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Loewy Series of Weyl Modules and the Poincaré
Polynomials of Quiver Varieties

by
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Abstract

We prove that a Weyl module for the current Lie algebra associated with a simple Lie
algebra of type ADE is rigid, that is, it has a unique Loewy series. Further we use this
result to prove that the grading on a Weyl module defined by the degree of currents
coincides with another grading which comes from the degree of the homology group of
the quiver variety. As a corollary we obtain a formula for the Poincaré polynomials of
quiver varieties of type ADE in terms of the energy functions defined on the crystals for
tensor products of level-zero fundamental representations of the corresponding quantum
affine algebras.
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§1. Introduction

The purpose of this article is to study the graded structure of Weyl modules for

the current Lie algebra associated with a simple Lie algebra of type ADE and its

applications.

Weyl modules are defined for a current Lie algebra, a loop Lie algebra, or

more generally, a generalized current Lie algebra and play an important role in

the study of finite-dimensional modules over these Lie algebras. They were orig-

inally introduced by Chari and Pressley [CP] for a loop Lie algebra with a view

to applications in the representation theory of the corresponding quantum loop

algebra. This notion was extended by Feigin and Loktev in [FeL] to the case of a
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generalized current Lie algebra (called by them the current Lie algebra on an affine

variety), including an untwisted multivariable current (or loop) Lie algebra. Weyl

modules have been applied by Chari and Moura [CM] to the block decomposition

of the category of finite-dimensional modules over a loop Lie algebra, and by the

first author [Ko] to a problem analogous to that in [CM] for a generalized current

Lie algebra, for instance.

When we focus on the current Lie algebra associated with a simple Lie alge-

bra g, the Weyl module W (λ) for a dominant integral weight λ ∈ P+ of g has one

remarkable property: it has a graded module structure. This grading helps us to

investigate a detailed structure of the Weyl module. Moreover it has turned out

that the gradings of Weyl modules are connected with some interesting objects.

One connection we emphasize here is that with the one-dimensional sums associ-

ated with certain crystals, where such a connection has been found in a series of

recent works like [CL] by Chari and Loktev, [FoL] by Fourier and Littelmann, and

[Nao] by the second author. Moreover, from the results of Ardonne and Kedem

[AK] and of Di Francesco and Kedem [DFK], we deduce that the gradings are

also related to fermionic forms. This observation solves the X = M conjecture

for particular cases (see [Nao, Section 9] for a detailed explanation). These results

suggest that the graded structure of a Weyl module itself is interesting and worth

studying.

In this article we study in more detail Weyl modules for the current Lie algebra

associated with a simple Lie algebra g of type ADE. For the case of type ADE,

the Weyl module W (λ) is isomorphic to two other important modules:

• a Demazure module for the affine Lie algebra ĝ ([CL], [FoL]);

• the standard module M(λ) defined as the homology group of the Lagrangian

quiver variety L(λ) (Proposition 4.4).

Thus it is expected that Weyl modules for type ADE have more specific properties

than those for other types and that the identification with the other modules above

is useful for understanding them. This will indeed turn out to be true.

Our first main result is to determine the Loewy structure of a Weyl module.

Recall that a Loewy series of a module of finite length is by definition a semisimple

filtration which has the smallest length. It is a fundamental problem to study the

Loewy structure of a module, especially to determine two standard Loewy series:

the radical series and the socle series. We say that a module is rigid if its radical

series and socle series coincide, which implies that its Loewy series is unique.

Because of this property, rigid modules are fairly easy to understand. We prove

that Weyl modules for type ADE are rigid as an application of the identification

with the Demazure modules together with the graded structures.
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Theorem 1.1 (Proposition 3.5, Proposition 3.9 and Theorem 3.10). Let g be of

type ADE. Then for the Weyl module W (λ), the grading filtration, the radical

series and the socle series coincide. In particular, W (λ) is rigid.

We remark that a Weyl module for type BCFG is not rigid in general (see

Example 3.12). Thus rigidity is a phenomenon specific to type ADE.

Just as the Weyl module W (λ), the standard module M(λ) has a graded

structure which comes from the degree of the homology group of the quiver variety.

The second main result is to prove that their gradings coincide.

Theorem 1.2 (Theorem 6.1). Under the isomorphism M(λ) ∼= W (λ), the grad-

ings on both sides coincide.

Theorem 1.2 seems to be known but does not appear in the literature. See

Remark 6.2 for a more precise explanation. In this article, we give a representation-

theoretic proof of this fact, using the rigidity of the Weyl module stated in Theo-

rem 1.1.

Let us mention two corollaries of Theorem 1.2. First, the theorem implies that

the graded characters of M(λ) and W (λ) are equal. The former is nothing but the

generating function of the Poincaré polynomials of the quiver varieties, which

follows immediately from the definition of the standard module and the grading

on it. The latter is expressed by the second author [Nao] in terms of the degree

function D defined on the crystal B(λ)cl of Lakshmibai–Seshadri paths of shape λ

modulo imaginary roots, which are studied by Naito and Sagaki [NS1], [NS2], or

equivalently by using the normalized one-dimensional sums X(λ, µ, t) for dominant

integral weights λ, µ ∈ P+. As a consequence we obtain the following formula,

where L(α, λ) denotes the Lagrangian quiver variety associated with λ ∈ P+ and

α ∈ Q+, and dα is twice the dimension of L(α, λ).

Corollary 1.3 (Corollary 6.10). We have

∑
α∈Q+

dα∑
k=0

dimHk(L(α, λ))tdα−keλ−α =
∑

b∈B(λ)cl

t−2D(b)ewt b

=
∑
µ∈P+

X(λ, µ, t−2) chV (µ).

In particular,
dα∑
k=0

dimHk(L(α, λ))tdα−k =
∑

b∈B(λ)cl
wt b=λ−α

t−2D(b).
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We note that some formulas for the Poincaré polynomials of quiver varieties

have been established ([H], [M], [Nak5] for instance). However, as far as the authors

know, formulas in terms of crystals do not appear in the literature.

Second, we obtain the equality between the Kazhdan–Lusztig type polynomial

Zλµ(t) for the quiver variety and the one-dimensional sum.

Corollary 1.4 (Corollary 6.11). We have

Zλµ(t) = X(λ, µ, t−2).

The article is organized as follows. In Section 2 we recall basic facts on Loewy

series of modules. We also provide a key lemma to be used in the proof of rigidity

of Weyl modules. In Section 3 we give the definition of Weyl modules and prove

that they are rigid. In addition we determine the socle and the Loewy length

of a Weyl module. Most of Sections 4 and 5 is a summary of known results. In

Section 4, after recalling properties of quiver varieties we define standard modules.

In Section 5 we introduce a grading on a standard module and interpret it in

terms of sheaves on a quiver variety. In Section 6 we prove that the gradings

on a Weyl module and a standard module coincide, and deduce some corollaries.

