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Abstract

Let G be a finite group and X a compact smooth manifold. It is of interest which smooth
manifolds can be the G-fixed point sets of smooth G-actions on X. The deleting-inserting
theorem of this paper is related to this problem and has applications to one-fixed-point
actions on spheres as well as to Smith equivalence.
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§1. Introduction

Let G be a finite group. In this paper, a manifold and a G-manifold mean a
smooth manifold and a smooth G-manifold, respectively. Given a manifold X, it is
a fundamental problem to study which manifolds and real vector bundles can be
the G-fixed point sets and the normal bundles of G-fixed point sets, respectively,
of smooth G-actions on X. This problem for the case where X is a disk was
studied by B. Oliver [15], and for X a sphere in [11] under the gap condition. The
Smith problem on tangential representations at fixed points on spheres is a part
of the problem above and has been studied by various authors. It has been useful
for the study of the problem to delete (or insert) manifolds from (or to) a given
manifold X as G-fixed point sets. More precisely, for a given G-manifold Y having
the diffeomorphism type of X and the G-fixed point set

Y G = F1 q · · · q Fm
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and given integers 1 ≤ r1 ≤ · · · ≤ rn ≤ m, it is of interest whether there exists a
G-manifold Z having the diffeomorphism type of X and the G-fixed point set

ZG = Fr1 q · · · q Frn .

A finite group G is called an Oliver group if there exists a smooth G-action on a
disk without G-fixed points, or equivalently if there never exists a normal series
P E H E G such that P and G/H have prime power order and H/P is a cyclic
group (cf. [16, 15, 6]). We studied such deleting-inserting methods for an Oliver
group G invoking the gap condition for which the main requirement is

2 dimY g < dimY

for all non-trivial elements g of G, i.e. g 6= e. In the current paper we give a
deleting-inserting theorem (Theorem 5.1) for an Oliver group under the weak gap
condition which allows the case that 2 dimY g = dimY for g ∈ G. This theorem
yields Theorems 1.3–1.10 below as applications.

Let S(G) denote the set of all subgroups of G, and P(G) the set of all prime-
power-order subgroups of G, where by convention {e} ∈ P(G). For a prime p, let
G{p} denote the smallest normal subgroup N of G such that |G/N | is a power
of p, possibly |G/N | = 1. Let L(G) denote the set of all subgroups H containing
G{p} for some prime p. A (finite-dimensional) real G-module V is called L-free if
V L = 0 for all L ∈ L(G). We define a G-submodule VL of V by

VL = (V − V G)−
⊕
p prime

(V G
{p}
− V G).

Let R[G] denote the group ring of G with real coefficients having the canonical
(left) G-action. Recall the following fact.

Lemma 1.1 ([6, Theorem 2.3]). The real G-module V = R[G]L has the following
properties:

(1.1.1) V H = 0 if and only if H ∈ L(G).
(1.1.2) dimV H ≥ |K : H|dimV K for all H ≤ K ∈ S(G).
(1.1.3) The equality dimV H = 2 dimV K holds, where H ≤ K ∈ S(G), if and only

if |K : H| = 2, |KG{2} : HG{2}| = 2, and HG{q} = G for all odd primes q.

By straightforward computation, we can show the next lemma.

Lemma 1.2 ([13, Proposition 1.9]). If G is an Oliver group then dim (R[G]L)P

≥ 2 for all P ∈ P(G).
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The following two theorems are an elaboration of [6, Theorem B]. In partic-
ular, for m = 1 they give smooth one-fixed-point actions on spheres.

Theorem 1.3. Let G be an Oliver group and m a positive integer. Then for any
integer ` ≥ 3 there exists a G-action on the standard sphere S of dimension

d` = ` ·
{

(|G| − 1)−
∑
p||G|

(|G/G{p}| − 1)
}

with exactly m G-fixed points x1, . . . , xm for which the tangential representations
Txi(S) are all isomorphic to the `-fold direct sum R[G]⊕`L of R[G]L.

Let PH(G) denote the set of all pairs (P,H) consisting of P ∈ P(G) and
H ∈ S(G) with P < H. Let PH2(G) denote the set of all pairs (P,H) ∈ PH(G)

such that |H : P | = 2, |HG{2} : PG{2}| = 2, and PG{q} = G for all odd primes q.
For a set A of pairs (H,K) with H < K ∈ S(G), we say that a real G-module V
satisfies the gap condition (resp. the weak gap condition) on A if

(1.1) dimV H > 2 dimV K (resp. dimV H ≥ 2 dimV K)

for any (H,K) ∈ A. It should be remarked that if an L-free real G-module V
satisfies the weak gap condition on PH2(G) then V ⊕ R[G]⊕mL satisfies the weak
gap condition on PH(G) for any m ≥ dimV .

Theorem 1.4. Let G be an Oliver group, m a positive integer, and V an L-free
real G-module satisfying the weak gap condition on PH2(G). Then there exists
an integer N such that for every integer ` ≥ N there exists a G-action on the
standard sphere S with exactly m G-fixed points x1, . . . , xm for which the tangential
representations Txi(S) are all isomorphic to V ⊕ R[G]⊕`L .

Let RO(G) denote the real representation ring. For a subset A of RO(G), AP
stands for the set

A ∩
⋂

P∈P(G)

Ker[resGP : RO(G)→ RO(P )].

Real G-modules V and W are called Smith equivalent if there exists a homotopy
sphere Σ with a G-action such that ΣG consists of exactly two points a and b,
and the tangential representations Ta(Σ) and Tb(Σ) are isomorphic to V and W ,
respectively. Let Sm(G) denote the Smith set of G, i.e.

Sm(G) = {[V ]− [W ] ∈ RO(G) | V is Smith equivalent to W}.
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The subset Sm(G)P is called the primary Smith set of G. For a subset A of RO(G),
AL stands for the set

{[V ]− [W ] ∈ A | V L = 0 and WL = 0 for all L ∈ L(G)}.

We say that two real G-modules V and W are P-matched if resGP V and resGP W

are isomorphic for all P ∈ P(G).

Theorem 1.5. Let G be an Oliver group. Let V1, . . . , Vm be L-free real G-modules
satisfying the weak gap condition on PH2(G), of which arbitrary two are P-matched.
Then there exists an integer N such that for any integer ` ≥ N , there exists a
smooth G-action on the standard sphere S with exactly m G-fixed points x1, . . . , xm
for which the tangential representation Txi(S) is isomorphic to Vi ⊕ R[G]⊕`L , 1 ≤
i ≤ m.

In the case m = 2, we obtain the next theorem on Smith equivalence.

Theorem 1.6. Let G be an Oliver group and let V and W be P-matched and L-
free real G-modules both satisfying the weak gap condition on PH2(G). Then there
exists an integer N such that for any integer ` ≥ N there exists a smooth G-action
on the standard sphere S with exactly two G-fixed points x1 and x2 for which the
tangential representations Tx1

(S) and Tx2
(S) are isomorphic to V ⊕ R[G]⊕`L and

W ⊕ R[G]⊕`L , respectively. In particular, V and W are stably Smith equivalent.

Let X be a G-manifold and S a smooth G-action on the standard sphere with
exactly one G-fixed point a and Ta(S) ∼= R[G]⊕`L . Then the cartesian product Y =

X×S has the diagonalG-action and theG-fixed point set of Y isXG×{a}. For each
x ∈ XG, the tangential representation T(x,a)(Y ) is isomorphic to Tx(X)⊕R[G]⊕`L .
The next theorem follows from Theorems 1.3 and 1.6.

Theorem 1.7. Let G be an Oliver group and (Vi,Wi) a pair of L-free P-matched
real G-modules Vi and Wi for each 1 ≤ i ≤ m. Suppose all Vi and Wi, 1 ≤ i ≤ m,
satisfy the weak gap condition on PH2(G). Let X be a G-manifold with G-fixed
point set

XG = {x1} q · · · q {xm} q F (disjoint union)

such that for each 1 ≤ i ≤ m, the tangential representation Txi(X) is isomorphic
to Vi, where F is a union of connected components of XG. Then there exists an
integer N such that for any integer ` ≥ N there exists a G-manifold Y with G-fixed
point set XG for which the underlying space is diffeomorphic to X×S(R⊕R[G]

⊕`
L )

and the tangential representation Txi(Y ) is isomorphic to Wi ⊕ R[G]⊕`L for each
1 ≤ i ≤ m.
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A finite group G is called a gap group if each element x of RO(G)LP can be
written in the form x = [V ]− [W ] with L-free real G-modules V and W satisfying
the gap condition on PH(G). We remark that G with L(G) ∩ P(G) = ∅ is a
gap group if and only if there exists an L-free real G-module V satisfying the
gap condition on PH2(G). An Oliver group G is a gap group if G is nilpotent,
or G = G{2}, or G 6= G{p} for at least two odd primes p. In the case where G
is a gap Oliver group, we could determine the geometrically defined set Sm(G)LP
in algebraic terms: Sm(G)LP coincides with RO(G)LP (cf. [17, p. 850, Realization
Theorem]). But it is difficult to determine Sm(G) or even Sm(G)LP when G is not
a gap group. Let us call a finite group G a weak gap group if each element x of
RO(G)LP can be written in the form x = [V ]−[W ] with L-free realG-modules V and
W satisfying the weak gap condition on PH(G). For example,G = S5×C2×· · ·×C2

is not a gap group but a weak gap group (cf. [4]), where S5 is the symmetric group
on five letters and C2 is a group of order 2. Since Sm(G)LP ⊂ RO(G)LP , we obtain
the next result.

