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Generalized Jacquet Modules of Parabolically
Induced Representations

by
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Abstract

In this paper we study a generalization of the Jacquet module of a parabolically induced
representation and construct a filtration on it. The successive quotients of the filtration
are written by using the twisting functor.
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81. Introduction

The Jacquet module of a representation of a semisimple (or reductive) Lie group
was introduced by Casselman [Cas80]. One of the motivations of considering the
Jacquet module is to investigate homomorphisms to principal series representa-
tions. The space of homomorphisms to principal series representations is an im-
portant invariant of a representation.

One of the powerful tools to study the Jacquet module of a parabolically
induced representation is the Bruhat filtration [CHMO0]. This is a filtration on
the Jacquet module defined by the Bruhat decomposition. Casselman—Hecht—
Milici¢ [CHMO0] used the Bruhat filtration to determine the dimension of the
(moderate-growth) Whittaker model of a principal series representation (another
proof of Kostant’s result [Kos78, Theorem I, Theorem J]). In this paper, we study
the Bruhat filtration and show that its successive quotients are described by the
twisting functor defined by Arkhipov [Ark04]. The successive quotients become
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“twisted” inductions, which have the same character as that of an induced repre-
sentation but a different module structure.

Moreover, we investigate its generalization, which is related to the Whittaker
model. In [Cas80], Casselman suggested generalizing the notion of the Jacquet
module. For this generalized Jacquet module, we can also define a Bruhat filtra-
tion and the successive quotients of the filtration are described in terms of the
generalized twisting functor.

This result gives a strategy to determine all Whittaker models of a parabolically
induced representation. To determine it, it suffices to study the successive quotients
and extensions of the filtration. In a special case, we can carry out these steps.

Now we state our results precisely. Let G be a connected semisimple linear
Lie group, G = K AypNy an Iwasawa decomposition and Py = MyAgNy a minimal
parabolic subgroup and its Langlands decomposition. As usual, the complexifi-
cations of the Lie algebras is denoted by the corresponding German letter (for
example, g = Lie(G) ®g C). Fix a character n of Ny and denote its differential also
by 1. Then for a representation V' of G, the generalized Jacquet modules J7’7(V) and
J;;(V) are defined as follows. Let Vi _fnite be the space of K-finite vectors in V.

Definition 1.1. Let V be a finite-length moderate growth Fréchet representation
of G (see Casselman [Cas89, p. 391]). We define g-modules J; (V') and J; (V) by

J(V) = {v eV’

for some k and for all X € ny,
(X = n(X))kv =0 ’

Jr(V) = {v € (VK-finite) "

for some k and for all X € ny,
(X = n(X)fv=0 ’

where V' is the continuous dual space of V' and (Vik_finite)* is the full dual space
Home (Vi _finite, C). If 7 is the trivial representation, J;] (resp. J;';) is denoted by J’
(resp. J*). The module J*(V) is called the Jacquet module of V.

(We will use the notation Y* = Homgc (Y, C) for any C-vector space Y through-
out this paper.)

In this paper, we consider J; (V') and J; (V') when V' is a parabolically induced
representation. Let P be a parabolic subgroup containing Py and take a Langlands
decomposition P = MAN such that Ag D A. For A € a* and an irreducible
representation o of M, we define I(c,\) = Ind%(c ® e**?) where p € a* is the
half sum of positive roots. In this paper, we deal with J; ((o,A)) and J;(I(a,A)).

First we discuss J; (I(o, A)). By definition, (o, \) is realized as the space of
C*>-sections of a certain vector bundle on G/P. Hence an element of its continuous
dual space is regarded as a distribution on G/P. Using the Bruhat decomposition
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on G/P, we can get a filtration {I;} of J}(I(o,A)), which is called the Bruhat
filtration. The first aim of this paper is to understand the structure of I;/I;_;.

We give a precise definition of I;. Let W (resp. Wjs) be the little Weyl group
of G (resp. M). Then Ny-orbits on G/P are parameterized by W/Wy;. Let W (M)
be a subset of W consisting of w such that w(«) is positive for any positive re-
stricted root o of M. Then W (M) = W/Wj;. Enumerate W (M) = {wy, ..., w,}
so that |J;; Now; P/P is a closed subset of G/P. Now we define a submodule
I; C Jy(I(o,\)) by

I = {x € Jy(I(o, ) ‘ suppz C U Noij}.

J<i

To describe I;/I;_1, we need a functor T, , which is a generalization of
the twisting functor [Ark04]. The generalized twisting functor T, , is defined as
follows. Let ng be the nilradical of the parabolic subalgebra opposite to pg and
{e1,..., e} abasis of Ad(w)myNng such that each e; is a root vector with respect
to b, where b is a Cartan subalgebra of g which contains ay. Moreover, we choose e;
such that @,.,; , Ce; is an ideal of P, Ce; for all j. Let U(g) be the universal
enveloping algebra of g and U(g)e,—n(e,) the localization of U(g) with respect to
the multiplicative set {(e; — n(e;))™ | n € Zso}. Put

Sw,n = (U(g)elfn(ﬁ)/U(g)) ®U(g) T ®U(g) (U(g)elfn(el)/U(g))'

Then Sy, is a U(g)-bimodule and its U(g)-bimodule structure is independent of
the choice of {e1,..., e }. The twisting functor T, , is an end-functor of the cate-
gory of g-modules, defined by Ty, ,V = Su,, @u(g) (wV) for a g-module V', where
wV is the representation twisted by w (i.e., Xv = Ad(w)~}(X) - v for X € g and
v € wV, where the dot means the original action). If 7 is the trivial representa-
tion, then T, , is equal to the twisting functor defined by Arkhipov [Ark04]. In
this case, we denote it by T,.
Now we give the theorem.

Theorem 1.2 (Theorems 4.7 and 6.1). The filtration {I;} has the following prop-

erties.

(1) If the character 1 is not unitary, then Jy(I;/1;i—1) = 0 for each i = 1,...,r.
Therefore, J; (I(a,\)) = 0.

(2) Assume that n is unitary. The module I;/I;_1 is nonzero if and only if n is
trivial on w;Nw; ' N Ny and Jv’ﬂv,ln(o ® erP) £ 0.

(3) If Ii/T;—1 # 0 then I;/I;_1 =~ Ty, ,(U(8) @u(p) J;?ln(a ® e M) where n acts

on J;,,—ln(g ® eMP) trivially.

i
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Here are some remarks on notation. As w; € W(M), we have Ad(w;)(mNng)
C ng. Hence we can define a character w; 'n of mNng by (w; 'n)(X) = n(Ad(w;)X).
Using this character, we can define an m @ a-module J{Uv,ln(a ® erP).

Under the assumptions that P is a minimal parab(;lic subgroup, and that o
is the trivial representation, I(o, A) has the unique Langlands quotient and 7 is
the trivial representation, this theorem is proved in [Abe08]. The proof we gave
in [Abe08] was algebraic, while we give an analytic and geometric proof in this
paper.

Next we consider J(I(c, \)). For a U(g)-module V, put I';(V) = {v € V|
for some k and for all X € ng, (X —n(X))*v =0} and C(V) = ((V*)p_finite)*- We

prove the following theorem.

Theorem 1.3 (Theorem 7.5). There exists a filtration 0 = INO C f1 c---Ccl, =
Ji(I(o,N)) such that I;/1;_y ~ Ty (C(Tw,(U(9) @u(p) J* (0 @ eXt7)))) where n acts
on J* (o @ eMP) trivially.

Let us discuss an application. The space Wh,, (D) of Whittaker vectors for
a U(g)-module D is defined by Wh, (D) = {# € D | (X — n(X))z = 0 for
all X € np}. If V is a moderate growth Fréchet representation of G, an ele-
ment of Wh,, (V') corresponds to a moderate growth homomorphism V' — Ind%g 7
and an element of Wh,, ((Vik_ginite)*) corresponds to an algebraic homomorphism
VK finite — Indg0 1. In particular, when 7 is the trivial representation, these
correspond to homomorphisms to principal series representations. Obviously, we
have Wh, (V') = Wh,(J;(V)) and Wh,,((Vk_finite)*) = Wh,(J;;(V')). Hence us-
ing the above theorems, we can determine the dimension of Why,(I(o,\)’) and
Why, ((1(0, A) k-finite)*) if A satisfies some (generic) condition.

Let us give such a formula. Let ¥ (resp. Xjs) be the restricted root system
for (G, Ag) (resp. (M, M N Ap)), X" the positive system of ¥ corresponding to No,
and II C ¥ the set of simple roots determined by ¥*. For o € 3, the coroot of
« is denoted by a. Put ¥f, = Xy N ST, Let W (resp. W) be the (complex)
Weyl group of g (resp. m). Let 1 € (m N h)* be the infinitesimal character of o.
Using the decomposition h = a @ (m N h), we regard (m N h)* C h*. Let A be
the root system for (g,b). Put ;7 = (ngﬁ;ﬁo,ﬂen ZB) N, Let po € af be the
half sum of positive roots counted with multiplicities. Recall that v € (m Nag)* is
called an ezponent of o if v + po|lmna, is an (m N ag)-weight of o/(mNng)o. Using
ap = (mNag) ® a, we regard v as an element of aj. We also have a* C aj.

Theorem 1.4 (Theorems 8.8 and 8.16). For A € a* and an irreducible represen-
tation o of M, the following formulas hold.
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ssume that for any w € such that n|wNw-1AN, = 1, the following two
1) A hat f W h th o 1, the foll
conditions hold:
(a) (&, X +v) & Zzp for each exponent v of o and v € BT\ w™ (S, UEH).
(b) A= @A+ B)la ¢ Zeo(EF\ ) Nw ™ SH)[ \ {0} for all @ € W.
Then

dim Wh,, (I(c, \)') = > dim Why,-1,(¢").
weW (M), n‘wNuﬁlmNO:l

(2) Assume that (A + [i) — @(A + [i) &€ ZA for all @ € W \ Way. Then

dim Why, ((1(0, M) -finite)”) = Y dim Why—1, (01 1 K-finite) -
weW (M)

For o finite-dimensional, we have the following theorem announced by
T. Oshima (a talk at National University of Singapore, January 11, 2006). Let
Ajs be the root system for (m @ a,b) and take a positive system A]T/I compatible
with $7,. Put pas = (1/2) ZaeAL a. For subsets 01,0, of II, put Xg, = ZO,;NX,
W(©;) ={we W |w(©;) C 1}, We, the Weyl group of Xg, and W (01,05) =
{fweW(O)NW(O2)~ ! | w(Ze,) NXe, = 0}. The parabolic subgroup P defines
a subset of II, denoted by ©. Let wy € W be the longest element.

Theorem 1.5. Assume that o is an irreducible finite-dimensional representation
of M with highest weight U. Let dimpg, (A + V) be the dimension of a finite-
dimensional irreducible representation of MyAg with highest weight A\ + .

(1) Assume that for all w € W such that n|ynyw-1nn, = 1 the following two
conditions hold:
(a) (& X+ wob) & Zeo for all a € BT\ w1 (3, UST).
() A= T+ 7+ par)la & Z<o((ST\SF) Nw=1SH) [\ {0} for all @ € W.
Then
dim Wh,,(I(o,\)") = #W (suppn, ©) x dimpz, (A + 7).
(2) Assume that (A +7v) —w(A+7v) &€ A for allw € W \ War. Then

dim Why, ((I(c, ) k-finite) ™) = #W (supp 1, ©) X #Weuppy X dimpg, (A + 7).

We summarize the content of this paper. In §2, we introduce the Bruhat
filtration. From §2 to §6 we study the module J;(I(o,))). In §3 we prove that
successive quotients of the Bruhat filtration are zero under some conditions. The
structure of the successive quotients is investigated in §4. We give the definition
and properties of the generalized twisting functor in §5, and in §6 we reveal the
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relation between the twisting functor and the successive quotients. We complete

the proof of Theorem 1.2 in that section. Theorem 1.3 is proved in §7. In §8, the

dimension of the space of Whittaker vectors is determined, and Theorems 1.4 and

1.5 are proved.

Suppg 7] = Supp

(I)w,w’
P, = M,A,N,

Ly

§2, 425
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§3, 435
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§4, 442
§4, 442
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§5, 446
§5, 446
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H

by =my O ay ny
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Up
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§2, 427
§2, 427
§2, 427
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§3, 434
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§4, 442
§4, 442
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§5, 446
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§6, 448
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§7, 450
§7, 450
§8, 453
§8, 465
§A, 467

Throughout this paper we use the following notation. As usual we denote the ring

of integers, the set of non-negative integers, the set of positive integers, the real

number field and the complex number field by Z, Z>¢, Z~o,R and C, respectively.

Let G be a connected semisimple linear Lie group and g the complexification

of its Lie algebra. Fix a Cartan involution § of G and denote its derivation by

the same letter 0. Let g = € @ s be the decomposition of g into the +1 and
—1 eigenspaces for 0. Set K = {g € G | 6(g) = g}. Let Py = MyAoNy be a
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minimal parabolic subgroup and its Langlands decomposition such that My C K
and Lie(A4g) C s. Denote the complexifications of the Lie algebras of Py, My, Ag, No
by po, mg, ag, ng, respectively. Take a parabolic subgroup P which contains Py and
denote its Langlands decomposition by P = M AN. Here we assume A C Ay. Let
p, m, a,n be the complexifications of the Lie algebras of P, M, A, N. Put Py = 0(P,),
No = 0(No), P =0(P), N =0(N), po = 0(po), g = 0(no), b = 0(p) and it = O(n).

In general, we denote the dual space Homg (V, C) of a C-vector space V by V*.
Let ¥ C a be the restricted root system for (g, ag) and g,, the root space for o € X.
Then ) .5, Ra is a real form of aj. We denote the real part of A € af with re-
spect to this real form by Re X and the imaginary part by Im . Let ¥t be the
positive system determined by ng. Put po = > 5 (dimgs/2)a and p = pola-
The positive system ©T determines the set IT of simple roots. Fix a total order on
> acx; Ra such that the following conditions hold: (1) If & > B and v € > .5, Ra
then « +v > 84+ v. (2) If @ > 0 and ¢ is a positive real number then ca > 0.
(3) For all & € ¥* we have o > 0. Write W for the little Weyl group for (g, a), e
for the unit element of W and wy for the longest element of W. For w € W, we fix
a representative in Nk (a) and denote it also by w. For o € ¥, let & be its coroot.

Let tg be a Cartan subalgebra of mg and Ty the corresponding Cartan sub-
group of My. Then h = tyPag is a Cartan subalgebra of g. Let A be the root system
for (g, h) and take a positive system AT compatible with X%, i.e., if « € A™ is such
that alq, # 0 then al,, € XT. Let g be the root space of a € A and W the Weyl
group of A. Put p = (1/2) Y ca+ . By the decompositions (m Nag)* & a* = ag
and t§ @ aj = b*, we always regard a* C aj C h*.

We use the same notation for M, i.e., X is the restricted root system of M,
EL =X NET, Wyy is the little Weyl group of M, Ay, is the root system of M,
AL = Ay NAT, WAZ is the Weyl group of M and wjs,o is the longest element
of WM

We can define an anti-isomorphism of U(g) by X — —X for X € g. We denote
this anti-isomorphism by u — .

For a g-module V and g € G, we define a g-module gV as follows: The
representation space is V' and the action of X € gis X -v = (Ad(g) ' X)v for
vegV.

For &£ = (&1,...,&) € Z', put [¢] =& + -+ &.

§2. Parabolic induction and the Bruhat filtration

Fix a character n of ng and put suppgn = suppn = {a € Il | n|g, # 0}. The
character 7 is called non-degenerate if suppn = II. We denote the character of Ny
whose differential is 7 by the same letter 7.
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Definition 2.1. Let V be a finite-length moderate growth Fréchet representation
of G (see Casselman [Cas89, p. 391]). We define g-modules J; (V) and Jy(V) by

JH(V) = {v eV’

for some k and for all X € ny,
(X — (X))kv = 0 ’

(V) = { € (Vic i)

for some k and for all X € ny,
(X = n(X))kv =0 ’

where V' is the continuous dual space of V.

Put J'(V) = J§(V) and J*(V) = J5(V) where 0 is the trivial representa-
tion of ng. The module J*(V) is the (dual of the) Jacquet module defined by
Casselman [Cas80]. By the automatic continuity theorem [Wal83, Theorem 4.8],
we have J'(V) = J*(V). The correspondences V' + J; (V) and V > Jx(V) are
functors from the category of G-modules to the category of g-modules.

