root α ∈ Π such that sαwiwM,0 > wiwM,0. This means that

wiwM,0Σ+ ∩ Σ+ = sα(sαwiwM,0Σ+ ∩ Σ+) ∪ {α}. The left hand side is wi(Σ
+ \

Σ+
M )∩Σ+. Hence, η is not trivial on Ad(wi)n∩n0. By Lemma 3.6, Ii/Ii−1 = 0. This

implies that J ′η(I(σ, λ)) ⊂ I ′r. Since Ad(wr)n ∩ n0 = 0, there exists a polynomial

fs ∈ P(Or) and u′s ∈ J ′w−1
r η

(σ ⊗ eλ+ρ) such that x =
∑
s((fsη

−1
r ) ⊗ u′s)δr. Now

Lemma 3.10 yields the assertion.

§4. Analytic continuation

The aim of this section is to prove that Im Resi = I ′i if Ii/Ii−1 6= 0. Namely, we

extend an element of I ′i (which is a distribution on Ui) to G/P . An element of I ′i
and ϕ ∈ C∞c (Ui) is given by an integral. Formally, this integral is valid for any

ϕ ∈ I(σ, λ). We prove the integral converges if λ is sufficiently dominant. Moreover,

as a function of λ, we prove this integral has a meromorphic continuation to a∗.

(These are essentially known, but we give a proof for the sake of completeness.)

The resulting distribution is a distribution on G/P with a parameter λ. If it has

no pole, this is an extension we need. In general, we can modify the distribution

and remove the pole. This is the outline of the proof.

For w ∈ W , there is an open dense subset wNP/P of G/P and it is diffeo-

morphic to N . Then for w,w′ ∈ W , there exists a map Φw,w′ from some open
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dense subset U ⊂ N to N such that wnP/P = w′Φw,w′(n)P/P for n ∈ U . The

map Φw,w′ is a rational function.

Define H : G→ Lie(A) by g ∈ KM exp(H(g))N via the Iwasawa decomposi-

tion.

Lemma 4.1. (1) The map N → R defined by n 7→ e8ρ(H(n)) is a polynomial.

(2) For all n ∈ N we have e8ρ(H(n)) ≥ 1.

(3) Take H0 ∈ Lie(A) such that α(H0) = −1 for all α ∈ Π \ ΣM . There exists a

continuous function Q(n) ≥ 0 on N such that the following conditions hold:

(a) The function Q vanishes only at the unit element.

(b) e8ρ(H(n)) ≥ Q(n).

(c) Q(exp(tH0)n exp(−tH0)) ≥ e8tQ(n) for t ∈ R>0 and n ∈ N .

Proof. By Knapp [Kna01, Proposition 7.19], there exists an irreducible finite-

dimensional representation V4ρ of G with highest weight 4ρ ∈ a∗0 ⊂ h∗. Let

v4ρ ∈ V4ρ be a highest weight vector and v∗−4ρ ∈ V ∗4ρ a lowest weight vector of

V ∗4ρ. Take n ∈ N and decompose n = kan where k ∈ K, a ∈ A0 and n ∈ N0. Then

log(a) ∈ (m ∩ a0) +H(n). Hence ρ(log(a)) = ρ(H(n)).

First we prove (1). We have θ(n)−1n = θ(n)−1a2n. Hence

〈θ(n)−1nv4ρ, v
∗
−4ρ〉 = 〈θ(n)−1a2nv4ρ, v

∗
−4ρ〉 = 〈a2nv4ρ, θ(n)v∗−4ρ〉

= e8ρ(H(n))〈v4ρ, v
∗
−4ρ〉.

The left hand side is a polynomial.

Next we prove (2) and (3). Fix a compact real form of g containing Lie(K) and

take an inner product on V4ρ which is invariant under the action of this compact

real form. We normalize an inner product ‖ · ‖ so that ‖v4ρ‖ = 1. Then ‖nv4ρ‖ =

‖kanv4ρ‖ = ‖av4ρ‖ = e4ρ(H(n))‖v4ρ‖ = e4ρ(H(n)). For ν ∈ h∗ let Qν(n) ∈ V4ρ be

a vector of weight ν such that nv4ρ =
∑
ν Qν(n). Then e8ρ(H(n)) =

∑
ν ‖Qν(n)‖2.

Since Q4ρ(n) = v4ρ, we have e8ρ(H(n)) ≥ 1.

Put Q(n) =
∑
w∈W (M)\{e} ‖Q4wρ(n)‖2. Assume that n 6= e. Then there exist

w ∈ W (M) \ {e}, m′ ∈ M , a′ ∈ A, n′ ∈ N and n′ ∈ N such that n = wn′m′a′n′.

Let v∗−4wρ ∈ V ∗4ρ be a weight vector with h-weight −4wρ such that for all v ∈ V4wρ,

|〈v, v∗−4wρ〉| = ‖v‖. Then

‖Q4wρ(n)‖ = |〈nv4ρ, v
∗
−4wρ〉| = |〈wn′m′a′n′v4ρ, v

∗
−4wρ〉|

= |〈a′v4ρ, w
−1v∗−4wρ〉| = e4ρ(log a′)|〈v4ρ, w

−1v∗−4wρ〉| 6= 0.

Hence, if n ∈ N \ {e} then Q(n) 6= 0.
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Let t > 0. Using Qν(exp(tH0)n exp(−tH0)) = et(ν−4ρ)(H0)Qν(n), we have

Q(exp(tH0)n exp(−tH0)) =
∑

w∈W (M)\{e}

e8t(wρ−ρ)(H0)‖Q4wρ(n)‖2.

Since (wρ− ρ)(H0) ≥ 1 for w ∈W (M) \ {e}, we get the lemma.

Remark 4.2. The conditions in Lemma 4.1(3) imply that limn→∞Q(n) = ∞.

Indeed, take H0 as in Lemma 4.1. Let {e1, . . . , el} be a basis of n. We assume that

each es is a restricted root vector and denote its root by αs. Any n ∈ N can be

written as n = exp(
∑l
s=1 ases) where as ∈ R. We have αs(H0) > 0 for all s =

1, . . . , l. Put r(n) =
∑l
s=1|as|1/αs(H0). Set C = minr(n)=1Q(n). Since Q(n) > 0 if n

is not the unit element, C > 0. Put t = log r(n) and set n′ = exp(−tH0)n exp(tH0).

Then n′ = exp(
∑l
s=1 ase

−tαs(H0)es). Therefore, r(n′) =
∑l
s=1|as|1/αs(H0)e−t = 1.

Hence, if r(n) > 1, then Q(n) = Q(exp(tH0)n′ exp(−tH0)) ≥ Ce8t = Cr(n)8 by

Lemma 4.1(3). If n→∞ then r(n)→∞. Hence, Q(n)→∞.

Lemma 4.3. Let f be a polynomial on N . There exists a positive integer k such

that a C∞-function h on wiNP/P defined by h(winP/P ) = e−kρ(H(n))f(n) can

be extended to a C∞-function on G/P .

Proof. By Lemma 4.1 and Remark 4.2, we can choose a positive integer k such that

limn→∞ e−8kρ(H(n))f(n) = 0. Let h be a function on Ui defined by h(winP/P ) =

e−8kρ(H(n))f(n) for n ∈ N . We prove that h can be extended to G/P as a C∞-

function. Take w ∈ W (M). Then h is defined on a subset of wNP/P . Using a

diffeomorphism N ' wNP/P , h defines a rational function h ◦ Φwi,w defined on

an open dense subset ofN . By the condition on k, the function h◦Φwi,w has no pole.

Hence, h defines a C∞-function on wNP/P . Since
⋃
w∈W (M) wNP/P = G/P , the

lemma follows.

Recall that for a representation V of m, ν ∈ (m ∩ a0)∗ ⊂ a∗0 is called an

exponent of V if ν + ρ0|m∩a0 is an a0-weight of V/(m ∩ n0)V .

Proposition 4.4. Let ϕ be a σ-valued function on K which satisfies ϕ(km) =

σ(m)−1ϕ(k) for all k ∈ K and m ∈ M ∩K. Define ϕλ ∈ I(σ, λ) by ϕλ(kman) =

e−(λ+ρ)(log a)σ(m)−1ϕ(k) for k ∈ K, m ∈ M , a ∈ A and n ∈ N . For u′ ∈
J ′
w−1
i η

(σ ⊗ eλ+ρ) and f ∈ P(Oi), put

If,u′(ϕλ) =

∫
wiNw

−1
i ∩N0

u′(ϕλ(nwi))η(n)−1f(nwi) dn.

(1) If 〈α̌,Reλ〉 is sufficiently large for each α ∈ Σ+\Σ+
M then the integral If,u′(ϕλ)

absolutely converges.
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(2) As a function of λ, the integral If,u′(ϕλ) has a meromorphic continuation

to a∗.

(3) If supp η = Π and i = r then If,u′(ϕλ) is holomorphic at any λ ∈ a∗.

(4) Let u′ ∈ Whw−1
i η((σ ⊗ eλ+ρ)′). If 〈α̌, λ + ν〉 6∈ Z≤0 for all exponents ν of σ

and α ∈ Σ+ \ w−1
i (Σ+ ∪ Σ−η ), then I1,u′(ϕµ) is holomorphic at µ = λ.

For a proof, we use the following notation. (It will also be used in Sections 7

and 8.)

Let Pη ⊃ P0 be the parabolic subgroup corresponding to supp η ⊂ Π and

Pη = MηAηNη its Langlands decomposition such that Aη ⊂ A0. Denote the com-

plexifications of the Lie algebras of Pη, Mη, Aη, Nη by pη, mη, aη, nη, respectively.

Put lη = mη ⊕ aη, Nη = θ(Nη) and nη = θ(nη). Set Σ+
η = {

∑
α∈supp η nαα ∈ Σ+ |

nα ∈ Z≥0} and Σ−η = −Σ+
η .

Proof. First we prove (1). If f = 1 then this is a well-known result. (See, for

example, Knapp’s book [Kna01, Theorem 7.22].) For a general f , extend f to a

function on wiNP/P by f(nn′wi) = f(nwi) for n ∈ wiNw
−1
i ∩ N0 and n′ ∈

wiNw
−1
i ∩ N0. Then by Lemma 4.3 there exists a positive integer C such that

n 7→ e−Cρ(H(n))f(win) extends to a C∞-function h on G/P . Define κ : G→ K by

g ∈ κ(g)A0N0. Since

If,u′(ϕλ) =

∫
wiNw

−1
i ∩N0

u′(ϕ(κ(nw)))e−(λ+ρ)(H(nwr))f(nwr)η(n)−1 dn,

we have If,u′(ϕλ) = I1,u′((ϕh)λ−Cρ).

We prove (3). By dualizing Casselman’s subrepresentation theorem, there ex-

ist an irreducible representation σ0 of M0 and λ0 ∈ a∗0 such that σ is a quotient of

IndMM∩P0
(σ0 ⊗ eλ0). We may regard u′ ∈ J ′

w−1
r η

(IndMM∩P0
(σ0 ⊗ eλ0)). By the proof

of Lemma 3.11, there exist a polynomial f0 on (M ∩N0)wM,0(M ∩ P0)/(M ∩ P0)

and u′0 ∈ (σ0 ⊗ eλ0)′ such that u′ is given by

ϕ0 7→
∫
M∩N0

u′0(ϕ0(n0wM,0))f0(n0wM,0)η(n0)−1 dn0.

Let π : IndGP0
(σ0⊗ eλ+λ0+ρ)→ I(σ, λ) be the map induced from the quotient map

IndMM∩P0
(σ0 ⊗ eλ0) → σ. Take ϕ̃ : K → σ0 with ϕ̃(km) = σ−1

0 (m)ϕ̃(k) (k ∈ K,

m ∈M0) and π(ϕ̃λ+λ0
) = ϕλ. Define a polynomial f̃ ∈ P(wrwM,0N0P0/P0) by

f̃(wrwM,0nn0P0/P0) = f(wrnP/P )f0(wM,0n0(M ∩ P0)/(M ∩ P0))

for n ∈ N and n0 ∈ M ∩N0. (Notice that wM,0(M ∩N0) = (M ∩N0)wM,0, so f
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is a polynomial on wM,0(M ∩N0)(M ∩ P0)/(M ∩ P0).) We have

If,u′(ϕλ) =

∫
wrwM,0N0(wrwM,0)−1∩N0

u′0(ϕ̃λ+λ0
(nwrwM,0))

× f̃(wrwM,0nP0/P0)η(n)−1 dn.

Hence, we may assume that P is minimal. By the same argument as in the proof

of (1), we may assume f = 1. If f = 1 then this integral is known as a Jacquet

integral and its analytic continuation is known [Jac67].

We prove (2) and (4). By the same argument in the proof of (1), we may

assume that f = 1. Using Casselman’s subrepresentation theorem, there exist

an irreducible representation σ0 of M0, ν ∈ a∗0 and a surjective homomorphism

IndGP0
(σ0 ⊗ eλ+ν+ρ0) → I(σ, λ). Moreover, ν is an exponent of σ. By the same

argument as in the proof of (3), we may assume P = P0. (Hence each exponent

of σ is 0.)

Take w′ ∈ WMη
and w′′ ∈ W (Mη)−1 such that wi = w′w′′. Then we have

wiNw
−1
i ∩N0 = wiN0w

−1
i ∩N0 = (w′N0(w′)−1∩N0)w′(w′′N0(w′′)−1∩N0)(w′)−1.

