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Taylor Expansions of Jacobi Forms and
Applications to Explicit Structures of Degree Two

by

Tomoyoshi Ibukiyama

Abstract

Natural mappings from the coefficients of the Taylor expansion of Jacobi forms of general
degree to products of certain spaces of vector valued Siegel modular forms are constructed.
Proving surjectivity of these mappings in some special cases, we also clarify explicit
structures of Jacobi forms of degree two of index one and of even weight of index two
as modules over the graded ring of Siegel modular forms of even weight. We also prove
surjectivity of the diagonal restriction of Jacobi forms of index one of degree two to the
symmetric tensors of Jacobi forms of degree one.
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§1. Introduction

In this paper, we first give a characterization of the coefficients of the Taylor

expansion of Jacobi forms of general degree with respect to the second variable

in Cn by vector valued Siegel modular forms. This is a generalization of a result

of Eichler and Zagier [5] on the relation between the Taylor coefficients of Jacobi

forms of degree one and modular forms of degree one. Secondly we apply it to

determine explicit structures of Jacobi forms of degree two of index one of any

weight and of index two of even weight. A short announcement of the results in

this paper has been published in [13].

More precise contents are as follows. We denote by Hn the Siegel upper half-

space of degree n. Jacobi forms F (τ, z) of degree n are functions of (τ, z) ∈ Hn×Cn

which have the same automorphic properties as the functions appearing as coeffi-

cients of the Fourier expansion of Siegel modular forms of degree n+1 with respect
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to the (n+ 1, n+ 1)-component of Hn+1. A systematic extensive study was done

in Eichler–Zagier’s book [5] in the case n = 1. In this paper, we show the following

three results.

(1) For general degree n, there exist linear maps of the Taylor coefficients of

F (τ, z) at z = 0 to direct products of vector valued Siegel modular forms of certain

weights (cf. Theorem 3.1).

(2) We apply (1) to give explicit structures of the modules of Jacobi forms

of ΓJ2 = Sp(2,Z)J (the Jacobi modular group of degree two) of index one, and of

even weight of index two, over the ring of Siegel modular forms of degree two of

even weights (cf. Theorems 5.1, 6.1).

(3) We also show that the Witt operator (the restriction map H2 × C2 →
(H1 × C)2) maps surjectively Jacobi forms of degree two of index one onto the

symmetric tensors of Jacobi forms of degree one of index one (cf. Theorem 7.1).

Among the assertions in (2), the result for the index one case has been es-

sentially given before in [7] by using correspondence with Siegel modular forms of

half-integral weight (see [8]), but here we give a simple alternative direct proof.

In degree one case, it is known from [5] how many Taylor coefficients of a

Jacobi form F determine F . Indeed, denote by Jk,m(ΓJn) the space of Jacobi forms

of degree n of weight k of index m with respect to the Jacobi modular group

ΓJn := Sp(n,Z)J defined in Section 2, and by J
(i)
k,m(ΓJn) the subspace of those such

that all the Taylor coefficients vanish up to total degree i. Then if n = 1, it is easy

to see that J
(2m)
k,m (ΓJ1 ) = 0 (cf. [5]). But this is not true for general n. The following

problem is open in general.

Problem 1.1. What is the smallest i such that J
(i)
k,m(ΓJn) = 0?

For example, we have J
(2)
k,1(ΓJ2 ) = 0 by Theorem 4.1 but J

(4)
k,2(ΓJ2 ) 6= 0 by

Theorem 5.1 and we can also show J
(2)
k,1(ΓJ3 ) 6= 0. It will be interesting to study

this problem for more general cases.

§2. Jacobi forms and Siegel modular forms

We recall several definitions here. We first define vector valued Siegel modular

forms. We denote by Sp(n,R) the symplectic group of rank n defined by

Sp(n,R) = {g ∈M2n(R); gJn
tg = Jn},

where Jn =
(
0n −1n
1n 0n

)
and 1n is the unit matrix of size n. We denote by Γn the

Siegel modular group of level one defined by Γn = Sp(n,R)∩M2n(Z). For any finite-

dimensional rational representation (ρ, V ) of GLn(C), any V -valued function F (τ)
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on Hn, and any element g =
(
a b
c d

)
∈ Sp(n,R), we write

(F |ρ[g])(τ) = ρ(cτ + d)−1F (gτ).

A V -valued holomorphic function F (τ) on Hn is called a Siegel modular form of

weight ρ with respect to Γn if F |ρ[γ] = F for all γ ∈ Γn; when n = 1, F (t)

is moreover assumed to be holomorphic at the cusp i∞. We denote by Aρ(Γn)

the vector space of Siegel modular forms defined above. In this article, we mainly

treat the case when the weight is ρk,ν = detk Symν , the tensor product of detk

and the symmetric tensor representation Symν of degree ν. When ρ = ρk,ν we

write Aρ(Γn) = Ak,ν(Γn), and if ν = 0, we write Aρ(Γn) = Ak(Γn), which is

the space of usual scalar valued Siegel modular forms of weight k. We denote by

Sk,ν(Γn) or Sk(Γn) the subspace of cusp forms. When F ∈ Ak,ν(Γn), by the action

of −12n ∈ Γn, we have F (τ) = (−1)nk+νF (τ). So Ak,ν(Γn) = 0 unless nk + ν is

even.

We fix a realization of ρk,ν as follows. We denote by Vν the vector space of

homogeneous polynomials P (u) in n variables u = (u1, . . . , un) of total degree ν,

and the representation ρk,ν is defined by ρk,ν(g) : P (u) 7→ det(g)kP (ug) for g ∈
GLn(C). For α = (α1, . . . , αn) ∈ (Z≥0)n and u = (u1, . . . , un), we write uα =∏n
i=1 u

αi
i . We also write |α| =

∑n
i=1 αi. Then a holomorphic Vν-valued function F

is identified with

F =
∑
|α|=ν

fα(τ)uα

where fα(τ) are scalar valued holomorphic functions. To emphasize that it is

a polynomial of u, we sometimes write F = F (τ, u). The automorphy of F ∈
Ak,ν(Γn) means

F (gτ, u) = det(cτ + d)kF (τ, u(cτ + d)).

Or if we write u as a column vector, this relation can also be written as

F (gτ, t(cτ + d)−1u) = det(cτ + d)kF (τ, u).

Example: When n = ν = 2, g =
(
A B
C D

)
∈ Γ2, Cτ +D =

( α β
γ δ

)
, and F (τ, u) =

f20(τ)u21 + f11(τ)u1u2 + f02(τ)u22 ∈ Ak,2(Γ2), we havef20(gτ)

f11(gτ)

f02(gτ)

 = det(cτ + d)k

 α2 αβ β2

2αγ αδ + βγ 2βδ

γ2 γδ δ2


f20(τ)

f11(τ)

f02(τ)

 .
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Next we recall the definition of Jacobi forms. We define the Jacobi modular

group of degree n as the subgroup of Γn+1 given by

ΓJn =



a 0 b 0

0 1 0 0

c 0 d 0

0 0 0 1

×


1n 0 0 µ
tλ 1 tµ κ

0 0 1n −λ
0 0 0 1

 ;

(
a b

c d

)
∈ Γn, λ, µ ∈ Zn, κ ∈ Z

.
We write an element of Hn+1 as ( τ z

tz ω ) where (τ, z) ∈ Hn × Cn and ω ∈ H1.

For any integer m and a complex number x, we write e(x) = exp(2πix) and

em(x) = e(mx). For any γ ∈ ΓJn and a holomorphic function F (τ, z) on Hn × Cn,

we have (F (τ, z)em(ω))|k[γ] = F̃ (τ, z)em(ω) for a certain holomorphic function F̃

on Hn×Cn uniquely determined by F and γ. Then the mapping F 7→ F̃ determines

an action of ΓJn and we write F̃ = F |k,m[γ]. When n ≥ 2, we say that a holomorphic

function F on Hn × Cn is a Jacobi form of weight k of index m with respect to

ΓJn if F |k,m[γ] = F for any γ ∈ ΓJn. By the periodicity coming from automorphy,

any Jacobi form F (τ, z) has the Fourier expansion

F (τ, z) =
∑
N,r

a(N, r)e(Tr(Nτ) + trz)

where N runs over half-integral symmetric matrices and r over Zn. We have

a(N, r) = 0 unless 4Nm−r tr ≥ 0 (positive semi-definite) by the Koecher principle

for n ≥ 2 proved by Ziegler [23]. When n = 1, this condition is not automatically

satisfied and we add this condition as part of the definition of Jacobi forms. Here

note that r is a column vector, so r tr is an n×n matrix. We say that F is a Jacobi

cusp form when a(N, r) = 0 unless 4Nm− r tr > 0 (positive definite). We denote

by Jk,m(ΓJn) the space of Jacobi forms defined above, and by Jcusp
k,m (ΓJn) the space

of Jacobi cusp forms. We note that if m > 0, then J0,m(ΓJn) = 0.

§3. Taylor expansions

Since a Jacobi form F (τ, z) is a holomorphic function, we have the Taylor expansion

at z = 0. We write this expansion as

F (τ, z) =

∞∑
ν=0

(∑
|α|=ν

fα(τ)zα
)
,

where α ∈ (Z≥0)n. We also write fν(τ, z) =
∑
|α|=ν fα(τ)zα. The coefficients fα(τ)

are holomorphic functions on Hn. They are closely related to Siegel modular forms

of degree n as we shall see later. When n = 1, Eichler–Zagier proved the following

results (cf. [5]).
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EZ 1. We put ε = 0 or 1 if k is even or odd, respectively. For each integer ν ≥ 0

with ν ≡ k mod 2, we can construct a modular form ξk+ν(τ) ∈ Mk+ν(Γ1) from

the Taylor coefficients (fε(τ), fε+2(τ), . . . , fν(τ)) of a Jacobi form in Jk,m(ΓJ1 ).

This is explicitly given by using differential operators on fl(τ) with respect to the

variable τ .

EZ 2. When k is even, the linear mapping

Jk,m(ΓJ1 )→Mk(Γ1)×Mk+2(Γ1)× · · · ×Mk+2m(Γ1)

induced by the above construction is injective. In other words, the Jacobi form F

is determined by the Taylor coefficients up to z2m. When k is odd, it is determined

only by those up to 2m− 3.

EZ 3. When m = 1, the above mapping induces a surjective isomorphism from

Jk,1(ΓJ1 ) to Mk(Γ1)⊕ Sk+2(Γ1) for k > 0.

Now we generalize this to higher n. By the action of −12n on a Jacobi form

F (τ, z) ∈ Jk,m(ΓJn), we see F (τ,−z) = (−1)nkF (τ, z). So F (τ, z) is an even or odd

function of z if nk is even or odd, respectively. To make the notation simpler, we

put ε = 0 or 1 according to whether nk is even or odd. So the Taylor expansion is

written as

F (τ, z) =

∞∑
l=0

f2l+ε(τ, z).

We denote by u = t(u1, . . . , un) a variable column vector of length n. We denote

by H the ring of holomorphic functions on Hn. Let H[u] be the polynomial ring

in n variables u1, . . . , un over H and H[u]ν the vector space of homogeneous poly-

nomials in H[u] of degree ν. We define a differential operator D2 from H[u]ν to

H[u]ν+2 by

(3.1) D2 = tu

(
1 + δij

2

∂

∂τij

)
u =

∑
i≤j

uiuj
∂

∂τij
,

where δij is Kronecker’s delta and τ = (τij) ∈ Hn. For any non-negative integer

ν ≡ nk mod 2 and the Taylor coefficients fν−2µ(τ, z) of F (τ, z) with 2µ ≤ ν, which

are polynomials in z, we define ξk,ν(τ, u) ∈ H[u]ν by

ξk,ν(τ, u) =

[ν/2]∑
µ=0

(k + ν − µ− 2)!

µ!(k + ν − 2)!
(−2πim)µ(Dµ2 fν−2µ)(τ, u)

= fν(τ, u) + constant times derivatives of fν−2µ(τ, u) with µ > 0.

