Deleting and Inserting Fixed Point Manifolds under the Weak Gap Condition

Dedicated to Professor Krzysztof Pawałowski on his 60th birthday

by

Masaharu MORIMOTO

Abstract

Let G be a finite group and X a compact smooth manifold. It is of interest which smooth manifolds can be the G -fixed point sets of smooth G -actions on X . The deleting-inserting theorem of this paper is related to this problem and has applications to one-fixed-point actions on spheres as well as to Smith equivalence.

2010 Mathematics Subject Classification: Primary 57S17; Secondary 57R67, 19J25, 20C05. Keywords: equivariant surgery, surgery obstruction, weak gap condition, homology equivalence, Smith equivalence.

§1. Introduction

Let G be a finite group. In this paper, a manifold and a G -manifold mean a smooth manifold and a smooth G -manifold, respectively. Given a manifold X , it is a fundamental problem to study which manifolds and real vector bundles can be the G-fixed point sets and the normal bundles of G-fixed point sets, respectively, of smooth G-actions on X. This problem for the case where X is a disk was studied by B. Oliver [\[15\]](#page-28-1), and for X a sphere in [\[11\]](#page-27-0) under the gap condition. The Smith problem on tangential representations at fixed points on spheres is a part of the problem above and has been studied by various authors. It has been useful for the study of the problem to delete (or insert) manifolds from (or to) a given manifold X as G -fixed point sets. More precisely, for a given G -manifold Y having the diffeomorphism type of X and the G -fixed point set

$$
Y^G = F_1 \amalg \cdots \amalg F_m
$$

Communicated by T. Ohtsuki. Received September 15, 2011. Revised November 20, 2011.

M. Morimoto: Department of Mathematics, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kitaku, Okayama, 700-8530 Japan;

e-mail: morimoto@ems.okayama-u.ac.jp

c 2012 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.

and given integers $1 \leq r_1 \leq \cdots \leq r_n \leq m$, it is of interest whether there exists a G-manifold Z having the diffeomorphism type of X and the G -fixed point set

$$
Z^G = F_{r_1} \amalg \cdots \amalg F_{r_n}
$$

.

A finite group G is called an *Oliver group* if there exists a smooth G -action on a disk without G-fixed points, or equivalently if there never exists a normal series $P \trianglelefteq H \trianglelefteq G$ such that P and G/H have prime power order and H/P is a cyclic group (cf. $[16, 15, 6]$ $[16, 15, 6]$ $[16, 15, 6]$ $[16, 15, 6]$ $[16, 15, 6]$). We studied such deleting-inserting methods for an Oliver group G invoking the gap condition for which the main requirement is

$$
2\dim Y^g < \dim Y
$$

for all non-trivial elements g of G, i.e. $g \neq e$. In the current paper we give a deleting-inserting theorem (Theorem [5.1\)](#page-21-0) for an Oliver group under the weak gap condition which allows the case that $2 \dim Y^g = \dim Y$ for $g \in G$. This theorem yields Theorems [1.3–](#page-2-0)[1.10](#page-4-0) below as applications.

Let $\mathcal{S}(G)$ denote the set of all subgroups of G, and $\mathcal{P}(G)$ the set of all primepower-order subgroups of G, where by convention ${e} \in \mathcal{P}(G)$. For a prime p, let G^{p} denote the smallest normal subgroup N of G such that $|G/N|$ is a power of p, possibly $|G/N| = 1$. Let $\mathcal{L}(G)$ denote the set of all subgroups H containing G^{p} for some prime p. A (finite-dimensional) real G-module V is called $\mathcal{L}\text{-free}$ if $V^L = 0$ for all $L \in \mathcal{L}(G)$. We define a G-submodule $V_{\mathcal{L}}$ of V by

$$
V_{\mathcal{L}} = (V - V^G) - \bigoplus_{p \text{ prime}} (V^{G^{\{p\}}} - V^G).
$$

Let $\mathbb{R}[G]$ denote the group ring of G with real coefficients having the canonical (left) G-action. Recall the following fact.

Lemma 1.1 ([\[6,](#page-27-1) Theorem 2.3]). The real G-module $V = \mathbb{R}[G]_{\mathcal{L}}$ has the following properties:

- $(1.1.1)$ $(1.1.1)$ $V^H = 0$ if and only if $H \in \mathcal{L}(G)$.
- $(1.1.2)$ $(1.1.2)$ dim $V^H \geq |K : H|$ dim V^K for all $H \leq K \in \mathcal{S}(G)$.
- [\(1.1.](#page-1-0)3) The equality dim $V^H = 2 \dim V^K$ holds, where $H \leq K \in \mathcal{S}(G)$, if and only $if |K : H| = 2, |KG^{\{2\}} : HG^{\{2\}}| = 2, \text{ and } HG^{\{q\}} = G \text{ for all odd primes } q.$

By straightforward computation, we can show the next lemma.

Lemma 1.2 ([\[13,](#page-27-2) Proposition 1.9]). If G is an Oliver group then $\dim (\mathbb{R}[G]_{\mathcal{L}})^F$ ≥ 2 for all $P \in \mathcal{P}(G)$.

The following two theorems are an elaboration of [\[6,](#page-27-1) Theorem B]. In particular, for $m = 1$ they give smooth one-fixed-point actions on spheres.

Theorem 1.3. Let G be an Oliver group and m a positive integer. Then for any integer $\ell > 3$ there exists a G-action on the standard sphere S of dimension

$$
d_{\ell} = \ell \cdot \left\{ (|G| - 1) - \sum_{p | |G|} (|G/G^{\{p\}}| - 1) \right\}
$$

with exactly m G-fixed points x_1, \ldots, x_m for which the tangential representations $T_{x_i}(S)$ are all isomorphic to the ℓ -fold direct sum $\R[G]_{\mathcal{L}}^{\oplus \ell}$ of $\R[G]_{\mathcal{L}}.$

Let $\mathcal{PH}(G)$ denote the set of all pairs (P, H) consisting of $P \in \mathcal{P}(G)$ and $H \in \mathcal{S}(G)$ with $P \lt H$. Let $\mathcal{PH}_2(G)$ denote the set of all pairs $(P, H) \in \mathcal{PH}(G)$ such that $|H : P| = 2$, $|HG^{\{2\}} : PG^{\{2\}}| = 2$, and $PG^{\{q\}} = G$ for all odd primes q. For a set A of pairs (H, K) with $H \lt K \in \mathcal{S}(G)$, we say that a real G-module V satisfies the *gap condition* (resp. the *weak gap condition*) on A if

(1.1) $\dim V^H > 2 \dim V^K$ (resp. $\dim V^H \ge 2 \dim V^K$)

for any $(H, K) \in \mathcal{A}$. It should be remarked that if an \mathcal{L} -free real G-module V satisfies the weak gap condition on $\mathcal{PH}_2(G)$ then $V \oplus \mathbb{R}[G]_{\mathcal{L}}^{\oplus m}$ satisfies the weak gap condition on $\mathcal{PH}(G)$ for any $m \ge \dim V$.

Theorem 1.4. Let G be an Oliver group, m a positive integer, and V an $\mathcal{L}\text{-free}$ real G-module satisfying the weak gap condition on $\mathcal{PH}_2(G)$. Then there exists an integer N such that for every integer $\ell \geq N$ there exists a G-action on the standard sphere S with exactly m G-fixed points x_1, \ldots, x_m for which the tangential representations $T_{x_i}(S)$ are all isomorphic to $V \oplus \mathbb{R}[G]_{\mathcal{L}}^{\oplus \ell}$.

Let RO(G) denote the real representation ring. For a subset A of RO(G), $A_{\mathcal{P}}$ stands for the set

$$
A \cap \bigcap_{P \in \mathcal{P}(G)} \text{Ker}[\text{res}_P^G : \text{RO}(G) \to \text{RO}(P)].
$$

Real G -modules V and W are called $Smith$ equivalent if there exists a homotopy sphere Σ with a G-action such that Σ^G consists of exactly two points a and b, and the tangential representations $T_a(\Sigma)$ and $T_b(\Sigma)$ are isomorphic to V and W, respectively. Let $Sm(G)$ denote the *Smith set* of G , i.e.

$$
Sm(G) = \{ [V] - [W] \in RO(G) \mid V \text{ is Smith equivalent to } W \}.
$$

The subset $\text{Sm}(G)_{\mathcal{P}}$ is called the *primary Smith set* of G. For a subset A of RO(G), $A^{\mathcal{L}}$ stands for the set

$$
\{[V] - [W] \in A \mid V^L = 0 \text{ and } W^L = 0 \text{ for all } L \in \mathcal{L}(G) \}.
$$

We say that two real G-modules V and W are P -matched if $\text{res}_{P}^{G}V$ and $\text{res}_{P}^{G}W$ are isomorphic for all $P \in \mathcal{P}(G)$.

Theorem 1.5. Let G be an Oliver group. Let V_1, \ldots, V_m be $\mathcal{L}\text{-free real } G\text{-modules}$ satisfying the weak gap condition on $\mathcal{PH}_2(G)$, of which arbitrary two are P-matched. Then there exists an integer N such that for any integer $\ell \geq N$, there exists a smooth G-action on the standard sphere S with exactly m G-fixed points x_1, \ldots, x_m for which the tangential representation $T_{x_i}(S)$ is isomorphic to $V_i \oplus \mathbb{R}[G]_{\mathcal{L}}^{\oplus \ell}$, $1 \leq$ $i \leq m$.

In the case $m = 2$, we obtain the next theorem on Smith equivalence.

Theorem 1.6. Let G be an Oliver group and let V and W be P -matched and \mathcal{L} free real G-modules both satisfying the weak gap condition on $\mathcal{PH}_2(G)$. Then there exists an integer N such that for any integer $\ell \geq N$ there exists a smooth G-action on the standard sphere S with exactly two G-fixed points x_1 and x_2 for which the tangential representations $T_{x_1}(S)$ and $T_{x_2}(S)$ are isomorphic to $V \oplus \mathbb{R}[G]_{\mathcal{L}}^{\oplus \ell}$ and $W \oplus \mathbb{R}[G]_{\mathcal{L}}^{\oplus \ell}$, respectively. In particular, V and W are stably Smith equivalent.

Let X be a G -manifold and S a smooth G -action on the standard sphere with exactly one G-fixed point a and $T_a(S) \cong \mathbb{R}[G]_{\mathcal{L}}^{\oplus \ell}$. Then the cartesian product $Y =$ $X \times S$ has the diagonal G-action and the G-fixed point set of Y is $X^G \times \{a\}$. For each $x \in X^G$, the tangential representation $T_{(x,a)}(Y)$ is isomorphic to $T_x(X) \oplus \mathbb{R}[G]_{\mathcal{L}}^{\oplus \ell}$. The next theorem follows from Theorems [1.3](#page-2-0) and [1.6.](#page-3-0)

Theorem 1.7. Let G be an Oliver group and (V_i, W_i) a pair of \mathcal{L} -free \mathcal{P} -matched real G-modules V_i and W_i for each $1 \leq i \leq m$. Suppose all V_i and W_i , $1 \leq i \leq m$, satisfy the weak gap condition on $\mathcal{PH}_2(G)$. Let X be a G-manifold with G-fixed point set

$$
X^{G} = \{x_1\} \amalg \cdots \amalg \{x_m\} \amalg F \quad (disjoint\ union)
$$

such that for each $1 \leq i \leq m$, the tangential representation $T_{x_i}(X)$ is isomorphic to V_i , where F is a union of connected components of X^G . Then there exists an integer N such that for any integer $\ell > N$ there exists a G-manifold Y with G-fixed point set X^G for which the underlying space is diffeomorphic to $X \times S(\mathbb{R} \oplus \mathbb{R}[G]_L^{\oplus \ell})$ and the tangential representation $T_{x_i}(Y)$ is isomorphic to $W_i \oplus \mathbb{R}[G]_{\mathcal{L}}^{\oplus \ell}$ for each $1 \leq i \leq m$.

A finite group G is called a *gap group* if each element x of $RO(G)_{\mathcal{P}}^{\mathcal{L}}$ can be written in the form $x = [V] - [W]$ with \mathcal{L} -free real G-modules V and W satisfying the gap condition on $\mathcal{PH}(G)$. We remark that G with $\mathcal{L}(G) \cap \mathcal{P}(G) = \emptyset$ is a gap group if and only if there exists an \mathcal{L} -free real G -module V satisfying the gap condition on $\mathcal{PH}_2(G)$. An Oliver group G is a gap group if G is nilpotent, or $G = G^{\{2\}}$, or $G \neq G^{\{p\}}$ for at least two odd primes p. In the case where G is a gap Oliver group, we could determine the geometrically defined set $\text{Sm}(G)_{\mathcal{P}}^{\mathcal{L}}$ in algebraic terms: $\text{Sm}(G)_{\mathcal{P}}^{\mathcal{L}}$ coincides with $\text{RO}(G)_{\mathcal{P}}^{\mathcal{L}}$ (cf. [\[17,](#page-28-3) p. 850, Realization Theorem]). But it is difficult to determine $\text{Sm}(G)$ or even $\text{Sm}(G)_{\mathcal{P}}^{\mathcal{L}}$ when G is not a gap group. Let us call a finite group G a weak gap group if each element x of $RO(G)_{\mathcal{P}}^{\mathcal{L}}$ can be written in the form $x = [V] - [W]$ with \mathcal{L} -free real G -modules V and W satisfying the weak gap condition on $\mathcal{PH}(G)$. For example, $G = S_5 \times C_2 \times \cdots \times C_2$ is not a gap group but a weak gap group (cf. $[4]$), where S_5 is the symmetric group on five letters and C_2 is a group of order 2. Since $\text{Sm}(G)_{\mathcal{P}}^{\mathcal{L}} \subset \text{RO}(G)_{\mathcal{P}}^{\mathcal{L}}$, we obtain the next result.