The condition w′ ∈WMη
implies that w′(Σ+\Σ+

η ) = Σ+\Σ+
η . Hence, supp η∩w′Σ+

= supp η ∩ w′Σ+
η . This implies

supp η ∩ w′(w′′Σ− ∩ Σ+) = supp η ∩ wiΣ− ∩ w′Σ+

= supp η ∩ wiΣ− ∩ wi(w′′)−1Σ+
η ⊂ supp η ∩ wiΣ− ∩ wiΣ+ = ∅,

i.e., η is trivial on w′(w′′N0(w′′)−1 ∩N0)(w′)−1. Hence

I1,u′(ϕ) =

∫
w′N0(w′)−1∩N0

∫
w′′N0(w′′)−1∩N0

u′(ϕ(n1w
′n2w

′′))η(n1)−1 dn2 dn1.

Define aG-module homomorphismA(σ, λ) : I(σ, λ)→ IndGP0
(w′′(σ)⊗ew′′λ+ρ0)

by

(A(σ, λ)ψ)(x) =

∫
w′′N0(w′′)−1∩N0

ψ(xnw′′) dn.

By a result of Knapp and Stein [KS80], this homomorphism has a meromorphic

continuation. We have

I1,u′(ψ) =

∫
w′N0(w′)−1∩N0

u′((A(σ, λ)ψ)(nw′))η(n)−1 dn.

Notice that w′N0(w′)−1 ∩N0 ⊂Mη. Hence I1,u′ is given by the composition

I(σ, λ)
A(σ,λ)−−−−→ IndGP0

(w′′(σ)⊗ ew
′′λ+ρ0)

restriction to Mη−−−−−−−−−−−→ Ind
Mη

Mη∩P0
(w′′(σ)⊗ ew

′′λ+ρ0)→ C.
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Here the last map is given by

ψ 7→
∫
w′N0w′−1∩N0

u′(ψ(nw′))η(n)−1 dn.

By (3), this integral is holomorphic. Hence we get (2).

To prove (4), we calculate (w′′)−1Σ− ∩Σ+. Since (w′′)−1 ∈W (Mη), we have

(w′′)−1Σ−η ⊂ Σ−. Hence (w′′)−1Σ−η ∩ Σ+ = ∅. Then

(w′′)−1Σ− ∩ Σ+ = (w′′)−1(Σ− \ Σ−η ) ∩ Σ+ = (w′′)−1(w′)−1(Σ− \ Σ−η ) ∩ Σ+

= w−1
i (Σ− \ Σ−η ) ∩ Σ+ = Σ+ \ w−1

i (Σ+ ∪ Σ−η ).

Hence 〈α̌, λ〉 6∈ Z≥0 for all α ∈ (w′′)−1Σ− ∩ Σ+. By an argument of Knapp and

Stein [KS80], A(σ, µ) is holomorphic at µ = λ if λ satisfies the conditions of (4).

Hence we get (4).

In the rest of this section, we denote the Bruhat filtration Ii ⊂ J ′η(I(σ, λ))

by Ii(λ). The following result is a corollary of Proposition 4.4.

Lemma 4.5. Let x ∈ I ′i. Then there exists a distribution xt ∈ Ii(λ + tρ) with

a meromorphic parameter t such that xt|Ui is a distribution with a holomorphic

parameter t and (xt|Ui)|t=0 = x. Moreover, for E ∈ U(g), Ex = 0 implies Ext = 0.

Proof. By the definition of I ′i, we may assume x = E((fη−1
i ⊗ u′)δi) for some

E ∈ U(Ad(wi)n ∩ n0), f ∈ P(Oi) and u′ ∈ J ′
w−1
i η

(σ ⊗ eλ+ρ). By (1) and (2)

of the above proposition, ϕ 7→ If,u′(ϕλ+tρ) is a distribution with a meromorphic

parameter t. Moreover, it does not have a pole near t = 0 by (4) of the proposition.

Let x′t be this distribution. Put xt = Ex′t. By construction, xt is as desired.

Let C∞(K,σ) be the space of σ-valued C∞-functions on K. For X ∈ g and

λ ∈ a∗, we define an operator D(X,λ) on C∞(K,σ) by

(D(X,λ)ϕ)(k) =
d

dt
(σ ⊗ eλ+ρ)(exp(−H(exp(−tX)k)))ϕ(κ(exp(−tX)k))

∣∣∣∣
t=0

for ϕ ∈ C∞(K,σ). If we regard I(σ, λ) as a subspace of C∞(K,σ), then (Xϕ)(k) =

(D(X,λ)ϕ)(k) for ϕ ∈ I(σ, λ). It is easy to see that there exist differential operators

D1, D2 on ϕ such that D(X,λ+tρ) = D1+tD2 for all t ∈ C. (The operators D1, D2

may depend on X and λ, but do not depend on t.)

Lemma 4.6. Assume that the following conditions hold.

(1) The character η is unitary.
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(2) The character η is zero on Ad(wi)n ∩ n0.

(3) The module J ′
w−1
i η

(σ ⊗ eλ+ρ) is not zero.

(See Lemma 3.6.) For x ∈ I ′i there exists a distribution xt ∈ Ii(λ + tρ) with a

holomorphic parameter t defined near t = 0 such that x0 = x on Ui.

Proof. First we remark that η = η′ by (2).

We argue by induction on i. If i = 1, then x ∈ I ′1. Take a distribution

xt ∈ I1(λ + tρ) as in Lemma 4.5. Then xt|U1 is holomorphic with respect to t.

Since suppxt ⊂ O1, xt|(G/P )\O1
is holomorphic with respect to t. Hence xt is

holomorphic with respect to t on U1 ∪ ((G/P ) \O1) = G/P as desired.

Assume that i > 1. First we prove the following claim: for y ∈ Ii−1(λ), there

exists a distribution yt ∈ Ii−1(λ + tρ) with a holomorphic parameter t defined

near t = 0 such that y0 = y. Applying the inductive hypothesis to y|Ui−1 , there

exists a distribution y
(i−1)
t ∈ Ii−1(λ + tρ) with a holomorphic parameter t de-

fined near t = 0 such that y
(i−1)
0 = y on Ui−1. Since the supports of both sides

are contained in
⋃
j≤i−1N0wjP/P , we have y

(i−1)
0 = y on

⋃
j≥i−1N0wjP/P . Ap-

plying the inductive hypothesis to (y − y
(i−1)
0 )|Ui−2

, there exists a distribution

y
(i−2)
t ∈ Ii−2(λ + tρ) with a holomorphic parameter t defined near t = 0 such

that y
(i−2)
0 = y − y(i−1)

0 on Ui−2. Since the supports of both sides are contained

in
⋃
j≤i−2N0wjP/P , we have y

(i−1)
0 + y

(i−2)
0 = y on

⋃
j≥i−2N0wjP/P . Iterating

this argument, for j = 1, . . . , i− 1 there exists a distribution y
(j)
t ∈ Ij(λ+ tρ) with

a holomorphic parameter t defined near t = 0 such that y = y
(1)
0 + · · ·+ y

(i−1)
0 on

G/P . Hence we get the claim.

Now we prove the lemma. By Lemma 4.5, there exists a distribution x′t ∈
Ii(λ + tρ) with a meromorphic parameter t such that x′t|Ui is holomorphic and

(x′t|Ui)|t=0 = x. Let x′t =
∑∞
s=−p x

(s)ts be the Laurent series of x′t. Now we prove

the following claim: if there exists a distribution x′t =
∑∞
s=−p x

(s)ts ∈ Ii(λ + tρ)

with a meromorphic parameter t defined near t = 0 such that x′t|Ui is holomorphic

and (x′t|Ui)|t=0 = x, then there exists xt ∈ Ii(λ + tρ) with a holomorphic param-

eter t defined near t = 0 such that x0|Ui = x. We prove the claim by induction

on p.

If p = 0, we have nothing to prove. Assume p > 0. Take E ∈ n0 and define dif-

ferential operators E0 and E1 by D(E, λ+ tρ) = E0 + tE1. There exists a positive

integer k such that (E0 + tE1−η(E))kx′t = 0. Hence (E0−η(E))kx(−p) = 0. Since

xt|Ui is holomorphic, suppx(−p) ⊂
⋃
j<iN0wjP/P . Hence x(−p) ∈ Ii−1(λ). By the

claim in the third paragraph of this proof, there exists x′′t ∈ Ii−1(λ+tρ) with a holo-

morphic parameter t defined near t = 0 such that x′′0 = x(−p). Using the inductive

hypothesis for x′t − t−px′′t , we get the claim and the assertion of the lemma.
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Theorem 4.7. (1) The module Ii/Ii−1 is non-zero if and only if the following

conditions hold:

(a) The character η is unitary.

(b) The character η is zero on Ad(wi)n ∩ n0.

(c) The module J ′
w−1
i η

(σ ⊗ eλ+ρ) is not zero.

(2) If Ii/Ii−1 6= 0 then Ii/Ii−1 ' I ′i.

Proof. Assume that conditions (a)–(c) hold. We prove that the homomorphism

Resi : Ii → I ′i defined in Section 2 is surjective. Indeed, for x ∈ I ′i, take xt ∈
Ii(λ+ tρ) as in Lemma 4.6. Then Resi(x0) = (x0)|Ui = x.

§5. Twisting functors

Arkhipov defined the twisting functor for w̃ ∈ W̃ [Ark04]. In this section, we define

a modification of the twisting functor.

Let ghα be the root space of α ∈ ∆. Set u0 =
⊕

α∈∆+ ghα, u0 =
⊕

α∈∆+ gh−α
and u0,w̃ = Ad(w̃)u0 ∩ u0. Let ψ be a character of u0,w̃. Let {e1, . . . , el} be a basis

of u0,w̃ such that each ei is a root vector and
⊕

s≤t−1 Ces is an ideal of
⊕

s≤tCes
for each t = 1, . . . , l. Notice that the multiplicative set {(ek − ψ(ek))n | n ∈ Z≥0}
satisfies the Ore condition for k = 1, . . . , l. Then we can consider the localization

of U(g) with respect to {(ek−ψ(ek))n | n ∈ Z≥0}. We denote the resulting algebra

by U(g)ek−ψ(ek). Put Sek−ψ(ek) = U(g)ek−ψ(ek)/U(g). Then Sek−ψ(ek) is a U(g)-

bimodule.

Proposition 5.1. The U(g)-bimodule structure on

Se1−ψ(e1) ⊗U(g) · · · ⊗U(g) Sel−ψ(el)

is independent of the choice of e1, . . . , el.

We denote this module by Sw̃,ψ.

The proof of this proposition is similar to that of [Ark04, Theorem 2.1.6]. We

omit it. Every element of Sw̃,ψ can be written as a sum of elements of the form

(e1 − ψ(e1))−(k1+1) ⊗ · · · ⊗ (el − ψ(el))
−(kl+1)E for E ∈ U(g). We denote this

element by (e1 − ψ(e1))−(k1+1) · · · (el − ψ(el))
−(kl+1)E for short.

For any U(g)-module V , we now define a U(g)-module Tw̃,ψV by Tw̃,ψV =

Sw̃,ψ ⊗U(g) (w̃V ). (Recall that w̃V is a g-module twisted by w̃, see Notation.)

This gives the twisting functor Tw̃,ψ. This is an endo-functor of the category of

g-modules. If ψ is the trivial representation, Tw̃,ψ is the twisting functor defined

by Arkhipov. We put Tw̃ = Tw̃,0 where 0 is the trivial representation of u0,w̃.
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Remark 5.2. Arkhipov [Ark04] denotes the twisting functor by Θw. We follow

the notation of Andersen–Lauritzen [AL03].

We have a natural homomorphism NK(h)/ZK(h)→ NK(a0)/ZK(a0) = W .

Lemma 5.3. Let w ∈ W . Then there exists ι(w) ∈ NK(h) such that Ad(ι(w))|a0

= w and Ad(ι(w))(∆+
M0

) = ∆+
M0

. If ι(w) and ι(w)′ both satisfy these conditions,

then ι(w) ∈ ι(w)′ZK(h).

Proof. Since W = NK(a0)/ZK(a0), there is k ∈ NK(a0) such that Ad(k)|a0
= w.

Then k normalizes M0. Hence there exists m ∈ M0 such that km normalizes T0.

This implies km ∈ NK(A0T0). Take w′ ∈ NM0(t0) such that Ad(kmw′)(∆+
M0

) =

∆+
M0

and put ι(w) = kmw′. Then ι(w) satisfies the conditions of the lemma.

Assume that ι(w) ∈ NK(h) and ι(w)′ ∈ NK(h) satisfy these conditions. Put

w1 = ι(w)−1ι(w)′ ∈ NK(h). Then Ad(w1)|a0
= id, so w1 ∈ NK(a0) = M0. Hence

w1 gives an element of the Weyl group of M0. Consequently, Ad(w1)(∆+
M0

) = ∆+
M0

.

Hence w1 centralizes h. Therefore, ι(w) ∈ ι(w)′ZK(h).

The correspondence w 7→ ι(w) gives a map ι : W → NK(h)/ZK(h). By the

characterization of ι(w), this map is injective. Since the group NK(h)/ZK(h) is

a subgroup of W̃ , we can regard W as a subgroup of W̃ . Hence we can define

the twisting functor Tι(w),ψ for w ∈ W and the character ψ of Ad(w)n0 ∩ n0. For

simplicity, we write w instead of ι(w). (We regard W as a subgroup of W̃ via ι.)