Theorem 1.8. If G is a weak gap Oliver group then Sm(G)LP coincides with
RO(G)LP .

Let H be a subgroup of G. For a real H-module V , we denote by indGH V the
real G-module R[G]⊗R[H] V . If V satisfies the weak gap condition on PH(H) then
indGH V satisfies the weak gap condition on PH(G); if V is L-free then indGH V

is also L-free; and if V and W are P-matched real H-modules then indGH V and
indGHW are P-matched real G-modules. Let indGH denote the induction homomor-
phism RO(H) → RO(G). Then the inclusion indGH(RO(H)LP) ⊂ RO(G)LP holds.
Thus we obtain the next result from Theorem 1.6.

Theorem 1.9. Let H be a subgroup of an Oliver group G.

(1.9.1) If V and W are L-free P-matched real H-modules satisfying the weak gap
condition on PH2(H) then [indGH V ]− [indGHW ] belongs to Sm(G)LP .

(1.9.2) If H is a weak gap group then

indGH(Sm(H)LP) ⊂ indGH(RO(H)LP) ⊂ Sm(G)LP .

Let H(G) denote the set of all subgroups H of G for which there exists P ∈
P(G) such that P ≤ H and |H : P | ≤ 2. For a subset A ⊂ RO(G), we define AH
to be the set of all elements x ∈ A such that resGH x = 0 for all H ∈ H(G). It is
obvious that ALH ⊂ RO(G)LP .

Theorem 1.10. If H is a subgroup of an Oliver group G then

indGH(RO(H)LH) ⊂ Sm(G)LH ⊂ Sm(G)LP .
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This paper is organized as follows. Section 2 is devoted to preparation of basic
terms and notation concerning G-manifolds and G-framed maps. In Section 3, we
discuss equivariant surgery to obtain homology equivalences on even-dimensional
manifolds satisfying the weak gap condition. Theorem 3.5 describes a surgery
obstruction to Z(p)-homology equivalence in algebraic terms. Section 4 is devoted
to the induction theory of equivariant surgery obstruction groups. In Section 5 we
prove Theorem 5.1 which provides a method of deleting or inserting fixed point
manifolds. Theorems 1.3–1.5 and 1.10 are proved in Section 6.

§2. Preliminaries

For families A, B of sets closed under intersection, and a map f : A → B, we say
that f preserves intersection or is intersection preserving if

f(A1 ∩A2) = f(A1) ∩ f(A2) for all A1, A2 ∈ A.

Let Θ be a G-set, ρ : Θ→ S(G) a G-map, where G acts on S(G) by conjuga-
tion, and S a conjugation invariant subset of G consisting of elements of order 2.
The group G acts on S by conjugation. The set Θ is called (ρ, S)-simple if for each
t ∈ Θ, the set ρ(t) contains at most one element in S.

Definition 2.1. For a (ρ, S)-simple G-set Θ, we define the S-contraction
(Θ/S, ρ/S) of (Θ, ρ) as follows. Let ∼S denote the equivalence relation on Θ such
that t ∼S t′ if and only if ρ(t)∩S = ρ(t′)∩S. Denote by Θ/S the set of equivalence
classes with respect to ∼S . The map ρ/S : Θ/S → S(G) is defined by

ρ/S([t]) = {e} ∪ (ρ(t) ∩ S)

for the ∼S-equivalence class [t] of t ∈ Θ. Then Θ/S has a canonical G-action and
ρ/S : Θ/S → S(G) is a G-map.

A G-map ρ : Θ → S(G) is called S-injective (resp. S-bijective) if for each
s ∈ S, there exists at most one (resp. exactly one) element t ∈ Θ such that ρ(t)

contains s.
Let P(Θ) denote the set of all subsets of Θ. Clearly P(Θ) has the induced

G-action. A G-map f : S(G) → P(Θ) is called ρ-compatible if ρ(f(H)) ⊂ S(H)

for all H ∈ S(G). A G-map f : S(G)→ P(Θ) is called (ρ, S)-saturated if

(2.1) f(H) ⊃ {t ∈ Θ | ρ(t) ∩ S ∩H 6= ∅} for all H ∈ S(G).

It is straightforward to verify the next lemma.

Lemma 2.2. Let f : S(G) → P(Θ) be an intersection preserving ρ-compatible
G-map and set ΘH = f(H) and ρH = ρ|ΘH : ΘH → S(H).
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(2.2.1) If Θ is (ρ, S)-simple, then ΘH is (ρH , S∩H)-simple for H ∈ S(G) and the
associated map ρ/S : Θ/S → S(G) is S-injective.

(2.2.2) If ρ : Θ→ S(G) is S-injective then ρH : ΘH → S(H) is (S ∩H)-injective
for H ∈ S(G).

(2.2.3) If ρ : Θ → S(G) is S-bijective and f : S(G) → P(Θ) is (ρ, S)-saturated
then ρH : ΘH → S(H) is (S ∩H)-bijective for H ∈ S(G).

Let X be a compact, connected G-manifold, possibly with boundary ∂X. The
singular set Xsing of X is defined by

Xsing =
⋃

g∈Gr{e}

Xg.

We say that X satisfies the weak gap condition if

(2.2) dimXsing ≤
1

2
dimX.

In the case where X has even dimension 2k and satisfies the weak gap condition,
we say that X satisfies the k-tame condition if

(2.3)
dimXK ≤ k − 2

whenever H < K ∈ S(G), dimXH = k, and H =
⋂

x∈XH
Gx,

where Gx stands for the isotropy subgroup of G at the point x. Let G(2) denote
the set of all elements of G of order 2. In the case where X has even dimension 2k

and satisfies the weak gap condition, we say that X satisfies the G(2)-condition if

(2.4) |H| = 2 whenever H ∈ S(G) and 2 dimXH = dimX.

For a subgroup H and an integer ` ≥ 0, let π0(XH , `) denote the set of all
connected components of dimension ` of XH . For α ∈ π0(XH , `), we denote by
Xα or XH

α the underlying space of α. Each α ∈ π0(XH , `) determines the group

ρX(α) =
⋂
x∈Xα

Gx.

Definition 2.3. Let X be a compact, connected G-manifold, possibly with
boundary, satisfying the weak gap condition. Then we set

S(X) = {g ∈ G | 2 dimXg = dimX},
Q(X) = {g ∈ G | dimXg = [(dimX − 1)/2]},
Σ(X) = {α | H ∈ S(G), α ∈ π0(XH ,dimX/2), and ρX(α) = H},
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where for a real number x, [x] denotes the greatest integer not exceeding x. The
(dimX/2)-dimensional singular structure S(X) associated with X is defined to
be the set of all Xs, s ∈ Σ(X). For each s ∈ Σ(X), the manifold Xs has the unique
orientation class ts in Hk(Xs, ∂Xs;Z2). The G-set Θ(2)(X) is defined to be the
set of all ts, where s runs over Σ(X). The correspondence s 7→ ts gives a bijection
Σ(X)→ Θ(2)(X). The map ρ(2)

X : Θ(2)(X)→ S(G) is defined by ρ(2)
X (ts) = ρX(s)

for s ∈ Σ(X).

The proof of the next lemma is straightforward.

Lemma 2.4. Let X be a G-manifold as in Definition 2.3. Suppose that X has
even dimension n = 2k and satisfies the G(2)-condition. Then the following hold:

(2.4.1) Θ(2)(X) is (ρ
(2)
X , S(X))-simple.

(2.4.2) ρ(2)
X /S(X) : Θ(2)(X)/S(X)→ S(G) is S(X)-bijective.

(2.4.3) For H ∈ S(G), S(resGH X) coincides with S(X) ∩H. Thus the map H 7→
S(resGH X) is intersection preserving.

