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Asymptotic Behavior of the Transition Density of
an Ergodic Linear Diffusion

by

Yuji Kasahara

Abstract

Positive recurrent diffusions on the line are treated. We study the asymptotic behavior of
the transition density in the long term. The problem is equivalent to the study of Krein’s
correspondence for bounded strings.
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§1. Introduction

This paper is a continuation of [6], where we studied Tauberian theorems for

Krein’s correspondence. We shall apply one of the results to linear diffusions.

Let X = (Xt)t≥0 be a regular, conservative diffusion on an interval I ⊂ R.

We allow the case of generalized diffusions. It is well known as Feller’s canonical

representation that the local generator is of the form

(1.1) L =
d

dm(x)

d

ds(x)
, x ∈ I,

where s(x) is an increasing, continuous function and dm is a nonnegative Radon

measure on I. s(x) and dm(x) are referred to as the scale function and the speed

measure, respectively (see e.g., [3, Chap. 5]).

Let p(t, x, y) be the transition density with respect to dm(x). Then, for every

(x, y) ∈ I × I,

(1.2) p(t, x, y)→ 1

m̂
(t→∞),
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where

(1.3) m̂ =

∫
I

dm(x) (≤ ∞)

(cf. [2, pp. 35–37]).

In the present article we shall evaluate the rate of convergence in (1.2) when

m̂ < ∞. Note that the condition m̂ < ∞ is equivalent to the diffusion being

ergodic (or positive recurrent) in the sense that the process has a finite expected

first hitting time between every pair of points in the state space.

Our main result is as follows: Suppose that the diffusion is one-sided in the

sense that I = [0,∞); then, for 0 < β < 1,

p(t, x, y)− 1

m̂
∼ const · t−β (t→∞)

holds if and only if∫ ∞
s−1(x)

dm(y) ∼ const · x−β/(β+1) (x→∞)

(Theorem 3.1). Here, “f(x) ∼ g(x)” means that f(x)/g(x)→ 1. A similar problem

for the bilateral case (i.e., I = (−∞,∞)) will be treated in Section 5.

§2. Preliminaries

We start by explaining Krein’s correspondence. By a (Krein) string we mean a

function

m : (−∞,∞)→ R+ := [0,∞]

that is nondecreasing, right-continuous and vanishes on (−∞, 0) (i.e.,m(−0) = 0)).

We exclude the trivial case that m(x) ≡ 0. Throughout the paper M denotes

the totality of strings. The Lebesgue–Stieltjes measure dm(x) describes the mass

distribution of the string and

(2.1) ` = `(m) := sup{x | m(x) <∞} (∈ (0,∞])

is its “length”.

With m ∈M we associate the generalized Sturm–Liouville operator

(2.2) L =
d

dm(x)

d

dx
, 0 ≤ x < `.

Notice that we are considering only the special case s(x) = x in (1.1) for the

present. To treat the general case see Remark 3.7 in Section 3. The boundary

condition for (2.2) is: 0 is regular and reflecting, while ` is absorbing if regular.
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(Other boundary conditions at the right end can be reduced to this case using the

notion of inextensible measures introduced in [8]. See Example 2.2.)

For each λ ∈ C, we can define ϕλ(x) and ψλ(x) (−∞ < x < `) as the unique

solutions of

−Lu = λu

with the initial conditions (u(0), u′(−0)) = (1, 0) and (u(0), u′(−0)) = (0, 1), re-

spectively; or, precisely, the solutions of the following integral equations:

(2.3)


ϕλ(x) = 1− λ

∫ x

−0

(x− y)ϕλ(y) dm(y) (0 ≤ x < `),

ψλ(x) = x− λ
∫ x

−0

(x− y)ψλ(y) dm(y) (0 ≤ x < `).

Then

H(λ) := lim
x↑`

ψλ(x)

ϕλ(x)

(
=

∫ `−0

0

dx

ϕλ(x)2

)
(λ ∈ C, Reλ < 0)

is called the characteristic function of m and has the following representation:

(2.4) H(λ) = a+

∫
[0,∞)

σ(dξ)

ξ − λ
,

where a = inf{x > 0 | m(x) > 0} (≥ 0) and σ(dξ) is a Radon measure satisfying

(2.5)

∫
[0,∞)

σ(dξ)

ξ + 1
<∞.

