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Biadjointness in Cyclotomic
Khovanov—Lauda—Rouquier Algebras

by

Masaki KASHIWARA

Abstract

We prove that a pair of functors EX* and F2 appearing in the categorification of irreducible
highest weight modules of quantum groups via cyclotomic Khovanov—Lauda—Rouquier
algebras is a biadjoint pair.
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§1. Introduction

Lascoux—Leclerc-Thibon ([13]) conjectured that the irreducible representations of
Hecke algebras of type A are controlled by the upper global basis ([8, 9]) (or the
dual canonical basis [16]) of the basic representation of the affine quantum group
U, (Aél)). Then Ariki ([1]) proved this conjecture by generalizing it to cyclotomic
affine Hecke algebras. The crucial ingredient there was the fact that the cyclotomic
affine Hecke algebras categorify the irreducible highest weight representations of
U (Aél)). Because of the lack of grading on the cyclotomic affine Hecke algebras,
these algebras do not categorify the representation of the quantum group.

Then Khovanov-Lauda and Rouquier introduced independently a new family
of graded algebras, a generalization of affine Hecke algebras of type A, in order
to categorify arbitrary quantum groups ([10, 11, 17]). These algebras are called
Khovanov-Lauda—Rouquier algebras or quiver Hecke algebras.

Let U,(g) be the quantum group associated with a symmetrizable Cartan
datum and let {R(f)}scq+ be the corresponding Khovanov-Lauda-Rouquier al-
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gebras. Then it was shown in [10, 11] that there exists an algebra isomorphism

Ua(a) ~ €P K(Proj(R(B))).
BeQT

where Uy (g) is the integral form of the half U, (g) of U,(g) with A = Z[g,q '], and
K (Proj(R(p))) is the Grothendieck group of finitely generated projective graded
R(B)-modules. Moreover, when the generalized Cartan matrix is a symmetric ma-
trix, Varagnolo and Vasserot proved that the lower global basis introduced by the
author or Lusztig’s canonical basis corresponds to the isomorphism classes of in-
decomposable projective R-modules under this isomorphism ([18]).

For each dominant integral weight A € PT, the algebra R(f) has a special
quotient R™(3) which is called the cyclotomic Khovanov-Lauda-Rouquier alge-
bra. In [10], Khovanov and Lauda conjectured that Pge g+ K (Proj(R*(B))) has a
Ua (g)-module structure and that there exists a Ua (g)-module isomorphism

Va(A) = @ K(Proj(RM(8))),
peQ+

where Va (A) denotes the Ua (g)-module with highest weight A. After partial results
of Brundan and Stroppel ([4]), Brundan and Kleshchev ([2, 3]) and Lauda and
Vazirani ([15]), the conjecture was proved by Seok-Jin Kang and the author for
all symmetrizable Kac-Moody algebras ([7]).

For each i € I, let us consider the restriction functor and the induction functor:

EM: Mod(RM(8 + oy)) — Mod(R™(8)),
FX: Mod(R*(8)) = Mod(R(8 + o))

defined by

EMN) = e(B,9)N = e(B,i)R*(B + i) @pa(gran) N,
FZA(M) = RA(ﬁ + ai)e(ﬁvi) ®RA(5) Mv

where M € Mod(R*(8)), N € Mod(R*( + «;)). Then these functors categorify
the root operators e; and f; in the quantum groups.

It is obvious that E2 is a right adjoint functor of F2.

Khovanov-Lauda ([10, 11, 12, 14]) and Rouquier ([17]) conjectured that EX
and F} are biadjoint to each other. Namely E2 is also a left adjoint of F2*. Further-
more they gave candidates for the unit and the counit of this adjunction explicitly
from the first adjunction. In [12], Khovanov-Lauda proved it in the case of sl,,.
Rouquier proved that the candidate for a counit (resp. unit) is the counit (resp.
unit) of an adjunction in a more general framework ([17, Theorem 5.16]). In this
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paper we prove that these candidates are indeed the unit and the counit of an
adjunction for an arbitrary cyclotomic Khovanov-Lauda-Rouquier algebra.

In order to prove this we use a method similar to that employed in [7]. Namely
we use the module e(8,i?)R(B + 205 )e(8 + @, 1) @ r(s+ar) R (B + a;) in order to
study e(B3,42) R (B + 2a;)e(B + i, i). We fully exploit the fact that this module is
a free right module over the ring k[z,+2] (Lemma 5.3).

Webster proved similar results in [19, Theorem 1.6] by a totally different
method beyond the author’s comprehension. We also mention that [5] is related
to our results.

This paper is organized as follows. In Section 2, we recall the notions of
Khovanov—Lauda—Rouquier algebras. In Section 3, we recall the definition of cy-
clotomic Khovanov—Lauda—Rouquier algebras and the results in [7], and then state
our main result (Theorem 3.5). In Section 4, we interpret it in terms of algebras
((4.1), (4.2) and (4.3)), and we give the proof in Section 5.

§2. Khovanov—Lauda—Rouquier algebras
§2.1. Cartan data

Let I be a finite index set. An integral square matrix A = (a;;); jer is called
a symmetrizable generalized Cartan matriz if (i) a; = 2 (¢ € I), (ii) a5 < 0
(¢ # j), (ili) a;; = 0 whenever aj; = 0 (¢,j € I), (iv) there is a diagonal matrix
D = diag(d; € Zs¢ | i € I) such that DA is symmetric.

