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Taylor Expansions of Jacobi Forms and
Applications to Explicit Structures of Degree Two

by

Tomoyoshi IBUKIYAMA

Abstract

Natural mappings from the coefficients of the Taylor expansion of Jacobi forms of general
degree to products of certain spaces of vector valued Siegel modular forms are constructed.
Proving surjectivity of these mappings in some special cases, we also clarify explicit
structures of Jacobi forms of degree two of index one and of even weight of index two
as modules over the graded ring of Siegel modular forms of even weight. We also prove
surjectivity of the diagonal restriction of Jacobi forms of index one of degree two to the
symmetric tensors of Jacobi forms of degree one.
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81. Introduction

In this paper, we first give a characterization of the coefficients of the Taylor
expansion of Jacobi forms of general degree with respect to the second variable
in C™ by vector valued Siegel modular forms. This is a generalization of a result
of Eichler and Zagier [5] on the relation between the Taylor coefficients of Jacobi
forms of degree one and modular forms of degree one. Secondly we apply it to
determine explicit structures of Jacobi forms of degree two of index one of any
weight and of index two of even weight. A short announcement of the results in
this paper has been published in [13].

More precise contents are as follows. We denote by H,, the Siegel upper half-
space of degree n. Jacobi forms F(7, z) of degree n are functions of (7, z) € H,, x C"
which have the same automorphic properties as the functions appearing as coeffi-
cients of the Fourier expansion of Siegel modular forms of degree n+ 1 with respect
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to the (n+ 1,n + 1)-component of H, 1. A systematic extensive study was done
in Eichler—Zagier’s book [5] in the case n = 1. In this paper, we show the following
three results.

(1) For general degree n, there exist linear maps of the Taylor coefficients of
F(7,z) at z = 0 to direct products of vector valued Siegel modular forms of certain
weights (cf. Theorem 3.1).

(2) We apply (1) to give explicit structures of the modules of Jacobi forms
of T'J = Sp(2,7)” (the Jacobi modular group of degree two) of index one, and of
even weight of index two, over the ring of Siegel modular forms of degree two of
even weights (cf. Theorems 5.1, 6.1).

(3) We also show that the Witt operator (the restriction map Hs x C? —
(H1 x C)?) maps surjectively Jacobi forms of degree two of index one onto the
symmetric tensors of Jacobi forms of degree one of index one (cf. Theorem 7.1).

Among the assertions in (2), the result for the index one case has been es-
sentially given before in [7] by using correspondence with Siegel modular forms of
half-integral weight (see [8]), but here we give a simple alternative direct proof.

In degree one case, it is known from [5] how many Taylor coefficients of a
Jacobi form F' determine F. Indeed, denote by Ji (7)) the space of Jacobi forms
of degree n of weight k of index m with respect to the Jacobi modular group
I'J := Sp(n,Z)” defined in Section 2, and by J,E%(I‘;{) the subspace of those such
that all the Taylor coefficients vanish up to total degree 7. Then if n = 1, it is easy
to see that J,f;:)(I‘{) = 0 (cf. [5]). But this is not true for general n. The following
problem is open in general.

Problem 1.1. What is the smallest ¢ such that Jézzn(l"i) =07

For example, we have J,gzl) (T'g) = 0 by Theorem 4.1 but J,gg (Tg) # 0 by
Theorem 5.1 and we can also show J,izl) (T'Y) # 0. It will be interesting to study
this problem for more general cases.

82. Jacobi forms and Siegel modular forms

We recall several definitions here. We first define vector valued Siegel modular
forms. We denote by Sp(n,R) the symplectic group of rank n defined by

Sp(n,R) = {g € Man(R); gJn'g = Ju},

where J,, = ((1)” 701") and 1,, is the unit matrix of size n. We denote by I'), the
Siegel modular group of level one defined by T, = Sp(n, R)N Mz, (Z). For any finite-
dimensional rational representation (p, V') of GL,,(C), any V-valued function F(r)
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on H,, and any element g = (%) € Sp(n,R), we write

(Flplgl)(r) = pler +d) "' F(gr).

A V-valued holomorphic function F(7) on H, is called a Siegel modular form of
weight p with respect to T'y, if F|,[y] = F for all v € T'y; when n = 1, F(t)
is moreover assumed to be holomorphic at the cusp ico. We denote by A,(I'y)
the vector space of Siegel modular forms defined above. In this article, we mainly
treat the case when the weight is pi, = det® Sym,,, the tensor product of det”
and the symmetric tensor representation Sym, of degree v. When p = pj, we
write A,(I'y) = Ag,(I'y), and if v = 0, we write A,(I'y,) = Ax(I'n), which is
the space of usual scalar valued Siegel modular forms of weight k. We denote by
Skw(p) or Sk(I'y,) the subspace of cusp forms. When F' € Ay, ('), by the action
of =13, € Iy, we have F(7) = (=1)"*F(7). So A ,(T,) = 0 unless nk + v is
even.

We fix a realization of py, as follows. We denote by V,, the vector space of

homogeneous polynomials P(u) in n variables w = (u1,...,uy) of total degree v,
and the representation py, is defined by p. . (g9) : P(u) — det(g)*P(ug) for g €
GL,(C). For a = (a1,...,a,) € (Z>0)" and u = (u1,...,u,), we write u® =

[T, ug*. We also write |a| = >"""_, ;. Then a holomorphic V,-valued function F
is identified with

F= Z Sfa(r)u®

lee|=v

where f,(7) are scalar valued holomorphic functions. To emphasize that it is

m

a polynomial of u, we sometimes write F' = F(7,u). The automorphy of F'
A, (T'),) means

F(g7,u) = det(cr + d)*F (7, u(er + d)).
Or if we write u as a column vector, this relation can also be written as
F(gr, Y(cr + d)~'u) = det(cr + d)*F (7, u).

Example: Whenn=v=2,g=(45) €I, Cr+D = (3 g), and F(1,u) =
f20(7’)u§ 4+ f11(7’)U1U2 + f02 T % S Ak,g(rg), we have

~—
5

f11(g7) :det(CT—i—d)k 20y @b + By 286 J11(7)

f20(g7) o? af B f20(7)
fo2(97) 2 Y0 62 Jo2(T)
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Next we recall the definition of Jacobi forms. We define the Jacobi modular
group of degree n as the subgroup of I',,41 given by

a 0 b 0 1, 0 0 pu
01 00 N1ty ok a b
/= ; elp, \peZ* keEZ
n cOdOXOOIn—/\<cd> a "
0 0 0 1 0 1

We write an element of H,1; as (7, ) where (7,2) € H, x C" and w € H;.
For any integer m and a complex number x, we write e(z) = exp(2miz) and
e™(z) = e(mz). For any v € I'J and a holomorphic function F(r,z) on H, x C",
we have (F(t,z)e™(w))|x[7] = F(r, 2)e™(w) for a certain holomorphic function F
on H,, x C™ uniquely determined by F' and . Then the mapping F' — F determines
an action of I'; and we write F' = Fli,m[v]- Whenn > 2, we say that a holomorphic
function F' on H, x C™ is a Jacobi form of weight k of index m with respect to
T2 if Flgm[y] = F for any v € ;. By the periodicity coming from automorphy,
any Jacobi form F(7, z) has the Fourier expansion

F(r,z) = Z a(N,r)e(Tr(NT) +rz)
N,r
where N runs over half-integral symmetric matrices and r over Z™. We have
a(N,r) = 0 unless ANm—rtr > 0 (positive semi-definite) by the Koecher principle
for n > 2 proved by Ziegler [23]. When n = 1, this condition is not automatically
satisfied and we add this condition as part of the definition of Jacobi forms. Here

note that r is a column vector, so r ¢

r is an n X n matrix. We say that F'is a Jacobi
cusp form when a(N,r) = 0 unless 4Nm — r*r > 0 (positive definite). We denote
by Ji,m(I';) the space of Jacobi forms defined above, and by J,P(T';) the space

of Jacobi cusp forms. We note that if m > 0, then Jo,,(T;) = 0.

§3. Taylor expansions

Since a Jacobi form F'(r, ) is a holomorphic function, we have the Taylor expansion
at z = 0. We write this expansion as

o0

F(r,z)= Z( Z f(,(T)zo‘),
v=0 |a|=v
where a € (Z>0)". We also write f, (7, 2) = 3, =, fa(7)2®. The coefficients fo(7)
are holomorphic functions on H,,. They are closely related to Siegel modular forms
of degree n as we shall see later. When n = 1, Eichler—Zagier proved the following
results (cf. [5]).
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EZ 1. We put e =0 or 1 if k is even or odd, respectively. For each integer v > 0
with v = k mod 2, we can construct a modular form &4, (7) € My, (T'1) from
the Taylor coefficients (fe(7), fex2(7), ..., fu(7)) of a Jacobi form in J ().
This is explicitly given by using differential operators on f;(7) with respect to the
variable 7.

EZ 2. When k is even, the linear mapping
Jem(T7) = Mg(T1) X Myp2(T1) X -+ X Mypom(T1)

induced by the above construction is injective. In other words, the Jacobi form F
is determined by the Taylor coefficients up to z?™. When k is odd, it is determined
only by those up to 2m — 3.

EZ 3. When m = 1, the above mapping induces a surjective isomorphism from
Jk,l(l“{) to Mk(Fl) (&) Sk+2(F1) for k& > 0.

Now we generalize this to higher n. By the action of —15, on a Jacobi form
F(1,2) € Jum(Ty), we see F(1,—z) = (—=1)"*F(7, 2). So F(r, z) is an even or odd
function of z if nk is even or odd, respectively. To make the notation simpler, we
put € = 0 or 1 according to whether nk is even or odd. So the Taylor expansion is

written as -
F(Ta Z) = Z f2l+6(T7 Z)
1=0
We denote by w = *(uq,...,u,) a variable column vector of length n. We denote
by H the ring of holomorphic functions on H,. Let H[u] be the polynomial ring
in n variables uy, ..., u, over H and H[u], the vector space of homogeneous poly-
nomials in H[u] of degree v. We define a differential operator Dy from H[u], to
H[U]V+2 by
1+46; 0 0

ot i _ .9

(3.1) Dy = u< 5 6Tij)u = Zuzuj oy’
1<

where §;; is Kronecker’s delta and 7 = (7;;) € H,. For any non-negative integer
v = nk mod 2 and the Taylor coefficients f,_q,, (7, z) of F(r, z) with 2p < v, which
are polynomials in z, we define &, ., (T, u) € H[u], by

[v/2]

B (k4+v—p—2)! Ry
(T, u) = ; ,u!(k:—i——u—Q)!(i%lm) (D3 fo—2u)(T,0)

= f,(7,u) + constant times derivatives of f,_o, (7, u) with x> 0.