When ν = 0, this does not depend on u so we sometimes write ξk,0(τ, u) = ξk,0(τ).
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By induction, we can show conversely that

(3.2) fν(τ, u) =

[ν/2]∑
µ=0

(2πim)µ(k + ν − 2µ− 1)!

(k + ν − µ− 1)!µ!
Dµ2 ξk,ν−2µ(τ, u).

Theorem 3.1. Fix a natural number m. For any non-negative integer ν with

ν ≡ nk mod 2 and any Jacobi form F ∈ Jk,m(ΓJn), define ξk,ν(τ, u) as above. Then

ξk,ν(τ, u) ∈ Ak,ν(Γn). If F ∈ Jcusp
k,m (ΓJ2 ), then ξk,ν(τ, u) ∈ Sk,ν(Γ2). The Taylor

coefficients fν−2µ(τ, u) of F with 2µ ≤ ν are uniquely determined by ξk,ν−2µ(τ, u)

with 2µ ≤ ν.

Concrete examples of ξk,ν(τ, u) are as follows:

ξk,0(τ, u) = f0(τ),

ξk,2(τ, u) =
∑
|α|=2

fα(τ)uα − 2πim

k

∑
1≤i≤j≤n

∂f0(τ)

∂τij
uiuj .

To make it readable, we give a concrete shape of ξk,4(τ, u) only in the case n = 2.

In this case we have

ξk,4(τ, u) = (f40(τ)u41 + f31(τ)u31u2 + f22(τ)u21u
2
2 + f13(τ)u1u

3
2 + f04(τ)u42)

− 2πim

k + 2

(
∂f20(τ)

∂τ1
u41 +

(
∂f20(τ)

∂z0
+
∂f11(τ)

∂τ1

)
u31u2

+

(
∂f20(τ)

∂τ2
+
∂f11(τ)

∂z0
+
∂f02(τ)

∂τ1

)
u21u

2
2

+

(
∂f11(τ)

∂τ2
+
∂f02(τ)

∂z0

)
u1u

3
2 +

∂f02(τ)

∂τ2
u42

)
+

(2πim)2

2(k + 2)(k + 1)

(
∂2f0(τ)

∂τ21
u41 + 2

∂2f0(τ)

∂τ1∂z0
u31u2

+

(
∂2f0(τ)

∂z20
+ 2

∂2f0(τ)

∂τ1∂τ2

)
u21u

2
2 + 2

∂2f0(τ)

∂z0∂τ2
u1u

3
2 +

∂2f0(τ)

∂τ22
u42

)
,

where we write

F (τ, z) = f0(τ) + f20(τ)z21 + f11(τ)z1z2 + f02(τ)z22 + f40(τ)z41 + · · · .

We put ε = 0 or 1 for nk ≡ 0 or 1 mod 2. Then by the above theorem, for any

ν ∈ Z≥ε with ν ≡ nk mod 2, (ξk,2µ+ε(τ, u))2µ≤ν induces a linear mapping from

Jk,m(ΓJn) to Ak,ε(Γn)×Ak,ε+2(Γn)× · · · ×Ak,ν(Γn).

Theorem 3.1 is a generalization of the case n = 1 of [5] since when n = 1 we

have detk Sym2l+ε = detk+2l+ε. Note that when n = 1, ξk,ν for ν > 0 is always a

cusp form, but this is not true when n > 1. There is also the following difference

for general n. When n = 1 and when k is even for example, the induced mapping
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from Jk,m(Γ1) to Ak(Γ1)×Ak+2(Γ2)× · · ·×Ak,2m(Γ1) is injective. But this is not

true for general n. In fact, there exist non-zero Jacobi forms for n = m = 2 whose

Taylor coefficients vanish up to degree 2m = 4, as we will see later. It does not

seem to be known exactly how many vanishing Taylor coefficients of F (τ, z) ensure

F (τ, z) = 0 in general, and this seems an interesting question. (There are several

algebro-geometric results for each fixed τ but they do not fit into our setting of

modular forms.)

Proof of Theorem 3.1. It is possible to prove Theorem 3.1 by direct calculation,

but here we use differential operators on Siegel modular forms of degree n + 1.

A general theory of holomorphic differential operators on Siegel modular forms

which behave well under restriction of the domain is given in [9]. So before proving

the above theorem, we recall part of the results in [9] which will be used in the

proof. We fix non-negative integers k and l. For any g1 =
(
a1 b1
c1 d1

)
∈ Sp(n,R) and

g2 =
(
a2 b2
c2 d2

)
∈ SL(2,R) and any Vν-valued function f of (τ, ω) ∈ Hn × H1, we

write

f(τ, ω)|k,ν [(g1, g2)] = (c2ω + d2)−k−νρk,ν(c1τ + d1)−1f(g1τ, g2ω).

This is an action of Sp(n,R)×SL(2,R). We define a group embedding of Sp(n,R)×
SL(2,R) into Sp(n+ 1,R) by

ι(g1, g2) =


a1 0 b1 0

0 a2 0 b2
c1 0 d1 0

0 c2 0 d2

 .

For Z ∈ Hn+1 we write Z = ( τ z
tz ω ). For any function G on Hn+1, we denote by

Res the following restriction:

(ResG)(τ, ω) = G

(
τ 0

0 ω

)
.

To define our operator, we use Gegenbauer polynomials. For any non-negative

integer ν and k ≥ 2, we define polynomials P
(k)
ν (s, w) in two variables s and w by

the following formal power series of t:

1

(1− 2st+ wt2)k−1
=

∞∑
ν=0

P (k)
ν (s, w)tν .

Then we have

P (k)
ν (s,m) =

[ν/2]∑
µ=0

(−1)µ
(k + ν − µ− 2)!

(k − 2)!(ν − 2µ)!µ!
(2s)ν−2µwµ.
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The polynomials P
(k)
ν (s, 1) are classical Gegenbauer polynomials. We define a Vν-

valued differential operator by

Dk,ν = P (k)
ν

(
1

2

n∑
i=1

ui
∂

∂zi
,
∂

∂ω
D2

)
.

Then for any holomorphic function G(Z) on Hn+1 and (g1, g2) ∈ Sp(n,R) ×
SL(2,R), we have

Res(Dk,ν(G|kι(g1, g2))) = (Res(Dk,νG))|k,ν(g1, g2).

Actually a linear differential operator with constant coefficients which satisfies this

relation is unique up to a constant if 2k ≥ n. For the proof, see [9, p. 114].

Now we take a holomorphic function F (τ, z) on Hn × Cn and put G(Z) =

F (τ, z)em(ω). For any g ∈ Sp(n,R), we write the Taylor expansion of F |k,m[g] at

z = 0 as (F |k,m[g])(τ, z) =
∑∞
ν=0 fν,g(τ, z), where fν,g(τ, z) is the homogeneous

terms in z of total degree ν. For a fixed F and g, we put

(3.3) ξk,ν,g(τ, ν) =

[ν/2]∑
µ=0

(−1)µ(−2πim)µ
(k + ν − µ− 2)!

µ!(k + ν − 2)!
Dµ2 fν−2µ,g(τ, u).

In particular, by definition we have ξk,ν(τ, u) = ξk,ν,12n(τ, u). For any α ∈ (Z≥0)n

with |α| = ν − 2µ, we have( n∑
i=1

ui
∂

∂zi

)ν−2µ
zα = (ν − 2µ)!uα,

so calculating directly from the definition, we have

(k − 2)!

(k + ν − 2)!
Res(Dk,ν(G|kι(g, 12))) = ξk,ν,g(τ, u)em(ω).

Since this is equal to (Res(Dk,νG))|k,ν [(g, 12)]× (k − 2)!/(k + ν − 2)!, we have

(3.4) ξk,ν,g(τ, u) = ξk,ν(τ, u)|k,ν [g].

In particular, if F ∈ Jk,m(ΓJn), then F |k,m[γ] = F for any γ ∈ Γn and ξk,ν,γ =

ξk,ν . So ξk,ν |k,ν [γ] = ξk,ν and ξk,ν(τ, u) ∈ Ak,ν(Γ2). If F ∈ Jcusp
k,m (ΓJn), then by

definition, the Fourier coefficient a(N, r) of F (τ, z) vanishes unless 4mN−r tr > 0.

So it vanishes unless N > 0, and since the Fourier coefficients of ξk,ν are linear

combinations of these a(N, r), the same holds for ξk,ν(τ, u), which means that

ξk,ν ∈ Sk,ν(Γn).

The coefficients of the differential operator are rational functions of k well

defined for k ≥ 1 and since the operator is determined algebraically with respect

to k, this proves Theorem 3.1 for any k ≥ 1.
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By the way, the normalization of ξk,ν is consistent with [5] when n = 1. If a

more direct approach is preferred, one can use the following formulas:

D2(det(cτ + d)) = det(cτ + d)(tu(cτ + d)−1cu),

D2(det(cτ + d)k) = k det(cτ + d)k(tu(cτ + d)−1cu),

D2((t(cτ + d)−1u)α) = −|α|(tu(cτ + d)−1cu)(t(cτ + d)−1u)α,

D2((tu(cτ + d)−1cu)µ) = −µ(tu(cτ + d)−1cu)µ+1.

Here µ is any integer and α is a multi-index. For any f(τ, u) ∈ H[u]ν and g =(
a b
c d

)
∈ Sp(n,R), we have

D2(f(gτ, t(cτ + d)−1u))

= −ν(tu(cτ + d)−1cu)f(gτ, t(cτ + d)−1u) + (D2f)(gτ, t(cτ + d)−1u).

These formulas can be obtained by standard matrix calculations. Also by applying

these to the Taylor expansion of Jacobi forms, we obtain an alternative proof of

Theorem 3.1. We omit the details here.

§4. Theta expansions and transformation formulas

Now we explain another expansion of F (τ, z) which we call “theta expansion”. This

will be used in later sections. For any m ∈ Z>0, any Jacobi form F ∈ Jk,m(ΓJn)

satisfies

(4.1) F (τ, z + τλ+ µ) = em(− tλτλ− 2 tλz)F (τ, z)

for any λ, µ ∈ Zn. For any ν ∈ Zn, we put

ϑν,m(τ, z) =
∑
p∈Zn

e

( t(
p+

ν

2m

)
(mτ)

(
p+

ν

2m

)
+
t(
p+

ν

2m

)
(2mz)

)
.

This series depends only on ν mod 2m, and there are (2m)n linearly independent

such functions. Then by the well-known theory of theta functions, any function on

Hn ×Cn which satisfies (4.1) is a linear combination of these theta functions as a

function of z. In particular, for Jacobi forms F we have

F (τ, z) =
∑

ν∈(Z/2mZ)n
cν(τ)ϑν,m(τ, z)

for some holomorphic functions cν(τ) on Hn. But F is automorphic also for Γn,

so we can say a little more. By the action of −12n ∈ Γn, we have F (τ,−z) =

(−1)nkF (τ, z), so for example if nk is even, then F (τ, z) is an even function of z.
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But we also have ϑν,m(τ,−z) = ϑ−ν,m(τ, z), so this means that cν(τ) = c−ν(τ).

If m = 1, this does not give any new condition, since −ν ≡ ν mod 2 and theta

functions ϑν,1(τ, z) are all even functions of z. But when m > 1, the above relation

gives a real restriction, as we will see in Section 5.

Since we will sometimes use the theta transformation formulas, we recall them

here. We write ϑν,m(τ) = ϑν,m(τ, 0). For any U ∈ GLn(R), S = tS ∈ Mn(R), we

write

t(U) =

(
U 0

0 tU−1

)
, u(S) =

(
1n S

0 1n

)
.

Then Γn is generated by t(U) (U ∈ GLn(Z)), u(S) (S = tS ∈ Mn(Z)), and Jn.

By definition, we have

ϑν,m(τ + S, z) = e(tνSν/4m)ϑν,m(τ, z),

ϑν,m(Uτ tU, tUz) = ϑUν,m(τ, z).