A Cartan datum (A, P,11, PV, 11V) consists of

satisfying the condition (h;, o) = a;; for all ¢,j € I. We denote by
Pt:={Ne€P|(hy\) € Zso forallieI}

the set of dominant integral weights. The free abelian group Q:=&p,; Zay; is called
the root lattice. Set QT = >, Z>ooy. For a =3~ kija; € QT, we define the height
ht(c) of a to be ht(a) = > k;. Let h = Q®z PV. Since A is symmetrizable, there
is a symmetric bilinear form ( | ) on h* satisfying

2(ai|A)

(cvilevi)

(ailay) = djas; (i,j € I) and  (hi, A) = for any A € h* and i € I.
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§2.2. Definition of Khovanov—Lauda—Rouquier algebras

Let (A4, P,II, PV, I1V) be a Cartan datum. In this section, we recall the construction
of the Khovanov-Lauda-Rouquier algebra associated with (A, P,II, PV, IIV) and
its properties. We take as a base ring a graded commutative ring k = @, o, kn
such that k,, = 0 for any n < 0. Let us take a matrix (Q;;) jer in klu,v] such
that Qs (u,v) = Qi(v,u) and Q;;(u,v) has the form

0 ifi =,
2.1) Q) =3 S ¢ et 4,
P,q20
where ti,j;pﬂ S k—2(ai\o¢j)—(o¢i|ai)p—(aj|aj)q and tl"j ::ti,j;—aipo S kg; In particular,
we have ; j., o = 0 if (oi|oi)p + (aj|e)g > —2(evi|eyy). Note that ;g = tjisq,p-
We denote by S,, = (s1,...,8,—1) the symmetric group on n letters, where
s; = (4,44 1) is the transposition. Then S,, acts on I™.

Definition 2.1 ([10, 17]). The Khovanov-Lauda—Rouquier algebra R(n) of degree
n associated with a Cartan datum (A, P,II, PV, IIV) and (Q;;)i jer is the associa-
tive algebra over k generated by e(v) (v € I"), zx (1 <k<n), 7 (1<I<n-1)
satisfying the following defining relations:

eWe() =b,e(v), Y elw)=1,

veln
TpT = BTk, The(v) = e(V)zy,
nie(v) = e(si(v))m, mem =mm if |k—1] > 1,

Tlge(y) = Qlfk,,l’k+1 (‘Tkﬂ xk+1)e(y)7

—e(}/) lfl:k7 Vi = Vk+1,
(Tkxl — xsk(l)Tk)e(V) = e(u) ifl=k+1, 1= V41,
0 otherwise,
(Th4+1ThTh4+1 — ThTh41Tk)E(V)

ka,uk+1 ('Z'k‘a xk—‘rl) - Quk,l/k+1 (:Ck+27 Ik—‘rl) e(y)
= Tk — Tk42
0 otherwise.

if v = viyo,

Note that R(n) has an anti-involution ¢ that fixes the generators zy, 7
and e(v).
The Z-grading on R(n) is given by

(2.2) dege(v) =0, degare(v) = (|, ), degme(v)=—(ay|o,,,).
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For a,b,c € {1,...,n}, we define certain elements of R(n) by

Cap = Z e(v),

vel™, vo=uy

(23) Qa,b = Z Qua,ub (an,(Eb)e(y)7

veln

Qa b = Z Qumub (.’L'a,xb) - Ql/aﬂ/b (xc’xb)e(y) if a 7& c.

505
Tg — T¢
vel™, vo=r,

Then we have

2
Qa,b = Qb,a: Tqg = Qa,a-{-lv

(2.4) il
Ta+1TaTa+1 = TaTa+1Ta + Qa,a+1,a+2'

We define the operators 9,5 on @, ;v k[z1, ..., z,]e(v) by

Sapf = f
(25) aa,bf = ﬁemh 811 = aa7a+1;
a
where s, = (a,b) is the transposition.
Thus we obtain
Ta€b,c = €5,(b),s4(c)Tas

Taf - (Saf)Ta = fTa - Ta(saf) - (aaf)ea,a-l-l-

For n € Z>o and 8 € Q" such that ht(3) = n, we set

(2.6)

P=v=,...,vn) el a, + - +a, =B}

We define
e(B) =Y e),
(2.7) ver?
R(B) = R(n)e(B) = @) R(n)e(v).

velB

The algebra R(3) is called the Khovanov-Lauda—Rouquier algebra at 5.
For ¢ > 0, we set

(2.8) e(8,i%) =Y, e(v) € R(B + la;)

where v ranges over the set of v € I8+t guch that vy, = i for n4+1 < k < n+£. We
sometimes regard R(3) as a k-subalgebra of the k-algebra e(3, i*) R(3+La;)e(, if).
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Theorem 2.2 ([7]). Let € Qt with ht(8) = n and i € I. Then there ezists a
natural isomorphism

(2.9) R(B)e(B — iy i) Or(g—a,) kTn @ e(B — ay, 1) R(B) @ k[zn11] @ R(B)
l> 6(/8, Z)R(ﬁ + ai)e(/@a 7’)

Here R(B)e(B — i, i) @p(s—a;) kTn ® (B — ai, 1) R(B) — e(B, i) R(B + a;)e(B,4) is
given by a ® 7, @ b — at,b.

Here, 7, in k7, is a symbolical basis of a free k-module of rank one. We
sometimes use such notation in order to make morphisms more explicit.

Note that if 8 —a; & QT then R(B)e(8— i, 1) @p(s—a,) kTn @e(8—ai, i) R(B)
should be understood to be zero.

83. Cyclotomic Khovanov-Lauda—Rouquier algebras
83.1. Definition of cyclotomic Khovanov—Lauda—Rouquier algebras

Let A € PT be a dominant integral weight. For each i € I, we choose a monic
polynomial of degree (h;, A),

(hi,A)
(3.1) al(u) = Z ciulhin =k
k=0

with Ci:k € kk(a,y|ai) and Ci;0 = 1.
For k (1 <k <n)and g € Q" with ht(8) = n, we set

(3:2) a(zx) = Y ab, (xx)e(v) € R(B).
velP

Hence a®(zy)e(v) is a homogeneous element of R(3) with degree 2(ay, |A).