When v = 0, this does not depend on u so we sometimes write & o(T, u) = &k,0(7).
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By induction, we can show conversely that

[v/2] .
fo(ru) = Z 2rim)*(k+v —2p —1)!

(k+v—p—1Dly!

(3.2) DY & p—ou(T,u).

1=0
Theorem 3.1. Fiz a natural number m. For any non-negative integer v with
v =nk mod 2 and any Jacobi form F € Ji (L)), define &, (T,u) as above. Then
¢ew(myu) € Ap (D). If F € J,jj‘;p(rg), then & (T ,u) € Sk, (T2). The Taylor
coefficients f, o, (7, u) of F with 2pu < v are uniquely determined by &, —2,, (T, u)
with 2 < v.

Concrete examples of &, (7,u) are as follows:
Eko(T,u) = folT),
_ 2mim fo(T)
Guatr) = 3 foloe = 2 > O,

-
|a|=2 1<i<j<n v

To make it readable, we give a concrete shape of & 4(7, w) only in the case n = 2.
In this case we have
Eka(r,u) = (fao(T)ul + far(T)ufug + foa(T)uius + fia(r)usud + foa(T)us)
27 0 0 0
_ cmm < F0(7) 4 ( (1) | f11(7)>u51»,u2

k+r2\ on 920 o
(T T TR )
# (PG P et + P2 )
2(k(+2ﬂ2i)722+ 1) (62(;‘015 ut +2%Tfoa(zo)“ “
o (T gy et g+ T,

where we write

F(1,2) = fo(T) + f20(7)2} + f11(T)z122 + fo2(7)23 + fao(T)2] + -+

We put € = 0 or 1 for nk = 0 or 1 mod 2. Then by the above theorem, for any
v € L. with v = nk mod 2, (& 2p+e(T,u))2,<, induces a linear mapping from
Jk,m(Fi) to A;w(l“n) X Ak76+2(1“n) X oee X A;W(Fn).

Theorem 3.1 is a generalization of the case n = 1 of [5] since when n = 1 we
have det” Symy; . = det* ¢ Note that when n = 1, &k for v > 0 is always a
cusp form, but this is not true when n > 1. There is also the following difference
for general n. When n = 1 and when £ is even for example, the induced mapping
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from Jg (1) to Ag(I'1) X Agyo(T2) X -+ - X Ak 2, (T'1) is injective. But this is not
true for general n. In fact, there exist non-zero Jacobi forms for n = m = 2 whose
Taylor coefficients vanish up to degree 2m = 4, as we will see later. It does not
seem to be known exactly how many vanishing Taylor coefficients of F (7, z) ensure
F(7,z) = 0 in general, and this seems an interesting question. (There are several
algebro-geometric results for each fixed 7 but they do not fit into our setting of
modular forms.)

Proof of Theorem 3.1. It is possible to prove Theorem 3.1 by direct calculation,
but here we use differential operators on Siegel modular forms of degree n + 1.
A general theory of holomorphic differential operators on Siegel modular forms
which behave well under restriction of the domain is given in [9]. So before proving
the above theorem, we recall part of the results in [9] which will be used in the
proof. We fix non-negative integers k and I. For any g1 = (*' 7)) € Sp(n,R) and

c1 di

g2 = (2 b"‘) € SL(2,R) and any V,-valued function f of (r,w) € H, x Hy, we

C2 dg
write

F(r )k l(g1,92)] = (caw + do) "V pr o (crT + di) " f (917, gow).

This is an action of Sp(n, R) x SL(2,R). We define a group embedding of Sp(n, R) x
SL(2,R) into Sp(n + 1,R) by

a1 0 b1 0
0 ag 0 b2
(g1,92) = o 0 d 0
0 C2 0 dg

For Z € H, 41 we write Z = (¢, ). For any function G on H, 11, we denote by
Res the following restriction:

(Res G) (7, w) = G(S B)

To define our operator, we use Gegenbauer polynomials. For any non-negative
integer v and k > 2, we define polynomials P,Sk)(s, w) in two variables s and w by
the following formal power series of ¢:

1
(1 — 2st + wt?)k-

o= Z P (s, w)t”.
v=0

Then we have
[v/2]
PF(s,m) =Y (1)

pn=0

(k+v—p—2)!
(k—2)!/(v — 2u)'u!

(25)Y 2,
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The polynomials P,Ek) (s,1) are classical Gegenbauer polynomials. We define a V-
valued differential operator by

e 0 0
Dy, = PR (= i=—, =Dy |.
s v <2i_1u8zi78w 2)

Then for any holomorphic function G(Z) on H,4+1 and (g1,92) € Sp(n,R) x
SL(2,R), we have

Res(Dg,. (Glxt(g1, 92))) = (Res(Dy o G))lk,v (91, 92)-

Actually a linear differential operator with constant coefficients which satisfies this
relation is unique up to a constant if 2k > n. For the proof, see [9, p. 114].

Now we take a holomorphic function F(7,z) on H, x C" and put G(Z) =
F(r,z)e™(w). For any g € Sp(n,R), we write the Taylor expansion of F|j [g] at
z=0as (Flemlo))(7,2) = Y0ty fug(T,2), where f, 4(7,2) is the homogeneous
terms in z of total degree v. For a fixed F' and g, we put

[v/2]
(3.3) Shwg(T,v) = Y (—1)*(—2mim)"

pn=0

(k+v—p—2)!

wl(k +v—2)! D fuapg (7, 0).

In particular, by definition we have & , (7, u) = &k u,1,, (7, u). For any o € (Z>o)"™
with |a| = v — 2u, we have

n 9 v—2u
(; u; 52i> z (v —2u)lu”,

so calculating directly from the definition, we have

o2 Res(Di (Glaa(9,12)) = G ()™ ()
Since this is equal to (Res(Dg,, G))|k,v[(g,12)] X (k —2)!/(k + v — 2)!, we have
(3-4) Sk (7o) = &k (75 0) [k [9]-

In particular, if F € Ji (L), then Flg,[y] = F for any v € T, and &, =
kv S0 Ekulku[y] = &ry and & u(T,u) € Ag o (D2). If F e JP(T), then by
definition, the Fourier coefficient a(N, r) of F (7, z) vanishes unless 4mN —rr > 0.
So it vanishes unless N > 0, and since the Fourier coefficients of {, are linear
combinations of these a(V,r), the same holds for £, (7, u), which means that
&k € Skw(Th).

The coefficients of the differential operator are rational functions of k well
defined for £ > 1 and since the operator is determined algebraically with respect
to k, this proves Theorem 3.1 for any k > 1. O



TAYLOR EXPANSIONS OF JACOBI FORMS 587

By the way, the normalization of & , is consistent with [5] when n = 1. If a
more direct approach is preferred, one can use the following formulas:

Do (det(er + d)
Dy(det(cr 4 d)*

Dy((*(er + d) ™ u)®

Dy((*uler + d) " eu)”

det(er + d)(*u(er 4 d) " Leu),
Edet(cr + d)*(Pu(er + d) " Leu),
—la|(*u(er +d) " teuw)(Her + d) " tu)?,
—p(tu(er +d) " teu)r

)
)
)
)

Here 4 is any integer and « is a multi-index. For any f(7r,u) € H[u], and g =
(¢5) € Sp(n,R), we have

Da(f(gr, ‘(em +d) "))
= —v("u(er +d) " eu) f(g7, “(em + d)TMu) + (D2f) (g7, (e + d) " u).
These formulas can be obtained by standard matrix calculations. Also by applying

these to the Taylor expansion of Jacobi forms, we obtain an alternative proof of
Theorem 3.1. We omit the details here.

84. Theta expansions and transformation formulas

Now we explain another expansion of F'(7, z) which we call “theta expansion”. This
will be used in later sections. For any m € Zs, any Jacobi form F € J ,,,(T'7)
satisfies

(4.1) F(T,z 4+ 1A+ p) = e™(— M =2 \2)F(r, 2)

for any A\, u € Z". For any v € Z™, we put

Dym(r2) = 3 e( t(p + 27”ﬂ> (m7) <p + 2’;1) + t<p + 27””) (2mz)>.

pELN

This series depends only on v mod 2m, and there are (2m)™ linearly independent
such functions. Then by the well-known theory of theta functions, any function on
H,, x C"™ which satisfies (4.1) is a linear combination of these theta functions as a
function of z. In particular, for Jacobi forms F we have

F(r,2)= Y c(m)0ym(r,2)
vE(Z/2mZ)"

for some holomorphic functions ¢, (7) on H,. But F is automorphic also for T'y,
so we can say a little more. By the action of —1s, € T',,, we have F(1,—z) =
(—=1)"*F(7,2), so for example if nk is even, then F(7,z) is an even function of z.
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But we also have 9, (7, —2) = ¥_,, (T, 2), so this means that ¢, (7) = c_, (7).
If m = 1, this does not give any new condition, since —v = v mod 2 and theta
functions 9,1 (7, z) are all even functions of z. But when m > 1, the above relation
gives a real restriction, as we will see in Section 5.

Since we will sometimes use the theta transformation formulas, we recall them
here. We write ¥, (7) = ¥y (7, 0). For any U € GL,(R), S = 'S € M,(R), we

write m—(% tUO—1>’ U(S)_(l(; 15;)

Then T, is generated by t(U) (U € GL,(Z)), u(S) (S = 'S € M,(Z)), and J,,.
By definition, we have
Yo (T4 S, 2) = e('vSv/4m)d, (T, 2),
Dy (UTUU2) = Y7y (7, 2).