Lemma 5.4. Let e be a nilpotent element of g, X ∈ g and k ∈ Z≥0. For c ∈ C
we have the following equation in U(g)e−c:

X(e− c)−(k+1) =

∞∑
n=0

(
n+ k

k

)
(e− c)−(n+k+1) ad(e)n(X).

Proof. We prove the lemma by induction on k. If k = 0, the statement is well-

known. Assume that k > 0. Then

X(e− c)−(k+1) =

∞∑
k0=0

(e− c)−(k0+1) ad(e)k0(X)(e− c)−k

=

∞∑
k0=0

∞∑
k1=0

(
k1 + k − 1

k − 1

)
(e− c)−(k0+k1+k+1) ad(e)k0+k1(X)

=

∞∑
n=0

n∑
l′=0

(
l′ + k − 1

k − 1

)
(e− c)−(n+k+1) ad(e)n(X)

=

∞∑
n=0

(
n+ k

k

)
(e− c)−(n+k+1) ad(e)n(X).
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§6. The module Ii/Ii−1

Put Ji = U(g)⊗U(p) J
′
w−1
i η

(σ ⊗ eλ+ρ), where n acts on J ′
w−1
i η

(σ ⊗ eλ+ρ) trivially.

In this section, we prove the following theorem.

Theorem 6.1. Assume that Ii/Ii−1 6= 0. Then Ii/Ii−1 ' Twi,ηJi.

Notice that u0,wi = Ad(wi)n ∩ n0 since wi(∆
+
M ) ⊂ ∆+. In this section we

fix i ∈ {1, . . . , l} and a basis {e1, . . . , el} of u0,wi such that each vector es is a

root vector and
⊕

s≤t−1 Ces is an ideal of
⊕

s≤tCes. Let αs be the restricted

root corresponding to es. As in Section 3, for k = (k1, . . . , kl) ∈ Zl≥0 we denote

ad(el)
kl · · · ad(e1)k1 by ad(e)k and ((−x1)k1/k1!) · · · ((−xl)kl/kl!) by fk.

Lemma 6.2. We have

I ′i =

{ t∑
s=1

δi(Es, fsη
−1
i , u′s)

∣∣∣∣ Es ∈ U(g), fs ∈ P(Oi),

u′s ∈ J ′w−1
i η

(σ ⊗ eλ+ρ)

}
.

Proof. By Lemma 3.3,

E((f ⊗ u′)δi) =
∑

k∈Zl≥0

δi(ad(e)kE, ffk, u
′)

for E ∈ U(g), f ∈ P(Oi)η
−1
i and u′ ∈ σ′. Hence, the left hand side in the statement

is a subset of the right hand side. Define f ′k ∈ P(Oi) by f ′k = (xk11 /k1!) · · · (xkll /kl!).
By a similar calculation to the proof of Lemma 3.3, we have

δi(E, f, u
′) =

∑
k∈Zl≥0

(ad(e)kE)(((ff ′k)⊗ u′)δi).

This implies that the right hand side is contained in the left hand side.

By the definition of the twisting functor and the Poincaré–Birkhoff–Witt the-

orem, we have the lemma below. For k = (k1, . . . , kl) ∈ Zl put (e− η(e))k = (e1−
η(e1))k1 · · · (el − η(el))

kl ∈ Swi,η. Set 1 = (1, . . . , 1) ∈ Zl. By multiplication from

the right, the subspace
∑

k∈Zl≥0
C(e − η(e))−(k+1) ⊂ Swi,η is a U(Ad(wi)n ∩ n0)-

submodule.

Lemma 6.3. Let V be a p-module. Then( ∑
k∈Zl≥0

C(e− η(e))−(k+1)
)
⊗ U(Ad(wi)n ∩ n0)⊗ wiV

'
( ∑
k∈Zl≥0

C(e− η(e))−(k+1)
)
⊗U(Ad(wi)n∩n0) U(g)⊗U(Ad(wi)p) wiV

' Twi,η(U(g)⊗U(p) V ).
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The second isomorphism is given by E ⊗ F ⊗ v 7→ EF ⊗ (1 ⊗ v). (Notice that

EF ∈ Swi,η.)

Proof of Theorem 6.1. By Lemmas 6.2 and 3.2, we have an isomorphism of vector

spaces

I ′i ' P(Oi)⊗U(Ad(wi)n∩n0) U(g)⊗U(Ad(wi)p) wiJ
′
w−1
i η

(σ ⊗ eλ+ρ)

given by δi(E, f, u
′) 7→ f ⊗ E ⊗ u′.

Notice that u0,wi = Ad(wi)n ∩ n0 since wi ∈W (M). By Lemma 6.3,

Twi,η(Ji) '
( ∑
k∈Zl≥0

C(e− η(e))−(k+1)
)
⊗U(Ad(wi)n∩n0) U(g)

⊗U(Ad(wi)p) wiJ
′
w−1
i η

(σ ⊗ eλ+ρ).

Here
∑

k∈Zl≥0
C(e−η(e))−(k+1) is an Ad(wi)n∩n0-stable subspace of Swi,η. Hence,

we can define a C-vector space isomorphism Φ: Twi,η(Ji)→ I ′i by

Φ((e− η(e))−(k+1) ⊗ E ⊗ u′) = δi(E, fkη
−1
i , u′).

We now prove that Φ is a g-homomorphism. Fix X ∈ g. We will prove that

Φ(X((e− η(e))−(k+1) ⊗ E ⊗ u′)) = XΦ((e− η(e))−(k+1) ⊗ E ⊗ u′).

By Lemma 5.4,

X((e− η(e))−(k+1) ⊗ E ⊗ u′)

=
∑
ps≥0

(
p1 + k1

k1

)
· · ·
(
pl + kl
kl

)
(e− η(e))−(k+p+1) ⊗ (ad(e)pX)E ⊗ u′.

where p = (p1, . . . , pl). Hence,

Φ(X((e− η(e))−(k+1) ⊗ E ⊗ u′))

=
∑
ps≥0

δi

(
(ad(e)pX)E,

(
(−x1)k1+p1

k1!p1!
· · · (−xl)

kl+pl

kl!pl!

)
η−1
i , u′

)
.

By Lemma 3.3,

XΦ((e− η(e))−(k+1) ⊗ E ⊗ u′) = Xδi(E, fkη
−1
i , u′)

=
∑

p∈Zl≥0

δi((ad(e)pX)E, fkfpη
−1
i , u′).

Hence the conclusion follows.
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§7. The module J∗η (I(σ, λ))

Now we investigate the module J∗η (I(σ, λ)). For a finite-length moderate growth

Fréchet representation V of G, define a g-module J(V ) by

J(V ) = ( lim←−
k→∞

(VK-finite/n
k
0VK-finite))a-finite.

This is also called the Jacquet module of V [Cas80]. Define O′P0
to be the full

subcategory of finitely generated g-modules V satisfying the following conditions:

(1) The action of p0 is locally finite. (In particular, the action of n0 is locally

nilpotent.)

(2) The module V is Z(g)-finite.

(3) The groupM0 acts on V and its differential coincides with the action of m0 ⊂ g.

(4) For ν ∈ a∗0 let Vν be the generalized a0-weight space with weight ν. Then

V =
⊕

ν∈a∗0
Vν and dimVν <∞.

We define O′
P0

similarly. We write O′P0,G
to emphasize the group G. Then for a

finite-length Fréchet representation V of G we have J(V ) ∈ O′
P0

and J∗(V ) ∈ O′P0
.

For a U(g)-module V , put D′(V ) = (V ∗)h-finite and C(V ) = (D′(V ))∗. The char-

acter η : n0 → C defines an algebra homomorphism U(n0) → C by the univer-

sality of the universal enveloping algebra. Let Ker η be the kernel of this algebra

homomorphism and put Γη(V ) = {v ∈ V | (Ker η)kv = 0 for some k}. Then

J∗η (V ) = Γη((VK−finite)∗) by Remark 2.2. We will prove the following proposition.

Proposition 7.1. Let V be a finite-length moderate growth Fréchet representation

of G. Then J∗η (V ) ' Γη(J(V )∗) ' Γη(C(J∗(V ))).

From this proposition, Theorem 6.1 and the automatic continuity theo-

rem [Wal83, Theorem 4.8], we get the structure of J∗η (I(σ, λ)).

Proposition 7.1 was proved by Matumoto [Mat90, Theorem 4.9.2] when supp η

= Π. We deduce the general case from his theorem. To do this, we need some

lemmas. We use the following well-known properties (see Wallach’s book [Wal88]):

Proposition 7.2. Let V be a finite-length moderate growth Fréchet representation

of G.

(1) D′(J∗(V )) ' J(V ).

(2) V/nk0V ' J(V )/nk0J(V ).

(3) The functor Γη ◦ C from O′P0
or O′

P0
to the category of g-modules is exact.

(4) D′(O′P0
)⊂O′

P0
and D′(O′

P0
)⊂O′P0

. If V ∈O′P0
or V ∈O′

P0
, then D′D′V 'V .
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Lemma 7.3. Let c be a nilpotent Lie algebra and ψ its character. Denote the

corresponding C-algebra homomorphism U(c) → C again by ψ, and its kernel by

Kerψ. Let V be a c-module and c1, c2 subalgebras such that c = c1 ⊕ c2 and c2 is

an ideal of c. Set ψi = ψ|U(ci). Then⋃
k

{v ∈ V | (Kerψ)kv = 0} =
⋃
k,l

{v ∈ V | (Kerψ1)kv = 0, (Kerψ2)lv = 0}.

Proof. Replacing V with V ⊗(−ψ), we may assume ψ is trivial. By the same proof

as in Remark 2.2, if ck1v0 = 0, cl2v0 = 0, then there exists k′ such that ck
′
v0 = 0.

Apply this to v0 = 1 ∈ V0 = U(c)/(U(c)ck1 + U(c)cl2). Then there exists k′ such

that ck
′
v0 = 0.

Take v such that ck1v = 0, cl2v = 0. Then there exists a homomorphism

V0 → V such that v0 7→ v. Hence ck
′
v = 0. Therefore,

{v ∈ V | ck1v = 0, cl2v = 0} ⊂ {v ∈ V | ck
′
v = 0}.

On the other hand,

{v ∈ V | ckv = 0} ⊂ {v ∈ V | ck1v = 0, ck2v = 0}.

This implies the lemma.

From the above lemma, we get the lemma below. Recall that pη = mη⊕aη⊕nη
is the complexification of the Lie algebra of the parabolic subgroup corresponding

to supp η (Section 4).

Lemma 7.4. Denote the C-algebra homomorphism U(n0) → C corresponding to

η again by η. Put η0 = η|U(mη∩n0). Then for any g-module V , we have

Γη(V ) =
⋃
k,l

{v ∈ V | nlηv = 0, (Ker η0)kv = 0}.

Proof of Proposition 7.1. The second isomorphism follows from the definition of

C,D′ and Proposition 7.2(1).

We will prove J∗η (V ) ' Γη(J(V )∗). If supp η = Π, this was proved by Matu-

moto [Mat90, Theorem 4.9.2].

Put I = VK-finite. Then I is a Harish-Chandra module. For a U(g)-module V0,

put Q(V0) = (lim←−k V0/n
k
0V0)a0-finite. For a U(mη ⊕ aη)-module V1, put QMη (V1) =

(lim←−k V1/(mη ∩n0)kV1)(m ∩ a0)-finite. Let η0 : U(mη ∩n0)→ C be the restriction of η

to U(mη ∩ n0). Since I/nlηI is a Harish-Chandra module of mη ⊕ aη, by the result

of Matumoto we have Γη0((I/nlηI)∗) = Γη0(QMη
(I/nlηI)∗). Therefore,

{v ∈ (I/nlηI)∗ | (Ker η0)kv = 0} = {v ∈ QMη
(I/nlηI)∗ | (Ker η0)kv = 0}

for all k ∈ Z≥0.
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We will prove QMη
(I/nlηI) ' Q(I)/nlηQ(I). It is sufficient to show that

D′(QMη
(I/nlηI)) ' D′(Q(I)/nlηQ(I)). By Proposition 7.2(1),

D′(QMη
(I/nlηI)) ' {v ∈ (I/nlηI)∗ | (mη ∩ n0)kv = 0 for some k}

' {v ∈ I∗ | nlηv = 0, (mη ∩ n0)kv = 0 for some k}
= {v ∈ I∗ | nlηv = 0, nk0v = 0 for some k}.

Using Proposition 7.2(1) again, we obtain

{v ∈ I∗ | nk0v = 0 for some k} ' D′(Q(I)).

Hence

D′(QMη (I/nlηI)) ' {v ∈ D′(Q(I)) | nlηv = 0}.

By its definition, D′ is left exact. Hence we have an exact sequence

0→ D′(Q(I)/nlηQ(I))→ D′(Q(I))→ D′(nlηQ(I)).

Therefore, {v ∈ D′(Q(I)) | nlηv = 0} ' D′(Q(I)/nlηQ(I)). Hence QMη
(I/nlηI) '

Q(I)/nlηQ(I). This implies

{v ∈ (I/nlηI)∗ | (Ker η0)kv = 0} ' {v ∈ (Q(I)/nlηQ(I))∗ | (Ker η0)kv = 0}.

Hence

{v ∈ I∗ | nlηv = 0, (Ker η0)kv = 0} ' {v ∈ Q(I)∗ | nlηv = 0, (Ker η0)kv = 0}.