Definition 3.1. For 8 € Q% the cyclotomic Khovanov-Lauda—Rouquier algebra
RM(B) at B is defined to be the quotient algebra

R(B)
R(B)a* (z1)R(B)

In this paper we forget the grading, and we denote by Mod(R*(f)) the abelian
category of R*(/3)-modules.
For each ¢ € I, we define the functors

RMpB) =

EX: Mod(RM(B + a;)) — Mod(R™(B)),
FA: Mod(RY(8)) — Mod(R (B + a))
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EMN) =e(B,i)N = e(B,i)R*(B+ o) @pa(sran N
(3:3) =~ Hompa (g4, (R (B + ai)e(B, 1), N),
FMM) = RMNB + ai)e(B,1) @pasy M,

where M € Mod(R*(3)) and N € Mod(R*(3 + o).
The following result is proved in [7].

Theorem 3.2 ([7]). The module R*(3 + «a;)e(B,i) is a projective right R*(B)-
module. Similarly, e(3,7)R*(B + ;) is a projective left R*(3)-module.

Corollary 3.3. (i) The functor Eg\ sends finitely generated projective modules to
finitely generated projective modules.

(ii) The functor F2 is ezact.
§3.2

The pair (FA,E}) has a canonical adjunction: the unit 7: id — EXFA and the
counit £: FAED — id.
For 8 € Q" with ht(8) = n, the functors
FA
Mod(R"(8)) Z—== Mod(R"(8 + a:))

are represented by the kernel bimodules R*(3 + ;)e(B,i) and e(8,7)RNB + o)
as in (3.3). In what follows, we denote by 1g the identity functor of the cate-
gory Mod(R*()), and we denote by 13E} = Erg,,, the restriction functor
EA: Mod(RA(B + a;)) — Mod(RA(B)). Similarly, FA15 = 15,,,F} denotes the
induction functor F2: Mod(R*(8)) — Mod(R*(8 + «a;)).

Let us denote by z the endomorphism of 15E} represented by left mul-
tiplication with z,.; on e(B,i)R*(8 + «a;), and by 7 the endomorphism of
15E2EL: Mod(RA(B + 2ay)) — Mod(R*(j3)) represented by left multiplica-
tion with 7,41 on e(B,i)R (B + i) ®par(stan (B + @i, i) RMB + 2q;) ~
e(8,i?)RM(B + 2«;). Similarly the endomorphism z of FA15 is represented by
right multiplication with 2,1 on R(3 + «;)e(,4), and the endomorphism 7
of FAFM5: Mod(RA(B)) — Mod(R (B + 2q;)) is represented by right multi-
plication with 7,11 on R*(8 4 20;)e(B + i, i) @ra(gia,) RY(B + ay)e(B,i) ~
RM(B + 2a)e(B,i?). Then x € End(F 1) and 2 € End(14EL) are dual to each
other, as also are 7 € End(FAF214) and 7 € End(15EMED).

By adjunction, 7 € End(E}E?) induces a morphism

(3.4) o: FAEM g — ERFRM.
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It is represented by the morphism
RM(B)e(B — @iy i) ©pa(s—ay) €(B — ai, i) RM(B) = e(B8,)) RM(B + a;)e(B. 1)

given by z ® y — x7,y.

The following theorem was formulated as one of the axioms for the categori-
fication of representations of quantum groups ([6, 12, 14, 17]), and proved in [7]
for an arbitrary Khovanov—Lauda—Rouquier algebra.

Theorem 3.4 ([7]). Set A\:=A— 3 and \; := (h;, \).
(a) Assume \;:= (h;, \) > 0. The the morphism of endofunctors on Mod(R™(3))

Ai—1
pFAEMg e (P ket @15 — EMFML
k=0
is an isomorphism. Here FAEM 5 — EMFM 5 ds given by o, and ka* @ 15 —
FAEML ds given by (xFF2) on = (Eraz¥) on: 15 — EMFM 4.
(b) Assume that A; < 0. Then the morphism
p:FrEM - EMFMp e P k@) @1,
k=0
is an isomorphism. Here FAEM 5 — ERFM g ds given by o, and FAEM 5 —
k(z71)* ® 15 is given by e o (zFED) = e o (FAzk): FAEM1 — 154.

In the theorem, z* in ka* and (z=%)* in k(z=1)* are a symbolical basis of a
free k-module.
Now let us define a morphism 7j: 15 — FAEX 14 as follows.

(i) If A; :=(h;, A} > 0, then 7] is given by the commutativity of

jecti -
FAEM ; 2 FAEM, o ) ket @ 15
|- e
zAiFon
1 EMFY

Here the top horizontal arrow is the projection. Note the minus sign in front
of 7.
(ii) If A\; <0, then 7 is defined as the composition

1z ! FrEM

l |

Kz~ ) Ml @ 10— EMFM g a @, k() @ 15
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Here the bottom horizontal arrow is the canonical inclusion and the left vertical
arrow is derived from k = k(z=1) A7 (1 — (z=1)~ N1,

The morphism £: EAF215 — 15 is defined as follows.
(i) If A; > 0, then £ is defined as the composition

projection
—_—

FAEAML @ @, ket @ 15 kel @ 1,

zip ) zl

EMFMg 15

™

Here the top horizontal arrow is the canonical projection and the right vertical
arrow is induced by z ! 1.
(if) If A; <0, then £ is defined as the composition

go(z"MED)

1 FrEM

B 2

EAFMC— = EMFM @ @;;;\671 k(z)F @14

Here the bottom horizontal arrow is the canonical inclusion.

Now our main result can be stated as follows.
Theorem 3.5. The pair (E}FY) is an adjoint pair with (7],€) as adjunction.
Namely the compositions
E} EA, EAFAED = EM and F2 LN FAEAFD L F4
are equal to the identities.