As for J,, we need the well known theta transformation formula (cf. e.g. [16, II,
p. 226]). For any m = *(m/,m”) € Q", define

() = 3 (5 -t )+ ok ) ).
peEL™

Here m is called a theta characteristic. Then for any v € I';;, we have
(42)  0ym(7:2) = K(7)e(dm (7)) det(er +d)2e(*z(er + d) "' ez) /2)0m (T, 2),

where x() is a root of unity, v-m is an action of I',, on (Q/Z)?" (which is not just
matrix multiplication), ¢, (7) is an explicit function of m and +, and det(cr+d)'/?
is a fixed branch determined by 7 and 7 on which k() depends. We do not recall
the precise formula here, but in our application in this paper, we need not specify
the branch since it appears always with k() and the final results never depend
on the choice. Now we have

ﬂu,m(*’ril, 7'712) = 0(,,/27”,0)(727117'71, 2m7‘712)
= 9(u/2m,0)(_(7/2m)_17 (T/Qm)_lz)'

If we apply (4.2) for v = J,, and m = (v/2m,0), then since J - *(0,—v/2m) =
f(v/2m,0) and ¢,y j2m)(Jn) = 0, we have

el,/gm’o(—T_l, 7712) = k(J,) det(T)1/2e(tz7'_1z/2)90’,l,/2m(7', z).
So

19,,}m(7'_1, T_lz) = r(Jn) det(T/Qm)l/Qem(tZT_lz)GO,,,,/gm(T/Qm, z).
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But we can rewrite the summation of the definition as

Oo,—vjom(7/2m.2) = Y e("p(7/2m)p/2 + 'p(z — v/2m))

PEZLN

= Z Z (2ml +7)(r/2m)(2ml +7) + *(2ml +r)(z — v/2m))

re(Z/2mz)" leZ™

= Z 6(7tTV/2m)19r,m(Taz)'

re(Z/2mz)"

Hence

(4.3) Dy (—7 1, 7712)
= k(J,) det(r/2m)Y 2e™(tzr12) Z e(—="'rv/2m) 0 (T, 2).

re(Z/2mZ)™

Also #(J,)? = (—i)™. This seems more or less known and easily proved also by
restricting the transformation formula for 6g(7) to the diagonals of 7 and using
the Poisson formula for n = 1.

We shall apply the above formula to establish the behaviour of Jacobi forms
under some differential operators later.

§5. Explicit structures for index one

From now on, we treat the case n = 2. We define the ring of Siegel modular forms
by

) = @Ak(r2) and  Aeyven(I2) @A% (I'2).

It is well known from Igusa [15] that Aeyen(T'2) is generated by Siegel modu-
lar forms ¢4, &6, X10, x12 and for A(T'2) we moreover need x5, where each
subscript is the weight of the form. For any fixed natural number m, we write
Im(L3) = Do Tim(T3), Jevenm(L3) = Di=o Jo,m (L), and Jodam (') =
D, Jok+1.m(T9). These modules are obviously Aeyen(I'2)-modules and the first
one is also an A(I'y)-module. We would like to study the structure of these mod-
ules only over Aeyen(I'2) since it becomes rather complicated if we regard it as a
module over A(Ts).

First we give a result for n = 2 and m = 1. When k is odd, we have Ay, ;(I'2) =
Sk,;(I'2) for any j > 0. For odd k, we put

52a(r2) = { (7.0 € Avarari £( (7 0)u) =0},
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where we write 7 = (I} 73) € H,. Note that explicit structures of Ay (I'2) and
S 5(T2) are known (see [12], [10]).

We note that if we define S{(I's) in the same way for odd k, then it is well
known that Si(I's) = S (I'z), so this is redundant.

Theorem 5.1. Assume that n = 2.

(1) For any natural number k, the mapping
Je1(T9) 2 F e (&0(1), &k 2(T 1)) € Ap(T'2) x Ay 2(T2)
18 injective.
(2) If k is even with k > 2, this mapping is also surjective.
(3) If k is odd, then the image of the mapping in (1) is Sk(T3) x 5272(1"2).

(4) J1(T) is a free Aeyen(T'2)-module spanned by Jacobi forms of respective weights
4, 6, 10, 12, 21, 27, 29, 35.

Assertion (4) of this theorem is essentially contained in [7]. The proof there
used structures of the “plus” space (a kind of space of new forms) of Siegel modular
forms of half-integral weight of level 4 with or without character, since Ji 1 (I'g) is
isomorphic to this space (cf. [8], [7]). But there we needed a complicated calculation
to extract the plus space from the whole space of half-integral weight. In this paper,
we give a more direct simple proof.

Before proving the theorem, we first show some transformation formula for
theta series. We consider a differential operator on four holomorphic functions
Fi(t) (i=1,...,4) on Hy. We write

ma=((2 2) () etmxc

o 1 0 1 0 - — 1 0 f NG
and put 9; = 5 5o Oii = 55 37, for i = 1,2, and 012 = o For functions

Fi(t) (1 <i<4)of 7 € Hy, we define

Fy Fy F3 Fy
okl Onufly Onks Onky
01l 012F, 012F3 012Fy|
Oy 02l 0OaoF3 OyFy

{F\,F5,F3,Fy}3 =

For any g = (2%) € Sp(2,R), we can fix a branch of det(cr + d)*/? on H,.
Although this is not an automorphy factor, it is a well defined function for a
fixed g since Hs is simply connected (and the branch depends on 7 itself and is not
determined by det(cT+-d)). For any function F'(7) on Hy, we define (F|; /2[g])(7) =
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det(cr +d)~Y2F(gr). Then

{F1li/20g], Fali/21g]s Fsl1/209]s Falv2lglys = {F1, Fa, F3, Fa}slsg]

for any g € Sp(2,R). Here the subscript 3 is used to indicate 4-1/2+3 = 5. This is
a special case of the operator in [9, Theorem 2], or [2, p. 251]. Now we apply this
to the theta functions for m = 1. Here in the case of n = 2 and index m = 1, for
any v € (Z/27)*, we write 9, (1, z) = 9,,1(7, z) and 9,,(7) = 9J,,(7,0) for simplicity.
We show that {9o(7), J01(7), 910(7), $11(7)}3 is a Siegel modular form of T'y of
weight 5 with a multiplier system. By the formula given in the previous section,
we have

(Yoo (T)]1/2[J2], Vo1 (7)1 /2[J2), V10(T) |1 2[J2], V11 (7)]1/2[J2])
= (Doo(7), Vo1(7), Y10(7), V11(7)) A

where

1
1 -1 1 -1
A=2"1k(J
AR
1

We consider the 4 x 4 matrix whose rows are (Yoo(7), %01(7), 910(7),¥11(7))A and
its 011, 012 and Oqo derivatives. Taking the determinant of this matrix, we see that

{900(7)]1/2[J2); Yo1(T)]1/2[2); D10(T)]1 2 2], D11 (7)1 /2] 2] } 3
= {1900(7’), 1901(7’), 1910(7'), 1911(7’)}3 det(A)

Since r(J2)* = 1, we have det(A) = 1. We put x5 = {00, Jo1, V10, Y11 }3. Then we
can show that this is not identically zero (see e.g. the Fourier coefficients) and by
the property of this differential operator explained above, we have xs|5[J2] = X5.
As for the action of ¢(U) and u(S), t(U) for U € GLo(Z) acts on 9,(7) as a
permutation and the automorphy factor is det(U)'/2** = 1, and u(S) for S =
(5L %2) € M3(Z) acts on x5 as multiplication by

Z e('vSv/4) = e((s1 + 52 + 512)/2).

ve(Z/2Z)?

The latter is again +£1. So x5|5t(U) = £x5 and x5|u(S) = £x5. This means that
X5 is a Siegel modular form of weight 5 of I's with the multiplier system of I's.
Such a Siegel modular form is unique up to a constant and is equal to a constant

times 6p000000010001000011801000011001000010016110001111 (cf. [15]).
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Proof of Theorem 5.1. For any F(t,z) € Ji.1(Td), we write
F(r,2) = fo(r) + (fao(7)2] + frn(7) 2122 + fon(7)23) + -
We also use the theta expansion. We have
F(7,2) = coo(7)%00(T, 2) + co1(T)%01(T, 2) + c10(7)P10(7, 2) + c11(7)011 (7, 2)

for some holomorphic functions ¢, (7) on Hs. Here ¢, (7) are uniquely determined
by F'. Differentiating both sides with respect to z; and z5 at most twice, we have
a simultaneous equation

where we put

(1) = (coo(7), co1(7), €10(7), €11 (7)),
F(7) = "(fo(7),2f20(7)/(20), f11(7)/ (270)?, 2 foa(T) / (2m0)?),
and define A(7) to be the matrix

1900 (T) 1901(7’) 1910(’7’) 1911(7’)
8121900(7, Z)\z:o 3%?901(7'7 Z)|z:0 6%1910(7', Z)|z:0 8127911(7, Z)\z:o
31321900(7', Z)|z:0 31521901(7,2)|z:0 51321910(7', Z)|z:0 31821911(7', Z)\z:o
02900(7, 2)|2=0 02901 (7, )| 2=0 02910(7, 2)|2=0 02911(7, 2)|2=0