This section also contains discussions on some related subjects such as Lusztig’s

fermionic conjecture, the X = M conjecture and Nakajima’s result on quiver

varieties of type A. In particular we remark that Lusztig’s fermionic conjecture

in [L] essentially follows from the works of Ardonne and Kedem [AK] and of Di

Francesco and Kedem [DFK].

§2. Loewy series and the grading filtrations

§2.1. Loewy series of modules

In this subsection we recall basic notions such as radical, socle and Loewy series

of modules and their properties.

Let A be a ring and M an A-module of finite length. A filtration of A-modules

on M is said to be semisimple if each successive quotient of it is semisimple.

The radical of M , denoted by radM , is the smallest submodule of M such that

the quotient is semisimple. We put rad0M = M and for k ≥ 1, define radkM

inductively by
radkM = rad(radk−1M).

This defines a semisimple filtration on M called the radical series. The socle of M ,

denoted by socM , is the largest semisimple submodule of M . We put soc0M = 0

and for k ≥ 1, define sockM inductively so that

soc(M/sock−1M) = sockM/sock−1M.
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This defines a semisimple filtration on M called the socle series. It is easy to show

that for any semisimple filtration

0 = F lM ⊆ F l−1M ⊆ · · · ⊆ F 1M ⊆ F 0M = M

on M , we have

radkM ⊆ F kM ⊆ socl−kM

for each k. This immediately implies that the lengths of the radical series and the

socle series are equal and smaller than or equal to the length of any semisimple

filtration on M . A Loewy series of an A-module M of finite length is defined to be

a semisimple filtration on M which has this smallest length. The radical series and

the socle series are Loewy series. The length of each Loewy series of M is called

the Loewy length of M .

Definition 2.1. Let A be a ring and M an A-module of finite length. We say

that M is rigid if its radical series and socle series coincide.

The following is obvious from the above argument.

Proposition 2.2. Let A be a ring and M an A-module of finite length. If M is

rigid then M has a unique Loewy series.

§2.2. Filtrations on graded modules

In this article, by grading we always mean a Z-grading, and by a positively graded

ring or module we mean one that is graded by nonnegative integers.

Let A be a graded ring. If A is positively graded then a graded A-module M

is endowed with the filtration defined by F kM =
⊕

s≥kMs. We call it the grading

filtration. Moreover assume that A is a positively graded C-algebra such that any

finite-dimensional A0-module is semisimple, and that M is a finite-dimensional

graded A-module. In this situation, the grading filtration on M is semisimple.

We now slightly modify a proposition in [BGS, Proposition 2.4.1] for our

setting. The proof goes without any change.

Lemma 2.3. Let A be a positively graded C-algebra and suppose that any finite-

dimensional A0-module is semisimple and that A is generated by A1 as an A0-

algebra. Then for a finite-dimensional graded A-module M the following hold:

(i) If M/radM is simple then the radical series of M coincides with the grading

filtration.

(ii) If socM is simple then the socle series of M coincides with the grading filtra-

tion.
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§3. Loewy series of Weyl modules

§3.1. Weyl modules for a current Lie algebra

Let a be an arbitrary Lie algebra over C. The loop Lie algebra associated with a is

the tensor product a⊗C[z, z−1] equipped with the Lie algebra structure given by

[x⊗ f, y⊗ g] = [x, y]⊗ fg for x, y ∈ a and f, g ∈ C[z, z−1]. We denote by a[z, z−1]

this Lie algebra. The current Lie algebra is the Lie subalgebra a⊗C[z] of a[z, z−1]

and denoted by a[z]. We denote by za[z] the Lie subalgebra a⊗ zC[z]. We regard

a as a Lie subalgebra of a[z] by identifying it with a⊗ 1.

Let g be a simple Lie algebra over C. In this subsection, we impose no assump-

tion on g while we will assume that g is of type ADE from the next subsection

on. We fix a Cartan subalgebra h of g and a Borel subalgebra b containing h. The

nilpotent radical of b is denoted by n. Let I be the index set of simple roots. The

simple roots are denoted by αi (i ∈ I) and the fundamental weights by $i (i ∈ I).

We choose Chevalley generators ei, hi, fi (i ∈ I) of g.

Let P be the weight lattice and P+ the set of all dominant integral weights.

Let Q be the root lattice and Q+ its subset consisting of all elements expressed as

sums of simple roots with nonnegative coefficients. For λ, µ ∈ P we say that λ ≥ µ
if λ− µ ∈ Q+.

The Weyl group of g is denoted by W and its longest element by w0. Let ( , )

be the W -invariant nondegenerate symmetric bilinear form on P normalized by

(α, α) = 2 for a long root α.

The universal enveloping algebra U(g[z]) of the current Lie algebra g[z] is

graded by the degree of z. It is obvious that U(g[z])0 = U(g). Note that U(g[z])

satisfies the assumptions of Lemma 2.3, namely it is a positively graded C-algebra

such that any finite-dimensional U(g[z])0-module is semisimple and U(g[z]) is gen-

erated by U(g[z])1 as a U(g[z])0-algebra.

For λ ∈ P+, let V (λ) be the finite-dimensional simple U(g)-module with

highest weight λ. We define the U(g[z])-module structure on V (λ) through the

projection from U(g[z]) to U(g[z])0 = U(g) and denote it also by V (λ). It is

simple as a U(g[z])-module.

Now we give the definition of Weyl modules for the current Lie algebra g[z]

following Chari and Loktev [CL].

Definition 3.1. Let λ ∈ P+. The Weyl module W (λ) is the U(g[z])-module gen-

erated by a nonzero element vλ with the following defining relations:

n[z]vλ = 0, zh[z]vλ = 0, hvλ = 〈h, λ〉vλ for h ∈ h,

f
〈hi,λ〉+1
i vλ = 0 for i ∈ I.
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Proposition 3.2 below is proved by a standard argument, and Proposition 3.3

is immediate from the definition.

Proposition 3.2. The Weyl module W (λ) has a unique simple quotient V (λ).

Proposition 3.3. The Weyl module W (λ) is a graded U(g[z])-module.

We set a grading on W (λ) so that the degree of vλ is zero. Then W (λ) is

positively graded and W (λ)0
∼= V (λ) as U(g)-modules.

As stated in [CL, 1.2.2 Theorem], the following fundamental result is proved

in a way similar to [CP, Theorem 1(ii)] for the case of a loop Lie algebra (see also

[FeL, Theorem 1] for a more general setting).

Theorem 3.4. The Weyl module W (λ) is finite-dimensional.

We state an immediate consequence of Proposition 3.2, Proposition 3.3 and

Theorem 3.4 together with Lemma 2.3(i):

Proposition 3.5. The radical series of W (λ) coincides with the grading filtration.

§3.2. Weyl modules and Demazure modules

In this subsection, we assume that g is of type ADE. We review relations between

Weyl modules and Demazure modules when g is of type ADE.