The rest of the paper is devoted to the proof of this theorem.
As mentioned in the Introduction, Rouquier ([17]) proved that there exists a
morphism ¢’: EAFA — 15 such that

A BN capApA BN A A AFY capAapa FRe'oca
E} — E;F;E; — E; and F; — FE;'F;) —— F;

?

are the identities. Of course, such an ¢’ is uniquely determined. However, the
identity ¢’ = £ is non-trivial.
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84. Proof of Theorem 3.5

§4.1
We shall first prove that the composition
A~ ~gA
15E8 S0 1 EARAED S5 g pA
is the identity. Here 8 € Q7 with ht(3) = n and we set A:=A — 3 and X; := (h;, \).
4.1.1. Case \; > 2. We shall first assume that A\; > 2. Then the above compo-

EA G
sition can be described by kernel bimodules as follows. The morphism 14E2* =1,

15EXM(FAEM g 10,) is given by the (RY(B), RA(B + a;))-bilinear homomorphism
e(ﬁv Z)RA(ﬂ + ai)
—w?x:;l
e(B,i®) RM(B + 2ai)e(B + )
pTZ
6(187 Z)RA(ﬁ—FO[z)e(ﬁ, Z) ®RA(ﬁ) an-i-l ®€(B, Z)RA (B+az)
e@iy kal, ®e(B,)RMNB + )
iprojection

e(B,1)RMB + ay)e(B,1) @pa(s) kTns1 ® e(B, i) R (B + o)

~FEA
The morphism (15EMFA)EX ch, 15E2 is given by the (R(B), RM(B + ai))-
bilinear homomorphism

e(B,1)RM(B + ci)e(B, 1) @pa(g) KTni1 @ (8, ) R (B + )
pTZ
(RM(B)e(B — i) @RA(5—ay) kTn @ €(B — ai, i) R*(B)
P, kaky @ RY(B)) ®pa () k1 @e(B,)RM(B+as)
i/projection
kz)' 7' ® kg1 @ e(B,1)RM(B + o)

)

e(ﬁv Z)RA(ﬂ + ai)

Hence in order to see that the composition is the identity, it is enough to show
that
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(4.1) ) D) 6(5a )+I21_117n+16(57i2)
€ RYB)TnTnrre(B — i, i) RN (B + o)

Ai—2 Ai—3
+ > b (B RMNB i) + > ah,e(8,7)RMNB + ai)
k=0 k=0

as an element of e(3,i2) R (8 + 2a;)e(B + i, ).
This inclusion is proved in §5.

4.1.2. Now consider the case \; = 1. The morphism 14E* —> 1,5 EMFAEMp1a,)
is given by
e(B,i) R (B + o)
\Linclusion
e(B,7%)RM (B + 2ai)e(B + ai, i) @ e(B,7) RN (B + o)
ZTp:EEBENT

6(ﬁ77’)RA(5 + 041')6(5,1') ®RA([3) 6(ﬁ77’)RA(5 + ai) Su

(See below for ¥ and E.)
~FA
The morphism (15EAFMED B 15E2 is given by

e(B,))RM(B + ci)e(B,1) ®pa(s) e(B,1)RM(B + ai) 3 u
sz
(RM(B)e(B—ai, 1)@ pa(s—ay e(B—ay, i) RM(B) & R (B))

®@pa(gye(B, ) RM(B + )

\LprOJCCtIOH

e(B,i) R (B + )
Hence to see that the composition is the identity, it is enough to show the following:

There exists u € e(8,7)R™(6 + a;)e(B, 1) @ RA(B) e(B8,1)RM(B + a;) such
that

(c) u—e(B,i)®e(B,i) € (R*B)e(B — i, i®)Tne(B — ai, i) RY(B))
®RA(,6) 6(5,2)RA(6 + ai).
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Here
e(B,)) R (B + ai)e(B, ) @ pa(s) e(B,1) R (B + o)
— e(B,7*)R™(B + 2ai)e(B + v, i)
is given by X (a ® b) = a7, 4+1b, and
E: e(8,))RMN(B+ a,)e(B,1) @pa(p) e(B, ) RM(B+ ;) — e(B,)) RM(B + i)

is given by E(a ® b) = ab.
The proof of (4.2) will be given in §5.

4.1.3. Now we assume that A\; < 0. Then the composition under study can be
described by the kernel bimodules as follows.

The morphism 15E} ﬂ 15EM(FAEM544,) is given by
e(B,1)RM(B + )
l
k(a40) 7 @ e(B,0) RN (B + o)
inclusion
(B, %) RN(B + 200)e(B + 0, 1) & Dy k(wy 1)) @ e(B, ) RMB + )
p=f e @, H; |

e(B, )R (B + ai)e(B, 1) ®ra(s) e(B, 1) RN (B + o)

~gA
The morphism (15EXFA)EX i 15E2 is given by

e(B, ) R™(B + ai)e(B, 1) @pa(p) e(B, )R (B + o)

linclusion

e(B, 1) RM(B+au)e(B,1) @ ga(g) e(B, 1) RM(B+ i)
o @2 klzp ) ®e<6,z)RA(B+ai)
p=g® Dy, Tsz
RA(B)e(B — iy i) ®pa(g—ay) €(B — i i) RM(B+ ;) D v

iT_)\i

e(B, 1) RM(B + )
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Hence to see that the composition is the identity, it is enough to show

There exists v € RM(B)e(8 — o) @ RA(B—ay) e(B,i)R™(B + a;) such that
(a) Tx(v) =0for 0 <k <=\, —1,

(b) Tox (v ) e(B, 1),
(
(

4.3
) c) ()

d) H ()—Ofor0<k< -,

(e) Hi_x (v) =e(B,1).

Here the homomorphism

fre(B,))RM(B+ay)e(B,i)@pa(pye(B, i) R (B+a;) — e(B,i°)R™(B+2a;)e(B+ai, 1)

is given by f(a ® b) = at,410b;

Hy,: e(B,8)RMN(B + ai)e(B, 1) @pa(py e(B, 1) R (B + o)
= k(z, )" @ e(B,i)RM(B + i) = e(B, ) RM(B + )

is given by H}(a ®b) = azk  b;
g: RM(B)e(B — i) @pa(s-ay) e(B, ) R (B + i)
— e(B,1)RM(B + ow)e(B,1) @pa(s) e(B, ) RMNB + a;)
is given by g(a ® b) = ar, ® b;
Ti: RMNB)e(B — o) @Rra(5—ay) €(B, 1) RM(B + ;) — e(B,1) RMN(B + o)
is given by Ty (a ® b) = azkb;
G =fog: RMNB)e(B — i) ®pa(s—ay e(B. ) R (B + )
— e(B,3%)RM(B + 20)e(B + 1)
is given by G(a ® b) = a7, 7y 11b; and
Hy = Hj o g: RMNB)e(B — i) @pa(g—a, e(B, 1) RMN(B + ai) = (8, ) RN (B + )

is given by Hy(a ® b) = ar,zf 1.
The statement (4.3) is proved in §5.

