Deleting and Inserting Fixed Point Manifolds under the Weak Gap Condition

Dedicated to Professor Krzysztof Pawałowski on his 60th birthday

 $\mathbf{b}\mathbf{y}$

Masaharu Morimoto

Abstract

Let G be a finite group and X a compact smooth manifold. It is of interest which smooth manifolds can be the G-fixed point sets of smooth G-actions on X. The deleting-inserting theorem of this paper is related to this problem and has applications to one-fixed-point actions on spheres as well as to Smith equivalence.

2010 Mathematics Subject Classification: Primary 57S17; Secondary 57R67, 19J25, 20C05. Keywords: equivariant surgery, surgery obstruction, weak gap condition, homology equivalence, Smith equivalence.

§1. Introduction

Let G be a finite group. In this paper, a manifold and a G-manifold mean a smooth manifold and a smooth G-manifold, respectively. Given a manifold X, it is a fundamental problem to study which manifolds and real vector bundles can be the G-fixed point sets and the normal bundles of G-fixed point sets, respectively, of smooth G-actions on X. This problem for the case where X is a disk was studied by B. Oliver [15], and for X a sphere in [11] under the gap condition. The Smith problem on tangential representations at fixed points on spheres is a part of the problem above and has been studied by various authors. It has been useful for the study of the problem to delete (or insert) manifolds from (or to) a given manifold X as G-fixed point sets. More precisely, for a given G-manifold Y having the diffeomorphism type of X and the G-fixed point set

$$Y^G = F_1 \amalg \cdots \amalg F_m$$

Communicated by T. Ohtsuki. Received September 15, 2011. Revised November 20, 2011.

M. Morimoto: Department of Mathematics, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kitaku, Okayama, 700-8530 Japan;

e-mail: morimoto@ems.okayama-u.ac.jp

^{© 2012} Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.

and given integers $1 \le r_1 \le \cdots \le r_n \le m$, it is of interest whether there exists a *G*-manifold *Z* having the diffeomorphism type of *X* and the *G*-fixed point set

$$Z^G = F_{r_1} \amalg \cdots \amalg F_{r_n}$$

A finite group G is called an *Oliver group* if there exists a smooth G-action on a disk without G-fixed points, or equivalently if there never exists a normal series $P \leq H \leq G$ such that P and G/H have prime power order and H/P is a cyclic group (cf. [16, 15, 6]). We studied such deleting-inserting methods for an Oliver group G invoking the gap condition for which the main requirement is

$$2\dim Y^g < \dim Y$$

for all non-trivial elements g of G, i.e. $g \neq e$. In the current paper we give a deleting-inserting theorem (Theorem 5.1) for an Oliver group under the weak gap condition which allows the case that $2 \dim Y^g = \dim Y$ for $g \in G$. This theorem yields Theorems 1.3–1.10 below as applications.

Let $\mathcal{S}(G)$ denote the set of all subgroups of G, and $\mathcal{P}(G)$ the set of all primepower-order subgroups of G, where by convention $\{e\} \in \mathcal{P}(G)$. For a prime p, let $G^{\{p\}}$ denote the smallest normal subgroup N of G such that |G/N| is a power of p, possibly |G/N| = 1. Let $\mathcal{L}(G)$ denote the set of all subgroups H containing $G^{\{p\}}$ for some prime p. A (finite-dimensional) real G-module V is called \mathcal{L} -free if $V^L = 0$ for all $L \in \mathcal{L}(G)$. We define a G-submodule $V_{\mathcal{L}}$ of V by

$$V_{\mathcal{L}} = (V - V^G) - \bigoplus_{p \text{ prime}} (V^{G^{\{p\}}} - V^G).$$

Let $\mathbb{R}[G]$ denote the group ring of G with real coefficients having the canonical (left) G-action. Recall the following fact.