The function σ(t) =
∫

[0,t]
σ(dξ) (t ≥ 0) is referred to as the spectral function. For

consistency of notation with other related papers such as [8] and [5], we put

h(s) = H(−s), s > 0,

throughout the paper. Conversely, to any function H(λ) of the form (2.4) with

a ≥ 0 and σ(dξ) satisfying (2.5), there corresponds a unique m ∈ M. This bi-

jection H(λ) (or h(s)) ↔ m(x) is called Krein’s correspondence. For further in-

formation on Krein’s correspondence and its application to linear diffusions see

Kotani–Watanabe [8]. See also Kotani [7] for an extension.

It is well known that the transition density p(t, x, y) and the resolvent kernel

gs(x, y) (with respect to dm(x)) of the diffusion corresponding to (2.2) can be

expressed as follows (see e.g. [4]):

p(t, x, y) =

∫ ∞
−0

e−tξϕξ(x)ϕξ(y) dσ(ξ) (t > 0),(2.6)

gs(x, y) :=

∫ ∞
0

e−stp(t, x, y) dt =

∫ ∞
−0

ϕξ(x)ϕξ(y)

s+ ξ
dσ(ξ) (s > 0).(2.7)
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In particular, since ϕξ(0) = 1, we have

p(t, 0, 0) =

∫ ∞
−0

e−tξ dσ(ξ) (t > 0),(2.8)

gs(0, 0) =

∫ ∞
−0

dσ(ξ)

s+ ξ
(= h(s)− a) (s > 0).(2.9)

Note that the asymptotic behavior of p(t, x, y) is essentially the same as that of

p(t, 0, 0) in the following sense:

(2.10) p(t, x, y) = p(t, 0, 0) + o(1/t) (t→∞).

Indeed,

t|p(t, x, y)− p(t, 0, 0)|= t

∣∣∣∣∫ ∞
+0

e−tξ(ϕξ(x)ϕξ(y)− 1)dσ(ξ)

∣∣∣∣
≤ sup

0<ξ≤1

|ϕξ(x)ϕξ(y)− 1|
ξ

∫ 1

+0

tξe−tξ dσ(ξ) + o(1),

while ∫ 1

+0

tξe−tξ dσ(ξ) ≤ 2

∫ 1

+0

dσ(ξ)

1 + tξ
= o(1) (t→∞).

Since p(t, 0, 0) and h(s) are the Laplace transform and the Stieltjes transform

of σ(ξ), respectively, the study of the asymptotic behavior of p(t, 0, 0) (or of

p(t, x, y)) as t → ∞ can be reduced to that of σ(ξ) as ξ → +0 or of h(s) as

s→ +0. The fundamental relationship is

(2.11) σ(0) = lim
t→∞

p(t, 0, 0) = lim
s→+0

sh(s) =
1

m̂

with the convention that 1/∞ = 0, where

m̂ := lim
x→∞

m(x) =

∫
[0,∞)

dm(x) (≤ ∞)

is the total mass of the string. The first two equalities of (2.11) are elementary,

while the last is well-known.

Remark 2.1. The diffusion is ergodic (positive recurrent) if and only if m̂ <∞.

Note that, when m̂ <∞, we have ` =∞ because m̂ <∞ implies m(x) <∞ (for

all x > 0) so that ` =∞ (see (2.1)). On the other hand when m̂ =∞, the process

is null-recurrent if ` =∞ and is transient or non-conservative if ` <∞.

For the convenience of the readers who are not familiar with the notation used

here we give an example:
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Example 2.2. (1) (absorbing boundary) Let m(x) = x1[0,1)(x) +∞ · 1[1,∞)(x)

so that dm(x) = 1[0,1)(x)dx+∞ · δ1(dx). Then ` = 1 and m̂ =∞. This string m

corresponds to L = d2/dx2 on (0, 1) with the boundary condition u′(0) = u(1) = 0.

The process is reflected at x = 0 and absorbed at x = 1. Since

(2.12) ϕ−s(x) = cosh(
√
s x), ψ−s(x) =

1√
s

sinh(
√
s x), x ∈ [0, 1],

we have

h(s) = lim
x↑1

ψ−s(x)

ϕ−s(x)
=

1√
s

sinh
√
s

cosh
√
s
, s > 0.