§4.2

TFd FAg
Let us show that the composition F# MAKIN FAEAFA 1—€> FA is equal to the identity

AEE EA

by reducing it to the corresponding statement for EA EAFAE
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Let us recall that ¢ is the anti-involution of R*(3) sending the generators e(v),
Tk, T, to themselves. For an R*(3)-module M, we denote by MY the R(j3)°PP-
module induced by 1 from M, where R*(/3)°PP is the opposite ring of R*(3). We
define the bifunctor
Ws: Mod(R™(B)) x Mod(R™(8)) — Mod(k)

by
\Ifg(M,N) = M‘l’ ®RA(B) N.

We have an isomorphism
Us(M,N) ~Wg(N,M) functorial in M, N € Mod(R*(3)).

For two k-linear categories ¢ and ¢, let us denote by Fcty (€, %”) the cate-
gory of k-linear functors from % to %”’. Then ¥ induces a functor

Hg: Mod(R*(B)) — Fetx(Mod(R*(B)), Mod(k))

by assigning to M € Mod(R*(3)) the functor N +— Wz(M, N). The following
lemma similar to the Yoneda lemma is easily proved, and its proof is omitted.

Lemma 4.1. The functor Hg is fully faithful.

For 3, 8’ € Q% and a pair of k-linear functors F': Mod(R"(3)) — Mod(R*(3"))
and G: Mod(R*(B')) — Mod(R*(B)), we say that F' and G are W-adjoint, or G
is a U-adjoint of F, if there exists an isomorphism

Vg (F(M), N) = Wgs(M,G(N))

functorial in M € Mod(R*(8)) and N € Mod(R*(8')). For a given F, a W-adjoint
of F' is unique up to a unique isomorphism if it exists. We shall denote by FV the
U-adjoint of F (if it exists).

If Mod(RA(3)) EiN Mod(R(B")) , Mod(R*(B")) are functors which admit
W-adjoints, then FY o F'V is a W-adjoint of F’ o F.

Now let F: Mod(R*(B)) — Mod(R*(8')) (k = 1,2) be two functors. Then
Lemma 4.1 implies

Hom(F}, F») ~ Hom(FY, Fy).

For f € Hom(F}, F,), the corresponding morphism in Hom(F)', Fy') is called the
P-adjoint of f, denoted by fV, and we have a commutative diagram

Vg (FL(M), N) Us(M, FY (N))

] [

Wﬁ’(F2(M)7N) = ‘I’ﬁ(M’FQ/(N))

~

Then (fog)¥ = f¥ og" for Iy % Fy L5 By,
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The following lemma is elementary and its proof is omitted.

Lemma 4.2. (i) Let K be an (R(B'), R*(B))-bimodule and let the functor
F: Mod(R*(8)) — Mod(R(8')) be given by K @gag) ». Then F admits
a V-adjoint.

(i) Conversely if a k-linear functor F': Mod(R(8)) — Mod(RA(B")) admits a
U-adjoint, then F is isomorphic to F(R™(B)) ®ga(g) «, and FY(RM(g')) ~
F(RMB))¥ as (RMB), RM(B'))-bimodules.

We can easily see that Ej\ and Fg\ are U-adjoint. Moreover, z € End(Eé\) and
x € End(F2) as well as 7 € End(E» o E) and 7 € End(F2 o F2) are W-adjoint.
We can also see that € Hom(1s, EAFMp) is a W-adjoint of itself. Similarly
e € Hom(FAE 14,15) and o € Hom(FAERX EAFL) are W-adjoints of themselves.

(2 K3
Note that FAEX and EAFL are W-adjoints of themselves. Hence 7) and £ are also

P-adjoints of themselves.

A TFY capapa FOE pa s e A BN capapa FED
Therefore F;* —— FPE}F} —— Fi* is a W-adjoint of B} — E}FPE} ——
Ef\. Hence if the latter composition is the identity, so is the former.
Thus we have reduced Theorem 3.5 to the three statements (4.1), (4.2) and
(4.3), which will be proved in the next section.

85. Proof of the three statements
85.1. Intertwiner
Let us define ¢, € R(n) as follows:
vae(V) = (TaTo — TaZa)e(V) = (TaZTat1 — Tat17Ta)e(V)
= ((za = a41)7a + 1)e(v) = (Ta(Tas1 — Ta) — De(v)

if v, = Vg1 and pae(v) = Tee(v) if vy # vaq1. It is called the intertwiner.

The following lemma is well-known (for example, it easily follows from the
polynomial representation of Khovanov—Lauda—Rouquier algebras [10, Proposi-
tion 2.3], [17, Proposition 3.12]).

Lemma 5.1. (i) For1 <a <mn, we have
To,(b)Pa = PaTy (1 <b<n+1).

(11) 303 = Qa,a+1 + €aq,a+1-
(iil) {@k}1<k<n satisfies the braid relation.
(iv) Forw e S, and 1 <k <n, if w(k+1) = w(k) + 1, then ©uTk = Tuwm) Puw-
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(v) In particular

TaPa+1Pa = Pa+1¥PaTa+1; Ta+1PaPa+1 = PaPa+1Ta,
TkPa """ Pn—-1 = Pa" " " Pn—-1Tk—1 fOT’Cl<k§’rL—1.

§5.2

Let us take 3 € QT with ht(3) = n and i € I. Let p be the number of times that o;
appears in 3. The following lemma is proved by repeated use of Theorem 2.2.