As for Jn, we need the well known theta transformation formula (cf. e.g. [16, II,

p. 226]). For any m = t(m′,m′′) ∈ Qn, define

θm(τ, z) =
∑
p∈Zn

e

(
1

2
t(p+m′)τ(p+m′) + t(p+m′)(z +m′′)

)
.

Here m is called a theta characteristic. Then for any γ ∈ Γn, we have

(4.2) θγ·m(τ, z) = κ(γ)e(φm(γ)) det(cτ + d)1/2e(tz(cτ + d)−1cz)/2)θm(τ, z),

where κ(γ) is a root of unity, γ ·m is an action of Γn on (Q/Z)2n (which is not just

matrix multiplication), φm(γ) is an explicit function of m and γ, and det(cτ+d)1/2

is a fixed branch determined by τ and γ on which κ(γ) depends. We do not recall

the precise formula here, but in our application in this paper, we need not specify

the branch since it appears always with κ(γ) and the final results never depend

on the choice. Now we have

ϑν,m(−τ−1, τ−1z) = θ(ν/2m,0)(−2mτ−1, 2mτ−1z)

= θ(ν/2m,0)(−(τ/2m)−1, (τ/2m)−1z).

If we apply (4.2) for γ = Jn and m = (ν/2m, 0), then since J · t(0,−ν/2m) =
t(ν/2m, 0) and φ(0,−ν/2m)(Jn) = 0, we have

θν/2m,0(−τ−1, τ−1z) = κ(Jn) det(τ)1/2e(tzτ−1z/2)θ0,−ν/2m(τ, z).

So

ϑν,m(τ−1, τ−1z) = κ(Jn) det(τ/2m)1/2em(tzτ−1z)θ0,−ν/2m(τ/2m, z).
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But we can rewrite the summation of the definition as

θ0,−ν/2m(τ/2m, z) =
∑
p∈Zn

e(tp(τ/2m)p/2 + tp(z − ν/2m))

=
∑

r∈(Z/2mZ)n

∑
l∈Zn

e(t(2ml + r)(τ/2m)(2ml + r) + t(2ml + r)(z − ν/2m))

=
∑

r∈(Z/2mZ)n
e(− trν/2m)ϑr,m(τ, z).

Hence

(4.3) ϑν,m(−τ−1, τ−1z)

= κ(Jn) det(τ/2m)1/2em(tzτ−1z)
∑

r∈(Z/2mZ)n
e(− trν/2m)ϑr,m(τ, z).

Also κ(Jn)2 = (−i)n. This seems more or less known and easily proved also by

restricting the transformation formula for θ0(τ) to the diagonals of τ and using

the Poisson formula for n = 1.

We shall apply the above formula to establish the behaviour of Jacobi forms

under some differential operators later.

§5. Explicit structures for index one

From now on, we treat the case n = 2. We define the ring of Siegel modular forms

by

A(Γ2) =

∞⊕
k=0

Ak(Γ2) and Aeven(Γ2) =

∞⊕
k=0

A2k(Γ2).

It is well known from Igusa [15] that Aeven(Γ2) is generated by Siegel modu-

lar forms φ4, φ6, χ10, χ12 and for A(Γ2) we moreover need χ35, where each

subscript is the weight of the form. For any fixed natural number m, we write

Jm(ΓJ2 ) =
⊕∞

k>0 Jk,m(ΓJ2 ), Jeven,m(ΓJ2 ) =
⊕

k>0 J2k,m(ΓJ2 ), and Jodd,m(ΓJ2 ) =⊕∞
k=0 J2k+1,m(ΓJ2 ). These modules are obviously Aeven(Γ2)-modules and the first

one is also an A(Γ2)-module. We would like to study the structure of these mod-

ules only over Aeven(Γ2) since it becomes rather complicated if we regard it as a

module over A(Γ2).

First we give a result for n = 2 and m = 1. When k is odd, we have Ak,j(Γ2) =

Sk,j(Γ2) for any j ≥ 0. For odd k, we put

S0
k,2(Γ2) =

{
f(τ, u) ∈ Ak,2(Γ2); f

((
τ1 0

0 τ2

)
, u

)
= 0

}
,
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where we write τ = ( τ1 z0z0 τ2 ) ∈ H2. Note that explicit structures of Ak,2(Γ2) and

S0
k,2(Γ2) are known (see [12], [10]).

We note that if we define S0
k(Γ2) in the same way for odd k, then it is well

known that Sk(Γ2) = S0
k(Γ2), so this is redundant.

Theorem 5.1. Assume that n = 2.

(1) For any natural number k, the mapping

Jk,1(ΓJ2 ) 3 F 7→ (ξk,0(τ), ξk,2(τ, u)) ∈ Ak(Γ2)×Ak,2(Γ2)

is injective.

(2) If k is even with k ≥ 2, this mapping is also surjective.

(3) If k is odd, then the image of the mapping in (1) is Sk(Γ2)× S0
k,2(Γ2).

(4) J1(ΓJ2 ) is a free Aeven(Γ2)-module spanned by Jacobi forms of respective weights

4, 6, 10, 12, 21, 27, 29, 35.

Assertion (4) of this theorem is essentially contained in [7]. The proof there

used structures of the “plus” space (a kind of space of new forms) of Siegel modular

forms of half-integral weight of level 4 with or without character, since Jk,1(ΓJ2 ) is

isomorphic to this space (cf. [8], [7]). But there we needed a complicated calculation

to extract the plus space from the whole space of half-integral weight. In this paper,

we give a more direct simple proof.

Before proving the theorem, we first show some transformation formula for

theta series. We consider a differential operator on four holomorphic functions

Fi(τ) (i = 1, . . . , 4) on H2. We write

(τ, z) =

((
τ1 z0
z0 τ2

)
,

(
z1
z2

))
∈ H2 × C2

and put ∂i = 1
2πi

∂
∂zi

, ∂ii = 1
2πi

∂
∂τi

for i = 1, 2, and ∂12 = 1
4πi

∂
∂z0

. For functions

Fi(τ) (1 ≤ i ≤ 4) of τ ∈ H2, we define

{F1, F2, F3, F4}3 =

∣∣∣∣∣∣∣∣∣
F1 F2 F3 F4

∂11F1 ∂11F2 ∂11F3 ∂11F4

∂12F1 ∂12F2 ∂12F3 ∂12F4

∂22F1 ∂22F2 ∂22F3 ∂22F4

∣∣∣∣∣∣∣∣∣ .
For any g =

(
a b
c d

)
∈ Sp(2,R), we can fix a branch of det(cτ + d)1/2 on H2.

Although this is not an automorphy factor, it is a well defined function for a

fixed g since H2 is simply connected (and the branch depends on τ itself and is not

determined by det(cτ+d)). For any function F (τ) on H2, we define (F |1/2[g])(τ) =



Taylor Expansions of Jacobi Forms 591

det(cτ + d)−1/2F (gτ). Then

{F1|1/2[g], F2|1/2[g], F3|1/2[g], F4|1/2[g]}3 = {F1, F2, F3, F4}3|5[g]

for any g ∈ Sp(2,R). Here the subscript 3 is used to indicate 4 ·1/2+3 = 5. This is

a special case of the operator in [9, Theorem 2], or [2, p. 251]. Now we apply this

to the theta functions for m = 1. Here in the case of n = 2 and index m = 1, for

any ν ∈ (Z/2Z)2, we write ϑν(τ, z) = ϑν,1(τ, z) and ϑν(τ) = ϑν(τ, 0) for simplicity.

We show that {ϑ00(τ), ϑ01(τ), ϑ10(τ), ϑ11(τ)}3 is a Siegel modular form of Γ2 of

weight 5 with a multiplier system. By the formula given in the previous section,

we have

(ϑ00(τ)|1/2[J2], ϑ01(τ)|1/2[J2], ϑ10(τ)|1/2[J2], ϑ11(τ)|1/2[J2])

= (ϑ00(τ), ϑ01(τ), ϑ10(τ), ϑ11(τ))A

where

A = 2−1κ(J2)


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

 .

We consider the 4× 4 matrix whose rows are (ϑ00(τ), ϑ01(τ), ϑ10(τ), ϑ11(τ))A and

its ∂11, ∂12 and ∂22 derivatives. Taking the determinant of this matrix, we see that

{ϑ00(τ)|1/2[J2], ϑ01(τ)|1/2[J2], ϑ10(τ)|1/2[J2], ϑ11(τ)|1/2[J2]}3
= {ϑ00(τ), ϑ01(τ), ϑ10(τ), ϑ11(τ)}3 det(A).

Since κ(J2)4 = 1, we have det(A) = 1. We put χ5 = {ϑ00, ϑ01, ϑ10, ϑ11}3. Then we

can show that this is not identically zero (see e.g. the Fourier coefficients) and by

the property of this differential operator explained above, we have χ5|5[J2] = χ5.

As for the action of t(U) and u(S), t(U) for U ∈ GL2(Z) acts on ϑν(τ) as a

permutation and the automorphy factor is det(U)1/2×4 = 1, and u(S) for S =

( s1 s12
s12 s2 ) ∈M2(Z) acts on χ5 as multiplication by∑

ν∈(Z/2Z)2
e(tνSν/4) = e((s1 + s2 + s12)/2).

The latter is again ±1. So χ5|5t(U) = ±χ5 and χ5|u(S) = ±χ5. This means that

χ5 is a Siegel modular form of weight 5 of Γ2 with the multiplier system of Γ2.

Such a Siegel modular form is unique up to a constant and is equal to a constant

times θ0000θ0001θ0010θ0011θ0100θ0110θ1000θ1001θ1100θ1111 (cf. [15]).
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Proof of Theorem 5.1. For any F (τ, z) ∈ Jk,1(ΓJ2 ), we write

F (τ, z) = f0(τ) + (f20(τ)z21 + f11(τ)z1z2 + f02(τ)z22) + · · · .

We also use the theta expansion. We have

F (τ, z) = c00(τ)ϑ00(τ, z) + c01(τ)ϑ01(τ, z) + c10(τ)ϑ10(τ, z) + c11(τ)ϑ11(τ, z)

for some holomorphic functions cν(τ) on H2. Here cν(τ) are uniquely determined

by F . Differentiating both sides with respect to z1 and z2 at most twice, we have

a simultaneous equation

A(τ)c(τ) = f(τ)

where we put

c(τ) = t(c00(τ), c01(τ), c10(τ), c11(τ)),

f(τ) = t(f0(τ), 2f20(τ)/(2πi)2, f11(τ)/(2πi)2, 2f02(τ)/(2πi)2),

and define A(τ) to be the matrix
ϑ00(τ) ϑ01(τ) ϑ10(τ) ϑ11(τ)

∂21ϑ00(τ, z)|z=0 ∂21ϑ01(τ, z)|z=0 ∂21ϑ10(τ, z)|z=0 ∂21ϑ11(τ, z)|z=0

∂1∂2ϑ00(τ, z)|z=0 ∂1∂2ϑ01(τ, z)|z=0 ∂1∂2ϑ10(τ, z)|z=0 ∂1∂2ϑ11(τ, z)|z=0

∂22ϑ00(τ, z)|z=0 ∂22ϑ01(τ, z)|z=0 ∂22ϑ10(τ, z)|z=0 ∂22ϑ11(τ, z)|z=0

 .