Remark 2.2. The character 7: ng — C gives a C-algebra homomorphism U (ng)
— C. We denote this homomorphism again by n and let Kern be its kernel. Then
the following conditions are equivalent:

(1) For some k and for all X € ng, (X —n(X))*v =0.
(2) For all X € ng there exists k such that (X —n(X))*v = 0.
(3) For some k, (Kern)*v = 0.

In fact, this holds for any nilpotent Lie algebra. Obviously, (3) implies (1) and
(1) implies (2). We prove that (2) implies (3) by induction on dimng. Replacing
V with V ® (—n), we may assume 7 = 0. Take a codimension 1 ideal ¢ C ng and
X € ng\ ¢. Then ¢*v = 0 for some k by inductive hypothesis. Put V/ = U(ng)v.
Then V' = U(c)U(CX)v. By (2), U(CX)v is finite-dimensional. Since ¢ is an ideal,
FU(CX)v C U(ng)ckv = 0. Hence V' is finite-dimensional. Since each finite-
dimensional irreducible representation of a nilpotent algebra is a character, V'
is given by an extension of characters. By the assumption (2), each irreducible

subquotient of V' is trivial. Hence nf v = 0 for some k.

In this paper, we study the module J; (V) for a parabolically induced repre-
sentation V. An element of a* is identified with a character of A. We denote the
character of A corresponding to A + p by e**? where A\ € a*. For an irreducible
moderate growth Fréchet representation ¢ of M and A € a*, put

I(o,\) = C*®-Ind$% (0 @ e 7).

(For moderate growth Fréchet representations, see Casselman [Cas89].) The rep-
resentation (o, \) has a natural structure of a moderate growth Fréchet repre-
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sentation. Denote its continuous dual space by I(o, A)’. Let £ be a vector bundle
on G/P attached to the representation o ® e**?. Then I(o,)) is the space of
C*°-sections of L.

Remark 2.3. A C'*-section of £ corresponds to a o-valued C*°-function f on
G such that f(gman) = o(m) te=AtP)oga)f(g) for g € G, m € M, a € A,
n € N. In particular a C*°-function on G/P corresponds to a right P-invariant
C*°-function on G. We use this identification throughout this paper.

We use the notation of Appendix A. We can regard J; (1(o, A)) as a subspace of
D'(G/P, L) as follows. Let G/P = J,, U, be an open covering such that £ is trivial
on U,. For each v, C*(U,, L) is identified with a subspace {¢ € C>*(G/P,L) |
¢la/ppv, = 0} of C*(G/P,L) = I(o,)). Hence an element of I(o,))" gives
an element of (C°(U,, L£)). By the definition of D'(G/P, L), the collection of
these elements in (C°(U,, L))" over 7’s patches together to give an element of
D'(G/P,L). Hence we get I(c,\) — D'(G/P,L). It is easy to see that this is an
injective g-module homomorphism.

Set W(M) ={w e W | w(X};) C Xt} Then it is known that the multiplica-
tion map W (M) x Wy — W is bijective [Kos61, Proposition 5.13]. By the Bruhat
decomposition, we have

G/P= || NowP/P.
weW (M)

(Recall that we fix a representative of w € W, see Notation.) Enumerate W (M) =
{wi,...,wr} so that (J;, Now;P/P is a closed subset of G/P for each i. (For
example, choose w; such that dim(Nyw,P/P) < -+ < dim(Now, P/P).) Then we
can define a submodule I; of J; (I(c,\)) by

I = {m € Jy(I(o, ) ‘ suppx C U Noij/P}.

j<i
The filtration {I;} is called a Bruhat filtration [CHMOO]. In the rest of this section,

we study the modules I;/I; 1. Put U; = w;NP/P and O; = Now;P/P. By the
lemma below, U; is an open subset of G/P containing O;, and U;NO; = 0 if j < 1.

Lemma 2.4. Let w,w’ € W and assume that wNoP N Now'P # 0. Then w' > w
with respect to the Bruhat order.

Proof. Take H € Lie(Ap) such that a(H) < 0 for all « € ¥+ and put a; = exp(tH)
for t € Ryo. Then lim;_, o atna; L=1foralme Ny. By assumption, there exists
n € Ny such that wnP/P € Now'P/P C G/P. Since Ngw'P/P C G/P is stable
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under the action of Ay, we have (wa,w™)wnP/P € Now'P/P. Since a; € Ay C P,
we have watﬁat_lp/P € Now'P/P. Hence wP/P = lim;_, watﬁat_IP/P €
Now' P/ P where Nogw' P/ P is the closure of Ngw'P/P in G/ P, proving the lemma.

O

Hence, the restriction map Res;: I; — D/(U;, £) induces an injective map
Resi : Ii/-[ifl — DI(UZ', E)

Moreover, ImRes; C To,(U;, L) where To,(U;, L) is the space of tempered L-
distributions on U; with respect to G/P whose supports are contained in O;.

The map n +— nw; P/P yields isomorphisms wiﬁwi_l ~ U; and wiﬁwi_l NNy
~ O;. Since the exponential map exp: Ad(w;)n — w;Nw; !is a diffeomorphism,
the space U; is diffeomorphic to a Euclidean space and O; is a subspace of U;. More-
over, since w; Nw; * =~ (w; Nw; *NNy) (w; Nw; ' NNp), a basis of Ad(w;)nNTg satis-
fies the conditions of Appendix A.2. Hence 7o, (U;, £) < U(Ad(w;)nNng)D'(0;, L)
~ U(Ad(w;)nNng) @c D'(0;, L) by Proposition A.3.

Fix a Haar measure on wiﬁwi_l N Ng. We define §; € D'(O;, L) by

Goo)= [ | etuw)dn
w; Nw, "NNg

for p € C°(0;, £). Recall that U; has the structure of a vector space and O; is a
subspace. Let P(O;) be the ring of polynomials on O; (cf. [CG90] or Appendix A.3).
Define a C*°-function n; on O; by n;(nw; P/P) = n(n) for n € wiﬁwjl NNy. For a
C*>-function f on O; and v’ € o', we define f @ u' € C*(0;,0’) by (f @' )(z) =
f(z)u'. Since w; € W(M), Ad(w;)(mNng) C ng. Hence we can define a character
w; 'y of mNng by (w; 'n)(X) = n(Ad(w;)X). Using this character, we can define
the Jacquet module J’l/,U._l’I’](U ® e M) of the M A-representation o ® e* 7. It is an
m @ a-module. Put '

Ej € U(Ad(w;)nNig), fr € P(0;),
{ZEk (frmi ) ® up)dy) UZEJ;(_ln((:]@;ne’\J:O)) I ( )}'

(Recall that Ad(w;)n N7 is a normal direction to O; in U;.) The space I is a
U(g)-submodule of D'(U;, £). Our aim is to prove that if I;/I;_1 # 0 then Res;
gives an isomorphism I, /I; 1 ~ I!.

Remark 2.5. Since w; € W(M), it follows that Ad(w;)(m Nng) C ng and
Ad(w;)(mNng) C ng. Hence

Ad(wi)m Nng = (Ad(wz)(m n no) D Ad(wl)(m N 1170)) Nng = Ad(wl)(m N Tlo).
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By the same argument,
Ad(wz)m Npo = Ad(wl)(m N po)
We use these formulas frequently.

Lemma 2.6. (1) Ad(w;)(m@® (mNnyg)) is a subalgebra.

(2) Ad(w;)(m@ (mNng)) = (Ad(w;)nNng) @ (Ad(w;)(Mem) Nng) and both direct
summands are subalgebras.

(3) Ad(w;)(m@n)Nng = (Ad(w;)nNng)®(Ad(w;)mNng) and both direct summands
are subalgebras.

Proof. (1) This subspace is the nilpotent radical of a minimal parabolic subalgebra.
(2) We have

Ad(wi)(ﬁ@ (m ﬂno)) = (Ad(wz)(ﬁ@ (mﬂno)) ﬂnio) ) (Ad(wl)(ﬁGB (mﬂ ﬂo)) N no).

By Remark 2.5, Ad(w;) (@@ (mNng))Nng = (Ad(w;)nNng) B (Ad(w;)(mNng)Nng) =
Ad(wl)ﬁﬁfo We also have Ad(wz)(m @ﬁ) Nng = (Ad(wl)(ﬁ@ (m N no)) n ﬂo) D
(Ad(w;)(mNng) Nng) = Ad(w;) (W@ (mNng)) Nng since Ad(w;)(mNng) C .
(3) This is obvious. O
Lemma 2.7. Let Fy,...,E, be a basis of Ad(w;)n N7y such that each Eq is a

restricted root vector for some root (say as) and F € Ad(w;)(w @ m) Nng. For
£= (1. ,6n) €ZY,, set ES = ES' ... E& . Then for all ¢ € C we have

[(F - o), E¢] e ( 3 (CE5/>U(Ad(wi)(ﬁ ®m) Nnp)
feae - U(Ad(wl)(ﬁ [S2) (m n ﬂo)))

where A(§) = {¢" € ZZ, | [&'] < [¢], or (|| = [¢] and }_&iai > 30 &icvi)}.

Proof. Notice that oy is negative.
We may assume k = 1. We argue by induction on |£|. We have

[F — ¢, B¢ = [F,E¥] = Z Z ES - EY'El[F, BB ES . B

Hence, it is sufficient to prove
131 Es—1 1l Eo—1—1 és+1 En
Ef' - EFVEL[F, ES|ES E - B

s+1
3 CEﬁ’) U(Ad(w;)(® & m) N np).
§'EA(S)

We may assume that F is a restricted root vector. If [F, Eg] € Ad(w;)n N g then
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the left hand side is in U(Ad(w;)n N7ng) and its ag-weight is greater than that
of E*. Hence it belongs to doereA(e) CE¢.

Assume that [F, E,] € Ad(w;)(® @ m) N ng. Define ¢, ¢3) € 7" by ¢V =
(€1,...,64-1,1,0,...,0)and €@ = (0,...,0,&,—1—1,&11,. .., &), Using inductive
hypothesis, we have

B¢V ([F, B, E¢”] € B

3 CEf’) U(Ad(w;) (R & m) N np)
EeA(E™)
c ( 3 CEE’)U(Ad(wi)(ﬁ @ m) N 1)
EEA(EM+£@)
C ( CEEI)U(Ad(wi)(ﬁ@m) Nng).
§'EA(E)

On the other hand,

BV B R B, € ( 3 CEf’) F,E,]
[&1<1EM £
c( Y CEY)Adw)E®m) Nng).
[€71<1EM +£@)|
Since |€V) +£@)| = |¢] — 1 < |€], we get the assertion. O

Let X be an element of the normalizer of Ad(w;)nNng in g. For f € C*(0;)
we define D;(X)f € C*(0;) by

(Du(X) ) () = - Flexp(~Xmexp(tX )

=0
where n € wiﬁwi_l N Np.
Lemma 2.8. Fiz f € C°(0;), v’ € (c ® e*P) and X € g.
(1) If X € ag, then X normalizes Ad(w;)nNng and
X((f @u)d:) = (Di(X)f) @u)s; + (f @ (Ad(wi) ™ X)u'))d;
+ (wipo = po) (X)(f @ w')d;.
(2) If X € Ad(w;)(mNing) or X € mg, then X normalizes Ad(w;)m Nng and
X((f @ u)d:) = (Di(X)f) @u)d; + (f @ (Ad(w:) ™' X)u'))d;.

Proof. First we prove that X normalizes Ad(w;)n Nng. If X € my + ap, then
X normalizes each restricted root space. Hence, X normalizes Ad(w;)n N ng. If
X € Ad(w;)(mNngp), then X € ng by Remark 2.5. Hence, X normalizes ng. Since
m normalizes 1, X normalizes Ad(w;)n.
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Put g, = exp(tX) for t € R. Set D(t) = |det(Ad(ge) ™" ad(w,)mnm,)|- Take
¢ € CX(U;, £) and regard ¢ as a o-valued C*°-function on w; NP (Remark 2.3).
In each case, w; 'gyw; € P. Hence p(zw; 'gyw;) = (o0 @ eMP)(w; gow;) "1 ().
Then

(X((f @ u)di),0) = ((f ® u')di, —X )

d
== | _ u'(p(genw;)) f(nw;) dn
dt Jow, Nw-tANo t=0
d _ _
- 5 _ u/(‘P((gt”gt 1)wi(wi 1gth)))f(nwz) dn
dt Juw, Nw; 0N, i—o
d
Tt / (o @ M) (w; grws) "M e((gimgy wi)) f(nw;) dn
dt wlﬁwqflﬂNg t=0
d
-3/ W (0 ® ) (wr gwn) ) (g mgew) D(E) i
dt wii’w;lﬁNo t=0
d _ _
= [ ) el (g g D) dn
w; Nw; "MNNp =0

This implies
X((f@u)d) = (Di(X)f) @ u)di + (f © (Ad(w;) " X)u))d;

((f @ u')d).

t=0

(1) Assume that X € ag. Since w; € W(M), we have w;Nw; ' N Ny =
w;Now; ' N Ny. This implies that det(Ad(g¢) ™ ad(ws)anne) = et(wipo—po)(X)

(2) First assume that X € mg. Since My > g — det(Ad(g)_1|Ad(wi)gmn0) is
a 1-dimensional representation, it is unitary since M is compact. Hence we have
|det(Ad(gt)_1|Ad(wi)ﬁmo)| = 1. Next assume X € Ad(w;)m N ng. Then ad(X) is
nilpotent. Hence, Ad(g;) — 1 is nilpotent. This implies det(Ad(g:) ™" |ad(w:)mmo)
=1. O

d _
+ % |det(Ad(gt) ! |Ad(w7:)ﬁf‘mo)‘

Lemma 2.9. Let x € To,(U;, L). Assume that there exists a positive integer k
such that (X —n(X))*z =0 for all X € Ad(w;)pNng. Then x € I.. In particular
ImRes; C I].

Proof. Let Es and a; be as in Lemma 2.7. For £ = (£1,...,&,) € Z2,, set ES =
ES .. E&. Since z € To, (Ui, £) — U(Ad(w;)& NTig)D' (O, L), there exist Te €
D'(0;, £) such that z =3, Efx¢ (finite sum).

First we prove 2¢ € (P(0;)n; ' @ (0 ® e*?))8; by backward induction on the
lexicographic order of (|¢|,— >, &o). Fix a nonzero element F' € Ad(w;)nNng.
Then (F —n(F))*x = 3 [(F = n(F)*, B*](z¢) + 3¢ BS((F —n(F))*¢). Assume
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that (F —n(F))kz = 0. Define the set A(£) as in Lemma 2.7. By that lemma,
ZEé F —n(F))Fxe) = Z[(F —n(F)*, B (xe)

GZ( 3 CEf) (Ad(w;) (R ® m) N 1) (xe)-

& LEA(Q)

Put B(§) = {¢" [ [€'] > [¢], or (|¢'] = [¢] and 37 &Lars < 30 &sas)}. Notice that
U(Ad(w;)(m@m)Nng)(ze) C D'(O;, L). Since we have U(Ad(w;)nNng)D’(0;, L) ~
U(Ad(w;)nN1g) ® ’D’(Oi, L), it follows that

(F—n(F 3356 Z U(Ad(w;)(m @ m) Nng)(xer ).
§’eB(g)
By inductive hypothesis, zex € (P(O;)n; ' ® (0 @ e*P))d; for all & € B(€).
Hence we have (F — n(F))*ze € (P(O)n;' @ (0 @ e’P))s;. Therefore z¢ €
(P(Oi)n;* @ (0 @ e*P))8; by Corollary A.5.

Hence, we can write z = 3, B (fean; ®ug ;)d; (finite sum), where fe; €
P(0;) and uy; € (0 © e**P)’. Moreover, we may assume that fg; is an ao-weight
vector with respect to D; and { f¢;}; is linearly independent for each £. We prove
ug, € J:U;ln(a ® e*P). Take F € m Nng. By Lemma 2.8,

(Ad(w;)F — n(Ad(w;)F))*z

=Y _[(Ad(wy) F = n(Ad(w,) )", E)((feam; * © ug1)d)
&l

EZ 2:( ) ((Ad(w) )P (fe)n ") @ (F = n(Ad(w;) F)F P (uf )3

Z (fean; " @ (F — n(Ad(w) F))*ug ;)b
€l

Now we prove ug L€ J ,177(0 ® e**P) by backward induction on the lexicographic

order of (|¢], —>" &sas, — Wt fe ;) where wt fe; is the ag-weight of fe; with respect
to D;. Take k such that (Ad(w;)F — n(Ad(w;)F))*2 = 0. Then

DB (fean;t @ (F = n(Ad(wi) F))*u )

= = > [(Ad(wi) F = n(Ad(wi) F))*, B ((fean; * @ u;)8:)
&l

k
—ZﬁZCN@wmn»moxFMM<Hmem

&l p=1
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Consequently,

(fea ® (F = n(Ad(wi)F))* (ug,,))8;
€ Z U(Ad(w;) (@& m) Nng)((ferom ' ® g 0)0;)
§’eB(8),
Y DA ) e ) @ (U(CE )
wt fer p<wt fer P
By inductive hypothesis, (F — n(Ad(wi)F))kué’l € Jl’u_,ln(a ® eMP). This implies
that u. , € J' _, (o0 ® e P). O
61 €Ty

In fact, Im Res; = I} if Im Res; # 0. This is proved in Section 4.