Theta functions satisfy the heat equation 9;0;9, (7, 2)|.=0 = 40;;9, () for any 1, j
with 1 <, j < 2. (Note that we defined 915 = (47i) =} 3%0 to have a unified relation
here.) So det(A(7)) is equal to x5(7) = {Yoo(T), ..., V11(7)}3 up to a constant. Here
it is well known that x5(7) vanishes only on the I's-orbit of the diagonals of Hy and
the vanishing order is one (cf. Freitag [6, p. 145, Hilfssatz 1.3]). Anyway, det(A(7))
does not vanish identically, so the mapping from Jg 1(I'g) to Ax(I'2) x Ag2(T's) is
injective. When k is even, by comparing the dimensions found by Tsushima [20]-
[22], we can see that the mapping is also surjective. Actually this is proved more
directly as follows without using dimension formulas. To show the surjectivity,
instead of taking Jacobi forms, we start from some forms gy o(7) € Ax(I'2) and
gr2(T,u) € Ag2(T2). Then we define f,(7) for v = 0, 20, 11, 02 by (3.2) by
putting ko = gr,o and &2 = gr2. Then we consider the above simultaneous
equation A(7)c(r) = f(7) for this f(7), regarding ¢, (7) as unknown. Each 9, (1)
is an even function with respect to zp. This is shown by replacing p = (py, p2) by
(p1, —p2 — v2) in the summation of the definition of each ¥, (7). So each 9129, (7)
is an odd function of zy and hence all the components of the third row of A(r)
vanish at zy = 0. So if we denote by A(r) the cofactor matrix of A(7), then
the first, second and fourth columns are zero at zy = 0. Now assume that k is
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even. By the action of the diagonal matrix diag(l,—1,1,—1) € I's, we see that
any form ¢(7) in Ax(T'3) is an even (resp. odd) function of zy if k is even (resp.
odd). In particular, di2¢ vanishes at zp = 0 if k is even. In the same way, if
g20(T)ut + g11(T)urus + goo(T)u3 € Ap2(I's), then we see that gi1(7) is an odd
function of zg if k is even. Since

8Tij

fzo(T)u% + fui(T)ugug + f02(7-)u5 = &pa(r) + % Z 0&0(T)

g,
1<i<j<2
f11(7) also vanishes at zy = 0. So A(7)~!f(7) is holomorphic at zp = 0 when k
is even and this means that the unique solution ¢(7) of the simultaneous equation
A(T)e(r) = f(7) is holomorphic on the fundamental domain F of I';. Now we
define a function F (7, z) on Hy x C? by F(r,z2) = 2ove(z 2z Cv(T)0u(T, 2), using
the components ¢, (7) of ¢(r). This is holomorphic on F x C where F denotes
the fundamental domain of T's, and at least meromorphic on Hy x C2. Now we
prove that F(7,z) is invariant under I'J. By the properties of 9,, we see that
Fli[(\,p)] = F for any A\, € Z2 So the problem is the action of I's. Since
Fla[Y [, w)] = Flal(A ) g™ |ka[y], Flei[y] also satisfies (4.1). So we have

Flealy] = Z Cuy (T)00 (T, 2)

ve(Z/27)?

for some holomorphic functions ¢, ,(7) on Hy which might depend on ~. For the
Taylor expansion

Fleal] = for (1) + a0 (1)2F + fr1(T)2122 + fora(T)25 + -+,
we put
Fo (1) = (for (1), 2f204(7)/(270)?, fr15(7)/(270)%, 2fo2,4(7)/(2m0)%).
Then ¢, (r) = A(r)~1f, (). As we saw in (3.3) and (3.4), we have
for(7) = &r0,4(7)

and

Jo04 (M)W + fr1,4(T)urug + foo,(7)u3

% 3§k,0,»y(7)
k (97'1

W2+ 5§k,o,y(7)ulu2 " 6§k,0,'y(7_)u2)'

(92:() 67’2 2

= §k72,’y (7—7 u) +

Also &k,0,4(T) = (§k,0lk[¥])(7) and &k 2.4 (T, w) = (&k,2|k,2[7]) (T, u). But we assumed
here that &k olk[y] = &k,o and &k 2lk,2[V] = &k,2, so fy(7) = f(7). Hence by the
uniqueness of solution of A(7)c,(7)= f(7), we have ¢, ,(7) =c¢, (1) and F|; 1[y]=F.
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This means that F(y7, !(ct +d)~12) = det(cr + d)*e(2t (cm +d) ~12)F(, 2). Since
F(7,2) is holomorphic on F x C2, it is also holomorphic on vF x C2, and hence
on Hy x C2. So we have proved Theorem 5.1(2).

Now assume that k is odd. In this case the map to Ag(T'2) x Ay 2(T'2) is not
surjective since fi1(7) does not necessarily vanish on the diagonals. For odd k,
any & 0(7) € Ag(T'2) vanishes at zgp = 0 since they are all multiples of x5(7) (cf.
Igusa [15]). So f11(7) vanishes at zp = 0 if and only if the coefficient of ujus in
gk,2(7, u) vanishes. For such a pair of gx o(7) and g 2(7,u) we can define a Jacobi
form by the same argument as in the case of even k. On the other hand, since the
third row of A(7) vanishes at zo = 0, this is also a necessary condition. For odd k,
the coefficients of u} and u3 in gx (7, u) always vanish by the automorphy with
respect to diag(1, —1,1, —1). So the condition g 2(7,u) € 5’,872 (T'2) is necessary and
sufficient for the existence of F' € J, 1(I'2) and we have proved (3) of Theorem 5.1.

The generators in Theorem 5.1(4) are given as follows. It is well known from
Igusa [15] that Aeyen(T'2) = Clo4, ds, X10, X12], Where ¢4 and ¢g are the Eisenstein
series of weight 4 and 6 respectively and x19 and Y312 are cusp forms of weight
10 and 12 respectively unique up to a constant. By claim (2) of the theorem, we
can take the Jacobi forms ¢4 1(7, 2), ¢6.1(T, 2), X10,1(7, 2), and x12,1(7, 2) of weight
k =4, 6, 10, and 12 repectively of index 1 such that the image in Ay (T'2) X Ag 2(I'2)
under (£;.0(7), &k.2(7, 2)) is (¢4, 0), (¢6,0), (x10,0), and (x12, 0) respectively. Then

we can show that the submodule J of Joven 1(I'g) given by

Aeven (F2)¢4,1 + Aeven(F2)¢6,1 + Aeven(FQ)Xlo,l + Aeven(FQ)X12,l

is mapped surjectively to @ yen(Ar(T'2) X Ak 2(I'2)). This is proved as follows.
Firstly, it is obvious that

@ Ak (F2) = Aeven(r2)¢4 + Aeven <F2)¢6 + Aeven(FQ)XIO + Aeven (F2)X12

k even>0

(which is not a direct sum). So the mapping of F(r,z) € .J to F(r,0) is surjective
onto Y, Ak(I'2). Now we show that the image of J under (£.0(7), &x2(T, 2))
contains {0} x Ay 2(I'2). For any F(7) € Ax(I'2) and G(r) € A)(T'3), we define the
Rankin-Cohen type bracket {F(7), G(7)}sym(2) as in [19] as follows:

{F(T>7 G(T)}sym(g)(T, u) — (lG(T) agﬁ:) _ kF(T) aG(T))u%

on
OF (1) OF (1) 0G(1) ) 2

oG
+ (16022~ kp ) 52 Jurua + (160251~ kr () 250 )

Then {F, G}sym(2) € Art1,2(T'2). We take F(1,z) € J;1(I'Y) and G(7,2) € J1(T9)
and put F(7) = F(r,0) and G(7) = G(7,0). We assume that the image of F and G
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in A (I'2) x Ag2(I'2) and A;(T'2) x Ay 2(I'2) under (x,0(7), &k,2(7, 2)) is (F(7),0)
and (G(7),0), respectively. Then the Taylor expansions are given by

B 2mi (OF (1) o  OF(71) OF(1) o 4
F(r,z)=F(1)+ k( o uf + % UL Uy + s uj | +0(z%),

B 2mi (OG(1) 5  OG(T) OG(T) 4 4
G(r,z) =G(1) + l( o uy + 92 ui U + 75 us | + O(z%),

where O(z*) means terms of degree not less than 4 with respect to 21, zo. Then
2me 4
G(T)F(Ta Z) - F(T)G(Tv Z) = W{Fv G}Sym(Q) (Tv Z) + O(Z )

As shown by T. Satoh [19], the Acven(I'2)-module @, ., Ak,2(I'2) is generated by
{#4, 6} sym(2), 194> X10}Sym(2)s {P4; X12}sym(2)s 196, P10}sym(2), 196, P12}sym(2)>

{X10, X12}8ym(2)- This means that the Aeyen(I'2)-module spanned by
G4(T)96,1(T, 2) — d6(T)Pa,1(T, 2), ¢4(7)x10,1 (7, 2) — X10(T) P41 (T, 2)
Ga(T)x12,1(T, 2) — X12(T) P41 (T, 2),  D6(T)x10,1(T, 2) — X10(T)P6,1(T, 2)
G6(T)X12,1(7, 2) — X12(7)P6,1(T, 2),  D10(T)X12,1(7, 2) — X12(T)X10,1(T, 2),

)
)

is mapped surjectively onto

{0} x ( @ Ak,2(F2)) C Aeven(I'2) ¥ (@ Ak,g(l“g)).

k even k even

Hence .J is mapped surjectively onto Yk even (Ak(T'2) X Ag 2(I'2)). This means that
J = Jeven,2(T'2) by the injectivity of the mapping; and by the dimension formu-
las for Ak(rg) and Ak,g(r) given below, we see that ¢4,1, ¢6,17 X10,1, X12,1 are
free generators over Aeyven(I'z). When k is odd, we denote by xx,1(7,2) a Jacobi
form of index 1 of weight k = 21, 27, or 29 whose image in Ay (T'2) x S} 5(T2)
is (0, fr) where fi € S ,(I'2) is a non-zero vector valued Siegel modular form.
We denote by x35.1 the Jacobi form of weight 35 of index 1 whose image in
Az5(T2) x Azs2(T'2) is (xa5,0). Then obviously xa1,1, X27,1, X20,1, X35,1 are free
generators of the Aeyen(I'2)-module Jogq,2(I2) by the structure theorem in [10]
or [12]. O

We note that the above arguments also give a way to construct generators of
Jacobi forms of index one explicitly by giving the coefficients ¢, (7) of the theta
expansions, since Ay(I'3), Ak 2(T2) are known explicitly from [15], [19] and [10],
[12]. For the convenience of the readers, we give here the generating functions
of related dimensions. The first one is due to Igusa and the others are due to
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Tsushima (cf. [15], [20]-[22]). We have

3 1+t%°
dim Ay (T) t" =
2 i A (0) ¢ = T gy =y
idimA (T )tk _ $10 414 4 9416 | 418 420 _ 426 428 | 432
k=0 E,2(12 - (1 —t4)(1 — 6)(1 — £10)(1 — ¢12)

$21 + $23 + 27 + $29 _ 433
(T — 1)1 — O) (1 — t10)(1 — ¢12)’
(20 + 10+ 12) + (P + 7T 120 1)
(T — 1)1 — t9) (1 — £10)(1 — ¢12)

> dim Jy, (T tF =
k=1

We also have

t21 _|_t27_|_t29
(1—t4)(1 —t9)(1 —¢10)(1 —¢12)°

o0
> dimSP,(T)tF =
k=0, k odd
This is obtained by an explicit description of @} 1 oaa S 5(Tg) (cf. [12]).
Since Jo.1(T'y) = 0, when we compare the dimensions of the Jacobi forms and
Siegel modular forms, we should take the sum only over k£ > 0. We have

e t4+t6+t10+t12
dim A, (T dim Ay, o(To))tF =
o AR i A (= Gy ey oyt )
e o] 21 27 29 35
120 12T 29 4t
dim Sy (T dim SY ,(T9))tF =
Z ( m k( 2) + dim k72( 2)) (1 — t4)(]_ — tG)(]. —tlo)(]_ _t12)a
k=1, kodd

and the sum of these gives dim J; 1(I'y) as in Theorem 5.1.

