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The Homotopy Types of SU(3)-gauge Groups over
Simply Connected 4-manifolds

by

Stephen Theriault

Abstract

We classify the integral homotopy types of gauge groups of principal SU(3)-bundles over
a simply-connected Spin 4-manifold M . When M is non-Spin, a similar classification
holds once localization is allowed.
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§1. Introduction

Let M be a simply-connected closed 4-manifold and let G be a simple, simply-

connected compact Lie group. Let P −→ M be a principal G-bundle. The gauge

group of this bundle is the group of G-equivariant automorphisms of P which

fix M . As [M,BG] = Z, the principal G-bundles over M are classified by the

second Chern class. If c2(P ) = k, let Gk(M,G) be the gauge group of P . In [CS]

it was shown that for a fixed M and G, the gauge groups {Gk(M,G) | k ∈ Z}
have only finitely many distinct homotopy types. In recent years there has been

considerable interest in determining the precise number of homotopy types in cases

related to the U(1)×SU(2)×SU(3)-gauge groups associated to the standard model

in physics. For example, there are six homotopy types of SU(2)-gauge groups

over S4 [K]; six homotopy types of SU(2)-gauge groups over a Spin 4-manifold

and four homotopy types of SU(2)-gauge groups over a non-Spin 4-manifold [KT];

and eight homotopy types of SU(3)-gauge groups over S4 [HK2]. The purpose of

this paper is to determine the number of homotopy types of SU(3)-gauge groups

over Spin and non-Spin 4-manifolds.
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To simplify notation, let Gk(M) = Gk(M,SU(3)). If a, b are two integers, let

(a, b) be the greatest common divisor of |a| and |b|.

Theorem 1.1. Let M be a simply-connected closed 4-manifold. The following

hold:

(a) if M is a Spin manifold then there is an integral homotopy equivalence Gk(M)

' Gk′(M) if and only if (24, k) = (24, k′);

(b) if M is a non-Spin manifold then an integral homotopy equivalence Gk(M) '
Gk′(M) implies that (12, k) = (12, k′), while (12, k) = (12, k′) implies that

there is a homotopy equivalence Gk(M) ' Gk′(M) after localizing rationally or

at any prime.

Theorem 1.1 implies that there are eight distinct integral homotopy types

for Gk(M) when M is Spin. It also says there are at least six integral homotopy

types for Gk(M) when M is non-Spin. One would obtain exactly six homotopy

types if the localized statement in part (b) could be replaced by an integral one.

One approach for doing this is to try to stitch together the localized results using

Sullivan’s arithmetic square, but this appears to be technically difficult. A more

direct approach seems to be beyond current methods.

The proof of Theorem 1.1 depends on both general methods—such as decom-

positions in homotopy theory and a lemma for estimating an upper bound on the

number of distinct gauge groups—and on information specific to both SU(3) and

the 4-manifold M (to distinguish the Spin and non-Spin cases). This approach

should be applicable to other cases.

The author would like to thank the referee for a careful reading of the paper

and many constructive comments.

§2. Preliminary homotopy theory

The results in this section are kept somewhat general, keeping in mind the more

general statements to come in Section 4. Let M be a simply-connected, closed

4-manifold and let G be a simple, simply-connected, compact Lie group. For a

topological group H, let BH be its classifying space. Let P −→ M be a princi-

pal G-bundle, whose second Chern class is the integer k. Let Mapk(M,BG) be

the component of the space of continuous unbased maps from M to BG which

contains the map inducing P . Similarly, let Map∗k(M,BG) be the space of contin-

uous pointed maps from M to BG which contains the map inducing P . Observe

that there is a fibration Map∗k(M,BG) −→ Mapk(M,BG)
ev−→ BG, where ev eval-

uates a map at the basepoint of M . By [AB], there is a homotopy equivalence
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BGk(M,G) ' Mapk(M,BG). The evaluation fibration therefore determines a ho-

motopy fibration sequence

G
∂M
k−−→ Map∗k(M,BG) −→ BGk(M,G)

ev−→ BG

which defines the map ∂Mk . In the special case when M = S4, it is well known

that Map∗k(S4, BG) ' Map∗0(S4, BG) for every k. It is usual to write Ω3
0G for

Map∗0(S4, BG). As well, to distinguish the gauge group for this case, let Gk =

Gk(S4).

Since M is a simply-connected, closed 4-manifold, Poincaré duality implies

that M has one zero cell, d two-cells for some nonnegative integer d, and one

four-cell. Thus there is a homotopy cofibration sequence

S3 f−→
d∨
i=1

S2 −→M
q−→ S4 Σf−−→

d∨
i=1

S3

where f is the attaching map for the top cell of M and q is the pinch map to the

top cell. Since Mapk( , BG) and Map∗k( , BG) are functors, when applied to the

pinch map M
q−→ S4 we obtain a homotopy fibration diagram

(1)

∏d
i=1 Ω2G

(Σf)∗

��

∏d
i=1 Ω2G

��
G

∂k // Ω3
kG

//

q∗

��

BGk //

��

BG

G
∂M
k // Map∗k(M,BG) // BGk(M)

ev // BG

In particular, ∂Mk factors through ∂k.

The map ∂k is well understood. Let i : S3 −→ G be the inclusion of the bottom

cell and let 1 : G −→ G be the identity map. The following lemma proved in [L]

determines the homotopy class of the triple adjoint of ∂k.

Lemma 2.1. The adjoint of the map G
∂k−→ Ω3

0G is homotopic to the Samelson

product S3 ∧G 〈ki,1〉−−−→ G.

The linearity of the Samelson product implies that 〈ki, 1〉 ' k〈i, 1〉. Adjointing

therefore implies the following.

Corollary 2.2. There is a homotopy ∂k ' k ◦ ∂1.
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§3. Decompositions of gauge groups and one case of Theorem 1.1

One direction in Theorem 1.1(a) is an easy consequence of a decomposition for

Gk(M) when M is a Spin manifold, together with the classification of the homotopy

types of Gk in [HK2].

The fact that M is a Spin manifold is equivalent to the fact that in the

homotopy cofibration S3 f−→
∨d
i=1 S

2 −→M defining M , the map f has the property

that Σf is null homotopic. If M is not a Spin manifold then Σf is essential. On

the other hand, since π4(
∨d
i=1 S

3) ∼=
⊕d

i=1 Z/2Z, we have Σf null homotopic

after localizing away from 2. In either case, the induced map (Σf)∗ in (1) is null

homotopic. This was used in [Th1] to prove the following.