83. Vanishing lemma

In this section, we fix ¢« € {1,...,7} and a basis {e1,...,e;} of Ad(w;)n N ng.

Here we assume that each ey is a restricted root vector and denote its root by .

Moreover, we assume that @,., ; Ces is an ideal of @,, Ce, for allt =1,...,L
By the decomposition (as_groups) -

No/[N07N0] ~ ((wiﬁwfl n No)/(wlﬁwjl N [No,No]))
X ((wiNw;™ 1 No)/(w;Nw;™ 1 [No, Nol))

where [, -] is the commutator group, we can define a character 7’ of Ny by 7'(n) =
n(n) for n € w; Pw;* N Ny and n/(n) = 1 for n € w;Nw; ' N Ny. First, we prove
the following lemma. This gives a necessary condition for I;/I;_1 # 0.

Lemma 3.1. Let X € ng. Then for all x € I] there exists a positive integer k
such that (X —n/(X))kz = 0.

For the proof, we need some notation and lemmas. For X € Ad(w;)nNng, we
define a differential operator R.(X) on O; by

(RA(X)¢)(nuiP/P) = S o(nexp(tX P/ P)

t=0
where n € wiﬁwi_l N No. (Recall that wiﬁwi_l N Ng ~ O; via the map n —
nw; P/P.)

For X € g, we define a differential operator R(X) on G by

(ROX)¢)(g) = olgexp(iX))

t=0
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for a C*°-function ¢ on G. We define R}(F) (E € U(Ad(w;)n Nng)) and R(E)
(E € U(g)) in the usual way. For E € U(g), f € C>(0;) and u’ € (¢ ® e**P)’, we
define 0,(E, f,u’) € Dg, (Ui, L) by

GBSl = [ ) (RAdGw) ) o) dn

where ¢ € C°(U;, £) and we regard ¢ as a function on w; NP (Remark 2.3).

Lemma 3.2. We have the following properties:

(1) 6;(XE, f,u')=6(E,R(—=X)(f),v) for X € Ad(w;)7 Nng.

(2) 6(EX, f,u) = 6;(E, f,Ad(w;) "' Xu') for X € Ad(w;)p.

(3) The map C™(0;) @y (ad(w:)wnne) U(8) @u(ad(w:)p) wilo @erP) — Dp, (Us, L)
defined by f @ E @ u' — 6;(E, f,u') is injective.

Proof. (1) and (2) are obvious. To prove (3), the same argument in the proof of
Proposition A.3 can be applied. O

Lemma 3.3. Let Ec€g, E' €U(g), f € C®(0;) and v’ € (0 ® e’MP)'. Then

! s
E5i(E/7 f7 u/) _ Z 5:‘ ((ad(el)kl - ad(@l)klE)E/7 f H (_Zs')kv 7’1/),
s=1 s

(kl,.wkl)ezlzo

where x; is a polynomial on O; given by exp(aiey)---exp(ae)w; P/P — a;.
(Notice that the right hand side is a finite sum since ad(e;) is nilpotent.)

Proof. We remark that (ay,...,a;) — exp(aier)---exp(ae;) yields a diffeomor-
phism R! ~ wiﬁw; 1N Ny, and a Haar measure of wiﬁw; 1'n Ny corresponds
to the Euclidean measure of R!. Take ¢ € C®(w;NP,oc ® e*?). Put n(a) =
exp(ajey) - - -exp(ase;) for a = (ay,...,qa;). By the definition, the action of E € g
and R;(E") (E' € g) commute with each other. For E € g, we have

<E6i(El7f7u/)790>
= /Rl u'((=E)R(Ad(w;) " E")p) (n(a)w;)) f (n(a)w;) da
_d
Tt Jw

_ 4
o dt R

o (R(A(w,;) ™ E')p) (exp(t E)n(a)w;)) f (n(a)w;) da

t=0

u'(R(Ad(w;) ™ E")¢) (n(a) exp(t Ad(n(a)) ~ E)w;)) f (n(a)w;) da

t=0
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The formula
Ad(n(a))_lE — e ad(are) | .. e~ ad(alel)E

_ oy L ol gy

N k!
(k17'~'7kl)6220

gives the lemma. O

For k = (ki,...,k), we denote the operator ad(e;)* ---ad(e;)** on g by
ad(e)¥ and the polynomial ((—z1)* /k1!)--- ((—x;)" /Kk;!) € P(O;) by fi; here the
polynomial z; is defined in Lemma 3.3.

Lemma 3.4. Let k = (k1,..., k) € leo and X € ng. Assume that ad(e)¥X €
Ad(w;)nNng. Then Ri(ad(e)*X)fi = 0.

Proof. We may assume that X is a restricted root vector and denote its restricted
root by a. We consider the ag-weight with respect to D;. The polynomial fy is
an ag-weight vector of weight — >~ _ksa,. This implies that Rj(ad(e)*X) fi is an
ap-weight vector of weight o. However, P(O;) has a decomposition into the direct
sum of ag-weight spaces and its weight belongs to {3 _5cs+ 038 | bg € Z<o} # .
Hence, R!(ad(e)*X)fi = 0. O

For f € P(O;) and X € ny we define L(X)(f) by

L)) = G flesp(—4X)mg)|

Recall that the C*°-function 7; on O; is defined by n;(nw;P/P) = n(n) for
n € w;Nw; ' N Ny, and the character 1/ of Ny is defined by n'(n) = n(n) for
ne wi?wfl NNy and n'(n) =1forn € winfl N Np.

Lemma 3.5. Let X € ng be a restricted root vector. For f € P(O;) and v’ €
Jl/ufln(g ® eMP), we have

7

(X =/ (X))8i(1, f; " u') = 6oL, L(X) (f)m; ')
+ > 8i(L, ffien s (Ad(w;) ™ (ad(e)*X) — n' (ad(e)*X))u').

ad(e)k X €Ad(w;)noNng

(Again the sum on the right hand side is finite.)
In particular, if X € Ad(w;)nNng, then

(X —n'(X))di(1, fn; ') = (1, LX) (f)m; ' ).
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Proof. We have
X6i(1, o) = > dilad(e)X, f hin; o u).

kezgo

by Lemma 3.3. Since ad(e)¥X belongs to ng and is a restricted root vector, we
have either ad(e)*X € Ad(w;)fg N1y or ad(e)*X € Ad(w;)ng N ng. Recall that
Ad(w;)g Nng = Ad(w;)7 N ny since w; € W(M). Assume that ad(e)*X €
Ad(w;)nt N ng. By the definition of n; and 7/, we have Ri(—ad(e)*X)(n; ') =
n(ad(e)*X)n;* = n’'(ad(e)*X)n; '. Hence, using Lemma 3.4,

5;(ad(e)* X, f fn; " u') = 6;(1, Rj(— ad(e)*X)(f fn; "), ')
= 6;(1, Rj(— ad(e)*X)(f) fun; ")
+ 1/ (ad(e)*X)8; (1, f fin; H ).

Next assume that ad(e)*X € Ad(w;)ng Nng. For h € P(0;), define h € P(U;)
by h(nnow;P) = h(nw;P) for n € wiﬁwfl N Ny and ng € wiﬁwvfl N Ny. Then

(RL(Y)h)™~ = R(Ad(w;) 1Y)k for all Y € Ad(w;)fig N ng. Since f(pnw;) = f(pw;)
for p € w;NPw; " and n € w; Now; ' N Ny, we have R(Ad(w;)~!(—ad(e)*X))(f)

= 0. By Lemma 3.2(2),
§i(ad(e) X, f fun; 'y u') = 8i(L, f fum; ', Ad(w;) ™ (ad(e) X )u')
= 8i(1, R(Ad(w;) ™ (= ad(e)* X)) (Hlo. fin; ', ')
+6:(1, f fien; t, Ad(w;) ™ (ad (€)X )u').

e)
€)

a
a

By the same calculation as in the proof of Lemma 3.3,

LX)~ =LX)() = Y RAd(w,) ™ (~ad(e)*X))(f) fi-

I
kEZZO
Hence

S 61 R(Ad(w;) " (— ad(e) X)) ()

l
kezl

Oifknfla 'LL/)

= 0i(L, (L(X)(F)~o,n ' u') = 8:(1, LX) (F)m; ).
These imply that

(X =" (X))oi(L, fn " u') = 6:(1, LX) (f)m; ')

+ > 8;(1, ffimi ', Ad(w;) " (ad(e)* X))
ad(e)k X €Ad(w;)noNng
+ > 1’ (ad(e)*X)di(1, f fn; 'u') — 0/ (X)6:(1, f; ts ).

ad(e)k X €Ad(w;)nNng
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Since 7’ is a character, if k # (0,...,0) then 1’(ad(e)*X) = 0. Hence

Z ' (ad(e)* X)6; (1, f fin; H,u') = 0/ (X)8;(1, fn; ).

KeZL,

This implies

S @A X)L, S ) = o (X)8(L o)

ad(e) X €Ad(w;)nNng

= - Z n'(ad(e)kX)é,(l, ffkni_17u/)7

ad(e) X eAd(w;)npNng

proving the lemma. O
Proof of Lemma 3.1. Since ad(ng) is nilpotent, the subspace
{x € I | for some k and for all X € ng, (X —7/(X))*z = 0}

is g-stable. Hence we may assume that = = ((fn; ') @ v/)6; = 6;(1, fn; ', ') for
some f € P(O;) and v’ € Jq’u_,ln((f@)e’\*‘p).

Now define V = U(Ad(w;) tng N ng)u’ C Jq’u_,ln(a ® e*P) where n acts on
J V,ln(a®e’\+f)) trivially. Then V is finite-dimensional. Since n acts on V trivially,
X — (w;'’)(X) acts on V as a nilpotent operator for X € Ad(w;)~'ngNng by the
definition of . By applying Engel’s theorem for V@ (—w; '1)'), there exists a filtra-
tion 0= Vo C V4 C -+ C V, =V such that (Vi/Vy—1) ® (—w; 0| Ad(ws)~1normg) 1
the trivial representation of Ad(w;) tngNng. Then V;/V,_1 ~ wi_lnl|Ad(w,;)*1nomno
for all s =1,...,p. We prove the lemma by induction on p = dim V.

We may assume that X is a restricted root vector. By Lemma 3.5,

(X =/ (X))8i(1, fo; ') € 85(1, LX) (F)m; ')

- > Co;(1, hn; *, o).
hEP(Ol), v'eVp_1

Since f is a polynomial, (L(X))°(f) = 0 for some positive integer c. Then we
have (X —n/(X))6:(1, fn; ') € DoheP(0;), eV, 1 Co;(1, hn; ', v"). By inductive
hypothesis, the lemma follows. O

From the lemma, we get the following vanishing lemma. Recall that we define
the character w; 'n of m Nng by (w;'n)(X) = n(Ad(w;)X) and we have the
injective homomorphism Res;: I;/I;_1 — I.
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Lemma 3.6. Assume that I;/I;_1 # 0. Then:

(1) The character n is unitary.
(2) The character n is zero on Ad(w;)nNng. (This is equivalent to n =1'.)

(3) The module Jq’ﬂ__ln(a ® eMP) is not zero.

Proof. (2) By Lemma 3.1 and the definition of Jy, if I;/I; 1 # 0 then n =17

(3) This is clear from Lemma 2.9.

(1) It is sufficient to prove that if 1) is not unitary then J;(V) = 0 for all
irreducible representations V' of G. By Casselman’s subrepresentation theorem, V'
is a subrepresentation of a principal series representation. Since J;, is an exact
functor, we may assume V is a principal series representation IndIGgU (0o @ erotro),

Take the Bruhat filtration {I;} of J; (V). We will prove I;/I;_1 = 0 for all i.
By (2), if ) is non-trivial on w; Now; "N Ny then I;/I;_; = 0. Hence we may assume
that n is not unitary on wiﬁow; '\ Np. In this case, by the same argument as
in the classical case (for example, see Schwartz’s book [Sch66, Ch. VII, §4]), a
nonzero element of I/ is not tempered. Hence I;/I;_1 = 0. O

Remark 3.7. In the next section it is proved that the conditions of Lemma 3.6
are also sufficient (Theorem 4.7).

Remark 3.8. If II = suppn, Lemma 3.6 follows from [CHMO00, Theorem 5.12].

Definition 3.9 (Whittaker vectors). Let V be a U(ng)-module. We define a vec-
tor space Wh,, (V') by

Wh, (V) ={veV | Xv=nX)vforal X €ng}.
An element of Wh, (V) is called a Whittaker vector.

Lemma 3.10. Assume that n|ad(w;)nnn, = 0. Then

i

Wh”({z(fsni_l Qu)di | fs € P(Oi), wy € J) 1, (0@ e”p)})

S

={(n;t @u)si |u' € Wh,, 1, (0 @ M)}

Proof. By assumption, we have 1 = r’. Hence the right hand side is a subspace of
the left hand side by Lemma 3.5.

Take z = > (fon; ' @ ul) = 3, 6:(1, fn; Hul) € Why(I7). We assume
that {u}} is linearly independent. Take X € Ad(w;)n N ng. It then follows that
S, 61, LX) (fs)n; ' ul) = 0 by Lemma 3.5. Hence L(X)(fs) = 0. This implies
fs € C.
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From the above argument, = = §;(1,n; *,u’) for some u’ € J;ﬁln(a ® eMP).
Take X € Ad(w;)(m Nngp). By Lemma 3.5, we have 1

Si(Lm; t, (Ad(wy) 7' X — (X)) € > Coi(1, fien; t, wie)-
k;éO,ukEJ;fln(aQ@e’\*P)

If k # 0 then the degree of fi is greater than 0. So the left hand side must be 0.
Hence (Ad(w;)~'X —n(X))u’ = 0, proving the lemma. O

The following lemma is well-known, but we give a proof for the reader’s con-
venience (cf. Casselman—Hecht-Mili¢i¢ [CHMO00], Yamashita [Yam86]).

Lemma 3.11. Assume that suppn = I1.

(1) Why,(I(o,N)") < Wh,(I].), where the homomorphism is induced by Res,.
(2) For all x € Why (), there exists v’ € Wh, -1, ((0 ® e P)) such that x =
(0" @ ')

Recall that r = #W (M) = #(W/Wy) and wpro is the longest element of
the little Weyl group of M.

Proof. Assume that ¢ < r. Then w;was o is not the longest element of W. There
exists a simple root a € II such that sqw;wa0 > wi;wpr0. This means that
wwpr 2T NI = s4(sawiwa,oXt NET) U {a}. The left hand side is w; (X1 \
Y 1,)NET. Hence, 7 is not trivial on Ad(w;)nNng. By Lemma 3.6, I;/I;_1 = 0. This
implies that Jj(I(o,A)) C I;. Since Ad(w,)nNng = 0, there exists a polynomial
fs € P(O,) and u), € Jq’ﬂ;ln(a ® e*P) such that x = Y _((fsn, ') ® ul)é,. Now
Lemma 3.10 yields the assertion. O

84. Analytic continuation

The aim of this section is to prove that Im Res; = I} if I;/I;_1 # 0. Namely, we
extend an element of I] (which is a distribution on U;) to G/P. An element of I/
and ¢ € C°(U;) is given by an integral. Formally, this integral is valid for any
@ € I(o,\). We prove the integral converges if \ is sufficiently dominant. Moreover,
as a function of A, we prove this integral has a meromorphic continuation to a*.
(These are essentially known, but we give a proof for the sake of completeness.)
The resulting distribution is a distribution on G/P with a parameter \. If it has
no pole, this is an extension we need. In general, we can modify the distribution
and remove the pole. This is the outline of the proof.

For w € W, there is an open dense subset wNP/P of G/P and it is diffeo-
morphic to N. Then for w,w’ € W, there exists a map ®,, ., from some open
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dense subset U C N to N such that wnP/P = w'®,, , (n)P/P for n € U. The
map ®,, . is a rational function.