§6. Explicit structures of index two

When n = m = 2, the situation is much more complicated. We assume throughout
this section that the weight is even. We put

oo
Taena(T3) = € J5P(I3).
k>0, k even

In this section we give an explicit structure of Jeyen2(I'3) and JEEP(TY) as an
Agven(T'2)-module.

Theorem 6.1. The module Jeven 2(T9) is a free Aeyen(I'2)-module spanned by ten
Jacobi forms of respective weights 4, 6, 8, 8, 10, 10, 12, 12, 14, 16.
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As a corollary, the dimension of Jj, o(I'y) for even k is given by the generating

function
> 44 46 8 10 12 | 414 | 416
t t 2t 2t 2t t t
E dim Jy, Q(Fg)tk _ +t° + + + + +
k>0, k even , (]‘ - t4)(]‘ - tG)(]- - th)(l - t12)

The formula for dim J,g}l;p(Fg) with k& > 4 or dim J,,(T'J) with k& > 6 for any
m > 0 has been known to Tsushima, but we need a special care for small k, which
will be explained later.

Now we give a proof of this theorem based on a comparison between the
Taylor expansion and the theta expansion. For any natural number [, we denote
by Jég(l"‘{) the space of Jacobi forms in Ji 2(I'y) such that the coefficients of the
Taylor expansion vanish up to the total degree I:

Tip(T3) = {F € Jia(T9); O104F |2y —amo = 0 for any i +j < 1}.
First of all, we will determine the structure of J,gg (I'J). We start from a concrete
description of the theta expansion. When n = m = 2, there are 16 theta functions
¥,2(7, 2). But since all the Jacobi forms in Ji, ,,(I'J) are even functions of z (i.e.

invariant under z — —z) when n = 2, we should take only even functions of z in
the basis of theta expansion. So when m = 2, we put

t1(7,2) = Yoo0.2(7, 2),

to(T,2) = Vo2,2(7, 2),

t3(7,2) = Ya20.2(T, 2),

ta(7, 2) = Va2,2(7, 2),

ts5(T, 2) = Yo1,2(7, 2) + Vos,2(7, 2),

t6(T, 2) = V21,2(T, 2) + Va3.2(T, 2),

t7(T, 2) = V10,2(7, 2) + V30,2(7, 2),

ts(7,2) = V12,2(7, 2) + Vs2,2(7, 2),

to(T,2) = V11,2(T, 2) + Va3,2(T, 2) + V13,2(T, 2) + Va1,2(T, 2),
t10(7, 2) = V11,2(7, 2) + V33 2(7, 2) — V13,2(7, 2) — I31,2(T, 2)

Then for all i with 1 < i < 10, we have t;(7, —2) = t;(7,2) and F(1,2) € J2(I'g) is
a linear combination of these ten theta functions over functions on Hy. Moreover,

(0 () o
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where ¢, = 1 for 1 < i < 9 and —1 for ¢ = 10. Now for any nine holomorphic
functions F; of Hy with 1 <1 <9, we define {F7, ..., Fo}13 to be the determinant

3l F, .. Fy
011 Fy 011y O11Fy
012 F1 01215 e O12Fy
O Fy O i 022 Fy
0 Fy 02 Fy e 0% Fy
01101211 0110121 e 011012Fy
(011022 + 20%5)Fy (011022 + 20%5)F> +++ (011022 + 20%,) Fy
02201211 0220121 e 022012 Fy
02, F) 02, Fy e 02, Fy

Then

{Fil1/2l9]s - -+ Folij2l9l iz = {F1,- - -, Fo}islo/a413l9]

for any g € Sp(2,R). This is an easy corollary of Theorem 2 in [9]. For any function
F(1,2) on Hy x C2, g € Sp(2,R) and any integer m > 0, we define

Fl1/2,ml9] = det(cT + d)_l/Qem(— b2 (er + d)_lcz)F(gT, Her + d)_lz).
Using (4.3), we can show that

(61) (tl(’T, Z)|1/272[J2]7 e ,tl(](T, Z)|1/272[J2]) = (tl(T, Z), e ,tl()(T, Z))Ag

where

1 1 1 1 2 2 2 2 4 0

1 1 1 1 -2 -2 2 2 —4 0

1 1 1 1 2 2 —2 —2 —4 0

1 1 1 1 -2 -2 —2 -2 4 0

_ 1 -1 1 -1 0 0 2 -2 0 0
A=47%I) | 1 ) ] 1 g o -2 2 0 o
1 1 -1 -1 2 -2 0 0 0 0

1 1 -1 -1 =2 2 0 0 0 0

1 -1 -1 1 0 0 0 0 0 0

O 0 0 0 0 0 0 0 0 —4

Since 1 (J2)!? = —1, we have det(Ay) = 1.
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We define a 9 x 10 matrix B(7) of functions on Hy by

t1(7,0) e t10(7,0)

Ot (7 2)lz=0 -+ OFtio(7, 2)|s=0
010t (7, 2)|z=0  +++  O102t10(T, 2)|2=0

03t1(1,2) =0 -+ O3t10(7, 2)|2=0

B(r)=| 0iti(1,2)|l.=0 -+  Oitio(7, 2)|.=0
Rgt1(1,2)]z=0 -+ FROat10(T, 2)]2=0
QR05t1(7,2)|.=0 -+ 0795t10(T, 2)]2=0

o5t (T, 2)z=0 -+ 0105E(T, 2)|.=0

O5t1(1,2) =0 -+ O5t10(7, 2)|=0

By the heat equation, when a + b is even, we have

apobt; = 8Lat/29(1 =2l = 2 e 1,
for any ¢ < min(a,b) with ¢ = ¢ = bmod 2 and any 1 < i < 10. So if we write
t;(7) = t;(7,0), any 9 x 9 minor of B(7) excluding the i-th column is, up to a
common constant, equal to t;(7) := {t1(7),...,t;_1(7),tix1(7), .., ti0(7) }13. We
define a 10x 10 matrix B(7, z) so that the first row is (¢1(7, 2), ..., t10(7, 2)) and the

remaining nine rows are given by B(7). We define Fyg(7, z) to be the determinant
of B(t,z).

Lemma 6.2. We have Fig(1,2) € Ji2(I'3).

Proof. As already explained, we have

Fig(1,2) = CZ DT (1 )t-(T)

for some non-zero constant ¢, so

10
Flg(T, Z)|18,2[J2] = CZ(*l)iJrl(ti(Ta Z)|1/2,2[=]2D X (E(T)|13+9/2[‘]2])
:CZ D" (ti(7, 2)|1/2,2002)) X 15,0, (7),

where we put

ti gy (1) = {t1(D)]1/2[J2], - tica (7)1 2l 2] tigr (D)1 /2 (2] - - tro (7)1 j2[J2] s,
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Hence by taking 8] of both sides of (6.1) for various i and j and restricting to
z =0, we see that

Flg(’r, Z)|18’2[J2] = det(Ag)F18(7'7 Z) = Flg(T, Z)

As for t(U) with U € GL2(Z), the action gives a permutation on 9, 2 up to sign
and using the same argument as above, we can show that Fig(7,z) is invariant
under this action. In the same way we can show that u(S) acts trivially. O

Since the 10 x 10 matrix defining Fis(7, z) contains z only in the first row,
0102 F1s(T, 2)| =0 for any i, j with i + j < 4 is the determinant of a matrix whose
first row is zero or which has two identical rows. So it vanishes, i.e.

QRAF(T,2)|m0 =0

for all 4 4+ j < 4. In other words, the Taylor coefficients of Fig (7, z) vanish up to
degree 4.

Theorem 6.3. (1) Fis(7,2) is not identically zero and belongs to Jl(g,)Q(F‘QI).

(2) Fis(T, 2) is divisible by x10(7) = x5(7)? € S10(T2).

(3) If we put Fy(t,z) = Fis(7,2)/x10(7), then Fy(1,z) € Jg5 (7).

(4) When k is even, we have J,gg (Ty) = Fs(1,2)Ax_g(T'). All such Jacobi forms
are Jacobi cusp forms. In particular, Jéfé) (Ty) = CFy(r,2) and J,gf;) (Tg) =0
for k < 8.