Theorem 3.1. Let M be a simply-connected closed 4-manifold. The following

hold:

(a) if M is a Spin manifold then there is an integral homotopy equivalence

Gk(M,G) ' Gk(G)×
d∏
i=1

Ω2G;

(b) if M is not a Spin manifold then there is a homotopy equivalence

Gk(M,G) ' Gk(G)×
d∏
i=1

Ω2G

after localizing away from 2.

Corollary 3.2. Let M be a simply-connected Spin 4-manifold. If (24, k)=(24, k′)

then Gk(M) ' Gk′(M).

Proof. Since (24, k) = (24, k′), by [HK2] there is an integral homotopy equivalence

Gk ' Gk′ . Since M is a Spin manifold, Theorem 3.1 states that there is an integral

homotopy equivalence Gk(M) ' Gk ×
∏d
i=1 Ω2SU(3). Thus we obtain a string of

integral homotopy equivalences

Gk(M) ' Gk ×
d∏
i=1

Ω2SU(3) ' Gk′ ×
d∏
i=1

Ω2SU(3) ' Gk′(M).

When M is not Spin, the decomposition in Theorem 3.1(b) gives no 2-primary

information. So in this case different methods are needed to distinguish homotopy

types.
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§4. A counting lemma

The factorization of ∂Mk through ∂k in (1) implies that there is a homotopy pullback

diagram

(2)

Gk // Gk(M) //

��

∏d
i=1 Ω2G

(Σf)∗

��
Gk // G

∂k //

∂M
k

��

Ω3
0G

q∗

��
Map∗k(M,BG) Map∗k(M,BG)

In determining the homotopy types of the gauge groups Gk an important interme-

diate step is to determine the order of the map ∂k. In trying to do the same for

the gauge groups Gk(M) we run into a problem: Map∗k(M,BG) need not be an

H-space so the set of homotopy classes [G,Map∗k(M,BG)] need not have a group

structure. Therefore it makes no sense to speak of the order of ∂Mk . What follows

is a means of sidestepping this problem.

To motivate the statement in Lemma 4.2, it may be useful to recall a special

case of [Th2, Lemma 3.1], which deals with the case of Gk.

Lemma 4.1. Suppose the map G
∂1−→ Ω3

0G has order m, where m is finite. If

(m, k) = (m, k′) then Gk and Gk′ are homotopy equivalent when localized rationally

or at any prime.

Modifying to the case of Gk(M), we prove the following.

Lemma 4.2. Suppose the map G
∂1−→ Ω3

0G has order m, where m is finite. If

(m, k) = (m, k′) then Gk(M) and Gk′(M) are homotopy equivalent when localized

rationally or at any prime.

Proof. Since ∂1 has order m, the homotopy class of ∂1 generates a cyclic subgroup

S = Z/mZ in [G,Ω3
0G]. Suppose (m, k) = (m, k′) = l. Then k = lt and k′ = lt′

for integers t and t′ which are units in Z/mZ. Let s and s′ be integers such

that st ≡ 1 (mod m) and s′t′ ≡ 1 (mod m). Observe that ks ≡ l (mod m) and

k′s′ ≡ l (mod m). Thus the composites G
∂1−→ Ω3

0G
ks−→ Ω3

0G and G
∂1−→ Ω3

0G
k′s′−−→

Ω3
0G both represent the homotopy class [l] in S. That is, ks ◦ ∂1 is homotopic to

k′s′◦∂1. This together with Lemma 2.1 implies that there is a string of homotopies

∂Mks = q∗ ◦ ∂ks ' q∗ ◦ ks ◦ ∂1 ' q∗ ◦ k′s′ ◦ ∂1 ' q∗ ◦ ∂k′s′ = ∂Mk′s′ . Consequently,

Gks(M) ' Gk′s′(M). Note that this holds integrally.



548 S. Theriault

Now fix a prime p and localize at p. There are two cases. First, suppose that

(m, p) = 1. Then m and p have no common factors so m is a unit mod-p. Thus

the power map Ω3
0G

m−→ Ω3
0G is a homotopy equivalence, implying that ∂1 has

order 1. That is, ∂1 is null homotopic. So by Lemma 2.1, ∂k ' k ◦ ∂1 is null

homotopic for any integer k, and therefore ∂k ' q∗ ◦ ∂k is null homotopic. Thus

Gk(M) ' G × Ω4
0G. As this is true for any integer k, we have Gk(M) ' Gk′(M)

for any integers k and k′. Second, suppose that (m, p) = p. Since s is a unit in

Z/mZ, we have (m, s) = 1. Therefore (s, p) = 1, which implies that s is a unit

mod-p. Thus the power map Ω3G0
s−→ Ω3

0G is a homotopy equivalence. This implies

that the sequence
∏d
i=1 Ω2G

(Σf)∗−−−−→ Ω3
0G

q∗◦s−−−→ Map∗k(M,BG) is a fibration up to

homotopy. Now consider the homotopy pullback diagram

Gk // X //

��

∏d
i=1 Ω2G

(Σf)∗

��
Gk // G

∂k //

q∗◦s◦∂k
��

Ω3
0G

q∗◦s
��

Map∗k(M,BG) Map∗k(M,BG)

which defines the space X. On the one hand, by (2) we have X ' Gk(M). On

the other hand, by Lemma 2.1, ∂ks ' s ◦ ∂k, and by (1), ∂Mks ' q∗ ◦ ∂ks. Thus

there is a string of homotopies q∗ ◦ s ◦ ∂k ' q∗ ◦ ∂ks ' ∂Mks . Therefore X is

also homotopy equivalent to the homotopy fibre of ∂Mks , which is Gks(M). Hence

Gk(M) ' Gks(M). Similarly, Gk′(M) ' Gk′s′(M). Consequently, there is a string

of homotopy equivalences Gk(M) ' Gks(M) ' Gk′s′(M) ' Gk′(M).

Finally, consider the rational case. Since m is a unit in Q, arguing as in the first

case above shows that Gk(M) ' G×Ω4
0G ' Gk′(M) for any integers k and k′.

§5. Some preliminary calculations

In this section we collect some calculations of groups of homotopy classes of maps

which will be used later. We begin by stating some of Mimura and Toda’s re-

sults [MT] on the homotopy groups of SU(3). Recall that there is a canonical

fibration S3 i−→ SU(3)
π−→ S5. As usual, the stable class in πn+1(Sn) ∼= Z/2Z is

labelled η and the stable 3-primary class in πn+3(Sn) is labelled α.