Let ĝ be the untwisted affine Lie algebra associated with g, namely ĝ =

g[z, z−1] ⊕ Cc ⊕ Cd as a C-vector space, where c is the canonical central element

and d is the degree operator. The Cartan subalgebra ĥ and the Borel subalgebra b̂

are given by ĥ = h⊕ Cc⊕ Cd and b̂ = b⊕ zg[z]⊕ Cc⊕ Cd.

Let Î = I t {0} be the index set of simple roots of ĝ. Let P̂ be the weight

lattice and P̂+ the set of all dominant integral weights. The fundamental weights

are denoted by Λi (i ∈ Î), and the generator of the imaginary roots by δ. We

regard P as a subset of P̂ by $i = Λi − 〈c,Λi〉Λ0 for i ∈ I. Then any Λ ∈ P̂ is

uniquely expressed as Λ = λ + lΛ0 + mδ for some λ ∈ P and integers l,m. The

integer l, which is equal to 〈c,Λ〉, is called the level of Λ.

The Weyl group of ĝ is denoted by Ŵ . The bilinear form on P can be ex-

tended to a Ŵ -invariant nondegenerate symmetric bilinear form ( , ) on P̂ satisfy-

ing (αi,Λj) = δij for i, j ∈ Î and (Λ0,Λ0) = 0. The translation tα by α ∈ Q on P̂

is defined by tα(Λ) = Λ + 〈c,Λ〉α− {(Λ, α) + (1/2)(α, α)〈c,Λ〉}δ for Λ ∈ P̂ . Since

tα ∈ Ŵ for any α ∈ Q, the root lattice Q of g can be regarded as a subgroup of

Ŵ . Then Ŵ is isomorphic to the semidirect product W nQ.

Let L(Λ) be the integrable simple U(ĝ)-module with highest weight Λ ∈ P̂+.

For each w ∈ Ŵ the extremal weight space L(Λ)wΛ is one-dimensional.
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Definition 3.6. Let Λ ∈ P̂+ and w ∈ Ŵ . The Demazure module Lw(Λ) is the

U(b̂)-submodule of L(Λ) generated by the extremal weight space L(Λ)wΛ.

In what follows, we consider Demazure modules which have U(g[z])-module

structures. For λ ∈ P+ we can take w ∈ Ŵ and Λ ∈ P̂+ so that wΛ = w0λ + Λ0.

The choice of Λ is unique. In this situation, it is known that the Demazure module

Lw(Λ) is U(g[z])-stable (see [Nao, a sentence below Remark 3.5] for example). This

Lw(Λ) is positively graded by the eigenvalues for the action of the degree operator

d. Note that the restriction of w0wΛ = λ+ Λ0 to h is equal to λ.

The following theorem, which asserts that a Weyl module is isomorphic to

a Demazure module, was proved by Chari and Loktev [CL, 1.5.1 Corollary] for

type A and by Fourier and Littelmann [FoL, Theorem 7] for type ADE.

Theorem 3.7. Let λ ∈ P+. Take w ∈ Ŵ and Λ ∈ P̂+ so that wΛ = w0λ + Λ0.

Then there exists an isomorphism W (λ) ∼= Lw(Λ) of graded U(g[z])-modules which

sends vλ to an extremal weight vector uw0wΛ of weight w0wΛ.

§3.3. Rigidity

In this subsection we prove that Weyl modules are rigid for the current Lie al-

gebra associated with a simple Lie algebra g of type ADE. Since we proved in

Subsection 3.1 that the radical series of a Weyl module coincides with the grading

filtration, it suffices to show that the socle series also coincides with it. In addition

we determine the socle and the Loewy length of a Weyl module. We assume that

g is of type ADE unless otherwise specified.

Proposition 3.8. The socle of W (λ) is simple.

Proof. By Theorem 3.7, W (λ) is isomorphic to the Demazure module Lw(Λ)

for some w ∈ Ŵ and Λ ∈ P̂+. We see that any nonzero U(g[z])-submodule of

Lw(Λ) contains the highest weight space L(Λ)Λ since g[z] contains the positive

part n⊕ zg[z] of ĝ. Hence the assertion follows.

The desired property of the socle series follows from the above proposition,

Proposition 3.3 and Theorem 3.4 together with Lemma 2.3(ii):

Proposition 3.9. The socle series of W (λ) coincides with the grading filtration.

By Propositions 3.5 and 3.9 we obtain the following, which is the first main

theorem of this article.

Theorem 3.10. The Weyl module W (λ) is rigid.
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Remark 3.11. If g is not of type ADE, namely g is of type BCFG, then the

socle series of the Weyl module W (λ) does not coincide with the grading filtration

in general, while the radical series always coincides with it as proved in Proposi-

tion 3.5. Thus W (λ) may have nonsimple socle and may not be rigid. An example

is given below.

Example 3.12. Let g be of type C2. The simple roots are labelled by I = {1, 2}
so that α1 is a short root and α2 is long. Let λ = 2$1 + $2 and µ = 2$2. Take

w,w′ ∈ Ŵ and Λ,Λ′ ∈ P̂+ so that wΛ = w0λ+ Λ0 and w′Λ′ = w0µ+ Λ0. By [Nao,

Theorem 9.3], there exists an exact sequence

0→ Lw′(Λ
′)→W (λ)→ Lw(Λ)→ 0

of U(g[z])-modules. The following table gives the grading on W (λ).

degree Lw(Λ) Lw′(Λ
′)

0 V (2$1 +$2)

1 V (2$1)⊕ V ($2) V (2$2)

2 V ($2) V (2$1)

3 V (0)

Notice the composition factors V (0) in degree 3 and V ($2) in degree 2. It is known

that no nontrivial extensions between V (0) and V ($2) exist (see [Ko, Proposi-

tion 3.1 and Remark 3.5] for example; the highest root θ is given by 2$1 here).

Therefore the socle of W (λ) contains V (0) ⊕ V ($2), hence is not simple (in this

case it is easy to check that the socle coincides with V (0) ⊕ V ($2) exactly). We

also see that W (λ) is not rigid.

In this example, the Weyl module W (λ) is not isomorphic to any Demazure

module but has a filtration with each successive quotient isomorphic to a Demazure

module. This phenomenon is common for general simple Lie algebras, as proved

by the second author [Nao].

To end this section we determine the socle and the Loewy length of W (λ).

Lemma 3.13. Let λ ∈ P+.

(i) There exists a unique minimal element λmin in {µ ∈ P+ | µ ≤ λ}.
(ii) Either λmin = $i for some i ∈ I such that 〈c,Λi〉 = 1, or λmin = 0.