(2) (reflecting boundary) Let m(x) = x1[0,1)(x)+1[1,∞)(x). Then ` =∞ (not

` = 1 !) and m̂ = 1. The string m corresponds to L = d2/dx2 on (0, 1) with

the boundary condition u′(0) = u′(1) = 0. Both boundaries are reflecting and

the process is ergodic. In this case ϕ−s(x) and ψ−s(x) are the same as (2.12) for

x ∈ [0, 1] and are linear on [1,∞):{
ϕ−s(x) = ϕ′−s(1)(x− 1) + ϕ−s(1),

ψ−s(x) = ψ′−s(1)(x− 1) + ψ−s(1),
x ∈ [1,∞).

Therefore,

h(s) = lim
x↑∞

ψ−s(x)

ϕ−s(x)
=
ψ′−s(1)

ϕ′−s(1)
=

cosh
√
s√

s sinh
√
s
, s > 0.

(3) (elastic boundary) Let c > 0 and m(x) = x1[0,1)(x) + 1[1,1+c)(x) +∞ ·
1[1+c,∞)(x) so that dm(x) = 1[0,1)(x)dx+∞·δ1+c(dx). Then ` = 1+c and m̂ =∞.

The string m corresponds to L = d2/dx2 on (0, 1) with the boundary condition

u′(0) = u(1 + c) = 0 (i.e., u′(0) = u′(1)c + u(1) = 0). The process dies at x = 1

with a suitable probability. As in case (2), we have

h(s) = lim
x↑1+c

ψ−s(x)

ϕ−s(x)
=
ψ′−s(1)c+ ψ−s(1)

ϕ′−s(1)c+ ϕ−s(1)
=
c cosh

√
s+ (1/

√
s) sinh

√
s

c
√
s sinh

√
s+ cosh

√
s

, s > 0.

§3. Main results

Let m ∈ M, and let h(s), σ(ξ), p(t, x, y), m̂ be as in Section 2. Our main result is

the following:

Theorem 3.1. Assume that m̂ < ∞ (and hence ` = ∞). Let 1 < α < 2 and let

γ = 1− 1/α (so that 0 < γ < 1/2). Then, for K > 0, the following conditions are
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equivalent:

m̂−m(x) ∼ Kx−γ (x→∞);(3.1)

h(s)− 1

m̂s
∼ Kα

m̂2
Cαs

α−2 (s→ +0);(3.2)

σ(ξ)− 1

m̂
∼ Kα

m̂2

Cα
Γ(2− α) Γ(α)

ξα−1 (ξ → +0);(3.3)

p(t, 0, 0)− 1

m̂
∼ Kα

m̂2

Cα
Γ(2− α)

t1−α (t→∞),(3.4)

where

(3.5) Cα =
Γ(2− α)

Γ(α)
{α(α− 1)}α−1.

Note that, thanks to (2.10), p(t, 0, 0) in (3.4) may be replaced by p(t, x, y) for

any fixed (x, y).

In fact we can generalize Theorem 3.1 as follows: A measurable function L :

(c,∞)→ (0,∞) (for some c > 0) is said to be slowly varying at infinity [or at 0] if

lim
λ→∞[+0]

L(λx)

L(λ)
= 1 (∀x > 0).

Typical examples are L(x) = const, log(x+1), exp
√
x. Also a measurable function

of the form ψ(x) = xρL(x) with a suitable slowly varying function L and a real ρ

is said to be regularly varying (at infinity [or at 0]) with index ρ. In other words

ψ(x) > 0 is regularly varying with index ρ if and only if

lim
λ→∞[+0]

ψ(λx)

ψ(λ)
= xρ (∀x > 0).

If ψ(x) is regular varying with index ρ > 0, then so is its asymptotic inverse ψ−1(x)

with index 1/ρ. We refer to [1] for properties of regularly varying functions.