(2.4.4) For H ∈ S(G), Θ(2)(resGH X) coincides with {t ∈ Θ(2)(X) | ρ(2)
X (t) ⊂ H}.

Hence the map f : S(G) → P(Θ(2)(X)); H 7→ Θ(2)(resGH X), is intersec-
tion preserving, ρ(2)

X -compatible, and (ρ
(2)
X , S(X))-saturated, and further-

more f(G) = Θ(2)(X).
(2.4.5) The canonical map γ : Θ(2)(X)→ Θ(2)(X)/S(X) is a G-map, the diagram

Θ(2)(X)
ρ
(2)
X //

γ

��

S(G)

Θ(2)(X)/S(X)

ρ
(2)
X /S(X)

88

commutes, and
γ(Θ(2)(X)) = Θ(2)(X)/S(X).

Let X be a compact, connected, oriented G-manifold of dimension n ≥ 5,
possibly with boundary ∂X. Let R be a commutative ring with 1 and with trivial
anti-involution ·̄. The group ring R[G] has the anti-involution ·̄ derived from the
orientation homomorphism wX : G→ {±1} of X, i.e.(∑

g∈G
rgg
)−

=
∑
g∈G

rgwX(g)g−1,

where rg ∈ R. Let X̃ denote the universal covering space of X. Let G̃ denote the
fundamental group π1(EG×GX), where EG is a contractible G-CW complex with
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a free G-action. We have the exact sequence

1→ π1(X)→ G̃→ G→ 1.

If XG is nonempty then this sequence splits, i.e. G̃ = π1(X) oG.
Let Y be a compact, connected, oriented G-manifold of dimension n, possibly

with boundary ∂Y . Let fff = (f, b) be a G-framed map, where f : (X, ∂X) →
(Y, ∂Y ) is a G-map such that f : X → Y is 1-connected, and b : T (X)⊕f∗η → f∗ξ

is a real G-vector bundle isomorphism for real G-vector bundles η and ξ over Y
such that η ⊃ εY (Rn) (cf. [2, Lemma 6.1]). Then fff is covered by the induced
G̃-framed map f̃̃f̃f = (f̃ , b̃) consisting of a ϕ̃-map f̃ : (X̃, ∂X̃)→ (Ỹ , ∂Ỹ ) and a real
G̃-vector bundle isomorphism b̃ : T (X̃) ⊕ f̃∗η̃ → f̃∗ξ̃, where Ỹ is the universal
covering space of Y , ϕ̃ is the canonical homomorphism G̃ = π1(EG ×G X) →
π1(EG ×G Y ) = Ĝ, and η̃ and ξ̃ are the real Ĝ-vector bundles over Ỹ induced
from η and ξ, respectively:

X̃
f̃ //

π
X̃,X

��

Ỹ

πỸ ,Y

��
X

f // Y

We note that the map f̃ : (X̃, ∂X̃)→ (Ỹ , ∂Ỹ ) is not necessarily of degree one.

§3. GGG-surgery maps on even-dimensional manifolds

Let X be a compact, connected, oriented G-manifold of even dimension n =

2k ≥ 6, possibly with boundary ∂X. Throughout this section, we assume that
X satisfies the weak gap condition and the k-tame condition. Let R be a commu-
tative ring with 1 and with trivial anti-involution ·̄. We set λ = (−1)k, S = S(X)

and Q = Q(X); further define

(Q)R = R[Q] + {x− λx | x ∈ R[G]}, (S)R = R[S] + {x+ λx | x ∈ R[G]}.

Then
AAAX = (R[G], (̄·, λ), (S)R, G,R[S], (Q)R +R[S])

is a double parameter algebra in the sense of [2, Definition 2.5].
Let S = {Xs | s ∈ Σ} be a set of compact connected k-dimensional neat

submanifolds of X, where Σ is a G-set, such that gXs = Xgs for all g ∈ G and
s ∈ Σ. Set

XS =
⋃
s∈Σ

Xs.
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In this paper, we assume that S satisfies the k-tame condition, i.e.

(3.1) Xs ∩Xt is a neat submanifold of Xs of dimension ≤ k − 2

for all s, t ∈ Σ, s 6= t. If S ⊃ S(X) then we call S a k-singular structure of X.
The index set Σ decomposes into the disjoint union of Σ+ and Σ− consisting of
all elements s ∈ Σ such that Xs is orientable and non-orientable, respectively. Let
Θ(0)(S) denote the set of all generators of Hk(Xs, ∂Xs;Z), where s runs over Σ+,
and let Θ(2)(S) denote the set of all generators of Hk(Xs, ∂Xs;Z2), where s runs
over Σ. The sets Θ(0)(S) and Θ(2)(S) have canonical actions of G×{±1} and G,
respectively. In addition, there is a canonical map pS : Θ(0)(S) → Θ(2)(S); for a
generator x of Hk(Xs, Xs;Z), pS(x) is the generator of Hk(Xs, Xs;Z2). We have
a natural one-to-one correspondence from Σ to Θ(2)(S). Thus we often identify
Θ(2)(S) with Σ as G-sets. On the other hand, we may not have a (G × {±1})-
bijection from Θ(0)(S) to Σ+×{±1}, although there is a non-equivariant bijection
between these sets. Let ρS denote the map Θ(2)(S) = Σ→ S(G) defined by

ρS(s) =
⋂
x∈Xs

Gx (s ∈ Σ).

Let ΘΘΘ(S) denote the datum

(Θ(0)(S),Θ(2)(S), pS, ρS).

Set

Q̃ = QX̃ (= {g ∈ G̃(2) | dim X̃g = k − 1}),

S̃ = SX̃ (= {g ∈ G̃(2) | dim X̃g = k}),

(Q̃)R = R[Q̃] + {x− λx | x ∈ R[G̃]}, (S̃)R = R[S̃] + {x+ λx | x ∈ R[G̃]}.

Then
Ã̃ÃA = AAAX̃ = (R[G̃], (̄·, λ), (S̃)R, G̃, R[S̃], (Q̃)R +R[S̃])

is a double parameter algebra.
Let S = {Xs | s ∈ Σ} be a k-singular structure of X as above. Consider the

set
S̃ = {X̃t | t ∈ Σ̃}

of all connected components X̃t of π−1

X̃,X
(Xs), s ∈ Σ, where πX̃,X is the canoni-

cal projection X̃ → X. Here we have canonical surjections S̃ → S and Σ̃ → Σ.
We call S̃ the k-singular structure of X̃ induced from S. Note that X̃ and X̃t

are possibly non-compact. The index set Σ̃ decomposes into the disjoint union
of Σ̃+ and Σ̃− consisting of all elements t ∈ Σ̃ such that X̃t is orientable
and non-orientable, respectively. Let Θ(0)(S̃) denote the set of all generators of
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H loc.fin.
k (X̃t, ∂X̃t;Z), where t runs over Σ̃+, and let Θ(2)(S̃) denote the set of all

generators of H loc.fin.
k (X̃t, ∂X̃t;Z2), where t runs over Σ̃. The sets Θ(0)(S̃) and

Θ(2)(S̃) have canonical actions of G̃ × {±1} and G̃, respectively. In addition, we
have the canonical map pS̃ : Θ(0)(S̃)→ Θ(2)(S̃). Define the map

ρS̃ : Θ(2)(S̃) = S̃ = Σ̃→ S(G̃) by ρS̃(t) =
⋂
x∈X̃t

G̃x.

Let ΘΘΘ(S̃) denote the datum

(Θ(0)(S̃),Θ(2)(S̃), pS̃, ρS̃).

The next lemma is well-known.

Lemma 3.1. Let fff = (f, b) be a G-framed map and S a k-singular structure of X
as above. Suppose the map f : (X, ∂X)→ (Y, ∂Y ) has degree one. Then fff can be
converted to a G-framed map fff ′ = (f ′, b′), where f ′ : (X ′, ∂X ′) → (Y, ∂Y ) and
b′ : T (X ′) ⊕ f ′∗η → f ′

∗
ξ, such that f ′ : X ′ → Y is k-connected, by a G-surgery

on X relative to Xsing ∪XS ∪ ∂X.

First, note that the degree of the resulting map f ′ : (X ′, ∂X ′) → (Y, ∂Y )

above is 1. Second, note that if f : X → Y is k-connected then the mapping
cylinder Mf̃ of f̃ : X̃ → Ỹ is the universal covering space of the mapping
cylinder Mf of f : X → Y , the group πk+1(f̃) can be identified with πk+1(f),
and the canonical homomorphism πk+1(f̃) → Kk(f̃ ;Z) is an isomorphism, where
πk+1(f̃) = πk+1(Mf̃ , X̃) and

Kk(f̃ ;Z) = Ker[f̃∗ : Hk(X̃;Z)→ Hk(Ỹ ;Z)].