Define H: G — Lie(A) by g € KM exp(H(g))N via the Iwasawa decomposi-
tion.

Lemma 4.1. (1) The map N — R defined by 7 — 3*(H(™) s a polynomial.
(2) For allm € N we have 3(HM) > 1,

(3) Take Hy € Lie(A) such that a(Hp) = —1 for all o € I1\ ¥pr. There exists a
continuous function Q(M) > 0 on N such that the following conditions hold:

(a) The function QQ vanishes only at the unit element.
(b) e8P > Q().
(c) Q(exp(tHp)mexp(—tHy)) > e¥Q(n) fort € R~o andn € N.

Proof. By Knapp [Kna0Ol, Proposition 7.19], there exists an irreducible finite-
dimensional representation Vj, of G with highest weight 4p € af C b*. Let
v4p € Vi, be a highest weight vector and v*,, € Vj, a lowest weight vector of
V4*p. Take m € N and decompose m = kan where k € K, a € Ag and n € Ny. Then
log(a) € (mNag) + H(n). Hence p(log( ) = p(H(m)).

First we prove (1). We have 8(n)~'n = 6(n)~'a’n. Hence

(O) Tt 07 ,) = (0(n) a4, = (@2, 00"y, )
— eSp(H(ﬁ))<v4p, 11*_4p>.
The left hand side is a polynomial.

Next we prove (2) and (3). Fix a compact real form of g containing Lie(K) and
take an inner product on Vj, which is invariant under the action of this compact
real form. We normalize an inner product || - || so that ||vs,| = 1. Then |[7vy,|| =
|kanvy,|| = [lava,|| = e H@)||py,|| = e HT) For v € h* let Q,(7) € Vi, be
a vector of weight v such that 7wy, = Y, Q, (7). Then 3H@) =S~ 10, (7)]|2.
Since Q4,(7) = v4,, we have eBP(H(M)) > 1,

Put QM) = X ew (an\ fe} | Qawp(T)||*. Assume Elat 7 # e. Then there exist
weW(M)\{e}, W e M,d" € A, n’ € N and 7 € N such that m = wi'm’a’n’.
Let v* 4, € Vj, be a weight vector with h-weight —4wp such that for all v € Vi,

(00 44p)| = [[v]]. Then
[Quuwp (M) = [(M4p, v= 4wp>| = [(wn'm/a'n'vyp, 07 4,,)]
|<a V4p, W U 4wp>| = e4p(10ga )|<U4P7w ’Ui4wp>| 7é 0.

Hence, if m € N \ {e} then Q(n) # 0.
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Let t > 0. Using Q, (exp(tHp)m exp(—tHp)) = e!*=4)(Ho)Q (7)), we have

Q(exp(tHo)exp(—tHo)) = Y U Qq,, @)
weW (M)\{e}
Since (wp — p)(Hy) > 1 for w € W(M) \ {e}, we get the lemma. O

Remark 4.2. The conditions in Lemma 4.1(3) imply that limz_,.c Q(7) = oo.
Indeed, take Hy as in Lemma 4.1. Let {ej, ..., e;} be a basis of n. We assume that
each e, is a restricted root vector and denote its root by as. Any m € N can be
written as m = exp(z:lsz1 ases) where a; € R. We have ags(Hp) > 0 for all s =
1,...,L.Putr(n) = Zi:1|as|1/o‘s(H0). Set C' = min,7)—1 Q(7). Since Q(7) > 0if 7
is not the unit element, C' > 0. Put t = log () and set 7’ = exp(—tHo)nexp(tHy).
Then 7’ = exp(3'_, ase~ ™ (Hole,). Therefore, r(7') = Y._, |a|/Ho)e=t = 1.
Hence, if r(7) > 1, then Q(7) = Q(exp(tHo)n' exp(—tHy)) > Ce¥ = Cr(n)® by
Lemma 4.1(3). If m — oo then r(n) — co. Hence, Q(7) — 0.

Lemma 4.3. Let f be a polynomial on N. There exists a positive integer k such
that a C-function h on w;NP/P defined by h(w;nP/P) = e~*H@) f(7) can
be extended to a C*°-function on G/P.

Proof. By Lemma 4.1 and Remark 4.2, we can choose a positive integer k such that
limg_ 00 e~ 3¥PH (™) £(7) = 0. Let h be a function on U; defined by h(w;nP/P) =
e~ 8ke(H([)) f(7) for m € N. We prove that h can be extended to G/P as a C°°-
function. Take w € W(M). Then h is defined on a subset of wNP/P. Using a
diffeomorphism N ~ wNP/P, h defines a rational function h o ®,, ,, defined on
an open dense subset of N. By the condition on k, the function ho®,,, ,, has no pole.
Hence, h defines a C*°-function on wN P/P. Since Uwew an) wNP/P = G/P, the
lemma follows. O

Recall that for a representation V of m, v € (mNag)* C af is called an
exponent of V if v + pg|mna, 18 an ag-weight of V/(m Nng)V.

Proposition 4.4. Let ¢ be a o-valued function on K which satisfies p(km) =
a(m) (k) for all k € K and m € M N K. Define ¢y € I(a,\) by @x(kman) =
e~ tolloga) g (m)~tp(k) for k € K, m € M, a € A and n € N. For v €
T (0 @) and | € P(O:), put

Tolon = [ alon(modntn) ™ (o

(1) If (&, Re \) is sufficiently large for each o € ST\X}, then the integral It ./ (¢»)
absolutely converges.
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(2) As a function of A, the integral If. (px) has a meromorphic continuation
to a*.

(3) Ifsuppn =1I and i = r then If./(px) is holomorphic at any A € a*.

(4) Let u' € thi_ln((a ® eMP)). If (&, A\ + V) & Z<o for all exponents v of o
and o € ST\ w; (ST UX,), then Iy (py) is holomorphic at pu = .

For a proof, we use the following notation. (It will also be used in Sections 7
and 8.)

Let P, D Py be the parabolic subgroup corresponding to suppn C II and
P, = M, A, N, its Langlands decomposition such that A4, C Ap. Denote the com-
plexifications of the Lie algebras of P,, M,,, A,, N,, by p,, my, a,, n,, respectively.
Put [, = m, & a,, N, = 0(N,)) and @i, = 0(n,). Set X,/ = {3 nea € 31 |
Ne € Z>o} and X = —Ef{.

agsuppn

Proof. First we prove (1). If f = 1 then this is a well-known result. (See, for
example, Knapp’s book [Kna0l, Theorem 7.22].) For a general f, extend f to a
function on w;NP/P by f(nn'w;) = f(nw;) for n € w;Nw;' N Ny and n’ €
w; Nw; * N Ny. Then by Lemma 4.3 there exists a positive integer C' such that
71— e~ CPUH M) f(1;7) extends to a C*-function h on G/P. Define x: G — K by
g € k(g)AgNy. Since

Balon) = [ st g, o),
w; Nw; "NNo

we have Ir . (px) = I1,w ((Ph)r—cp)-

We prove (3). By dualizing Casselman’s subrepresentation theorem, there ex-
ist an irreducible representation oy of My and Ay € afj such that o is a quotient of
Ind%npo (00 ® ). We may regard u’ € J{u:ln(hld%ﬁpo (00 ® €*0)). By the proof
of Lemma 3.11, there exist a polynomial fo on (M N No)waro(M N Py)/(M N Py)
and uf, € (0p ® e*)’ such that v’ is given by

®o u(wo(nowar)) fo(nowar,o)n(no) " dno.
MNNg
Let 7: Indg0 (09 @ e*20+P) 5 [(a, \) be the map induced from the quotient map
Ind%mpo (0o ® €M) — o. Take @: K — oy with P(km) = ng(ml}?(k‘) (k € K,
m € Mp) and 7(Patxr,) = @a. Define a polynomial f € P(w,wa,0NoFo/Po) by

f(wer,onnoPo/Po) = f(wr’l’LP/P)fo(wM}ono(M n Po)/(M N PO))

for n € N and ng € M N Ny. (Notice that wps,o(M N Ng) = (M N No)waro, S0 f
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is a polynomial on wys,0(M N No)(M N Py)/(M N Fy).) We have

Lo = [ y (Brs ro (P01 1001.0))
wrwr,0No(wrwar,0) ~ 1NNy
x f(wywronPo/Po)n(n) ! dn.

Hence, we may assume that P is minimal. By the same argument as in the proof
of (1), we may assume f = 1. If f = 1 then this integral is known as a Jacquet
integral and its analytic continuation is known [Jac67].

We prove (2) and (4). By the same argument in the proof of (1), we may
assume that f = 1. Using Casselman’s subrepresentation theorem, there exist
an irreducible representation o¢ of My, v € af and a surjective homomorphism
Indgo(ao ® e*VFro) — [(o,\). Moreover, v is an exponent of . By the same
argument as in the proof of (3), we may assume P = Py. (Hence each exponent
of 0 is 0.)

Take w' € Wy, and w” € W(M,)~" such that w; = w'w”. Then we have
w; Nw; "N Ny = w; Now; * NNy = (w'No(w') = N No)w' (w” No(w”) =N No) (w') L.
The condition w’ € Wy, implies that w’(S+\X;}) = ¥F\XF. Hence, supp nnw’S+
= suppn Nw'E;}. This implies

suppn Nw' (W'Y~ NET) =suppn Nw; ¥~ Nw'S™
=suppn Nw; X~ N wi(w”)_lZ;' Csuppn Nw; X~ Nw; X1 =0,

i.e., n is trivial on w’(w” No(w”)~1 N Np)(w')~!. Hence

I () :/ o / o u/ (p(niw'ngw”))n(ny) ~ dny dn;.
w/No(w/)_lﬂNo w”No(’w”)_lﬂNo
Define a G-module homomorphism A(o, A): I(o, A) — Indg0 (w” (o) e Aoy
by
(Ao () = [ (o) dn.
w”m(w")_lﬁNo

By a result of Knapp and Stein [KS80], this homomorphism has a meromorphic
continuation. We have

hah)= [ (Ao, N () (n) ™" dn,
w’ No(w’)~TNNo
Notice that w'Ny(w’)~' N Ny C M,,. Hence I, is given by the composition

I(o, \) —>A(U’/\) Indl.ci0 (w”(0) ® e“’”’\+”°)

restriction to M, M. ”
i Indy,"p, (w" (o) ®ev >‘+p°) — C.
n
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Here the last map is given by
= u! (') " .
w’ Now’—1NNp

By (3), this integral is holomorphic. Hence we get (2).
To prove (4), we calculate (w”)~'E~ N+, Since (w”)~! € W(M,,), we have
(w”)~'%, C X7 Hence (w")™'E; N YT = (). Then

(W)'ET St = @) THET\ES)NET = (") W) THET\ S ) NnET
=w; (Z7\Z,) Nt =S\ w7 (ST UE;).
Hence (&, \) € Z> for all a € (w”)"!8~ N XT. By an argument of Knapp and
Stein [KS80], A(o, 1) is holomorphic at x4 = A if A satisfies the conditions of (4).
Hence we get (4). O

In the rest of this section, we denote the Bruhat filtration I; C J;(I(o,\))
by I;(A). The following result is a corollary of Proposition 4.4.

Lemma 4.5. Let « € I/. Then there exists a distribution x; € I;(\ + tp) with
a meromorphic parameter t such that x|y, is a distribution with a holomorphic

parametert and (zt|u,)|t=0 = x. Moreover, for E € U(g), Ex = 0 implies Ex; = 0.

Proof. By the definition of I/, we may assume z = E((fn;1 ® u')d;) for some
E € UAd(w;)nN1g), f € P(O;) and v’ € Jmlufln(a ® e**). By (1) and (2)
of the above proposition, ¢ +— If ./ (prttp) is a distribution with a meromorphic
parameter ¢. Moreover, it does not have a pole near ¢ = 0 by (4) of the proposition.
Let x} be this distribution. Put ; = Fz}. By construction, x; is as desired. [

Let C*°(K, o) be the space of o-valued C*°-functions on K. For X € g and
A € a*, we define an operator D(X, \) on C*°(K,0) by

d
(D(X, 2)@) (k) = = (0 @ e**7) (exp(—H (exp(—tX)k)) o (ri(exp(—tX k)
t=0
for ¢ € C*°(K, o). If we regard I(o, A) as a subspace of C*°(K, ¢), then (X¢)(k) =
(D(X, N)p)(k) for ¢ € I(0, A). It is easy to see that there exist differential operators
D1, Dy on p such that D(X, A\+tp) = Dy1+tDs for all t € C. (The operators D1, Do
may depend on X and A, but do not depend on ¢.)

Lemma 4.6. Assume that the following conditions hold.

(1) The character n is unitary.
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(2) The character 1 is zero on Ad(w;)nNng.
(3) The module Jq’u_,ln(a ® e M) is not zero.
(

See Lemma 3.6.) For x € I there exists a distribution x; € L;(A + tp) with a
holomorphic parameter t defined near t = 0 such that xg = x on U;.

Proof. First we remark that n = 7' by (2).

We argue by induction on . If ¢ = 1, then z € Ij. Take a distribution
xt € I1(A + tp) as in Lemma 4.5. Then x|y, is holomorphic with respect to t.
Since suppz; C Oq, $t|(G/P)\Ol is holomorphic with respect to t. Hence x; is
holomorphic with respect to t on Uy U ((G/P)\ O1) = G/P as desired.

Assume that ¢ > 1. First we prove the following claim: for y € I;,_1()\), there
exists a distribution y; € I;_1(A + tp) with a holomorphic parameter ¢ defined

near t = 0 such that yg = y. Applying the inductive hypothesis to y

exists a distribution yt(i_l) € I_1(A + tp) with a holomorphic parameter ¢ de-

U,_,, there

fined near ¢ = 0 such that y(()i_l) = y on U;_;. Since the supports of both sides
are contained in (J;.; , Now; P/ P, we have y(()z_l) =y onU;>;  Now; P/P. Ap-

plying the inductive hypothesis to (y — y(()i_l))

yfi_z) € I,_o(\ + tp) with a holomorphic parameter ¢ defined near t = 0 such

U:_,, there exists a distribution

that y(()Z_Q) =y— y(()i_l) on U;_o. Since the supports of both sides are contained

in U<, o Now; P/P, we have y Y + 457 =y on Ujsio Noij/P. Iterating
this argument, for j = 1,...,7—1 there exists a distribution yt(J) € I;(A+tp) with
a holomorphic parameter ¢ defined near ¢t = 0 such that y = yél) T y((;—l) on

G/P. Hence we get the claim.
Now we prove the lemma. By Lemma 4.5, there exists a distribution x} €

I;(X + tp) with a meromorphic parameter ¢ such that x}|y, is holomorphic and
(z}u,)|t=0 = z. Let z}, = Z:‘;_p 2(®)t* be the Laurent series of ;. Now we prove
the following claim: if there exists a distribution z} = Zfi_p 2t € L(\ +tp)

with a meromorphic parameter ¢ defined near ¢t = 0 such that x}|y, is holomorphic

and (z}|u,)|t=0 = x, then there exists x; € I;(\ + tp) with a holomorphic param-
eter ¢ defined near ¢ = 0 such that zg|y, = . We prove the claim by induction
on p.

If p = 0, we have nothing to prove. Assume p > 0. Take E € ng and define dif-
ferential operators Ey and Ey by D(E, A+ tp) = Ey + tE;. There exists a positive
integer k such that (Eq +tE; —n(E))F2} = 0. Hence (Eq —n(E))*z(=?) = 0. Since
4|y, is holomorphic, supp z(~?) C Uj<i Now,;P/P. Hence z(=P) ¢ I, _1(\). By the
claim in the third paragraph of this proof, there exists z} € I;,_1(A+tp) with a holo-
morphic parameter ¢ defined near ¢ = 0 such that jj = 2(~?). Using the inductive
hypothesis for «; — ¢ Pz}, we get the claim and the assertion of the lemma. O
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Theorem 4.7. (1) The module I;/I,_1 is non-zero if and only if the following
conditions hold:

(a) The character n is unitary.
(b) The character n is zero on Ad(w;)n Nng.

(¢) The module Ji/u._ln(a ® eMP) is not zero.

Proof. Assume that conditions (a)—(c) hold. We prove that the homomorphism
Res;: I; — I/ defined in Section 2 is surjective. Indeed, for = € I/, take z; €
I;(A+tp) as in Lemma 4.6. Then Res;(zo) = (z0)

U, = T. O]

§5. Twisting functors

Arkhipov defined the twisting functor for @ € W [ArkO04]. In this section, we define
a modification of the twisting functor.