Theta functions satisfy the heat equation ∂i∂jϑν(τ, z)|z=0 = 4∂ijϑν(τ) for any i, j

with 1 ≤ i, j ≤ 2. (Note that we defined ∂12 = (4πi)−1 ∂
∂z0

to have a unified relation

here.) So det(A(τ)) is equal to χ5(τ) = {ϑ00(τ), . . . , ϑ11(τ)}3 up to a constant. Here

it is well known that χ5(τ) vanishes only on the Γ2-orbit of the diagonals of H2 and

the vanishing order is one (cf. Freitag [6, p. 145, Hilfssatz 1.3]). Anyway, det(A(τ))

does not vanish identically, so the mapping from Jk,1(ΓJ2 ) to Ak(Γ2)×Ak,2(Γ2) is

injective. When k is even, by comparing the dimensions found by Tsushima [20]–

[22], we can see that the mapping is also surjective. Actually this is proved more

directly as follows without using dimension formulas. To show the surjectivity,

instead of taking Jacobi forms, we start from some forms gk,0(τ) ∈ Ak(Γ2) and

gk,2(τ, u) ∈ Ak,2(Γ2). Then we define fν(τ) for ν = 0, 20, 11, 02 by (3.2) by

putting ξk,0 = gk,0 and ξk,2 = gk,2. Then we consider the above simultaneous

equation A(τ)c(τ) = f(τ) for this f(τ), regarding cν(τ) as unknown. Each ϑν(τ)

is an even function with respect to z0. This is shown by replacing p = t(p1, p2) by

(p1,−p2 − ν2) in the summation of the definition of each ϑν(τ). So each ∂12ϑν(τ)

is an odd function of z0 and hence all the components of the third row of A(τ)

vanish at z0 = 0. So if we denote by Ã(τ) the cofactor matrix of A(τ), then

the first, second and fourth columns are zero at z0 = 0. Now assume that k is
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even. By the action of the diagonal matrix diag(1,−1, 1,−1) ∈ Γ2, we see that

any form g(τ) in Ak(Γ2) is an even (resp. odd) function of z0 if k is even (resp.

odd). In particular, ∂12g vanishes at z0 = 0 if k is even. In the same way, if

g20(τ)u21 + g11(τ)u1u2 + g02(τ)u22 ∈ Ak,2(Γ2), then we see that g11(τ) is an odd

function of z0 if k is even. Since

f20(τ)u21 + f11(τ)u1u2 + f02(τ)u22 = ξk,2(τ) +
2πi

k

∑
1≤i≤j≤2

∂ξk,0(τ)

∂τij
uiuj ,

f11(τ) also vanishes at z0 = 0. So A(τ)−1f(τ) is holomorphic at z0 = 0 when k

is even and this means that the unique solution c(τ) of the simultaneous equation

A(τ)c(τ) = f(τ) is holomorphic on the fundamental domain F of Γ2. Now we

define a function F (τ, z) on H2 × C2 by F (τ, z) =
∑
ν∈(Z/2Z)2 cν(τ)ϑν(τ, z), using

the components cν(τ) of c(τ). This is holomorphic on F × C where F denotes

the fundamental domain of Γ2, and at least meromorphic on H2 × C2. Now we

prove that F (τ, z) is invariant under ΓJ2 . By the properties of ϑν , we see that

F |1[(λ, µ)] = F for any λ, µ ∈ Z2. So the problem is the action of Γ2. Since

F |k,1[γ]|1[(λ, µ)] = F |1[(λ, µ)g−1]|k,1[γ], F |k,1[γ] also satisfies (4.1). So we have

F |k,1[γ] =
∑

ν∈(Z/2Z)2
cν,γ(τ)ϑν(τ, z)

for some holomorphic functions cν,γ(τ) on H2 which might depend on γ. For the

Taylor expansion

F |k,1[γ] = f0,γ(τ) + f20,γ(τ)z21 + f11,γ(τ)z1z2 + f02,γ(τ)z22 + · · · ,

we put

fγ(τ) = (f0,γ(τ), 2f20,γ(τ)/(2πi)2, f11,γ(τ)/(2πi)2, 2f02,γ(τ)/(2πi)2).

Then cγ(τ) = A(τ)−1fγ(τ). As we saw in (3.3) and (3.4), we have

f0,γ(τ) = ξk,0,γ(τ)

and

f20,γ(τ)u2 + f11,γ(τ)u1u2 + f02,γ(τ)u22

= ξk,2,γ(τ, u) +
2πi

k

(
∂ξk,0,γ(τ)

∂τ1
u21 +

∂ξk,0,γ(τ)

∂z0
u1u2 +

∂ξk,0,γ(τ)

∂τ2
u22

)
.

Also ξk,0,γ(τ) = (ξk,0|k[γ])(τ) and ξk,2,γ(τ, u) = (ξk,2|k,2[γ])(τ, u). But we assumed

here that ξk,0|k[γ] = ξk,0 and ξk,2|k,2[γ] = ξk,2, so fγ(τ) = f(τ). Hence by the

uniqueness of solution ofA(τ)cγ(τ)=f(τ), we have cν,γ(τ)=cν(τ) and F |k,1[γ]=F .



594 T. Ibukiyama

This means that F (γτ, t(cτ +d)−1z) = det(cτ +d)ke(tzt(cτ +d)−1z)F (τ, z). Since

F (τ, z) is holomorphic on F × C2, it is also holomorphic on γF × C2, and hence

on H2 × C2. So we have proved Theorem 5.1(2).

Now assume that k is odd. In this case the map to Ak(Γ2)× Ak,2(Γ2) is not

surjective since f11(τ) does not necessarily vanish on the diagonals. For odd k,

any ξk,0(τ) ∈ Ak(Γ2) vanishes at z0 = 0 since they are all multiples of χ5(τ) (cf.

Igusa [15]). So f11(τ) vanishes at z0 = 0 if and only if the coefficient of u1u2 in

gk,2(τ, u) vanishes. For such a pair of gk,0(τ) and gk,2(τ, u) we can define a Jacobi

form by the same argument as in the case of even k. On the other hand, since the

third row of A(τ) vanishes at z0 = 0, this is also a necessary condition. For odd k,

the coefficients of u21 and u22 in gk,2(τ, u) always vanish by the automorphy with

respect to diag(1,−1, 1,−1). So the condition gk,2(τ, u) ∈ S0
k,2(Γ2) is necessary and

sufficient for the existence of F ∈ Jk,1(Γ2) and we have proved (3) of Theorem 5.1.

The generators in Theorem 5.1(4) are given as follows. It is well known from

Igusa [15] that Aeven(Γ2) = C[φ4, φ6, χ10, χ12], where φ4 and φ6 are the Eisenstein

series of weight 4 and 6 respectively and χ10 and χ12 are cusp forms of weight

10 and 12 respectively unique up to a constant. By claim (2) of the theorem, we

can take the Jacobi forms φ4,1(τ, z), φ6,1(τ, z), χ10,1(τ, z), and χ12,1(τ, z) of weight

k = 4, 6, 10, and 12 repectively of index 1 such that the image in Ak(Γ2)×Ak,2(Γ2)

under (ξk,0(τ), ξk,2(τ, z)) is (φ4, 0), (φ6, 0), (χ10, 0), and (χ12, 0) respectively. Then

we can show that the submodule J̃ of Jeven,1(ΓJ2 ) given by

Aeven(Γ2)φ4,1 +Aeven(Γ2)φ6,1 +Aeven(Γ2)χ10,1 +Aeven(Γ2)χ12,1

is mapped surjectively to
⊕

k even(Ak(Γ2) × Ak,2(Γ2)). This is proved as follows.

Firstly, it is obvious that⊕
k even>0

Ak(Γ2) = Aeven(Γ2)φ4 +Aeven(Γ2)φ6 +Aeven(Γ2)χ10 +Aeven(Γ2)χ12

(which is not a direct sum). So the mapping of F (τ, z) ∈ J̃ to F (τ, 0) is surjective

onto
∑
k>0Ak(Γ2). Now we show that the image of J̃ under (ξk,0(τ), ξk,2(τ, z))

contains {0}×Ak,2(Γ2). For any F (τ) ∈ Ak(Γ2) and G(τ) ∈ Al(Γ2), we define the

Rankin–Cohen type bracket {F (τ), G(τ)}Sym(2) as in [19] as follows:

{F (τ), G(τ)}Sym(2)(τ, u) =

(
lG(τ)

∂F (τ)

∂τ1
− kF (τ)

∂G(τ)

∂τ1

)
u21

+

(
lG(τ)

∂F (τ)

∂z0
− kF (τ)

∂G

∂z0

)
u1u2 +

(
lG(τ)

∂F (τ)

∂τ2
− kF (τ)

∂G(τ)

∂τ2

)
u22.

Then {F,G}Sym(2)∈Ak+l,2(Γ2). We take F (τ, z)∈Jk,1(ΓJ2 ) and G(τ, z)∈Jk,1(ΓJ2 )

and put F (τ) = F (τ, 0) and G(τ) = G(τ, 0). We assume that the image of F and G
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in Ak(Γ2)× Ak,2(Γ2) and Al(Γ2)× Al,2(Γ2) under (ξk,0(τ), ξk,2(τ, z)) is (F (τ), 0)

and (G(τ), 0), respectively. Then the Taylor expansions are given by

F (τ, z) = F (τ) +
2πi

k

(
∂F (τ)

∂τ1
u21 +

∂F (τ)

∂z0
u1u2 +

∂F (τ)

∂τ2
u22

)
+O(z4),

G(τ, z) = G(τ) +
2πi

l

(
∂G(τ)

∂τ1
u21 +

∂G(τ)

∂z0
u1u2 +

∂G(τ)

∂τ2
u22

)
+O(z4),

where O(z4) means terms of degree not less than 4 with respect to z1, z2. Then

G(τ)F (τ, z)− F (τ)G(τ, z) =
2πi

kl
{F,G}Sym(2)(τ, z) +O(z4).

As shown by T. Satoh [19], the Aeven(Γ2)-module
⊕

k evenAk,2(Γ2) is generated by

{φ4, φ6}Sym(2), {φ4, χ10}Sym(2), {φ4, χ12}Sym(2), {φ6, φ10}Sym(2), {φ6, φ12}Sym(2),

{χ10, χ12}Sym(2). This means that the Aeven(Γ2)-module spanned by

φ4(τ)φ6,1(τ, z)− φ6(τ)φ4,1(τ, z), φ4(τ)χ10,1(τ, z)− χ10(τ)φ4,1(τ, z),

φ4(τ)χ12,1(τ, z)− χ12(τ)φ4,1(τ, z), φ6(τ)χ10,1(τ, z)− χ10(τ)φ6,1(τ, z),

φ6(τ)χ12,1(τ, z)− χ12(τ)φ6,1(τ, z), φ10(τ)χ12,1(τ, z)− χ12(τ)χ10,1(τ, z),

is mapped surjectively onto

{0} ×
(⊕
k even

Ak,2(Γ2)
)
⊂ Aeven(Γ2)×

(⊕
k even

Ak,2(Γ2)
)
.

Hence J̃ is mapped surjectively onto
∑
k even(Ak(Γ2)×Ak,2(Γ2)). This means that

J̃ = Jeven,2(Γ2) by the injectivity of the mapping; and by the dimension formu-

las for Ak(Γ2) and Ak,2(Γ) given below, we see that φ4,1, φ6,1, χ10,1, χ12,1 are

free generators over Aeven(Γ2). When k is odd, we denote by χk,1(τ, z) a Jacobi

form of index 1 of weight k = 21, 27, or 29 whose image in Ak(Γ2) × S0
k,2(Γ2)

is (0, fk) where fk ∈ S0
k,2(Γ2) is a non-zero vector valued Siegel modular form.

We denote by χ35,1 the Jacobi form of weight 35 of index 1 whose image in

A35(Γ2) × A35,2(Γ2) is (χ35, 0). Then obviously χ21,1, χ27,1, χ29,1, χ35,1 are free

generators of the Aeven(Γ2)-module Jodd,2(Γ2) by the structure theorem in [10]

or [12].

We note that the above arguments also give a way to construct generators of

Jacobi forms of index one explicitly by giving the coefficients cν(τ) of the theta

expansions, since Ak(Γ2), Ak,2(Γ2) are known explicitly from [15], [19] and [10],

[12]. For the convenience of the readers, we give here the generating functions

of related dimensions. The first one is due to Igusa and the others are due to
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Tsushima (cf. [15], [20]–[22]). We have

∞∑
k=0

dimAk(Γ2) tk =
1 + t35

(1− t4)(1− t6)(1− t10)(1− t12)
,

∞∑
k=0

dimAk,2(Γ2) tk =
t10 + t14 + 2t16 + t18 − t20 − t26 − t28 + t32

(1− t4)(1− t6)(1− t10)(1− t12)

+
t21 + t23 + t27 + t29 − t33

(1− t4)(1− t6)(1− t10)(1− t12)
,

∞∑
k=1

dim Jk,1(ΓJ2 ) tk =
(t4 + t6 + t10 + t12) + (t21 + t27 + t29 + t35)

(1− t4)(1− t6)(1− t10)(1− t12)
.