Now let R be Z or Z(p) for a prime p. We denote by Pp(G) the set of all
subgroups of G with p-power order. Thus we have

P(G) =
⋃

p prime

Pp(G).

Let fff = (f, b), f : (X, ∂X)→ (Y, ∂Y ) be a G-framed map and S a k-singular
structure of X as above. Then let f̃̃f̃f = (f̃ , b̃), f̃ : (X̃, ∂X̃) → (Ỹ , ∂Ỹ ), denote the
G̃-framed map induced from fff , where X̃ and Ỹ are the universal covering spaces
of X and Y , respectively. Let S̃ denote the induced k-singular structure of X̃.

Definition 3.2. Let fff be the G-framed map above. We define the R[G̃]-module
M(f̃ ;R) by

M(f̃ ;R) = πk+1(f̃)⊗R.
We call fff a (G,R)-surgery map if the following conditions are fulfilled:
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(3.2.1) f : X → Y is of degree one.
(3.2.2) f : X → Y is 1-connected.
(3.2.3) f∗ : Hj(X;R)→ Hj(Y ;R), j < k, are all isomorphisms, and f∗ : Hk(X;R)

→ Hk(Y ;R) is surjective.
(3.2.4) ∂f∗ : Hj(∂X;R)→ Hj(∂Y ;R), j ≤ n− 1, are all isomorphisms.
(3.2.5) f : X → Y is k-connected, or the canonical map M(f̃ ;R) ⊗R[G̃] R[G] →

Kk(f ;R) is an isomorphism, where

Kk(f ;R) = Ker[f∗ : Hk(X;R)→ Hk(Y ;R)].

(3.2.6) In the case R = Z, fP : XP → Y P are Zq-homology equivalences for all
subgroups P ∈ P(G) with P 6= {e}, and primes q dividing |P |. In the case
R = Z(p), fP : XP → Y P are Zp-homology equivalences for all P ∈ Pp(G)

with P 6= {e}.
(3.2.7) χ(Xg) = χ(Y g) for all g ∈ G, g 6= e.

We have the Poincaré pairing

H loc.fin.
k (X̃, ∂X̃;Z)×Hk(X̃;Z)→ Z.

Passing along the canonical homomorphisms

πk+1(f̃)→ Hk+1(Mf̃ , X̃;Z)→ Kk(f̃ ;Z) ⊂ Hk(X̃;Z)→ H loc.fin.
k (X̃, ∂X̃;Z)

we obtain the intersection form B̃0 : M(f̃ ;R) × M(f̃ ;R) → R, and hence the
G̃-equivariant intersection form

B̃ : M(f̃ ;R)×M(f̃ ;R)→ R[G̃]; B̃(x, y) =
∑
g∈G̃

B̃0(x, g−1y)g.

Let x ∈ πk+1(f̃). Then x is represented by a commutative diagram

Sk
α //

��

X̃

f̃
��

Dk+1 // Ỹ

By virtue of this diagram and the bundle isomorphism b, the induced bundle
α∗T (X̃) is stably trivial. Thus x is represented by an immersion α : Sk → X̃ with
trivial normal bundle. Let g be an element in G̃ of order 2 satisfying dim X̃g ≤ k−2.
Then the regular homotopy classes of immersions Sk → X̃ correspond in a one-
to-one way to the regular homotopy classes of immersions Sk → X̃ r X̃g. Hence
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Theorem 5.2 of [18] provides the 〈g〉-equivariant self-intersection form

q̃〈g〉 : πk+1(f̃)→ Z[〈g〉]/{a− λa | a ∈ Z[〈g〉]}.

Assembling the data of the G̃-equivariant intersection form B̃ and the 〈g〉-equivari-
ant self-intersection forms q̃〈g〉 (cf. [2, Definition 4.11]), we obtain the G̃-equivariant
self-intersection form

q̃ : M(f̃ ;R)→ R[G̃]/((QX̃)R +R[SX̃ ]) (cf. [2, p. 567, `. 3]).

For a generator α ∈ H loc.fin.
k (X̃t, ∂X̃t;Z), where t ∈ Σ̃+, we have the element

j∗α ∈ H loc.fin.
k (X̃, ∂X̃;Z),

where j∗ : H loc.fin.
k (X̃t, ∂X̃t;Z) → H loc.fin.

k (X̃, ∂X̃;Z) is the canonical homomor-
phism. Via the intersection paring (or the Poincaré pairing up to sign)

H loc.fin.
k (X̃, ∂X̃;Z)×Hk(X̃;Z)→ Z

and the canonical map M(f̃ ;Z)→ Hk(X̃;Z), j∗α determines an element

θ̃(0)(α) ∈M(f̃ ;Z)#, where M(f̃ ;Z)# = HomZ[G̃](M(f̃ ;Z),Z[G̃]).

Thus we obtain the (G̃× {±1})-map

θ̃(0) : Θ(0)(S̃)→M(f̃ ;R)#, where M(f̃ ;R)# = HomR[G̃](M(f̃ ;R), R[G̃]).

Similarly we obtain the G̃-map

θ̃(2) : Θ(2)(S̃)→M(f̃ ;R/2R)#,

where
M(f̃ ;R/2R)# = HomR/2R[G̃](M(f̃ ;R/2R), R/2R[G̃]).

Putting all this together, we obtain the surgery module

MMM
f̃̃f̃f ,S̃

= (M(f̃ ;R), B̃, q̃, θ̃(0), θ̃(2)).

By the hypothesisM(f̃ ;R)⊗R[G̃]R[G] = Kk(f ;R), we obtain the commutative
diagram

Θ(0)(S̃) //

��

H loc.fin.
k (X̃, ∂X̃;R) //

��

M(f̃ ;R)#

��
Θ(2)(S̃) //

��

H loc.fin.
k (X̃, ∂X̃;R/2R) // M(f̃ ;R/2R)#

��
Θ(2)(S) // Kk(f, ∂f ;R/2R) // K(f ;R/2R)#
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Moreover we note

Kk(f, ∂f ;R) = Kk(f ;R), Kk(f, ∂f ;R/2R) = Kk(f ;R/2R),

Kk(f ;R)# = Kk(f ;R) and Kk(f ;R/2R)# = Kk(f ;R/2R).

Thus by the hypothesis M(f̃ ;R) ⊗R[G̃] R[G] = Kk(f ;R), we obtain the surgery
module

MMMfff,S = MMM
f̃̃f̃f ,S̃
⊗R[G̃] R[G] = (Kk(f ;R), Bf , qfff , θ

(0), θ(2)),

where
Bf : Kk(f ;R)×Kk(f ;R)→ R[G]

is the G-equivariant intersection form,

qfff : Kk(f ;R)→ R[G]/((Q)R +R[S])

is the G-equivariant self-intersection form, and

θ(0) : Θ(0)(S)→ Kk(f ;R)# = Kk(f ;R),

θ(2) : Θ(2)(S)→ Kk(f ;R/2R)# = Kk(f ;R/2R)

are positioning maps (cf. [2, §5, pp. 563–564]).
By similar arguments to [2, p. 575, `. 24 – p. 578, `. 2], we obtain the next

lemma.

Lemma 3.3. Let fff be a (G,R)-surgery map and S a k-singular structure as
above. If there exists an R[G̃]-submodule L̃ of M(f̃ ;R) satisfying the conditions
below then fff can be converted to a (G,R)-surgery map fff ′ = (f ′, b′), where f ′ :

(X ′, ∂X ′) → (Y, ∂Y ) and b′ : T (X ′) ⊕ f ′∗η → f ′
∗
ξ, such that f ′ : X ′ → Y is an

R-homology equivalence via G-surgery on X relative to Xsing ∪XS ∪ ∂X.

(3.3.1) θ̃(0)(α)(L̃) = 0 for all α ∈ Θ(0)(S̃) and θ̃(2)(β)(L̃) = 0 for all β ∈ Θ(2)(S̃).
(3.3.2) B̃(L̃, L̃) = 0.
(3.3.3) q̃(L̃) = 0.
(3.3.4) The canonical image L in Kk(f ;R) of L̃ is an R[G]-free direct summand

of Kk(f ;R) of half the rank, i.e. 2 · rankRL = rankRKk(f ;R).

Lemma 3.4. Let p be a prime and R = Z(p). Let fff = (f, b) be a (G,R)-surgery
map and S a k-singular structure of X as above. Suppose the following.