Proof. To prove non-vanishing of Fig(7, z), it is sufficient to show that the coeffi-
cient of t10(7, z), which is a non-zero constant multiple of {¢1(7),...,t9(7)}13, does
not vanish, and this is not difficult to show. But here we shall show instead that
the Taylor coefficient of Fig(7, z) at 2325 does not vanish, since we need this later.
We define 9; and 0;; as before. By the heat equation we see that for any fixed a, b
with a4 b even and 1 <[ < 10, the functions 8%‘;76)/285376)/28&@(7) are the same
for any non-negative integer ¢ with ¢ < min(a, b) such that a = b = ¢ mod 2. For
l=1,...,9, we write

ti(r) = ty(7,0) = fi(1,72) + 209:(71,72) + O(25),

where 7 = (;1) = ) Since 9%yt; = 011022t;, we have

(47i)?
2

011022 f1(T1, T2),

91(71772) =
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SO

oty (1) = (47i) 20011002 f1 (11, 72) + O(23),
Oati(1) = 011022 f1(71, 72) 4+ O(25).
We also have 1
O12t10(7) = 577(7'1)377(7'2)3 +0(23),

where 7(7) is the Dedekind eta function. This is because

w5 D)) (o))

by the classical results. We put t(7) = (t1(7),...,t10(7)) and v = v(m,72) =
(fi(r1,72), ..., fo(t1,72)). Now the Taylor coefficient of Fig(T,2) at 2723 is up to a

non-zero constant equal to 9383 det(B(7, 2))| .o, i.e. the determinant of the 10x 10

matrix gi by (%934 i
given by ( Blr) ) By the relations we gave above, we have
011022012t(7)
t(1)
O11t(7)
O12t(T) — (471) 200%5t(T)
ot (T)
5%1t(7)
011012t(7)
011092t (7)
O22012t(T)
agzt(ﬂ
(47i) 200, 0350 D11022m(71)%1(12)* /2
v+ 0(%5) (2mi)zon(T1)?n(12)? + O(25)
d11v + 0(25) (2mi)zon(T1)?n(m2)? + (23)
O(=3) n(11)*n(72)* /2 4+ O(7)
_ D220 + O(2) (2mi)zon(m1)*n(12)? + O(25)
B O+ 0(23) (2mi)zon(m1)?n(12)? + O(25)
(41) 2007, 0220 + O(23) 0%102am(71)%1(12)* /2
9110220 + O(5) (2mi)zon(T1)?n(12) + O(23)
(4m1) 200110550 + O(23) 91195,m(71)%n(12)? /2
I3v + O(25) (2mi)zon(11)*n(72)® + O(23)

We expand the determinant of this matrix along the last column. We see that the
1st, 7-th and 9-th rows are divisible by zy except for the 10-th component, and the
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4-th row is divisible by 23 except for the last component. From this we see that
the cofactor at (i,10) for i # 4 is O(z3), so calculating the (4,10) cofactor which
is apparently O(z3), we see that the determinant of the above matrix is equal to

8%1 8%2”
8111}
8221)
0%

8%1822’[1

0110220

3118%2’0
02,v

2*1(47ri)377(7'1)377(72)328 x det + O(zé‘).

We show that this is not zero by showing that the determinant part of the above
expression, which is independent of zg, is non-zero. We have

t1(7,0)|z0=0 = Vo,2(71)V0,2(72),
t2(7,0)]20=0 = Jo,2(71)2,2(72),
t3(7,0)|z0=0 = V2,2(71)V0,2(72),
t4(7,0)]z0=0 = V2,2(71)2,2(72),
t5(7,0)]20=0 = Vo,2(71)(V1,2(72) + V3,2(72)),
t6(7,0)]20=0 = V2,2(71)(V1,2(72) + V1,3(72)),
t7(7,0)]z0=0 = (V1,2 2(71)

(7,0)

(7,0)

So if we put

Po,2(7;) Va.2(T;) V1.2(7) + V3,2(13)
C(r) = | 0io2(ri)  0iV2,2(mi)  0ii(V12(1i) +V32(7)) | »
Ooa(ri)  Ofaa(rs)  05(V12(m) + Vs2(7))

then we easily see that, up to a non-zero constant, 995 Fis(7, 2)|.—o is equal to
n(11)3n(72)2 x 28 det(C(11) ® C(12)) + O(z8). Since det(C(7;)) is equal to n(7;)'°
up to a non-zero constant (cf. e.g. Kramer [17]), the function 8503 Fig(7, 2)|.—¢ is
equal to z3A(71)?A(12)? + O(z§) up to a non-zero constant. So this is not zero
and we see that the coefficient of (2122)% in Fig(7, 2) is non-zero.

To show that Fyg(7, z) is divisible by x10, we show that the coefficients ¢15,(7)
(1 <1<10) of the theta expansion of Fig(7, z) are divisible by x10. By definition of
Fis(T, 2), each ¢15,(7) is a 9x 9 minor of B(7). Expanding minors of B(7) at zg = 0
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in the same way as above, we see that c1510(7) is divisible by 2§ and ¢;5,(7) with
1 <1 < 9isdivisible by 23. So ¢15,(7)/x10(7) and Fig(r, z) are holomorphic for any
7 in the fundamental domain of I's. Since Fis(7,2) € Jx2(I'9), Fis(7,2)/x10(7) is
holomorphic on the whole Hy x C2.

If we denote by cg;(7) the coefficient in ¢;(7,2) of the theta expansion of
Fg(r, %), then the vector cs(7) = (¢s,:(7))1<i<10 is a solution of the simultaneous
)50 (19)15 up
to a non-zero constant, the rank of B(7) is 9 as a matrix of meromorphic functions.

equation B(7)cs(7) = 0. Since the first 9 x 9 minor of B(7) is zon(my

Hence any such solution is (a(7)es 1 (7))1<i<10 for some meromorphic function a(r)
on Hy. Soif F(r,z) € J,gg (T'Y), then F(7,z) = a(T)Fs(7, ) for some meromorphic
function a(7). Now we must show that a(7) is holomorphic. This is not trivial at
all, since if we take Fig(7, z) instead for example, then even if we multiply by 1/x10
which is not holomorphic, we get a holomorphic Jacobi form F3(7, z). Now denote
by fs,3(7, z) the term of total degree six of the Taylor expansion of Fg(T, z). It is
non-zero. This obviously comes from the corresponding fact for Fig(7, z) that we
have shown above. Since the Taylor coefficients of total degree 0, 1, 2 of Fg(, z) are
zero for the same reason, we have fs 3(7,2) € Ag(I'2). Now we need the following
theorem.

Theorem 6.4 ([11], [12]). The module @, . on Ak,6(I'2) is a free Aeyen(I'2)-mod-
ule spanned by seven Siegel modular forms in Age(T'2), Ase(I2), Ai0,6(T2),
A126(T2), A14,6(T2), A16(T2), or A1g6(T2).

Since dim Ag (I'2) = 1, Theorem 6.4 means that fg3(7,u) is one of the free
generators of @, en Ak,6(I'2). Denote by g(7, z) the degree 6 part of the Taylor
expansion of F(7,z) = a(7)Fs(7,2) € J,Eg (I'J). Then g(7,u) = a(7) fs3(1,u) and
fs,3(7, u) is one of the free generators in Theorem 6.4, so a(7) must be holomorphic.
This means that a(7) € Ap_s(T'2) and J,S;) (TY) = Fs(1,2) Ap_s(T2).

Now assume that 0 # F(r,z) € Jg5 (I'y). By the dimension formulas of
Igusa [15] and Tsushima [20]-[22], we know that dim Jg5"(I'y) = 1, dim Sg(T'y) =
dim Ag 9(T'g) = dim Sg 4(T'9) = 0. Since the image of the mapping from J;';"(T3)
to Ag(T2) x Ag2(T2) x Ak 4(T2) must be cusp forms, the Taylor coefficients of
degree 0, 2, 4 of F(7, z) should be zero. So F' € J,gg (I'y) and hence F is a constant
multiple of Fg. So Fg is a Jacobi cusp form. Thus we have proved Theorem 6.3.

Now we prove Theorem 6.1. This is based on the following theorem.

Theorem 6.5. (1) For any even k > 0, the mapping from J;:JQSP(F“QI) to Sk(I'y) x
Sk.2(T2) x Sk.4(T2) induced by Theorem 3.1 is surjective.

(2) For any even k > 0, the mapping from Jy. 2(Tg) to Ag(T'a) x Ak 2(T2) x Aj 4(T2)
18 surjective.
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Proof. In both (1) and (2), the kernel of the mapping is Fg(7,z)Arp_s(I'2). We
know all the dimensions in (1), so (1) is reduced to a comparison of dimensions
found by Igusa and Tsushima. Indeed we have

1
Z dim A, (T3) " = 1 6 10 oy — 1
k>0, k even (1 —t4)(1 —10)(1 —t19)(1 — ¢12)

B th 6 12 14 9416 418 4 420 4 426 4 428 _ 432
(1—¢4)(1—t9)(1 — ¢19)(1 — t1?) ’

t14 + 2t16 + tlS + t22 _ t26 _ t28

(1 —t4)(1 —t0)(1 —¢10)(1 —¢12)’

> dim Sy p(Ta) tF =

k even
3 dim Sya(T2) = £10+ 812 4 1 4 110 4418 4 420 — 420
o =1 - )1 - t0)(1—17)
t8
Z dim A 5(T) * = 1 6 10 12y’
keven>8 (]-_t )(1—t )(]_—t )(1—t )

> dimJBP(ry) ¢
keven>0
2010 4 2412 4 21 4 3310 4 2418 420 — 420 — 428 — 430
B (1 —t4) (1 — 16)(1 — t10)(1 — ¢12) ’

so for even k > 0, we have
dim J;;?;p(rg) = dim S} (FQ) + dim Skg (FQ) + dim SkA(FQ) + dim Akfg(l—‘g).

Since dim J,gg (T2) = Ag_g(T'y), this means the surjectivity of (1). Next we prove
(2). By [4], for k > 6 we have dim J; 5(T's) = dim J;'5"(T'9) + dim J, »(T'{) and

> 4 6 8 11
At 4ttt
dim J; o(T{) t* =
2 m T = T ey
18 4+ 10 4 12 4 414 4 410
(= t)(1 = t9)(1 — t0)(1 — 12)°

Z dimAkA(Fg)tk =

k even

So we can calculate dim Jy, »(T'J) and for even k > 6 we can show that
dim Jhg(rz) = dim Ay, (Fg) + dim Ak,g (FQ) + dim Ak74 (FQ) + dim Ak_g(rg).