Let g?, be the root space of @ € A. Set ug = @ cn+ 0% W = Poenr a’
and ug iz = Ad(w)up Nug. Let ¢ be a character of ug 5. Let {e1,...,e;} be a basis
of up g such that each e; is a root vector and @, ., ; Ce, is an ideal of @, Ce;
for each t = 1,...,1. Notice that the multiplicative set {(ex — ¥(ex))™ | n € Zso}
satisfies the Ore condition for £ = 1,...,l. Then we can consider the localization
of U(g) with respect to {(ex —¢(ex))™ | n € Z>o}. We denote the resulting algebra

by U(g)ek—w(ek)' Put Sek—w(ek) = U(g)ek—w(ek)/U(g)' Then Sek—w(ek) is a U(g)_
bimodule.

Proposition 5.1. The U(g)-bimodule structure on

Ser—u(er) Bula) "+ BU(a) Ser—w(er)
is independent of the choice of eq, ..., €.

We denote this module by Sg .

The proof of this proposition is similar to that of [Ark04, Theorem 2.1.6]. We
omit it. Every element of Sz, can be written as a sum of elements of the form
(e1 — Y(er)) Bt @ ... @ (e — (e))~®+TVE for E € U(g). We denote this
element by (e; — ¥(ey))~FtD) ... (e — h(e;))~* TV E for short.

For any U(g)-module V', we now define a U(g)-module Ty ,V by Ty 4V =
Sz.4 Ou(g) (WV). (Recall that wV is a g-module twisted by w, see Notation.)
This gives the twisting functor T’z .. This is an endo-functor of the category of
g-modules. If ¢ is the trivial representation, Ty . is the twisting functor defined
by Arkhipov. We put T = T o where 0 is the trivial representation of ug .
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Remark 5.2. Arkhipov [Ark04] denotes the twisting functor by ©,,. We follow
the notation of Andersen—Lauritzen [ALO3].

We have a natural homomorphism Nk (h)/Zx(h) — Nk (ag)/Zk(ag) = W.

Lemma 5.3. Let w € W. Then there exists 1(w) € Ng(h) such that Ad(t(w))]a,
= w and Ad(L(w))(ALO) = A]\}O. If (w) and t(w)’ both satisfy these conditions,
then v(w) € v(w) Zk(h).

Proof. Since W = Nk (ao)/Zxk (ag), there is k € Ni(ag) such that Ad(k)|s, = w.
Then k normalizes My. Hence there exists m € My such that km normalizes Tj.
This implies km € Nk (AoTp). Take w' € Ny, (to) such that Ad(kmw')(AF, ) =
ALO and put «(w) = kmw’. Then +(w) satisfies the conditions of the lemma.
Assume that «(w) € Ng(h) and ¢(w)" € Nk (h) satisfy these conditions. Put
wy = t(w) " t(w) € Nk (h). Then Ad(wy)|q, = id, so wy € Nk (ag) = My. Hence
wi gives an element of the Weyl group of Mj. Consequently, Ad(wl)(ALO) = AJ\+40'
Hence w; centralizes . Therefore, «(w) € t(w) Zx (h). O

The correspondence w — t(w) gives a map t: W — Ng(h)/Zk (). By the
characterization of ¢(w), this map is injective. Since the group Ng(h)/Zx(b) is
a subgroup of W, we can regard W as a subgroup of W. Hence we can define
the twisting functor 7)), for w € W and the character ¢ of Ad(w)ng Nng. For

simplicity, we write w instead of ¢(w). (We regard W as a subgroup of W via L.)

Lemma 5.4. Let e be a nilpotent element of g, X € g and k € Z>p. For c € C
we have the following equation in U(g)e—c:

X(e—c)~ D = i (n _I: k) (e — )~ (D ad(e)™(X).

n=0
Proof. We prove the lemma by induction on k. If k¥ = 0, the statement is well-
known. Assume that & > 0. Then

X(e—c)” ) =3 (e — )" ®oF D ad(e)* (X) (e — ) *

k}o:O
K (ki Ek—1

_ Z < 1}:’_ . )(e _ c)*(k"*kl*k*l) ad(e)koJrkl(X)
ko=0 k=0
— I +k-1 —(n n

= ( b1 )(6—6) (D ad(e) " (X)
n=01[0'=0
= /n+k —(n n

=Z( L )(e—c) (m D ad(e) " (X) m
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§6. The module I;/I;_;

Put J; = U(g) ®up) J., -1 (J ® e*?), where n acts on J’ _1n(a ® eMP) trivially.

w;

In this section, we prove the following theorem.
Theorem 6.1. Assume that I;/I;_1 # 0. Then I,/I;_1 =~ Ty, nJ;.

Notice that 1o, = Ad(w;)f N ng since w;(A},) C AT. In this section we
fix i € {1,...,1} and a basis {ey,...,e;} of ug,, such that each vector e, is a
root vector and @S<t_1 Ceg is an ideal of @s<t Ces. Let ag be the restricted
root corresponding to es. As in Section 3, for k = (k1, ..., k) € ZL, we denote

ad(ey)* ---ad(e1)™ by ad(e)* and ((—z1)* /k1!) - - ((—=21)" /Ks!) by fic.
Lemma 6.2. We have

t
= {Z 8i(Es, fsn; s ul)
s=1

Proof. By Lemma 3.3,
E((feu)s) =Y bi(ad(e)“E, ffi,u)

keZl

Es € U(Q)? fs € P(Oz)v
'}

ubeJ _y (o@ertr
w;'n

for E € U(g), f € P(O;)n; * and o’ € ¢'. Hence, the left hand side in the statement
is a subset of the right hand side. Define fi. € P(O;) by fi. = (28 /k1!) - - (2" /ky!).
By a similar calculation to the proof of Lemma 3.3, we have
(B, fou') = Y (ad(e)*E)((f fi) @ u')3:).
keZl,,

This implies that the right hand side is contained in the left hand side. O

By the definition of the twisting functor and the Poincaré-Birkhoff-Witt the-
orem, we have the lemma below. For k = (ki,...,k) € Z' put (e —n(e))¥ = (e; —
n(er))kr -+ (e, — nler))* € Sy, - Set 1 = (1,...,1) € Z'. By multiplication from
the right, the subspace Zkezgo Cle —n(e))~® 1) C Sy, 5 is a U(Ad(w;)T N ng)-
submodule. -

Lemma 6.3. Let V be a p-module. Then

( 3 Cle- <k+1>) ® U(Ad(w;)7 N Tig) @ w;V
kezl

1

(D2 Cle=n(e) %) @uaaqumomg U(8) @uadunm wiV
keZi

~ T, n(U(8) Quip) V).
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The second isomorphism is given by E @ F ® v — EF ® (1 ® v). (Notice that
EF € Sy, n.)

Proof of Theorem 6.1. By Lemmas 6.2 and 3.2, we have an isomorphism of vector
spaces

I} = P(0:) @u(ad(w)anng) U(8) ®u(ad(wp) Wi, -1 (0 ©eMt?)

given by 0;(E, f,u') =~ fQE®u'.
Notice that ug ., = Ad(w;)n Nng since w; € W(M). By Lemma 6.3,

Uh,;"] ( Z (C 8 — k+1)) ®U(Ad(wi)ﬁﬂno) U(g)
keZl

®U(Ad(w;)p) wzJ L, (0® e,

Here Zkezgo C(e—n(e))~* 1 is an Ad(w;)nNng-stable subspace of S,,, ,,. Hence,

we can define a C-vector space isomorphism & : T, (Ji) = I} by
®((e —n(e)" "V @ E®u') = 6(E, fim; ' o).
We now prove that ® is a g-homomorphism. Fix X € g. We will prove that
B(X((e—n(e) * Vo Eou))=X0((e—nle) " * Vo Eou).
By Lemma 5.4,
X((e=n(e) Ve Eau)

-2 (") (P e nen e 6 X B

where p = (p1,...,p1). Hence,

®(X((e —n(e)) Mo Eou))

(_xl)/ﬂ-i-m (_I‘Z)kl-‘rm 1,
=>4 PX)E ; .
67/ ((a’d(e> ) ’ ( kl!pl! kl !pl! 777, 9 u

ps>0

By Lemma 3.3,
X0 ((e = ()" @ BE@u') = X5,(E, fin, ', u)
> 0il(ad(PX)E, fifpni 0.

]
pGZZO

Hence the conclusion follows. O
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§7. The module J;(I(0,)))

Now we investigate the module J;(I(o,A)). For a finite-length moderate growth
Fréchet representation V' of G, define a g-module J(V') by

JV)=( @1 (V-finite/ N Vic-finite) ) a-finite-
k— o0
This is also called the Jacquet module of V' [Cas80]. Define O% to be the full
subcategory of finitely generated g-modules V satisfying the following conditions:

(1) The action of pg is locally finite. (In particular, the action of ng is locally
nilpotent.)

(2) The module V is Z(g)-finite.
(3) The group My acts on V and its differential coincides with the action of mg C g.

(4) For v € af let V,, be the generalized ap-weight space with weight v. Then
V= @uea* V, and dimV,, < co.

We define (’)’— similarly. We write Op, o to emphasize the group G. Then for a
finite-length Frechet representation V of G we have J(V') € O’—O and J*(V') € O, .
For a U(g)-module V, put D'(V) = (V*)p-finite and C(V') = (D'(V))*. The char-
acter 7: ng — C defines an algebra homomorphism U(ng) — C by the univer-
sality of the universal enveloping algebra. Let Kern be the kernel of this algebra
homomorphism and put I')(V) = {v € V | (Kern)*v = 0 for some k}. Then
J;(V) =T, ((Vik—finite) ) by Remark 2.2. We will prove the following proposition.

Proposition 7.1. LetV be a finite-length moderate growth Fréchet representation
of G. Then J3(V) =T, (J(V)*) =T, (C(J*(V))).

From this proposition, Theorem 6.1 and the automatic continuity theo-
rem [Wal83, Theorem 4.8], we get the structure of Jy(I(a, \)).

Proposition 7.1 was proved by Matumoto [Mat90, Theorem 4.9.2] when supp n
= II. We deduce the general case from his theorem. To do this, we need some
lemmas. We use the following well-known properties (see Wallach’s book [Wal88]):

Proposition 7.2. LetV be a finite-length moderate growth Fréchet representation
of G.

1) D'(J <>>~J<V>.

(1)
(2) V/n§V = J(V)/ngJ(V).

(3) The functor I'yoC from OP or (97 to the category of g-modules is exact.
(4) D

4 (OPO)CO’ and D’(O;DO) Py IfVGO P, OT VGO;TU, then D'D'V ~V.
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Lemma 7.3. Let ¢ be a nilpotent Lie algebra and 1 its character. Denote the
corresponding C-algebra homomorphism U(¢) — C again by 1, and its kernel by
Keri. Let V' be a c-module and ¢q, ¢co subalgebras such that ¢ = ¢1 @ ¢a and ¢ is
an ideal of ¢. Set 1; = Y|y (c,y. Then

U{v eV | (Kery)v =0} = U{v €V | (Ker¢)kv =0, (Kerepy)'v = 0}.

k k.l
Proof. Replacing V with V ® (=), we may assume v is trivial. By the same proof
as in Remark 2.2, if c]fvo =0, cévo = 0, then there exists &’ such that c’“/vo = 0.
Apply this to vg = 1 € Vo = U(c)/(U(c)ck + Ul(c)ch). Then there exists &’ such
that ¢* vy = 0.

Take v such that ¢fv = 0, c¢bv = 0. Then there exists a homomorphism

Vo — V such that vy — v. Hence ¢*'v = 0. Therefore,

veV]dv=0dv=0lc{veV #u =0}
1 2
On the other hand,
fveV|dv=0yc{veV|dv=0,cv=0}
This implies the lemma. O

From the above lemma, we get the lemma below. Recall that p,, = m, ®a, ®n,
is the complexification of the Lie algebra of the parabolic subgroup corresponding
to suppn (Section 4).

Lemma 7.4. Denote the C-algebra homomorphism U(ng) — C corresponding to
n again by n. Put ny = 77|U(mnf‘m0)' Then for any g-module V , we have

r,(vV)= U{v eV | nﬁyv =0, (Kerng)*v = 0}.
kil
Proof of Proposition 7.1. The second isomorphism follows from the definition of
C, D" and Proposition 7.2(1).

We will prove J (V) ~ I';(J(V)*). If suppn = II, this was proved by Matu-
moto [Mat90, Theorem 4.9.2].

Put I = Vi _finite- Then I is a Harish-Chandra module. For a U(g)-module Vj,
put Q(Vo) = (lim, Vo /16 Vo) ag-tinite- For a U(m,, & a,)-module Vi, put Qar, (V1) =
(@k Vi/(my, ﬂno)le)(m A ao)-finite- L€t 1oz U(m, Nng) — C be the restriction of n
to U(m, N'ng). Since I/nﬁil is a Harish-Chandra module of m,, @ a,,, by the result
of Matumoto we have Iy, ((I/nl1)*) = Ty, (Qnr, (I /0l 1)*). Therefore,

fw e (I/u1)" | (Kermo)'v = 0} = {v € Quy, (I/n)" | (Kerno)*v = 0}

for all k € Z>o.
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We will prove Qg (I/nhI) ~ Q(I)/nlQ(I). 1t is sufficient to show that
D'(Qur, (I/nl 1)) ~ D'(Q(I)/nl,Q(I)). By Proposition 7.2(1),

D'"(Qur (I/0E 1)) ~ {v e (I/nlI)* | (m, Nng)*v = 0 for some k
n n n n
~{vel” |nﬁlv:0, (m,, N1g)*v = 0 for some k}

={vel| nﬁfu =0, nfv = 0 for some k}.
Using Proposition 7.2(1) again, we obtain
{v eI | nfv =0 for some k} ~ D'(Q(I)).
Hence
D'(Qu, (I/my1)) = {v € D'(QI)) | myv = 0}.
By its definition, D’ is left exact. Hence we have an exact sequence
0 — D'(QU)/m,Q(1)) = D'(Q()) — D' (w,Q(I)).

Therefore, {v € D'(Q(I)) | n%v =0} ~ D’(Q(I)/nﬁlQ(I)). Hence QMW(I/ni]I) ~
Q(I)/n%Q(I) This implies

foe (I/ah1)* | (Kermo)'o = 0} = {u € (Q()/n,Q(1))* | (Kermo)"v = 0}.
Hence
{vel] n%v =0, (Kerng)fv =0} ~ {v e Q(I)* | név =0, (Kerno)*v = 0}.
Therefore, by the previous lemma, we have
0, (1) = 0,(QU)").
By the definition and Remark 2.2, Q(I) = J(V) and ', (I*) = J;(I). O

Combining Theorem 6.1, Proposition 7.1 and the automatic continuity theo-
rem [Wal83, Theorem 4.8], we have the following theorem. Let I; be the Bruhat
filtration of J'(I(o,\)) ~ J*(I(o,\)). Put I, = I, (C(L)) CcTy(C(JT*(I(o,N))) ~
Jr(I(a,N)).

Theorem 7.5. The filtration 0 = I, C --- C I, = Jy(I(o,N)) satisfies L/ ~
L) (C(Tw, (U(9) ®up) J* (0 @ X7)))).

Proof. This follows from Theorem 6.1 and Propositions 7.2 and 7.1. O
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§8. Whittaker vectors

We now study the space of Whittaker vectors of I(o,A\) and (I(0,\)k-finite)*
(Definition 3.9) using the Bruhat filtration.

First, we consider Wh,(I(o,\)’). To calculate its dimension, we calculate
dim Wh,,(I;/I;—1). The idea is to use the Harish-Chandra isomorphism. To ex-
plain the idea, recall a proof of the following fact: the Verma module has a unique
highest weight if its infinitesimal character is generic. (Here, for a g-module V', we
call A € h* a highest weight of V' if \ is the weight of a vector in V killed by the
nilpotent radical of the Borel subalgebra.) The proof is the following. Let X be the
infinitesimal character of the Verma module and assume that the set of weights
of the Verma module is A\ + Z<pA. Then by the Harish-Chandra isomorphism,
each highest weight of the Verma module has the form @(X + p) — p. Therefore,
WA — \ € ZA. Since \ is generic, w = 1. We use an analogous proof. To do it, we
decompose the Harish-Chandra homomorphism, using the following lemma.

Lemma 8.1. If I;/I;_1 # 0, then [, N Ad(w;)n C ng.