(3.4.1) π1(X) is finite and |π1(X)| is prime to p.
(3.4.2) the canonical homomorphism G̃→ G has a splitting, i.e. G̃ = π1(X) oG.
(3.4.3) f : X → Y is k-connected.
(3.4.4) πX̃,X(X̃t) are orientable for all t ∈ Σ̃+.
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If the module
MMMfff,S = (Kk(f ;R), Bf , qfff , θ

(0), θ(2))

has an R[G]-free Lagrangian L, then there exists a submodule L̃ of M(f ;R) satis-
fying the conditions (3.3.1)–(3.3.4).

Before proving this lemma, we give an important application of the two lem-
mas above. Let

Wn(AAAX ,Θ(S))free

denote the surgery obstruction group

Wn(R,G,QX , SX ,Θ(S))free

defined in [2, p. 545, Definition 3.33]. In the case R = Z(p), a (G,R)-surgery map
fff with k-singular structure S determines the module MMMfff,S above, and further
the element σ(fff,S) of Wn(AAAX ,Θ(S))free as the equivalence class of MMMfff,S. By
Lemmas 3.3, 3.4 and [18, Lemma 5.5], we obtain the next theorem.

Theorem 3.5. Let R = Z(p) for a prime p, fff a (G,R)-surgery map and S a
k-singular structure satisfying the conditions (3.4.1)–(3.4.4). If σ(fff,S) = 0 in
Wn(AAAX ,Θ(S))free then fff can be converted to fff ′ = (f ′, b′) such that f ′ : X ′ → Y

is an R-homology equivalence via a G-surgery on X relative to Xsing ∪XS ∪ ∂X.

Proof of Lemma 3.4. Let L be an R[G]-free Lagrangian ofMMMfff,S. Let {x1, . . . , xm}
be an R[G]-basis of L and {y1, . . . , ym} be elements of Kk(f ;R) such that

Bf (xi, yj) = δij

for 1 ≤ i, j ≤ m. Thus {x1, . . . , xm, y1, . . . , ym} is an R[G]-basis of Kk(f ;R). Arbi-
trarily choose liftings x̃1, . . . , x̃m, ỹ1, . . . , ỹm ∈ M(f̃ ;R) of x1, . . . , xm, y1, . . . , ym,
respectively. Define a map τ : Kk(f ;R)→M(f̃ ;R) by

τ
(∑

i

(aixi + biyi)
)

=
1

|π1(X)|
∑
i

∑
h∈π1(X)

(haix̃i + hbiỹi).

This map is an R[G]-splitting of the canonical map M(f̃ ;R)→ Kk(f ;R). Clearly,
π1(X) acts trivially on the image of τ . Set

L̃ = τ(L).

That B̃(L̃, L̃) = 0 and q̃(L̃) = 0 follows from Steps 1 and 2 in the proof of [11,
Theorem 2.6].

Thus it suffices to show that θ̃(0)(α)(L̃) = 0 for α ∈ Θ(0)(S̃), and
θ̃(2)(β)(L̃) = 0 for β ∈ Θ(2)(S̃). Let ε̃ : R[G̃] → R and ε : R[G] → R be the
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homomorphisms of taking the coefficients of the identity elements of G̃ and G,
respectively. For α ∈ Θ(0)(S̃), let [α] denote the canonical image of α in Θ(0)(S)

and let π1(X)α denote the isotropy subgroup of the π1(X)-action on Θ(0)(S̃) at
the point α. Then the canonical map M(f̃ ;R) → Kk(f ;R) assigns mθ(0)([α]) to
θ̃(0)(α) with m = |π1(X)α|. Thus for x ∈ L, we get

ε(θ(0)([α])(x)) =
∑

h∈π1(X)

ε̃

(
1

m
θ̃(0)(α)(h−1τ(x))

)

=
∑

h∈π1(X)

ε̃

(
1

m
θ̃(0)(α)(τ(x))

)
= |π1(X) : π1(X)α|ε̃

(
θ̃(0)(α)(τ(x))

)
,

and hence

ε̃
(
θ̃(0)(α)(τ(x))

)
=
|π1(X)α|
|π1(X)|

ε
(
θ(0)([α])(x)

)
= 0.

Since
θ̃(0)(α)(τ(x)) =

∑
g∈G̃

ε̃
(
θ̃(0)(α)(τ(g−1x))

)
g,

the triviality θ(0)([α])(L) = 0 implies θ̃(0)(α)(τ(x)) = 0.
We can similarly show that θ̃(2)(β)(τ(x)) = 0.

§4. The Mackey structure of surgery obstruction groups

In this section, let R be a principal ideal domain, hence necessarily a commutative
ring, with 1 satisfying the square condition, i.e.

(4.1) r ≡ r2 mod 2R for each r ∈ R.

Let Θ be a finite G-set, ρ : Θ → S(G) a G-map, and S a conjugation invariant
subset of G(2). The map S(G)→ P(S); H 7→ SH = S ∩H, preserves intersection.
Let SGW0(R,G, S,Θ) denote the special Grothendieck–Witt group defined in [10,
p. 2358].

Lemma 4.1 ([10, Proposition 5.4]). If ρ is S-injective then SGW0(R,G, S,Θ) is
a commutative ring possibly without 1, and moreover the canonical map

SGW0(Z, G, S,Θ)→ SGW0(R,G, S,Θ)

of ring change is a ring homomorphism. If ρ is S-bijective then SGW0(R,G, S,Θ)

possesses the unit 1.
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Let

f : S(G)→ P(Θ); H 7→ ΘH ,

be an intersection preserving ρ-compatible G-map and let w : G → {±1} be a
homomorphism. We denote by wH the restriction w|H : H → {±1}.

Definition 4.2 (cf. [10, p. 2357]). For a Θ-positioning Hermitian form MMM =

(M,B, θ), where M is an R-free R[G]-module, B : M ×M → R is a G-invariant
(or w-invariant) symmetric bilinear form, and θ : Θ → M is a G-map, and for
s ∈ S, x ∈ M , we define the trace ∆θ(s) ∈ M of (θ, ρ) at s and the ∇-invariant
∇MMM (x)(s) ∈ R/2R of MMM at (x, s) by

∆θ(s) =
∑
t∈Θ

{θ(t) | ρ(t) 3 s}, ∇MMM (x)(s) = [B(∆θ(s)− x, sx)].

We remark that what we precisely need for the definition is B : M ×M → R/2R

rather than B : M ×M → R.

Lemma 4.3. Let H and K be subgroups of G and let ϕϕϕ = (ϕ,ψ) be a pair con-
sisting of a monomorphism ϕ : H → K which is a composition of inclusion and
conjugation and the associated injective ϕ-map ψ : ΘH → ΘK . Let g1, . . . , gm ∈ K
be a complete set of representatives of K/ϕ(H). Further letMMM = (M,B,α) be a po-
sitioning Hermitian module, where M is an R-free R[H]-module, B : M ×M → R

is an H-invariant (or wH-invariant) symmetric bilinear form, and α : ΘH → M

is an H-map. Then the ∇-invariant of the induced module MMM ′ = ϕϕϕ#M satisfies

∇MMM ′(gi ⊗ϕ x)(s′) =

{
∇MMM (x)(ϕ−1(g−1

i s′gi)) (g−1
i s′gi ∈ ϕ(H)),

0 (g−1
i s′gi /∈ ϕ(H)),

for x ∈M and s′ ∈ SK = S ∩K.

Proof. By definition, MMM ′ = (M ′, B′, α′) is given by M ′ = R[K]⊗R[H],ϕM ,

B′(gj ⊗ϕ x, gk ⊗ϕ y) = δjkB(x, y), and

α′(t′) =
∑
(i,t)

{gi ⊗ α(t) | t ∈ ΘH , giψ(t) = t′},

where x, y ∈M , t′ ∈ ΘK . Let s′ ∈ SK . We have

∇MMM ′(gi ⊗ϕ x)(s′) = B′(∆α′(s
′)− gi ⊗ϕ x, s′(gi ⊗ϕ x)).
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Moreover the following equalities hold:

B′(∆α′(s
′), s′(gi ⊗ϕ x)) = B′(∆α′(s

′), gi ⊗ϕ x)

=
∑
t′∈ΘK

{B′(ψ#α(t′), gi ⊗ϕ x) | ρK(t′) 3 s′}

=
∑
t′∈ΘK

∑
j,t

{B′(gj ⊗ϕ α(t), gi ⊗ϕ x) | t ∈ ΘH , gjψ(t) = t′, gjϕ(ρH(t))g−1
j 3 s′}

=
∑
t′∈ΘK

∑
t

{B(α(t), x) | t ∈ ΘH , giψ(t) = t′, giϕ(ρH(t))g−1
i 3 s′}

=
∑
t∈ΘH

{B(α(t), x) | ϕ(ρH(t)) 3 g−1
i s′gi}

=
∑
t∈ΘH

{B(α(t), x) | ρH(t) 3 ϕ−1(g−1
i s′gi)}.