Theorem 1.8. If G is a weak gap Oliver group then $\text{Sm}(G)_{\mathcal{P}}^{\mathcal{L}}$ coincides with $RO(G)_{\mathcal{P}}^{\mathcal{L}}$.

Let H be a subgroup of G. For a real H-module V, we denote by $\text{ind}_{H}^{G} V$ the real G-module $\mathbb{R}[G]\otimes_{\mathbb{R}[H]}V$. If V satisfies the weak gap condition on $\mathcal{PH}(H)$ then ind $_H^G V$ satisfies the weak gap condition on $\mathcal{PH}(G)$; if V is L-free then $\text{ind}_H^G V$ is also *L*-free; and if V and W are P-matched real H-modules then $\text{ind}_{H}^{G} V$ and $\text{ind}_{H}^{G} W$ are P -matched real G-modules. Let ind_{H}^{G} denote the induction homomorphism $RO(H) \to RO(G)$. Then the inclusion $\text{ind}_{H}^{G}(\text{RO}(H)_{\mathcal{P}}^{\mathcal{L}}) \subset \text{RO}(G)_{\mathcal{P}}^{\mathcal{L}}$ holds. Thus we obtain the next result from Theorem [1.6.](#page-3-0)

Theorem 1.9. Let H be a subgroup of an Oliver group G.

- $(1.9.1)$ $(1.9.1)$ If V and W are *L*-free P-matched real H-modules satisfying the weak gap condition on $\mathcal{PH}_2(H)$ then $\left[\text{ind}_{H}^G V\right] - \left[\text{ind}_{H}^G W\right]$ belongs to $\text{Sm}(G)_{\mathcal{P}}^{\mathcal{L}}$.
- $(1.9.2)$ $(1.9.2)$ If H is a weak gap group then

 $\text{ind}_{H}^{G}(\text{Sm}(H)_{\mathcal{P}}^{\mathcal{L}}) \subset \text{ind}_{H}^{G}(\text{RO}(H)_{\mathcal{P}}^{\mathcal{L}}) \subset \text{Sm}(G)_{\mathcal{P}}^{\mathcal{L}}.$

Let $\mathcal{H}(G)$ denote the set of all subgroups H of G for which there exists $P \in$ $\mathcal{P}(G)$ such that $P \leq H$ and $|H : P| \leq 2$. For a subset $A \subset \text{RO}(G)$, we define $A_{\mathcal{H}}$ to be the set of all elements $x \in A$ such that $\operatorname{res}^G_H x = 0$ for all $H \in \mathcal{H}(G)$. It is obvious that $A_{\mathcal{H}}^{\mathcal{L}} \subset \mathrm{RO}(G)_{\mathcal{P}}^{\mathcal{L}}$.

Theorem 1.10. If H is a subgroup of an Oliver group G then

$$
ind_H^G(\mathrm{RO}(H)_\mathcal{H}^{\mathcal{L}}) \subset \mathrm{Sm}(G)_\mathcal{H}^{\mathcal{L}} \subset \mathrm{Sm}(G)_\mathcal{P}^{\mathcal{L}}.
$$

This paper is organized as follows. Section 2 is devoted to preparation of basic terms and notation concerning G-manifolds and G-framed maps. In Section 3, we discuss equivariant surgery to obtain homology equivalences on even-dimensional manifolds satisfying the weak gap condition. Theorem [3.5](#page-14-0) describes a surgery obstruction to $\mathbb{Z}_{(p)}$ -homology equivalence in algebraic terms. Section 4 is devoted to the induction theory of equivariant surgery obstruction groups. In Section 5 we prove Theorem [5.1](#page-21-0) which provides a method of deleting or inserting fixed point manifolds. Theorems [1.3–](#page-2-0)[1.5](#page-3-1) and [1.10](#page-4-0) are proved in Section 6.

§2. Preliminaries

For families A, B of sets closed under intersection, and a map $f : A \rightarrow B$, we say that f preserves intersection or is intersection preserving if

$$
f(A_1 \cap A_2) = f(A_1) \cap f(A_2) \quad \text{for all } A_1, A_2 \in \mathcal{A}.
$$

Let Θ be a G-set, $\rho : \Theta \to \mathcal{S}(G)$ a G-map, where G acts on $\mathcal{S}(G)$ by conjugation, and S a conjugation invariant subset of G consisting of elements of order 2. The group G acts on S by conjugation. The set Θ is called (ρ, S) -simple if for each $t \in \Theta$, the set $\rho(t)$ contains at most one element in S.

Definition 2.1. For a (ρ, S) -simple G-set Θ , we define the *S*-contraction $(\Theta/S, \rho/S)$ of (Θ, ρ) as follows. Let ∼s denote the equivalence relation on Θ such that $t \sim_S t'$ if and only if $\rho(t) \cap S = \rho(t') \cap S$. Denote by Θ/S the set of equivalence classes with respect to \sim_S . The map $\rho/S : \Theta/S \to \mathcal{S}(G)$ is defined by

$$
\rho/S([t]) = \{e\} \cup (\rho(t) \cap S)
$$

for the ∼s-equivalence class [t] of $t \in \Theta$. Then Θ/S has a canonical G-action and $\rho/S : \Theta/S \to \mathcal{S}(G)$ is a G-map.

A G-map $\rho : \Theta \to \mathcal{S}(G)$ is called S-injective (resp. S-bijective) if for each $s \in S$, there exists at most one (resp. exactly one) element $t \in \Theta$ such that $\rho(t)$ contains s.

Let $\mathfrak{P}(\Theta)$ denote the set of all subsets of Θ . Clearly $\mathfrak{P}(\Theta)$ has the induced G-action. A G-map $f : \mathcal{S}(G) \to \mathfrak{P}(\Theta)$ is called ρ -compatible if $\rho(f(H)) \subset \mathcal{S}(H)$ for all $H \in \mathcal{S}(G)$. A G-map $f : \mathcal{S}(G) \to \mathfrak{P}(\Theta)$ is called (ρ, S) -saturated if

(2.1) $f(H) \supset \{t \in \Theta \mid \rho(t) \cap S \cap H \neq \emptyset\}$ for all $H \in \mathcal{S}(G)$.

It is straightforward to verify the next lemma.

Lemma 2.2. Let $f : S(G) \to \mathfrak{P}(\Theta)$ be an intersection preserving ρ -compatible G-map and set $\Theta_H = f(H)$ and $\rho_H = \rho|_{\Theta_H} : \Theta_H \to \mathcal{S}(H)$.

- [\(2.2.](#page-5-0)1) If Θ is (ρ, S) -simple, then Θ_H is $(\rho_H, S \cap H)$ -simple for $H \in \mathcal{S}(G)$ and the associated map $\rho/S : \Theta/S \to \mathcal{S}(G)$ is S-injective.
- [\(2.2.](#page-5-0)2) If $\rho : \Theta \to \mathcal{S}(G)$ is S-injective then $\rho_H : \Theta_H \to \mathcal{S}(H)$ is $(S \cap H)$ -injective for $H \in \mathcal{S}(G)$.
- [\(2.2.](#page-5-0)3) If $\rho : \Theta \to \mathcal{S}(G)$ is S-bijective and $f : \mathcal{S}(G) \to \mathfrak{P}(\Theta)$ is (ρ, S) -saturated then $\rho_H : \Theta_H \to \mathcal{S}(H)$ is $(S \cap H)$ -bijective for $H \in \mathcal{S}(G)$.

Let X be a compact, connected G-manifold, possibly with boundary ∂X . The singular set X_{sing} of X is defined by

$$
X_{\text{sing}} = \bigcup_{g \in G \smallsetminus \{e\}} X^g.
$$

We say that X satisfies the *weak gap condition* if

(2.2)
$$
\dim X_{\text{sing}} \leq \frac{1}{2} \dim X.
$$

In the case where X has even dimension $2k$ and satisfies the weak gap condition, we say that X satisfies the k -tame condition if

(2.3)
$$
\dim X^K \le k - 2
$$

whenever $H < K \in \mathcal{S}(G)$, $\dim X^H = k$, and $H = \bigcap_{x \in X^H} G_x$,

where G_x stands for the isotropy subgroup of G at the point x. Let $G(2)$ denote the set of all elements of G of order 2. In the case where X has even dimension $2k$ and satisfies the weak gap condition, we say that X satisfies the $G(2)$ -condition if

(2.4)
$$
|H| = 2
$$
 whenever $H \in \mathcal{S}(G)$ and $2 \dim X^H = \dim X$.

For a subgroup H and an integer $\ell \geq 0$, let $\pi_0(X^H, \ell)$ denote the set of all connected components of dimension ℓ of X^H . For $\alpha \in \pi_0(X^H, \ell)$, we denote by X_{α} or X_{α}^H the underlying space of α . Each $\alpha \in \pi_0(X^H, \ell)$ determines the group

$$
\rho_X(\alpha) = \bigcap_{x \in X_\alpha} G_x.
$$

Definition 2.3. Let X be a compact, connected G -manifold, possibly with boundary, satisfying the weak gap condition. Then we set

 $S(X) = \{g \in G \mid 2 \dim X^g = \dim X\},\$ $Q(X) = \{g \in G \mid \dim X^g = [(\dim X - 1)/2]\},\$ $\Sigma(X) = \{ \alpha \mid H \in \mathcal{S}(G), \ \alpha \in \pi_0(X^H, \dim X/2), \text{ and } \rho_X(\alpha) = H \},\$

where for a real number x, $[x]$ denotes the greatest integer not exceeding x. The $(\dim X/2)$ -dimensional singular structure $\mathfrak{S}(X)$ associated with X is defined to be the set of all X_s , $s \in \Sigma(X)$. For each $s \in \Sigma(X)$, the manifold X_s has the unique orientation class t_s in $H_k(X_s, \partial X_s; \mathbb{Z}_2)$. The G-set $\Theta^{(2)}(X)$ is defined to be the set of all t_s , where s runs over $\Sigma(X)$. The correspondence $s \mapsto t_s$ gives a bijection $\Sigma(X) \to \Theta^{(2)}(X)$. The map $\rho_X^{(2)} : \Theta^{(2)}(X) \to \mathcal{S}(G)$ is defined by $\rho_X^{(2)}(t_s) = \rho_X(s)$ for $s \in \Sigma(X)$.

The proof of the next lemma is straightforward.

Lemma 2.4. Let X be a G-manifold as in Definition [2.3](#page-6-0). Suppose that X has even dimension $n = 2k$ and satisfies the $G(2)$ -condition. Then the following hold:

- $(2.4.1) \Theta^{(2)}(X)$ $(2.4.1) \Theta^{(2)}(X)$ is $(\rho_X^{(2)}, S(X))$ -simple.
- $(2.4.2)$ $(2.4.2)$ $\rho_X^{(2)}/S(X): \Theta^{(2)}(X)/S(X) \to S(G)$ is $S(X)$ -bijective.
- [\(2.4.](#page-7-0)3) For $H \in \mathcal{S}(G)$, $S(\text{res}^G_H X)$ coincides with $S(X) \cap H$. Thus the map $H \mapsto$ $S(\operatorname{res}^G_HX)$ is intersection preserving.
- $(2.4.4)$ $(2.4.4)$ For $H \in \mathcal{S}(G)$, $\Theta^{(2)}(\text{res}_H^G X)$ coincides with $\{t \in \Theta^{(2)}(X) \mid \rho_X^{(2)}(t) \subset H\}.$ Hence the map $f : S(G) \to \mathfrak{P}(\Theta^{(2)}(X)); H \mapsto \Theta^{(2)}(\text{res}^G_H X)$, is intersection preserving, $\rho_X^{(2)}$ -compatible, and $(\rho_X^{(2)}, S(X))$ -saturated, and furthermore $f(G) = \Theta^{(2)}(X)$.
- [\(2.4.](#page-7-0)5) The canonical map $\gamma : \Theta^{(2)}(X) \to \Theta^{(2)}(X)/S(X)$ is a G-map, the diagram

commutes, and

$$
\gamma(\Theta^{(2)}(X)) = \Theta^{(2)}(X)/S(X).
$$

Let X be a compact, connected, oriented G-manifold of dimension $n \geq 5$, possibly with boundary ∂X . Let R be a commutative ring with 1 and with trivial anti-involution $\overline{\cdot}$. The group ring R[G] has the anti-involution $\overline{\cdot}$ derived from the orientation homomorphism $w_X : G \to \{\pm 1\}$ of X, i.e.

$$
\Bigl(\sum_{g\in G}r_gg\Bigr)^{-}=\sum_{g\in G}r_gw_X(g)g^{-1},
$$

where $r_q \in R$. Let \widetilde{X} denote the universal covering space of X. Let \widetilde{G} denote the fundamental group $\pi_1(EG \times_G X)$, where EG is a contractible G-CW complex with

a free G-action. We have the exact sequence

$$
1 \to \pi_1(X) \to \widetilde{G} \to G \to 1.
$$

If X^G is nonempty then this sequence splits, i.e. $\widetilde{G} = \pi_1(X) \rtimes G$.