Theorem 3.2. Assume that m̂ <∞. Let α, γ and Cα be as in Theorem 3.1, and

let ψ(x) = x1/αL(x) be a regularly varying function at ∞ with index 1/α. Then

the following conditions are equivalent:

m̂−m(x) ∼ ψ(x)

x
(= x−γL(x)) (x→∞);(3.6)

h(s)− 1

m̂s
∼ 1

m̂2

Cα
s2ψ−1(1/s)

(s→ +0);(3.7)

σ(ξ)− 1

m̂
∼ 1

m̂2

Cα
Γ(α)Γ(2− α)

1

ξψ−1(1/ξ)
(ξ → +0);(3.8)

p(t, 0, 0)− 1

m̂
∼ 1

m̂2

Cα
Γ(2− α)

t

ψ−1(t)
(t→∞).(3.9)
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Since Theorem 3.1 is a special case of Theorem 3.2, we shall prove the latter

only. The proof is based on the following result of [6]. We stress that Theorem 3.3

itself is not for ergodic diffusions but for transient processes (see Remark 2.1).

The reader should recall that ` = lims→+0 h(s) in general.

Theorem 3.3 ([6, Thm. 2.2]). Assume that `<∞ and let 1<α<2. If ϕ0(x)>0

is a function varying regularly at +0 with index α − 1, then the following two

conditions are equivalent:

m(`− ε) ∼
(

α

α− 1

)α/(α−1)
1

εϕ−1
0 (ε)

(ε ↓ 0);(3.10)

`− h(s) ∼ Γ(2− α)

(α− 1)Γ(1 + α)
α2αϕ0(s) (s ↓ 0).(3.11)

Let us rewrite Theorem 3.3 as follows for our present use.

Lemma 3.4. Assume that ` < ∞ and let 1 < α < 2. If ϕ(x) > 0 is a function

varying regularly at +0 with index α − 1, then the following two conditions are

equivalent:

m(`− ϕ(s)) ∼ 1

ϕ(s)s
(s ↓ 0);(3.12)

`− h(s) ∼ Cαϕ(s) (s ↓ 0),(3.13)

where Cα = Γ(2−α)
Γ(α) {α(α− 1)}α−1 as before (see (3.5)).

Proof. Let ϕ0(x) = ϕ(Kx) with

K =

(
α− 1

α

)α/(α−1)

.

Then we can rewrite (3.12) as

m(`− ε) ∼ 1

εϕ−1(ε)
=

1

Kεϕ−1
0 (ε)

=

(
α

α− 1

)α/(α−1)
1

εϕ−1
0 (ε)

(ε ↓ 0).

Therefore, applying Theorem 3.3 we see that (3.12) is equivalent to

`− h(s) ∼ Γ(2− α)

(α− 1)Γ(1 + α)
α2α ϕ0(s) =

Γ(2− α)

(α− 1)Γ(1 + α)
α2α ϕ(Ks)

∼ Γ(2− α)

(α− 1)Γ(1 + α)
α2αKα−1ϕ(s) = Cαϕ(s).
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We next rewrite Lemma 3.4 in terms of the dual string: The dual string

m∗ ∈M of m ∈M is defined by

(3.14) m∗(x) =

{
m−1(x) = inf{u > 0 | m(u) > x} (x ≥ 0),

0 (x < 0).

Note that `∗ = `(m∗) (:= sup{x | m∗(x) < ∞}) = m̂ (draw the picture). That

is, probabilistically, the diffusion X is ergodic if and only if the ‘dual’ process X∗

corresponding to m∗ is transient. Thus Lemma 3.4 is applicable to X∗. This is the

basic idea of the present article.

The fundamental relationship between h(s) and h∗(s) (the characteristic func-

tion of m∗) is the following (see e.g. [8]):

h∗(s) =
1

sh(s)
.

Lemma 3.5. If m̂ (= `∗) <∞, then

(3.15) h(s)− 1

m̂s
∼ 1

m̂2s
{`∗ − h∗(s)} (s→ +0).

Proof. Consider the ratio of both sides:(
h(s)− 1

m̂s

)/(
1

s
{`∗ − h∗(s)}

)
=

(
h(s)− 1

m̂s

)/(
1

s

{
m̂− 1

sh(s)

})
=
sh(s)

m̂
,

and recall that sh(s)→ 1/m̂ (see (2.11)).