Therefore, by the previous lemma, we have

Γη(I∗) ' Γη(Q(I)∗).

By the definition and Remark 2.2, Q(I) = J(V ) and Γη(I∗) = J∗η (I).

Combining Theorem 6.1, Proposition 7.1 and the automatic continuity theo-

rem [Wal83, Theorem 4.8], we have the following theorem. Let Ii be the Bruhat

filtration of J ′(I(σ, λ)) ' J∗(I(σ, λ)). Put Ĩi = Γη(C(Ii)) ⊂ Γη(C(J∗(I(σ, λ)))) '
J∗η (I(σ, λ)).

Theorem 7.5. The filtration 0 = Ĩ1 ⊂ · · · ⊂ Ĩr = J∗η (I(σ, λ)) satisfies Ĩi/Ĩi−1 '
Γη(C(Twi(U(g)⊗U(p) J

∗(σ ⊗ eλ+ρ)))).

Proof. This follows from Theorem 6.1 and Propositions 7.2 and 7.1.
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§8. Whittaker vectors

We now study the space of Whittaker vectors of I(σ, λ)′ and (I(σ, λ)K-finite)∗

(Definition 3.9) using the Bruhat filtration.

First, we consider Whη(I(σ, λ)′). To calculate its dimension, we calculate

dim Whη(Ii/Ii−1). The idea is to use the Harish-Chandra isomorphism. To ex-

plain the idea, recall a proof of the following fact: the Verma module has a unique

highest weight if its infinitesimal character is generic. (Here, for a g-module V , we

call λ̃ ∈ h∗ a highest weight of V if λ̃ is the weight of a vector in V killed by the

nilpotent radical of the Borel subalgebra.) The proof is the following. Let λ̃ be the

infinitesimal character of the Verma module and assume that the set of weights

of the Verma module is λ̃ + Z≤0∆. Then by the Harish-Chandra isomorphism,

each highest weight of the Verma module has the form w̃(λ̃ + ρ̃) − ρ̃. Therefore,

w̃λ̃− λ̃ ∈ Z∆. Since λ̃ is generic, w̃ = 1. We use an analogous proof. To do it, we

decompose the Harish-Chandra homomorphism, using the following lemma.

Lemma 8.1. If Ii/Ii−1 6= 0, then lη ∩Ad(wi)n ⊂ n0.

Proof. By Lemma 3.6, the restriction of η to Ad(wi)n∩n0 is trivial. This is equiv-

alent to supp η∩wi(Σ+ \Σ+
M )∩Σ+ = ∅. Thus, (− supp η∩Σ−)∩wi(Σ− \Σ−M ) = ∅,

so (lη ∩ n0) ∩Ad(wi)n = 0.

For i such that Ii/Ii−1 6= 0, we define γ1 to γ4 to be the first projections with

respect to the corresponding decompositions below:

γ1 : U(g) = U(lη)⊕ (nηU(g) + U(g)nη)→ U(lη),

γ2 : U(lη) = U(lη ∩Ad(wi)p)⊕ U(lη) Ker η|lη∩Ad(wi)n → U(lη ∩Ad(wi)p),

γ3 : U(lη ∩Ad(wi)p) = U(lη ∩Ad(wi)l)⊕ (lη ∩Ad(wi)n)U(lη ∩Ad(wi)p)

→ U(lη ∩Ad(wi)l),

γ4 : U(lη ∩Ad(wi)l) = U(h)⊕ ((u0 ∩ lη ∩Ad(wi)l)U(lη ∩Ad(wi)l)

→ U(lη ∩Ad(wi)l)(lη ∩Ad(wi)l ∩ u0))→ U(h).

To define γ2, we must check lη ∩ Ad(wi)n ⊂ n0. This follows from Ii/Ii−1 6= 0

and the previous lemma. Then the restriction of γ4 ◦ γ3 ◦ γ2 ◦ γ1 to Z(g) is the

(non-shifted) Harish-Chandra homomorphism. If x ∈ Whη(Ii/Ii−1) then Ex =

γ2γ1(E)x for E ∈ Z(g).

Lemma 8.2. Let V be a U(g)-module with infinitesimal character λ̃, and χ a

character of Z(g) such that z ∈ Z(g) acts by χ(z) on V . Let v ∈ V \ {0} and

µ ∈ a∗ be such that (γ3γ2γ1(z) − χ(z))v = 0 and Hv = (wiµ + ρ0)(H)v for all

z ∈ Z(g) and H ∈ Ad(wi)a. Then there exists w̃ ∈ W̃ such that w̃λ̃|a = µ.
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Proof. Put Z = γ3γ2γ1(Z(g))U(Ad(wi)a). By assumption, there exists a character

χ0 of Z such that zv = χ0(z)v for all z ∈ Z. By a theorem of Harish-Chandra,

γ4|Z is injective and finite. Hence there exists λ̃1 ∈ h∗ such that λ̃1 ◦γ4 = χ0 where

we denote the algebra homomorphism U(h)→ C corresponding to λ̃1 again by λ̃1.

Since V has infinitesimal character λ̃, we have λ̃1 ∈ W̃ λ̃+ ρ̃. Since γ4 is trivial on

U(Ad(wi)a), λ̃1|Ad(wi)a = (wiµ+ρ0)|Ad(wi)a. The restriction of ρ̃ to a0 is ρ0. Hence

ρ̃|Ad(wi)a = ρ0|Ad(wi)a. Then for some w̃ ∈ W̃ we have wiµ|Ad(wi)a = w̃λ̃|Ad(wi)a,

proving the lemma.

Lemma 8.3. Let X1, . . . , Xn ∈ g, f1 ∈ C∞(Oi), f2 ∈ C∞(Ui), u
′ ∈ (σ ⊗ eλ+ρ)′.

Assume that R(Ad(wi)
−1Xs)(f2) = 0 for all s = 1, . . . , n. Then

δi(X1 · · ·Xn, f1f2, u
′) = δi(X1 · · ·Xn, f1, u

′)f2.

Proof. Put E = X1 · · ·Xn. By assumption and Leibniz’s rule, we have

f2(nwi)(R(Ad(wi)
−1E)ϕ)(nwi) = (R(Ad(wi)

−1E)(ϕf2))(nwi).

Hence, by definition, for ϕ ∈ C∞c (Ui,L), we have

〈δi(E, f1f2, u
′), ϕ〉 =

∫
wiNw

−1
i ∩N0

f1(nwi)f2(nwi)(u
′(R(Ad(wi)

−1E)ϕ)(nwi)) dn

=

∫
wiNw

−1
i ∩N0

f1(nwi)(u
′(R(Ad(wi)

−1E)(ϕf2))(nwi)) dn

= 〈δi(E, f1, u
′), f2ϕ〉 = 〈δi(E, f1, u

′)f2, ϕ〉,

and the lemma follows.

Recall that the C∞-function ηi on Oi is defined by ηi(nwiP/P ) = η(n) for

n ∈ wiNw−1
i ∩N0. For ν ∈ a∗ put

V (ν) =


∑
s

δi(Fs, hs, v
′
s)

∣∣∣∣∣∣∣
Fs ∈ U(Ad(wi)n ∩ n0), hs ∈ P(Oi),

v′s ∈ J ′w−1
i η

(σ ⊗ eλ+ρ),

(w−1
i (wths + wtFs))|a = ν

 .

Here, wths is the a0-weight of hs with respect to Di (see page 430) and wtFs
is the a0-weight of Fs with respect to the adjoint action. We have no weight in

Ii/Ii−1. The spaces V (ν) play the role of weight spaces.

Remark 8.4. By Lemma 3.2(1), we have

V (ν) =


∑
s

δi(Fs, hs, v
′
s)

∣∣∣∣∣∣∣
Fs ∈ U(Ad(wi)n), hs ∈ P(Oi),

v′s ∈ J ′w−1
i η

(σ ⊗ eλ+ρ),

(w−1
i (wths + wtFs))|a = ν

 .
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Lemma 8.5. Let X ∈ U(g) be an a0-weight vector. Then

XV (ν) ⊂ V (ν + w−1
i wt(X)|a).

Proof. We may assume X ∈ g. Let δi(E, f, u
′) ∈ V (ν). By Lemma 3.3, we have

Xδi(E, f, u
′) =

∑
k∈Zl≥0

δi((ad(e)kX)E, ffk, u
′).

Assume ad(e)kX ∈ Ad(wi)p. Then

δi((ad(e)kX)E, ffk, u
′) = δi(E, ffk,Ad(wi)

−1((ad(e)kX))u′).

If ad(e)k(X) ∈ Ad(wi)n, then this is 0. If ad(e)k(X) ∈ Ad(wi)l, then we

have w−1
i wt(ad(e)kX)|a = 0. Hence w−1

i wt(X)|a = w−1
i wt(fk)|a. Therefore,

w−1
i (wt(E) + wt(ffk))|a = ν + w−1

i wt(X)|a.

If ad(e)k(X) ∈ Ad(wi)n, then (ad(e)kX)E ∈ Ad(wi)n. We have

w−1
i (wt(ad(e)kX)E + wt ffk) = w−1

i (wtE + wt f + wtX).

This implies the lemma.

Lemma 8.6. Define η̃i ∈ C∞(Ui) by η̃i(nn0wiP/P ) = ηi(n) for n ∈ wiNw−1
i ∩N0

and n0 ∈ wiNw−1
i ∩ N0. Let X ∈ U(g). Assume that X is an a0-weight vector.

For δi(E, f, u
′) ∈ V (ν), we have

Xδi(E, fη
−1
i , u′)− (Xδi(E, f, u

′))η̃i
−1 ∈

∑
ν′>ν

V (ν′ + w−1
i wtX|a)η̃i

−1.

Here, wtX is the a0-weight of X with respect to the adjoint action.

Proof. Fix a basis {e1, . . . , el} of u0,wi such that each es is a root vector and⊕
s≤t−1 Ces is an ideal of

⊕
s≤tCes. Let αs be the restricted root of es. As in

Section 3, for k = (k1, . . . , kl) ∈ Zl≥0 we denote ad(el)
kl · · · ad(e1)k1 by ad(e)k and

((−x1)k1/k1!) · · · ((−xl)kl/kl!) by fk. By Lemma 3.3,

Xδi(E, fη
−1
i , u′) =

∑
k∈Zl≥0

δi((ad(e)kX)E, ffkη
−1
i , u′).

Take a
(p)
k ∈ U(Ad(wi)n ∩ n0), b

(p)
k ∈ U(Ad(wi)n ∩ n0) and c

(p)
k ∈ U(Ad(wi)p)

such that (ad(e)kX)E =
∑
p a

(p)
k b

(p)
k c

(p)
k and wt((ad(e)kX)E) = wt a

(p)
k +wt b

(p)
k +

wt c
(p)
k . Then

δi((ad(e)kX)E, ffkη
−1
i , u′) =

∑
p

δi(a
(p)
k b

(p)
k c

(p)
k , ffkη

−1
i , u′)

=
∑
p

δi(b
(p)
k , R′i((a

(p)
k )∨)(ffkη

−1
i ),Ad(wi)

−1(c
(p)
k )u′).
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By the Leibniz rule, there is a finite subset A(p)
k ⊂ {(a′, a′′) ∈ U(Ad(wi)n ∩ n0)2 |

wt a′ + wt a′′ = wt a
(p)
k , a′′ 6∈ C} such that

δi(b
(p)
k , R′i((a

(p)
k )∨)(ffkη

−1
i )−R′i((a

(p)
k )∨)(ffk)η−1

i ,Ad(wi)
−1c

(p)
k u′)

=
∑

(a′,a′′)∈A(p)
k

δi(b
(p)
k , R′i(a

′)(ffk)R′i(a
′′)(η−1

i ),Ad(wi)
−1c

(p)
k u′)

=
∑

(a′,a′′)∈A(p)
k

−η(a′′)δi(b
(p)
k , R′i(a

′)(ffk)η−1
i ,Ad(wi)

−1c
(p)
k u′).

By the definition of η̃i, we have R(Ad(wi)
−1X ′)η̃i = 0 for X ′ ∈ Ad(wi)n ∩ n0.

Hence by Lemma 8.3,

δi(b
(p)
k , f ′η−1

i ,Ad(wi)
−1(c

(p)
k )u′) = δi(b

(p)
k , f ′,Ad(wi)

−1(c
(p)
k )u′)η̃i

−1

for all f ′ ∈ P(Oi). Thus

δi(b
(p)
k , R′i((a

(p)
k )∨)(ffkη

−1
i ),Ad(wi)

−1c
(p)
k u′)

− δi(b(p)k , R′i((a
(p)
k )∨)(ffk),Ad(wi)

−1c
(p)
k u′)η̃i

−1

=
∑

(a′,a′′)∈A(p)
k

−η(a′′)δi(b
(p)
k , R′i(a

′)(ffk),Ad(wi)
−1c

(p)
k u′)η̃i

−1.