Lemma 5.1. The homotopy groups πi(SU(3)) for 4 ≤ i ≤ 11 are as follows:

i 4 5 6 7 8 9 10 11

πi 0 Z Z/6Z 0 Z/12Z Z/3Z Z/30Z Z/4Z
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Further, the following hold:

(a) the generator of π5(SU(3)) is represented by a map c : S5 −→ SU(3) with the

property that the composite S5 c−→ SU(3)
π−→ S5 has degree 2;

(b) a representative of the generator of the 2-component of π6(SU(3)) is given by

the composite S6 η−→ S5 c−→ SU(3);

(c) a different representative of the generator of the 2-component of π6(SU(3)) is

given by the composite S6 ν′−→ S3 i−→ SU(3);

(d) a representative of the generator of the 3-component of π6(SU(3)) is given by

the composite S6 α−→ S3 i−→ SU(3);

(e) the map SU(3)
π−→ S5 induces an injection on π8;

(f) any map f : S10 −→ SU(3) has the property that S11 η−→ S10 f−→ SU(3) is null

homotopic.

The following lemma is surely well known, but an explicit proof seems to be

difficult to find. It can be deduced from [HK1, Theorem 1]; we give a direct proof.

Lemma 5.2. There is an isomorphism [ΣCP 2,ΩSU(3)] ∼= Z/3Z.

Proof. It is equivalent to adjoint and calculate [Σ2CP 2, SU(3)]. Consider the ho-

motopy cofibration sequence

S3 a−→ ΣCP 2 b−→ S5 η−→ S4,

where a is the inclusion of the bottom cell and b is the pinch map to the top cell.

This induces an exact sequence

π5(SU(3))
η∗−→ π6(SU(3))

b∗−→ [Σ2CP 2, SU(3)]
a∗−→ π4(SU(3)).

In the calculations that follow we use Lemma 5.1 freely. Since π4(SU(3)) = 0, b∗
is an epimorphism. We have π6(SU(3)) ∼= Z/6Z ∼= Z/2Z⊕ Z/3Z. The Z/2Z sum-

mand of π6(SU(3)) is represented by a map which factors through η, implying it

is in the image of η∗. Thus b∗ is trivial on the Z/2Z summand. On the other hand,

since η represents a homotopy class of order 2, η∗ is zero on the 3-primary compo-

nent. Thus b∗ is an injection on the 3-primary component. Hence [ΣCP 2,ΩSU(3)]
∼= Z/3Z.

Next, consider the homotopy cofibration sequence

S3 f−→
d∨
i=1

S2 i−→M
q−→ S4 Σf−−→

d∨
i=1

S3.
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Applying the functor Map∗k( , BSU(3)), we obtain a homotopy fibration sequence

(3)

d∏
i=1

Ω2SU(3)
(Σf)∗−−−−→ Ω3

0SU(3)
q∗−→ Map∗k(M,BSU(3))

i∗−→
d∏
i=1

ΩSU(3)
f∗−→ Ω2SU(3).

Lemma 5.3. With respect to (3), the following hold:

(a) 3-locally, q∗ induces an injection on π3;

(b) integrally, q∗ induces an injection on π5;

(c) integrally, i∗ induces an injection on π4.

Proof. For part (a), apply π3 to (3). As mentioned in Section 3, 3-locally (Σf)∗ is

null homotopic. Thus q∗ induces a 3-local injection. For part (b), apply π5 to (3).

By Lemma 5.1, π5(
∏d
i=1 Ω2SU(3)) ∼= 0. Thus by exactness, π5(q∗) is an injection.

Part (c) is a similar exactness argument, using the fact from Lemma 5.1 that

π4(Ω3
0SU(3)) = 0.

Lemma 5.3 holds for all simply-connected, closed 4-manifolds M . In Lem-

ma 5.4 we begin to distinguish between Spin and non-Spin manifolds.

Lemma 5.4. Localize at 2. With respect to (3), the following hold:

(a) if M is a Spin manifold then π3(Map∗k(M,BSU(3))) ∼= Z/2Z and q∗ induces

an isomorphism on π3;

(b) if M is a non-Spin manifold then π3(Map∗k(M,BSU(3))) ∼= 0.

Proof. Apply π3 to (3). This is equivalent to applying the functor [S3, ]. Doing

so and adjointing, we obtain an exact sequence

(4) · · · →
[ d∨
i=1

S6, BSU(3)
]
f̃−→ [S7, BSU(3)]

q̃−→ [Σ3M,BSU(3)]

ĩ−→
[ d∨
i=1

S5, BSU(3)
]
→ · · · .

By Lemma 5.1, π5(BSU(3)) = 0 and π7(BSU(3)) ∼= Z/2Z. Thus we either have

[Σ3M,BSU(3)] ∼= Z/2Z and q̃ is an isomorphism, or [Σ3M,BSU(3)] ∼= 0. Observe

as well that the map f̃ is induced by S7 Σ4f−−→
∨d
i=1 S

6.

If M is a Spin manifold then Σ4f is null homotopic, so f̃ is the zero map

in (4), implying that q̃ is an isomorphism and [Σ3M,BSU(3)] ∼= Z/2Z, which

proves part (a).
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If M is a non-Spin manifold then Σ4f is nontrivial. By the Hilton–Milnor The-

orem, we have π7(
∨d
i=1 S

6) ∼=
⊕d

i=1 π7(S6) ∼=
⊕d

i=1 Z/2Z, where each generator of

π7(S6) is represented by η. Since Σ4f represents a nontrivial class in π7(
∨d
i=1 S

6),

we have Σ4f homotopic to a composite S7 ∆−→
∨d̄
ī=1 S

7

∨d̄
ī=1 η−−−−→

∨d̄
ī=1 S

6 ↪→
∨d
i=1 S

6

for some integer 1 ≤ d̄ ≤ d, where ∆ is the iterated diagonal map. Now define a

map θ :
∨d
i=1 S

6 −→ BSU(3) by the composite
∨d
i=1 S

6 −→ S6 c̄−→ BSU(3), where

the left map pinches to the wedge summand corresponding to ī = 1, and c̄ is the

adjoint of the map c representing the generator of π5(SU(3)) ∼= Z. Observe that

θ ◦Σ4f is homotopic to the composite S7 η−→ S6 c̄−→ BSU(3), which by Lemma 5.1

represents the generator of π7(BSU(3)) ∼= Z/2Z. Therefore, in the context of (4),

θ represents a nontrivial class in [
∨d
i=1 S

6, BSU(3)] and we have f̃(θ) = θ ◦ Σ4f

representing the generator of [S7, BSU(3)] ∼= Z/2Z. Thus f̃ is onto, implying that

[Σ3M,BSU(3)] ∼= 0, which proves part (b).