Lemma 5.2. We have

e(B,i*)R(B + 2a;)e(B + i, 1) @R(pran BB+ )
~ R(B)e(B — ai,i) @ KTnTni1 @R(s—a;) (B — i, i)RA(ﬁ + ;)
D Tny1K[Zni2] @ e(B, 1) RMB + i) ® K[zpya] @ e(8,7)RM(B + ay).

Proof. We have

e(B,i*)R(B + 2a;)e(B + i, i) @r(pran BB+ ;)
= e(8,4°) (R(B + a:)e(B, 1) Tns1 @p(a) €(B, 1) R(B + i) ® K[Tpni2] O R(B + o))
Dr(ptar) R (B + ai)
=e(B3,i°) (R(B)e(B — i, 1)Tn O Rr(s—an) €(B — i, 1) R(B) B K[2pni1] ® R(B)) Tt
®nr(p) e(B, )R (B + ;) ® k[wpi0] @k RY(B + o)
=e(B,i)R(B)e(B — g, i) TnTns1 ®R(B—a) €(B — ai,iQ)RA(ﬁ + ;)
O k[Tpq1]Thi1 ® e(B, i2)RA(5 + ;) @ k[zn12] ®x e(B, iQ)RA(ﬁ + ).

Then the lemma follows from k[x,11]7+1 DK[Xnt2] = Tnr1k[Tnto] Dklrpie]. O

We set

K = e(B,i*)R(B + 2a;)e(B + i, i) @p(ptan B (B + a;)
~ e(B,i2)R(B + 2a;)e(B + i, i)
= e(B,®)R(B + 205)a (z1)R(B + ai)e(B + s, i)

Then K is an (e(3,i%)R(B + 2a;)e(B3,i2), RM(8 + i) ® k|2, 42])-bimodule.
The preceding lemma says

K = R(B)TnTnt16(8 — 0, i*) RN(B + o) + Ty 1K[zni2]e(B, i) R (B + o)
+ K[z, io]e(B,i?)RY(B + o).
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We define the filtration {T'y }rez of K by

0 if k< -1,
Fk = R(ﬁ)TnTnJrle(ﬁ - ai,i?’)RA(ﬁ + ai) + e(ﬁ,i2)7n+1RA(ﬁ + Oéi) if k= —].7
i1 +e(B,i%)ak ,RMB+ a;) + e(ﬂ,i2)Tn+1$ﬁi§RA(6 +a;) ifk>0.

Note that Ty = 1 + e(B,i?)zk  ,RM(B + a;) + e(B, i) zh i 71 RA (B + o) for
k> 0.

Recall that Gr}; K :=T}/Tk_1. Then we have the following lemma that will
be used frequently.

Lemma 5.3. (i) TheT'}’s are (R(B), RM(B + u))-bimodules.
(ii) Tgxpio C Triq for any k.
(iit) Right multiplication by x, o induces an isomorphism Gry, K = GI‘£+1 K for
any k > 0.
(iv) Ker(z, o: T_y = Grp K) = R(B)TnTni1e(B — i, i3)RMB + o).

Proof. (i) is obvious. (ii) follows from
(5.1) TnTn41Znt2 = Tn(Tnr1Tag1 + 1) = (@nTn + D) Tng1 + 7o

(iii) follows from Lemma 5.2.

Let us prove (iv). Define S := R(B)T,Tni1e(B — a;,i®)RY(B + ;). Then
Sznia C Ty + e(B,i2)RMB + ;) by (5.1). The homomorphism I'_;/S —
(Gr} K)/(e(B,i?)RM(B + a;)) is an isomorphism since it is isomorphic to k7,1 ®
e(B,1)RM(B + ay) ﬁ KTp1%n40 @ e(B,1)RMNB + o). O

As a corollary, we obtain the following

Lemma 5.4. Let m € Z and let f(z,412) € RMB + i) @ k[z,12] be a monic
polynomial of degree r > 0 in Tp4o and u € K. Assume that uf(xn42) € Ty
Then we have:

(i) If m>r—1, thenu € T'p,_,.

(ii ufoJrQ € Dimax(—1,m—r+k) for any k > 0.

)
(iii) wf(nie) = ury o mod Iiax(—1,m—1)-
(iv) If m <7 —1, then u € R(B)TnTnr1e(8 — ai,i3) R (B + o).

Proof. (i) It is enough to show that if u € T'y and k > m — r, then v € Tjx_1.

For such a u we have uf(z,42) € Ty C Tryro1, and the injectivity of Grj, K

f(@ny2)=a], -
(42} =Tnta GrEJrkK implies v € I'y_1.
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(ii) We have uzl o f(2n+2) € Tmsk C Trdmax(—1,m—r+k)- Hence (i) implies
that ufo_Q S Fmax(—l,m—r—i—k)-
(iil) follows from (ii).
(iv) By (ii), u, uZpn42 € I'_1. Then the assertion follows from Lemma 5.3(iv).
O

Our goal in this subsection is to prove Proposition 5.7 below, and the following
lemma is the starting point.

Lemma 5.5. For v € I? we have, as an element of K,

T ma@)er - enne, i) T (@a = zaso)

aln,ve,=t
= 710 (Tna2) H Qiv, (Tnto,q)e(v,i,4) mod T'_;.
Vo7l

Proof. We have 41+ T1a™ (21)@1 - Prt1 = Tng1 -+ T191  ** P10 (Tnp2). We
shall show, for a < n,

(5.2) Tn+1" " TaPa """ <pn+1a,A(xn+2)e(1/, i2) H (Th — Tnt2)

a<lk<n,vip=i

H Qi,ya (mn-‘rank)

k<a,vi#i
= Tn+1" " Ta+1Pa+1 " " §0n+1aA(xn+2)e(V7 Z2)

H (xk - $n+2) H Qi#/a (CL’nJrQ,{,Ck).