On the other hand, we have

B′(gi ⊗ϕ x, s′(gi ⊗ϕ x)) =

{
B(x, ϕ−1(g−1

i s′gi)x) (g−1
i s′gi ∈ ϕ(H)),

0 (g−1
i s′gi /∈ ϕ(H)).

Thus we obtain

∇MMM ′(gi ⊗ϕ x)(s′) =

{
∇MMM (x)(ϕ−1(g−1

i s′gi)) (g−1
i s′gi ∈ ϕ(H)),

0 (g−1
i s′gi /∈ ϕ(H)).

Lemma 4.4. If f : S(G)→ P(Θ) is (ρ, S)-saturated then the correspondence

H 7→ SGW0(R,H, SH ,ΘH) (H ∈ S(G))

affords a Mackey functor.

Proof. This follows from the proof of [10, Proposition 11.2] with a modification
using Lemma 4.3.

Lemma 4.5 ([10, Theorem 11.3]). If ρ : Θ→ S(G) is S-bijective and f is (ρ, S)-
saturated then the correspondence

H 7→ SGW0(R,H, SH ,ΘH) (H ∈ S(G))

affords a Green functor. Moreover, the canonical homomorphisms

SGW0(Z, H, SH ,ΘH)→ SGW0(R,H, SH ,ΘH)

of ring change afford a natural transformation of Green functors.
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Let w : G → {±1} be a homomorphism and let ·̄ denote the anti-involution
on Z[G] associated with w. Let λ = (−1)k. Then (̄·, λ) is an anti-structure of Z[G].
Let Q be a conjugation invariant subset of G(2). Suppose

S ⊂ G(2)λ = {g ∈ G(2) | g = λg}, Q ⊂ G(2)−λ = {g ∈ G(2) | g = −λg}.

Then we obtain the double parameter algebra

AAA = (R[G], (̄·, λ), (S)R, G,R[S], (Q)R +R[S])

in the sense of [2, Definition 2.5]. Let Θ(0) and Θ(2) be a finite (G × {±1})-
set and a finite G-set, respectively and let pΘ(0) : Θ(0) → Θ(2) be a G-map.
Throughout this paper we assume that {±1} acts freely on Θ(0) and p−1

Θ(0)(pΘ(0)(t))

coincides with {t,−t} for all t ∈ Θ(0). Let ρΘ(2) : Θ(2) → S(G) be a G-map and
set ΘΘΘ = (Θ(0),Θ(2), pΘ(0) , ρΘ(2)). We use the notation

Wn(AAA,ΘΘΘ)free = Wn(R,G,Q, S,ΘΘΘ)free, Wn(AAA,ΘΘΘ)proj = Wn(R,G,Q, S,ΘΘΘ)proj,

where n = 2k, defined in [2, Definition 3.33].
Let Θ be a finite G-set and ρ : Θ → S(G) a G-map. Let γ : Θ(2) → Θ be a

G-map such that the diagram

(4.2)
Θ(2) ρ(2) //

γ

��

S(G)

Θ

ρ

;;

commutes and

(4.3) γ(Θ(2)) = Θ.

Lemma 4.6. If ρ : Θ → S(G) is S-bijective then Wn(AAA,ΘΘΘ)free is a module over
SGW0(R,G, S,Θ).

Proof. Let MMM1 = (M1, B1, α1) be a Θ-positioning, non-singular Hermitian R[G]-
module with trivial ∇-invariant, whereM is an R-free R[G]-module, B1 : M1×M1

→ R and α1 : Θ→M . LetMMM2 = (M2, B2, q2, α
(0), α(2)) be an object in ∇Q(AAA,ΘΘΘ)

defined in [2, p. 535] such that M2 is a stably R[G]-free module, where B2 :

M2 × M2 → R[G], q2 : M2 → R[G]/((Q)R + R[S]), α(0) : Θ(0) → M2, and
α(2) : Θ(2) →M2/2M2. Then we define

MMM = MMM1 ·MMM2 = (M,B, q, θ(0), θ(2)) ∈ Q(AAA,ΘΘΘ)
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as follows. The triple (M,B, q) is described in [10, §9]. The map θ(0) : Θ(0) →
M = M1 ⊗RM2 is given by

θ(0)(t) = α1(γ(pΘ(0)(t)))⊗R α(0)(t) for t ∈ Θ(0),

and the map θ(2) : Θ(2) →M/2M is given by

θ(2)(t) = α1(γ(t))⊗R α(2)(t)

for t ∈ Θ(2). It is easy to verify the ∇-triviality of MMM , i.e. MMM ∈ ∇Q(AAA,ΘΘΘ). The
correspondence (MMM1,MMM2) 7→MMM affords the module structure

SGW0(R,G, S,Θ)×Wn(AAA,ΘΘΘ)free 7→Wn(AAA,ΘΘΘ)free.

In this section we set

QH = Q ∩H for H ∈ S(G).

Then the map S(G)→ P(Q); H 7→ QH , preserves intersection.
We regard S(G) as a (G× {±1})-set, with the trivial {±1}-action. Let fffΘΘΘ =

(fΘ(0) , fΘ(2)) be a pair of an intersection preserving (G×{±1})-map fΘ(0) : S(G)→
P(Θ(0)); H 7→ Θ

(0)
H , and an intersection preserving ρΘ(2)-compatible G-map fΘ(2) :

S(G)→ P(Θ(2)); H 7→ Θ
(2)
H , satisfying

pΘ(0)(Θ
(0)
H ) ⊂ Θ

(2)
H

for H ∈ S(G). Define p
Θ

(0)
H

: Θ
(0)
H → Θ

(2)
H as the restriction of pΘ(0) , and ρ

Θ
(2)
H

:

Θ
(2)
H → S(H) as the restriction of ρΘ(2) . Then we obtain the double parameter

algebras
AAAH = (R[H], (̄·, λ), (SH)R, H,R[SH ], (QH)R +R[SH ]),

where SH = S ∩H, and the positioning data

ΘΘΘH = (Θ
(0)
H ,Θ

(2)
H , p

Θ
(0)
H

, ρ
Θ

(2)
H

), where H ∈ S(G).

Lemma 4.7. If fΘ(2) : S(G) → P(Θ(2)) is (ρΘ(2) , S)-saturated then the corre-
spondences

H 7→Wn(AAAH ,ΘΘΘH)proj (H ∈ S(G))

and
H 7→Wn(AAAH ,ΘΘΘH)free (H ∈ S(G))

afford Mackey functors, respectively.

Proof. Recalling [10, Proposition 10.3], we will prove the lemma by showing that

H 7→Wn(AAAH ,ΘΘΘH)proj,Wn(AAAH ,ΘΘΘH)free (H ∈ S(G))
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are w-Mackey functors. Most of the proof is already given in the proof of Theo-
rem 12.10 of [10]. It suffices to discuss the part concerning the (H × {±1})-sets
Θ

(0)
H , where H ∈ S(G).

Let H and K be subgroups of G. Given an injective homomorphism ϕ :

H → K, we have the canonical injective homomorphism ϕ± : H × {±1} →
K × {±1} defined by ϕ±(h, ε) = (ϕ(h), ε) for h ∈ H and ε ∈ {±1}. The sets
Θ

(0)
H and Θ

(0)
K are an (H ×{±1})-set and a (K×{±1})-set, respectively, on which

the group {±1} acts freely. Let ψ : Θ
(0)
H → Θ

(0)
K be a ϕ±-map, i.e.

ψ((h, ε)t) = ϕ±(h, ε)ψ(t) (= (ϕ(h), ε)ψ(t))

for h ∈ H, ε ∈ {±1}, and t ∈ Θ
(0)
H . Let ϕϕϕ denote the pair (ϕ,ψ).

An R[K]-module N is usually regarded as an R[K×{±1}]-module via (k, ε)x

= ε(kx) for k ∈ K, ε ∈ {±1}, and x ∈ N . For a pair NNN = (N, β) consisting
of an R[K]-module N and a (K × {±})-map β : Θ

(0)
K → N , we define ϕϕϕ#NNN =

(ϕ#N,ψ#β), where ϕ#N is an R[H]-module and ψ#β : Θ
(0)
H → ϕ#N , so that the

underlying R-module of ϕ#N is the same as N but the H-action on ϕ#N is given
by (h, x) 7→ ϕ(h)x for h ∈ H and x ∈ ϕ#N , and ψ#β(t) = β(ψ(t)) for t ∈ Θ

(0)
H .