Lemma 1.1 ([6, Theorem 2.3]). The real G-module $V = \mathbb{R}[G]_{\mathcal{L}}$ has the following properties:

- (1.1.1) $V^H = 0$ if and only if $H \in \mathcal{L}(G)$.
- (1.1.2) dim $V^H \ge |K:H|$ dim V^K for all $H \le K \in \mathcal{S}(G)$.
- (1.1.3) The equality dim $V^H = 2 \dim V^K$ holds, where $H \le K \in \mathcal{S}(G)$, if and only if |K:H| = 2, $|KG^{\{2\}}: HG^{\{2\}}| = 2$, and $HG^{\{q\}} = G$ for all odd primes q.

By straightforward computation, we can show the next lemma.

Lemma 1.2 ([13, Proposition 1.9]). If G is an Oliver group then $\dim (\mathbb{R}[G]_{\mathcal{L}})^P \ge 2$ for all $P \in \mathcal{P}(G)$.

The following two theorems are an elaboration of [6, Theorem B]. In particular, for m = 1 they give smooth one-fixed-point actions on spheres.

Theorem 1.3. Let G be an Oliver group and m a positive integer. Then for any integer $\ell \geq 3$ there exists a G-action on the standard sphere S of dimension

$$d_{\ell} = \ell \cdot \left\{ (|G| - 1) - \sum_{p \mid |G|} (|G/G^{\{p\}}| - 1) \right\}$$

with exactly m G-fixed points x_1, \ldots, x_m for which the tangential representations $T_{x_i}(S)$ are all isomorphic to the ℓ -fold direct sum $\mathbb{R}[G]_{\mathcal{L}}^{\oplus \ell}$ of $\mathbb{R}[G]_{\mathcal{L}}$.

Let $\mathcal{PH}(G)$ denote the set of all pairs (P, H) consisting of $P \in \mathcal{P}(G)$ and $H \in \mathcal{S}(G)$ with P < H. Let $\mathcal{PH}_2(G)$ denote the set of all pairs $(P, H) \in \mathcal{PH}(G)$ such that |H : P| = 2, $|HG^{\{2\}} : PG^{\{2\}}| = 2$, and $PG^{\{q\}} = G$ for all odd primes q. For a set \mathcal{A} of pairs (H, K) with $H < K \in \mathcal{S}(G)$, we say that a real G-module V satisfies the gap condition (resp. the weak gap condition) on \mathcal{A} if

(1.1) $\dim V^H > 2 \dim V^K \quad (\text{resp. } \dim V^H \ge 2 \dim V^K)$

for any $(H, K) \in \mathcal{A}$. It should be remarked that if an \mathcal{L} -free real G-module V satisfies the weak gap condition on $\mathcal{PH}_2(G)$ then $V \oplus \mathbb{R}[G]_{\mathcal{L}}^{\oplus m}$ satisfies the weak gap condition on $\mathcal{PH}(G)$ for any $m \geq \dim V$.

Theorem 1.4. Let G be an Oliver group, m a positive integer, and V an \mathcal{L} -free real G-module satisfying the weak gap condition on $\mathcal{PH}_2(G)$. Then there exists an integer N such that for every integer $\ell \geq N$ there exists a G-action on the standard sphere S with exactly m G-fixed points x_1, \ldots, x_m for which the tangential representations $T_{x_i}(S)$ are all isomorphic to $V \oplus \mathbb{R}[G]_{\mathcal{L}}^{\oplus \ell}$.

Let $\operatorname{RO}(G)$ denote the real representation ring. For a subset A of $\operatorname{RO}(G)$, $A_{\mathcal{P}}$ stands for the set

$$A \cap \bigcap_{P \in \mathcal{P}(G)} \operatorname{Ker}[\operatorname{res}_{P}^{G} : \operatorname{RO}(G) \to \operatorname{RO}(P)].$$

Real G-modules V and W are called *Smith equivalent* if there exists a homotopy sphere Σ with a G-action such that Σ^G consists of exactly two points a and b, and the tangential representations $T_a(\Sigma)$ and $T_b(\Sigma)$ are isomorphic to V and W, respectively. Let Sm(G) denote the *Smith set* of G, i.e.