(iii) Take w ∈ Ŵ and Λ ∈ P̂+ so that wΛ = w0λ+ Λ0. Then

Λ = λmin + Λ0 + (1/2){(λ, λ)− (λmin, λmin)}δ.
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Proof. We claim that for µ, µ′ ∈ P+, if µ and µ′ are minimal and satisfy µ−µ′ ∈ Q
then µ = µ′. Write µ − µ′ =

∑
j∈I cjαj ∈ Q and put I+ = {j ∈ I | cj > 0} and

I− = {j ∈ I | cj < 0}. Consider ν = µ −
∑
j∈I+ cjαj = µ′ +

∑
j∈I− cjαj . For

i /∈ I+, we have

〈hi, ν〉 = 〈hi, µ〉 −
∑
j∈I+

cj〈hi, αj〉 ≥ 0,

and for i /∈ I−, we also have

〈hi, ν〉 = 〈hi, µ′〉+
∑
j∈I−

cj〈hi, αj〉 ≥ 0.

Hence ν is dominant, which implies µ = µ′ = ν by the minimality of µ and µ′.

The claim is proved.

(i) Since {µ ∈ P+ | µ ≤ λ} is a nonempty finite set, it has a minimal element.

By the claim, it is unique.

(ii) It is known that {$i | 〈c,Λi〉 = 1} ∪ {0} gives a system of representatives

of P/Q (see [B, Chapter VI, §2, Corollary of Proposition 6] for example). Since

the above elements are minimal in P+, the claim implies that λmin is one of them.

(iii) Put ξ = λ − λmin ∈ Q+. We calculate t−ξw0wΛ = t−ξ(λ + Λ0) by a

formula in [Kac, (6.5.3)]:

t−ξw0wΛ = t−ξ(λ+ Λ0) = λ+ Λ0 − ξ + (1/2){(λ+ Λ0, λ+ Λ0)− (λmin, λmin)}δ
= λmin + Λ0 + (1/2){(λ, λ)− (λmin, λmin)}δ,

where the third equality holds since (λ,Λ0) = (Λ0,Λ0) = 0. By (ii), λmin + Λ0 is

equal to some fundamental weight Λi and hence t−ξw0wΛ ∈ P̂+. Since Λ ∈ P̂+,

this implies that t−ξw0wΛ = Λ.

In the following we use the symbol λmin for the above unique minimal element.

Proposition 3.14. Let λ ∈ P+.

(i) The socle of W (λ) is isomorphic to V (λmin).

(ii) The Loewy length of W (λ) is equal to (1/2){(λ, λ)− (λmin, λmin)}+ 1.

Proof. Take w ∈ Ŵ and Λ ∈ P̂+ so that wΛ = w0λ+ Λ0. Then W (λ) ∼= Lw(Λ) by

Theorem 3.7.

(i) Recall that the socle of W (λ) is simple by Proposition 3.8. Under the

isomorphism W (λ) ∼= Lw(Λ), the socle of W (λ) is isomorphic to the U(g[z])-

submodule generated by the highest weight space L(Λ)Λ. It is isomorphic to

V (Λ|h) = V (λmin).
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(ii) The grading filtration on W (λ) gives its Loewy series by Proposition 3.5.

Hence the Loewy length is equal to max{k |W (λ)k 6= 0}+ 1. By Lemma 3.13(iii),

max{k |W (λ)k 6= 0} is equal to (1/2){(λ, λ)− (λmin, λmin)}.

Remark 3.15. In Section 6, the integer (λ, λ) − (λmin, λmin) appearing in the

Loewy length of W (λ) will be interpreted as the dimension of the nonsingular

quiver variety M(λ− λmin, λ) and also of the affine quiver variety M0(λ).

§4. Quiver varieties and standard modules

In the remainder of this article we assume that g is of type ADE. Any algebraic

variety (or variety for short) is assumed to be over C and not necessarily irreducible

or connected. The dimension of an algebraic variety always means the complex

dimension.

§4.1. Quiver varieties

Quiver varieties were introduced by Nakajima [Nak2] attached to graphs with

some additional data in terms of hyper-Kähler quotients. Later in [Nak3] they were

reformulated in terms of the geometric invariant theory. We denote by M(α, λ) and

M0(α, λ) the quiver varieties associated with λ ∈ P+ and α ∈ Q+; they correspond

to M(v,w) and M0(v,w) defined in [Nak3, Section 3] respectively, by identifying

α =
∑
i∈I viαi ∈ Q+ with v = (vi)i∈I ∈ (Z≥0)I and λ =

∑
i∈I wi$i ∈ P+ with

w = (wi)i∈I ∈ (Z≥0)I . Note that we consider the quiver varieties only for the

Dynkin diagram of the simple Lie algebra g of type ADE.

Let us gather basic properties of quiver varieties. See [Nak2], [Nak3] and

[Nak4] for proofs. Note that some of the properties stated below hold only for type

ADE, and not for an arbitrary graph.

• For λ ∈ P+ and α ∈ Q+, M(α, λ) is a possibly empty nonsingular quasi-

projective variety and M0(α, λ) is an affine variety.

• There exists a projective morphism π : M(α, λ)→M0(α, λ).

• The variety M(α, λ) has a symplectic structure.

The variety M0(α, λ) has a distinguished point denoted by 0. We define the

closed subvariety L(α, λ) of M(α, λ) as the fiber π−1(0) of the point 0 under the

morphism π.

• The variety L(α, λ) is a Lagrangian subvariety of M(α, λ). In particular,

dimL(α, λ) = (1/2) dimM(α, λ).

• The variety L(α, λ) is homotopic to M(α, λ).
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• The variety M(α, λ) is nonempty if and only if so is L(α, λ), and this is equivalent

to the weight space of V (λ) of weight λ− α being nonzero.

• If M(α, λ) is nonempty then the dimension of M(α, λ) is equal to (λ, λ) −
(λ− α, λ− α).

• For α, β ∈ Q+ with α ≤ β, we have a closed embedding M0(α, λ) ↪→M0(β, λ)

which sends 0 to 0. Moreover this embedding is the identity for sufficiently

large α, β.

We put dα = dimM(α, λ) for α ∈ Q+; here λ ∈ P+ is fixed and omitted in

the notation. We put

M(λ) =
⊔

α∈Q+

M(α, λ), L(λ) =
⊔

α∈Q+

L(α, λ), M0(λ) =
⋃

α∈Q+

M0(α, λ).

Note that in [Nak4] the symbol M0(∞,w) was used instead of M0(λ). The com-

posite M(α, λ) → M0(α, λ) ↪→ M0(λ) is also simply denoted by π. We have a

stratification M0(λ) =
⊔
α∈Q+

Mreg
0 (α, λ), where each stratum Mreg

0 (α, λ) satisfies

the following.

• For λ ∈ P+ and α ∈ Q+, Mreg
0 (α, λ) is a possibly empty open subset of M0(α, λ).

It is a nonsingular locally closed subvariety of M0(λ).

• For λ ∈ P+ and α ∈ Q+, Mreg
0 (α, λ) is nonempty if and only if λ− α ∈ P+.

• The morphism π induces an isomorphism π−1(Mreg
0 (α, λ)) ∼= Mreg

0 (α, λ). If

Mreg
0 (α, λ) is nonempty then π−1(Mreg

0 (α, λ)) is a dense subset of M(α, λ).