In Lemma 5.3 we showed that the map i∗ in (3) induces an injection on π4.

As a consequence of Lemma 5.4, we are able to say more.

Corollary 5.5. Localize at 2. With respect to (3), the following hold:

(a) if M is a Spin manifold then i∗ induces an isomorphism on π4;

(b) if M is a non-Spin manifold then f∗ induces an epimorphism on π4.

Proof. Apply π4 to (3). The corollary follows immediately from Lemma 5.4 and

exactness.

§6. An upper bound on the localized homotopy types of Gk(M) when

M is non-Spin

We aim towards Proposition 6.9, which states that if (12, k) = (12, k′) then

Gk(M) ' Gk′(M) after localizing rationally or at any prime. This is based on show-

ing that the composite SU(3)
∂1−→ Ω3

0SU(3)
12−→ Ω3

0SU(3)
q∗−→ Map∗k(M,BSU(3))

is null homotopic. The tricky part comes from the fact that 12 ◦ ∂1 is not null

homotopic. That is, the composition with q∗ plays a nontrivial role.

We first list some properties of SU(3)
∂1−→ Ω3

0SU(3) determined in [HK2]. Let

ı : ΣCP 2 −→ SU(3) be the canonical inclusion.

Lemma 6.1. The following hold:

(a) the map SU(3)
∂1−→ Ω3

0SU(3) has order 24;

(b) the composite ΣCP 2 ı−→ SU(3)
∂1−→ Ω3

0SU(3) has order 24;

(c) the composite S3 ↪→ SU(3)
∂1−→ Ω3

0SU(3) has order 6.
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Next, we state a result due to Mimura [M].

Lemma 6.2. The inclusion ΣCP 2 ı−→ SU(3) has a left homotopy inverse after

three suspensions. Consequently, there is a homotopy decomposition Σ3SU(3) '
Σ4CP 2 ∨ Σ3S8.

Define the space C and the map b by the cofibration S3 −→ SU(3)
b−→ C.

Observe that C is a two-cell complex with cells in dimensions 5 and 8. The de-

composition in Lemma 6.2 implies that Σ3C ' Σ3S5 ∨ Σ3S8. But the attaching

map for the top cell of C is in the stable range, so it is null homotopic. Thus

C ' S5 ∨ S8.

We now begin a series of lemmas to identify the effect of composing ∂1 with

the 2nd and 4th-power maps on Ω3
0SU(3). We will work 2-locally. By Lemma 6.1(c),

the composite S3 −→ SU(3)
∂1−→ Ω3

0SU(3) has order 2 when localized at 2. Thus we

immediately obtain the following.

Lemma 6.3. Localize at 2. There is a homotopy commutative diagram

SU(3)
∂1 //

b

��

Ω3
0SU(3)

2

��
S5 ∨ S8 g+g′ // Ω3

0SU(3)

for some maps g and g′.

We now record some information about the maps g and g′.

Lemma 6.4. Let g and g′ be the maps in Lemma 6.3 and let M be any simply-

connected 4-manifold. Then localized at 2 the following hold:

(a) the map g represents a generator of π5(Ω3
0SU(3)) ∼= Z/4Z;

(b) the composite S5 g−→ Ω3
0SU(3)

q∗−→ Map∗k(M,BSU(3)) has order 4;

(c) the map g′ has order at most 2.

Proof. We first consider part (c). Since the 2nd-power map on Ω3
0SU(3) is a 3-fold

loop map, we can adjoint the diagram in Lemma 6.3 to obtain a homotopy com-

mutative diagram

Σ3SU(3)
∂̄1 //

Σ3b
��

SU(3)

2

��
Σ3S5 ∨ Σ3S8 ḡ+ḡ′ // SU(3)
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where ∂̄1, ḡ and ḡ′ are the adjoints of ∂1, g and g′ respectively. By Lemma 6.2, there

is a map t : Σ3S8 −→ Σ3SU(3) such that the composite Σ3S8 t−→ Σ3SU(3)
Σ3b−−→

Σ3S5 ∨ Σ3S8 is homotopic to the inclusion of the right wedge summand. By

Lemma 5.1, π11(SU(3)) ∼= Z/4Z. Thus ∂̄1 ◦ t has order at most 4. So 2 ◦ ∂̄1 ◦ t has

order at most 2. The homotopy commutativity of the preceding diagram therefore

implies that (ḡ + ḡ′) ◦ Σ3b ◦ t has order at most 2. By definition of t, we have

(ḡ + ḡ′) ◦ b ◦ t ' ḡ′. Thus ḡ′ has order at most 2. Adjointing back, g′ has order at

most 2, proving part (c).

For part (a), by Lemma 6.1(a), 2 ◦ ∂1 has order 4. So the homotopy commu-

tativity of the diagram in Lemma 6.3 implies that (g+g′)◦ b has order 4. We have

just seen that g′ has order at most 2, so g must have order at least 4. On the other

hand, by Lemma 5.1, π5(Ω3
0SU(3)) ∼= Z/4Z, so the order of g is exactly 4 and g

represents a generator.

For part (b), Lemma 5.3 states that q∗ induces an injection on π5. So as g

has order 4, q∗ ◦ g does as well.

Note that when SU(3)
b−→ S5 ∨ S8 is pinched to S5 we obtain the canonical

map SU(3)
π−→ S5. By Lemma 6.4, the map g′ in Lemma 6.3 has order 2. So we

can immediately refine the diagram in Lemma 6.3 to the following.

Lemma 6.5. Localized at 2, there is a homotopy commutative diagram

SU(3)
∂1 //

π

��

Ω3
0SU(3)

4

��
S5 2g // Ω3

0SU(3)

where g represents a generator of π5(Ω3
0SU(3)) ∼= Z/4Z.

In what follows, we require a slightly different formulation of the diagram in

Lemma 6.5.