By the Poincaré–Birkhoff–Witt theorem, we have a decomposition U(Ad(wi)p)

= U(Ad(wi)p)(Ad(wi)n) ⊕ U(Ad(wi)l). Hence we may assume that c
(p)
k ∈

U(Ad(wi)p)(Ad(wi)n) or c
(p)
k ∈ U(Ad(wi)l). If c

(p)
k ∈ U(Ad(wi)p)(Ad(wi)n) then

Ad(wi)
−1c

(p)
k u′ = 0 since n acts on J ′

w−1
i

(σ ⊗ eλ+ρ) trivially. If c
(p)
k ∈ U(Ad(wi)l)

then w−1
i wt c

(p)
k |a = 0. Hence

w−1
i (wt b

(p)
k + wt(R′i(a

′)(ffk)))|a
= w−1

i (wt c
(p)
k + wt b

(p)
k + wt a′ + wt f + wt fk)|a

= w−1
i (wt a

(p)
k + wt b

(p)
k + wt c

(p)
k + wt f + wt fk − wt a′′)|a

= w−1
i (wt((ad(e)kX)E) + wt f + wt fk − wt a′′)|a

= w−1
i (wtX + wtE + wt f − wt a′′)|a

= ν + w−1
i (wtX − wt a′′)|a > ν + w−1

i wtX|a.

So we have

δi(b
(p)
k , R′i((a

(p)
k )∨)(ffkη

−1
i ),Ad(wi)

−1c
(p)
k u′)

− δi(b(p)k , R′i((a
(p)
k )∨)(ffk),Ad(wi)

−1c
(p)
k u′)η̃i

−1 ∈
∑
ν′>ν

V (ν′ + w−1
i wtX|a)η̃i

−1.
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Therefore,

Xδi(E, fη
−1
i , u′) +

∑
ν′>ν

V (ν′ + w−1
i wtX|a)η̃i

−1

∈
∑
k,p

δi(b
(p)
k , R′i((a

(p)
k )∨)(ffk),Ad(wi)

−1(c
(p)
k )u′)η̃i

−1

=
∑
k,p

δi(a
(p)
k b

(p)
k c

(p)
k , ffk, u

′)η̃i
−1 +

∑
ν′>ν

V (ν′ + w−1
i wtX|a)η̃i

−1

=
∑
k

δi(ad(e)k(X)E, ffk, u
′)η̃i
−1 +

∑
ν′>ν

V (ν′ + w−1
i wtX|a)η̃i

−1

= (Xδi(E, f, u
′))η̃i

−1 +
∑
ν′>ν

V (ν′ + w−1
i wtX|a)η̃i

−1.

Proposition 8.7. Let µ̃ ∈ (h ∩ m)∗ be the infinitesimal character of σ. Assume

that Ii/Ii−1 6= 0 and for all w̃ ∈ W̃ ,

λ− w̃(λ+ µ̃)|a 6∈ Z≤0((Σ+ \ Σ+
M ) ∩ w−1

i Σ+)|a \ {0}.

Then

Whη(I ′i) = {(η−1
i ⊗ u

′)δi | u′ ∈Whw−1
i η((σ ⊗ eλ+ρ)′)}.

Proof. Let x =
∑
s δi(Es, fsη

−1
i , u′s) ∈ Whη(I ′i) where Es ∈ U(Ad(wi)n ∩ n0),

fs ∈ P(Oi) and u′s ∈ J ′w−1
i η

(σ ⊗ eλ+ρ). By Lemma 3.5, we have (X − η(X))x =∑
s δi(Es, L(X)(fs)η

−1
i , u′s) for X ∈ Ad(wi)n ∩ n0. Hence, we may assume fs = 1.

Let z ∈ Z(g). Since J ′η(I(σ, λ)) has infinitesimal character −(λ+µ̃), I ′i has the

same character. Let χ(z) be a complex number such that z acts by χ(z) on I ′i. Take

Es and u′s such that Es are a0-weight vectors and {Es} is linearly independent.

Let ν = min{w−1
i wtEs|a}s.

Since γ2γ1(z)− γ3γ2γ1(z) ∈ (Ad(wi)n)U(Ad(wi)p), we have

γ2γ1(z)x− γ3γ2γ1(z)x ∈
∑
ν′>ν

V (ν′)η̃i
−1

by Lemmas 8.5 and 8.6. By Lemma 8.6,

γ3γ2γ1(z)x ∈
(
γ3γ2γ1(z)

∑
w−1
i wtEs|a=ν

δi(Es, 1, u
′
s)
)
η̃i
−1 +

∑
ν′>ν

V (ν′)η̃i
−1.

Therefore,

χ(z)x = zx = γ2γ1(z)x

∈
(
γ3γ2γ1(z)

∑
w−1
i wtEs|a=ν

δi(Es, 1, u
′
s)
)
η̃i
−1 +

∑
ν′>ν

V (ν′)η̃i
−1.
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By Lemma 8.6 (X = 1), we have

x ∈
∑

w−1
i wtEs|a=ν

δi(Es, 1, u
′
s)η̃i

−1 +
∑
ν′>ν

V (ν′)η̃i
−1.

Hence(
(χ(z)− γ3γ2γ1(z))

( ∑
w−1
i wtEs|a=ν

δi(Es, 1, u
′
s)
))
η̃i
−1 ∈

∑
ν′>ν

V (ν′)η̃i
−1.

By Lemma 8.5, the left hand side is in V (ν)η̃i
−1. Hence

(χ(z)− γ3γ2γ1(z))δi(Es, 1, u
′
s) = 0

for all s such that w−1
i wtEs|a = ν. By the same calculation as in the proof of

Lemma 2.8, Hδi(Es, 1, u
′
s) = (−wiλ+wtEs+ρ0)(H)δi(Es, 1, u

′
s) for H ∈ Ad(wi)a.

By Lemma 8.2, there exists w̃ ∈ W̃ such that −w̃(λ + µ̃)|Ad(wi)a = −wiλ +

wtEs. Then λ−w−1
i w̃(λ+ µ̃)|a = w−1

i wtEs|a ∈ Z≤0((Σ+ \Σ+
M )∩w−1

i Σ+)|a. By

assumption, w−1
i wtEs|a = 0, i.e., Es ∈ C. Hence, we may assume that x has the

form x = δi(1, η
−1
i , u′) +

∑
s≥2 δi(Es, η

−1
i , u′s) where Es 6∈ C for all s ≥ 2.

Take X ∈ n0 ∩Ad(wi)m. Then by Lemmas 3.5 and 8.6,

0 = (X − η(X))x ∈ δi(1, 1, (Ad(wi)
−1X − η(X))u′)η̃i

−1 +
∑
ν′>0

V (ν′)η̃i
−1.

Therefore, δi(1, 1, (Ad(wi)
−1X − η(X))u′) = 0. Hence u′ ∈Whw−1

i η((σ ⊗ eλ+ρ)′).

This implies that x − δi(1, η
−1
i , u′) ∈ Whη(I ′i). If x − δi(1, η

−1
i , u′) 6= 0, then

min{w−1
i wtEs|a}s≥2 = 0 by the above argument. This is a contradiction.

Theorem 8.8. Assume that for all w ∈ W (M) with w(Σ+ \ Σ+
M ) ∩ supp η = ∅,

the following two conditions hold:

(a) 〈α̌, λ+ ν〉 6∈ Z≤0 for each exponent ν of σ and α ∈ Σ+ \ w−1(Σ+ ∪ Σ−η ).

(b) λ− w̃(λ+ µ̃)|a /∈ Z≤0((Σ+ \Σ+
M )∩w−1Σ+)|a \ {0} for all w̃ ∈ W̃ , where µ̃ is

the infinitesimal character of σ.

Moreover, assume that η is unitary. Then

dim Whη(I(σ, λ)′) =
∑

w∈W (M), w(Σ+\Σ+
M )∩supp η=∅

dim Whw−1η((σ ⊗ eλ+ρ)′).

Remark 8.9. We have w(Σ+ \ Σ+
M ) ∩ supp η = ∅ if and only if η is trivial on

wNw−1 ∩N0. About this condition, see Theorem 4.7.
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Proof of Theorem 8.8. By the exact sequence 0 → Ii−1 → Ii → Ii/Ii−1 → 0,

we have 0 → Whη(Ii−1) → Whη(Ii) → Whη(Ii/Ii−1). By Proposition 8.7, it is

sufficient to prove that the last map Whη(Ii)→Whη(Ii/Ii−1) is surjective.

Take x ∈ Whη(I ′i) ' Whη(Ii/Ii−1). Then x is (η−1
i ⊗ u′)δi for some u′ ∈

Whw−1
i η(σ ⊗ eλ+ρ) by Proposition 8.7. By Lemma 4.5, there exists a distribution

xt ∈ Ii(λ + tρ) with a meromorphic parameter t such that xt|Ui is holomorphic

and (xt|Ui)|t=0 = x. Moreover, (X − η(X))xt = 0 for X ∈ n0. By Proposition 4.4

and (a), the distribution xt is holomorphic at t = 0. (See the proof of Lemma 4.5.)

Hence x0|Ui = x, so Whη(Ii)→Whη(Ii/Ii−1) is surjective.

Next we consider the module Whη((I(σ, λ)K-finite)∗).

Lemma 8.10. Let V be an object of the category O′P0
. Then C(H0(nη, V )) =

H0(nη, C(V )) where H0(nη, V ) = {v ∈ V | nηv = 0} is the 0-th nη-cohomology.

Proof. This follows from (we use Proposition 7.2(4))

H0(nη, C(V )) = H0(nη, D
′(V )∗) = (D′(V )/nηD

′(V ))∗

= CD′(D′(V )/nηD
′(V )) = C(H0(nη, D

′(V )∗)h-finite)

= C(H0(nη, D
′D′(V ))) = C(H0(nη, V )).

By Proposition 7.1, we have

Whη((I(σ, λ)K-finite)∗) = Whη(C(J∗(I(σ, λ)))).

By the above lemma,

Whη(C(J∗(I(σ, λ)))) = Whη|lη∩n0
(H0(nη, C(J∗(I(σ, λ)))))

= Whη|lη∩n0
(C(H0(nη, J

∗(I(σ, λ))))).

Since η|lη∩n0
is nondegenerate, a theorem of Lynch [Lyn79] shows that the dimen-

sion of the above space is determined by the character of H0(nη, J
∗(I(σ, λ))). To

calculate H0(nη, J
∗(I(σ, λ))), we use the following lemma.

Lemma 8.11. Let e1, . . . , el be a basis of Ad(wi)n∩n0 such that each es is a root

vector and
⊕

s≤t−1 Ces is an ideal of
⊕

s≤tCes. In Swi,0, where 0 is the trivial

representation of Ad(wi)n ∩ n0, we have the following formulas:

(1) For all t = 1, . . . , l,

et(e
−1
1 · · · e

−1
t−1e

−(kt+1)
t e

−(kt+1+1)
t+1 · · · e−(kl+1)

l )

= e−1
1 · · · e

−1
t−1e

−kt
t e

−(kt+1+1)
t+1 · · · e−(kl+1)

l .
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(2) Fix t ∈ {1, . . . , l} such that et ∈ nη. Assume that ks = 0 for all s < t such that

es ∈ nη. Then

et(e
−(k1+1)
1 · · · e−(kl+1)

l ) = e
−(k1+1)
1 . . . e

−(kt−1+1)
t−1 e−ktt e

−(kt+1)
t+1 . . . e

−(kl+1)
l .

(3) X(e−1
1 · · · e

−1
l ) = (e−1

1 · · · e
−1
l )X for X ∈ Ad(wi)m ∩ n0.

Proof. Let αs be the restricted root corresponding to es.

(1) It is sufficient to prove the equality et(e
−1
1 · · · e

−1
t−1) = (e−1

1 · · · e
−1
t−1)et in

Se1 ⊗U(g) · · · ⊗U(g) Set−1
. Since

⊕t−1
s=1 Ces is an ideal of

⊕t
s=1 Ces, we have

et(e
−1
1 · · · e

−1
t−1)− (e−1

1 · · · e
−1
t−1)et ∈

⊕
ps≥0

Ce−(p1+1)
1 · · · e−(pt−1+1)

t−1 .

The a0-weight of the left hand side is −α1 − · · · − αt−1 + αt. However, the set of

a0-weights of the right hand side is {−(p1 +1)α1−· · ·−(pt−1 +1)αt−1 | ps ∈ Z≥0}.
Hence each a0-weight appearing in the right hand side is less than that of the left

hand side. This implies et(e
−1
1 . . . e−1

t−1)− (e−1
1 . . . e−1

t−1)et = 0.

(2) We will prove et(e
−(k1+1)
1 · · · e−(kt−1+1)

t−1 ) = (e
−(k1+1)
1 . . . e

−(kt−1+1)
t−1 )et in

Se1 ⊗U(g) · · · ⊗U(g) Set−1 . As in the proof of (1), we have

et(e
−(k1+1)
1 · · · e−(kt−1+1)

t−1 )− (e
−(k1+1)
1 · · · e−(kt−1+1)

t−1 )et

∈
⊕
ps≥0

Ce−(p1+1)
1 · · · e−(pt−1+1)

t−1 .

The aη-weight of the left hand side is
∑
es∈nη, s<t−αs + αt. However, the set of

aη-weights of the right hand side is {
∑
es∈nη, s<t−(ps + 1)αs | ps ∈ Z≥0}. Hence

each aη-weight appearing in the right hand side is less than that of the left hand

side. This implies the assertion.

(3) We may assume X is a restricted root vector. Let α be the restricted root

corresponding to X. Since X normalizes Ad(wi)n ∩ n0, we have

X(e−1
1 · · · e

−1
l )− (e−1

1 · · · e
−1
l )X ∈

⊕
ps≥0

Ce−(p1+1)
1 · · · e−(pl+1)

l .

Then X(e−1
1 · · · e

−1
l ) − (e−1

1 · · · e
−1
l )X has the a0-weight −(α1 + · · · + αs) + α.