Lemma 4.1. When λ ∈ P+ is fixed and α ∈ Q+ varies, the dimension of M(α, λ)

is maximal if and only if λ−α is W -conjugate to λmin. In particular, the maximum

is equal to (λ, λ)− (λmin, λmin).

Proof. It is enough to consider the value (λ, λ)− (λ−α, λ−α) for various α ∈ Q+

such that λ − α ∈ P+ since the bilinear form ( , ) is W -invariant. We easily see

that for µ, ν ∈ P+, if µ < ν then (µ, µ) < (ν, ν). Thus by Lemma 3.13(i), max{dα |
α ∈ Q+, λ− α ∈ P+} is attained precisely when λ− α = λmin.

Lemma 4.2. The dimension of M0(λ) is equal to dimM(λ− λmin, λ) = (λ, λ)−
(λmin, λmin).

Proof. Since we have the stratification M0(λ) =
⊔
α∈Q+

Mreg
0 (α, λ), the dimension

of M0(λ) is equal to max{dimMreg
0 (α, λ) | α ∈ Q+}. For λ ∈ P+ and α ∈ Q+ such

that Mreg
0 (α, λ) is nonempty, which is equivalent to λ− α ∈ P+, we have

dimMreg
0 (α, λ) = dimπ−1(Mreg

0 (α, λ)) = dimM(α, λ).

By Lemma 4.1, the maximum of the above is reached when λ− α = λmin.
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§4.2. Standard modules

In this subsection we recall the construction of standard modules for the current

Lie algebra g[z] via quiver varieties. For an algebraic variety X we denote by

H•(X) the Borel–Moore homology group of X with complex coefficients. We call

it simply the homology group of X.

For λ ∈ P+ and α, β ∈ Q+, we define the variety Z(α, β;λ) as the fiber

product

Z(α, β;λ) = M(α, λ)×M0(λ) M(β, λ)

and Z(λ) similarly as

Z(λ) = M(λ)×M0(λ) M(λ).

Obviously, Z(λ) =
⊔
α,β∈Q+

Z(α, β;λ). By the general theory of the convolution

product (see [CG, 2.7]), the homology group H•(Z(λ)) has a C-algebra structure

via convolution and H•(L(λ)) is an H•(Z(λ))-module.

For each λ ∈ P+, Varagnolo [V, Section 4, Theorem] constructed an algebra

morphism from the Yangian associated with g to the equivariant homology group

of Z(λ) with respect to a group action, which is an analogy of a result of Nakajima

[Nak4] for quantum loop algebras and equivariant K-homology groups. This makes

the equivariant homology group of L(λ) a module over the Yangian. By forgetting

the group action, we deduce the following.

Theorem 4.3. For each λ ∈ P+, there exists a morphism of C-algebras from

U(g[z]) to the homology group H•(Z(λ)). In particular, H•(L(λ)) is endowed with

a U(g[z])-module structure.

We denote by M(λ) the U(g[z])-module H•(L(λ)) and call it the standard

module. We see that the subspace H•(L(α, λ)) corresponds to the h-weight space

of M(λ) of weight λ − α from the explicit definition of the morphism stated in

Theorem 4.3.

Although the following seems to be known, we give a proof for completeness.

Proposition 4.4. We have an isomorphism M(λ) ∼= W (λ) of U(g[z])-modules.

Proof. By an argument similar to that in [Nak4, Proposition 13.3.1], we can show

that M(λ) is generated by the one-dimensional subspace H•(L(0, λ)) and that a

generator taken from this space satisfies the defining relations of W (λ). Therefore

there exists a surjective morphism from W (λ) to M(λ). Thus it suffices to show

that their dimensions are equal. The dimension of M(λ) is equal to the dimension

of H•(L(λ)) by definition, and it is known by [Nak4, Theorem 14.1.2] to be equal
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to the product of the dimensions of the fundamental representations of the cor-

responding quantum loop algebra. Then by [FoL, Corollary 2], it is equal to the

dimension of W (λ).

§5. Cohomological gradings

Most of this section is taken from [CG], in which a general theory applicable to

our setting is developed. See [CG] for details.

§5.1. Gradings on the convolution algebra and the standard module

We introduce graded structures on the convolution algebra and its standard mod-

ule given in Section 4. Put A = H•(Z(λ)) and M = H•(L(λ)). A formula in [CG,

(2.7.9)] says that the convolution changes the degree of the homology groups as

follows:

Hk(Z(α, β;λ))×Hl(Z(β, γ;λ))→ Hk+l−2dβ (Z(α, γ;λ)),

Hk(Z(α, β;λ))×Hl(L(β, λ))→ Hk+l−2dβ (L(α, λ)).

Put

H[k](Z(λ)) =
⊕

α,β∈Q+

Hdα+dβ−k(Z(α, β;λ))

and

H[k](L(λ)) =
⊕
α∈Q+

Hdα−k(L(α, λ))

for each k. It is easy to see by the above formula that A is a graded C-algebra with

A =
⊕

kH[k](Z(λ)) and that M is a graded A-module with M =
⊕

kH[k](L(λ))

[CG, Lemma 8.9.5 and Proposition 8.9.9(a)].

§5.2. Sheaf-theoretic analysis of the convolution algebra

For an algebraic variety X we denote by Db(X) the bounded derived category of

constructible complexes of sheaves on X. The constant sheaf CX on X is regarded

as an object of Db(X) concentrated in degree zero.

We write π∗ : Db(M(α, λ))→ Db(M0(λ)) for the right derived functor of the

proper pushforward of π : M(α, λ) → M0(λ). We denote by Ext•(F ,G) the Ext

group for objects F ,G of Db(M0(λ)).

Put Lα = π∗CM(α,λ)[dα] for α ∈ Q+ and L =
⊕

α∈Q+
Lα, which are ob-

jects of Db(M0(λ)). The Ext group Ext•(L,L) has a graded C-algebra structure

with the Yoneda product. For each k and α, β ∈ Q+, we have an isomorphism

Hdα+dβ−k(Z(α, β;λ)) ∼= Extk(Lα,Lβ) of C-vector spaces [CG, Lemma 8.6.1].

Hence H[k](Z(λ)) and Extk(L,L) are isomorphic. In fact, this isomorphism in-

duces that of graded C-algebras [CG, Theorem 8.6.7].
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Proposition 5.1. There exists an isomorphism H•(Z(λ)) ∼= Ext•(L,L) of graded

C-algebras.

Let i0 : {0} → M0(λ) be the inclusion. We denote by i!0 : Db(M0(λ)) →
Db({0}) the right adjoint of the right derived functor of the proper pushforward

of i0. The cohomology group H•(i!0L) is a graded Ext•(L,L)-module. We have an

isomorphism Hdα−k(L(α, λ)) ∼= Hk(i!0Lα) of C-vector spaces [CG, Lemma 8.5.4],

and this induces an isomorphism H•(L(λ)) ∼= H•(i!0L) compatible with their

graded module structures [CG, Proposition 8.6.16]. A precise statement is the

following.