Proof. By Lemma 3.6, the restriction of  to Ad(w;)nNng is trivial. This is equiv-
alent to supp nNw;(XT\31,)NEF = 0. Thus, (—suppnNE7)Nw;(X~\Xy,) =0,
so (I, N1g) N Ad(w;)n = 0. O

For ¢ such that I;/I;_1 # 0, we define 1 to 4 to be the first projections with
respect to the corresponding decompositions below:

71: U(g) = U(ly) ® (m,U(a) + Ulg)ny) — U(ly),
Y21 U(ly) = U(ly N Ad(w;)p) @ U(Ly) Ker nfy, nadqw,)w — Ul N Ad(w;)p),
va: Uty A Ad(wn)p) = U (L, 0 Ad(w,)0) @ (I, 0 Ad(ws)m)U (L, N Ad(w;)p)
s UL, N Ad(w))1),
ya: Uty A Ad(w)l) = U(h) @ (55 1 I, 0 Ad(w)DU (5, N Ad(w,)1)
s Uty 1 Ad(wi)) (5, A Ad(w,){ N o)) = U(H).

To define v, we must check [, N Ad(w;)n C ng. This follows from I;/I,_1 # 0
and the previous lemma. Then the restriction of v4 0 3 0 v9 01 to Z(g) is the
(non-shifted) Harish-Chandra homomorphism. If @ € Wh,(I;/I;_1) then Ex =
Yoy1(E)x for E € Z(g).

Lemma 8.2. Let V' be a U(g)-module with infinitesimal character X, and x a
character of Z(g) such that z € Z(g) acts by x(z) on V. Let v € V \ {0} and
€ a* be such that (y3yv2y1(2) — x(2))v = 0 and Hv = (w;p + po)(H)v for all
z € Z(g) and H € Ad(w;)a. Then there exists @ € W such that WA|q = p.
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Proof. Put Z = vy3v271(Z(g))U(Ad(w;)a). By assumption, there exists a character
Xo of Z such that zv = xo(z)v for all z € Z. By a theorem of Harish-Chandra,
~4|z is injective and finite. Hence there exists 5\: € b* such that /\N10fy4 = xo where
we denote the algebra homomorphism U(h) — C corresponding to A1 again by ;.
Since V has infinitesimal character X, we have A\; € WA + p. Since 74 is trivial on
U(Ad(w;)a), :\V1|Ad(wl.)u = (wipt+po)|Ad(w;)a- The restriction of p to ag is po. Hence
PlAd(wi)a = PolAd(w,)a- Then for some w € W we have w;pt|ad(w,)a = WA|Ad(w;)as
proving the lemma. O

Lemma 8.3. Let X1,...,X, €9, f1 € C®(0;), fo € C°(U;), v € (0 @ e P).
Assume that R(Ad(w;) ™' X5)(f2) =0 for all s =1,...,n. Then

0i( X1+ X, frfo,u') = 8i( X1 - X, f1,0) fo.
Proof. Put E = X7 ---X,,. By assumption and Leibniz’s rule, we have
Fa(nw;) (R(Ad(w;) ™ E)g) (nw;) = (R(Ad(w;) " E)(pf2)) (nw;).
Hence, by definition, for ¢ € C°(U;, L), we have

(0:(E, frfa,u'), ) =/ f1(nw;) fo(nw;) (v (R(Ad(w;) ~ E)e) (nw;)) dn

wi,ﬁwfl NNo

—/ Al (W (R(Ad(wi) T B) (@ f2)) (nw;)) dn
w; Nw; “MNNg

= <§i(E,f1,’U/),f2Q0> = <6i(E7f1au/)f25§0>a
and the lemma follows. O
Recall that the C*°-function 7; on O; is defined by n;(nw;P/P) = n(n) for
n e wiﬁwi_l N Ny. For v € a* put
V(v) = Z(Si(FsahsaU;) (S J7’ﬂ;1n(0®e>\+p)7
s (w; M (Wt hy + Wt Fy))|a = v
Here, wt hy is the ag-weight of hg with respect to D; (see page 430) and wt F

is the ag-weight of Fs with respect to the adjoint action. We have no weight in
I;/1;—1. The spaces V(v) play the role of weight spaces.

Remark 8.4. By Lemma 3.2(1), we have

F, € U(Ad(w;)R), hs € P(O;),
V() =D 8ilFs hs,vl) | V6 € T, (0@ M),
s (w; H(wthg + wt Fo))|a = v
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Lemma 8.5. Let X € U(g) be an ag-weight vector. Then
XV(1) € Vi +w wi (X)),
Proof. We may assume X € g. Let §;(E, f,u') € V(v). By Lemma 3.3, we have
X6i(E, fu') =Y 6i((ad(e)*X)E, f fic,u).

keZl
Assume ad(e)¥X € Ad(w;)p. Then
Si((ad(e)*X)E, f fic,u') = 8:(E, f fie, Ad(w;) ™ ((ad(e)* X))u).

If ad(e)®(X) € Ad(w;)n, then this is 0. If ad(e)*(X) € Ad(w;)l, then we
have w; ' wt(ad(e)*¥X)|, = 0. Hence w; ' wt(X)|a = w; ' wt(fi)|a- Therefore,
w; H(WH(E) + Wi (f fie) )la = v+ w; ' wt(X)a.

If ad(e)*(X) € Ad(w;)n, then (ad(e)*X)E € Ad(w;)n. We have

w; (wt(ad(e)*X)E + wt ffir) = w; *(wt E 4+ wt f +wt X).
This implies the lemma. O
Lemma 8.6. Define; € C=(U;) by j;(nnow; P/P) = n;(n) forn € w;Nw; 'NN,
and ng € wiﬁw;1 N No. Let X € U(g). Assume that X is an ag-weight vector.
For §;(E, f,u') € V(v), we have
X6i(E, fn; ) — (X6,(B, fu)i € Y V(I + wit wt X o)
v'>v

Here, wt X is the ag-weight of X with respect to the adjoint action.
Proof. Fix a basis {e1,...,e;} of ug,, such that each es is a root vector and
@sgt_l Ce, is an ideal of @SStCes. Let o, be the restricted root of es. As in

Section 3, for k = (k1,..., ki) € leo we denote ad(e;)*" - --ad(e;)* by ad(e)* and
((—x)* k) -+ ((—21)% /k;!) by fi. By Lemma 3.3,

X6i(E, fo; ' u) = Y 6i(ad(e)*X)E, ffin; ' ).
keZk

Take o) € U(Ad(w;)[ N ng), b € U(Ad(w;)aN1g) and ") € U(Ad(w;)p)
such that (ad(e)*X)E = o af(p)bg’)cff) and wt((ad(e)*X)E) = wt af(p) +wt bf(p) +

wt cl((p ). Then

5i((ad(e)*X)E, f fin *u') = 6:(af b e f fini ' u)
p

= 3600 Ry(@))( fin ), Ad(wy) ().
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By the Leibniz rule, there is a finite subset Ag’) c {(d';a") € U(Ad(w;)TNng)? |
wta' +wta” = wt a(p) " ¢ C} such that

(7, R ((aP)V)(f fien ) — Ri((@P)Y)(f it Ad(w;) ~ e o)
= Y GOP, R )R @) (), Ad(wy) el

(a/,a”)EA l((

— —n(a”)5: (b, Ri(a')(f fiym; t, Ad(wy) e ).
(a’.,a”)EAl((m

By the definition of 7;, we have R(Ad(w;)~tX")7; = 0 for X’ € Ad(w;)n N 7g.
Hence by Lemma 8.3,

(P, fn Y, Ad(wi) " (') = 5,07, F, Ad(w;) (e )it
for all f' € P(O;). Thus

5P RI((aP)Y)(f feny ), Ad(wi) P
— 5,0 Ri((a”))(f i), Ad(wi) " ePu! )i !
= ¥ —n(a”)&(bﬂR;<a’><ffk>,Ad(w»*cip)u’)m—l.
(aﬂa”)GAl(f)

By the Poincaré-Birkhoff-Witt theorem, we have a decomposition U (Ad(w;)p)
= U(Ad(w;)p)(Ad(w;)n) @ U(Ad(w;)l). Hence we may assume that cl((p) €
U(Ad(w;)p)(Ad(w;)n) or ) € U(Ad(w;)l). If ¢’ € U(Ad(w;)p)(Ad(w;)n) then
Ad(w;)™ cl(< Ju/ = 0 since n acts on Jl i(o® e MP) trivially. If cl((p) € U(Ad(w;)l)

then w; ' wt cl(f)|a = 0. Hence

N(ffi)))la
(p)+wtb(p)+wta +wt f + wt fic)|a

w7 (wt b + wi(R]

/
w; !
—1

Y(wt((ad(e)*X)E) + wt f + wt fix — wta”)lq
Ywt X + wtE 4wt f —wta”)|q
v+ w; H(wt X — wta”)|q > v+ w; ! wt X,

(a

i (wt
w;l(wta(p)—&—wtb( )+WtCl(<)+Wtf+Wtfk—Wta”>|a
w;
w;

So we have

5P, R (@YY (f fieny ), Ad(wy) D)
— 507 RI(0P))(f fie), Ad(wy) " elPu )it € S VY +wt we X o)

v'>v
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Therefore,

X6(E, fo; hu) + D V(I w; wt X

v/ >v

eZé OF, R (a)Y)(f i), Ad(w) ™ (P yu! )iz~

:Zdi(al((p)bf(p)cl((p),ffk,u')~i —|—ZV1/—|—w wt X o) !

v'>v

—Za (ad(e)(X)E, f fi, )i "+ > V(I + w; "t wt Xa)7;
v'>v

= (X6(B, fu )i+ YV +w we Xo)m O

v'>v

Proposition 8.7. Let i € (h Nm)* be the infinitesimal character of o. Assume
that I;/I;—1 # 0 and for all w € W,

A= @A+ f)la & Zeo((B7\ X3) Nw; ' 59)]a \ {0}

Then
Wh,(I}) = {(n;* @ u'); | ' € Wh,, 1 (0@ t)}

Proof. Let @ = Y, 6;(Es, fsn; ', ul) € Wh,(I!) where E, € U(Ad(w;)7 N 7p),
fs € P(O;) and u € J' _, (0 ® e ). By Lemma 3.5, we have (X — n(X))z =
> s 0i(Es, L(X)(fs)ni_l,ul;) for X € Ad(w;)nNng. Hence, we may assume f; = 1.

Let 2z € Z(g). Since J; (I(0, A)) has infinitesimal character —(A+z), I] has the
same character. Let x(z) be a complex number such that z acts by x(z) on I]. Take
E; and v/, such that E are ag-weight vectors and {E,} is linearly independent.
Let v = min{w;1 Wt Eglq}s-

Since y271(2) — Y37271(2) € (Ad(wi)n)U(Ad(wi)p) we have

Y2y1(2)x — 13721 (2)T € Z V()

v'>v
by Lemmas 8.5 and 8.6. By Lemma 8.6,
Y32 m1(2)T € (737271@) > 6B 1) )7_1 + Y VEnh
w;lthSL,:u v'>v

Therefore,

xX(2)z = zz =y (2)z

€ (737271(2) > G(Bs,1,d) ) Y Vv

w;lths\u:V v'>v
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By Lemma 8.6 (X = 1), we have

S Z Si( By, 1,ul)m  + ZV it

w;l wt Egla=v v'>v
Hence
(@) =wremE (Y aELW))E e Y VeE
wi_lthS\n:V v'>v

By Lemma 8.5, the left hand side is in V' (v)7; "~ . Hence

(x(2) = 737271.(2)) i (B, 1,uy) = 0
for all s such that wi_1 wt Eslq = v. By the same calculation as in the proof of
Lemma 2.8, Ho;(Fs, 1,ul) = (—w;A\+wt Es+po) (H)d;(Es, 1,u) for H € Ad(w;)a.
By Lemma 8.2, there exists w € W such that —w(X 4 [i)|ad(w,)a = —wiX +
wt Eg. Then A — w; " @(A + 1) |a = w; ' wt Eyq € Z<o((ZF\ 2F,) Nw; ' S7)q. By
assumption, w;l wt Eglq =0, ie., Eg € (C Hence, we may assume that z has the
form 2 = §;(1,n; ", u') + >0 0i(E ;L ul) where E, ¢ C for all s > 2.
Take X € ng N Ad(w;)m. Then by Lemmas 3.5 and 8.6,

0= (X —n(X))z € 6(1, 1, (Ad(w;) ' X — (X)) )i+ > V(v
v'>0
Therefore, d;(1, 1, (Ad(w;) "' X — n(X))u’) = 0. Hence v’ € Wh,,—1, (o @ e**#)’).
This implies that @ — &;(1,n; ',u/) € Why,(I1). If = — §;(1,m; *,u’) # 0, then

min{w; ' wt Es|q}s>2 = 0 by the above argument. This is a contradiction. O

Theorem 8.8. Assume that for all w € W (M) with w(X* \ $1,) Nsuppn = 0,
the following two conditions hold:

(a) (@, A\ +v) & Zeg for each exponent v of o and v € BT\ w™H(ET U ;).

() A=A+ )|a & Z<o((ST\ZF) Nw™ST)[o \ {0} for all @ € W, where [i is
the infinitesimal character of o.

Moreover, assume that n is unitary. Then

dim Wh,,(I(o, \)) = > dim Why,-1,,((0 @ e*°)’).
weW (M), w(ZJr\ZL)ﬂsupp n=0

Remark 8.9. We have w(X* \ ¥31,) Nsuppn = 0 if and only if 7 is trivial on
wNw™' N Ny. About this condition, see Theorem 4.7.
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Proof of Theorem 8.8. By the exact sequence 0 — I,y — I, — I;/I;_1 — 0,
we have 0 — Wh,,(I;_1) — Wh,(I;) — Wh,(I;/I,—1). By Proposition 8.7, it is
sufficient to prove that the last map Wh, (I;) — Wh,,(I;/I;_1) is surjective.

Take x € Wh,(I}) ~ Wh,(I;/I;_;). Then x is (n; ' ® u')d; for some u’' €
thiq ,(0® e MP) by Proposition 8.7. By Lemma 4.5, there exists a distribution
x¢ € I;(A + tp) with a meromorphic parameter ¢ such that x|y, is holomorphic
and (2+|y,)|t=0 = . Moreover, (X — n(X))x; = 0 for X € ny. By Proposition 4.4
and (a), the distribution x; is holomorphic at ¢ = 0. (See the proof of Lemma 4.5.)
Hence x|y, = x, so Why,(I;) = Wh,,(I;/I;—1) is surjective. O

Next we consider the module Wh,,((1(c, A) k-finite)*)-

Lemma 8.10. Let V' be an object of the category O . Then C(H(n,,V)) =
HO%n,,C(V)) where H(n,,V) = {v € V | nyv = 0} is the 0-th n,-cohomology.

Proof. This follows from (we use Proposition 7.2(4))
H'(n,, C(V)) = H(ny, D'(V)*) = (D'(V) /0, D' (V))*
=CD'(D'(V)/n,D'(V)) = C(H(ny, D' (V)" )p-imite)
=C(H (n,,D'D'(V))) = C(H (n,, V)). O
By Proposition 7.1, we have
Why, ((I(0, A) k-finite) ") = Why (C(J7(L(a, A))))-
By the above lemma,
Wh,, (C(J*(I(0,)\)))) = Wh
= Wh

(H (0, C(J*(I(2,2)))))
(C(H (ny, J*(I(0, 1)))))-

n"n“"o
n‘[nr‘"o

Since 7|, nn, is nondegenerate, a theorem of Lynch [Lyn79] shows that the dimen-
sion of the above space is determined by the character of H(n,, J*(I(c, ))). To
calculate H%(n,), J*(I(o,\))), we use the following lemma.

Lemma 8.11. Letey,...,e; be a basis of Ad(w;)nNng such that each ey is a root
vector and @, .,_, Ces is an ideal of @, Ces. In Sy, 0, where 0 is the trivial
representation of Ad(w;)n N ng, we have the following formulas:

(1) Forallt=1,...,1,
— — — (Kt — (k¢ — (K1
et(e; e 'et—llet * +1)€t+(1 AR € (MH))

—(k 1 —(ki+1
1 €(t+1+)~-~€(l+).

_ 1 -1 —k¢
=€ 616 € l
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(2) Fizte{1,...,1} such that e; € n,,. Assume that ks = 0 for all s < t such that
es € ny,. Then

—(k1+1) —(ki+1) —(k1+1) —(kt—14+1) —ky —(ke+1) —(ki+1)
(e g )=e; ce€y e e ...g .

€t
(3) X(eg' ey ) =(eg' ey )X for X € Ad(w;)mNng.