a+1<k<n,v,=i k<a+1,vi#t

If v, # 4, this is obvious. Assume that v, = i. Then

Tagl TaPa - P10 (Tni2)e(v, 1) (Ta — Tnya)
= Tng1 TalTas1 = Ta)Pa -+ Pri10" (Tny2)e(v,i%)
= Tnt1 " Tat1(Pa + DPaPatt  + Pni1a™ (Tni2)e(v, i)
= Tog1 Tap1 (Pa + Dpatr - 10 (@ y2)e(v, %)
= Tnt1 Tat1PaPatl P10 (Tngo)e(v,i%)

+ Tn+1 " Ta+1Pa+1 """ (pn+1CLA(ZL'n+2)€(l/, 12)

We shall show that for any f(z,+2) and g = g(x1,...,24),

(53) Tn+1 " Ta+1PaPa+1 " (Pn-&-le(ya i2)f(xn+2)g € I‘—1-
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Indeed,

Tnt1* Tat1PaPat1 - Pry1€(V, %) f(Tny2)
= Tot1 Tat1 [ (Ta)PaPatt - Prrre(v, i)
= f(xa)7n+1 C o Ta+1¥PaPa+1 " @n+1e(V7 ZQ)
= f(2a)PaPat1 - Pni1Ta - - Tae(v,1%).
We have
PnPnt1=Pn(Tnt1Tnt1 — Tn+1Tnt1)
=Tn(TnTn — Tn@n)Tat1 — (TnTn — Ta®n)Tnt1Tnt1
=22 T i1 — TnTnTnd1%n — TnTnTni1Tnil + TnTnilTnTnil,
and this belongs to I'_;. Hence we obtain (5.3). Then the repeated use of (5.2)
implies that

Todl - T1P1 - Pnp10™ (Tny2)e(v,i2) H (T — Tpt2)

k<n,vp=t

= Tnp1¢n 10 (@ni2)e, %) T] Qiwa (Tnr2, 2r).
l/k;fi

Finally 7, 10n 416, ) = Tng1 (Tng1 (Zag1 — 2a) — 1)e(v,i%) = —Tpyae(v,4%). O

Lemma 5.6. The following equality holds as an equality in K :

Tnt1 - T1a™(@1)@1 - Prpre(v,i?)

= Tpy1- TlaA(xl)Tl e Tagre(v, i?) H (Tnt2 — Tq).
k=n+1orvy=1

Proof. Tt is enough to show that

(5.4)  Tuproma™(@)T o Tac1@a Prgre(v,i?)
= Tpp1 1@ (@1)T1 - TaPart - P16V, i) (@2 — xy) e OTVa=),
If v, # i this is trivial. If v, =4 or a = n + 1 then
Pa " @n—&-le(l/, i2) = (Ta(xa+1 - xa) - 1)90(1-1-1 te @n-ﬁ-le(ya 2.2)
=TaPa+1 """ ‘Pn+1(xn+2 - xa)e(% 7;2) — Pa+1" " ‘Janrle(Vv iQ)'

Since

Tp4+1 """ TlaA(xl)Tl o Tag—1%Pa+1 " <,0n+1€(1/, iz)

= Tntl T1Pat1 P10 (T1) 71 Tamre(v,42)

vanishes as an element of K for a < n + 1, we obtain (5.4). O
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Thus we have

(=1)PTpgr - -ma™ (@) - - Togre(v, i2) H (Tpyo — 4)2

a=n+lorv,=1

= —Tn+1GA($n+2) H Qi,ua ($n+2,$a)€(1/, i2)($n+2 - $n+1) mod I'_;.
Vo F1

Since Tp41(Tnt2 — Tnt1) € Do, Lemma 5.4 implies

Tn+1aA(xn+2) H Qi v, (Tng2, Ta)e(v, i2)(xn+2 —Tpy1)

Vo F#1
_ hi, A—B)+2p+1 .
= Tn+1x§1+2 Ar+2p e(v, 22) H tiv, mod ', A—gyt2p—1-
Vo F#1
In particular
Tasroomat @) e ) [T (@are = 20) € Tinapyap.

a=n+lorv,=1
. . . . 2p42
Hence this element is equivalent to 7,11 - -~ 71a™(21)71 -+ Ty 1e(v, 4, z)xn{tg mod-

ulo ', a—p)+2p—1-
Thus we obtain the following proposition.

Proposition 5.7. For 8 € Q%, let p be the number of times that o; appears in 3,
and set X:= A — 3, \; := (h;, \). Then there exists ¢ € k™ such that

Ait2pt1 2y _ A 9\ _2p+2
Tn+1a:nf2 PHe(B,i%) = etppr - - - ma™ (@) - - Tnr1e(B,4%)z;h 5" mod Tx,qop—1.

Note that \; +2p > 0.

§5.3

Let us define two homomorphisms

P: R(B)e(B — i, i) @r(s—ay) €(B — i, i°)RMB + o) = K,
E: R(ﬁ)e(ﬁ — Oy, Z) ®R([3—o¢i) 6(6 — Oy, 22)RA(5 + ai) — 6(63 Z)RA(ﬂ + ai)

by P(a®b) = atpTi1 ®b and E(a ®b) = ab. Then P is injective and Lemma 5.4
implies

(5.5) Im(P) = Ker(z,19: T_1 — Gr K).
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We can see that R(B)e(B—ai, 1)@ p(s—a,)e(B—ai, i?) R*(B+a;) has a structure
of (R(B) @ k(n, Tni1,Tn), Klzn] @ RY(8 + a;))-bimodule by

(a®@b)(z, ®1) =azx, b,
(1®71)(a®b) =a® 1,b,
(1®zr)(a®b) =a®apb for k=n,n+1.
Here k(2p, Tni1,7n) is the k-subalgebra of e(8 — a;,i?)RY(B + ay)e(B — ay,i?)

generated by x,,Z,+1,Tn, and it is isomorphic to the nil affine Hecke algebra

Lemma 5.8. For any z € R(f)e(B — i, 1) ®p(s—a,) e(B — a;, i) RMB + a;), we
have
P(2)xpts = P(z2(xp, ® 1)) + 1 E(2) + E((1 @ 7,)2).