For a pairMMM = (M,α) consisting of an R[H]-module M and an (H ×{±1})-
map α : Θ

(0)
H → M , we define ϕϕϕ#MMM = (ϕ#M,ψ#α), where ϕ#M is an R[K]-

module and ψ#α : Θ
(0)
K → ϕ#M , by ϕ#M = R[K]⊗R[H],ϕM and

ψ#α(t) =
∑
[g,t′]

{g ⊗ α(t′) | [g, t′] ∈ K ×H,ϕ Θ
(0)
H such that gψ(t′) = t}

for t ∈ Θ
(0)
K .

These ϕϕϕ#NNN and ϕϕϕ#MMM are simple analogies of those in [10, p. 2347]. Thus the
conclusion of the lemma above follows from the same arguments used in the proof
of Theorem 12.10 of [10].

Let ρ : Θ→ S(G) be a G-map and f : S(G)→ P(Θ); H 7→ ΘH , an intersec-
tion preserving, ρ-compatible G-map such that f(G) = Θ. Let γ : Θ(2) → Θ be a
G-map such that the diagram (4.2) commutes and

(4.4) γ(Θ
(2)
H ) = ΘH (H ∈ S(G)).

Lemma 4.8. If ρ : Θ→ S(G) is S-bijective, f : S(G)→ P(Θ) is (ρ, S)-saturated
and fΘ(2) : S(G)→ P(Θ(2)) is (ρ(2), S)-saturated, then the correspondence

H 7→Wn(AAAH ,ΘΘΘH)free (H ∈ S(G))
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is a module over the Green functor

H 7→ SGW0(R,H, SH ,ΘH) (H ∈ S(G)).

Proof. We can argue in the same way as in the proof of [10, Theorem 12.10] with
a modification using Lemma 4.6.

§5. A deleting-inserting theorem

Deleting (resp. inserting) G-fixed submanifolds from (resp. to) given ambient G-
manifolds is useful for the study of fixed point data of G-manifolds. For example, it
has been applied to the study of the Smith problem on tangential representations
at fixed points on spheres. In this section we prove Theorem 5.1 below. Let G1

p(G)

denote the set of all subgroups H of G possessing normal subgroups P E H such
that P has p-power order and H/P is cyclic, where P is possibly the trivial group.
An element H of G1

p(G) is called a mod-Pp cyclic group. We set

G1(G) =
⋃

p prime

G1
p(G).

If H lies in G1(G) then H is referred to as a mod-P cyclic group.

Theorem 5.1 (Deleting-inserting theorem). Let G be a finite Oliver group and Y
a smooth G-manifold such that the underlying manifold of Y is diffeomorphic to
the disk of dimension n ≥ 5 and Y G 6= ∅. Let F1, . . . , Ft denote all the underlying
spaces of connected components of Y G, and let n1, . . . , nt be non-negative integers.
Suppose the following:

(5.1.1) Y satisfies the weak gap condition on PH(G).
(5.1.2) dimY =H ≥ 3 for any H ∈ G1(G).
(5.1.3) dimY P ≥ 5 for any P ∈ P(G).
(5.1.4) π1(Y P ) is finite and of order prime to |P | for any P ∈ P(G).
(5.1.5) For 1 ≤ i, j ≤ t, ni coincides with nj if some connected component Y Hα of

Y H , H ∈ L(G), contains both Fi and Fj.
(5.1.6) For 1 ≤ i ≤ t, ni is equal to 1 if some connected component Y Hα of Y H ,

H ∈ L(G), contains Fi and ∂Y Hα 6= ∅.
(5.1.7) If dimY P = 2 dimY H for (P,H) ∈ PH(G) then (P,H) ∈ PH2(G) and

dimY >H ≤ dimY H − 2.

Then there exists a smooth G-action on the disk D of dimension n such that

(i) ∂D is G-diffeomorphic to ∂Y ,
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(ii) DG has the form of the disjoint union of copies of Fi’s:

DG =

t∐
i=1

ni∐
j=1

Fi,j (each Fi,j is diffeomorphic to Fi), and

(iii) the normal bundle ν(Fi,j , D) is G-isomorphic to ν(Fi, Y ).

Furthermore if Y H (resp. Y P ) is connected (resp. simply connected) for an element
H ∈ G1(G) (resp. P ∈ P(G)), then one can choose the G-action so that DH (resp.
DP ) is connected (resp. simply connected) for the subgroup H (resp. P ).

Proof. The procedure is the same as that of proving Theorem 1.3 of [11, §5]. Let
fff = (f, b), f : (X, ∂X) → (Y, ∂Y ) and b : T (X) ⊕ εX(Ru) → f∗T (Y ) ⊕ εX(Ru),
be the degree-one G-framed map obtained in Section 4 of [11]. Note that for
P ∈ P(G), Y P is orientable and the map fP : (XP , ∂XP ) → (Y P , ∂Y P ) has
degree one.

The details of the proof differ in some points from the proof of Theorem 1.3
of [11, §5]. The differences occur in Steps A and B below.

Step A. The step converting fP : XP → Y P to a mod p homology equivalence,
where P ∈ P(G) possesses H ∈ S(G) such that 2 dimXH = dimXP and
p is the prime dividing |P |.

Step B. The step converting f : X → Y to a homotopy equivalence, when there
is (at least one) H ∈ S(G) such that 2 dimXH = dimX.

In these steps, the condition (5.1.7) is used to get rid of technical difficulties.

Step A. In this step, we set nP = dimXP , kP = nP /2, λ = (−1)kP , T =

NG(P )/P , w = wXP : T → {±1}, and furthermore

R = Z(p),

S = {g ∈ T (2) | dim(XP )g = kP } (= S(XP )),

Q = {g ∈ T (2) | dim(XP )g = kP − 1} (= Q(XP )),

S = {(XP )g | g ∈ S} (= S(XP )),

Θ(0) = Θ(0)(XP ), Θ(2) = Θ(2)(XP ),

ρ = ρ
(2)

XP
: Θ(2) → S(T ), ΘΘΘ = (Θ(0),Θ(2), pΘ(0) , ρ),

where pΘ(0) : Θ(0) → Θ(2) is the canonical map. Without any loss of generality
we can suppose that fP : XP → Y P is kP -connected. Then by Theorem 3.5
the T -surgery obstruction σ(fP , bP ) to the (T,R)-surgery map (fP , bP ) being a
Z(p)-homology equivalence lies in WnP (R, T, S,Q,ΘΘΘ)free.
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For a subgroup K of T , set SK = S(resTK X
P ), QK = Q(resTK X

P ), SK =

S(resTK X
P ), Θ

(0)
K = Θ(0)(resTK X

P ), Θ
(2)
K = Θ(2)(resTK X

P ), ρK = ρ
(2)

resTK XP
:

Θ
(2)
K → S(K), and

ΘΘΘK = (Θ
(0)
K ,Θ

(2)
K , p

Θ
(0)
K

, ρK).

By Lemmas 2.4, 4.7 and 4.8, the correspondence

K 7→WnP (R,K, SK , QK ,ΘΘΘK)free (K ∈ S(T ))

affords a Mackey functor, and moreover a module over the Green functor

K 7→ SGW0(Z,K, SK ,Θ(2)
K /SK) (K ∈ S(T )).

Thus the argument in [11, §5, Case 2] using the relation between the equivariant
connected sum operation and the Ω(T )-action on the surgery obstruction group (cf.
[11, (5.2)]), works in the present situation. This ensures that by using equivariant
connected sum and G-surgery of isotropy type (P ), we can convert fP : XP → Y P

to a Z(p)-homology equivalence.

Step B. In this case, Y is 1-connected and n = dimY = dimX. We set k = n/2,
λ = (−1)k, w = wX : G → {±1}, R = Z, S = S(X), Q = Q(X), S = S(X),
Θ(0) = Θ(0)(X), Θ(2) = Θ(2)(X), ρ = ρ

(2)
X : Θ(2) → S(G), and

ΘΘΘ = (Θ(0),Θ(2), pΘ(0) , ρ),

where pΘ(0) : Θ(0) → Θ(2) is the canonical map. Without loss of generality we can
suppose that f : X → Y is k-connected. Since

Kk(f ;R) = Ker[f∗ : Hk(X;R)→ Hk(Y ;R)]

is a projective R[G]-module but not necessarily a stably free R[G]-module,
Theorem 6.3 in [2] says that the G-surgery obstruction σ(f, b) to the (G,R)-
surgery map (f, b) being a homotopy equivalence lies in the obstruction group
Wn(R,G, S,Q,ΘΘΘ)proj. But by employing the relation

(1 + (−β)%)K̃0(R[G]) = 0

described in [11, §5, Case 3] and by taking a suitable equivariant connected sum,
we may assume that Kk(f ;R) is a stably free R[G]-module. Then σ(f, b) lies in
the obstruction group Wn(R,G, S,Q,ΘΘΘ)free.