$$Sm(G) = \{ [V] - [W] \in RO(G) \mid V \text{ is Smith equivalent to } W \}.$$

The subset $\operatorname{Sm}(G)_{\mathcal{P}}$ is called the *primary Smith set* of G. For a subset A of $\operatorname{RO}(G)$, $A^{\mathcal{L}}$ stands for the set

$$\{[V] - [W] \in A \mid V^L = 0 \text{ and } W^L = 0 \text{ for all } L \in \mathcal{L}(G)\}.$$

We say that two real G-modules V and W are \mathcal{P} -matched if $\operatorname{res}_P^G V$ and $\operatorname{res}_P^G W$ are isomorphic for all $P \in \mathcal{P}(G)$.

Theorem 1.5. Let G be an Oliver group. Let V_1, \ldots, V_m be \mathcal{L} -free real G-modules satisfying the weak gap condition on $\mathcal{PH}_2(G)$, of which arbitrary two are \mathcal{P} -matched. Then there exists an integer N such that for any integer $\ell \geq N$, there exists a smooth G-action on the standard sphere S with exactly m G-fixed points x_1, \ldots, x_m for which the tangential representation $T_{x_i}(S)$ is isomorphic to $V_i \oplus \mathbb{R}[G]_{\mathcal{L}}^{\oplus \ell}$, $1 \leq i \leq m$.

In the case m = 2, we obtain the next theorem on Smith equivalence.

Theorem 1.6. Let G be an Oliver group and let V and W be \mathcal{P} -matched and \mathcal{L} -free real G-modules both satisfying the weak gap condition on $\mathcal{PH}_2(G)$. Then there exists an integer N such that for any integer $\ell \geq N$ there exists a smooth G-action on the standard sphere S with exactly two G-fixed points x_1 and x_2 for which the tangential representations $T_{x_1}(S)$ and $T_{x_2}(S)$ are isomorphic to $V \oplus \mathbb{R}[G]_{\mathcal{L}}^{\oplus \ell}$ and $W \oplus \mathbb{R}[G]_{\mathcal{L}}^{\oplus \ell}$, respectively. In particular, V and W are stably Smith equivalent.

Let X be a G-manifold and S a smooth G-action on the standard sphere with exactly one G-fixed point a and $T_a(S) \cong \mathbb{R}[G]_{\mathcal{L}}^{\oplus \ell}$. Then the cartesian product $Y = X \times S$ has the diagonal G-action and the G-fixed point set of Y is $X^G \times \{a\}$. For each $x \in X^G$, the tangential representation $T_{(x,a)}(Y)$ is isomorphic to $T_x(X) \oplus \mathbb{R}[G]_{\mathcal{L}}^{\oplus \ell}$. The next theorem follows from Theorems 1.3 and 1.6.

Theorem 1.7. Let G be an Oliver group and (V_i, W_i) a pair of \mathcal{L} -free \mathcal{P} -matched real G-modules V_i and W_i for each $1 \leq i \leq m$. Suppose all V_i and W_i , $1 \leq i \leq m$, satisfy the weak gap condition on $\mathcal{PH}_2(G)$. Let X be a G-manifold with G-fixed point set

$$X^G = \{x_1\} \amalg \cdots \amalg \{x_m\} \amalg F \quad (disjoint \ union)$$

such that for each $1 \leq i \leq m$, the tangential representation $T_{x_i}(X)$ is isomorphic to V_i , where F is a union of connected components of X^G . Then there exists an integer N such that for any integer $\ell \geq N$ there exists a G-manifold Y with G-fixed point set X^G for which the underlying space is diffeomorphic to $X \times S(\mathbb{R} \oplus \mathbb{R}[G]_{\mathcal{L}}^{\oplus \ell})$ and the tangential representation $T_{x_i}(Y)$ is isomorphic to $W_i \oplus \mathbb{R}[G]_{\mathcal{L}}^{\oplus \ell}$ for each $1 \leq i \leq m$.