Proof. For z =a ® b, we have

Pla®Db)Tnia = aTpTnt1Tnt2 @b = atpn(Tpt1Tnt1 +1) @b
=a(zyTn + D7Tnt1 @b+ 1 @ aryb. O

Corollary 5.9. If z € R(B)e(8 — i, i) @p(s—as) €(B — i, i) RMB + «;) satisfies
P(2)xp42 €T, then E((1® 7,)z) = 0.

Indeed, P(2)xn12 = E((1 ® 7,)2z) mod I'_;.

Set K = e(B,i%)RM (81 2a;)e(B + i, 4). Hence we have

o (BR(B+ 200e(B+ i)
—e(B,2)R(BH20i)ar (21) R(B + aq)e(B + iy i)’

KA ~ e(B,*)R(B + 2a;)e(B + v, i)
—e(B,2)R(BH2ai)at (1) R(B + 20i)e(B + i)

Then there exists a surjective homomorphism p: K — K. Note that

(5.6) P(Tng1 -+ mat (@1)71 - Tgre(B,%)) = 0.

Let us denote by {I'f}rcz the filtration of K* induced by the filtration I
of K.

§5.4. Proof of (4.1)

Assume that \; > 2. The statement (4.1) can be read as

A

apisre(B,4%) + xiiﬁlTnHe(,@, i?) € Fﬁ\\hg as an element of K.
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By Proposition 5.7 and Lemma 5.3, we have
Tn+19:;\j;216(ﬂ, i2) = CThyr e 'TlaA(Il)Tl cTryre(B, i2) mod T'y,_3
as an element of K. Then the desired result holds since
Tup1 @5 €(B,8%) = (2n' 3 s + @i )e(B,4%) mod Ty, 3.
§5.5. Proof of (4.2)
Assume that \; = 1. Set

w = Tn+1€(5,’i2) — CTpy1 TlaA(xl)ﬁ .- 'Tn+1€(5,i2) c K.
Then Proposition 5.7 together with Lemma 5.4(iv) implies that w, wz,42 € T'_;
and w € Im(P). Hence we can write w = P(z) for some z € R(S)e(f — a,1)
QR(B—ay) €(B — ay, i2)RM(B + ;). Then Corollary 5.9 implies that
E(l1®m,)z) =0.

Let us define the morphism
T: R(B)e(B — i, i) @r(s—ay e(B — i, i) RMNB + o)
— e(B, )R (B + i) ®pa ) e(B, )R (B + 0i)
by T(a ®b) = (a1,) ® b. Then we have
2(T(2)) =p(P(2)), BE(T(2)) = B(1®7,)z) =0,
Let us show that u:=e(8,4) ® e(8,1) — T(z) satisfies the condition (4.2).
(a) X(T(2)) = p(P(2)) = Tny1e(B,4%) as an element of RY(3 + 2a;).

(b) E(u) = e(B,1) — E(T(2)) = e(B, ).

(c) is obvious.
§5.6. Proof of (4.3)

Assume that A; < 0. Note that £:= —\; < 2p. Then Proposition 5.7 says that, by
setting N )
W= CTp41 - T1Q ($1)T1 s Tn+16(ﬁ,i ),
the element (wz2l% — 7,112, 12e(B, i2))x;_?2'2p of K belongs to T'_y42,_1.
Hence we have
wxfjfz — Tni1Znioe(B,i?) € T_y.
Since T, 117n12¢(8,i2) € T, we have wacflJfQ € I'y. Hence Lemma 5.4 implies that
wxﬁm el_jfor0<k</{+1. We set

wmfwz =P(zk) + Tni1yr for0<k</i+1

with 21, € R(B)e(B—as, 1) DRr(s—a,)e(B—0, i2)RM(B+a;) and yi, €e(B,7) R (B+a;).
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Then for 1 < k < ¢+ 2 we have
wxfl+2 = (P(2k-1) + Tn1Yk—1)Tny2
=P(zp-1(2n ® 1)) + Ty 1E(21-1) + E(1 @ Tn)2k—1) + Tnt1Tny2Yk—1-
Hence Lemma 5.2 implies, for 1 <k < ¢+ 1,

2 =2-1(Tn ®1),  yp=E(2k-1), E(1®7)z-1) =0, yr-1=0.

Since wxfl‘fQ = Tui1ZTnioe(B,i%) mod T'_y, it follows that y, 1 = e(3,4) and

E((1®7n)2ze41) = 0. Thus we obtain 23 = zo(2k ® 1) for 0 <k <1+ ¢, and

0 for 0 <k<l-1
5.7 E(z(z ® 1)) = R
(5.7) (olon @ 1)) {e(ﬁ,i) for k = ¢,
(5.8) E(1®m)2E©1)=0 0<k<l+1.

Let us denote by

q: R(B)e(B — i, i) @p(s—an e(B — ai, i) RMB + ;)
- RA(B)e(ﬁ — @y 1) QRA(B—a,) (B — OéiviQ)RA(ﬁ + o)
the canonical homomorphism, and set v = ¢(zp). Then (a) and (b) in (4.3) follow
from T (v) = E(20(zk®1)). The equality G(v) = 0 follows from G(v) = p(P(z0)) =
p(w) = 0.
Finally let us prove (d) and (e). We have
BE((1®@zhr)2) = E(1® )20k @1) =0 for0<k<l+1

by (5.8). On the other hand we have Hy(v) = E((1® 7,25, |)20). Since 7,,2% | =
TR T + 2 gipp1 T8 4125, we obtain

Hy(v)=E(l®aim)z)+ Y anq Bl @))z)
a+b=k—1

= Z 33;IL+1E(ZO($Z ®1)).
a+b=k—1
Hence (5.7) implies that Hy(v) =0 for 0 < k < £ and Hyy1(v) = e(B,1).
Thus the proof of (4.1)—(4.3) is complete.
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