However, e
−(p1+1)
1 · · · e−(pl+1)

l has the a0-weight −((p1 + 1)α1 + · · ·+ (pl + 1)αl).

If −((p1 + 1)α1 + · · ·+ (pl + 1)αl) = −(α1 + · · ·+αs) +α, then ((p1 + 1)α1 + · · ·+
(pl + 1)αl)|Ad(wi)a = (α1 + · · · + αl)|Ad(wi)a. Hence p1 = · · · = pl = 0. Therefore,

α = 0, a contradiction. Hence X(e−1
1 · · · e

−1
l )− (e−1

1 · · · e
−1
l )X = 0.

Lemma 8.12. Let e1, . . . , el be a basis of Ad(wi)n ∩ n0 such that each es is a

root vector and
⊕

s≤t−1 Ces is an ideal of
⊕

s≤tCes. Let V be a U(m ⊕ a)-

representation. Regard V as a p-representation by nV = 0. By Lemma 6.3,
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Twi(U(g)⊗U(p)V ) ' (
⊕

ks≥0 Ce
−(k1+1)
1 · · · e−(kl+1)

l )⊗U(Ad(wi)n∩n0)⊗wiV . Then

{v ∈ e−1
1 · · · e

−1
l ⊗ 1⊗wiV | nηv = 0} = e−1

1 · · · e
−1
l ⊗ 1⊗H0(Ad(wi)m∩ nη, wiV ).

Proof. Take v = e−1
1 · · · e

−1
l ⊗ 1⊗ v0 ∈ H0(nη, Twi(U(g)⊗U(p) V )). Then for X ∈

Ad(wi)m ∩ nη we have X(e−1
1 · · · e

−1
l ⊗ 1 ⊗ v0) = 0. By Lemma 8.11, we have

e−1
1 · · · e

−1
l ⊗ 1⊗Xv0 = 0. Hence Xv0 = 0.

By the definition of the Harish-Chandra homomorphism, we get the following.

Lemma 8.13. Let q be a parabolic subalgebra of g containing h ⊕ u0. Take the

Levi decomposition lq ⊕ uq of q such that h ⊂ lq. Let W̃lq ⊂ W̃ be the Weyl

group of lq, and V a g-module with infinitesimal character µ̃. Put V ′ = H0(uq, V )

and ρ̃uq
(H) = (1/2) Tr ad(H)|uq

for H ∈ h. Then V ′ is lq-stable and V ′ =⊕
w̃∈W̃lq\W̃

(V ′)[w̃µ̃−ρ̃uq ] where (V ′)[w̃µ̃−ρ̃uq ] is the maximal lq-submodule whose in-

finitesimal character is w̃µ̃− ρ̃uq
. In particular, for every lq-submodule V ′′ of V ′,

all highest weights of V ′/V ′′ belong to {w̃µ̃− ρ̃ | w̃ ∈ W̃}.

The following lemma is well-known.

Lemma 8.14. Let V ∈ O′P0
. Assume that V has infinitesimal character λ̃ ∈ h∗.

Then all h-weights appearing in V belong to {w̃λ̃− ρ̃− α | w̃ ∈ W̃ , α ∈ Z≥0∆+}.

Take a filtration Ĩi ⊂ J∗η (I(σ, λ)) as in Theorem 7.5. Now we determine the

dimension of the space of Whittaker vectors of Ĩi/Ĩi−1 under some conditions.

Lemma 8.15. Let µ̃ be the infinitesimal character of σ. Assume that (λ + µ̃) −
w̃(λ+ µ̃) 6∈ Z∆ for all w̃ ∈ W̃ \ W̃M . Then

dim Whη(Twi(U(g)⊗U(p) J
∗(σ ⊗ eλ+ρ))) = dim Whw−1

i η((σM ∩K-finite)∗).

Proof. Put V = Twi(U(g)⊗U(p)J
∗(σ⊗eλ+ρ)). Let e1, . . . , el be a basis of Ad(wi)n

∩ n0 such that
⊕

s≤t−1 Ces is an ideal of
⊕

s≤tCes. Moreover, assume that each

es is a root vector. For k = (k1, . . . , kl) ∈ Zl, put ek = ek11 · · · e
kl
l . Set 1 =

(1, . . . , 1) ∈ Zl. Then

V =
⊕

k∈Zl≥0

Ce−(k+1) ⊗ U(Ad(wi)n ∩ n0)⊗ wiJ∗(σ ⊗ eλ+ρ).

Put

V ′ =
⊕
k∈A

Ce−(k+1) ⊗ U(Ad(wi)n ∩ n0 ∩mη)⊗H0(m ∩ nη, wiJ
∗(σ ⊗ eλ+ρ))

where A = {(k1, . . . , kl) ∈ Zl≥0 | if es ∈ nη then ki = 0}. It is easy to see that V ′

is mη ⊕ aη-stable. By Lemma 8.11, V ′ ⊂ H0(nη, V ). We first prove that V ′ =

H0(nη, V ).
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It is sufficient to prove that there exists no highest weight vector in

H0(nη, V )/V ′. Let v ∈ H0(nη, V ) be such that (mη ∩ u)v ∈ V ′.
First, we prove that v ∈ e−1 ⊗U(Ad(wi)n∩ n0)⊗wiJ∗(σ⊗ eλ+ρ) + V ′. Take

yk ∈ U(Ad(wi)n∩ n0)⊗wiJ∗(σ⊗ eλ+ρ) such that v =
∑

k e
−(k+1)⊗ yk. We prove

that if kt 6= 0 and et ∈ nη then yk = 0 by induction on t where k = (k1, . . . , kl).

Put 1t = (δst)1≤s≤l ∈ Zl (δst is Kronecker’s delta). By inductive hypothesis, for

s < t such that es ∈ nη, if yk 6= 0 then ks = 0. By Lemma 8.11(2), we have

etv =
∑

k∈Zl≥0
e−(k+1)+1t ⊗ yk. Since v ∈ H0(nη, V ), we have etv = 0. Hence if

e−(k+1)+1t 6= 0 then yk = 0. Since e−(k+1)+1t = 0 is equivalent to kt = 0, kt 6= 0

implies yk = 0.

We now prove that if kt 6= 0 then e−(k+1) ⊗ yk ∈ V ′ by induction on t. If

et ∈ nη then this claim is already proved. We may assume that et ∈ mη. Hence

etV
′ ⊂ V ′. By inductive hypothesis, if ks 6= 0 for some s < t then e−(k+1)⊗yk ∈ V ′.

Then etv ∈
∑

k∈Zl≥0
e−(k+1)+1t ⊗ yk + V ′ by Lemma 8.11(1). Since etv ∈ V ′, we

have
∑

k∈Zl≥0
e−(k+1)+1t⊗yk ∈ V ′. By the definition of V ′, if e−(k+1)+1t 6= 0 then

e−(k+1) ⊗ yk ∈ V ′. Notice that e−(k+1)+1t 6= 0 if and only if kt 6= 0. Hence we get

the claim.

We now prove v ∈ V ′. We may assume that v is a weight vector with re-

spect to h. We can take w̃ ∈ W̃ such that −w̃(λ + µ̃) − ρ̃ is the h-weight of v

by Lemma 8.13. Put ρ̃M =
∑
α∈∆+

M
(1/2)α. Since J∗(σ ⊗ eλ+ρ) has infinitesimal

character −(µ̃+ λ+ ρ), all h-weights appearing in J∗(σ ⊗ eλ+ρ) are contained in

{−w̃(µ̃ + λ + ρ) − ρ̃M + α | w̃ ∈ W̃M , α ∈ Z∆M} by Lemma 8.14. Since ρ ∈ a∗,

we have w̃ρ = ρ for w̃ ∈ W̃M . Hence −w̃ρ − ρ̃M = −ρ − ρ̃M = −ρ̃. Notice that

wiρ̃− ρ̃ ∈ Z∆. Therefore all h-weights appearing in V belong to

− wiW̃M (µ̃+ λ)− wiρ̃+ wiZ∆M + Z≥0(wi∆
− ∩∆−)− Z≥1(wi∆

− ∩∆+)

⊂ −wiW̃M (µ̃+ λ)− ρ̃+ Z∆

by Lemma 6.3. This implies that for some w̃′ ∈ W̃M , we have w̃(µ̃+λ)−wiw̃′(λ+µ̃)

∈ Z∆. By assumption we have w̃ ∈ wiW̃M . This implies (wt v)(Ad(wi)H) =

−(λ(H) + w−1
i ρ̃(H)) for all H ∈ a where wt v is the h-weight of v.

Take Ep ∈ U(Ad(wi)n∩n0) and xp ∈ wiJ∗(σ⊗eλ+ρ) such that v ∈
∑
p e
−1⊗

Ep⊗xp+V ′. We may assume that Ep and xp are h-weight vectors. We denote their

h-weights by wtEp and wtxp. Fix H ∈ a. Then α(H) = 0 for all α ∈ ∆M . Since

wtxp ∈ −wi(W̃M (µ̃+λ+ρ)−ρ̃M+Z∆M ), (wtxp)(Ad(wi)H) = −(λ+ρ)(H). Hence

(wt v)(Ad(wi)H) = (wt(e−1) + wt(Ep) + wt(xp))(Ad(wi)(H))

= (wt(e−1)(Ad(wi)H) + (wtEp)(Ad(wi)H)− (λ+ ρ)(H).
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We calculate wt(e−1)(Ad(wi)H). By definition,

wt(e−1)(Ad(wi)H) = −Tr ad(Ad(wi)H)|Ad(wi)n∩n0
.

Since Ad(wi)n ∩ n0 = Ad(wi)n0 ∩ n0, we have

Tr ad(Ad(wi)H)|Ad(wi)n∩n0
= Tr ad(Ad(wi)H)|Ad(wi)n0∩n0

= Tr ad(H)|Ad(wi)−1n0∩n0
= (−ρ̃+ w−1

i ρ̃)(H).

Since H ∈ a, ρ̃(H) = ρ(H). Hence

(wt v)(Ad(wi)H) = (wtEp)(Ad(wi)H)− (λ+ w−1
i ρ̃)(H).

We have already proved that (wt v)(Ad(wi)H) = −(λ + w−1
i ρ̃)(H). Therefore we

get (wtEp)(Ad(wi)H) = 0 for all H ∈ a. Since Ep ∈ U(Ad(wi)n), this implies

Ep ∈ C, i.e., there exist v′ ∈ e−1 ⊗ 1 ⊗ wiJ∗(σ ⊗ eλ+ρ) and v′′ ∈ V ′ such that

v = v′ + v′′. Therefore nη(v′) = nη(v − v′′) = 0. Hence v′ ∈ V ′ by Lemma 8.12.

Therefore H0(nη, V ) = V ′.

We now prove the lemma. For an m0 ⊕ a0-module τ and a subalgebra c of g

containing m0⊕ a0, put Mc(τ) = U(c)⊗U(c∩p0) (τ ⊗ ρ′) where c∩ n0 acts on τ ⊗ ρ′

trivially and ρ′(H) = (1/2)(Tr(ad(H)|c∩n0
)) for H ∈ a0.

We give some notation and facts about O′P0
. All facts are well-known. For

λ̃ ∈ h∗ such that λ̃|m0∩h is a regular dominant integral, let σM0A0,λ̃
be the finite-

dimensional representation ofM0A0 with infinitesimal character λ̃. Let L′ be a Levi

sugbgoup of a parabolic subgroup such that M0A0 ⊂ L′. Let chV0 be the character

of V0 ∈ O′P0∩L′,L′ and K0(O′P0∩L′,L′) the Grothendieck group of O′P0∩L′,L′ . Then

we can define chV0 for V0 ∈ K0(O′P0∩L′,L′) (namely, ch is additive) and chV0 =

chV1 if and only if V0 = V1 for V0, V1 ∈ K0(O′P0∩L′,L′). A basis of K0(O′
P0∩L′,L′

) is

given by {Ml(σM0A0,λ̃
)}. Let P ′′ be a parabolic subgroup of L′ containing P0∩L′,

L′′ its Levi subgroup and n′′ the nilpotent radical of the Lie algebra of P ′′. Then

for V0 ∈ O′P0∩L′,L′ , we have H0(n′′, V0) ∈ O′P0∩L′′,L′′ .

By Remark 2.5, Ad(wi)(m ∩ p0) = Ad(wi)m ∩ p0 ⊂ Ad(wi)m ∩ pη. There-

fore, m ∩ p0 ⊂ m ∩ Ad(wi)
−1pη. Hence m ∩ Ad(wi)

−1pη is a parabolic subalgebra

of m. Therefore,H0(Ad(wi)
−1nη∩m, J∗(σ⊗eλ+ρ)) ∈ O′

P0∩M∩w−1
i Mηwi,M∩w−1

i Mηwi
.

Recall that we have a functor wi. (It twists the action of g by wi.) Since

wi(P0 ∩ M ∩ w−1
i Mηwi)w

−1
i = P0 ∩ wiMw−1

i ∩ Mη (Remark 2.5), we deduce

that wi(O′P0∩M∩w−1
i Mηwi,M∩w−1

i Mηwi
) = O′

P0∩wiMw−1
i ∩Mη,wiMw−1

i ∩Mη
. (This fol-

lows from the definition.) Therefore,

H0(nη ∩Ad(wi)m, wiJ
∗(σ ⊗ eλ+ρ)) ∈ O′

P0∩wiMw−1
i ∩Mη,wiMw−1

i ∩Mη
.
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Hence we can take cλ̃ such that

chD′H0(nη ∩Ad(wi)m, wiJ
∗(σ ⊗ eλ+ρ)) =

∑
λ̃

cλ̃ chM(mη∩Ad(wi)m)+a0
(σM0A0,λ̃

).