Let Y be a compact, connected, oriented G -manifold of dimension n , possibly with boundary ∂Y . Let $f = (f, b)$ be a G-framed map, where $f : (X, \partial X) \rightarrow$ $(Y, \partial Y)$ is a G-map such that $f : X \to Y$ is 1-connected, and $b : T(X) \oplus f^* \eta \to f^* \xi$ is a real G-vector bundle isomorphism for real G-vector bundles η and ξ over Y such that $\eta \supset \varepsilon_Y(\mathbb{R}^n)$ (cf. [\[2,](#page-27-4) Lemma 6.1]). Then **f** is covered by the induced \widetilde{G} -framed map $\widetilde{f} = (\widetilde{f}, \widetilde{b})$ consisting of a $\widetilde{\varphi}$ -map $\widetilde{f} : (\widetilde{X}, \partial \widetilde{X}) \to (\widetilde{Y}, \partial \widetilde{Y})$ and a real \widetilde{G} -vector bundle isomorphism $\widetilde{b} : T(\widetilde{X}) \oplus \widetilde{f}^*\widetilde{\eta} \to \widetilde{f}^*\widetilde{\xi}$, where \widetilde{Y} is the universal covering space of Y, $\tilde{\varphi}$ is the canonical homomorphism $\tilde{G} = \pi_1(EG \times_G X) \rightarrow$ $\pi_1(EG \times_G Y) = \widehat{G}$, and $\widetilde{\eta}$ and $\widetilde{\xi}$ are the real \widehat{G} -vector bundles over \widetilde{Y} induced from η and ξ , respectively:

$$
\begin{array}{ccc}\n\widetilde{X} & \xrightarrow{f} & \widetilde{Y} \\
\pi_{\widetilde{X},X} & & \pi_{\widetilde{Y},Y} \\
X & \xrightarrow{f} & Y\n\end{array}
$$

We note that the map $\tilde{f}: (\tilde{X}, \partial \tilde{X}) \to (\tilde{Y}, \partial \tilde{Y})$ is not necessarily of degree one.

§3. G-surgery maps on even-dimensional manifolds

Let X be a compact, connected, oriented G-manifold of even dimension $n =$ $2k \geq 6$, possibly with boundary ∂X . Throughout this section, we assume that X satisfies the weak gap condition and the k -tame condition. Let R be a commutative ring with 1 and with trivial anti-involution $\overline{\cdot}$. We set $\lambda = (-1)^k$, $S = S(X)$ and $Q = Q(X)$; further define

$$
(Q)_R = R[Q] + \{x - \lambda \overline{x} \mid x \in R[G]\}, \quad (S)_R = R[S] + \{x + \lambda \overline{x} \mid x \in R[G]\}.
$$

Then

$$
\mathbf{A}_X = (R[G], (\bar{\cdot}, \lambda), (S)_R, G, R[S], (Q)_R + R[S])
$$

is a double parameter algebra in the sense of [\[2,](#page-27-4) Definition 2.5].

Let $\mathfrak{S} = \{X_s \mid s \in \Sigma\}$ be a set of compact connected k-dimensional neat submanifolds of X, where Σ is a G-set, such that $gX_s = X_{gs}$ for all $g \in G$ and $s \in \Sigma$. Set

$$
X_{\mathfrak{S}} = \bigcup_{s \in \Sigma} X_s.
$$

In this paper, we assume that $\mathfrak S$ satisfies the k-tame condition, i.e.

(3.1)
$$
X_s \cap X_t
$$
 is a neat submanifold of X_s of dimension $\leq k-2$

for all $s, t \in \Sigma$, $s \neq t$. If $\mathfrak{S} \supset \mathfrak{S}(X)$ then we call \mathfrak{S} a k-singular structure of X. The index set Σ decomposes into the disjoint union of Σ_+ and Σ_- consisting of all elements $s \in \Sigma$ such that X_s is orientable and non-orientable, respectively. Let $\Theta^{(0)}(\mathfrak{S})$ denote the set of all generators of $H_k(X_s, \partial X_s; \mathbb{Z})$, where s runs over Σ_+ , and let $\Theta^{(2)}(\mathfrak{S})$ denote the set of all generators of $H_k(X_s, \partial X_s; \mathbb{Z}_2)$, where s runs over Σ. The sets $\Theta^{(0)}(\mathfrak{S})$ and $\Theta^{(2)}(\mathfrak{S})$ have canonical actions of $G \times {\pm 1}$ and G , respectively. In addition, there is a canonical map $p_{\mathfrak{S}} : \Theta^{(0)}(\mathfrak{S}) \to \Theta^{(2)}(\mathfrak{S})$; for a generator x of $H_k(X_s, X_s; \mathbb{Z})$, $p_{\mathfrak{S}}(x)$ is the generator of $H_k(X_s, X_s; \mathbb{Z}_2)$. We have a natural one-to-one correspondence from Σ to $\Theta^{(2)}(\mathfrak{S})$. Thus we often identify $\Theta^{(2)}(\mathfrak{S})$ with Σ as *G*-sets. On the other hand, we may not have a $(G \times {\pm 1})$ bijection from $\Theta^{(0)}(\mathfrak{S})$ to $\Sigma_+ \times \{\pm 1\}$, although there is a non-equivariant bijection between these sets. Let $\rho_{\mathfrak{S}}$ denote the map $\Theta^{(2)}(\mathfrak{S}) = \Sigma \to \mathcal{S}(G)$ defined by

$$
\rho_{\mathfrak{S}}(s) = \bigcap_{x \in X_s} G_x \quad (s \in \Sigma).
$$

Let $\Theta(\mathfrak{S})$ denote the datum

$$
(\Theta^{(0)}(\mathfrak{S}), \Theta^{(2)}(\mathfrak{S}), p_{\mathfrak{S}}, \rho_{\mathfrak{S}}).
$$

Set

$$
\widetilde{Q} = Q_{\widetilde{X}} \ (= \{ g \in \widetilde{G}(2) \mid \dim \widetilde{X}^g = k - 1 \}),
$$

$$
\widetilde{S} = S_{\widetilde{X}} \ (= \{ g \in \widetilde{G}(2) \mid \dim \widetilde{X}^g = k \}),
$$

$$
(\widetilde{Q})_R = R[\widetilde{Q}] + \{ x - \lambda \overline{x} \mid x \in R[\widetilde{G}] \}, \quad (\widetilde{S})_R = R[\widetilde{S}] + \{ x + \lambda \overline{x} \mid x \in R[\widetilde{G}] \}.
$$

Then

$$
\widetilde{\boldsymbol{A}} = \boldsymbol{A}_{\widetilde{X}} = (R[\widetilde{G}], (\overline{\cdot}, \lambda), (\widetilde{S})_R, \widetilde{G}, R[\widetilde{S}], (\widetilde{Q})_R + R[\widetilde{S}])
$$

is a double parameter algebra.

Let $\mathfrak{S} = \{X_s \mid s \in \Sigma\}$ be a k-singular structure of X as above. Consider the set

$$
\widetilde{\mathfrak{S}} = \{ \widetilde{X}_t \mid t \in \widetilde{\Sigma} \}
$$

of all connected components \widetilde{X}_t of $\pi^{-1}_{\widetilde{X}_t}$ $\overline{\tilde{X}}_{,X}^{-1}(X_s), s \in \Sigma$, where $\pi_{\tilde{X},X}$ is the canonical projection $\widetilde{X} \to X$. Here we have canonical surjections $\widetilde{\mathfrak{S}} \to \mathfrak{S}$ and $\widetilde{\Sigma} \to \Sigma$. We call $\widetilde{\mathfrak{S}}$ the k-singular structure of \widetilde{X} induced from \mathfrak{S} . Note that \widetilde{X} and \widetilde{X}_t are possibly non-compact. The index set $\widetilde{\Sigma}$ decomposes into the disjoint union of $\widetilde{\Sigma}_+$ and $\widetilde{\Sigma}_-$ consisting of all elements $t \in \widetilde{\Sigma}$ such that \widetilde{X}_t is orientable and non-orientable, respectively. Let $\Theta^{(0)}(\widetilde{\mathfrak{S}})$ denote the set of all generators of

 $H_k^{\text{loc-fin.}}(\widetilde{X}_t, \partial \widetilde{X}_t; \mathbb{Z})$, where t runs over $\widetilde{\Sigma}_+$, and let $\Theta^{(2)}(\widetilde{\mathfrak{S}})$ denote the set of all generators of $H_k^{\text{loc-fin.}}(\widetilde{X}_t, \partial \widetilde{X}_t; \mathbb{Z}_2)$, where t runs over $\widetilde{\Sigma}$. The sets $\Theta^{(0)}(\widetilde{\mathfrak{S}})$ and $\Theta^{(2)}(\widetilde{\mathfrak{S}})$ have canonical actions of $\widetilde{G} \times \{\pm 1\}$ and \widetilde{G} , respectively. In addition, we have the canonical map $p_{\tilde{\mathfrak{S}}} : \Theta^{(0)}(\tilde{\mathfrak{S}}) \to \Theta^{(2)}(\tilde{\mathfrak{S}})$. Define the map

$$
\rho_{\widetilde{\mathfrak{S}}} : \Theta^{(2)}(\widetilde{\mathfrak{S}}) = \widetilde{\mathfrak{S}} = \widetilde{\Sigma} \to \mathcal{S}(\widetilde{G}) \quad \text{by} \quad \rho_{\widetilde{\mathfrak{S}}}(t) = \bigcap_{x \in \widetilde{X}_t} \widetilde{G}_x.
$$

Let $\Theta(\widetilde{\mathfrak{S}})$ denote the datum

$$
(\Theta^{(0)}(\widetilde{\mathfrak{S}}), \Theta^{(2)}(\widetilde{\mathfrak{S}}), p_{\widetilde{\mathfrak{S}}}, \rho_{\widetilde{\mathfrak{S}}}).
$$

The next lemma is well-known.

Lemma 3.1. Let $f = (f, b)$ be a G-framed map and \mathfrak{S} a k-singular structure of X as above. Suppose the map $f : (X, \partial X) \to (Y, \partial Y)$ has degree one. Then f can be converted to a G-framed map $f' = (f', b')$, where $f' : (X', \partial X') \to (Y, \partial Y)$ and $b': T(X') \oplus f'^*\eta \to f'^*\xi$, such that $f': X' \to Y$ is k-connected, by a G-surgery on X relative to $X_{\text{sing}} \cup X_{\mathfrak{S}} \cup \partial X$.

First, note that the degree of the resulting map $f' : (X', \partial X') \to (Y, \partial Y)$ above is 1. Second, note that if $f : X \to Y$ is k-connected then the mapping cylinder $M_{\tilde{f}}$ of $\tilde{f}: \tilde{X} \to \tilde{Y}$ is the universal covering space of the mapping cylinder M_f of $f: X \to Y$, the group $\pi_{k+1}(\tilde{f})$ can be identified with $\pi_{k+1}(f)$, and the canonical homomorphism $\pi_{k+1}(\tilde{f}) \to K_k(\tilde{f};\mathbb{Z})$ is an isomorphism, where $\pi_{k+1}(\widetilde{f}) = \pi_{k+1}(M_{\widetilde{f}}, \widetilde{X})$ and

$$
K_k(\widetilde{f};\mathbb{Z})=\mathrm{Ker}[\widetilde{f}_*:H_k(\widetilde{X};\mathbb{Z})\to H_k(\widetilde{Y};\mathbb{Z})].
$$

Now let R be Z or $\mathbb{Z}_{(p)}$ for a prime p. We denote by $\mathcal{P}_p(G)$ the set of all subgroups of G with p-power order. Thus we have

$$
\mathcal{P}(G) = \bigcup_{p \text{ prime}} \mathcal{P}_p(G).
$$

Let $f = (f, b), f : (X, \partial X) \to (Y, \partial Y)$ be a G-framed map and G a k-singular structure of X as above. Then let $\mathbf{\vec{f}} = (f, b), \, f : (\tilde{X}, \partial \tilde{X}) \to (\tilde{Y}, \partial \tilde{Y})$, denote the \widetilde{G} -framed map induced from f , where \widetilde{X} and \widetilde{Y} are the universal covering spaces of X and Y, respectively. Let \mathfrak{S} denote the induced k-singular structure of X.

Definition 3.2. Let f be the G-framed map above. We define the $R[\widetilde{G}]$ -module $M(\tilde{f};R)$ by

$$
M(\widetilde{f};R)=\pi_{k+1}(\widetilde{f})\otimes R.
$$

We call f a (G, R) -surgery map if the following conditions are fulfilled:

- $(3.2.1)$ $(3.2.1)$ $f: X \rightarrow Y$ is of degree one.
- $(3.2.2)$ $(3.2.2)$ $f: X \rightarrow Y$ is 1-connected.
- [\(3.2.](#page-10-0)3) $f_*: H_i(X; R) \to H_i(Y; R), j < k$, are all isomorphisms, and $f_*: H_k(X; R)$ \rightarrow $H_k(Y;R)$ is surjective.
- [\(3.2.](#page-10-0)4) $\partial f_* : H_j(\partial X; R) \to H_j(\partial Y; R)$, $j \leq n 1$, are all isomorphisms.
- [\(3.2.](#page-10-0)5) $f: X \to Y$ is k-connected, or the canonical map $M(\tilde{f}; R) \otimes_{R[\tilde{G}]} R[G] \to$ $K_k(f; R)$ is an isomorphism, where

$$
K_k(f;R) = \text{Ker}[f_* : H_k(X;R) \to H_k(Y;R)].
$$

- [\(3.2.](#page-10-0)6) In the case $R = \mathbb{Z}$, $f^P : X^P \to Y^P$ are \mathbb{Z}_q -homology equivalences for all subgroups $P \in \mathcal{P}(G)$ with $P \neq \{e\}$, and primes q dividing |P|. In the case $R = \mathbb{Z}_{(p)}, f^P : X^P \to Y^P$ are \mathbb{Z}_p -homology equivalences for all $P \in \mathcal{P}_p(G)$ with $P \neq \{e\}.$
- $(3.2.7)$ $(3.2.7)$ $\chi(X^g) = \chi(Y^g)$ for all $g \in G, g \neq e$.