We also have

∞∑
k=0, k odd

dimS0
k,2(Γ2) tk =

t21 + t27 + t29

(1− t4)(1− t6)(1− t10)(1− t12)
.

This is obtained by an explicit description of
⊕∞

k=0, k odd S
0
k,2(Γ2) (cf. [12]).

Since J0,1(ΓJ2 ) = 0, when we compare the dimensions of the Jacobi forms and

Siegel modular forms, we should take the sum only over k > 0. We have

∞∑
k>0, k even

(dimAk(Γ2) + dimAk,2(Γ2))tk =
t4 + t6 + t10 + t12

(1− t4)(1− t6)(1− t10)(1− t12)
,

∞∑
k=1, k odd

(dimSk(Γ2) + dimS0
k,2(Γ2))tk =

t21 + t27 + t29 + t35

(1− t4)(1− t6)(1− t10)(1− t12)
,

and the sum of these gives dim Jk,1(ΓJ2 ) as in Theorem 5.1.

§6. Explicit structures of index two

When n = m = 2, the situation is much more complicated. We assume throughout

this section that the weight is even. We put

Jcusp
even,2(ΓJ2 ) =

∞⊕
k>0, k even

Jcusp
k,2 (ΓJ2 ).

In this section we give an explicit structure of Jeven,2(ΓJ2 ) and Jcusp
even (ΓJ2 ) as an

Aeven(Γ2)-module.

Theorem 6.1. The module Jeven,2(ΓJ2 ) is a free Aeven(Γ2)-module spanned by ten

Jacobi forms of respective weights 4, 6, 8, 8, 10, 10, 12, 12, 14, 16.
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As a corollary, the dimension of Jk,2(ΓJ2 ) for even k is given by the generating

function

∞∑
k>0, k even

dim Jk,2(ΓJ2 ) tk =
t4 + t6 + 2t8 + 2t10 + 2t12 + t14 + t16

(1− t4)(1− t6)(1− t10)(1− t12)
.

The formula for dim Jcusp
k,m (ΓJ2 ) with k ≥ 4 or dim Jk,m(ΓJ2 ) with k ≥ 6 for any

m ≥ 0 has been known to Tsushima, but we need a special care for small k, which

will be explained later.

Now we give a proof of this theorem based on a comparison between the

Taylor expansion and the theta expansion. For any natural number l, we denote

by J
(l)
k,2(ΓJ2 ) the space of Jacobi forms in Jk,2(ΓJ2 ) such that the coefficients of the

Taylor expansion vanish up to the total degree l:

J
(l)
k,2(ΓJ2 ) = {F ∈ Jk,2(ΓJ2 ); ∂i1∂

j
2F |z1=z2=0 = 0 for any i+ j ≤ l}.

First of all, we will determine the structure of J
(4)
k,2(ΓJ2 ). We start from a concrete

description of the theta expansion. When n = m = 2, there are 16 theta functions

ϑν,2(τ, z). But since all the Jacobi forms in Jk,m(ΓJ2 ) are even functions of z (i.e.

invariant under z 7→ −z) when n = 2, we should take only even functions of z in

the basis of theta expansion. So when m = 2, we put

t1(τ, z) = ϑ00,2(τ, z),

t2(τ, z) = ϑ02,2(τ, z),

t3(τ, z) = ϑ20,2(τ, z),

t4(τ, z) = ϑ22,2(τ, z),

t5(τ, z) = ϑ01,2(τ, z) + ϑ03,2(τ, z),

t6(τ, z) = ϑ21,2(τ, z) + ϑ23,2(τ, z),

t7(τ, z) = ϑ10,2(τ, z) + ϑ30,2(τ, z),

t8(τ, z) = ϑ12,2(τ, z) + ϑ32,2(τ, z),

t9(τ, z) = ϑ11,2(τ, z) + ϑ33,2(τ, z) + ϑ13,2(τ, z) + ϑ31,2(τ, z),

t10(τ, z) = ϑ11,2(τ, z) + ϑ33,2(τ, z)− ϑ13,2(τ, z)− ϑ31,2(τ, z).

Then for all i with 1 ≤ i ≤ 10, we have ti(τ,−z) = ti(τ, z) and F (τ, z) ∈ Jk,2(ΓJ2 ) is

a linear combination of these ten theta functions over functions on H2. Moreover,

ti

((
τ1 −z0
−z0 τ2

)
,

(
z1
−z2

))
= εiti(τ, z)
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where εi = 1 for 1 ≤ i ≤ 9 and −1 for i = 10. Now for any nine holomorphic

functions Fi of H2 with 1 ≤ i ≤ 9, we define {F1, . . . , F9}13 to be the determinant

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

F1 F2 · · · F9

∂11F1 ∂11F2 · · · ∂11F9

∂12F1 ∂12F2 · · · ∂12F9

∂22F1 ∂22F2 · · · ∂22F9

∂211F1 ∂211F2 · · · ∂211F9

∂11∂12F1 ∂11∂12F2 · · · ∂11∂12F9

(∂11∂22 + 2∂212)F1 (∂11∂22 + 2∂212)F2 · · · (∂11∂22 + 2∂212)F9

∂22∂12F1 ∂22∂12F2 · · · ∂22∂12F9

∂222F1 ∂222F2 · · · ∂222F9

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Then

{F1|1/2[g], . . . , F9|1/2[g]}13 = {F1, . . . , F9}13|9/2+13[g]

for any g ∈ Sp(2,R). This is an easy corollary of Theorem 2 in [9]. For any function

F (τ, z) on H2 × C2, g ∈ Sp(2,R) and any integer m ≥ 0, we define

F |1/2,m[g] = det(cτ + d)−1/2em(− tz(cτ + d)−1cz)F (gτ, t(cτ + d)−1z).

Using (4.3), we can show that

(6.1) (t1(τ, z)|1/2,2[J2], . . . , t10(τ, z)|1/2,2[J2]) = (t1(τ, z), . . . , t10(τ, z))A2

where

A2 = 4−1κ(J2)



1 1 1 1 2 2 2 2 4 0

1 1 1 1 −2 −2 2 2 −4 0

1 1 1 1 2 2 −2 −2 −4 0

1 1 1 1 −2 −2 −2 −2 4 0

1 −1 1 −1 0 0 2 −2 0 0

1 −1 1 −1 0 0 −2 2 0 0

1 1 −1 −1 2 −2 0 0 0 0

1 1 −1 −1 −2 2 0 0 0 0

1 −1 −1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −4


.

Since κ(J2)10 = −1, we have det(A2) = 1.



Taylor Expansions of Jacobi Forms 599

We define a 9× 10 matrix B(τ) of functions on H2 by

B(τ) =



t1(τ, 0) · · · t10(τ, 0)

∂21t1(τ, z)|z=0 · · · ∂21t10(τ, z)|z=0

∂1∂2t1(τ, z)|z=0 · · · ∂1∂2t10(τ, z)|z=0

∂22t1(τ, z)|z=0 · · · ∂22t10(τ, z)|z=0

∂41t1(τ, z)|z=0 · · · ∂41t10(τ, z)|z=0

∂31∂2t1(τ, z)|z=0 · · · ∂31∂2t10(τ, z)|z=0

∂21∂
2
2t1(τ, z)|z=0 · · · ∂21∂

2
2t10(τ, z)|z=0

∂1∂
3
2t1(τ, z)|z=0 · · · ∂1∂

3
2t(τ, z)|z=0

∂42t1(τ, z)|z=0 · · · ∂42t10(τ, z)|z=0



.

By the heat equation, when a+ b is even, we have

∂a1∂
b
2ti = 8(a+b)/2∂

(a−c)/2
11 ∂

(b−c)/2
22 ∂c12ti

for any c ≤ min(a, b) with c ≡ a ≡ b mod 2 and any 1 ≤ i ≤ 10. So if we write

ti(τ) = ti(τ, 0), any 9 × 9 minor of B(τ) excluding the i-th column is, up to a

common constant, equal to t̃i(τ) := {t1(τ), . . . , ti−1(τ), ti+1(τ), . . . , t10(τ)}13. We

define a 10×10 matrix B̃(τ, z) so that the first row is (t1(τ, z), . . . , t10(τ, z)) and the

remaining nine rows are given by B(τ). We define F18(τ, z) to be the determinant

of B̃(τ, z).

Lemma 6.2. We have F18(τ, z) ∈ Jk,2(ΓJ2 ).

Proof. As already explained, we have

F18(τ, z) = c

10∑
i=1

(−1)i+1ti(τ, z)t̃i(τ)

for some non-zero constant c, so

F18(τ, z)|18,2[J2] = c

10∑
i=1

(−1)i+1(ti(τ, z)|1/2,2[J2])× (t̃i(τ)|13+9/2[J2])

= c

10∑
i=1

(−1)i+1(ti(τ, z)|1/2,2[J2])× t̃i,J2(τ),

where we put

t̃i,J2(τ) = {t1(τ)|1/2[J2], . . . , ti−1(τ)|1/2[J2], ti+1(τ)|1/2[J2], . . . , t10(τ)|1/2[J2]}13.
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Hence by taking ∂i1∂
j
2 of both sides of (6.1) for various i and j and restricting to

z = 0, we see that

F18(τ, z)|18,2[J2] = det(A2)F18(τ, z) = F18(τ, z).

As for t(U) with U ∈ GL2(Z), the action gives a permutation on ϑν,2 up to sign

and using the same argument as above, we can show that F18(τ, z) is invariant

under this action. In the same way we can show that u(S) acts trivially.

Since the 10 × 10 matrix defining F18(τ, z) contains z only in the first row,

∂i1∂
j
2F18(τ, z)|z=0 for any i, j with i+ j ≤ 4 is the determinant of a matrix whose

first row is zero or which has two identical rows. So it vanishes, i.e.

∂i1∂
j
2F (τ, z)|z=0 = 0

for all i+ j ≤ 4. In other words, the Taylor coefficients of F18,2(τ, z) vanish up to

degree 4.

Theorem 6.3. (1) F18(τ, z) is not identically zero and belongs to J
(4)
18,2(ΓJ2 ).

(2) F18(τ, z) is divisible by χ10(τ) = χ5(τ)2 ∈ S10(Γ2).

(3) If we put F8(τ, z) = F18(τ, z)/χ10(τ), then F8(τ, z) ∈ Jcusp
8,2 (ΓJ2 ).

(4) When k is even, we have J
(4)
k,2(ΓJ2 ) = F8(τ, z)Ak−8(Γ2). All such Jacobi forms

are Jacobi cusp forms. In particular, J
(4)
8,2 (ΓJ2 ) = CF8(τ, z) and J

(4)
k,2(ΓJ2 ) = 0

for k < 8.

Proof. To prove non-vanishing of F18(τ, z), it is sufficient to show that the coeffi-

cient of t10(τ, z), which is a non-zero constant multiple of {t1(τ), . . . , t9(τ)}13, does

not vanish, and this is not difficult to show. But here we shall show instead that

the Taylor coefficient of F18(τ, z) at z31z
3
2 does not vanish, since we need this later.

We define ∂i and ∂ij as before. By the heat equation we see that for any fixed a, b

with a+b even and 1 ≤ l ≤ 10, the functions ∂
(a−c)/2
11 ∂

(b−c)/2
22 ∂c12tl(τ) are the same

for any non-negative integer c with c ≤ min(a, b) such that a ≡ b ≡ c mod 2. For

l = 1, . . . , 9, we write

tl(τ) = tl(τ, 0) = fl(τ1, τ2) + z20gl(τ1, τ2) +O(z40),

where τ =
(
τ1 z0
z0 τ2

)
. Since ∂212tl = ∂11∂22tl, we have

gl(τ1, τ2) =
(4πi)2

2
∂11∂22fl(τ1, τ2),
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so

∂12tl(τ) = (4πi)z0∂11∂22fl(τ1, τ2) +O(z30),

∂212tl(τ) = ∂11∂22fl(τ1, τ2) +O(z20).