For a subgroup K of G, set SK = S(resGK X), QK = Q(resGK X), SK =

S(resGK X), Θ
(0)
K = Θ(0)(resGK X), Θ

(2)
K = Θ(2)(resGK X), ρK = ρ

(2)

resGK X
: Θ

(2)
K →

S(K), and
ΘΘΘK = (Θ

(0)
K ,Θ

(2)
K , p

Θ
(0)
K

, ρK).
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By Lemmas 2.4, 4.7 and 4.8, the correspondence

K 7→Wn(R,K, SK , QK ,ΘΘΘK)free (K ∈ S(G))

affords a Mackey functor, and a module over the Green functor

K 7→ SGW0(Z,K, SK ,Θ(2)
K /SK) (K ∈ S(G)).

Thus the argument in [11, §5, Case 3] works in the present situation. Hence, by
using equivariant connected sum and G-surgery of isotropy type ({e}), we can
convert f : X → Y to a homotopy equivalence.

Putting all this together, we have proved the theorem above.

§6. Applications of the deleting-inserting theorem

Let G be a finite group. One may conjecture that if V and W are P-matched
L-free real G-modules then V and W are stably Smith equivalent, with which the
following is concerned.

Definition 6.1. We call a real G-module V admissible if it satisfies the following
conditions.

(6.1.1) V satisfies the weak gap condition on PH(G).
(6.1.2) dimV =H ≥ 3 for any H ∈ G1(G).
(6.1.3) dimV P ≥ 5 for any P ∈ P(G).
(6.1.4) If dimV P = 2 dimV H for (P,H) ∈ PH(G) then (P,H) belongs to PH2(G)

and dimV >H ≤ dimV H − 2.

The next lemma is an elaboration of [6, Theorem B]. In [6], we worked with
real G-modules V such that all transformations g : V H → V gHg

−1

are orientation
preserving for g ∈ G and H ∈ S(G) (cf. [6, p. 491 (3.3.6)]).

Lemma 6.2. Let G be an Oliver group, m a positive integer, and V an admissible
real G-module. Then there exists a smooth G-action on the standard sphere SV
such that SGV consists of m points x1, . . . , xm and each Txi(SV ), 1 ≤ i ≤ m, is
isomorphic to V .

Proof. Let Y be the unit disk D(V ) of V with respect to some G-invariant inner
product. Then Y satisfies the conditions (5.1.1)–(5.1.7). By Theorem 5.1, we ob-
tain a smooth G-action on a disk D0 such that D0 does not have G-fixed points
and ∂D0 is G-diffeomorphic to S(V ) = ∂D(V ). On the other hand, by Theo-
rem 5.1 there exists a smooth G-action on a disk Dm such that DG

m consists of m
points x1, . . . , xm, ∂D0 is G-diffeomorphic to S(V ) = ∂D(V ), and the tangential
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representations Txi(Dm) are all isomorphic to V . Then glue D0 and Dm along
the boundary and obtain a smooth G-action on a homotopy sphere ΣV such that
ΣGV consists of m points x1, . . . , xm and Txi(ΣV ) are isomorphic to V . Taking the
equivariant connected sum of copies of ΣV (cf. [7, Proposition 1.3, Example 1.2]),
we can obtain a smooth G-action on the standard sphere as desired.

Lemma 1.1 implies that R[G]⊕3
L is an admissible real G-module. Hence The-

orems 1.3 and 1.4 immediately follow from the lemma above.

Theorem 6.3. Let G be an Oliver group. Let V1, . . . , Vm be L-free real G-modules
any two of which are P-matched. Then there exists an integer N1 such that for any
integer ` ≥ N1, there exists a smooth G-action on the disk D with exactly m G-fixed
points x1, . . . , xm for which the tangential representation Txi(D) is isomorphic to
Vi ⊕ R[G]⊕`L for 1 ≤ i ≤ m.

Proof. Consider the space F = {x1, . . . , xm} with the trivialG-action. We have the
L-free real G-vector bundle ν = ε{x1}(V1)q· · ·qε{xm}(Vm) over F . Clearly resG{e} ν

is isomorphic to εF (Rn) for n = dimV1 and resGP ν is isomorphic to εF (resGP V1)

for any P ∈ P(G). By [14, Theorem 21], there exists an integer N1 as desired.

Proof of Theorem 1.5. Let N1 be the non-negative integer obtained in Theorem 6.3
for the G-modules V1, . . . , Vm. There exists an integer N ≥ N1 such that the real
G-modules Vi ⊕ R[G]⊕NL , 1 ≤ i ≤ m, are all admissible. Then for all ` ≥ N , the
real G-modules

Wi = Vi ⊕ R[G]⊕`L , 1 ≤ i ≤ m,
are also admissible. Again by Theorem 6.3, there exists a smooth G-action on the
disk Y such that Y G = {x1, . . . , xm} and Txi(Y ) ∼= Wi for 1 ≤ i ≤ m. Let Z denote
the double Y ∪∂Y Y of Y . Then Z is a sphere having the G-fixed points x1, . . . , xm,
x′1, . . . , x

′
m such that Txi(Z) ∼= Tx′i(Z) ∼= Wi for 1 ≤ i ≤ m. By Lemma 6.2, there

exist smooth G-actions on spheres Si, 1 ≤ i ≤ m, such that SGi = {x′′i } and
Tx′′i (Si) ∼= Wi. Let S denote the G-manifold obtained as the G-connected sum of
Z and Si, 1 ≤ i ≤ m, at pairs (x′i, x

′′
i ) ∈ Z × Si. Then the underlying manifold of

S is diffeomorphic to the standard sphere and moreover S possesses the properties
required in Theorem 1.5.

Let WP(G) denote the set consisting of [V ]− [W ] ∈ RO(G)L such that V and
W both are L-free and satisfy the weak gap condition on PH2(G). Note that G is
a weak gap group if and only if WP(G)P = RO(G)LP . Since the set

−WP(G) = {−x ∈ RO(G) | x ∈WP(G)}

coincides with WP(G), we can prove the next proposition without difficulties.
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Proposition 6.4. The set WP(G) is a subgroup of RO(G).

Theorem 1.9 can be reformulated as follows:

Theorem 6.5. If H is a subgroup of an Oliver group G then

indGH(WP(H)P) ⊂ Sm(G)LP .

For a pair (P,H) ∈ PH(G), define a Z-linear map fP,H : RO(G)→ Z by

fP,H([V ]) = dimV P − 2 dimV H .

Next define

P+(PH2(G)) = {x ∈ RO(G)L | fP,H(x) ≥ 0 for all (P,H) ∈ PH2(G)},
P−(PH2(G)) = {x ∈ RO(G)L | fP,H(x) ≤ 0 for all (P,H) ∈ PH2(G)}.

It is clear that P−(PH2(G)) = −P+(PH2(G)).

Lemma 6.6. For an arbitrary finite group G, we have

P+(PH2(G)) ∪ P−(PH2(G)) ⊂WP(G).

Proof. Let x = [V ] − [W ] ∈ P+(PH2(G)), where V and W are L-free real G-
modules. By [13, Proposition 2.3], W is isomorphic to a G-submodule of R[G]⊕mL ,
where m = dimW . Thus we can assume W = R[G]⊕mL without any loss of gener-
ality. Then the inequality

fP,H(x) = (dimV P − 2 dimV H)−m(dim (R[G]L)P − 2 dim (R[G]L)H) ≥ 0

for (P,H) ∈ PH2(G) reads

dimV P − 2 dimV H ≥ m(dim (R[G]L)P − 2 dim (R[G]L)H).

Since the right-hand side above is non-negative, V satisfies the weak gap condition
on PH2(G) as also does W = R[G]⊕mL , which ensures that the element x =

[V ]− [W ] belongs to WP(G), hence P+(PH2(G)) ⊂WP(G).
In addition, we have

P−(PH2(G)) = −P+(PH2(G)) ⊂ −WP(G) = WP(G).

This completes the proof.

The next claim immediately follows from Theorem 6.5 and Lemma 6.6.

Theorem 6.7. If H is a subgroup of an Oliver group G then

indGH
(
P+(PH2(H))P ∪ P−(PH2(H))P

)
⊂ Sm(G)LP .
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Proof of Theorem 1.10. It is clear that

RO(H)LH ⊂ P+(PH2(H))H ⊂ P+(PH2(H))P

and
indGH(RO(H)H) ⊂ RO(G)H.

Thus Theorem 1.10 follows from Theorem 6.7.
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