Lemma 3.6. Let g(x) > 0 (x > 0) be a function varying regularly at infinity with

index ρ > 0 so that g(x)→∞ (x→∞). Then

(3.16) m̂−m(x) ∼ 1

g(x)
(x→∞)

if and only if

(3.17) m∗
(
m̂− 1

g(x)

)
∼ x (x→∞).

Proof. Let f(x) = 1/(m̂−m(x)). Then, by the definition of m∗, we have f−1(x) =

m∗(m̂−1/x). Therefore, (3.16) and (3.17) can be rewritten as f(x) ∼ g(x) (x→∞)

and f−1(g(x)) ∼ x (x → ∞), respectively. Now we easily see the equivalence of

these two under the assumption that g(x) varies regularly (cf. [1, p. 28]).

We are now ready to prove Theorem 3.2:
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Proof of Theorem 3.2. Since ψ(x) varies regularly at infinity with index 1/α (> 0),

so does ψ−1(x) with index α. That is, there exists a slowly varying function L∗(x)

such that

(3.18) ψ−1(x) = xαL∗(x)

(see [1, p. 28]). By Lemma 3.6, (3.6) is equivalent to

(3.19) m∗(m̂− ψ(x)/x) ∼ x (x→∞),

because g(x) := x/ψ(x) = x1−1/α/L(x) varies regularly at infinity with index

1 − 1/α > 0. Changing the variable x = ψ−1(1/s) (i.e., s = 1/ψ(x)), (3.19) may

be rewritten as

m∗
(
m̂− 1

sψ−1(1/s)

)
∼ ψ−1(1/s) =

sψ−1(1/s)

s
(s ↓ 0),

or, equivalently,

(3.20) m∗(`∗ − ϕ(s)) ∼ 1

ϕ(s)s
(s ↓ 0),

where ϕ(s) = 1/{sψ−1(1/s)} (= sα−1/L∗(1/s)). (Recall that m̂ = `∗.) Thus, (3.6)

is equivalent to (3.20). Since ϕ(s) varies regularly at 0 with index α − 1, Lemma

3.4 is applicable to {m∗, h∗} in place of {m,h} and hence (3.20) is equivalent to

(3.21) `∗ − h∗(s) ∼ Cα ϕ(s) =
Cα

sψ−1(1/s)
(s ↓ 0),

which is, by Lemma 3.5, equivalent to

h(s)− 1

sm̂

(
∼ 1

m̂2s
(`∗ − h∗(s))

)
∼ 1

m̂2

Cα
s2ψ−1(1/s)

(s ↓ 0).

Thus we have proved the equivalence of (3.6) and (3.7).

We next show that (3.7) and (3.8) are equivalent. Recall that σ(0) = 1/m̂

(see (2.11)). Then, by the representation (2.4), we have

(3.22) h(s)− 1

sm̂
=

(
a+

∫ ∞
−0

dσ(ξ)

s+ ξ

)
−
∫
{0}

dσ(ξ)

s+ ξ
= a+

∫ ∞
+0

dσ(ξ)

s+ ξ

and hence (3.7) may be written as∫ ∞
+0

dσ(ξ)

s+ ξ
∼ Cα
m̂2

1

s2ψ−1(1/s)
(s→ +0).

Here, notice that the right-hand side varies regularly at +0 with index α − 2.

Indeed, by (3.18),
1

s2ψ−1(1/s)
= sα−2

/
L∗
(

1

s

)
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Therefore, the equivalence of (3.7) and (3.8) follows from Karamata’s Tauberian

theorem for Stieltjes transform; that is, if L0(x) (> 0) varies slowly at 0 and if

0 < β < 1, then ∫ ∞
+0

dσ(ξ)

s+ ξ
∼ sβ−1L0(s) (s→ +0)

if and only if

σ(ξ)− σ(0) ∼ 1

Γ(1 + β)Γ(1− β)
ξβL0(ξ) (ξ → +0)

(see, e.g., [6, Appendix]).

Similarly, recall the formula (2.8). Then we have

(3.23) p(t, 0, 0)− 1

m̂
=

∫ ∞
−0

e−tξ dσ(ξ)− σ(0) =

∫ ∞
+0

e−tξ dσ(ξ) (t > 0).