We also have

∂12t10(τ) =
1

2
η(τ1)3η(τ2)3 +O(z20),

where η(τ) is the Dedekind eta function. This is because

η(τ)3 =
∑
p∈Z

((
2p+

1

2

)
e

(
2

(
p+

1

4

)2

τ

)
−
(

2p+
3

2

)
e

(
2

(
p+

3

4

)2

τ

))
by the classical results. We put t(τ) = (t1(τ), . . . , t10(τ)) and v = v(τ1, τ2) =

(f1(τ1, τ2), . . . , f9(τ1, τ2)). Now the Taylor coefficient of F18(τ, z) at z31z
3
2 is up to a

non-zero constant equal to ∂31∂
3
2 det(B̃(τ, z))|z=0, i.e. the determinant of the 10×10

matrix given by
( ∂3

1∂
3
2 t(τ)

B(τ)

)
. By the relations we gave above, we have



∂11∂22∂12t(τ)

t(τ)

∂11t(τ)

∂12t(τ)− (4πi)z0∂
2
12t(τ)

∂22t(τ)

∂211t(τ)

∂11∂12t(τ)

∂11∂22t(τ)

∂22∂12t(τ)

∂222t(τ)



=



(4πi)z0∂
2
11∂

2
22v ∂11∂22η(τ1)3η(τ2)3/2

v +O(z20) (2πi)z0η(τ1)3η(τ2)3 +O(z30)

∂11v +O(z20) (2πi)z0η(τ1)3η(τ2)3 +O(z30)

O(z30) η(τ1)3η(τ2)3/2 +O(z20)

∂22v +O(z20) (2πi)z0η(τ1)3η(τ2)3 +O(z30)

∂211v +O(z20) (2πi)z0η(τ1)3η(τ2)3 +O(z30)

(4πi)z0∂
2
11∂22v +O(z30) ∂211∂22η(τ1)3η(τ2)3/2

∂11∂22v +O(z20) (2πi)z0η(τ1)3η(τ2)3 +O(z30)

(4πi)z0∂11∂
2
22v +O(z30) ∂11∂

2
22η(τ1)3η(τ2)3/2

∂222v +O(z20) (2πi)z0η(τ1)3η(τ2)3 +O(z30)


.

We expand the determinant of this matrix along the last column. We see that the

1st, 7-th and 9-th rows are divisible by z0 except for the 10-th component, and the
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4-th row is divisible by z30 except for the last component. From this we see that

the cofactor at (i, 10) for i 6= 4 is O(z40), so calculating the (4, 10) cofactor which

is apparently O(z30), we see that the determinant of the above matrix is equal to

2−1(4πi)3η(τ1)3η(τ2)3z30 × det



∂211∂
2
22v

∂11v

∂22v

∂211v

∂211∂22v

∂11∂22v

∂11∂
2
22v

∂222v


+O(z40).

We show that this is not zero by showing that the determinant part of the above

expression, which is independent of z0, is non-zero. We have

t1(τ, 0)|z0=0 = ϑ0,2(τ1)ϑ0,2(τ2),

t2(τ, 0)|z0=0 = ϑ0,2(τ1)ϑ2,2(τ2),

t3(τ, 0)|z0=0 = ϑ2,2(τ1)ϑ0,2(τ2),

t4(τ, 0)|z0=0 = ϑ2,2(τ1)ϑ2,2(τ2),

t5(τ, 0)|z0=0 = ϑ0,2(τ1)(ϑ1,2(τ2) + ϑ3,2(τ2)),

t6(τ, 0)|z0=0 = ϑ2,2(τ1)(ϑ1,2(τ2) + ϑ1,3(τ2)),

t7(τ, 0)|z0=0 = (ϑ1,2(τ1) + ϑ3,2(τ1)ϑ0,2(τ1),

t8(τ, 0)|z0=0 = (ϑ1,2(τ1) + ϑ3,2(τ1))ϑ2,2(τ1),

t9(τ, 0)|z0=0 = (ϑ1,2(τ1) + ϑ3,2(τ1))(ϑ1,2(τ2) + ϑ3,2(τ2)).

So if we put

C(τi) =

 ϑ0,2(τi) ϑ2,2(τi) ϑ1,2(τi) + ϑ3,2(τi)

∂iiϑ0,2(τi) ∂iiϑ2,2(τi) ∂ii(ϑ1,2(τi) + ϑ3,2(τi))

∂2iiϑ0,2(τi) ∂2iiϑ2,2(τi) ∂2ii(ϑ1,2(τi) + ϑ3,2(τi))

 ,

then we easily see that, up to a non-zero constant, ∂31∂
3
2F18(τ, z)|z=0 is equal to

η(τ1)3η(τ2)3 × z30 det(C(τ1)⊗ C(τ2)) +O(z40). Since det(C(τi)) is equal to η(τi)
15

up to a non-zero constant (cf. e.g. Kramer [17]), the function ∂31∂
3
2F18(τ, z)|z=0 is

equal to z30∆(τ1)2∆(τ2)2 + O(z40) up to a non-zero constant. So this is not zero

and we see that the coefficient of (z1z2)3 in F18(τ, z) is non-zero.

To show that F18(τ, z) is divisible by χ10, we show that the coefficients c18,l(τ)

(1 ≤ l ≤ 10) of the theta expansion of F18(τ, z) are divisible by χ10. By definition of

F18(τ, z), each c18,l(τ) is a 9×9 minor of B(τ). Expanding minors of B(τ) at z0 = 0
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in the same way as above, we see that c18,10(τ) is divisible by z50 and c18,l(τ) with

1 ≤ l ≤ 9 is divisible by z20 . So c18,l(τ)/χ10(τ) and F18(τ, z) are holomorphic for any

τ in the fundamental domain of Γ2. Since F18(τ, z) ∈ Jk,2(ΓJ2 ), F18(τ, z)/χ10(τ) is

holomorphic on the whole H2 × C2.

If we denote by c8,l(τ) the coefficient in tl(τ, z) of the theta expansion of

F8(τ, z), then the vector c8(τ) = (c8,l(τ))1≤l≤10 is a solution of the simultaneous

equation B(τ)c8(τ) = 0. Since the first 9× 9 minor of B(τ) is z0η(τ1)15η(τ2)15 up

to a non-zero constant, the rank of B(τ) is 9 as a matrix of meromorphic functions.

Hence any such solution is (a(τ)c8,l(τ))1≤l≤10 for some meromorphic function a(τ)

on H2. So if F (τ, z) ∈ J (4)
k,2(ΓJ2 ), then F (τ, z) = a(τ)F8(τ, z) for some meromorphic

function a(τ). Now we must show that a(τ) is holomorphic. This is not trivial at

all, since if we take F18(τ, z) instead for example, then even if we multiply by 1/χ10

which is not holomorphic, we get a holomorphic Jacobi form F8(τ, z). Now denote

by f8,3(τ, z) the term of total degree six of the Taylor expansion of F8(τ, z). It is

non-zero. This obviously comes from the corresponding fact for F18(τ, z) that we

have shown above. Since the Taylor coefficients of total degree 0, 1, 2 of F8(τ, z) are

zero for the same reason, we have f8,3(τ, z) ∈ A8,6(Γ2). Now we need the following

theorem.

Theorem 6.4 ([11], [12]). The module
⊕

k evenAk,6(Γ2) is a free Aeven(Γ2)-mod-

ule spanned by seven Siegel modular forms in A6,6(Γ2), A8,6(Γ2), A10,6(Γ2),

A12,6(Γ2), A14,6(Γ2), A16,6(Γ2), or A18,6(Γ2).

Since dimA8,6(Γ2) = 1, Theorem 6.4 means that f8,3(τ, u) is one of the free

generators of
⊕

k evenAk,6(Γ2). Denote by g(τ, z) the degree 6 part of the Taylor

expansion of F (τ, z) = a(τ)F8(τ, z) ∈ J (4)
k,2(ΓJ2 ). Then g(τ, u) = a(τ)f8,3(τ, u) and

f8,3(τ, u) is one of the free generators in Theorem 6.4, so a(τ) must be holomorphic.

This means that a(τ) ∈ Ak−8(Γ2) and J
(4)
k,2(ΓJ2 ) = F8(τ, z)Ak−8(Γ2).

Now assume that 0 6= F (τ, z) ∈ Jcusp
8,2 (ΓJ2 ). By the dimension formulas of

Igusa [15] and Tsushima [20]–[22], we know that dim Jcusp
8,2 (ΓJ2 ) = 1, dimS8(Γ2) =

dimA8,2(Γ2) = dimS8,4(Γ2) = 0. Since the image of the mapping from Jcusp
k,2 (ΓJ2 )

to Ak(Γ2) × Ak,2(Γ2) × Ak,4(Γ2) must be cusp forms, the Taylor coefficients of

degree 0, 2, 4 of F (τ, z) should be zero. So F ∈ J (4)
k,2(ΓJ2 ) and hence F is a constant

multiple of F8. So F8 is a Jacobi cusp form. Thus we have proved Theorem 6.3.

Now we prove Theorem 6.1. This is based on the following theorem.

Theorem 6.5. (1) For any even k > 0, the mapping from Jcusp
k,2 (ΓJ2 ) to Sk(Γ2)×

Sk,2(Γ2)× Sk,4(Γ2) induced by Theorem 3.1 is surjective.

(2) For any even k > 0, the mapping from Jk,2(ΓJ2 ) to Ak(Γ2)×Ak,2(Γ2)×Ak,4(Γ2)

is surjective.
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Proof. In both (1) and (2), the kernel of the mapping is F8(τ, z)Ak−8(Γ2). We

know all the dimensions in (1), so (1) is reduced to a comparison of dimensions

found by Igusa and Tsushima. Indeed we have∑
k>0, k even

dimAk(Γ2) tk =
1

(1− t4)(1− t6)(1− t10)(1− t12)
− 1

=
t4 + t6 + t12 − t14 − 2t16 − t18 + t20 + t26 + t28 − t32

(1− t4)(1− t6)(1− t10)(1− t12)
,

∑
k even

dimSk,2(Γ2) tk =
t14 + 2t16 + t18 + t22 − t26 − t28

(1− t4)(1− t6)(1− t10)(1− t12)
,

∑
k even

dimSk,4(Γ2) tk =
t10 + t12 + t14 + t16 + t18 + t20 − t30

(1− t4)(1− t6)(1− t10)(1− t12)
,

∑
k even≥8

dimAk−8(Γ2) tk =
t8

(1− t4)(1− t6)(1− t10)(1− t12)
,

∑
k even>0

dim Jcusp
k,2 (ΓJ2 ) tk

=
t8 + 2t10 + 2t12 + 2t14 + 3t16 + 2t18 + t20 − t26 − t28 − t30

(1− t4)(1− t6)(1− t10)(1− t12)
,

so for even k > 0, we have

dim Jcusp
k,2 (Γ2) = dimSk(Γ2) + dimSk,2(Γ2) + dimSk,4(Γ2) + dimAk−8(Γ2).

Since dim J
(4)
k,2(Γ2) = Ak−8(Γ2), this means the surjectivity of (1). Next we prove

(2). By [4], for k ≥ 6 we have dimJk,2(Γ2) = dimJcusp
k,2 (ΓJ2 ) + dim Jk,2(ΓJ1 ) and

∞∑
k=1

dim Jk,2(ΓJ1 ) tk =
t4 + t6 + t8 + t11

(1− t4)(1− t6)
,

∑
k even

dimAk,4(Γ2) tk =
t8 + t10 + t12 + t14 + t16

(1− t4)(1− t6)(1− t10)(1− t12)
.