A finite group G is called a gap group if each element x of $\operatorname{RO}(G)_{\mathcal{P}}^{\mathcal{L}}$ can be written in the form x = [V] - [W] with \mathcal{L} -free real G-modules V and W satisfying the gap condition on $\mathcal{PH}(G)$. We remark that G with $\mathcal{L}(G) \cap \mathcal{P}(G) = \emptyset$ is a gap group if and only if there exists an \mathcal{L} -free real G-module V satisfying the gap condition on $\mathcal{PH}_2(G)$. An Oliver group G is a gap group if G is nilpotent, or $G = G^{\{2\}}$, or $G \neq G^{\{p\}}$ for at least two odd primes p. In the case where G is a gap Oliver group, we could determine the geometrically defined set $\operatorname{Sm}(G)_{\mathcal{P}}^{\mathcal{L}}$ in algebraic terms: $\operatorname{Sm}(G)_{\mathcal{P}}^{\mathcal{L}}$ coincides with $\operatorname{RO}(G)_{\mathcal{P}}^{\mathcal{L}}$ (cf. [17, p. 850, Realization Theorem]). But it is difficult to determine $\operatorname{Sm}(G)$ or even $\operatorname{Sm}(G)_{\mathcal{P}}^{\mathcal{L}}$ when G is not a gap group. Let us call a finite group G a weak gap group if each element x of $\operatorname{RO}(G)_{\mathcal{P}}^{\mathcal{L}}$ can be written in the form x = [V] - [W] with \mathcal{L} -free real G-modules V and W satisfying the weak gap condition on $\mathcal{PH}(G)$. For example, $G = S_5 \times C_2 \times \cdots \times C_2$ is not a gap group but a weak gap group (cf. [4]), where S_5 is the symmetric group on five letters and C_2 is a group of order 2. Since $\operatorname{Sm}(G)_{\mathcal{P}}^{\mathcal{L}} \subset \operatorname{RO}(G)_{\mathcal{P}}^{\mathcal{L}}$, we obtain the next result.

Theorem 1.8. If G is a weak gap Oliver group then $\operatorname{Sm}(G)_{\mathcal{P}}^{\mathcal{L}}$ coincides with $\operatorname{RO}(G)_{\mathcal{P}}^{\mathcal{L}}$.

Let H be a subgroup of G. For a real H-module V, we denote by $\operatorname{ind}_{H}^{G} V$ the real G-module $\mathbb{R}[G] \otimes_{\mathbb{R}[H]} V$. If V satisfies the weak gap condition on $\mathcal{PH}(H)$ then $\operatorname{ind}_{H}^{G} V$ satisfies the weak gap condition on $\mathcal{PH}(G)$; if V is \mathcal{L} -free then $\operatorname{ind}_{H}^{G} V$ is also \mathcal{L} -free; and if V and W are \mathcal{P} -matched real H-modules then $\operatorname{ind}_{H}^{G} V$ and $\operatorname{ind}_{H}^{G} W$ are \mathcal{P} -matched real G-modules. Let $\operatorname{ind}_{H}^{G}$ denote the induction homomorphism $\operatorname{RO}(H) \to \operatorname{RO}(G)$. Then the inclusion $\operatorname{ind}_{H}^{G}(\operatorname{RO}(H)_{\mathcal{P}}^{\mathcal{L}}) \subset \operatorname{RO}(G)_{\mathcal{P}}^{\mathcal{L}}$ holds. Thus we obtain the next result from Theorem 1.6.

Theorem 1.9. Let H be a subgroup of an Oliver group G.

- (1.9.1) If V and W are \mathcal{L} -free \mathcal{P} -matched real H-modules satisfying the weak gap condition on $\mathcal{PH}_2(H)$ then $[\operatorname{ind}_H^G V] [\operatorname{ind}_H^G W]$ belongs to $\operatorname{Sm}(G)_{\mathcal{P}}^{\mathcal{L}}$.
- (1.9.2) If H is a weak gap group then

$$\operatorname{ind}_{H}^{G}(\operatorname{Sm}(H)_{\mathcal{P}}^{\mathcal{L}}) \subset \operatorname{ind}_{H}^{G}(\operatorname{RO}(H)_{\mathcal{P}}^{\mathcal{L}}) \subset \operatorname{Sm}(G)_{\mathcal{P}}^{\mathcal{L}}.$$