Proof. Let ay be the restricted root corresponding to es.
(1) Tt is sufficient to prove the equality e;(e;'---e; 1)) = (e; ' e;Y))es in
Se, ®u(g) "+ * @U(g) Se,_, - Since @2;11 Ce, is an ideal of @221 Ces, we have

erler’ e ) = (et e e € @) Cep Y Y,
Ps2>0

The ag-weight of the left hand side is —a; — - -+ — a;—1 + a¢. However, the set of
ap-weights of the right hand side is {—(p1+1)ar —- - — (pr—1+1)—1 | ps € Z>0}.
Hence each ag-weight appearing in the right hand side is less than that of the left
hand side. This implies et(efl . e;_ll) — (efl e e;_ll)et =0.

(2) We will prove et(el_(kﬁ_l) . --e;(lft’lﬂ)) = (el_(k1+1) . ..e;(lft’lﬂ))et in
Se1 ®u(g) "+ QuU(g) Se,_,- As in the proof of (1), we have

erfey B e o) — (e D L Qe

€ @ Cey MY e By,
ps>0

€t

The a,-weight of the left hand side is >, o, ., —s + a;. However, the set of
ap-weights of the right hand side is {}°, ¢, ~,; —(ps +1)as [ ps € Z>o}. Hence
each a,-weight appearing in the right hand side is less than that of the left hand
side. This implies the assertion.

(3) We may assume X is a restricted root vector. Let a be the restricted root
corresponding to X. Since X normalizes Ad(w;)n Nng, we have

X(efl o efl) _ (efl o efl)X c @ Ce;(mﬂ) . ef(p”l).
ps=>0
Then X(e;!- -~e§_1) — (e7' - ¢, )X has the ag-weight —(a1 + -+ + a;) + a.
However, el_(pﬁ1 -~~el_(p’+1) has the ag-weight —((p1 + 1)os + -+ - + (1 + 1)oy).
If —((p1 + D+ + (pr+ 1)) = —(a1 +++++ ) +a, then (p1 + Doy ++-- +

(e + Dau)|ad(wi)ya = (@1 + -+ + @1)|ad(w,)a- Hence py = - -+ = p; = 0. Therefore,
a =0, a contradiction. Hence X(e;'---e; ') — (eg' - ¢, )X = 0. O

Lemma 8.12. Let eq,...,e; be a basis of Ad(w;)m Nng such that each e is a
root vector and P, ; Ces is an ideal of P,,Ces. Let V be a Um & a)-
representation. Regard V as a p-representation by nV = 0. By Lemma 6.3,
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T, (U(@)®u(p)V) = (B4, 50 Cer 1 H - e M QU (Ad(w;)aNTg) @w; V. Then
fveef' el @1@wV [nju=0y=e; ' e @1 HO(Ad(w;)mNn,, w;V).
Proof. Take v =e; ' - e;' @ 1®wvy € HO(n,, Ty, (U(g) ®u(py V)). Then for X €
Ad(w;)m N n, we have X(e;' - e;' ® 1 ® vg) = 0. By Lemma 8.11, we have
61_1'~'6l_1®1®XU0=0. Hence Xvg = 0. O

By the definition of the Harish-Chandra homomorphism, we get the following.

Lemma 8.13. Let q be a parabolic subalgebra of g containing b @ ug. Take the
Levi decomposition ; @ uq of q such that b C 3. Let W\[/q C W be the Weyl
group of lg, and V' a g-module with infinitesimal character fi. Put V' = H°(uq, V)
and py,(H) = (1/2) Trad(H)|y, for H € b. Then V' is lq-stable and V' =
®ﬁEVT/Tq \W(V/)[@ﬁ—?ugl where (V') (@gi—pey) 15 the mazimal lq-submodule whose in-
finitesimal character is Wi — py, . In particular, for every lq-submodule V" of V',
all highest weights of V' /V" belong to {wp—p | w € W}

The following lemma is well-known.

Lemma 8.14. Let V € (9})0, Assume that V' has infinitesimal character A€ h*.
Then all h-weights appearing in V belong to {@X —p—alweW, a€ZsgAT}.
Take a filtration I; C Jy(I(o,A)) as in Theorem 7.5. Now we determine the

dimension of the space of Whittaker vectors of E / Ii: under some conditions.

Lemma 8.15. Let i be the infinitesimal character of o. Assume that (A + 1) —
WA+ 1) & ZA for all w € W\ Wys. Then

dim Why (T, (U(g) ®u(p) J* (0 @ 7)) = dim Wh,,—1, (01 1 -finite) )

Proof. Put V =Ty, (U(g) ®u) J* (0 ®@e ). Let ey, ..., e; be a basis of Ad(w;)@
N ng such that @SSFl Cey is an ideal of ®sgt Ces. Moreover, assume that each
es is a root vector. For k = (kyi,..., k) € Z!, put ek = e’fl--~e§“. Set 1 =

(1,...,1) € Z!. Then
V= @ Ce~* ) @ U(Ad(w;)TNTg) @ w;J* (0 @ e P).
kezl,
Put
V' = @ Ce™ ) @ U(Ad(w;)m Nig Nmy,) @ HO(m Ny, w; J* (0 @ )
keA

where A = {(k1,..., k) € Z | if e5 € n,) then k; = 0}. Tt is easy to see that V'
is m, ® a,-stable. By Lemma 8.11, V' € H’(n,,V). We first prove that V' =
HO (n’fla V)
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It is sufficient to prove that there exists no highest weight vector in
Hn,,V)/V'. Let v € H%(n,, V) be such that (m, Nu)v € V'

First, we prove that v € e™! @ U(Ad(w;)aN1g) @ w;J* (0 @ e*P) + V', Take
Y € U(Ad(w;)fNTg) @ w;J* (o @ e*P) such that v = 3", e~ ®* ) @y We prove
that if k; # 0 and e; € n,, then yx = 0 by induction on t where k = (ki,..., k).
Put 1; = (8s¢)1<s<1 € Z' (d is Kronecker’s delta). By inductive hypothesis, for
s < t such that e, € n,, if yx # 0 then k; = 0. By Lemma 8.11(2), we have
e =Y yent e~ D+Le @ . Since v € H(n,, V), we have e;v = 0. Hence if

e~ (+ D)+t £ () then yj = 0. Since e~&+D+1 = ( is equivalent to k; = 0, k; # 0
implies yx = 0.

We now prove that if k¢ # 0 then e~®+1) ® ¢ € V' by induction on t. If
et € ny, then this claim is already proved. We may assume that e; € m,. Hence
e,V C V'. By inductive hypothesis, if k, # 0 for some s < t then e~ &t D@9y, € V.
Then e;v € Zkezgo e~ @ 4 + V' by Lemma 8.11(1). Since e,v € V', we
have Zkezgo e~ (kFD+1i @ € V. By the definition of V7, if e=(x*D+1 £ 0 then
e~ (1) @ 4y € V. Notice that e~ &FD+1t £ 0 if and only if k; # 0. Hence we get
the claim.

We now prove v € V/. We may assume that v is a weight vector with re-
spect to h. We can take @ € W such that —w(\ + i) — p is the h-weight of v
by Lemma 8.13. Put ppr = ZaeAL(l/Q)O" Since J*(o ® e***) has infinitesimal
character —(fi + A + p), all h-weights appearing in J*(o ® e**?) are contained in
{—0(i+X+p) —par+a | @€ Wy, o € ZAy} by Lemma 8.14. Since p € a*,
we have @p = p for @ € Wyy. Hence —@p — pry = —p — par = —p. Notice that
w;p — p € ZA. Therefore all h-weights appearing in V' belong to

— ’LUlﬁ/\]\//[(ﬁ + )\) — wiﬁ—i— w; LA + Zzo(’wiA_ n A_) - Z21(’wiA_ N A+)
C —wiWar(fi+ A) — p + ZA

~—

by Lemma 6.3. This implies that for some w’ € Wy, we have ﬁ(ﬁ—&—)\)—wﬂuv’()\—i—ﬁ
€ ZA. By assumption we have @ € w;Wy;. This implies (wtv)(Ad(w;)H) =
—(AM(H) +w; *p(H)) for all H € a where wtv is the h-weight of .

Take E, € U(Ad(w;)nNng) and z;, € w;J*(0 ® e*?) such that v € > e 1@
E,®xp,+V’'. We may assume that E, and z, are h-weight vectors. We denote their
h-weights by wt £, and wtx,. Fix H € a. Then a(H) = 0 for all & € A,y. Since
wtz, € —wi(%(ﬁ+A+p)—ﬁ4+ZAM), (wtzp)(Ad(w;)H) = —(A+p)(H). Hence

(wt o) (Ad(w,) H) = (wi(e ™) + wi(E,) + wi(x,)) (Ad(w;) (H))
= (wi(e ™) (Ad(w) H) + (wt E,) (Ad(w)) H) — (A + p) (H).
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We calculate wt(e 1) (Ad(w;)H). By definition,
wt(e ") (Ad(w;)H) = — Trad(Ad(w;) H)| Ad(uw 5o -
Since Ad(w;)n N ng = Ad(w;)g N ng, we have

Trad(Ad(w:) H)|ad(w,)mnne = Trad(Ad(w;)H)|ad(w,)wenne
= Trad(H)|ad(w,) - nonws = (—7 +w; ' p)(H).

Since H € a, p(H) = p(H). Hence
(wt o) (Ad(w,)H) = (wt B,)(Ad(w) H) — (A + w]5) (H).

We have already proved that (wtv)(Ad(w;)H) = —(\ + w; *p)(H). Therefore we
get (wt E,)(Ad(w;)H) = 0 for all H € a. Since E, € U(Ad(w;)n), this implies
E, € C, i.e., there exist v € e ® 1 ® w;J*(0 ® e*?) and v" € V' such that
v = v’ 4+ v”. Therefore n,(v') = n,(v —v"”) = 0. Hence v" € V' by Lemma 8.12.
Therefore HO(n,, V) =V".

We now prove the lemma. For an my & apg-module 7 and a subalgebra ¢ of g
containing mo @ ag, put Mc(7) = U(c) @y (crpg) (T ® p’) where ¢ Mg acts on 7® p’
trivially and p'(H) = (1/2)(Tr(ad(H)|cnws)) for H € ag.

We give some notation and facts about O% . All facts are well-known. For
Xe h* such that X|m0mh is a regular dominant integral, let O Mo Ay 3 be the finite-

dimensional representation of MyAqy with infinitesimal character A. Let L’ be a Levi
sugbgoup of a parabolic subgroup such that MyAg C L. Let ch Vj be the character
of Vo € Op npr 1 and Ko(O%p s 1) the Grothendieck group of O 7, .. Then
we can define ch Vg for Vo € Ko(Op 1/ 1s) (namely, ch is additive) and chVp =
ch Vi if and only if Vo = Vi for Vo, Vi € Ko(Ofp, 1/ 1+)- A basis of KO(O%OOL',L'
given by {Mi(o,, 4, 5)} Let P be a parabolic subgroup of L’ containing Py L’,
L" its Levi subgroup and n” the nilpotent radical of the Lie algebra of P”. Then
for Vo € Op 1.1, we have HO(n", Vi) € O pir po-
By Remark 2.5, Ad(w;)(m Npo) = Ad(w;)m Npo C Ad(w;)m N p,. There-
fore, m N pg C mN Ad(w;) " *p,. Hence m N Ad(w;)'p, is a parabolic subalgebra
0 N—1 * A+ /
of m. Therefore, H”(Ad(w;) ™ n,Nm, J*(c®e 7)) € OPomme;anwi,me;anw,:'
Recall that we have a functor w;. (It twists the action of g by w;.) Since
wi(Py N M N w; ' Myw)w;' = Py N w;Mw;* N M, (Remark 2.5), we deduce
that wi(O;DoﬂMﬂwqflM"wi,Mﬁw;lMr,wi) = O;oﬂwiwalﬂMn,winglﬁMn' (ThlS fol-
lows from the definition.) Therefore,

) is

Ho(nn N Ad(wi)m, w;J" (o ® 6)\+p)) € O/PoﬁwiMwi_lﬂmeiwalﬁMn.
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Hence we can take cx such that

ch D’Ho(nn n Ad(wz)m, wiJ* (0’ ® €>\+p)) = Z CX ch M(m"ﬁAd(wi)m)+a0 <UM0A0,X)'
X

Then it is straightforward to prove ch D'V" = 3 5 c5ch M, @a, (0 4, 5)- BY

a result of Lynch [Lyn79], the functor X Whay e (X*) from the category

!/ .
OPTm M, M, to the category of vector spaces is exact. Therefore,

dim Whn\mnmno (C(V/)) = Z cx dim Wh'r”mnﬁno (Mm,@a,,, (U]VJOAO,X)*)'
X

Lynch also proved dim Why,,, . (
Lemma 8.10 and V' = H%(n,, V),

M, (0 4,5)") = dimoy, , 5. Therefore, by

n

dim Wh,,(I;/I;_1) = dim Wh,, (C(V)) = dim Wh
= dim Wh,,  (C(V')) = cxdimoy, , 5.

By the same argument,
. . r e
E cx dim O MoAg, X — E : 5 dim WhnlmnﬁAd(wi)mr‘mo (M(mnﬁAd(wi)m)"‘aO (O.MOAOM\) )
X X

=dimWhy e (CH®(n,; N Ad(w;)m, w; J* (0 @ e*TF)))
= dim WhmAd(wi)mm“O (Clw; J* (o ® e’\+p)))
= dimthifln(C’(J*(cr ® )
= dim th;ln((UM N K-finite) )
This implies the conclusion. O

Theorem 8.16. Let i be an infinitesimal character of o. Assume that (A + ) —
WA+ ) € ZA for allw € W\ Was. Then

dimWhU((I(U7 )\)K—ﬁnite)*) = Z dimwhwfln((oMﬁK—ﬁnite)*)~
weW (M)
Proof. Let I; be the Bruhat filtration of J'(I(o,A)) = J*(I(o,\)). Since all
b-weights appearing in I;/I;_1 ~ T,,(U(g) ®u) J*(0 ® e***)) belong to
{—~ww A+ ) —p+a|we Wy, a € A}, we have

if i # j, where wt(I;/I;_1) is the set of h-weights in I;/I;_;. Therefore, the ex-
act sequence 0 — I,_; — I; — I;/I;_1 — 0 splits by the block decomposition
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of O, . Hence J(I(a, X)) = @, I'y(C(Tw, (U(g) ®u(py J* (0 @ €}7)))). Therefore,
the conclusion follows from Lemma 8.15. O

Finally we study the case where o is finite-dimensional. Then mNng acts on o
as nilpotent operators. Therefore, th;1 ,(0%) # 0 if and only if w; 'n = 0 on
mMng.

Definition 8.17. Let ©,0, 05 be subsets of II.

(1) Pt W(O)={weW |w®) CX"}and g =ZONX.

(2) Put W(®17@2) = {’LU S W(@l) n W(@g)il | w(Eel) N 292 = @}
(3) Let Wg be the Weyl group of Xg.

Lemma 8.18. Let © be the subset of I corresponding to P.

(1) #W(suppn,©) = #{w € W(M) | w(ET) N X} = 0}

(2) #W (suppn, ©) X #Wsuppy = #{w € W(M) | suppn Nw(S3,) = 0}.

Proof. (1) Put W = {w € W(M) | w(X*) N X} = 0}. Let wyo be the longest
Weyl element of Wy, . We will prove that the map W — W (supp 7, ©) defined by
w — (wyow) ! is well-defined and bijective.

To prove that the map is well-defined, let w € W. The equality w(X+)NE}F =0
implies (wy ow) ' (E}F) = w™ ' (=%;}) € T, Hence (wy,ow) ™" € W(suppn). More-
over, w(¥};) C ¥T and w(XT) N X} = 0 imply that w(Xf;) C TN (T \X}) =
ST\ 5. Hence (wyow)(X},) € X7\ I € BT, We have (wy,ow)™* € W(0)™ .
Finally w(X},) € %\ 5} implies w(Xy) = w(33,) U(—w(E];)) € £\ X,. Hence
(wpow) 1Y, Ny = w18, NIy =0.

Assume that (wyow)™' € W(suppn,©). From (w,ow) (X)) C EF, we
have w™!(X;) € £*. Hence £f = =¥, € —w(XT) = w(X7). Thus w(X+) N}
= (). Since (w, ow) 1L, N Xy = 0 we have w(Xy) N, = 0. As (w,ow)(X],)
c ©F and w(ST) NEF = 0, it follows that w(X},) C w, §(EF) N (S\E;) =
(EFA\ZHuE )N(XE\ X)) = (2T \X}). Consequently, w € W(M).