Lemma 6.6. Let t be an integer such that (2, t) = 1. Then localized at 2 there is

a homotopy commutative diagram

SU(3)
∂1 //

π

��

Ω3
0SU(3)

4t

��
S5 2g // Ω3

0SU(3)

where g represents a generator of π5(Ω3
0SU(3)) ∼= Z/4Z.
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Proof. Lemma 6.3 still holds when multiplication by 2 has been replaced with

multiplication by 2t, although the choices of g and g′ may be different. Neverthe-

less, their orders remain the same as before since the argument in Lemma 6.4 goes

through without change. The diagram asserted by the lemma then follows as g′

has order 2.

Next, we want to relate the map g in Lemma 6.5 with q∗. For this, we specialize

to the case of a non-Spin manifold.

Lemma 6.7. Let M be a simply-connected non-Spin 4-manifold. Then localized

at 2 there is a homotopy commutative diagram

S5 η //

2g

��

S4

δ

��
Ω3

0SU(3)
q∗ // Map∗k(M,BSU(3))

where g is the map in Lemma 6.5 and δ has the property that the composite S4 δ−→
Map∗k(M,BSU(3))

i∗−→
∏d
i=1 ΩSU(3) is divisible by 2.

Proof. We begin by defining some maps. Consider the homotopy fibration sequence

Ω3
0SU(3)

q∗−→ Map∗k(M,BSU(3))
i∗−→

d∏
i=1

ΩSU(3)
f∗−→ Ω2SU(3).

Since M is non-Spin, by Corollary 5.5(b), there is a map γ : S4 −→
∏d
i=1 ΩSU(3)

such that f∗ ◦γ represents the generator of π4(Ω2SU(3)) ∼= Z/2Z. Since this group

has order 2, f∗ ◦ γ extends to a map e : P 5(2) −→ Ω2SU(3), where Pm(2) is the

mod-2 Moore space of dimension m. From the extension of f∗ ◦ γ to e we obtain

a homotopy commutative diagram

(5)

P 4(2) //

ε

��

S4 2 //

δ

��

S4 //

γ

��

P 5(2)

e

��
Ω3

0SU(3)
q∗ // Map∗k(M,BSU(3))

i∗ // ∏d
i=1 ΩSU(3)

f∗ // Ω2SU(3)

where the top row is a homotopy cofibration, the bottom row is a homotopy

fibration, and the right square induces the maps δ and ε. Note that there may be

different choices of δ and ε, but the Peterson–Stein formulas imply that these maps

can be chosen so that ε is the adjoint of e. Doing so implies that ε is an extension

of a map S3 −→ Ω3
0SU(3) representing the generator of π3(Ω3

0SU(3)) ∼= Z/2Z.
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Next, since S4 η−→ S3 has order 2, there is a homotopy commutative diagram

S4 //

η

��

∗ //

��

S5

η

��

S5

η

��
S3 2 // S3 // P 4(2) // S4

which defines the map η. There may be different choices of η but any choice will

do.

We claim that the composite S5 η−→ P 4(2)
ε−→ Ω3

0SU(3) is homotopic to ±2g,

where g represents the generator of π5(Ω3
0SU(3)) ∼= Z/4Z. If so then precomposing

the left square in (5) with η gives a homotopy commutative diagram

S5 η //

±2g

��

S4

δ

��
Ω3

0SU(3)
q∗ // Map∗k(M,BSU(3))

Replacing δ by −δ if necessary to adjust ±2g to 2g, we obtain the homotopy

commutative diagram asserted by the lemma.

It remains to show that ε ◦ η ' ±2g. Since g has order 4, it is equivalent to

show that ε◦η has order 2. Adjointing, it is equivalent to show that the composite

S8 Σ3η−−→ P 7(2)
ε′−→ SU(3) has order 2, where ε′ is the adjoint of ε. Since ε is

an extension of a map representing the generator of π3(Ω3
0SU(3)) ∼= Z/2Z, its

adjoint ε′ is an extension of a map representing the generator of π6(SU(3)). On

the other hand, by Lemma 5.1, this generator is represented by the composite

S6 ν′−→ S3 i−→ SU(3). Thus there is a homotopy commutative diagram

S6 //

ν′

��

P 7(2)

ε′

��
S3 i // SU(3)

This induces a homotopy commutative diagram

(6)

S6 //

ν′

��

P 7(2) //

ε′

��

S7 2 //

φ

��

S7

ν′

��
S3 i // SU(3)

π // S5 η̃ // BS3

where the top row is a homotopy cofibration sequence, the bottom row is a homo-

topy fibration sequence, η̃ represents the generator of π5(BS3) ∼= π4(S3) ∼= Z/2Z,
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and φ is some induced map. Adjointing the right square in (6) we obtain η◦φ ' ν′◦2
in π6(S3) ∼= Z/4Z. Since ν′ represents a generator of this group, ν′ ◦2 is nontrivial.

Thus φ is nontrivial, so as π5(S3) ∼= Z/2Z is generated by η2, we have φ ' η2. Now

consider the middle square of (6). By definition of η, the map S8 Σ3η−−→ P 7(2) has

the property that when composed with the pinch map P 7(2) −→ S7 we obtain η.

Thus the middle square of (6) implies that π ◦ ε′ ◦ Σ3η ' η3. In particular, as η3

is nontrivial of order 2, we see that π ◦ ε′ ◦ Σ3η is nontrivial of order 2. Finally,

by Lemma 5.1, the map π induces an injection on π8, so ε′ ◦ Σ3η is nontrivial of

order 2, as required.

Next, we combine the previous lemmas to prove a key null homotopy.

Proposition 6.8. Let t be an integer such that (2, t) = 1 and let M be a simply-

connected non-Spin 4-manifold. Then localized at 2 the composite SU(3)
∂1−→

Ω3
0SU(3)

4t−→ Ω3
0SU(3)

q∗−→ Map∗k(M,BSU(3)) is null homotopic.

Proof. First observe that there is a homotopy pushout diagram

ΣCP 2 ı // SU(3) //

π

��

S8

λ
��

ΣCP 2 // S5 η // S4

which defines the map λ. By [To2], π8(S4) = Z/2Z⊕ Z/2Z, where the generators

are ν ◦ η and Σν′ ◦ η. Thus λ is homotopic to a composite S8 η−→ S7 v−→ S4 where

v is some sum of ν and Σν′.

Now consider the diagram

SU(3)
∂1 //

π

��

}}||
||
||
||
||
||
||
||
||
||

Ω3
0SU(3)

4t

��
S5 2g //

η

��

Ω3
0SU(3)

q∗

��
S8 η // S7 v // S4 h // Map∗k(M,BSU(3))

The left triangle homotopy commutes by the previous paragraph. The upper right

square homotopy commutes by Lemma 6.6 and the lower right square homotopy

commutes by Lemma 6.7. We will show that the composite along the bottom row

is null homotopic. If so, then the lower direction around the diagram is null homo-

topic, implying that the upper direction around the diagram is also null homotopic.
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But the upper direction around the diagram is exactly as in the statement of the

lemma.