Then it is straightforward to prove chD′V ′ =
∑
λ̃ cλ̃ chMmη⊕aη (σM0A0,λ̃

). By

a result of Lynch [Lyn79], the functor X 7→ Whη|mη∩n0
(X∗) from the category

O′
P0∩Mη,Mη

to the category of vector spaces is exact. Therefore,

dim Whη|mη∩n0
(C(V ′)) =

∑
λ̃

cλ̃ dim Whη|mη∩n0
(Mmη⊕aη (σM0A0,λ̃

)∗).

Lynch also proved dim Whη|mη∩n0
(Mmη (σM0A0,λ̃

)∗) = dimσM0A0,λ̃
. Therefore, by

Lemma 8.10 and V ′ = H0(nη, V ),

dim Whη(Ĩi/Ĩi−1) = dim Whη(C(V )) = dim Whη|mη∩n0
(H0(nη, C(V )))

= dim Whη|mη∩n0
(C(V ′)) =

∑
λ̃

cλ̃ dimσM0A0,λ̃
.

By the same argument,∑
λ̃

cλ̃ dimσM0A0,λ̃
=
∑
λ̃

cλ̃ dim Whη|mη∩Ad(wi)m∩n0
(M(mη∩Ad(wi)m)+a0

(σM0A0,λ̃
)∗)

= dim Whη|mη∩Ad(wi)m∩n0
(CH0(nη ∩Ad(wi)m, wiJ

∗(σ ⊗ eλ+ρ)))

= dim Whη|Ad(wi)m∩n0
(C(wiJ

∗(σ ⊗ eλ+ρ)))

= dim Whw−1
i η(C(J∗(σ ⊗ eλ+ρ)))

= dim Whw−1
i η((σM ∩K-finite)∗).

This implies the conclusion.

Theorem 8.16. Let µ̃ be an infinitesimal character of σ. Assume that (λ+ µ̃)−
w̃(λ+ µ̃) 6∈ Z∆ for all w̃ ∈ W̃ \ W̃M . Then

dim Whη((I(σ, λ)K-finite)∗) =
∑

w∈W (M)

dim Whw−1η((σM ∩K-finite)∗).

Proof. Let Ii be the Bruhat filtration of J ′(I(σ, λ)) = J∗(I(σ, λ)). Since all

h-weights appearing in Ii/Ii−1 ' Twi(U(g) ⊗U(p) J
∗(σ ⊗ eλ+ρ)) belong to

{−wiw̃(λ+ µ̃)− ρ̃+ α | w̃ ∈ W̃M , α ∈ ∆}, we have

wt(Ii/Ii−1) ∩ (wt(Ij/Ij−1) + Z∆) = ∅

if i 6= j, where wt(Ii/Ii−1) is the set of h-weights in Ii/Ii−1. Therefore, the ex-

act sequence 0 → Ii−1 → Ii → Ii/Ii−1 → 0 splits by the block decomposition
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of O′P0
. Hence J∗η (I(σ, λ)) =

⊕
i Γη(C(Twi(U(g)⊗U(p) J

∗(σ⊗ eλ+ρ)))). Therefore,

the conclusion follows from Lemma 8.15.

Finally we study the case where σ is finite-dimensional. Then m∩n0 acts on σ

as nilpotent operators. Therefore, Whw−1
i η(σ∗) 6= 0 if and only if w−1

i η = 0 on

m ∩ n0.

Definition 8.17. Let Θ,Θ1,Θ2 be subsets of Π.

(1) Put W (Θ) = {w ∈W | w(Θ) ⊂ Σ+} and ΣΘ = ZΘ ∩ Σ.

(2) Put W (Θ1,Θ2) = {w ∈W (Θ1) ∩W (Θ2)−1 | w(ΣΘ1
) ∩ ΣΘ2

= ∅}.
(3) Let WΘ be the Weyl group of ΣΘ.

Lemma 8.18. Let Θ be the subset of Π corresponding to P .

(1) #W (supp η,Θ) = #{w ∈W (M) | w(Σ+) ∩ Σ+
η = ∅}.

(2) #W (supp η,Θ)×#Wsupp η = #{w ∈W (M) | supp η ∩ w(Σ+
M ) = ∅}.

Proof. (1) Put W = {w ∈ W (M) | w(Σ+) ∩ Σ+
η = ∅}. Let wη,0 be the longest

Weyl element of WMη
. We will prove that the map W →W (supp η,Θ) defined by

w 7→ (wη,0w)−1 is well-defined and bijective.

To prove that the map is well-defined, let w ∈ W. The equality w(Σ+)∩Σ+
η = ∅

implies (wη,0w)−1(Σ+
η ) = w−1(−Σ+

η ) ⊂ Σ+. Hence (wη,0w)−1 ∈W (supp η). More-

over, w(Σ+
M ) ⊂ Σ+ and w(Σ+) ∩ Σ+

η = ∅ imply that w(Σ+
M ) ⊂ Σ+ ∩ (Σ \ Σ+

η ) =

Σ+ \ Σ+
η . Hence (wη,0w)(Σ+

M ) ⊂ Σ+ \ Σ+
η ⊂ Σ+. We have (wη,0w)−1 ∈ W (Θ)−1.

Finally w(Σ+
M ) ⊂ Σ+ \Σ+

η implies w(ΣM ) = w(Σ+
M )∪ (−w(Σ+

M )) ⊂ Σ\Ση. Hence

(wη,0w)−1Ση ∩ ΣM = w−1Ση ∩ ΣM = ∅.
Assume that (wη,0w)−1 ∈ W (supp η,Θ). From (wη,0w)−1(Σ+

η ) ⊂ Σ+, we

have w−1(Σ−η ) ⊂ Σ+. Hence Σ+
η = −Σ−η ⊂ −w(Σ+) = w(Σ−). Thus w(Σ+) ∩ Σ+

η

= ∅. Since (wη,0w)−1Ση ∩ ΣM = ∅ we have w(ΣM ) ∩ Ση = ∅. As (wη,0w)(Σ+
M )

⊂ Σ+ and w(Σ+) ∩ Σ+
η = ∅, it follows that w(Σ+

M ) ⊂ w−1
η,0(Σ+) ∩ (Σ \ Σ−η ) =

((Σ+ \ Σ+
η ) ∪ Σ−η ) ∩ (Σ \ Σ−η ) = (Σ+ \ Σ+

η ). Consequently, w ∈W (M).

(2) Put W = {w ∈ W (M) | supp η ∩ w(Σ+
M ) = ∅}. Define a map

W (supp η,Θ) × Wsupp η → W by (w1, w2) 7→ w2w
−1
1 . This map is injective

since W (supp η,Θ) ⊂ W (supp η). We prove that it is well-defined and surjec-

tive. Since w1 ∈ W (supp η,Θ) ⊂ W (M)−1, w−1
1 (Σ+

M ) = w−1
1 (Σ+

M ) ∩ Σ+. As

w1(Ση) ∩ ΣM = ∅, we have w−1
1 (Σ+

M ) ∩ Σ+ ⊂ (Σ \ Ση) ∩ Σ+ = Σ+ \ Σ+
η . There-

fore w2w
−1
1 (Σ+

M ) ⊂ Σ+ \ Σ+
η , so the map is well-defined. Next let w ∈ W. Let

w1 ∈W (supp η)−1 and w2 ∈Wsupp η be such that w = w2w
−1
1 . Then w−1

1 (Σ+
M ) =

w−1
2 w(Σ+

M ) ⊂ w−1
2 (Σ+ \ Σ+

η ) = Σ+ \ Σ+
η ⊂ Σ+. Hence w1 ∈ W (M)−1. Moreover,

w−1
1 (Σ+

M ) ⊂ Σ+ \ Σ+
η implies w−1

1 (ΣM ) ⊂ Σ \ Ση. Hence Ση ∩ w−1
1 (ΣM ) = ∅.

Therefore, w1Ση ∩ ΣM = ∅. This implies w1 ∈W (supp η,Θ).
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Lemma 8.19. Assume that σ is irreducible and finite-dimensional. Let µ̃ be the

highest weight of σ and V the irreducible finite-dimensional representation of M0A0

with highest weight λ + µ̃. Then Wh0(σ∗) ' V ∗ as M0A0-modules. In particular,

dim Wh0(σ′) = dimV .

Proof. Let w̃M,0 be the longest element of W̃M . Then both sides have highest

weight −w̃M,0(µ̃+ λ) and the spaces of highest weight vectors are 1-dimensional.

As a corollary to Theorems 8.8 and 8.16, we have the following theorem an-

nounced by T. Oshima. Define ρ̃M ∈ h∗ by ρ̃M = (1/2)
∑
α∈∆+

M
α.

Theorem 8.20. Assume that σ is the irreducible finite-dimensional representa-

tion of M with highest weight ν̃. Let dimM0(λ+ ν̃) be the dimension of the finite-

dimensional irreducible representation of M0A0 with highest weight λ+ ν̃.

(1) Assume that for all w ∈ W such that w(Σ+ \ Σ+
M ) ∩ supp η = ∅ the following

two conditions hold:

(a) 〈α̌, λ+ w0ν̃〉 6∈ Z≤0 for all α ∈ Σ+ \ w−1(Σ+
M ∪ Σ+

η ).

(b) λ− w̃(λ+ ν̃ + ρ̃M )|a /∈ Z≤0((Σ+ \Σ+
M ) ∩w−1Σ+)|a \ {0} for all w̃ ∈ W̃ .

Then

dim Whη(I(σ, λ)′) = #W (supp η,Θ)× (dimM0
(λ+ ν̃)).

(2) Assume that (λ+ ν̃)− w̃(λ+ ν̃) 6∈ ∆ for all w̃ ∈ W̃ \ W̃M . Then

dim Whη((I(σ, λ)K-finite)∗) = #W (supp η,Θ)×#Wsupp η × dimM0
(λ+ ν̃).

Proof. Recall that Whw−1η(σ∗) 6= 0 if and only if w−1η = 0 on m ∩ n0. This is

equivalent to supp η ∩ w(Σ+
M ) = ∅.

(1) By Theorem 8.8, we have

Whη(I(σ, λ)′) =
∑

w∈W (M), w(Σ+\Σ+
M )∩supp η=∅

dim Whw−1η((σ ⊗ eλ+ρ)′).

Since σ is finite-dimensional, (σ⊗eλ+ρ)′ = (σ⊗eλ+ρ)∗. Then by the above remark,

Whw−1η((σ⊗eλ+ρ)∗) 6= 0 if and only if supp η∩wi(Σ+
M ) = ∅. Moreover, if supp η∩

wi(Σ
+
M ) = ∅, then dim Whη((σ⊗eλ+ρ)∗) = dim Wh0((σ⊗eλ+ρ)∗) = dimM0

(λ+ ν̃)

by Lemma 8.19. Hence we get

dim Whη(I(σ, λ)′)× dimM0(λ+ ν̃)

= #{w ∈W (M) | w(Σ \ Σ+
M ) ∩ supp η = ∅, w(Σ+

M ) ∩ supp η = ∅}
= #{w ∈W (M) | w(Σ+) ∩ supp η = ∅} × dimM0(λ+ ν̃).
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By the definition of Σ+
η , we have w(Σ+)∩supp η = ∅ if and only if w(Σ+)∩Σ+

η = ∅.
Hence we get (1) by Lemma 8.18(1).

(2) By the above argument, we have

dim Whη(I(σ, λ)′) = #{w ∈W (M) | w(Σ+
M ) ∩ supp η = ∅} × dimM0(λ+ ν̃).

Hence we get (2) by Lemma 8.18(2).

Appendix A. C∞-functions with values in Fréchet spaces

Appendix A.1. L-distributions and tempered L-distributions

Let M be a C∞-manifold, V a Fréchet space and L a vector bundle on M with

fibers V . We define the sheaf of L-distributions as follows.

First we assume that L is trivial on M . Then the definition of L-distributions

is found in Kolk–Varadarajan [KV96]. (It is the continuous dual space of the space

of C∞-functions G → V with compact support.) It is easy to see that the spaces

of L-distributions form a sheaf on M .

In general, let M =
⋃
λ∈Λ Uλ be an open covering of M such that the vector

bundle L is trivial on each Uλ. For an arbitrary open subset U of M , put

D′(U,L) =
{

(xλ) ∈
∏
λ∈Λ

D′(U ∩ Uλ,L)
∣∣∣ xλ = xλ′ on Uλ ∩ Uλ′

}
.

This is independent of the choice of an open covering {Uλ} and defines the sheaf

of L-distributions on M .

Let X be a compact C∞-manifold such that M is an open dense submanifold

of X. Assume that there exists a vector bundle on X whose restriction to M is L.

(We denote this vector bundle again by L.) In this case, we define a subspace

T (M,L) of D′(M,L) by

T (M,L) = {x ∈ D′(M,L) | x = z|M for some z ∈ D′(X,L)}.

An element of T (M,L) is called a tempered L-distribution (cf. [Sch66]).

Remark A.1. The author does not know whether this space depends on the

choice of X or not. Hence, in this paper, we specify X when we use the notion of a

tempered L-distribution. For example, in the main part of this paper, we consider

the space of tempered distributions on Ui (Section 2). In this case, we take G/P

as X.