Thus, applying the Tauberian theorem for the Laplace transform (e.g., [1, p. 38])

we deduce the equivalence of (3.8) and (3.9).

Remark 3.7. So far we have considered only the case where s(x) = x in (1.1).

In order to apply the results of Theorems 3.1 and 3.2 to the general case, we only

need to change the scale: Consider m̃(x) := m(s−1(x)) instead of m(x) itself. In-

deed, if (Xt)t≥0 is a diffusion corresponding to d
dm(x)

d
ds(x) , then the scaled process

(s(Xt))t≥0 corresponds to d
dm̃(x)

d
dx .

Example 3.8. The diffusion on I = [0,∞) with the local generator

(3.24) L =
1

2

(
d2

dx2
+
ρ− 1

x

d

dx

)
, x > 0,

is called the ρ-dimensional Bessel diffusion. If ρ > 0, it is easy to see that

p(t, x, y) ∼ const · t−ρ/2 (t→∞)

because the explicit formula for p(t, x, y) is known (see e.g. [2, p. 75]). Now let us

consider the case where −2 < ρ < 0. Since x = 0 becomes an exit-not-entrance

boundary in this case, we need to exclude a suitable neighborhood of 0. So let us

consider I = [1,∞) with the reflecting boundary condition at x = 1. Then Feller’s

canonical representation of L is, for example,

L =
d

dm(x)

d

ds(x)
, x ≥ 1,

with

m(x) =
2

(2− ρ)ρ
(xρ − 1), s(x) = x2−ρ − 1 (x ≥ 1).
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Therefore,

m̃(x) := m(s−1(x)) =
2

(2− ρ)|ρ|
{1− (x+ 1)ρ/(2−ρ)} (x ≥ 0).

Hence,

m̂ =
2

(2− ρ)|ρ|
and m̂− m̃(x) ∼ 2

(2− ρ)|ρ|
xρ/(2−ρ) (x→∞).

Thus, we can apply Theorem 3.1 with α = (2− ρ)/2, γ = −ρ/(2− ρ) to obtain

p(t, x, y)− 1

m̂
∼ const · t−|ρ|/2 (t→∞).

This argument can be generalized as follows: If

(3.25) L =
1

2

(
d2

dx2
+ b(x)

d

dx

)
, x > 0,

for a bounded, measurable function b(x) such that b(x) ∼ (ρ − 1)/x (x → ∞) for

some ρ ∈ (−2, 0), then there exists a slowly varying function L(t) such that

p(t, x, y)− 1

m̂
∼ const · t−|ρ|/2L(t) (t→∞).

Note that L(t) cannot be replaced by a constant in general.

§4. The case of oscillations

Throughout f(x) � g(x) means that

0 < lim inf f(x)/g(x) ≤ lim sup f(x)/g(x) <∞.

Theorem 4.1. Assume that m̂ <∞. Let 1 < α < 2 and let γ = 1− 1/α (so that

0 < γ < 1/2). Then the following conditions are equivalent:

m̂−m(x) � x−γ (x→∞);(4.1)

h(s)− 1

m̂s
� sα−2 (s→ +0);(4.2)

σ(ξ)− 1

m̂
� ξα−1 (ξ → +0);(4.3)

p(t, 0, 0)− 1

m̂
� t1−α (t→∞).(4.4)

More generally, we have
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Theorem 4.2. Assume that m̂ < ∞. Let α and γ be as in Theorem 4.1 and let

ψ(x) = x1/αL(x) vary regularly at +∞ with index α. Then the following conditions

are equivalent:

m̂−m(x) � ψ(x)

x
= x−γL(x) (x→∞);(4.5)

h(s)− 1

m̂s
� 1

s2ψ−1(1/s)
(s→ 0);(4.6)

σ(ξ)− 1

m̂
� 1

ξψ−1(1/ξ)
(ξ → +0);(4.7)

p(t, 0, 0)− 1

m̂
� t

ψ−1(t)
(t→∞).(4.8)

The proof can be carried out completely in parallel to the previous section.

The only difference is that we use [6, Theorem 3.2] instead of [6, Theorem 2.2].