(2) Pt W = {w € W(M) | suppn N w(X},) = 0}. Define a map
W (suppn, ©) x Weuppy — W by (wy,w2) + wowy'. This map is injective
since W (suppn,©) C W (suppn). We prove that it is well-defined and surjec-
tive. Since w; € W(suppn,®) C W(M)~!, wi'(Z},) = wi'(ZF,) N IF. As
wy(Sy) NSy = 0, we have wi ' (EF,) N ST C (£ E,) NS+ = SF\ £}, There-
fore wowy H(XF,) € BT\ ¥¥, so the map is well-defined. Next let w € W. Let
w; € W(suppn) ™! and we € Wyyppy be such that w = wyw; ' Then wy ' (S3,) =
wy tw(X) Cwy (2 ¥F) =T\ B € £ Hence wy € W(M)~". Moreover,
wy ' (2F,) € =t \ ¥F implies w ' (Zy) € X\ 8,. Hence B, Nw; ' (Sar) = 0.
Therefore, w1 %, N Xar = 0. This implies wy € W (suppn, ©). O
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Lemma 8.19. Assume that o is irreducible and finite-dimensional. Let [ be the
highest weight of o and V' the irreducible finite-dimensional representation of MyAg
with highest weight X\ + fi. Then Who(o*) =~ V* as MyAp-modules. In particular,
dim Why(0’) = dim V.

Proof. Let war,0 be the longest element of @ Then both sides have highest
weight —was,0(fr + A) and the spaces of highest weight vectors are 1-dimensional.
O

As a corollary to Theorems 8.8 and 8.16, we have the following theorem an-
nounced by T. Oshima. Define py; € §* by par = (1/2) ZaeAL .

Theorem 8.20. Assume that o is the irreducible finite-dimensional representa-
tion of M with highest weight U. Let dimpg, (A + V) be the dimension of the finite-
dimensional irreducible representation of MyAg with highest weight \ + v.

(1) Assume that for allw € W such that w(X+ \ $1,) Nsuppn = 0 the following
two conditions hold:

(a) (&, X+wob) € Z<o for all a € BT\ w1 (T}, UST).
() A= G+ T+ par)la € Zeo(ST\EF) Nw™ S|4\ {0} for all @ € W.
Then
dim Wh,, (I (o, A)") = #W (suppn, ©) x (dimaz, (A + 7)).
(2) Assume that (A+7) — W(A+7) € A for all € W\ Wyy. Then

dim Why, ((I(0, ) k-finite) ") = #W (supp 1, ©) X #Wauppn X dimag, (A + 7).

Proof. Recall that Why,-1,(c*) # 0 if and only if w™'n = 0 on m N ny. This is
equivalent to suppn Nw(X3,) = 0.

(1) By Theorem 8.8, we have

Wh,, (I(a,\)) = > dim Why,-1,((0 @ e**7)’).
wEW(M),w(Z‘*’\ZL)ﬂsuppn:(D

Since o is finite-dimensional, (0 ®e**?) = (o0 ®e**?)*. Then by the above remark,
Wh,,-1,,((c ®e*?)*) # 0 if and only if supp nNw;(X},) = 0. Moreover, if suppnN
w;(31,) = 0, then dim Wh,,((c ®e**?)*) = dim Why((o ® e}MP)*) = dimpy, (A +7)
by Lemma 8.19. Hence we get

dim Wh,,(I(o, X)) x dimaz, (A + D)

= #{w e W(M) | w(E\ £};) Nsuppn = 0, w(Ey;) Nsuppn = 0}
=#{w e W(M) | w(Et) Nsuppn = 0} x dimus, (A + 7).
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By the definition of X7, we have w(X%)Nsuppn = 0 if and only if w(X+)NE} = 0.
Hence we get (1) by Lemma 8.18(1).
(2) By the above argument, we have

dim Why,(1(o,\)') = #{w € W(M) | w(E};) Nsuppn = 0} x dimpg, (A + D).

Hence we get (2) by Lemma 8.18(2). O

Appendix A. C*°-functions with values in Fréchet spaces
Appendix A.1. L-distributions and tempered L-distributions

Let M be a C*°-manifold, V' a Fréchet space and L a vector bundle on M with
fibers V. We define the sheaf of L£-distributions as follows.

First we assume that £ is trivial on M. Then the definition of £-distributions
is found in Kolk—Varadarajan [KV96]. (It is the continuous dual space of the space
of C*°-functions G — V with compact support.) It is easy to see that the spaces
of L-distributions form a sheaf on M.

In general, let M = J,c, Ux be an open covering of M such that the vector
bundle £ is trivial on each U,. For an arbitrary open subset U of M, put

DU, L) = {(I)\) € H D'(UNUNL) | zx=xx on UyN U)\/}.
A€A

This is independent of the choice of an open covering {Ux} and defines the sheaf
of L-distributions on M.

Let X be a compact C°°-manifold such that M is an open dense submanifold
of X. Assume that there exists a vector bundle on X whose restriction to M is L.
(We denote this vector bundle again by £.) In this case, we define a subspace
T(M, L) of D'(M, L) by

T(M,L)={x €D (M,L)|z=z|py for some z € D'(X,L)}.
An element of T (M, L) is called a tempered L-distribution (cf. [Sch66]).

Remark A.1. The author does not know whether this space depends on the
choice of X or not. Hence, in this paper, we specify X when we use the notion of a
tempered L-distribution. For example, in the main part of this paper, we consider
the space of tempered distributions on U; (Section 2). In this case, we take G/P
as X.

For a subset My C M, put Dy, (U,£L) = {x € D'(U,L) | suppx C Mo}
and Tar, (M, L) = {z € T(M,L) | suppx C Mp}. Assume that My is a closed
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submanifold of M. Then dualizing the restriction map C°(M, L) — C(My, L),
we have an injective map D'(Mo, L) — D), (M, L). Via this map, we regard
D'(Moy, L) as a subspace of D), (M, L).

Appendix A.2. L-distributions with support in a subspace

Let M be the Euclidean space R" = {(z1,...,2,) € R"} and M, the subspace
R™ ™ of M defined by z; = -+ = z,, = 0. Assume that there exists a com-
pact C*°-manifold X which satisfies the condition of the previous section. Let
Eq, ..., E,, be vector fields on M such that:

(1) (Eio)lme = (52:9)|s, for all o € C=(M) .
(2) The space >..* | CE; is a Lie algebra.

Set D; = 9/0x;. Condition (1) implies that D,T" = E;T for all T € D’ (M, L).
We define Uy (E1,..., Em) = Y4, i <o CE' - Ef and U(E, ..., Ey,) =
> Un(Er, ..., Ey). Then the algebra U(En, ..., Ey,) is isomorphic to the univer-
sal enveloping algebra of " | CE;. For @ = (a1, ..., am), put B = E{' - .- E&m
where EY = 1.

Lemma A.2. Let E},...,E!, be vector fields on M which satisfy the same con-
ditions as F, ..., Ey. Then

E°T € (E/)aT + U|o¢\—1(Eiv SR E;n)’D/(MOa ‘C)
for T € D'(My, L) and o € Z,,.

Proof. First we remark that if the order of a differential operator P is at most k,
then P(D/(Mo, E)) - Uk(Dl, ceey Dm)D/(Mo, ,C) Take P € Uk—l(Eh PN ,Em)
Then

E.PT = PE;T + [E;, PIT = PD;T + |E;, PIT = D;PT + [E; — D;, P|T
€ D;PT + Ug—1(Dx,..., D)D" (Mo, L)

since the order of [E; — D;, P] is less than or equal to k — 1. Hence, using induction
on |a|, we have ET € DT + Ujo|-1(D1, . .., Dy )D' (Mo, L).
Hence U (E1, ..., En)D' (Mo, L) C Ux(D1,...,Dp)D' (Mo, L). Therefore,

E“T + Ujg|-1(E1, ..., E)D' (Mo, L) C DT 4 Ujo)—1(D1, . .., Diy)D' (Mo, £).
By the same argument,

E°T + Uja|_1(E1, .., Em)D' (Mo, £) D DT + Ujaj_1(D1, ..., Dy)D' (Mo, £).
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Hence
E“T +Ujg)-1(E1, ..., Ep)D' (Mo, L) = DT 4+ Ujy)—1(D1, . .., Dy )D' (Mo, £).
The same formulas hold for Ei,..., E/, . Consequently,

E°T € D°T + Ujay_1(Ds, - .., Dp)D' (My, £)
= (E/)OLT + U\a|71(D17 s 7Dm)D/(MOa£)
= (EI)QT+U\Q|—1(E177E;n)D/(MOVC’) D

Proposition A.3. (1) The map ®: U(E, ..., Ey,) @ D'(My, L) — D), (M, L)
defined by P ® T — PT is injective.

(2) Tar,(M, L) C Im®. Hence we have an injective homomorphism
Taty(M, L) < U(En,...,Epy)D (Mg, L) ~U(Er,...,Ey,) @D (My,L).

Proof. (1) Let ZQGZ% E*®T, be an element of U(E1, ..., Ey,) @D (M, L). Set
T = Zaez% E°T, and assume that T = 0. Put &k = max{|a| | T, # 0}. We
will prove that & = —oco. Assume that & > 0. By Lemma A.2, if || = k then
E*T, € DT, + Ui_1(D1, ..., Dy)D' (Mo, £). There exist T, (Ja| < k) such that
Saczn BTo = Coen jajck D*Th+ Cacan jajor Do Fix f € 22 such
that |8| = k and f € C°(My, £). Define a function g r on M by

g, f(x1,...,Zn) :xfl P 0,0, Tty ).

Then 0 = (T, @) = B1!--- B! (Tp, f). Since f is arbitrary, we have T = 0 for all
B such that |3] = k. This is a contradiction.

(2) For a differential operator P, let ord(P) be its order. Let S € T, (M, L).
By [KV96, (2.8)], for any p € My there exist an open subset U, > p and T, , €
D'(U, N My, L) such that S|y, = ZQGZ% E°T,, (finite sum). Let S € D'(M, L)

be such that §|M = §. Since the support of S is compact, there exists r € Zxg
such that if ¢ € C2°(X, £) satisfies Po| & = 0 for each differential operator P
with ord(P) < r, then (S,¢) = 0. (When £ = C, this is [Sch66, Ch. 3, §7, Th.
XXVIII]. The same proof applies.) Then S has the same property. Fix p € M.
Set k = max{|a| | Tw,p # 0}. Assume that £ > r. Then for 8 € ZZ, such that
|8l =k, Pog, rlm, = 0 for each differential operator P with ord(P) < r. However,
by the proof of (1), we have (S,¢s ) # 0 for some f. This is a contradiction.
Hence k < r for each p € My. By the proof of (1), Ty, = Ty, on U, N U, . Hence
{Tap}p defines a distribution 7, on My and S = @(3_, <, E* ® To). O
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Appendix A.3. Distributions on a nilpotent Lie group

Let N be a connected, simply connected nilpotent Lie group. Put n = Lie(N)c.
Then the exponential map exp: Lie(N) — N is a diffeomorphism. It induces the
structure of a vector space on N. Let P(N) be the ring of polynomials with respect
to this vector space structure (cf. Corwin and Greenleaf [CG90, §1.2]).

Let £ be a vector bundle on N whose fiber is V. Since N is simply connected,
L is trivial, i.e., £L = N x V. Fix a Haar measure dn on N. Let V' be the continuous
dual space of V. For F € C*°(N,V’), we define a distribution Fd by (Fé, ) =
Jx F(n)(o(n))dn where ¢ € C®(N,L). Thus we can regard C>°(N,V’) as a
subspace of D'(N, L). Let Pr(IN) be the space of polynomials of degree less than
or equal to k. Then P(N) =", Pr(N).

Let n be a character of N and denote its differential n — C again by 7. Then
1 can be extended to a C-algebra homomorphism U(n) — C where U(n) is the
universal enveloping algebra of n. We denote this C-algebra homomorphism again
by 7. Let Kern be its kernel. For X € Lie(N) and a C*°-function 1 on N, put
(X)(n) = Lib(exp(—£X)n) 1o,

The algebraic tensor product C°(N) ® V is canonically identified with a
linear subspace of C°(N, L) via ¢ @ v — (z — @(z)v). This subspace is dense
[KV96, (2.1)].

Proposition A.4. For all k € Z~q, there exists a positive integer | such that if
T € D'(N, L) satisfies (Kern)*T =0 then T € (P (N)n~t @ V’)§. Conversely, for
all | € Zw there exists k > 0 such that (Kern)*(P(N)n~t @ V') = 0.

As a corollary, we get the following.

Corollary A.5. Let T € D'(N,L). Assume that there exists a positive integer k
such that (Kern)*T € (P(N)n~' @ V')6. Then T € (P(N)n~t @ V')J.

Proof. By the second part of Proposition A.4, there exists k’ > 0 such that
(Kern)¥' T'= 0. Hence T € (P(N)n~! ® V')§ by the first part. O

Proof of Proposition A.4. For T € D'(N, L), it is easy to see that n*(Tn) = 0 if
and only if (Kern)*T = 0. Therefore, we may assume that 7 is trivial.

First assume that V' = C. We argue by induction on dim N. Take an element Z
of the center of Lie(N) and a subspace ngg such that Lie(N) = RZ & ng g. Put
ng =nor ®r C, W = n/CZ and N’ = N/exp(RZ). Then the projection n — n’
gives an isomorphism ®: ny — n’ of vector spaces. Set ¥ = ®~!. We have an
isomorphism 7: R x N ~ R x Lie(N') ~ R x ngg ~ RZ ® ngr = Lie(N) ~ N.
An element of n gives a vector field on N. We consider the corresponding vector
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field on R x N’. Define a differential operator Dy on R x N’ by (Do f)(z,n') =
(0£/02)(z, ).

The action of Z is given by —Dy. Let D} be the differential operator on N’
given by Y € n’. For Y, Y € nor and z,t € R, by the Campbell-Hausdorft formula,
there exists a polynomial P(Yp,Y’) on R x (ngr)? such that

exp(—tYo) exp(2Z +Y) = exp((z + P,(Yy,Y)) Z + U (Y'(®(—tYp), P(Y))),
where Y': Lie(N’) x Lie(N') — Lie(N’) is given by
exp(Yp) exp(Y) = exp(Y'(Yp, Y)).

Hence the action of Yy is given by P(Yy,n') Dy + Dﬁp(yo) for a polynomial P.
Now we prove the first part of the proposition when V = C. Since (—Dg)'T
= 0 for some [, we have T'(z,n’) = Z;:o 2PT,(n') for some distributions 7, on N'.
By inductive hypothesis and Remark 2.2, it is sufficient to prove that for all Y € n’/
there exists a positive integer k¥’ such that Ylep is a polynomial. (See also the
proof of Corollary A.5.) We prove this by induction on p. Set Yy = ¥(Y'). Since

the action of Yj is given by P(Yy,n')Dg + Dj,, we have

YE(T) € Y 20C™(N') + 2*(Dy)F(Ty) (s <p),
YE(T) € 3 20P(N') + 25Dy )5 (Ty) (s> p),

s0<s

since T is a polynomial if s > p (inductive hypothesis). Take k such that YOkT =0.
Then

!

0=YgT €Y 2"C(N')+ > z"P(N') + 2/ (D} )*(T.).
s<p s=0

Therefore, (D3, )*(Ts) € P(N’). The second part follows from [Goo76, 2.3, Corol-

lary 2].

Fix a basis {e1,..., e, } of Lie(N). The map R™ — N defined by (x1,...,x,)
— exp(zie; + -+ + xpe,) is an isomorphism. Using this map, we introduce a
coordinate (x1,...,x,) of N.

Fix v € V and consider an ordinary distribution T,: ¢ — (T, ¢ ® v)
for p € CX(N). If n*T = 0, then n*T, = 0. Hence for some I, we have
T, = Za1+»--+an§l (7t 22" @ Cyaq,....an )0, Where ¢y oy o, € C. The map
VU > Cyaq,..a, 1 continuous linear. Hence it defines an element of V'; de-
note it by vy, .. . Then for ¢ € C(N) and v € V we have (T,p @ v) =
(o, <t T @y @ v, o )0, ® v). Since C°(N) ® V' is dense in

n

C(N, L), we have T = (Za1+___+an§l it alr ® v;hm’an)é.
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We now prove the second part of the proposition. For X € n, f € Pi(N)
and v € V', we have X((f ® v")d) = ((Xf) ® v')d. Hence we may assume that

vV =C.

O
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