We have the Poincaré pairing

$$
H_k^{\text{loc-fin.}}(\widetilde{X}, \partial \widetilde{X}; \mathbb{Z}) \times H_k(\widetilde{X}; \mathbb{Z}) \to \mathbb{Z}.
$$

Passing along the canonical homomorphisms

$$
\pi_{k+1}(\widetilde{f}) \to H_{k+1}(M_{\widetilde{f}}, \widetilde{X}; \mathbb{Z}) \to K_k(\widetilde{f}; \mathbb{Z}) \subset H_k(\widetilde{X}; \mathbb{Z}) \to H_k^{\text{loc-fin.}}(\widetilde{X}, \partial \widetilde{X}; \mathbb{Z})
$$

we obtain the intersection form \widetilde{B}_0 : $M(\widetilde{f};R) \times M(\widetilde{f};R) \to R$, and hence the G -equivariant intersection form

$$
\widetilde{B}: M(\widetilde{f};R) \times M(\widetilde{f};R) \to R[\widetilde{G}]; \ \widetilde{B}(x,y) = \sum_{g \in \widetilde{G}} \widetilde{B}_0(x,g^{-1}y)g.
$$

Let $x \in \pi_{k+1}(\widetilde{f})$. Then x is represented by a commutative diagram

$$
\begin{array}{ccc}\nS^k & \xrightarrow{\alpha} & \widetilde{X} \\
\downarrow & & \downarrow \widetilde{f} \\
D^{k+1} & \longrightarrow \widetilde{Y}\n\end{array}
$$

By virtue of this diagram and the bundle isomorphism b , the induced bundle $\alpha^* T(\tilde{X})$ is stably trivial. Thus x is represented by an immersion $\alpha : S^k \to \tilde{X}$ with trivial normal bundle. Let q be an element in \tilde{G} of order 2 satisfying dim $\tilde{X}^g \leq k-2$. Then the regular homotopy classes of immersions $S^k \to \tilde{X}$ correspond in a oneto-one way to the regular homotopy classes of immersions $S^k \to \tilde{X} \setminus \tilde{X}^g$. Hence

Theorem 5.2 of [\[18\]](#page-28-4) provides the $\langle q \rangle$ -equivariant self-intersection form

$$
\widetilde{q}_{\langle g \rangle} : \pi_{k+1}(\widetilde{f}) \to \mathbb{Z}[\langle g \rangle]/\{a - \lambda \overline{a} \mid a \in \mathbb{Z}[\langle g \rangle]\}.
$$

Assembling the data of the \tilde{G} -equivariant intersection form \tilde{B} and the $\langle q \rangle$ -equivariant self-intersection forms $\tilde{q}_{(q)}$ (cf. [\[2,](#page-27-4) Definition 4.11]), we obtain the \tilde{G} -equivariant self-intersection form

$$
\widetilde{q}: M(\widetilde{f};R) \to R[\widetilde{G}]/((Q_{\widetilde{X}})_{R} + R[S_{\widetilde{X}}]) \quad \text{(cf. [2, p. 567, \ell. 3]).}
$$

For a generator $\alpha \in H_k^{\text{loc-fin.}}(\widetilde{X}_t, \partial \widetilde{X}_t; \mathbb{Z})$, where $t \in \widetilde{\Sigma}_+$, we have the element $j_*\alpha \in H_k^{\text{loc-fin.}}(\widetilde{X}, \partial \widetilde{X}; \mathbb{Z}),$

where $j_* : H_k^{\text{loc-fin.}}(\tilde{X}_t, \partial \tilde{X}_t; \mathbb{Z}) \to H_k^{\text{loc-fin.}}(\tilde{X}, \partial \tilde{X}; \mathbb{Z})$ is the canonical homomorphism. Via the intersection paring (or the Poincaré pairing up to sign)

$$
H_k^{\text{loc-fin.}}(\widetilde{X}, \partial \widetilde{X}; \mathbb{Z}) \times H_k(\widetilde{X}; \mathbb{Z}) \to \mathbb{Z}
$$

and the canonical map $M(\tilde{f}; \mathbb{Z}) \to H_k(\tilde{X}; \mathbb{Z}), j_*\alpha$ determines an element

$$
\widetilde{\theta}^{(0)}(\alpha) \in M(\widetilde{f}; \mathbb{Z})^{\#}, \quad \text{where} \quad M(\widetilde{f}; \mathbb{Z})^{\#} = \text{Hom}_{\mathbb{Z}[\widetilde{G}]}(M(\widetilde{f}; \mathbb{Z}), \mathbb{Z}[\widetilde{G}]).
$$

Thus we obtain the $(\widetilde{G} \times \{\pm 1\})$ -map

$$
\widetilde{\theta}^{(0)} : \Theta^{(0)}(\widetilde{\mathfrak{S}}) \to M(\widetilde{f};R)^{\#}, \quad \text{where} \quad M(\widetilde{f};R)^{\#} = \text{Hom}_{R[\widetilde{G}]}(M(\widetilde{f};R),R[\widetilde{G}]).
$$

Similarly we obtain the \widetilde{G} -map

$$
\widetilde{\theta}^{(2)} : \Theta^{(2)}(\widetilde{\mathfrak{S}}) \to M(\widetilde{f}; R/2R)^{\#},
$$

where

$$
M(\tilde{f};R/2R)^{\#} = \text{Hom}_{R/2R[\widetilde{G}]}(M(\tilde{f};R/2R),R/2R[\widetilde{G}]).
$$

Putting all this together, we obtain the surgery module

$$
\boldsymbol{M}_{\widetilde{\boldsymbol{f}},\widetilde{\mathfrak{S}}}=(M(\widetilde{f};R),\widetilde{B},\widetilde{q},\widetilde{\theta}^{(0)},\widetilde{\theta}^{(2)}).
$$

By the hypothesis $M(\tilde{f}; R) \otimes_{R[\tilde{G}]} R[G] = K_k(f; R)$, we obtain the commutative diagram

$$
\Theta^{(0)}(\widetilde{\mathfrak{S}}) \longrightarrow H_k^{\text{loc-fin.}}(\widetilde{X}, \partial \widetilde{X}; R) \longrightarrow M(\widetilde{f}; R)^{\#}
$$
\n
$$
\Theta^{(2)}(\widetilde{\mathfrak{S}}) \longrightarrow H_k^{\text{loc-fin.}}(\widetilde{X}, \partial \widetilde{X}; R/2R) \longrightarrow M(\widetilde{f}; R/2R)^{\#}
$$
\n
$$
\downarrow \qquad \qquad \downarrow
$$
\n
$$
\Theta^{(2)}(\mathfrak{S}) \longrightarrow K_k(f, \partial f; R/2R) \longrightarrow K(f; R/2R)^{\#}
$$

Moreover we note

$$
K_k(f, \partial f; R) = K_k(f; R), \quad K_k(f, \partial f; R/2R) = K_k(f; R/2R),
$$

\n $K_k(f; R)^{\#} = K_k(f; R) \quad \text{and} \quad K_k(f; R/2R)^{\#} = K_k(f; R/2R).$

Thus by the hypothesis $M(\tilde{f};R) \otimes_{R[\tilde{G}]} R[G] = K_k(f;R)$, we obtain the surgery module

$$
\boldsymbol{M_{f,\mathfrak{S}}} = \boldsymbol{M_{\widetilde{f},\widetilde{\mathfrak{S}}}} \otimes_{R[\widetilde{G}]} R[G] = (K_k(f;R), B_f, q_f, \theta^{(0)}, \theta^{(2)}),
$$

where

$$
B_f: K_k(f; R) \times K_k(f; R) \to R[G]
$$

is the G-equivariant intersection form,

$$
q_{\mathbf{f}}: K_k(f; R) \to R[G]/((Q)_R + R[S])
$$

is the G-equivariant self-intersection form, and

$$
\theta^{(0)} : \Theta^{(0)}(\mathfrak{S}) \to K_k(f;R)^\# = K_k(f;R),
$$

\n $\theta^{(2)} : \Theta^{(2)}(\mathfrak{S}) \to K_k(f;R/2R)^\# = K_k(f;R/2R)$

are positioning maps (cf. $[2, §5, pp. 563–564]$ $[2, §5, pp. 563–564]$).

By similar arguments to [\[2,](#page-27-4) p. 575, ℓ . 24 – p. 578, ℓ . 2], we obtain the next lemma.

Lemma 3.3. Let **f** be a (G, R) -surgery map and \mathfrak{S} a k-singular structure as above. If there exists an $R[\widetilde{G}]$ -submodule \widetilde{L} of $M(\widetilde{f};R)$ satisfying the conditions below then **f** can be converted to a (G, R) -surgery map $f' = (f', b')$, where f' : $(X', \partial X') \to (Y, \partial Y)$ and $b' : T(X') \oplus f'^* \eta \to f'^* \xi$, such that $f' : X' \to Y$ is an R-homology equivalence via G-surgery on X relative to $X_{sing} \cup X_{\mathfrak{S}} \cup \partial X$.

- [\(3.3.](#page-13-0)1) $\widetilde{\theta}^{(0)}(\alpha)(\widetilde{L})=0$ for all $\alpha \in \Theta^{(0)}(\widetilde{\mathfrak{S}})$ and $\widetilde{\theta}^{(2)}(\beta)(\widetilde{L})=0$ for all $\beta \in \Theta^{(2)}(\widetilde{\mathfrak{S}})$.
- $(3.3.2) \widetilde{B}(\widetilde{L}, \widetilde{L}) = 0.$ $(3.3.2) \widetilde{B}(\widetilde{L}, \widetilde{L}) = 0.$
- $(3.3.3) \quad \tilde{q}(\tilde{L}) = 0.$ $(3.3.3) \quad \tilde{q}(\tilde{L}) = 0.$
- [\(3.3.](#page-13-0)4) The canonical image L in $K_k(f;R)$ of \widetilde{L} is an R[G]-free direct summand of $K_k(f; R)$ of half the rank, i.e. $2 \cdot \text{rank}_R L = \text{rank}_R K_k(f; R)$.

Lemma 3.4. Let p be a prime and $R = \mathbb{Z}_{(p)}$. Let $\boldsymbol{f} = (f, b)$ be a (G, R) -surgery map and $\mathfrak S$ a k-singular structure of X as above. Suppose the following.

[\(3.4.](#page-13-1)1) $\pi_1(X)$ is finite and $|\pi_1(X)|$ is prime to p.

[\(3.4.](#page-13-1)2) the canonical homomorphism $\widetilde{G} \to G$ has a splitting, i.e. $\widetilde{G} = \pi_1(X) \rtimes G$.

- $(3.4.3)$ $(3.4.3)$ $f: X \rightarrow Y$ is k-connected.
- [\(3.4.](#page-13-1)4) $\pi_{\widetilde{X}}(X_t)$ are orientable for all $t \in \widetilde{\Sigma}_+$.

If the module

$$
\boldsymbol{M_{f, \mathfrak{S}}} = (K_k(f; R), B_f, q_f, \theta^{(0)}, \theta^{(2)})
$$

has an R[G]-free Lagrangian L, then there exists a submodule \widetilde{L} of $M(f; R)$ satisfying the conditions $(3.3.1)$ $(3.3.1)$ – $(3.3.4)$.

Before proving this lemma, we give an important application of the two lemmas above. Let

$$
W_n(\boldsymbol{A}_X,\boldsymbol{\Theta}(\mathfrak{S}))_{\rm free}
$$

denote the surgery obstruction group

$$
W_n(R, G, Q_X, S_X, \Theta(\mathfrak{S}))_{\text{free}}
$$

defined in [\[2,](#page-27-4) p. 545, Definition 3.33]. In the case $R = \mathbb{Z}_{(p)}$, a (G, R) -surgery map f with k-singular structure $\mathfrak S$ determines the module $\mathbf M_{f,\mathfrak S}$ above, and further the element $\sigma(f, \mathfrak{S})$ of $W_n(\mathbf{A}_X, \Theta(\mathfrak{S}))_{\text{free}}$ as the equivalence class of $\mathbf{M}_{f, \mathfrak{S}}$. By Lemmas [3.3,](#page-13-0) [3.4](#page-13-1) and [\[18,](#page-28-4) Lemma 5.5], we obtain the next theorem.

Theorem 3.5. Let $R = \mathbb{Z}_{(p)}$ for a prime p, **f** a (G, R) -surgery map and \mathfrak{S} a k-singular structure satisfying the conditions [\(3.4.](#page-13-1)1)–(3.4.4). If $\sigma(f, \mathfrak{S}) = 0$ in $W_n(\mathbf{A}_X,\Theta(\mathfrak{S}))_{\text{free}}$ then **f** can be converted to $\mathbf{f}'=(f',b')$ such that $f':X'\to Y$ is an R-homology equivalence via a G-surgery on X relative to $X_{sing} \cup X_{\mathfrak{S}} \cup \partial X$.