Since the kernel of the mapping from Ji o(I'y) to Ag(Ta) x Ag2(T2) x Ak 4(T'2) is
again J,gg) (T'2), the above relation means the surjectivity for & > 6 again in this
case. When k£ = 2 or k = 4, since J,gjlz) (T'J) = 0, the above mapping is injective.
Since we know that A, j(I'2) = 0 for j = 0,2,4 and dim A4(T'2) = 1, A42(T'2) =
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Ay.4(T3) = 0, we have dim J5 2(T') = 0 and dim Jy o(T'y) < 1. If we take the theta
function Ef’) of degree 3 associated with the unique even unimodular lattice of
rank 8, then Ef)(g ng) = ¢4(7)eq(r33) where 7 € Hy, 733 € Hy, and e4(733)
is the Eisenstein series of weight & of degree one. Take the second Fourier—Jacobi
coefficient Fy(r, z) of Ef’) with respect to 733. Then since e4(733) = 1+240(e(733)+
9e(2733) + - -+ ), we have Fy(7,0) = 240 - 9¢4(7) and this gives a non-zero Jacobi
form in J;2(T'g). So we have proved claim (2) of Theorem 6.5. O

In order to prove Theorem 6.1, we give generators of Joven2(I'y) as an
Aeven(T2)-module. In the explanation below, we also give an alternative proof
of claim (2) of Theorem 6.5, assuming (1) but without using the dimension for-
mula for Ji 2(I'g), since this will make the situation clearer. First we show that
the mapping from F(7,2) € Jx2(I'J) to &k o(T) = F(7,0) € Ax(T2) is surjective. It
is enough to give Jacobi forms F(7, z) of index 2 such that F(7,0) is ¢4, ¢, X10,
or xi12. For k = 10,12, there exist Jacobi cusp forms xx2(7,2) € Jx2(I'g) such
that x10,2(7,0) = x10(7) and x12,2(7,0) = x12(7) by claim (1). For later use, we
take xx,2(7,2) so that the image in Ag(T'2) x Ak 2(T2) x Ak 4(T2) is (xk,2(7,0),0,0)
for & = 10,12. We can do so by claim (1). The case of ¢4 has already been ex-
plained above. When k = 6, we take the Eisenstein series Eég) of degree 3 of
weight 6 and Fgo(7, ) can be defined by the second Fourier-Jacobi coefficient
of EéB). The non-vanishing of Fg o can be proved in the same way and we have
Fs(7,0) = —540-33¢6 (7). We write ¢40 = Fy 2/(240-9) and ¢¢,2 = Fs2/(—540-33),
50 ¢i.2(7,0) = ¢, for k = 4,6. So we have proved the mapping from Jj 2(I'2) to
Ai(T'2) is surjective. Since Ay 2(T2) = A a(T2) = {0} for k = 2,4, the image of
Or2(m,2) in Ap(T2) X Ag2(Ta) x Aga(T2) for k = 4 or 6 is (¢x,0,0). Now we

write

*72 = Aeven(r2)¢4,2(77 Z) + Aeven(r2)¢6,2(7—7 Z) + Aeven(FQ)X1072 + Aeven(F2)X12,2-

Next we show that Jo is surjectively mapped onto Ag(T'3) x Ap2(T2) by
(€k,0(7),&k,2(T, 2)). Indeed we can prove this in almost the same way as in the
proof of Theorem 5.1(4). For F(1,2) € Ji2(I'g), write F(7) = F(,0) and assume
that & 2(7, u) = 0 for this F'. Then we have

B dmi OF(t) 5 OF(7) OF(7) 4
F(r,2)=F(r)+ 3 < o 27 + B2 z129 + s 25 | +

We take another G(7,2) € J;2(T'g) such that the image in Ay(T'2) x Ak 2(I's)
is (G(7),0), where we put G(r) = G(7,0). If we define the Rankin—Cohen type
bracket {F(7), G(T)}sym(2) as before, we can show as in the proof of Theorem 5.1



606 T. IBUKIYAMA

that the Agyen(I'2)-module spanned by

¢4(T)06,2(T, 2) — G6(T)Pa2(T, 2), G4(T)X10,2(7, 2) — X10(7)Pa,2(T, 2)
Ga(T)x12,2(T, 2) = X12(T)Pa2(7, 2),  P6(T)Xx10,2(T, 2) — X10(T)P6,2(T, 2)
b6 (T)x12,2(T, 2) — X12(T)P6,2(T, 2),  P10(T)X12,2(7T, 2) — X12(7)X10,2(T, 2),

)
b

is mapped surjectively onto

{015 (@D Ar2(2)) © Acven(T2) x (D Apa(T2)):

k even k even

Finally we show that the map is surjective onto {0} x {0} x Ay 4(T'2) C Ax(T'2) x
A 2(T2) X Ag 4(T'2). By Theorem 6.5(1), we already know that the image contains
Sk,a(T2). We have dim Ag 4(I's) = 1 and dim Sg 4(I'2) = 0. So we first construct a
non-zero Jacobi form Gs(7, 2) € Js 2(I'J) whose image in Ag(I's) x Ag 2(T'2) is zero
and non-zero in Ag 4(I'2). By Theorem 5.1, we have a unique Jacobi form ¢4, €
J11 (D) such that ¢41(7,0) = ¢4. We put Gs(7,2) = ¢s(7)ba2(7,2) — ¢pa1(7,2)%
Then obviously Gs(7,z) € Js2(I'g). Since Gs(7,0) = ¢4(7)? — ¢4(7)? = 0 and
Ag2(T'2) = 0, the Taylor coefficients of Gg(7,2) up to degree 2 are zero. We
consider the Taylor coefficient of degree 4. Since Ay 2(I'2) = A4 4(T'2) = 0, we have
Ea0(myu) = Eaa(m,u) = 0 for ¢y1(7,2) and ¢42(7, 2), and the Taylor coefficients
of these forms are determined by ¢4 up to degree 4 as follows:
(27i)?

B1(r,2) = 9a(r) + 2 Da(a)(r.2) + g (DR} (r,2)

Ga2(T,2) = ¢pu(T) + %(D2¢4)(7’7 2) + <2717(§)

(D2gy)(7,2) +--- .

Here Dy is defined as in (3.1). So we have

G4(T)Pa,2(7, 2) — dan (T, 2)?

2
(464(7)(D364)(7, 1) |u=z — 5((D26a) (7, u)|u=2)*) + O(=°).

_ (271)
80

We can show that 4¢,D3¢ — 4(Daps)? # 0 in many ways. For example if we
apply the ®-operator to the coefficient of z{, then up to a constant we obtain
deq(my)e] (m1) — 5(e)(1))* = A(ry), which is non-zero. Hence the image of Gs(T, 2)
in Ag 4(T'2) is non-zero. Now we use the following theorem of [11], [12].

Theorem 6.6. The module @, o o, Ak,a(T'2) is a free Acven(I'2)-module spanned
by certain five forms belonging respectively to Aga(T'2), S104(T2), S12.4(T2),
514’4(F2) and 51674(F2).
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By Theorem 6.5(1), for each k = 10,12,14, 16, there exists a Jacobi cusp
form xy 26(7, 2) whose image in Ap(T'2) x Ag2(T2) x Ag a(T2) is (0,0, Fy) where
F}, is the generator in Sk 4(T'2) of Theorem 6.6. If we take linear combinations
over Aeven(I'2) of these forms together with Gs(7, z), for each k we obtain the
space of Jacobi forms whose image in Ag(T'2) X Ak 2(T'2) X Ak a(T2) is equal to
{0} x {0} x Aj 4(T'2). So we have proved that for any even k > 0, the mapping
from Jy 2(T'2) to Ag(T'2) x Ak 2(T2) x Ay 4(T2) is surjective.

Proof of Theorem 6.1. Now we see that the Jacobi forms Fgo(7,2), ¢a2, ®6,2,
X10,2: X12,2, G,2(T, 2), X10,26> X12,2b5 X14,26, X16,26 are free generators of Jeyen 2(I'y)
over Aeyen(I'2). Indeed if we denote by J the module of Jacobi forms gener-
ated by these ten Jacobi forms over Agyen(I'2), then by the above argument,
we see that J is mapped surjectively onto Ag(I'3) x Ag2(T'2) x Ag4(T'2) by
(€k,0(7), Ek,2(T, 2), €k a(T, 2)). We have already proved that the kernel of this map-
ping is Fg o(7, 2) Ax—s(I'2) in Theorem 6.3. Therefore in order that the dimension
dim(J N Ji2(T9)) attains the value dim Ag(T's) + dim A 2(T'a) + dim Ay 4(T2) +
dim Ay_g(T'3) for every even k, these ten Jacobi forms should be free over
Aeven(T'2). So we have proved Theorem 6.1 completely. O

Remark 6.7. We give a remark on higher indices. For index 3 and even k, we
have the following relations between dimensions:

dim J;'3P(I'9) = dim Sy(T'2) + dim Sy 2(T2) + dim Sy 4(T'2) + dim Sy 6(I'2)
+ dim Ag_12(T2) + dim Ag—14(T2) + dim Ag_15(T'2) + dim Ag_90(T'2),
dim Jy, 3(T'y) = dim Ag(Ty) + dim Ay, o(T'y) 4 dim A 4(T2) + dim Ay, 6(T2)
+ dim Ag_12(T2) + dim Ag_14(T2) + dim Ag_15(T'2) + dim Ag_20(T'2).

So it is plausible that @, ..., J1£693 (T'y) is a free module generated by four Jacobi
cusp forms of weights 12, 14, 18, 20 over Agyen(I'2) and the map from Jk,g(l“g) to

A(T2) x Ag 2(T'2) x Ag 4(T'2) x A 6(I'2) given by (k.05 k2, Ek.a, Ek.6) 18 surjective.
When the index is higher than 3, it seems that the situation is more complicated.

§7. Image of the Witt operator

For any function G(7) of Ha, we often use the restriction of G to the diagonals
defined by

WG(r1,7) = G(Tl 0).