It remains to show that h◦ v ◦ η is null homotopic. First consider S7 v−→ S4 h−→
Map∗k(M,BSU(3)). Apply π7 to the homotopy fibration sequence

d∏
i=1

Ω2SU(3) −→ Ω3
0SU(3)

q∗−→ Map∗k(M,BSU(3))
i∗−→

d∏
i=1

ΩSU(3)→ Ω2SU(3).

By Lemma 5.1, we obtain a short exact sequence

(7) 0→ Z/2Z π7(q∗)−−−−→ π7(Map∗k(M,BSU(3)))
π7(i∗)−−−−→

d⊕
i=1

Z/4Z→ 0.

In general, suppose that 0 → G1
f−→ G2

g−→ G3 → 0 is a short exact sequence

of groups. Let x ∈ G2 and suppose that g(x) = 2y. Since g is onto, there is an

element x′ ∈ G2 such that g(x′) = y. Then g(x − 2x′) = 0 so x − 2x′ lifts to

z ∈ G1. Thus x = 2x′ + f(z). In our case, consider x = h ◦ v and the short exact

sequence (7). By Lemma 6.7, i∗ ◦ h ' 2γ for some map γ, so i∗ ◦ h ◦ v ' 2γ ◦ v.

That is, g(x) = 2y where g = π7(i∗) and y = γ ◦ v. So the general argument above

shows that x = h ◦ v ' 2x′ + q∗ ◦ z, where z represents a class in π7(Ω3
0SU(3)).

Now consider h ◦ v ◦ η. Since η has order 2, we have h ◦ v ◦ η ' 2x′ ◦ η +

q∗ ◦ z ◦ η ' q∗ ◦ z ◦ η. The map q∗ ◦ z represents a class in π7(Ω3
0SU(3)) ∼= Z/2Z.

By Lemma 5.1(d), q∗ ◦ z ◦ η is null homotopic. Hence h ◦ v ◦ η ' q∗ ◦ z ◦ η is null

homotopic, as claimed.

Finally, we are able to give some information on the homotopy types of SU(3)-

gauge groups over a simply-connected non-Spin 4-manifold.

Proposition 6.9. Let M be a simply-connected non-Spin 4-manifold. If (12, k) =

(12, k′) then there is a homotopy equivalence Gk(M) ' Gk′(M) after localizing

rationally or at any prime.

Proof. By Lemma 6.1(a), the map SU(3)
∂1−→ Ω3

0SU(3) has order 24. So Lemma 4.2

implies that if (24, k) = (24, k′) then there is a homotopy equivalence Gk(M) '
Gk′(M) after localizing rationally or at any prime. However, we need to do a bit

better than this.

Since 24 has eight integer divisors, there are at most eight possibilities for the

homotopy types of Gk(M) after localizing rationally or at an odd prime. Equiva-

lently, there are at most four 2-local homotopy types of Gk(M), depending on the

value of (8, k), and at most two 3-local homotopy types, depending on the value of

(3, k). We will show that in the 2-local case, the types corresponding to (8, k) = 4
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and (8, k) = 8 are identified. If so, then (12, k) = (12, k′) implies that Gk(M) '
Gk′(M) after localizing rationally or at any prime, proving the proposition.

Localize at 2 and consider the homotopy fibration Gk(M) −→ SU(3)
∂M
k−−→

Map∗k(M,BSU(3)). By definition, ∂Mk is the composite SU(3)
∂k−→ Ω3

0SU(3)
q∗−→

Map∗k(M,BSU(3)), and by Lemma 2.1, ∂k ' k ◦ ∂1. If (8, k) = 8 then k = 8t. By

Lemma 6.1(a), ∂1 has order 8, so ∂k = k◦∂1 ' 8t◦∂1 is null homotopic. Thus ∂Mk is

null homotopic, implying that Gk(M) ' SU(3)×Map∗k(M,BSU(3)). If (8, k) = 4

then k = 4t for some integer t satisfying (2, t) = 1. Thus ∂Mk ' q∗ ◦ k ◦ ∂1 '
q∗ ◦ 4t ◦ ∂1. By Proposition 6.8, q∗ ◦ 4t ◦ ∂1 is null homotopic. Hence ∂Mk is null

homotopic, implying that Gk(M) ' SU(3) × Map∗k(M,BSU(3)). Summarizing,

if (8, k) = 8 or (8, k) = 4 then the homotopy types of the corresponding gauge

groups Gk(M) have been identified as SU(3)×Map∗k(M,BSU(3)).

§7. A lower bound on the number of homotopy types of Gk(M)

In this section we start with a homotopy equivalence Gk(M) ' Gk′(M) and

show that (24, k) = (24, k′) if M is Spin or (12, k) = (12, k′) if M is non-Spin.

The key tool is an analysis of the composite ΣCP 2 ı−→ SU(3)
∂1−→ Ω3

0SU(3)
q∗−→

Map∗k(M,BSU(3)).

Lemma 7.1. Let M be a simply-connected 4-manifold. Consider the composite

ΣCP 2 ı−→ SU(3)
∂1−→ Ω3

0SU(3)
q∗−→ Map∗k(M,BSU(3)). The following hold:

(a) if M is Spin then q∗ ◦ ∂1 ◦ ı has order 24;

(b) if M is non-Spin then q∗ ◦ ∂1 ◦ ı has order 12.

Proof. It suffices to show that q∗ ◦ ∂1 ◦ ı has order 3 when localized at 3, order 8

when localized at 2 in the Spin case, and order 4 when localized at 2 in the non-Spin

case.

Localize at 3. By Lemma 6.1, ∂1 ◦ ı has order 3, so q∗ ◦ ∂1 ◦ ı has order at

most 3. On the other hand, by Lemma 6.1(c), the composition S3 −→ ΣCP 2 ı−→
SU(3)

∂1−→ Ω3
0SU(3) has order 3, and by Lemma 5.3, q∗ induces an injection on π3.

Thus q∗ ◦ ∂1 ◦ ı is nontrivial, implying that its order is at least 3. Hence q∗ ◦ ∂1 ◦ ı
has order 3.

Localize at 2. There are two cases.