Proof of Lemma [3.4.](#page-13-1) Let L be an $R[G]$ -free Lagrangian of $M_{f,\mathfrak{S}}$. Let $\{x_1, \ldots, x_m\}$ be an $R[G]$ -basis of L and $\{y_1, \ldots, y_m\}$ be elements of $K_k(f; R)$ such that

$$
B_f(x_i, y_j) = \delta_{ij}
$$

for $1 \leq i, j \leq m$. Thus $\{x_1, \ldots, x_m, y_1, \ldots, y_m\}$ is an $R[G]$ -basis of $K_k(f; R)$. Arbitrarily choose liftings $\tilde{x}_1, \ldots, \tilde{x}_m, \tilde{y}_1, \ldots, \tilde{y}_m \in M(\tilde{f}; R)$ of $x_1, \ldots, x_m, y_1, \ldots, y_m$, respectively. Define a map $\tau : K_k(f; R) \to M(\tilde{f}; R)$ by

$$
\tau\Big(\sum_i (a_i x_i + b_i y_i)\Big) = \frac{1}{|\pi_1(X)|} \sum_i \sum_{h \in \pi_1(X)} (ha_i \widetilde{x}_i + hb_i \widetilde{y}_i).
$$

This map is an R[G]-splitting of the canonical map $M(\tilde{f}; R) \to K_k(f; R)$. Clearly, $\pi_1(X)$ acts trivially on the image of τ . Set

$$
\widetilde{L} = \tau(L).
$$

That $\widetilde{B}(\widetilde{L}, \widetilde{L}) = 0$ and $\widetilde{q}(\widetilde{L}) = 0$ follows from Steps 1 and 2 in the proof of [\[11,](#page-27-0) Theorem 2.6].

Thus it suffices to show that $\tilde{\theta}^{(0)}(\alpha)(\tilde{L}) = 0$ for $\alpha \in \Theta^{(0)}(\tilde{\mathfrak{S}})$, and $\widetilde{\theta}^{(2)}(\beta)(\widetilde{L})=0$ for $\beta \in \Theta^{(2)}(\widetilde{\mathfrak{S}})$. Let $\widetilde{\varepsilon}: R[\widetilde{G}] \to R$ and $\varepsilon: R[G] \to R$ be the

homomorphisms of taking the coefficients of the identity elements of \tilde{G} and G , respectively. For $\alpha \in \Theta^{(0)}(\widetilde{\mathfrak{S}})$, let $[\alpha]$ denote the canonical image of α in $\Theta^{(0)}(\mathfrak{S})$ and let $\pi_1(X)_{\alpha}$ denote the isotropy subgroup of the $\pi_1(X)$ -action on $\Theta^{(0)}(\widetilde{\mathfrak{S}})$ at the point α . Then the canonical map $M(\tilde{f};R) \to K_k(f;R)$ assigns $m\theta^{(0)}([\alpha])$ to $\widetilde{\theta}^{(0)}(\alpha)$ with $m = |\pi_1(X)_{\alpha}|$. Thus for $x \in L$, we get

$$
\varepsilon(\theta^{(0)}([\alpha])(x)) = \sum_{h \in \pi_1(X)} \widetilde{\varepsilon}\left(\frac{1}{m}\widetilde{\theta}^{(0)}(\alpha)(h^{-1}\tau(x))\right)
$$

$$
= \sum_{h \in \pi_1(X)} \widetilde{\varepsilon}\left(\frac{1}{m}\widetilde{\theta}^{(0)}(\alpha)(\tau(x))\right)
$$

$$
= |\pi_1(X) : \pi_1(X)_{\alpha}|\widetilde{\varepsilon}(\widetilde{\theta}^{(0)}(\alpha)(\tau(x))),
$$

and hence

$$
\widetilde{\varepsilon}(\widetilde{\theta}^{(0)}(\alpha)(\tau(x))) = \frac{|\pi_1(X)_{\alpha}|}{|\pi_1(X)|} \varepsilon(\theta^{(0)}([\alpha])(x)) = 0.
$$

Since

$$
\widetilde{\theta}^{(0)}(\alpha)(\tau(x)) = \sum_{g \in \widetilde{G}} \widetilde{\varepsilon}(\widetilde{\theta}^{(0)}(\alpha)(\tau(g^{-1}x)))g,
$$

the triviality $\theta^{(0)}([\alpha])(L) = 0$ implies $\widetilde{\theta}^{(0)}(\alpha)(\tau(x)) = 0$.

We can similarly show that $\tilde{\theta}^{(2)}(\beta)(\tau(x)) = 0$.

§4. The Mackey structure of surgery obstruction groups

In this section, let R be a principal ideal domain, hence necessarily a commutative ring, with 1 satisfying the square condition, i.e.

(4.1)
$$
r \equiv r^2 \mod 2R \quad \text{for each } r \in R.
$$

Let Θ be a finite G-set, $\rho : \Theta \to \mathcal{S}(G)$ a G-map, and S a conjugation invariant subset of $G(2)$. The map $\mathcal{S}(G) \to \mathfrak{P}(S); H \mapsto S_H = S \cap H$, preserves intersection. Let $SGW_0(R, G, S, \Theta)$ denote the special Grothendieck–Witt group defined in [\[10,](#page-27-5) p. 2358].

Lemma 4.1 ([\[10,](#page-27-5) Proposition 5.4]). If ρ is S-injective then SGW₀(R, G, S, Θ) is a commutative ring possibly without 1, and moreover the canonical map

$$
SGW_0(\mathbb{Z}, G, S, \Theta) \to SGW_0(R, G, S, \Theta)
$$

of ring change is a ring homomorphism. If ρ is S-bijective then $SGW_0(R, G, S, \Theta)$ possesses the unit 1.

Let

$$
f: \mathcal{S}(G) \to \mathfrak{P}(\Theta); H \mapsto \Theta_H,
$$

be an intersection preserving ρ -compatible G-map and let $w : G \to {\pm 1}$ be a homomorphism. We denote by w_H the restriction $w|_H : H \to \{\pm 1\}.$

Definition 4.2 (cf. [\[10,](#page-27-5) p. 2357]). For a Θ -positioning Hermitian form $M =$ (M, B, θ) , where M is an R-free R[G]-module, $B : M \times M \to R$ is a G-invariant (or w-invariant) symmetric bilinear form, and $\theta : \Theta \to M$ is a G-map, and for $s \in S$, $x \in M$, we define the trace $\Delta_{\theta}(s) \in M$ of (θ, ρ) at s and the ∇ -invariant $\nabla_{\mathbf{M}}(x)(s) \in R/2R$ of **M** at (x, s) by

$$
\Delta_{\theta}(s) = \sum_{t \in \Theta} \{ \theta(t) \mid \rho(t) \ni s \}, \quad \nabla_{\mathbf{M}}(x)(s) = [B(\Delta_{\theta}(s) - x, sx)].
$$

We remark that what we precisely need for the definition is $B : M \times M \to R/2R$ rather than $B: M \times M \rightarrow R$.

Lemma 4.3. Let H and K be subgroups of G and let $\varphi = (\varphi, \psi)$ be a pair consisting of a monomorphism $\varphi : H \to K$ which is a composition of inclusion and conjugation and the associated injective φ -map $\psi : \Theta_H \to \Theta_K$. Let $g_1, \ldots, g_m \in K$ be a complete set of representatives of $K/\varphi(H)$. Further let $\mathbf{M} = (M, B, \alpha)$ be a positioning Hermitian module, where M is an R-free R[H]-module, $B: M \times M \rightarrow R$ is an H-invariant (or w_H -invariant) symmetric bilinear form, and $\alpha : \Theta_H \to M$ is an H-map. Then the ∇ -invariant of the induced module $\mathbf{M}' = \boldsymbol{\varphi}_{\#} M$ satisfies

$$
\nabla_{\mathbf{M}'}(g_i \otimes_{\varphi} x)(s') = \begin{cases} \nabla_{\mathbf{M}}(x)(\varphi^{-1}(g_i^{-1}s'g_i)) & (g_i^{-1}s'g_i \in \varphi(H)), \\ 0 & (g_i^{-1}s'g_i \notin \varphi(H)), \end{cases}
$$

for $x \in M$ and $s' \in S_K = S \cap K$.

Proof. By definition, $\mathbf{M}' = (M', B', \alpha')$ is given by $M' = R[K] \otimes_{R[H],\varphi} M$,

$$
B'(g_j \otimes_{\varphi} x, g_k \otimes_{\varphi} y) = \delta_{jk} B(x, y), \text{ and}
$$

\n
$$
\alpha'(t') = \sum_{(i,t)} \{g_i \otimes \alpha(t) \mid t \in \Theta_H, g_i \psi(t) = t'\},
$$

where $x, y \in M$, $t' \in \Theta_K$. Let $s' \in S_K$. We have

$$
\nabla_{\mathbf{M}'}(g_i \otimes_{\varphi} x)(s') = B'(\Delta_{\alpha'}(s') - g_i \otimes_{\varphi} x, s'(g_i \otimes_{\varphi} x)).
$$

Moreover the following equalities hold:

$$
B'(\Delta_{\alpha'}(s'), s'(g_i \otimes_{\varphi} x)) = B'(\Delta_{\alpha'}(s'), g_i \otimes_{\varphi} x)
$$

\n
$$
= \sum_{t' \in \Theta_K} \{B'(\psi_{\#}\alpha(t'), g_i \otimes_{\varphi} x) \mid \rho_K(t') \ni s'\}
$$

\n
$$
= \sum_{t' \in \Theta_K} \sum_{j,t} \{B'(g_j \otimes_{\varphi} \alpha(t), g_i \otimes_{\varphi} x) \mid t \in \Theta_H, g_j\psi(t) = t', g_j\varphi(\rho_H(t))g_j^{-1} \ni s'\}
$$

\n
$$
= \sum_{t' \in \Theta_K} \sum_{t} \{B(\alpha(t), x) \mid t \in \Theta_H, g_i\psi(t) = t', g_i\varphi(\rho_H(t))g_i^{-1} \ni s'\}
$$

\n
$$
= \sum_{t \in \Theta_H} \{B(\alpha(t), x) \mid \varphi(\rho_H(t)) \ni g_i^{-1} s' g_i\}
$$

\n
$$
= \sum_{t \in \Theta_H} \{B(\alpha(t), x) \mid \rho_H(t) \ni \varphi^{-1}(g_i^{-1} s' g_i)\}.
$$

On the other hand, we have

$$
B'(g_i \otimes_{\varphi} x, s'(g_i \otimes_{\varphi} x)) = \begin{cases} B(x, \varphi^{-1}(g_i^{-1} s' g_i) x) & (g_i^{-1} s' g_i \in \varphi(H)), \\ 0 & (g_i^{-1} s' g_i \notin \varphi(H)). \end{cases}
$$

Thus we obtain

$$
\nabla_{\mathbf{M}'}(g_i \otimes_{\varphi} x)(s') = \begin{cases} \nabla_{\mathbf{M}}(x)(\varphi^{-1}(g_i^{-1}s'g_i)) & (g_i^{-1}s'g_i \in \varphi(H)), \\ 0 & (g_i^{-1}s'g_i \notin \varphi(H)). \end{cases}
$$

Lemma 4.4. If $f : S(G) \to \mathfrak{P}(\Theta)$ is (ρ, S) -saturated then the correspondence

$$
H \mapsto \text{SGW}_0(R, H, S_H, \Theta_H) \quad (H \in \mathcal{S}(G))
$$

affords a Mackey functor.

Proof. This follows from the proof of [\[10,](#page-27-5) Proposition 11.2] with a modification using Lemma [4.3.](#page-16-0)

Lemma 4.5 ([\[10,](#page-27-5) Theorem 11.3]). If $\rho : \Theta \to \mathcal{S}(G)$ is S-bijective and f is (ρ, S) saturated then the correspondence

$$
H \mapsto \text{SGW}_0(R, H, S_H, \Theta_H) \quad (H \in \mathcal{S}(G))
$$

affords a Green functor. Moreover, the canonical homomorphisms

$$
SGW_0(\mathbb{Z}, H, S_H, \Theta_H) \to SGW_0(R, H, S_H, \Theta_H)
$$

of ring change afford a natural transformation of Green functors.