Proposition 5.2. For each k, there exists an isomorphism H[k](L(λ)) ∼= Hk(i!0L)

of C-vector spaces such that the following diagram commutes:

H[k](Z(λ))×H[l](L(λ)) //

∼=
��

H[k+l](L(λ))

∼=
��

Extk(L,L)×H l(i!0L) // Hk+l(i!0L)

From the fact that π : M(α, λ) → M0(λ) is semismall, proved by Nakajima

[Nak3, Corollary 10.11], it follows that L is a perverse sheaf on M0(λ). Hence

Extk(L,L) = 0 for k < 0. Thus A = H•(Z(λ)) ∼= Ext•(L,L) is positively graded.

By the decomposition theorem together with semismallness of π, the complex L
decomposes into a direct sum of simple perverse sheaves on M0(λ) [CG, The-

orem 8.4.8 and Proposition 8.9.3]. It was proved by Nakajima [Nak4, Proposi-

tion 15.3.2, see also Theorem 14.3.2(1)] that L decomposes as

L ∼=
⊕
µ∈P+

µ≤λ

Vµ ⊗ IC(Mreg
0 (λ− µ, λ),CMreg

0 (λ−µ,λ)),

where IC(Mreg
0 (λ − µ, λ),CMreg

0 (λ−µ,λ)) is the intersection cohomology complex

associated with the constant sheaf on the stratum Mreg
0 (λ − µ, λ) and Vµ is

a finite-dimensional C-vector space whose dimension counts the multiplicity of

the corresponding intersection cohomology complex. The decomposition implies

that A0 = Ext0(L,L) ∼=
⊕

µ End(Vµ)⊕mµ and hence A0 is a finite-dimensional

semisimple C-algebra. Here mµ denotes the number of irreducible components

of Mreg
0 (λ − µ, λ). (In fact, mµ = 1 for every µ since M(λ − µ, λ) is known to

be connected. However we make no use of connectedness of quiver varieties. See

Corollary 6.3 and Remark 6.4.) Each Vµ is regarded as a simple A-module through

the projection A → A0. Then the simple A-module Vµ is regarded as a U(g[z])-

module through the morphism U(g[z]) → A = H•(Z(λ)) of Theorem 4.3. It is a
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simple U(g[z])-module and is isomorphic to V (µ) by [Nak4, Proposition 15.3.2,

see also Theorem 14.3.2(3)].

The following two objects, the t-analog of the character and the Kazhdan–

Lusztig type polynomial, were introduced by Nakajima [Nak5].

Definition 5.3. We define the t-analog χt(M(λ)) of the character of the standard

module M(λ) by

χt(M(λ)) =
∑
α∈Q+

dα∑
k=0

dimHk(L(α, λ))tdα−keλ−α.

Definition 5.4. We define the polynomial Zλµ(t) by

Zλµ(t) =
∑
k

dimHk(i!0IC(Mreg
0 (λ− µ, λ),CMreg

0 (λ−µ,λ)))t
k

and call it the Kazhdan–Lusztig type polynomial for the stratum Mreg
0 (λ−µ, λ) of

the quiver variety.

The standard module M(λ) has a graded module structure as M(λ) = M =

H•(i!0L) over the positively graded C-algebraA = Ext•(L,L). The associated grad-

ing filtration is semisimple since A0 = Ext0(L,L) is semisimple. By applying the

functor H•(i!0(−)) to L, we see that each coefficient dimHk(i!0IC(Mreg
0 (λ− µ, λ),

CMreg
0 (λ−µ,λ))) of Zλµ(t) gives the composition multiplicity of the simple mod-

ule V (µ) in Hk(i!0L).

It is known from [Nak4, Theorem 7.3.5] that H[2k+1](L(λ)) vanishes for all k.

We redefine the grading on M(λ) by M(λ)k = H[2k](L(λ)), removing the su-

perfluous odd terms. Although vanishing of H[2k+1](Z(λ)) has not been proved

so far, this does not affect the module structure of M(λ), for every odd term

H[2k+1](Z(λ)) acts by zero on M(λ) as H[2k+1](L(λ)) = 0. Under this new grad-

ing, the length of the grading filtration on M(λ) is given as follows.

Proposition 5.5. The length of the grading filtration on M(λ) is equal to

(1/2) dimM0(λ) + 1 = (1/2) dimM(λ− λmin, λ) + 1

= (1/2){(λ, λ)− (λmin, λmin)}+ 1.

Proof. By the definition of the grading, the length of the grading filtration is equal

to (1/2) max{dα | α ∈ Q+}+ 1. We have max{dα | α ∈ Q+} = dλ−λmin
= (λ, λ)−

(λmin, λmin) by Lemma 4.1, and this is equal to dimM0(λ) by Lemma 4.2.
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§6. Coincidence of the gradings and its applications

§6.1. Coincidence of the gradings

The following is the second main theorem of this article.

Theorem 6.1. Under the isomorphism M(λ) ∼= W (λ), the gradings on both

sides coincide. The associated grading filtration gives a unique Loewy series. The

Loewy length is equal to (1/2) dimM0(λ) + 1 = (1/2) dimM(λ − λmin, λ) + 1 =

(1/2){(λ, λ)− (λmin, λmin)}+ 1.

Proof. To prove that the two gradings coincide, recall that W (λ) is rigid by The-

orem 3.10 and hence its Loewy series is unique. Since the grading filtration on

M(λ) is semisimple, it suffices to check that its length coincides with the Loewy

length of W (λ). This follows from Propositions 3.14(ii) and 5.5. All the remaining

assertions are now proved.

Remark 6.2. In fact coincidence of the gradings in Theorem 6.1 can also be

deduced from the fact that the morphism U(g[z]) → H•(Z(λ)) in Theorem 4.3

is a morphism of graded C-algebras, which is proved by checking directly that

the images of the homogeneous generators of U(g[z]) have the appropriate degree.

Although this was not stated in [V] explicitly, it seems to be known to specialists.

The authors were informed of it by Hiraku Nakajima.

Corollary 6.3. The quiver variety M(α, λ) of type ADE and its Lagrangian sub-

variety L(α, λ) are connected if they are nonempty.

Proof. Let α ∈ Q+ be such that L(α, λ) is nonempty. Since L(α, λ) is homotopic to

M(α, λ), it suffices to show that dimH0(L(α, λ)) = 1. Recall that W (λ) ∼= Lw(Λ)

where w0wΛ = λ+Λ0. By Theorem 6.1, we see that H0(L(α, λ)) corresponds to the

ĥ-weight space of Lw(Λ) of weight (λ− α) + Λ0 + (dα/2)δ under the isomorphism

M(λ) ∼= W (λ) ∼= Lw(Λ). This weight is equal to t−α(λ + Λ0) = t−αw0wΛ, an

extremal weight of L(Λ), and hence its weight space is one-dimensional. This

completes the proof.