Case 1: M is Spin. By Lemma 6.1, ∂1 ◦ ı has order 8, so q∗ ◦ ∂1 ◦ ı has order at

most 8. We wish to show that q∗ ◦ ∂1 ◦ ı also has order at least 8. Let π be the

composite π : ΣCP 2 ı−→ SU(3)
π−→ S5. Equivalently, π is the pinch map to the top



Homotopy Types of SU(3)-gauge Groups 559

cell. Consider the diagram

ΣCP 2 ı //

π
$$H

HH
HH

HH
HH

H
SU(3)

∂1 //

π

��

Ω3
0SU(3)

4

��
S5 2g // Ω3

0SU(3)
q∗ // Map∗k(M,BSU(3))

The left triangle homotopy commutes by definition of π and the middle square

homotopy commutes by Lemma 6.5. To show that q∗ ◦∂1 ◦ ı has order at least 8 it

is equivalent to show that the upper direction around the diagram is nontrivial. We

will do this by showing that the lower direction around the diagram is nontrivial.

Suppose otherwise, that q∗ ◦ 2g ◦ π is null homotopic. Consider the diagram

(8)

ΣCP 2 π // S5 η //

2g

��

S4 //

h

��

Σ2CP 2

l
��

Ω3
0SU(3)

q∗ // Map∗k(M,BSU(3))
i∗ // ∏d

i=1 ΩSU(3)

where h and l are to be defined momentarily. The null homotopy for q∗ ◦ 2g ◦ π
implies that q∗◦2g extends along the homotopy cofibre of π, making the left square

homotopy commute for some choice of extension h. Since the top row is a homotopy

cofibration and the bottom row is a homotopy fibration, the homotopy commu-

tativity of the left square implies that i∗ ◦ h extends along the homotopy cofibre

of η, making the right square homotopy commute for some choice of extension l.

Thus (8) homotopy commutes so we can begin to analyze its properties. Since q∗◦g
has order 4 by Lemma 6.4(b), the composite q∗ ◦ 2g is nontrivial. Therefore the

homotopy commutativity of the left square in (8) implies that: (i) h is nontrivial

and (ii) h is not divisible by 2 (for if h ' 2h′ then q∗ ◦ 2g ' 2h′ ◦ η ' ∗ because η

has order 2). By Lemma 5.5, i∗ induces an isomorphism on π4. Therefore, i∗ ◦h is

nontrivial and is not divisible by 2. By Lemma 5.1, there is a 2-local isomorphism

π4(
∏d
i=1 ΩSU(3)) ∼=

⊕d
i=1 Z(2), and a generating set is represented by the compos-

ites ci : S
4 c̃−→ ΩSU(3) ↪→

∏d
i=1 ΩSU(3) for 1 ≤ i ≤ d, where c̃ is the adjoint of the

map c representing the generator of π5(SU(3)) ∼= Z(2). Since i∗◦h is nontrivial and

not divisible by 2, we have i∗ ◦h '
∑d
i=1 tici where each ti ∈ Z(2) and at least one

ti—say ti0—is not divisible by 2. By Lemma 5.1, π6(ΩSU(3)) ∼=
⊕d

i=1 Z/2Z, and

a generating set is represented by the composites ci ◦ η. In particular, ti0ci0 ◦ η is

nontrivial, implying that i∗ ◦h◦η is nontrivial. But this contradicts the homotopy

commutativity of (8). Therefore the supposition that q∗ ◦ 2g ◦ π is null homotopic

is false. Hence q∗ ◦ g ◦ π has order at least 4, as required.
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Case 2: M is non-Spin. By Proposition 6.8, the composite SU(3)
∂1−→ Ω3

0SU(3)
4−→

Ω3
0SU(3)

q∗−→ Map∗k(M,BSU(3)) is null homotopic. Thus q∗ ◦ ∂1 ◦ ı has order at

most 4. To show that q∗ ◦∂1 ◦ ı has order at least 4, we will show that q∗ ◦ 2 ◦∂1 ◦ ı
is nontrivial. Consider the diagram

ΣCP 2 ı // SU(3)
∂1 //

b

��

Ω3
0SU(3)

2

��
S5 ∨ S8 g+g′ // Ω3

0SU(3)
q∗ // Map∗k(M,BSU(3))

The square homotopy commutes by Lemma 6.3. We wish to show that the upper

direction around the diagram is nontrivial. It is therefore equivalent to show that

the lower direction around the diagram is nontrivial. By Lemma 5.1(a), there is

a map c : S5 −→ SU(3) with the property that the composite S5 c−→ SU(3)
π−→ S5

has degree 2. By [To1], c can be chosen to factor as S5 s−→ ΣCP 2 ı−→ SU(3). Thus

q∗ ◦ (g+ g′)◦ b◦ ı◦ s ' q∗ ◦2g. By Lemma 6.4(b), q∗ ◦ g has order 4. Thus q∗ ◦2g is

nontrivial, implying that q∗ ◦(g+g′)◦b◦ ı is nontrivial. That is, the lower direction

around the previous diagram is nontrivial, as required.

The map Ω3
0SU(3)

q∗−→ Map∗k(M,BSU(3)) induces a map

q̄ : [ΣCP 2,Ω3
0SU(3)] −→ [ΣCP 2,Map∗k(M,BSU(3))].

The following lemma describes some of its 2-local properties.

Lemma 7.2. Let M be a simply-connected 4-manifold. Localize at 2. The follow-

ing hold:

(a) there is an isomorphism [ΣCP 2,Ω3
0SU(3)] ∼= Z/8Z and a generator of order 8

is represented by the composite ΣCP 2 ı−→ SU(3)
∂1−→ Ω3

0SU(3);

(b) if M is Spin, [ΣCP 2,Ω3
0SU(3)]

q̄−→ [ΣCP 2,Map∗k(M,BSU(3))] is an isomor-

phism;

(c) if M is non-Spin, then [ΣCP 2,Map∗k(M,BSU(3))] ∼= Z/4Z, a representa-

tive of the generator is the composite ΣCP 2 ı−→ SU(3)
∂1−→ Ω3

0SU(3)
q∗−→

Map∗k(M,BSU(3)), and q̄ induces the reduction map Z/8Z −→ Z/4Z.

Proof. Part (a) is a refinement of Lemma 6.1(a), and was proved in [HK2].