Let $w : G \to {\pm 1}$ be a homomorphism and let $\overline{\cdot}$ denote the anti-involution on $\mathbb{Z}[G]$ associated with w. Let $\lambda = (-1)^k$. Then $(\overline{\cdot}, \lambda)$ is an anti-structure of $\mathbb{Z}[G]$. Let Q be a conjugation invariant subset of $G(2)$. Suppose

$$
S \subset G(2)^{\lambda} = \{ g \in G(2) \mid g = \lambda \overline{g} \}, \quad Q \subset G(2)^{-\lambda} = \{ g \in G(2) \mid g = -\lambda \overline{g} \}.
$$

Then we obtain the double parameter algebra

$$
\mathbf{A} = (R[G], (\overline{\cdot}, \lambda), (S)_R, G, R[S], (Q)_R + R[S])
$$

in the sense of [\[2,](#page-27-4) Definition 2.5]. Let $\Theta^{(0)}$ and $\Theta^{(2)}$ be a finite $(G \times {\pm 1})$ set and a finite G-set, respectively and let $p_{\Theta^{(0)}} : \Theta^{(0)} \to \Theta^{(2)}$ be a G-map. Throughout this paper we assume that $\{\pm 1\}$ acts freely on $\Theta^{(0)}$ and $p_{\Theta^{(0)}}^{-1}(p_{\Theta^{(0)}}(t))$ coincides with $\{t, -t\}$ for all $t \in \Theta^{(0)}$. Let $\rho_{\Theta^{(2)}} : \Theta^{(2)} \to \mathcal{S}(G)$ be a G-map and set $\mathbf{\Theta} = (\Theta^{(0)}, \Theta^{(2)}, p_{\Theta^{(0)}}, \rho_{\Theta^{(2)}})$. We use the notation

$$
W_n(\mathbf{A},\mathbf{\Theta})_{\text{free}} = W_n(R,G,Q,S,\mathbf{\Theta})_{\text{free}}, \quad W_n(\mathbf{A},\mathbf{\Theta})_{\text{proj}} = W_n(R,G,Q,S,\mathbf{\Theta})_{\text{proj}},
$$

where $n = 2k$, defined in [\[2,](#page-27-4) Definition 3.33].

Let Θ be a finite G-set and $\rho : \Theta \to \mathcal{S}(G)$ a G-map. Let $\gamma : \Theta^{(2)} \to \Theta$ be a G-map such that the diagram

(4.2)
$$
\begin{array}{c}\n\Theta^{(2)} \xrightarrow{\rho^{(2)}} \mathcal{S}(G) \\
\gamma \downarrow \qquad \qquad \gamma \downarrow \qquad \qquad \rho\n\end{array}
$$

commutes and

(4.3) γ(Θ(2)) = Θ.

Lemma 4.6. If $\rho : \Theta \to \mathcal{S}(G)$ is S-bijective then $W_n(\mathbf{A}, \Theta)$ _{free} is a module over $SGW_0(R, G, S, \Theta).$

Proof. Let $M_1 = (M_1, B_1, \alpha_1)$ be a Θ -positioning, non-singular Hermitian R[G]module with trivial ∇ -invariant, where M is an R-free R[G]-module, $B_1 : M_1 \times M_1$ $\rightarrow R$ and $\alpha_1 : \Theta \rightarrow M$. Let $\mathbf{M}_2 = (M_2, B_2, q_2, \alpha^{(0)}, \alpha^{(2)})$ be an object in $\nabla \mathcal{Q}(\mathbf{A}, \Theta)$ defined in [\[2,](#page-27-4) p. 535] such that M_2 is a stably $R[G]$ -free module, where B_2 : $M_2 \times M_2 \to R[G], q_2 : M_2 \to R[G]/((Q)_R + R[S]), \alpha^{(0)} : \Theta^{(0)} \to M_2$, and $\alpha^{(2)}: \Theta^{(2)} \to M_2/2M_2$. Then we define

$$
\textbf{\textit{M}}=\textbf{\textit{M}}_1\cdot \textbf{\textit{M}}_2=(M,B,q,\theta^{(0)},\theta^{(2)})\in \mathcal{Q}(\textbf{\textit{A}},\boldsymbol{\Theta})
$$

as follows. The triple (M, B, q) is described in [\[10,](#page-27-5) §9]. The map $\theta^{(0)} : \Theta^{(0)} \to$ $M = M_1 \otimes_R M_2$ is given by

$$
\theta^{(0)}(t) = \alpha_1(\gamma(p_{\Theta^{(0)}}(t))) \otimes_R \alpha^{(0)}(t) \quad \text{ for } t \in \Theta^{(0)}
$$

,

and the map $\theta^{(2)}$: $\Theta^{(2)} \rightarrow M/2M$ is given by

$$
\theta^{(2)}(t) = \alpha_1(\gamma(t)) \otimes_R \alpha^{(2)}(t)
$$

for $t \in \Theta^{(2)}$. It is easy to verify the ∇ -triviality of M , i.e. $M \in \nabla \mathcal{Q}(A, \Theta)$. The correspondence $(M_1, M_2) \rightarrow M$ affords the module structure

SGW₀(R, G, S,
$$
\Theta
$$
) × W_n(**A**, Θ)_{free} \mapsto W_n(**A**, Θ)_{free}.

In this section we set

$$
Q_H = Q \cap H \quad \text{ for } H \in \mathcal{S}(G).
$$

Then the map $\mathcal{S}(G) \to \mathfrak{P}(Q); H \mapsto Q_H$, preserves intersection.

We regard $\mathcal{S}(G)$ as a $(G \times {\pm 1})$ -set, with the trivial ${\pm 1}$ -action. Let $f_{\Theta} =$ $(f_{\Theta^{(0)}}, f_{\Theta^{(2)}})$ be a pair of an intersection preserving $(G \times {\pm 1})$ -map $f_{\Theta^{(0)}} : \mathcal{S}(G) \to$ $\mathfrak{P}(\Theta^{(0)})$; $H \mapsto \Theta_H^{(0)}$, and an intersection preserving $\rho_{\Theta^{(2)}}$ -compatible G-map $f_{\Theta^{(2)}}$: $\mathcal{S}(G) \to \mathfrak{P}(\Theta^{(2)})$; $H \mapsto \Theta_H^{(2)}$, satisfying

$$
p_{\Theta^{(0)}}(\Theta_H^{(0)})\subset \Theta_H^{(2)}
$$

for $H \in \mathcal{S}(G)$. Define $p_{\Theta_H^{(0)}} : \Theta_H^{(0)} \to \Theta_H^{(2)}$ as the restriction of $p_{\Theta^{(0)}},$ and $\rho_{\Theta_H^{(2)}}$: $\Theta_H^{(2)} \to \mathcal{S}(H)$ as the restriction of $\rho_{\Theta^{(2)}}$. Then we obtain the double parameter algebras

$$
\mathbf{A}_H = (R[H], (\bar{\cdot}, \lambda), (S_H)_R, H, R[S_H], (Q_H)_R + R[S_H]),
$$

where $S_H = S \cap H$, and the positioning data

$$
\mathbf{\Theta}_H = (\Theta_H^{(0)}, \Theta_H^{(2)}, p_{\Theta_H^{(0)}}, \rho_{\Theta_H^{(2)}}), \quad \text{where } H \in \mathcal{S}(G).
$$

Lemma 4.7. If $f_{\Theta(2)}$: $\mathcal{S}(G) \to \mathfrak{P}(\Theta^{(2)})$ is $(\rho_{\Theta^{(2)}}, S)$ -saturated then the correspondences

$$
H \mapsto W_n(\mathbf{A}_H, \mathbf{\Theta}_H)_{\text{proj}} \quad (H \in \mathcal{S}(G))
$$

and

$$
H \mapsto W_n(\mathbf{A}_H, \mathbf{\Theta}_H)_{\text{free}} \quad (H \in \mathcal{S}(G))
$$

afford Mackey functors, respectively.

Proof. Recalling [\[10,](#page-27-5) Proposition 10.3], we will prove the lemma by showing that

$$
H \mapsto W_n(\boldsymbol{A}_H, \boldsymbol{\Theta}_H)_{\text{proj}}, W_n(\boldsymbol{A}_H, \boldsymbol{\Theta}_H)_{\text{free}} \quad (H \in \mathcal{S}(G))
$$

are w -Mackey functors. Most of the proof is already given in the proof of Theo-rem 12.10 of [\[10\]](#page-27-5). It suffices to discuss the part concerning the $(H \times \{\pm 1\})$ -sets $\Theta_H^{(0)}$, where $H \in \mathcal{S}(G)$.

Let H and K be subgroups of G. Given an injective homomorphism φ : $H \to K$, we have the canonical injective homomorphism $\varphi_{\pm} : H \times {\pm 1} \to$ $K \times {\pm 1}$ defined by $\varphi_{\pm}(h, \epsilon) = (\varphi(h), \epsilon)$ for $h \in H$ and $\epsilon \in {\pm 1}$. The sets $\Theta_H^{(0)}$ and $\Theta_K^{(0)}$ are an $(H \times {\pm 1})$ -set and a $(K \times {\pm 1})$ -set, respectively, on which the group $\{\pm 1\}$ acts freely. Let $\psi : \Theta_H^{(0)} \to \Theta_K^{(0)}$ be a φ_{\pm} -map, i.e.

$$
\psi((h,\epsilon)t) = \varphi_{\pm}(h,\epsilon)\psi(t) \ (= (\varphi(h),\epsilon)\psi(t))
$$

for $h \in H$, $\epsilon \in {\pm 1}$, and $t \in \Theta_H^{(0)}$. Let φ denote the pair (φ, ψ) .

An R[K]-module N is usually regarded as an $R[K \times {\pm 1}]$ -module via $(k, \epsilon)x$ $= \epsilon(kx)$ for $k \in K$, $\epsilon \in {\pm 1}$, and $x \in N$. For a pair $\mathbf{N} = (N, \beta)$ consisting of an R[K]-module N and a $(K \times {\{\pm\}})$ -map $\beta : \Theta_K^{(0)} \to N$, we define $\varphi^{\#}\mathbf{N} =$ $(\varphi^{\#}N, \psi^{\#}\beta)$, where $\varphi^{\#}N$ is an $R[H]$ -module and $\psi^{\#}\beta: \Theta_H^{(0)} \to \varphi^{\#}N$, so that the underlying R-module of $\varphi^{\#}N$ is the same as N but the H-action on $\varphi^{\#}N$ is given by $(h, x) \mapsto \varphi(h)x$ for $h \in H$ and $x \in \varphi^{\#}N$, and $\psi^{\#}\beta(t) = \beta(\psi(t))$ for $t \in \Theta_H^{(0)}$.

For a pair $\mathbf{M} = (M, \alpha)$ consisting of an $R[H]$ -module M and an $(H \times {\pm 1})$ map $\alpha: \Theta_H^{(0)} \to M$, we define $\bm{\varphi}_{\#} \bm{M} = (\varphi_{\#} M, \psi_{\#} \alpha)$, where $\varphi_{\#} M$ is an $R[K]$ module and $\psi_{\#}\alpha: \Theta_K^{(0)} \to \varphi_{\#}M$, by $\varphi_{\#}M = R[K] \otimes_{R[H],\varphi} M$ and

$$
\psi_{\#}\alpha(t) = \sum_{[g,t']} \{ g \otimes \alpha(t') \mid [g,t'] \in K \times_{H,\varphi} \Theta_H^{(0)} \text{ such that } g\psi(t') = t \}
$$

for $t \in \Theta_K^{(0)}$.

These $\varphi^{\#} N$ and $\varphi_{\#} M$ are simple analogies of those in [\[10,](#page-27-5) p. 2347]. Thus the conclusion of the lemma above follows from the same arguments used in the proof of Theorem 12.10 of [\[10\]](#page-27-5).

Let $\rho : \Theta \to \mathcal{S}(G)$ be a G-map and $f : \mathcal{S}(G) \to \mathfrak{P}(\Theta); H \mapsto \Theta_H$, an intersection preserving, ρ -compatible G-map such that $f(G) = \Theta$. Let $\gamma : \Theta^{(2)} \to \Theta$ be a G-map such that the diagram [\(4.2\)](#page-18-0) commutes and

(4.4)
$$
\gamma(\Theta_H^{(2)}) = \Theta_H \quad (H \in \mathcal{S}(G)).
$$

Lemma 4.8. If $\rho : \Theta \to \mathcal{S}(G)$ is S-bijective, $f : \mathcal{S}(G) \to \mathfrak{P}(\Theta)$ is (ρ, S) -saturated and $f_{\Theta^{(2)}}: \mathcal{S}(G) \to \mathfrak{P}(\Theta^{(2)})$ is $(\rho^{(2)}, S)$ -saturated, then the correspondence

$$
H \mapsto W_n(\mathbf{A}_H, \mathbf{\Theta}_H)_{\text{free}} \quad (H \in \mathcal{S}(G))
$$

is a module over the Green functor

$$
H \mapsto \text{SGW}_0(R, H, S_H, \Theta_H) \quad (H \in \mathcal{S}(G)).
$$

Proof. We can argue in the same way as in the proof of [\[10,](#page-27-5) Theorem 12.10] with a modification using Lemma [4.6.](#page-18-1)

§5. A deleting-inserting theorem

Deleting (resp. inserting) G-fixed submanifolds from (resp. to) given ambient G manifolds is useful for the study of fixed point data of G-manifolds. For example, it has been applied to the study of the Smith problem on tangential representations at fixed points on spheres. In this section we prove Theorem [5.1](#page-21-0) below. Let $\mathcal{G}_p^1(G)$ denote the set of all subgroups H of G possessing normal subgroups $P \trianglelefteq H$ such that P has p-power order and H/P is cyclic, where P is possibly the trivial group. An element H of $\mathcal{G}_p^1(G)$ is called a mod- \mathcal{P}_p cyclic group. We set

$$
\mathcal{G}^1(G) = \bigcup_{p \text{ prime}} \mathcal{G}_p^1(G).
$$

If H lies in $\mathcal{G}^1(G)$ then H is referred to as a mod-P cyclic group.