0 T2
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This operator W is usually called the Witt operator. In the same way, for any
F(1,2) € Jg1(I'9), we define a holomorphic function on (H; x C)? by

R (L)

By abuse of language, we call this operator on Jacobi forms also the Witt operator.
By the automorphy of F' with respect to the elements

a1 0 b1 0
0 a9 0 bg

el
C1 0 d1 0 2
0 C2 0 d2

where a;d; — ¢;d; = 1 for i = 1,2 and the Heisenberg part H(Z), we see that WF
is a Jacobi form with respect to each variable (71,21) or (72, z2) for each fixed
(T2,22) or (11,21). If k is odd, then it is known that Ji1(I'{) = 0, so we have
W (Jx1(I'g)) = 0. When k is even, by the action of

010 0
1000

T
000 1|2
0010

on F(1,2) € Jp1(T9), we see that (W F)(1, 21, T2, 22) is invariant under the ex-
change of variables (71,21) and (72, 22). It follows that WF is in the symmetric
tensors Sym?(Jy. 1(T'{)) of the second degree, i.e.

WF = (fi(r1,21)g;(72, 22) + g;(11, 21) i 72, 22))
1)
for some f;,g; € Ji1(I'{). B. Heim asked the author if this map is surjective. We
show that the answer is affirmative below.

Theorem 7.1. The Witt operator on Jy, 1(T'9) is surjective onto Sym*(Jy, 1(T{)).

Proof. When k is odd, this is trivial since the target of the mapping is zero. So
we assume that k is even. The Witt operator is surjective if dim ker W|Jj 1(I'J) =
dim Jy, 1 (T'J) — dim Sym?(Jy, 1 (T'{)). For even k > 0 by [5] we have

k/6 if k= 0mod 6,
dim Jy, 1 (T'Y) = dim A (T1) + dim Sy12(T'1) = { (k—2)/6 if k=2 mod 6,
(k+2)/6 if k=4 mod 6.
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So we have

Z dim Sym?(J 1 (T')) t*

k even
1 oo oo oo
- 5(2 m(m + 1)t + 5" mm + D)2 4 3 (m o+ 1) (m + 2)t6m+4)
m=1 m=0 m=0
t6 t8 th t4
I ER TR R BT R C R 5
t* A A

(1—t2)(1—-1t92 (1 —tH)(1 —5)(1 —¢12)’
so by using the formula for dim Jj ;(T'¥), it is enough to show that

io: dim(ker(W|Jy 1(T'9))) tF =

k=1, k even

th(t4 +t6 +t10 +t12)
(1 —t4)(1 —t9)(1 —¢10)(1 —¢12)°

Now assume that F(7,2) € Ji1(I'9) for even k and WF = 0. We have W1,,,, (7, 2)
=9y, (71, 21)V0, (T2, 22), and the four functions 9;(7;, 2;) (I = 0,1, i = 1, 2) are alge-
braically independent. So writing F'(7,2) = >_, ¢ (7,272 ¢v(7)U, (7, 2), the condition
WF =0 is equivalent to We, = 0 for all v € (Z/2Z)?. We write 7 = (I} 29) € Ha.
First we assume that W F = 0. Then the images of the Taylor coefficients under W
at z = 0 also vanish. By the automorphy with respect to diag(1,—1,1,—1) € T’y
for even k, we have

(2 )= (G 2 C))

This means that the Taylor coefficients of F(7,z2) at 1, 27, 23 are even functions

RN

of z2. But We, = 0 by the assumption that WF = 0, so the order is at least one,
so the Taylor coefficients at 1, 27, 23 vanish at least of order two at z9 = 0. As
for the coefficient of z1z5 of F(7,z), we can prove the same thing as follows. By
definition, we see that

2
(01059, (7, 2)]2=0)|z0=0 = [ [ D (pi + vi/2)e((p + v4/2)*7;) = 0.

i=1p;€Z

So the Taylor coefficients of ¥, (7, z) at 2122 vanish at zp = 0. Since ¢, also vanishes
at zp = 0, the vanishing order at zp = 0 of the Taylor coefficient of F (7, z) at 2122 is
also at least two. So we have proved that if W F = 0 then each Taylor coefficient up
to degree two vanishes at zo = 0 of order two. Conversely, take any F € Ji 1(I'g)
and assume that each Taylor coefficient at 1, 27, 2129, 25 vanishes at least of
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order two at zop = 0. As shown in Section 4, the coefficients ¢, (7) of the theta
expansion of F' form a solution of the simultaneous equation A(7)c(r) = f(1)
where det A(7) = x5(7) whose vanishing order at zp = 0 is one and f(7) consists
of the Taylor coefficients at 1, 27, 2122, 25. So from (1) = A(7)"1f(7), we see
that We,(7) = 0, and hence WF = 0. So the condition WF = 0 is equivalent
to the condition that its Taylor coefficients vanish at zg = 0 of order two up
to degree two. By Theorem 5.1, we have a linear isomorphism of J; 1(I'J) onto
Ap(Ta) x Ay 2(T'2), and this mapping is constructed by using the Taylor coefficients
up to degree two, so in order to calculate dimker(W), we interpret the above
condition as a condition on the image in Ay (T'2) x Ay 2(T'2). Writing the Taylor
expansion F(7,z) = fo(7)+ fa(7,2)+- - - as the sum of homogeneous parts fi(7, z)
of degree k, and defining &4 0(7) € Ar(T2) and &g 2(T,u) € Ag2(T'2) for F as in
Section 2, we have

§k0(1) = fo(T),
gk,2(7—7 u) = fQ(T’ u) +

2 Uy + —(—Uj

27 (Ofo(T) O fo(7) dfo(7)
( om ui + 0z gy 2)-

Here we demand that fo(7) and fo(7, u) have zero at zg = 0 at least of order two. It
is well known that for fy € A (T'2) with even k&, the condition W fi = 0 is equivalent
to fo being divisible by x10. So write fo(7) = x10(7)f(7) with f € Ap_10(T2). In
particular, if £ < 10, then fo = f = 0. Since Ay 2(T2) = 0 if k < 10 (cf. [19]), we
also have & 2(7,2) = 0, so fa(7, z) = 0. This means that the corresponding Jacobi
form F'is 0. We examine derivatives of fo = fx10. The form y¢ vanishes at zg = 0
exactly of order two. So the derivatives of x1¢9 with respect to 7; for i = 1,2 have
also zero at zg = 0 of order two. As for the derivative with respect to zg, we have
dfo Ix10 of

97 = 920 f+X1087Z0~

This vanishes at zp = 0 at least of order one. So W¢j, o(7, z) = 0. This means that
&ko(T, 2) is divisible by x5(7). Since x5(7) is a cusp form of I's; with multiplier,
&k2(T, 2) is also a cusp form. We have dim A 2(I'2) = 1 but Sip2(I'2) = 0. So
&10,2(7,2) = 0. But if £ = 10, then f is a constant. If moreover f # 0, then
g—f‘; has zero at zp = 0 exactly of order one. This contradicts the assumption
that &10.2(7,2) = 0 and fa(7, 2) is divisible by 23. So we have f = 0 and F = 0
also in this case. Hence we can assume now that k£ > 10. The function g—fg has
zero at least of order two at zyp = 0 if and only if Wf = 0. So if Wf = 0,
then since f3(7,z) and the first derivatives of fy(7) have zero at least of order
two at zp = 0, so does & 2(7,2) and we have & 2(T, 2) € x10A4k,2(T2) in this
case. So the image of ker(W|J; 1(I'J)) in Ag(T'a) x Ay 2(T2) contains the space of
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(x10f,&k,2(7, 2)) with W f = 0 and W§ 2 = 0. Now we consider the part W f # 0.
We have {f,x10}sym(2) € Ar,2(I'2) and the coefficient of ujuy in this form is
10X1068—ZJ; — (k- lO)fBX—. Since the function

82100

i 1 - _
8Z0 k 62:0 0+ k X10 62’0

2mi of

—— (| 10x10=— — (k- 10
k(k — 10) ( X10 920 ( )f
has zero at least of order two at zy = 0 and the coefficient of u? of {f, X10 }Sym(2)
always has zero at least of order two at zg = 0 for each ¢ = 1,2, we see that

2

Ek2(T, 2) + W%{Xw, fYsym(2)

has zero of order two at zp = 0 and belongs to x10A4x—10,2(I2). If W f = 0, then
X10, f € X104k-10(T'2), so including the case W f = 0, we have

§k0(T) = X105
2

Iy
770){X107 f}Sym(2) + XlOAk—1072(F2)

616,2(7—7 ’lL) S k(k

for some f € Ag_19(I'2). Conversely, if & o(7) and & o(T, u) are written like this,
then obviously the Taylor coefficients of F' vanish at least of order two at zg = 0
up to degree two terms, so F' belongs to the kernel of W. So for k& > 10,

dim ker(W|Jy,1(T'9)) = dim Ay_10(T'2) + dim Ay,_19,2(T'2).

Since the dimension is 0 for k<10, the generating function of dim ker(W|Jy 1(T'))

is given by
%) t4 + t6 + th + tl?)tlo
dim Ay _10(T2) + dim Ay _10.2(T2))t" = (
kZQXC:vcn( e 10( 2) rdm : 1072( 2)) (1 - t4)(1 - tﬁ)(l - t10>(1 - t12)

as desired. So we have proved Theorem 7.1.

We note that even if all the Taylor coefficients at 1, 22, 2129, 22 of F' € Ji 1(T'9)
vanish under W, this does not mean that W F = 0. Conceptually this is explained
by the fact that Sym?(Jx 1(T'{)) is determined by the coefficients of 1, 2%, 23, 2322,
and the Taylor coefficients of W F up to degree two are not enough to determine
this. For example, if we define 19,1 as in the proof of Theorem 5.1 by the Jacobi
form in Jlo,l(l“g) which is mapped to (x10,0) € A19(T'2) X A10,2(T'2), then this is
a counterexample. Indeed the Taylor coefficients of W01 at 1, 27, 23 vanish but
the coefficient of 2§22 is a non-zero constant multiple of A(71)A(72). This follows
by the above argument or also by giving ¢, (7) explicitly by solving the equation
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A(r)e(r) = f(r) where f(r) is defined for £19,0 = x10 and &10,2 = 0 as in §5. By
the result of [12], we see that

> (dimker(W|A,(T2)) + dimker(W|A 2(T'2))) t*

k=2, even

t10+t14+t16+t22
(= )1 — @)1~ 01— %)

This does not coincide with the generating function of dim ker(W|J; 2(T'y)).
It would be interesting to consider the same question for higher degree cases.
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