So we can calculate dimJk,2(ΓJ2 ) and for even k ≥ 6 we can show that

dim Jk,2(Γ2) = dimAk(Γ2) + dimAk,2(Γ2) + dimAk,4(Γ2) + dimAk−8(Γ2).

Since the kernel of the mapping from Jk,2(ΓJ2 ) to Ak(Γ2)×Ak,2(Γ2)×Ak,4(Γ2) is

again J
(4)
k,2(Γ2), the above relation means the surjectivity for k ≥ 6 again in this

case. When k = 2 or k = 4, since J
(4)
k,2(ΓJ2 ) = 0, the above mapping is injective.

Since we know that A2,j(Γ2) = 0 for j = 0, 2, 4 and dimA4(Γ2) = 1, A4,2(Γ2) =
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A4,4(Γ2) = 0, we have dim J2,2(ΓJ2 ) = 0 and dim J4,2(ΓJ2 ) ≤ 1. If we take the theta

function E
(3)
4 of degree 3 associated with the unique even unimodular lattice of

rank 8, then E
(3)
4

(
τ 0
0 τ33

)
= φ4(τ)e4(τ33) where τ ∈ H2, τ33 ∈ H1, and e4(τ33)

is the Eisenstein series of weight k of degree one. Take the second Fourier–Jacobi

coefficient F4(τ, z) of E
(3)
4 with respect to τ33. Then since e4(τ33) = 1+240(e(τ33)+

9e(2τ33) + · · · ), we have F4(τ, 0) = 240 · 9φ4(τ) and this gives a non-zero Jacobi

form in J4,2(ΓJ2 ). So we have proved claim (2) of Theorem 6.5.

In order to prove Theorem 6.1, we give generators of Jeven,2(ΓJ2 ) as an

Aeven(Γ2)-module. In the explanation below, we also give an alternative proof

of claim (2) of Theorem 6.5, assuming (1) but without using the dimension for-

mula for Jk,2(ΓJ2 ), since this will make the situation clearer. First we show that

the mapping from F (τ, z) ∈ Jk,2(ΓJ2 ) to ξk,0(τ) = F (τ, 0) ∈ Ak(Γ2) is surjective. It

is enough to give Jacobi forms F (τ, z) of index 2 such that F (τ, 0) is φ4, φ6, χ10,

or χ12. For k = 10, 12, there exist Jacobi cusp forms χk,2(τ, z) ∈ Jk,2(ΓJ2 ) such

that χ10,2(τ, 0) = χ10(τ) and χ12,2(τ, 0) = χ12(τ) by claim (1). For later use, we

take χk,2(τ, 2) so that the image in Ak(Γ2)×Ak,2(Γ2)×Ak,4(Γ2) is (χk,2(τ, 0), 0, 0)

for k = 10, 12. We can do so by claim (1). The case of φ4 has already been ex-

plained above. When k = 6, we take the Eisenstein series E
(3)
6 of degree 3 of

weight 6 and F6,2(τ, z) can be defined by the second Fourier–Jacobi coefficient

of E
(3)
6 . The non-vanishing of F6,2 can be proved in the same way and we have

F6(τ, 0) = −540·33φ6(τ). We write φ4,2 = F4,2/(240·9) and φ6,2 = F6,2/(−540·33),

so φk,2(τ, 0) = φk for k = 4, 6. So we have proved the mapping from Jk,2(Γ2) to

Ak(Γ2) is surjective. Since Ak,2(Γ2) = Ak,4(Γ2) = {0} for k = 2, 4, the image of

φk,2(τ, z) in Ak(Γ2) × Ak,2(Γ2) × Ak,4(Γ2) for k = 4 or 6 is (φk, 0, 0). Now we

write

J̃2 = Aeven(Γ2)φ4,2(τ, z) +Aeven(Γ2)φ6,2(τ, z) +Aeven(Γ2)χ10,2 +Aeven(Γ2)χ12,2.

Next we show that J̃2 is surjectively mapped onto Ak(Γ2) × Ak,2(Γ2) by

(ξk,0(τ), ξk,2(τ, z)). Indeed we can prove this in almost the same way as in the

proof of Theorem 5.1(4). For F (τ, z) ∈ Jk,2(ΓJ2 ), write F (τ) = F (τ, 0) and assume

that ξk,2(τ, u) = 0 for this F . Then we have

F (τ, z) = F (τ) +
4πi

k

(
∂F (τ)

∂τ1
z21 +

∂F (τ)

∂z0
z1z2 +

∂F (τ)

∂τ2
z22

)
+ · · · .

We take another G(τ, z) ∈ Jl,2(ΓJ2 ) such that the image in Ak(Γ2) × Ak,2(Γ2)

is (G(τ), 0), where we put G(τ) = G(τ, 0). If we define the Rankin–Cohen type

bracket {F (τ), G(τ)}Sym(2) as before, we can show as in the proof of Theorem 5.1
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that the Aeven(Γ2)-module spanned by

φ4(τ)φ6,2(τ, z)− φ6(τ)φ4,2(τ, z), φ4(τ)χ10,2(τ, z)− χ10(τ)φ4,2(τ, z),

φ4(τ)χ12,2(τ, z)− χ12(τ)φ4,2(τ, z), φ6(τ)χ10,2(τ, z)− χ10(τ)φ6,2(τ, z),

φ6(τ)χ12,2(τ, z)− χ12(τ)φ6,2(τ, z), φ10(τ)χ12,2(τ, z)− χ12(τ)χ10,2(τ, z),

is mapped surjectively onto

{0} ×
(⊕
k even

Ak,2(Γ2)
)
⊂ Aeven(Γ2)×

(⊕
k even

Ak,2(Γ2)
)
.

Finally we show that the map is surjective onto {0} × {0} ×Ak,4(Γ2) ⊂ Ak(Γ2)×
Ak,2(Γ2)×Ak,4(Γ2). By Theorem 6.5(1), we already know that the image contains

Sk,4(Γ2). We have dimA8,4(Γ2) = 1 and dimS8,4(Γ2) = 0. So we first construct a

non-zero Jacobi form G8(τ, z) ∈ J8,2(ΓJ2 ) whose image in A8(Γ2)×A8,2(Γ2) is zero

and non-zero in A8,4(Γ2). By Theorem 5.1, we have a unique Jacobi form φ4,1 ∈
J4,1(ΓJ2 ) such that φ4,1(τ, 0) = φ4. We put G8(τ, z) = φ4(τ)φ4,2(τ, z)− φ4,1(τ, z)2.

Then obviously G8(τ, z) ∈ J8,2(ΓJ2 ). Since G8(τ, 0) = φ4(τ)2 − φ4(τ)2 = 0 and

A8,2(Γ2) = 0, the Taylor coefficients of G8(τ, z) up to degree 2 are zero. We

consider the Taylor coefficient of degree 4. Since A4,2(Γ2) = A4,4(Γ2) = 0, we have

ξ4,2(τ, u) = ξ4,4(τ, u) = 0 for φ4,1(τ, z) and φ4,2(τ, z), and the Taylor coefficients

of these forms are determined by φ4 up to degree 4 as follows:

φ4,1(τ, z) = φ4(τ) +
2πi

4
D2(φ4)(τ, z) +

(2πi)2

40
(D2

2φ4)(τ, z) + · · · ,

φ4,2(τ, z) = φ4(τ) +
4πi

4
(D2φ4)(τ, z) +

(2πi)2

10
(D2

2φ4)(τ, z) + · · · .

Here D2 is defined as in (3.1). So we have

φ4(τ)φ4,2(τ, z)− φ4,1(τ, z)2

=
(2πi)2

80

(
4φ4(τ)(D2

2φ4)(τ, u)|u=z − 5((D2φ4)(τ, u)|u=z)2
)

+O(z6).

We can show that 4φ4D2
2φ − 4(D2φ4)2 6= 0 in many ways. For example if we

apply the Φ-operator to the coefficient of z41 , then up to a constant we obtain

4e4(τ1)e′′4(τ1)− 5(e′4(τ))2 = ∆(τ1), which is non-zero. Hence the image of G8(τ, z)

in A8,4(Γ2) is non-zero. Now we use the following theorem of [11], [12].

Theorem 6.6. The module
⊕

k evenAk,4(Γ2) is a free Aeven(Γ2)-module spanned

by certain five forms belonging respectively to A8,4(Γ2), S10,4(Γ2), S12,4(Γ2),

S14,4(Γ2) and S16,4(Γ2).
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By Theorem 6.5(1), for each k = 10, 12, 14, 16, there exists a Jacobi cusp

form χk,2b(τ, z) whose image in Ak(Γ2) × Ak,2(Γ2) × Ak,4(Γ2) is (0, 0, Fk) where

Fk is the generator in Sk,4(Γ2) of Theorem 6.6. If we take linear combinations

over Aeven(Γ2) of these forms together with G8(τ, z), for each k we obtain the

space of Jacobi forms whose image in Ak(Γ2) × Ak,2(Γ2) × Ak,4(Γ2) is equal to

{0} × {0} × Ak,4(Γ2). So we have proved that for any even k > 0, the mapping

from Jk,2(Γ2) to Ak(Γ2)×Ak,2(Γ2)×Ak,4(Γ2) is surjective.

Proof of Theorem 6.1. Now we see that the Jacobi forms F8,2(τ, z), φ4,2, φ6,2,

χ10,2, χ12,2, G8,2(τ, z), χ10,2b, χ12,2b, χ14,2b, χ16,2b are free generators of Jeven,2(ΓJ2 )

over Aeven(Γ2). Indeed if we denote by J the module of Jacobi forms gener-

ated by these ten Jacobi forms over Aeven(Γ2), then by the above argument,

we see that J is mapped surjectively onto Ak(Γ2) × Ak,2(Γ2) × Ak,4(Γ2) by

(ξk,0(τ), ξk,2(τ, z), ξk,4(τ, z)). We have already proved that the kernel of this map-

ping is F8,2(τ, z)Ak−8(Γ2) in Theorem 6.3. Therefore in order that the dimension

dim(J ∩ Jk,2(ΓJ2 )) attains the value dimAk(Γ2) + dimAk,2(Γ2) + dimAk,4(Γ2) +

dimAk−8(Γ2) for every even k, these ten Jacobi forms should be free over

Aeven(Γ2). So we have proved Theorem 6.1 completely.

Remark 6.7. We give a remark on higher indices. For index 3 and even k, we

have the following relations between dimensions:

dim Jcusp
k,3 (ΓJ2 ) = dimSk(Γ2) + dimSk,2(Γ2) + dimSk,4(Γ2) + dimSk,6(Γ2)

+ dimAk−12(Γ2) + dimAk−14(Γ2) + dimAk−18(Γ2) + dimAk−20(Γ2),

dim Jk,3(ΓJ2 ) = dimAk(Γ2) + dimAk,2(Γ2) + dimAk,4(Γ2) + dimAk,6(Γ2)

+ dimAk−12(Γ2) + dimAk−14(Γ2) + dimAk−18(Γ2) + dimAk−20(Γ2).

So it is plausible that
⊕

k even J
(6)
k,3(ΓJ2 ) is a free module generated by four Jacobi

cusp forms of weights 12, 14, 18, 20 over Aeven(Γ2) and the map from Jk,3(ΓJ2 ) to

Ak(Γ2)×Ak,2(Γ2)×Ak,4(Γ2)×Ak,6(Γ2) given by (ξk,0, ξk,2, ξk,4, ξk,6) is surjective.

When the index is higher than 3, it seems that the situation is more complicated.

§7. Image of the Witt operator

For any function G(τ) of H2, we often use the restriction of G to the diagonals

defined by

WG(τ1, τ2) = G

(
τ1 0

0 τ2

)
.
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This operator W is usually called the Witt operator. In the same way, for any

F (τ, z) ∈ Jk,1(ΓJ2 ), we define a holomorphic function on (H1 × C)2 by

(WF )(τ1, z1, τ2, z2) = F

((
τ1 0

0 τ2

)
,

(
z1
z2

))
.