Theorem 5.1 (Deleting-inserting theorem). Let G be a finite Oliver group and Y a smooth G -manifold such that the underlying manifold of Y is diffeomorphic to the disk of dimension $n \geq 5$ and $Y^G \neq \emptyset$. Let F_1, \ldots, F_t denote all the underlying spaces of connected components of Y^G , and let n_1, \ldots, n_t be non-negative integers. Suppose the following:

- $(5.1.1)$ $(5.1.1)$ Y satisfies the weak gap condition on $\mathcal{PH}(G)$.
- $(5.1.2)$ $(5.1.2)$ dim $Y=H \geq 3$ for any $H \in \mathcal{G}^1(G)$.
- $(5.1.3)$ $(5.1.3)$ dim $Y^P \geq 5$ for any $P \in \mathcal{P}(G)$.
- [\(5.1.](#page-21-0)4) $\pi_1(Y^P)$ is finite and of order prime to |P| for any $P \in \mathcal{P}(G)$.
- [\(5.1.](#page-21-0)5) For $1 \le i, j \le t$, n_i coincides with n_j if some connected component Y_α^H of Y^H , $H \in \mathcal{L}(G)$, contains both F_i and F_j .
- [\(5.1.](#page-21-0)6) For $1 \leq i \leq t$, n_i is equal to 1 if some connected component Y^H_{α} of Y^H , $H \in \mathcal{L}(G)$, contains F_i and $\partial Y_\alpha^H \neq \emptyset$.
- [\(5.1.](#page-21-0)7) If dim $Y^P = 2 \dim Y^H$ for $(P, H) \in \mathcal{PH}(G)$ then $(P, H) \in \mathcal{PH}_2(G)$ and $\dim Y^{>H} \leq \dim Y^H - 2.$

Then there exists a smooth G-action on the disk D of dimension n such that

(i) ∂D is G-diffeomorphic to ∂Y ,

(ii) D^G has the form of the disjoint union of copies of F_i 's:

$$
D^{G} = \coprod_{i=1}^{t} \coprod_{j=1}^{n_i} F_{i,j} \quad (each \ F_{i,j} \ is \ different \ of \ the \ noncubic \ to \ F_i), \ and
$$

(iii) the normal bundle $\nu(F_{i,j}, D)$ is *G*-isomorphic to $\nu(F_i, Y)$.

Furthermore if Y^H (resp. Y^P) is connected (resp. simply connected) for an element $H \in \mathcal{G}^1(G)$ (resp. $P \in \mathcal{P}(G)$), then one can choose the G-action so that D^H (resp. (D^P) is connected (resp. simply connected) for the subgroup H (resp. P).

Proof. The procedure is the same as that of proving Theorem 1.3 of [\[11,](#page-27-0) §5]. Let $f = (f, b), f : (X, \partial X) \to (Y, \partial Y)$ and $b : T(X) \oplus \varepsilon_X(\mathbb{R}^u) \to f^*T(Y) \oplus \varepsilon_X(\mathbb{R}^u)$, be the degree-one G-framed map obtained in Section 4 of [\[11\]](#page-27-0). Note that for $P \in \mathcal{P}(G), Y^P$ is orientable and the map $f^P : (X^P, \partial X^P) \to (Y^P, \partial Y^P)$ has degree one.

The details of the proof differ in some points from the proof of Theorem 1.3 of [\[11,](#page-27-0) §5]. The differences occur in Steps A and B below.

- **Step A.** The step converting $f^P: X^P \to Y^P$ to a mod p homology equivalence, where $P \in \mathcal{P}(G)$ possesses $H \in \mathcal{S}(G)$ such that $2 \dim X^H = \dim X^P$ and p is the prime dividing $|P|$.
- **Step B.** The step converting $f: X \to Y$ to a homotopy equivalence, when there is (at least one) $H \in \mathcal{S}(G)$ such that $2 \dim X^H = \dim X$.

In these steps, the condition $(5.1.7)$ $(5.1.7)$ is used to get rid of technical difficulties.

Step A. In this step, we set $n_P = \dim X^P$, $k_P = n_P/2$, $\lambda = (-1)^{k_P}$, $T =$ $N_G(P)/P$, $w = w_{X^P}: T \to {\pm 1}$, and furthermore

$$
R = \mathbb{Z}_{(p)},
$$

\n
$$
S = \{g \in T(2) | \dim(X^P)^g = k_P\} (= S(X^P)),
$$

\n
$$
Q = \{g \in T(2) | \dim(X^P)^g = k_P - 1\} (= Q(X^P)),
$$

\n
$$
\mathfrak{S} = \{(X^P)^g | g \in S\} (= \mathfrak{S}(X^P)),
$$

\n
$$
\Theta^{(0)} = \Theta^{(0)}(X^P), \quad \Theta^{(2)} = \Theta^{(2)}(X^P),
$$

\n
$$
\rho = \rho_{X^P}^{(2)} : \Theta^{(2)} \to \mathcal{S}(T), \quad \mathbf{\Theta} = (\Theta^{(0)}, \Theta^{(2)}, p_{\Theta^{(0)}}, \rho),
$$

where $p_{\Theta(0)} : \Theta^{(0)} \to \Theta^{(2)}$ is the canonical map. Without any loss of generality we can suppose that $f^P: X^P \to Y^P$ is k_P -connected. Then by Theorem [3.5](#page-14-0) the T-surgery obstruction $\sigma(f^P, b^P)$ to the (T, R) -surgery map (f^P, b^P) being a $\mathbb{Z}_{(p)}$ -homology equivalence lies in $W_{n_P}(R, T, S, Q, \Theta)$ _{free}.

For a subgroup K of T, set $S_K = S(\operatorname{res}^T_K X^P)$, $Q_K = Q(\operatorname{res}^T_K X^P)$, $\mathfrak{S}_K =$ $\mathfrak{S}(\text{res}^T_K X^P), \ \Theta^{(0)}_K \ = \ \Theta^{(0)}(\text{res}^T_K X^P), \ \Theta^{(2)}_K \ = \ \Theta^{(2)}(\text{res}^T_K X^P), \ \rho_K \ = \ \rho^{(2)}_{\text{res}}$ $\int_{\mathrm{res}^T_K X^P}^{(2)}$: $\Theta^{(2)}_K \to \mathcal{S}(K)$, and

$$
\mathbf{\Theta}_K = (\Theta_K^{(0)}, \Theta_K^{(2)}, p_{\Theta_K^{(0)}}, \rho_K).
$$

By Lemmas [2.4,](#page-7-0) [4.7](#page-19-0) and [4.8,](#page-20-0) the correspondence

$$
K \mapsto W_{n_P}(R, K, S_K, Q_K, \mathbf{\Theta}_K)_{\text{free}} \quad (K \in \mathcal{S}(T))
$$

affords a Mackey functor, and moreover a module over the Green functor

$$
K \mapsto \text{SGW}_0(\mathbb{Z}, K, S_K, \Theta_K^{(2)}/S_K) \quad (K \in \mathcal{S}(T)).
$$

Thus the argument in [\[11,](#page-27-0) §5, Case 2] using the relation between the equivariant connected sum operation and the $\Omega(T)$ -action on the surgery obstruction group (cf. $[11, (5.2)]$ $[11, (5.2)]$, works in the present situation. This ensures that by using equivariant connected sum and G-surgery of isotropy type (P) , we can convert $f^P: X^P \to Y^P$ to a $\mathbb{Z}_{(p)}$ -homology equivalence.

Step B. In this case, Y is 1-connected and $n = \dim Y = \dim X$. We set $k = n/2$, $\lambda = (-1)^k$, $w = w_X : G \to \{\pm 1\}$, $R = \mathbb{Z}, S = S(X)$, $Q = Q(X)$, $\mathfrak{S} = \mathfrak{S}(X)$, $\Theta^{(0)} = \Theta^{(0)}(X), \, \Theta^{(2)} = \Theta^{(2)}(X), \, \rho = \rho_X^{(2)} : \Theta^{(2)} \to \mathcal{S}(G),$ and

$$
\mathbf{\Theta} = (\Theta^{(0)}, \Theta^{(2)}, p_{\Theta^{(0)}}, \rho),
$$

where $p_{\Theta^{(0)}}: \Theta^{(0)} \to \Theta^{(2)}$ is the canonical map. Without loss of generality we can suppose that $f: X \to Y$ is k-connected. Since

$$
K_k(f;R) = \text{Ker}[f_* : H_k(X;R) \to H_k(Y;R)]
$$

is a projective $R[G]$ -module but not necessarily a stably free $R[G]$ -module, Theorem 6.3 in [\[2\]](#page-27-4) says that the G-surgery obstruction $\sigma(f, b)$ to the (G, R) surgery map (f, b) being a homotopy equivalence lies in the obstruction group $W_n(R, G, S, Q, \Theta)_{\text{proj}}$. But by employing the relation

$$
(1+(-\beta)^{\%})\widetilde{K}_0(R[G])=0
$$

described in [\[11,](#page-27-0) §5, Case 3] and by taking a suitable equivariant connected sum, we may assume that $K_k(f; R)$ is a stably free R[G]-module. Then $\sigma(f, b)$ lies in the obstruction group $W_n(R, G, S, Q, \Theta)_{\text{free}}$.

For a subgroup K of G, set $S_K = S(\text{res}^G_K X)$, $Q_K = Q(\text{res}^G_K X)$, $\mathfrak{S}_K =$ $\mathfrak{S}(\text{res}^G_K X), \ \Theta^{(0)}_K = \Theta^{(0)}(\text{res}^G_K X), \ \Theta^{(2)}_K = \Theta^{(2)}(\text{res}^G_K X), \ \rho_K = \rho^{(2)}_{\text{res}}$ $\frac{1}{\operatorname{res}^G_K}$ $_X : \Theta_K^{(2)} \to$ $\mathcal{S}(K)$, and

$$
\mathbf{\Theta}_K = (\Theta_K^{(0)}, \Theta_K^{(2)}, p_{\Theta_K^{(0)}}, \rho_K).
$$

By Lemmas [2.4,](#page-7-0) [4.7](#page-19-0) and [4.8,](#page-20-0) the correspondence

$$
K \mapsto W_n(R, K, S_K, Q_K, \mathbf{\Theta}_K)_{\text{free}} \quad (K \in \mathcal{S}(G))
$$

affords a Mackey functor, and a module over the Green functor

$$
K \mapsto \text{SGW}_0(\mathbb{Z}, K, S_K, \Theta_K^{(2)}/S_K) \quad (K \in \mathcal{S}(G)).
$$

Thus the argument in [\[11,](#page-27-0) §5, Case 3] works in the present situation. Hence, by using equivariant connected sum and G-surgery of isotropy type $({e})$, we can convert $f: X \to Y$ to a homotopy equivalence.

Putting all this together, we have proved the theorem above.

§6. Applications of the deleting-inserting theorem

Let G be a finite group. One may conjecture that if V and W are \mathcal{P} -matched \mathcal{L} -free real G-modules then V and W are stably Smith equivalent, with which the following is concerned.

Definition 6.1. We call a real G -module V *admissible* if it satisfies the following conditions.

- $(6.1.1)$ $(6.1.1)$ V satisfies the weak gap condition on $\mathcal{PH}(G)$.
- $(6.1.2)$ $(6.1.2)$ dim $V=H \geq 3$ for any $H \in \mathcal{G}^1(G)$.
- $(6.1.3)$ $(6.1.3)$ dim $V^P \geq 5$ for any $P \in \mathcal{P}(G)$.
- [\(6.1.](#page-24-0)4) If dim $V^P = 2 \dim V^H$ for $(P, H) \in \mathcal{PH}(G)$ then (P, H) belongs to $\mathcal{PH}_2(G)$ and dim $V^{H} \leq \dim V^{H} - 2$.

The next lemma is an elaboration of [\[6,](#page-27-1) Theorem B]. In [\[6\]](#page-27-1), we worked with real G-modules V such that all transformations $g: V^H \to V^{gHg^{-1}}$ are orientation preserving for $g \in G$ and $H \in \mathcal{S}(G)$ (cf. [\[6,](#page-27-1) p. 491 (3.3.6)]).

Lemma 6.2. Let G be an Oliver group, m a positive integer, and V an admissible real G-module. Then there exists a smooth G-action on the standard sphere S_V such that S_V^G consists of m points x_1, \ldots, x_m and each $T_{x_i}(S_V)$, $1 \leq i \leq m$, is isomorphic to V.

Proof. Let Y be the unit disk $D(V)$ of V with respect to some G-invariant inner product. Then Y satisfies the conditions $(5.1.1)$ $(5.1.1)$ – $(5.1.7)$. By Theorem [5.1,](#page-21-0) we obtain a smooth G-action on a disk D_0 such that D_0 does not have G-fixed points and ∂D_0 is G-diffeomorphic to $S(V) = \partial D(V)$. On the other hand, by Theo-rem [5.1](#page-21-0) there exists a smooth G-action on a disk D_m such that D_m^G consists of m points x_1, \ldots, x_m , ∂D_0 is G-diffeomorphic to $S(V) = \partial D(V)$, and the tangential

representations $T_{x_i}(D_m)$ are all isomorphic to V. Then glue D_0 and D_m along the boundary and obtain a smooth G-action on a homotopy sphere Σ_V such that Σ_V^G consists of m points x_1, \ldots, x_m and $T_{x_i}(\Sigma_V)$ are isomorphic to V. Taking the equivariant connected sum of copies of Σ_V (cf. [\[7,](#page-27-6) Proposition 1.3, Example 1.2]), we can obtain a smooth G-action on the standard sphere as desired.