Remark 6.4. Connectedness of quiver varieties for arbitrary graphs has already

been proved by Crawley-Boevey [CB]. Here we deduce this fact for the quiver

varieties of type ADE as a corollary of our result.

§6.2. The gradings on Weyl modules and crystals

The grading on the standard module M(λ) comes from the degree of the homology

group of the quiver variety as explained in Section 5. The grading on the Weyl
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module W (λ) is related to the energy function defined on a certain crystal, which

was proved by the second author [Nao]. In this subsection, we review this subject.

Together with the fact that both gradings coincide as proved in Theorem 6.1, we

obtain nontrivial relations between quiver varieties and crystals (Corollaries 6.10

and 6.11).

Let M be a finite-dimensional graded U(g[z])-module. We denote by Mµ the

h-weight space of M of weight µ ∈ P . Since the action of h has degree zero, we

have M =
⊕

k∈Z
⊕

µ∈P (Mk ∩Mµ). The graded character gchtM of M is defined

by

gchtM =
∑
k∈Z

∑
µ∈P

dim(Mk ∩Mµ)tkeµ.

This is a refinement of the usual h-character of M , as gch1M = chM . The graded

composition multiplicity of the simple module V (µ) in M is the polynomial defined

by ∑
k∈Z

[Mk : V (µ)]tk,

where [Mk : V (µ)] denotes the composition multiplicity of V (µ) in Mk. We re-

mark that the t-analog χt(M(λ)) of the character and the Kazhdan–Lusztig type

polynomial Zλµ(t) introduced in Section 5 are nothing but the graded character

of M(λ) and the graded composition multiplicity of V (µ) in M(λ) respectively,

where the grading is the original one. Hence we have

χt(M(λ)) = gcht2 W (λ) and Zλµ(t) =
∑
k≥0

[W (λ)k : V (µ)]t2k

by coincidence of the gradings in Theorem 6.1.

Let us turn to crystals. We refer to the seminal paper by Kashiwara [Kas1]

and the standard textbook [HK] for the basic theory of crystals and to [Kas2] for

the level-zero fundamental representations of the quantum affine algebra U ′q(ĝ) and

their crystal bases. In what follows, we treat only P̂cl-crystals, where P̂cl = P̂ /Zδ
is the weight lattice of U ′q(ĝ). Note that P can be regarded as a subset of P̂cl. Thus

for a P̂cl-crystal with level-zero weight, the weight map wt takes its values in P .

The definition of one-dimensional sums was given by Hatayama, Kuniba,

Okado, Takagi and Yamada [HKOTY] and by Hatayama, Kuniba, Okado, Takagi

and Tsuboi [HKOTT] motivated by the study of solvable lattice models. Here we

need them only for tensor products of the crystal bases of level-zero fundamental

representations, while they are generally defined for a wider class of crystals. Our

treatment follows the approach by Naito and Sagaki [NS2]. We denote by Bi the

crystal base of the level-zero fundamental representation of the quantum affine

algebra U ′q(ĝ) associated with the fundamental weight $i for i ∈ I. For a given
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sequence i = (i1, . . . , il) of elements of I we put Bi = Bi1 ⊗ · · · ⊗ Bil . Let Di be

the energy function defined on the crystal Bi, and Dext
i the extra constant, which

is a certain integer, as in [NS2, Subsection 4.1]. We denote by B(λ)cl the crystal

consisting of all Lakshmibai–Seshadri paths of shape λ ∈ P+ modulo δ, which was

proved by Naito and Sagaki [NS1, Corollary 4.4] to be isomorphic to Bi for every i

satisfying
∑l
k=1$ik = λ. Let D be the degree function on B(λ)cl defined in [NS2,

Subsection 3.1]. The following theorem was proved in [NS2, Theorem 4.1.1].

Theorem 6.5. Under the isomorphism Bi
∼= B(λ)cl, the function Di − Dext

i on

Bi corresponds to the degree function D on B(λ)cl.

Following [HKOTY], [HKOTT] and [NS2] we introduce a polynomial called

the one-dimensional sum and its variant.

Definition 6.6. We define the one-dimensional sum X(Bi, µ, t) associated with

the crystal Bi and µ ∈ P+ by

X(Bi, µ, t) =
∑
b∈Bi

ẽib=0 (i∈I)
wt b=µ

tDi(b).

For λ, µ ∈ P+, we define the polynomial X(λ, µ, t) by

X(λ, µ, t) =
∑

b∈B(λ)cl
ẽib=0 (i∈I)

wt b=µ

tD(b).

Remark 6.7. Let λ and µ be elements of P+ and take a sequence i = (i1, . . . , il)

of elements of I so that
∑l
k=1$ik = λ. Then

X(λ, µ, t) = t−D
ext
i X(Bi, µ, t)

by Theorem 6.5.

Remark 6.8. In general, X(λ, µ, t) is a polynomial in t−1 whose coefficients are

nonnegative integers since the degree function takes its values in Z≤0 by its defi-

nition.

The following theorem was proved by the second author [Nao, Theorem 9.2

and Corollary 9.6], generalizing a result in [CL] which concerns type A.

Theorem 6.9. Let λ ∈ P+.

(i) We have

gchtW (λ) =
∑

b∈B(λ)cl

t−D(b)ewt b =
∑
µ∈P+

X(λ, µ, t−1) chV (µ).
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(ii) For µ ∈ P+, we have∑
k≥0

[W (λ)k : V (µ)]tk = X(λ, µ, t−1).

We obtain the following corollary of Theorems 6.1 and 6.9, a formula for the

Poincaré polynomials of quiver varieties, as an equality for the graded character.

Corollary 6.10. We have

∑
α∈Q+

dα∑
k=0

dimHk(L(α, λ))tdα−keλ−α =
∑

b∈B(λ)cl

t−2D(b)ewt b

=
∑
µ∈P+

X(λ, µ, t−2) chV (µ).

In particular,
dα∑
k=0

dimHk(L(α, λ))tdα−k =
∑

b∈B(λ)cl
wt b=λ−α

t−2D(b).

We also obtain an equality for the graded composition multiplicity. Recall that

Zλµ(t) denotes the Kazhdan–Lusztig type polynomial for the stratumMreg
0 (λ−µ, λ)

of the quiver variety.

Corollary 6.11. We have Zλµ(t) = X(λ, µ, t−2).

§6.3. Lusztig’s fermionic conjecture and the X = M conjecture

Lusztig [L] conjectured that the Poincaré polynomials of quiver varieties can be

described in terms of fermionic forms also introduced in [HKOTY] and [HKOTT].

The so-called X = M conjecture asserts that the one-dimensional sum and the

fermionic form coincide up to some constant power. We discuss these subjects in

this subsection.