§5. Bilateral case

We next consider the case where X = (Xt)t≥0 is a (generalized) diffusion on the

whole line (−∞,∞) with the local generator

L =
d

dm(x)

d

dx
, −∞ < x <∞,

where dm(x) is a finite Borel measure on R so that the diffusion is ergodic. We

assume that 0 ∈ Supp dm for simplicity.

It is well known that the transition density can be computed as fol-

lows (see [4]). Consider two strings m+(x) =
∫

[0,x∨0]
dm(y) and m−(x) =∫

[−(x∨0),0)
dm(y), and let h+(s), h−(s) correspond to m+,m−, respectively. Now

define ϕλ and ψλ as in (2.3) with the convention that
∫ x
−0

= −
∫ −0

x
if x < 0. For

every s > 0, we put

u1(s;x) = ϕ−s(x)− 1

h+(s)
ψ−s(x), u2(s;x) = ϕ−s(x) +

1

h−(s)
ψ−s(x).

These two are nonnegative solutions of

−Lu(x) = su(x) (−∞ < x <∞), u(0) = 1,

such that u1 is nonincreasing and u2 nondecreasing. Their Wronskian is

(5.1) W [u1(s; ·), u2(s; ·)] (:= u1u
′
2 − u′1u2) =

1

h−(s)
+

1

h+(s)
.
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So the Green function is given by

Gs(x, y) =

{
h(s)u2(s;x)u1(s; y) (x ≤ y),

h(s)u1(s;x)u2(s; y) (x > y),

where h(s) = 1/W [u1(s; ·), u2(s; ·)]; that is,

(5.2)
1

h(s)
=

1

h+(s)
+

1

h−(s)
.

Therefore, the transition density p(t, x, y) (with respect to dm(x)) can be specified

by the following relationship:∫ ∞
0

e−stp(t, x, y) dt = Gs(x, y) (s > 0) dm(x)dm(y)-a.e.

In particular,

(5.3)

∫ ∞
0

e−stp(t, 0, 0) dt = Gs(0, 0) = h(s) (s > 0).

Theorem 5.1. Let 1 < α < 2 and let γ = 1− 1/α (so that 0 < γ < 1/2). Assume

that m̂± := m±(∞) <∞ and put m̂ := m̂+ + m̂− (=
∫
R dm(x)). Then

(5.4)

{
m̂+ −m+(x) ∼ K+x

−γ

m̂− −m−(x) ∼ K−x−γ
(x→∞)

for K+,K− > 0 implies that

h(s)− 1

m̂s
∼ 1

m̂2
(Kα

+ +Kα
−)Cαs

α−2 (s→ +0),(5.5)

p(t, 0, 0)− 1

m̂
∼ 1

m̂2
(Kα

+ +Kα
−)

Cα
Γ(2− α)

tα−1 (t→∞),(5.6)

where Cα is as in (3.5).

Proof. By Theorem 3.1, the condition (5.4) implies

h±(s)− 1

m̂±s
∼
Kα
±

m̂2
±
Cαs

α−2 (s→ +0),

which is also equivalent to

(5.7) m̂± −
1

sh±(s)
∼ Kα

±Cαs
α−1 (s→ +0)

(see Lemma 3.5). Combining (5.7) with (5.2), we have

(5.8) m̂− 1

sh(s)
∼ (Kα

+ +Kα
−)Cαs

α−1 (s→ +0).
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Since

sh(s)− 1

m̂
=

(
m̂− 1

sh(s)

)
sh(s)

m̂
∼
(
m̂− 1

sh(s)

)
1

m̂2
,

(5.8) implies

sh(s)− 1

m̂
∼ 1

m̂2
(Kα

+ +Kα
−)Cαs

α−1 (s→ +0).

Thus we have (5.5). The equivalence of (5.5) and (5.6) can be shown as in the

proof of Theorem 3.1: h(s) − 1/(m̂s) is the Laplace transform of the monotone

function p(t, 0, 0)− 1/m̂ (see (5.3)).

Remark 5.2. (i) Theorem 5.1 can be extended to the case where a slowly varying

function is involved as in Theorem 3.2. Also the assumption that “K+,K− > 0”

may be replaced by “K+,K− ≥ 0” with a slight modification of the proof.

(ii) The converse of Theorem 5.1 fails in general unless we add some suitable

balancing conditions for h+(s) and h−(s).
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