For a subset M0 ⊂ M , put D′M0
(U,L) = {x ∈ D′(U,L) | suppx ⊂ M0}

and TM0(M,L) = {x ∈ T (M,L) | suppx ⊂ M0}. Assume that M0 is a closed
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submanifold of M . Then dualizing the restriction map C∞c (M,L)→ C∞c (M0,L),

we have an injective map D′(M0,L) → D′M0
(M,L). Via this map, we regard

D′(M0,L) as a subspace of D′M0
(M,L).

Appendix A.2. L-distributions with support in a subspace

Let M be the Euclidean space Rn = {(x1, . . . , xn) ∈ Rn} and M0 the subspace

Rn−m of M defined by x1 = · · · = xm = 0. Assume that there exists a com-

pact C∞-manifold X which satisfies the condition of the previous section. Let

E1, . . . , Em be vector fields on M such that:

(1) (Eiϕ)|M0 = ( ∂
∂xi

ϕ)|M0
for all ϕ ∈ C∞(M) .

(2) The space
∑m
i=1 CEi is a Lie algebra.

Set Di = ∂/∂xi. Condition (1) implies that DiT = EiT for all T ∈ D′(M0,L).

We define Un(E1, . . . , Em) =
∑
k1+···+km≤nCE

k1
1 · · ·Ekmm and U(E1, . . . , Em) =∑

n Un(E1, . . . , Em). Then the algebra U(E1, . . . , Em) is isomorphic to the univer-

sal enveloping algebra of
∑m
i=1 CEi. For α = (α1, . . . , αm), put Eα = Eα1

1 · · ·Eαmm
where E0

i = 1.

Lemma A.2. Let E′1, . . . , E
′
m be vector fields on M which satisfy the same con-

ditions as E1, . . . , Em. Then

EαT ∈ (E′)αT + U|α|−1(E′1, . . . , E
′
m)D′(M0,L)

for T ∈ D′(M0,L) and α ∈ Zm≥0.

Proof. First we remark that if the order of a differential operator P is at most k,

then P (D′(M0,L)) ⊂ Uk(D1, . . . , Dm)D′(M0,L). Take P ∈ Uk−1(E1, . . . , Em).

Then

EiPT = PEiT + [Ei, P ]T = PDiT + [Ei, P ]T = DiPT + [Ei −Di, P ]T

∈ DiPT + Uk−1(D1, . . . , Dm)D′(M0,L)

since the order of [Ei−Di, P ] is less than or equal to k−1. Hence, using induction

on |α|, we have EαT ∈ DαT + U|α|−1(D1, . . . , Dm)D′(M0,L).

Hence Uk(E1, . . . , Em)D′(M0,L) ⊂ Uk(D1, . . . , Dm)D′(M0,L). Therefore,

EαT + U|α|−1(E1, . . . , Em)D′(M0,L) ⊂ DαT + U|α|−1(D1, . . . , Dm)D′(M0,L).

By the same argument,

EαT + U|α|−1(E1, . . . , Em)D′(M0,L) ⊃ DαT + U|α|−1(D1, . . . , Dm)D′(M0,L).
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Hence

EαT + U|α|−1(E1, . . . , Em)D′(M0,L) = DαT + U|α|−1(D1, . . . , Dm)D′(M0,L).

The same formulas hold for E′1, . . . , E
′
m. Consequently,

EαT ∈ DαT + U|α|−1(D1, . . . , Dm)D′(M0,L)

= (E′)αT + U|α|−1(D1, . . . , Dm)D′(M0,L)

= (E′)αT + U|α|−1(E′1, . . . , E
′
m)D′(M0,L).

Proposition A.3. (1) The map Φ: U(E1, . . . , Em) ⊗ D′(M0,L) → D′M0
(M,L)

defined by P ⊗ T 7→ PT is injective.

(2) TM0
(M,L) ⊂ Im Φ. Hence we have an injective homomorphism

TM0
(M,L) ↪→ U(E1, . . . , Em)D′(M0,L) ' U(E1, . . . , Em)⊗D′(M0,L).

Proof. (1) Let
∑
α∈Zm≥0

Eα⊗Tα be an element of U(E1, . . . , Em)⊗D′(M0,L). Set

T =
∑
α∈Zm≥0

EαTα and assume that T = 0. Put k = max{|α| | Tα 6= 0}. We

will prove that k = −∞. Assume that k ≥ 0. By Lemma A.2, if |α| = k then

EαTα ∈ DαTα +Uk−1(D1, . . . , Dm)D′(M0,L). There exist T ′α (|α| < k) such that∑
α∈Zm≥0

EαTα =
∑
α∈Zm≥0

, |α|<kD
αT ′α +

∑
α∈Zm≥0

, |α|=kD
αTα. Fix β ∈ Zm≥0 such

that |β| = k and f ∈ C∞c (M0,L). Define a function ϕβ,f on M by

ϕβ,f (x1, . . . , xn) = xβ1

1 · · ·xβmm f(0, . . . , 0, xm+1, . . . , xn).

Then 0 = 〈T, ϕ〉 = β1! · · ·βm!〈Tβ , f〉. Since f is arbitrary, we have Tβ = 0 for all

β such that |β| = k. This is a contradiction.

(2) For a differential operator P , let ord(P ) be its order. Let S ∈ TM0
(M,L).

By [KV96, (2.8)], for any p ∈ M0 there exist an open subset Up 3 p and Tα,p ∈
D′(Up ∩M0,L) such that S|Up =

∑
α∈Zm≥0

EαTα,p (finite sum). Let S̃ ∈ D′(M,L)

be such that S̃|M = S. Since the support of S̃ is compact, there exists r ∈ Z≥0

such that if ϕ ∈ C∞c (X,L) satisfies Pϕ|supp S̃ = 0 for each differential operator P

with ord(P ) ≤ r, then 〈S̃, ϕ〉 = 0. (When L = C, this is [Sch66, Ch. 3, §7, Th.

XXVIII]. The same proof applies.) Then S has the same property. Fix p ∈ M0.

Set k = max{|α| | Tα,p 6= 0}. Assume that k > r. Then for β ∈ Zm≥0 such that

|β| = k, Pϕβ,f |M0
= 0 for each differential operator P with ord(P ) ≤ r. However,

by the proof of (1), we have 〈S, ϕβ,f 〉 6= 0 for some f . This is a contradiction.

Hence k ≤ r for each p ∈M0. By the proof of (1), Tα,p = Tα,p′ on Up ∩Up′ . Hence

{Tα,p}p defines a distribution Tα on M0 and S = Φ(
∑
|α|≤r E

α ⊗ Tα).
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Appendix A.3. Distributions on a nilpotent Lie group

Let N be a connected, simply connected nilpotent Lie group. Put n = Lie(N)C.

Then the exponential map exp: Lie(N) → N is a diffeomorphism. It induces the

structure of a vector space on N . Let P(N) be the ring of polynomials with respect

to this vector space structure (cf. Corwin and Greenleaf [CG90, §1.2]).

Let L be a vector bundle on N whose fiber is V . Since N is simply connected,

L is trivial, i.e., L = N×V . Fix a Haar measure dn on N . Let V ′ be the continuous

dual space of V . For F ∈ C∞(N,V ′), we define a distribution Fδ by 〈Fδ, ϕ〉 =∫
N
F (n)(ϕ(n)) dn where ϕ ∈ C∞c (N,L). Thus we can regard C∞(N,V ′) as a

subspace of D′(N,L). Let Pk(N) be the space of polynomials of degree less than

or equal to k. Then P(N) =
∑
k Pk(N).

Let η be a character of N and denote its differential n→ C again by η. Then

η can be extended to a C-algebra homomorphism U(n) → C where U(n) is the

universal enveloping algebra of n. We denote this C-algebra homomorphism again

by η. Let Ker η be its kernel. For X ∈ Lie(N) and a C∞-function ψ on N , put

(Xψ)(n) = d
dtψ(exp(−tX)n)|t=0.

The algebraic tensor product C∞c (N) ⊗ V is canonically identified with a

linear subspace of C∞c (N,L) via ϕ ⊗ v 7→ (x 7→ ϕ(x)v). This subspace is dense

[KV96, (2.1)].

Proposition A.4. For all k ∈ Z>0, there exists a positive integer l such that if

T ∈ D′(N,L) satisfies (Ker η)kT = 0 then T ∈ (Pl(N)η−1 ⊗ V ′)δ. Conversely, for

all l ∈ Z>0 there exists k > 0 such that (Ker η)k(Pl(N)η−1 ⊗ V ′)δ = 0.

As a corollary, we get the following.

Corollary A.5. Let T ∈ D′(N,L). Assume that there exists a positive integer k

such that (Ker η)kT ∈ (P(N)η−1 ⊗ V ′)δ. Then T ∈ (P(N)η−1 ⊗ V ′)δ.

Proof. By the second part of Proposition A.4, there exists k′ > 0 such that

(Ker η)k
′
T = 0. Hence T ∈ (P(N)η−1 ⊗ V ′)δ by the first part.

Proof of Proposition A.4. For T ∈ D′(N,L), it is easy to see that nk(Tη) = 0 if

and only if (Ker η)kT = 0. Therefore, we may assume that η is trivial.

First assume that V = C. We argue by induction on dimN . Take an element Z

of the center of Lie(N) and a subspace n0,R such that Lie(N) = RZ ⊕ n0,R. Put

n0 = n0,R ⊗R C, n′ = n/CZ and N ′ = N/exp(RZ). Then the projection n → n′

gives an isomorphism Φ: n0 → n′ of vector spaces. Set Ψ = Φ−1. We have an

isomorphism τ : R × N ′ ' R × Lie(N ′) ' R × n0,R ' RZ ⊕ n0,R = Lie(N) ' N .

An element of n gives a vector field on N . We consider the corresponding vector
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field on R × N ′. Define a differential operator D0 on R × N ′ by (D0f)(z, n′) =

(∂f/∂z)(z, n′).

The action of Z is given by −D0. Let D′Y be the differential operator on N ′

given by Y ∈ n′. For Y0, Y ∈ n0,R and z, t ∈ R, by the Campbell–Hausdorff formula,

there exists a polynomial Pt(Y0, Y
′) on R× (n0,R)2 such that

exp(−tY0) exp(zZ + Y ) = exp((z + Pt(Y0, Y ))Z + Ψ(Y ′(Φ(−tY0),Φ(Y ))),

where Y ′ : Lie(N ′)× Lie(N ′)→ Lie(N ′) is given by

exp(Y0) exp(Y ) = exp(Y ′(Y0, Y )).

Hence the action of Y0 is given by P (Y0, n
′)D0 +D′Φ(Y0) for a polynomial P .

Now we prove the first part of the proposition when V = C. Since (−D0)lT

= 0 for some l, we have T (z, n′) =
∑l
p=0 z

pTp(n
′) for some distributions Tp on N ′.

By inductive hypothesis and Remark 2.2, it is sufficient to prove that for all Y ∈ n′

there exists a positive integer k′ such that Y k
′
Tp is a polynomial. (See also the

proof of Corollary A.5.) We prove this by induction on p. Set Y0 = Ψ(Y ). Since

the action of Y0 is given by P (Y0, n
′)D0 +D′Y , we have

Y k0 (zsTs) ∈
∑
s0<s

zs0C∞(N ′) + zs(D′Y )k(Ts) (s ≤ p),

Y k0 (zsTs) ∈
∑
s0<s

zs0P(N ′) + zs(D′Y )k(Ts) (s > p),

since Ts is a polynomial if s > p (inductive hypothesis). Take k such that Y k0 T = 0.

Then

0 = Y k0 T ∈
∑
s<p

zsC∞(N ′) +

l∑
s=0

zsP(N ′) + zp(D′Y )k(Ts).

Therefore, (D′Y )k(Ts) ∈ P(N ′). The second part follows from [Goo76, 2.3, Corol-

lary 2].

Fix a basis {e1, . . . , en} of Lie(N). The map Rn → N defined by (x1, . . . , xn)

7→ exp(x1e1 + · · · + xnen) is an isomorphism. Using this map, we introduce a

coordinate (x1, . . . , xn) of N .

Fix v ∈ V and consider an ordinary distribution Tv : ϕ 7→ 〈T, ϕ ⊗ v〉
for ϕ ∈ C∞c (N). If nkT = 0, then nkTv = 0. Hence for some l, we have

Tv =
∑
α1+···+αn≤l (xα1

1 · · ·xαnn ⊗ cv,α1,...,αn)δ, where cv,α1,...,αn ∈ C. The map

v 7→ cv,α1,...,αn is continuous linear. Hence it defines an element of V ′; de-

note it by v′α1,...,αn . Then for ϕ ∈ C∞c (N) and v ∈ V we have 〈T, ϕ ⊗ v〉 =

〈(
∑
α1+···+αn≤l x

α1
1 · · ·xαnn ⊗ v′α1,...,αn)δ, ϕ ⊗ v〉. Since C∞c (N) ⊗ V is dense in

C∞c (N,L), we have T = (
∑
α1+···+αn≤l x

α1
1 · · ·xαnn ⊗ v′α1,...,αn)δ.
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We now prove the second part of the proposition. For X ∈ n, f ∈ Pl(N)

and v′ ∈ V ′, we have X((f ⊗ v′)δ) = ((Xf) ⊗ v′)δ. Hence we may assume that

V = C.
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