By abuse of language, we call this operator on Jacobi forms also the Witt operator.

By the automorphy of F with respect to the elements
a1 0 b1 0

0 a2 0 b2
c1 0 d1 0

0 c2 0 d2

 ∈ Γ2

where aidi − cidi = 1 for i = 1, 2 and the Heisenberg part H(Z), we see that WF

is a Jacobi form with respect to each variable (τ1, z1) or (τ2, z2) for each fixed

(τ2, z2) or (τ1, z1). If k is odd, then it is known that Jk,1(ΓJ1 ) = 0, so we have

W (Jk,1(ΓJ2 )) = 0. When k is even, by the action of
0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 ∈ Γ2

on F (τ, z) ∈ Jk,1(ΓJ2 ), we see that (WF )(τ1, z1, τ2, z2) is invariant under the ex-

change of variables (τ1, z1) and (τ2, z2). It follows that WF is in the symmetric

tensors Sym2(Jk,1(ΓJ1 )) of the second degree, i.e.

WF =
∑
i,j

(
fi(τ1, z1)gj(τ2, z2) + gj(τ1, z1)fi(τ2, z2)

)
for some fi, gj ∈ Jk,1(ΓJ1 ). B. Heim asked the author if this map is surjective. We

show that the answer is affirmative below.

Theorem 7.1. The Witt operator on Jk,1(ΓJ2 ) is surjective onto Sym2(Jk,1(ΓJ1 )).

Proof. When k is odd, this is trivial since the target of the mapping is zero. So

we assume that k is even. The Witt operator is surjective if dim kerW |Jk,1(ΓJ2 ) =

dim Jk,1(ΓJ2 )− dim Sym2(Jk,1(ΓJ1 )). For even k > 0 by [5] we have

dim Jk,1(ΓJ1 ) = dimAk(Γ1) + dimSk+2(Γ1) =


k/6 if k ≡ 0 mod 6,

(k − 2)/6 if k ≡ 2 mod 6,

(k + 2)/6 if k ≡ 4 mod 6.
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So we have∑
k even

dim Sym2(Jk,1(ΓJ1 )) tk

=
1

2

( ∞∑
m=1

m(m+ 1)t6m +

∞∑
m=0

m(m+ 1)t6m+2 +

∞∑
m=0

(m+ 1)(m+ 2)t6m+4
)

=
t6

(1− t6)3
+

t8

(1− t6)3
+

t10

(1− t6)3
+

t4

(1− t6)2

=
t4

(1− t2)(1− t6)2
=

t4 + t6 + t10 + t12

(1− t4)(1− t6)(1− t12)
,

so by using the formula for dim Jk,1(ΓJ2 ), it is enough to show that

∞∑
k=1, k even

dim(ker(W |Jk,1(ΓJ2 ))) tk =
t10(t4 + t6 + t10 + t12)

(1− t4)(1− t6)(1− t10)(1− t12)
.

Now assume that F (τ, z) ∈ Jk,1(ΓJ2 ) for even k and WF = 0. We have Wϑν1ν2(τ, z)

= ϑν1(τ1, z1)ϑν2(τ2, z2), and the four functions ϑl(τi, zi) (l = 0, 1, i = 1, 2) are alge-

braically independent. So writing F (τ, z) =
∑
ν∈(Z/2Z)2 cν(τ)ϑν(τ, z), the condition

WF = 0 is equivalent to Wcν = 0 for all ν ∈ (Z/2Z)2. We write τ = ( τ1 z0z0 τ2 ) ∈ H2.

First we assume that WF = 0. Then the images of the Taylor coefficients under W

at z = 0 also vanish. By the automorphy with respect to diag(1,−1, 1,−1) ∈ Γ2

for even k, we have

F

((
τ1 −z0
−z0 τ2

)
,

(
z1
−z2

))
= F

((
τ1 z0
z0 τ2

)
,

(
z1
z2

))
.

This means that the Taylor coefficients of F (τ, z) at 1, z21 , z22 are even functions

of z20 . But Wcν = 0 by the assumption that WF = 0, so the order is at least one,

so the Taylor coefficients at 1, z21 , z22 vanish at least of order two at z0 = 0. As

for the coefficient of z1z2 of F (τ, z), we can prove the same thing as follows. By

definition, we see that

(∂1∂2ϑν(τ, z)|z=0)|z0=0 =

2∏
i=1

∑
pi∈Z

(pi + νi/2)e((p+ νi/2)2τi) = 0.

So the Taylor coefficients of ϑν(τ, z) at z1z2 vanish at z0 = 0. Since cν also vanishes

at z0 = 0, the vanishing order at z0 = 0 of the Taylor coefficient of F (τ, z) at z1z2 is

also at least two. So we have proved that if WF = 0 then each Taylor coefficient up

to degree two vanishes at z0 = 0 of order two. Conversely, take any F ∈ Jk,1(ΓJ2 )

and assume that each Taylor coefficient at 1, z21 , z1z2, z22 vanishes at least of
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order two at z0 = 0. As shown in Section 4, the coefficients cν(τ) of the theta

expansion of F form a solution of the simultaneous equation A(τ)c(τ) = f(τ)

where detA(τ) = χ5(τ) whose vanishing order at z0 = 0 is one and f(τ) consists

of the Taylor coefficients at 1, z21 , z1z2, z22 . So from c(τ) = A(τ)−1f(τ), we see

that Wcν(τ) = 0, and hence WF = 0. So the condition WF = 0 is equivalent

to the condition that its Taylor coefficients vanish at z0 = 0 of order two up

to degree two. By Theorem 5.1, we have a linear isomorphism of Jk,1(ΓJ2 ) onto

Ak(Γ2)×Ak,2(Γ2), and this mapping is constructed by using the Taylor coefficients

up to degree two, so in order to calculate dim ker(W ), we interpret the above

condition as a condition on the image in Ak(Γ2) × Ak,2(Γ2). Writing the Taylor

expansion F (τ, z) = f0(τ)+f2(τ, z)+ · · · as the sum of homogeneous parts fk(τ, z)

of degree k, and defining ξk,0(τ) ∈ Ak(Γ2) and ξk,2(τ, u) ∈ Ak,2(Γ2) for F as in

Section 2, we have

ξk,0(τ) = f0(τ),

ξk,2(τ, u) = f2(τ, u) +
2πi

k

(
∂f0(τ)

∂τ1
u21 +

∂f0(τ)

∂z0
u1u2 +

∂f0(τ)

∂τ2
u22

)
.

Here we demand that f0(τ) and f2(τ, u) have zero at z0 = 0 at least of order two. It

is well known that for f0 ∈ Ak(Γ2) with even k, the conditionWf0 = 0 is equivalent

to f0 being divisible by χ10. So write f0(τ) = χ10(τ)f(τ) with f ∈ Ak−10(Γ2). In

particular, if k < 10, then f0 = f = 0. Since Ak,2(Γ2) = 0 if k < 10 (cf. [19]), we

also have ξk,2(τ, z) = 0, so f2(τ, z) = 0. This means that the corresponding Jacobi

form F is 0. We examine derivatives of f0 = fχ10. The form χ10 vanishes at z0 = 0

exactly of order two. So the derivatives of χ10 with respect to τi for i = 1, 2 have

also zero at z0 = 0 of order two. As for the derivative with respect to z0, we have

∂f0
∂z0

=
∂χ10

∂z0
f + χ10

∂f

∂z0
.

This vanishes at z0 = 0 at least of order one. So Wξk,2(τ, z) = 0. This means that

ξk,2(τ, z) is divisible by χ5(τ). Since χ5(τ) is a cusp form of Γ2 with multiplier,

ξk,2(τ, z) is also a cusp form. We have dimA10,2(Γ2) = 1 but S10,2(Γ2) = 0. So

ξ10,2(τ, z) = 0. But if k = 10, then f is a constant. If moreover f 6= 0, then
∂f0
∂z0

has zero at z0 = 0 exactly of order one. This contradicts the assumption

that ξ10,2(τ, z) = 0 and f2(τ, z) is divisible by z20 . So we have f = 0 and F = 0

also in this case. Hence we can assume now that k > 10. The function ∂f0
∂z0

has

zero at least of order two at z0 = 0 if and only if Wf = 0. So if Wf = 0,

then since f2(τ, z) and the first derivatives of f0(τ) have zero at least of order

two at z0 = 0, so does ξk,2(τ, z) and we have ξk,2(τ, z) ∈ χ10Ak,2(Γ2) in this

case. So the image of ker(W |Jk,1(ΓJ2 )) in Ak(Γ2)×Ak,2(Γ2) contains the space of
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(χ10f, ξk,2(τ, z)) with Wf = 0 and Wξk,2 = 0. Now we consider the part Wf 6= 0.

We have {f, χ10}Sym(2) ∈ Ak,2(Γ2) and the coefficient of u1u2 in this form is

10χ10
∂f
∂z0
− (k − 10)f ∂χ10

∂z0
. Since the function

2πi

k(k − 10)

(
10χ10

∂f

∂z0
− (k − 10)f

∂χ10

∂z0

)
+

2πi

k

∂f0
∂z0

=

(
10 +

2πi

k

)
χ10

∂f

∂z0

has zero at least of order two at z0 = 0 and the coefficient of u2i of {f, χ10}Sym(2)

always has zero at least of order two at z0 = 0 for each i = 1, 2, we see that

ξk,2(τ, z) +
2πi

k(k − 10)
{χ10, f}Sym(2)

has zero of order two at z0 = 0 and belongs to χ10Ak−10,2(Γ2). If Wf = 0, then

χ10, f ∈ χ10Ak−10(Γ2), so including the case Wf = 0, we have

ξk,0(τ) = χ10f,

ξk,2(τ, u) ∈ − 2πi

k(k − 10)
{χ10, f}Sym(2) + χ10Ak−10,2(Γ2)

for some f ∈ Ak−10(Γ2). Conversely, if ξk,0(τ) and ξk,2(τ, u) are written like this,

then obviously the Taylor coefficients of F vanish at least of order two at z0 = 0

up to degree two terms, so F belongs to the kernel of W . So for k > 10,

dim ker(W |Jk,1(ΓJ2 )) = dimAk−10(Γ2) + dimAk−10,2(Γ2).

Since the dimension is 0 for k≤10, the generating function of dim ker(W |Jk,1(ΓJ2 ))

is given by

∞∑
k=2, even

(dimAk−10(Γ2) + dimAk−10,2(Γ2))tk =
(t4 + t6 + t10 + t12)t10

(1− t4)(1− t6)(1− t10)(1− t12)

as desired. So we have proved Theorem 7.1.

We note that even if all the Taylor coefficients at 1, z21 , z1z2, z22 of F ∈ Jk,1(ΓJ2 )

vanish under W , this does not mean that WF = 0. Conceptually this is explained

by the fact that Sym2(Jk,1(ΓJ1 )) is determined by the coefficients of 1, z21 , z22 , z21z
2
2 ,

and the Taylor coefficients of WF up to degree two are not enough to determine

this. For example, if we define χ10,1 as in the proof of Theorem 5.1 by the Jacobi

form in J10,1(ΓJ2 ) which is mapped to (χ10, 0) ∈ A10(Γ2)× A10,2(Γ2), then this is

a counterexample. Indeed the Taylor coefficients of Wχ10,1 at 1, z21 , z22 vanish but

the coefficient of z21z
2
2 is a non-zero constant multiple of ∆(τ1)∆(τ2). This follows

by the above argument or also by giving cν(τ) explicitly by solving the equation
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A(τ)c(τ) = f(τ) where f(τ) is defined for ξ10,0 = χ10 and ξ10,2 = 0 as in §5. By

the result of [12], we see that

∞∑
k=2, even

(dim ker(W |Ak(Γ2)) + dim ker(W |Ak,2(Γ2))) tk

=
t10 + t14 + t16 + t22

(1− t4)(1− t6)(1− t10)(1− t12)
.

This does not coincide with the generating function of dim ker(W |Jk,2(ΓJ2 )).

It would be interesting to consider the same question for higher degree cases.
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