Lemma [1.1](#page-1-0) implies that $\mathbb{R}[G]_{\mathcal{L}}^{\oplus 3}$ is an admissible real G-module. Hence Theorems [1.3](#page-2-0) and [1.4](#page-2-1) immediately follow from the lemma above.

Theorem 6.3. Let G be an Oliver group. Let V_1, \ldots, V_m be $\mathcal{L}\text{-free real } G\text{-modules}$ any two of which are $\mathcal{P}\text{-}matched$. Then there exists an integer N_1 such that for any integer $\ell \geq N_1$, there exists a smooth G-action on the disk D with exactly m G-fixed points x_1, \ldots, x_m for which the tangential representation $T_{x_i}(D)$ is isomorphic to $V_i \oplus \mathbb{R}[G]_{\mathcal{L}}^{\oplus \ell}$ for $1 \leq i \leq m$.

Proof. Consider the space $F = \{x_1, \ldots, x_m\}$ with the trivial G-action. We have the L-free real G-vector bundle $\nu = \varepsilon_{\{x_1\}}(V_1) \amalg \cdots \amalg \varepsilon_{\{x_m\}}(V_m)$ over F. Clearly res_{$\{e\}$} ν is isomorphic to $\varepsilon_F(\mathbb{R}^n)$ for $n = \dim V_1$ and $\text{res}_P^G \nu$ is isomorphic to $\varepsilon_F(\text{res}_P^G \nu_1)$ for any $P \in \mathcal{P}(G)$. By [\[14,](#page-28-5) Theorem 21], there exists an integer N_1 as desired.

Proof of Theorem [1.5.](#page-3-1) Let N_1 be the non-negative integer obtained in Theorem [6.3](#page-25-0) for the G-modules V_1, \ldots, V_m . There exists an integer $N \geq N_1$ such that the real G-modules $V_i \oplus \mathbb{R}[G]_{\mathcal{L}}^{\oplus N}$, $1 \leq i \leq m$, are all admissible. Then for all $\ell \geq N$, the real G-modules

$$
W_i = V_i \oplus \mathbb{R}[G]_{\mathcal{L}}^{\oplus \ell}, \quad 1 \leq i \leq m,
$$

are also admissible. Again by Theorem 6.3 , there exists a smooth G -action on the disk Y such that $Y^G = \{x_1, \ldots, x_m\}$ and $T_{x_i}(Y) \cong W_i$ for $1 \leq i \leq m$. Let Z denote the double $Y \cup_{\partial Y} Y$ of Y. Then Z is a sphere having the G-fixed points x_1, \ldots, x_m , x'_1, \ldots, x'_m such that $T_{x_i}(Z) \cong T_{x'_i}(Z) \cong W_i$ for $1 \leq i \leq m$. By Lemma [6.2,](#page-24-1) there exist smooth G-actions on spheres S_i , $1 \leq i \leq m$, such that $S_i^G = \{x_i''\}$ and $T_{x_i''}(S_i) \cong W_i$. Let S denote the G-manifold obtained as the G-connected sum of Z and S_i , $1 \leq i \leq m$, at pairs $(x'_i, x''_i) \in Z \times S_i$. Then the underlying manifold of S is diffeomorphic to the standard sphere and moreover S possesses the properties required in Theorem [1.5.](#page-3-1)

Let $WP(G)$ denote the set consisting of $[V] - [W] \in RO(G)^{\mathcal{L}}$ such that V and W both are L-free and satisfy the weak gap condition on $\mathcal{PH}_2(G)$. Note that G is a weak gap group if and only if $WP(G)\mathcal{P} = \text{RO}(G)\mathcal{P}$. Since the set

$$
-\text{WP}(G) = \{-x \in \text{RO}(G) \mid x \in \text{WP}(G)\}\
$$

coincides with $WP(G)$, we can prove the next proposition without difficulties.

Proposition 6.4. The set $WP(G)$ is a subgroup of $RO(G)$.

Theorem [1.9](#page-4-1) can be reformulated as follows:

Theorem 6.5. If H is a subgroup of an Oliver group G then

 $\mathrm{ind}_{H}^{G}(\mathrm{WP}(H)_{\mathcal{P}})\subset \mathrm{Sm}(G)_{\mathcal{P}}^{\mathcal{L}}.$

For a pair $(P, H) \in \mathcal{PH}(G)$, define a Z-linear map $f_{P,H} : \mathrm{RO}(G) \to \mathbb{Z}$ by

 $f_{P,H}([V]) = \dim V^P - 2 \dim V^H.$

Next define

$$
P_{+}(\mathcal{PH}_2(G)) = \{ x \in \text{RO}(G)^{\mathcal{L}} \mid f_{P,H}(x) \ge 0 \text{ for all } (P,H) \in \mathcal{PH}_2(G) \},
$$

 $P_-(\mathcal{PH}_2(G)) = \{x \in \text{RO}(G)^{\mathcal{L}} \mid f_{P,H}(x) \leq 0 \text{ for all } (P,H) \in \mathcal{PH}_2(G)\}.$

It is clear that $P_-(\mathcal{PH}_2(G)) = -P_+(\mathcal{PH}_2(G)).$

Lemma 6.6. For an arbitrary finite group G , we have

 $P_+(\mathcal{PH}_2(G)) \cup P_-(\mathcal{PH}_2(G)) \subset \text{WP}(G).$

Proof. Let $x = [V] - [W] \in P_+(\mathcal{PH}_2(G))$, where V and W are L-free real G-modules. By [\[13,](#page-27-2) Proposition 2.3], W is isomorphic to a G-submodule of $\mathbb{R}[G]_{\mathcal{L}}^{\oplus m}$, where $m = \dim W$. Thus we can assume $W = \mathbb{R}[G]_{\mathcal{L}}^{\oplus m}$ without any loss of generality. Then the inequality

$$
f_{P,H}(x) = (\dim V^P - 2\dim V^H) - m(\dim (\mathbb{R}[G]_{\mathcal{L}})^P - 2\dim (\mathbb{R}[G]_{\mathcal{L}})^H) \ge 0
$$

for $(P, H) \in \mathcal{PH}_2(G)$ reads

$$
\dim V^P - 2\dim V^H \ge m(\dim (\mathbb{R}[G]_{\mathcal{L}})^P - 2\dim (\mathbb{R}[G]_{\mathcal{L}})^H).
$$

Since the right-hand side above is non-negative, V satisfies the weak gap condition on $\mathcal{PH}_2(G)$ as also does $W = \mathbb{R}[G]_{\mathcal{L}}^{\oplus m}$, which ensures that the element $x =$ $[V] - [W]$ belongs to $WP(G)$, hence $P_+(\mathcal{PH}_2(G)) \subset WP(G)$.

In addition, we have

$$
\mathbf{P}_{-}(\mathcal{PH}_2(G)) = -\mathbf{P}_{+}(\mathcal{PH}_2(G)) \subset -\text{WP}(G) = \text{WP}(G).
$$

This completes the proof.

The next claim immediately follows from Theorem [6.5](#page-26-0) and Lemma [6.6.](#page-26-1)

Theorem 6.7. If H is a subgroup of an Oliver group G then

$$
\mathrm{ind}_H^G\left(\mathrm{P}_+(\mathcal{PH}_2(H))_{\mathcal{P}} \cup \mathrm{P}_-(\mathcal{PH}_2(H))_{\mathcal{P}}\right) \subset \mathrm{Sm}(G)_{\mathcal{P}}^{\mathcal{L}}.
$$

Proof of Theorem [1.10.](#page-4-0) It is clear that

$$
\mathrm{RO}(H)_{\mathcal{H}}^{\mathcal{L}} \subset \mathrm{P}_{+}(\mathcal{P}\mathcal{H}_{2}(H))_{\mathcal{H}} \subset \mathrm{P}_{+}(\mathcal{P}\mathcal{H}_{2}(H))_{\mathcal{P}}
$$

and

$$
ind_H^G(RO(H)_\mathcal{H}) \subset RO(G)_\mathcal{H}.
$$

Thus Theorem [1.10](#page-4-0) follows from Theorem [6.7.](#page-26-2)

Acknowledgements

The author wishes to express his deepest gratitude to the referee for helpful comments. This research was partially supported by a Grant-in-Aid for Scientific Research (KAKENHI) No. 225400875.

References

- [1] A. Bak, K-theory of forms, Ann. of Math. Stud. 98, Princeton Univ. Press, Princeton, 1981. [Zbl 0465.10013](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0465.10013&format=complete) [MR 0632404](http://www.ams.org/mathscinet-getitem?mr=0632404)
- [2] A. Bak and M. Morimoto, Equivariant intersection theory and surgery theory for manifolds with middle dimensional singular sets, J. K-Theory 2 (2008), Special Issue 03, 507–600. [Zbl 1156.57028](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1156.57028&format=complete) [MR 2465449](http://www.ams.org/mathscinet-getitem?mr=2465449)
- [3] S. E. Cappell and J. L. Shaneson, The codimension two placement problem and homology equivalent manifolds, Ann. of Math. 99 (1974), 277–348. [Zbl 0279.57011](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0279.57011&format=complete) [MR 0339216](http://www.ams.org/mathscinet-getitem?mr=0339216)
- [4] X. M. Ju, The Smith set of the group $S_5 \times C_2 \times \cdots \times C_2$, Osaka J. Math. **47** (2010), 215–236. [Zbl 1228.55004](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1228.55004&format=complete) [MR 2666133](http://www.ams.org/mathscinet-getitem?mr=2666133)
- [5] X. M. Ju, K. Matsuzaki and M. Morimoto, Mackey and Frobenius structures on odd dimensional surgery obstruction groups, K-Theory 29 (2003), 285–312. [Zbl 1044.19003](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1044.19003&format=complete) [MR 2029081](http://www.ams.org/mathscinet-getitem?mr=2029081)
- [6] E. Laitinen and M. Morimoto, Finite groups with smooth one fixed point actions on spheres, Forum Math. 10 (1998), 479–520. [Zbl 0905.57023](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0905.57023&format=complete) [MR 1631012](http://www.ams.org/mathscinet-getitem?mr=1631012)
- [7] E. Laitinen, M. Morimoto and K. Pawałowski, Deleting-inserting theorem for smooth actions of finite nonsolvable groups on spheres, Comment. Math. Helv. 70 (1995), 10–38. [Zbl 0843.57034](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0843.57034&format=complete) [MR 1314939](http://www.ams.org/mathscinet-getitem?mr=1314939)
- [8] M. Morimoto, Bak groups and equivariant surgery, K-Theory 2 (1989), 465–483. [Zbl 0669.57018](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0669.57018&format=complete) [MR 0990572](http://www.ams.org/mathscinet-getitem?mr=0990572)
- [9] _____, Bak groups and equivariant surgery II, K-Theory 3 (1990), 505-521. [Zbl 0712.57013](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0712.57013&format=complete) [MR 1071893](http://www.ams.org/mathscinet-getitem?mr=1071893)
- [10] , Induction theorems of equivariant surgery obstruction groups, Trans. Amer. Math. Soc. 355 (2003), 2341–2384. [Zbl 1019.19002](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1019.19002&format=complete) [MR 1973993](http://www.ams.org/mathscinet-getitem?mr=1973993)
- [11] _____, Fixed-point sets of smooth actions on spheres, J. K-Theory 1 (2008), 95-128. [Zbl 1154.57037](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1154.57037&format=complete) [MR 2424568](http://www.ams.org/mathscinet-getitem?mr=2424568)
- [12] M. Morimoto and K. Iizuka, Extendibility of G-maps to pseudoequivalences to finite G-CW-complexes whose fundamental groups are finite, Osaka J. Math. 21 (1984), 59–69. [Zbl 0542.57031](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0542.57031&format=complete) [MR 0736970](http://www.ams.org/mathscinet-getitem?mr=0736970)
- [13] M. Morimoto and K. Pawałowski, The equivariant bundle subtraction theorem and its applications, Fund. Math. 161 (1999), 279–303. [Zbl 0947.57035](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0947.57035&format=complete) [MR 1716021](http://www.ams.org/mathscinet-getitem?mr=1716021)

- [14] , Smooth actions of finite Oliver groups on spheres, Topology 42 (2003), 395-421. [Zbl 1019.57020](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1019.57020&format=complete) [MR 1941442](http://www.ams.org/mathscinet-getitem?mr=1941442)
- [15] B. Oliver, Fixed point sets and tangent bundles of actions on disks and euclidean spaces, Topology 35 (1996), 583–615. [Zbl 0861.57047](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0861.57047&format=complete) [MR 1396768](http://www.ams.org/mathscinet-getitem?mr=1396768)
- [16] , Fixed-point sets of groups on finite acyclic complexes, Comment. Math. Helv. 50 (1975), 155–177. [Zbl 0304.57020](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0304.57020&format=complete) [MR 0375361](http://www.ams.org/mathscinet-getitem?mr=0375361)
- [17] K. Pawałowski and R. Solomon, Smith equivalence and finite Oliver groups with Laitinen number 0 or 1, Algebr. Geom. Topol. 2 (2002), 843–895. [Zbl 1022.57019](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1022.57019&format=complete) [MR 1936973](http://www.ams.org/mathscinet-getitem?mr=1936973)
- [18] C. T. C. Wall, Surgery on compact manifolds, Academic Press, London, 1970. [Zbl 0219.57024](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0219.57024&format=complete) [MR 0431216](http://www.ams.org/mathscinet-getitem?mr=0431216)