For a sequence m = (m
(i)
k )i∈I, k∈Z>0

of nonnegative integers with finitely many

nonzero terms and λ ∈ P+, we define the integer p
(i)
k (m, λ) for i ∈ I and k ∈ Z>0

by

p
(i)
k (m, λ) = 〈hi, λ〉 −

∑
j∈I

(αi, αj)
∑
l≥1

min{k, l}m(j)
l ,

and the integer c(m, λ) by

c(m, λ) =
1

2

∑
i,j∈I

(αi, αj)
∑
k,l≥1

min{k, l}m(i)
k m

(j)
l −

∑
i∈I

∑
k≥1

〈hi, λ〉m(i)
k .
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For λ, µ ∈ P+, we define the subset S(λ, µ) of Z(I×Z>0)
≥0 by

S(λ, µ) =
{

m
∣∣∣ ∑
i∈I

∑
k≥1

km
(i)
k αi = λ− µ

}
.

With this notation, we define the fermionic form M(λ, µ, t) associated with λ, µ

∈ P+ by

M(λ, µ, t) =
∑

m∈S(λ,µ)

tc(m,λ)
∏

i∈I,k≥1

[
p

(i)
k (m, λ) +m

(i)
k

m
(i)
k

]
t

,

where the Gaussian binomial coefficients are defined in the usual manner with

t-integers as [n]t = (tn − 1)/(t− 1) and we set[
m

n

]
t

= 0 for m < n.

Then M(λ, µ, t) turns out to be a polynomial in t−1 whose coefficients are non-

negative integers. Lusztig’s fermionic conjecture [L, Conjecture A] is that

∑
α∈Q+

dα∑
k=0

dimHk(L(α, λ))tdα−keλ−α =
∑
µ∈P+

M(λ, µ, t−2) chV (µ).

As pointed out in [Nao, Section 9], the results of Ardonne and Kedem [AK] and

of Di Francesco and Kedem [DFK], together with [FoL], imply that the graded

composition multiplicity of the simple module V (µ) in the Weyl module W (λ)

coincides with the fermionic form M(λ, µ, t−1). Then by Theorem 6.1, we conclude

that Lusztig’s conjecture is true.

Mozgovoy [M] proved a variant of the above formula. It implies, with an easy

argument, that

∑
α∈Q+

dα∑
k=0

dimHk(L(α, λ))tdα−keλ−α =
∑
µ∈P+

N(λ, µ, t−2) chV (µ),

where the polynomial N(λ, µ, t) is defined in a way similar to M(λ, µ, t) with

different binomial coefficients. It was conjectured in [HKOTY] and [HKOTT] that

M(λ, µ, t) = N(λ, µ, t). The above formulas imply that the conjecture is also true.

Also as explained in [Nao, Section 9], the equality X(λ, µ, t) = M(λ, µ, t)

holds by combining the results mentioned above and Theorem 6.9. Indeed both

X(λ, µ, t−1) and M(λ, µ, t−1) coincide with the graded composition multiplicity

of V (µ) in W (λ). Thus the X = M conjecture for the case of tensor products of

level-zero fundamental representations has now been confirmed.
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So far we have achieved the equalities

Zλµ(t) = X(λ, µ, t−2) = M(λ, µ, t−2) = N(λ, µ, t−2).

Remark 6.12. One-dimensional sums and fermionic forms are both defined for

tensor products of Kirillov–Reshetikhin modules for quantum affine algebras, and

it was conjectured in [HKOTY] and [HKOTT] that they coincide up to some

constant power. In a general setting, this conjecture is still open. The authors

do not know whether quiver varieties are related to them for general Kirillov–

Reshetikhin modules or not.

§6.4. Type A

In this subsection, we invoke two previous works for type A, [Nak1] by Nakajima

and [CL] by Chari and Loktev. Let g be the simple Lie algebra of type An. The

index set I is identified with {1, . . . , n} with the usual numbering as 〈hi, αj〉 =

2δi,j − δi,j−1 − δi,j+1.

Nakajima [Nak1] calculated the Poincaré polynomials of quiver varieties of

type A in terms of tableaux. We identify as usual the set P+ of all dominant

integral weights with the set of all partitions of length less than or equal to n. Let

T (α, λ) be the set of all row-increasing tableaux of shape tλ and weight λ − α.

Nakajima defined a certain function l on T (α, λ) and proved [Nak1, Theorem 5.15]

dα∑
k=0

dimHk(L(α, λ))tk =
∑

T∈T (α,λ)

t2l(T ).

By comparing this formula with ours in Corollary 6.10, we see that there exists an

abstract bijection between the set {b ∈ B(λ)cl | wt b = λ−α} and T (α, λ) such that

the degree function D corresponds to the function −(1/2)dα+ l. We should give an

explicit description of the bijection. It is known that B(λ)cl can be identified with

the set of all column-increasing tableaux of shape λ. By transposing the tableaux,

we obtain a bijection. However this naive construction does not have the property

mentioned above. Thus we need a further study to understand a relation between

Nakajima’s result and ours.

Chari and Loktev [CL] gave a quite explicit description of the graded charac-

ters of Weyl modules for type A. In our setting, it gives an explicit formula for the

Poincaré polynomials of quiver varieties of type A. Put αi,j =
∑j
s=i αs for i, j ∈ I

with i ≤ j. These elements form the positive roots of the root system of type An.

For α ∈ Q+ we define the subset S(α) of Zn(n+1)/2
≥0 by

S(α) =
{

(li,j)1≤i≤j≤n

∣∣∣ ∑
1≤i≤j≤n

li,jαi,j = α
}
.
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A formula in [CL, 2.1.4 Proposition] yields

dα∑
k=0

dimHk(L(α, λ))tdα−k

=
∑

(li,j)∈S(α)

∏
1≤i≤j≤n

[
〈hi, λ〉+

∑n
s=j+1 li+1,s −

∑n
s=j+1 li,s

li,j

]
t2
.
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Boston, Boston, MA, 1997. Zbl 0879.22001 MR 1433132

[CB] W. Crawley-Boevey, Geometry of the moment map for representations of quivers,
Compos. Math. 126 (2001), 257–293. Zbl 1037.16007 MR 1834739

[DFK] P. Di Francesco and R. Kedem, Proof of the combinatorial Kirillov–Reshetikhin con-
jecture, Int. Math. Res. Notices 2008, no. 7, art. ID rnn006, 57 pp. Zbl 1233.17010
MR 2428305

[FeL] B. Feigin and S. Loktev, Multi-dimensional Weyl modules and symmetric functions,
Comm. Math. Phys. 251 (2004), 427–445. Zbl 1100.17005 MR 2102326

[FoL] G. Fourier and P. Littelmann, Weyl modules, Demazure modules, KR-modules, crys-
tals, fusion products and limit constructions, Adv. Math. 211 (2007), 566–593.
Zbl 1114.22010 MR 2323538

[HKOTT] G. Hatayama, A. Kuniba, M. Okado, T. Takagi, and Z. Tsuboi, Paths, crystals and
fermionic formulae, in MathPhys odyssey, 2001, Progr. Math. Phys. 23, Birkhäuser
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