For parts (b) and (c), first observe that if the functor [ΣCP 2, ] is applied

to the homotopy fibration Ω3
0SU(3)

q∗−→ Map∗k(M,BSU(3))
i∗−→

∏d
i=1 ΩSU(3) we



Homotopy Types of SU(3)-gauge Groups 561

obtain an exact sequence

[ΣCP 2,Ω3
0SU(3)]

q̄−→ [ΣCP 2,Map∗k(M,BSU(3))]
i∗−→

[
ΣCP 2,

d∏
i=1

ΩSU(3)
]
.

By Lemma 5.2, [ΣCP 2,ΩSU(3)] ∼= 0 (2-locally), so q̄ is an epimorphism.

For part (b), as M is Spin, Lemma 7.1(a) states that q∗ ◦∂1 ◦ ı has order 8, the

same as ∂1 ◦ ı. Since ∂1 ◦ ı represents a generator of [ΣCP 2,Ω3
0SU(3)], the map q̄

is therefore an injection. Since q̄ is also an epimorphism, it is an isomorphism.

For part (c), as M is non-Spin, Lemma 7.1(b) states that q∗ ◦ ∂1 ◦ ı has

order 4. That is, q̄(∂1 ◦ ı) has order 4. Since ∂1 ◦ ı represents a generator in

[ΣCP 2,Ω3
0SU(3)] ∼= Z/8Z, the image of q̄ is Z/4Z. As q̄ is an epimorphism, we

therefore have [ΣCP 2,Map∗k(M,BSU(3))] ∼= Z/4Z, a representative of the gener-

ator is q∗ ◦ ∂1 ◦ ı, and q̄ is the reduction map.

We now extract some 2-primary information from a homotopy equivalence

Gk(M) ' Gk′(M). Consider the homotopy fibration diagram

SU(3)
∂k // Ω3

kSU(3) //

q∗

��

BGk //

��

BSU(3)

SU(3)
∂M
k // Map∗k(M,BSU(3)) // BGk(M)

ev // BSU(3)

Apply the functor [ΣCP 2, ]. Note that the canonical map BSU(3) −→ BSU(∞)

is 6-connected, implying that there are isomorphisms

[ΣCP 2, BSU(3)] ∼= [ΣCP 2, BSU(∞)] ∼= K̃0(ΣCP 2) = 0.

Thus we obtain a commutative diagram of exact sequences

(9)

[ΣCP 2, SU(3)]
∂̄k // [ΣCP 2,Ω3

0SU(3)] //

q̄

��

[ΣCP 2, BGk] //

q̃

��

0

[ΣCP 2, SU(3)]
∂̄M
k // [ΣCP 2,Map∗k(M,BSU(3))] // [ΣCP 2, BGk(M)] // 0

Lemma 7.3. Suppose there is a homotopy equivalence Gk(M) ' Gk′(M). The

following hold:

(a) if M is Spin then (8, k) = (8, k′);

(b) if M is non-Spin then (4, k) = (4, k′).

Proof. The homotopy equivalence Gk(M) ' Gk′(M) implies that there is an iso-

morphism of sets [ΣCP 2, BGk(M)] ∼= [ΣCP 2, BGk′(M)]. Localize at 2.
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If M is Spin then Lemma 7.2(b) states that q̄ is an isomorphism. A diagram

chase in (9) therefore implies that q̃ is an isomorphism. Thus there is an isomor-

phism of sets [ΣCP 2, BGk] ∼= [ΣCP 2, BGk′ ]. In [HK2] it is shown that if the latter

isomorphism exists then (8, k) = (8, k′), proving part (a).

If M is non-Spin then by Lemma 7.2(c), [ΣCP 2,Map∗k(M,BSU(3))] ∼= Z/4Z
and a generator is represented by the composite ΣCP 2 ı−→ SU(3)

∂1−→ Ω3
0SU(3)

q∗−→
Map∗k(M,BSU(3)). By Corollary 2.2, ∂k ' k◦∂1 and by its definition, ∂Mk = q∗◦∂k,

so ∂Mk ' q∗ ◦ k ◦ ∂1. Thus Im ∂̄Mk
∼= Z/(4/(4, k))Z, implying that coker ∂̄Mk

∼=
Z/(4, k)Z. On the other hand, observe that the exactness of the bottom row in (9)

implies that [ΣCP 2, BGk(M)] is the cokernel of ∂̄Mk . Thus [ΣCP 2, BGk(M)] ∼=
Z/(4, k)Z. Similarly, [ΣCP 2, BGk′(M)] ∼= Z/(4, k′)Z. By assumption, Gk(M) '
Gk′(M), so there is a string of isomorphisms Z/(4, k)Z ∼= [ΣCP 2, BGk(M)] ∼=
[ΣCP 2, BGk′(M)] ∼= Z/(4, k′)Z. This occurs if and only if (4, k) = (4, k′).

Next, we move to the 3-primary case.

Lemma 7.4. Suppose there is a homotopy equivalence Gk(M) ' Gk′(M). Then

(3, k) = (3, k′).

Proof. The homotopy equivalence Gk(M) ' Gk′(M) implies that there is an iso-

morphism π4(Gk(M)) ∼= π4(Gk′(M)). Localized at 3, Theorem 3.1 states that there

is a homotopy equivalence Gk(M) ' Gk ×
∏d
i=1 Ω2SU(3). Since π4(Ω2(SU(3)) ∼=

Z/3Z by Lemma 5.1, we obtain

π4(Gk(M)) ∼= π4(Gk)⊕
d⊕
i=1

π4(Ω2SU(3)) ∼= π4(Gk)⊕
d⊕
i=1

Z/3Z.

By [S], there is a (3-local) isomorphism π4(Gk) ∼= Z/(3, k)Z. Thus π4(Gk(M)) ∼=⊕d
i=1 Z/3Z if and only if (3, k) = 1 and π4(Gk(M)) ∼=

⊕d+1
i=1 Z/3Z if and only if

(3, k) = 3. Consequently, π4(Gk(M)) ∼= π4(Gk′(M)) if and only if (3, k) = (3, k′).

Combining Lemmas 7.3 and 7.4 we obtain the following.

Proposition 7.5. Let M be a simply-connected 4-manifold. Suppose there is a

homotopy equivalence Gk(M) ' Gk′(M). The following hold:

(a) if M is Spin then (24, k) = (24, k′);

(b) if M is non-Spin then (12, k) = (12, k′).

To conclude, we prove Theorem 1.1.
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Proof of Theorem 1.1. Part (a) is the combination of Corollary 3.2 and Proposi-

tion 7.5 (a). Part (b) is the combination of Propositions 6.9 and 7.5 (b).
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