Let $\mathcal{H}(G)$ denote the set of all subgroups H of G for which there exists $P \in \mathcal{P}(G)$ such that $P \leq H$ and $|H:P| \leq 2$. For a subset $A \subset \operatorname{RO}(G)$, we define $A_{\mathcal{H}}$ to be the set of all elements $x \in A$ such that $\operatorname{res}_{H}^{G} x = 0$ for all $H \in \mathcal{H}(G)$. It is obvious that $A_{\mathcal{H}}^{\mathcal{L}} \subset \operatorname{RO}(G)_{\mathcal{P}}^{\mathcal{L}}$.

Theorem 1.10. If H is a subgroup of an Oliver group G then

$$\operatorname{ind}_{H}^{G}(\operatorname{RO}(H)_{\mathcal{H}}^{\mathcal{L}}) \subset \operatorname{Sm}(G)_{\mathcal{H}}^{\mathcal{L}} \subset \operatorname{Sm}(G)_{\mathcal{P}}^{\mathcal{L}}$$

This paper is organized as follows. Section 2 is devoted to preparation of basic terms and notation concerning G-manifolds and G-framed maps. In Section 3, we discuss equivariant surgery to obtain homology equivalences on even-dimensional manifolds satisfying the weak gap condition. Theorem 3.5 describes a surgery obstruction to $\mathbb{Z}_{(p)}$ -homology equivalence in algebraic terms. Section 4 is devoted to the induction theory of equivariant surgery obstruction groups. In Section 5 we prove Theorem 5.1 which provides a method of deleting or inserting fixed point manifolds. Theorems 1.3–1.5 and 1.10 are proved in Section 6.

§2. Preliminaries

For families \mathcal{A}, \mathcal{B} of sets closed under intersection, and a map $f : \mathcal{A} \to \mathcal{B}$, we say that f preserves intersection or is intersection preserving if

$$f(A_1 \cap A_2) = f(A_1) \cap f(A_2) \quad \text{for all } A_1, A_2 \in \mathcal{A}.$$

Let Θ be a *G*-set, $\rho : \Theta \to S(G)$ a *G*-map, where *G* acts on S(G) by conjugation, and *S* a conjugation invariant subset of *G* consisting of elements of order 2. The group *G* acts on *S* by conjugation. The set Θ is called (ρ, S) -simple if for each $t \in \Theta$, the set $\rho(t)$ contains at most one element in *S*.

Definition 2.1. For a (ρ, S) -simple *G*-set Θ , we define the *S*-contraction $(\Theta/S, \rho/S)$ of (Θ, ρ) as follows. Let \sim_S denote the equivalence relation on Θ such that $t \sim_S t'$ if and only if $\rho(t) \cap S = \rho(t') \cap S$. Denote by Θ/S the set of equivalence classes with respect to \sim_S . The map $\rho/S : \Theta/S \to \mathcal{S}(G)$ is defined by

$$\rho/S([t]) = \{e\} \cup (\rho(t) \cap S)$$

for the \sim_S -equivalence class [t] of $t \in \Theta$. Then Θ/S has a canonical *G*-action and $\rho/S: \Theta/S \to \mathcal{S}(G)$ is a *G*-map.

A G-map $\rho : \Theta \to \mathcal{S}(G)$ is called *S*-injective (resp. *S*-bijective) if for each $s \in S$, there exists at most one (resp. exactly one) element $t \in \Theta$ such that $\rho(t)$ contains s.

Let $\mathfrak{P}(\Theta)$ denote the set of all subsets of Θ . Clearly $\mathfrak{P}(\Theta)$ has the induced G-action. A G-map $f : \mathcal{S}(G) \to \mathfrak{P}(\Theta)$ is called ρ -compatible if $\rho(f(H)) \subset \mathcal{S}(H)$ for all $H \in \mathcal{S}(G)$. A G-map $f : \mathcal{S}(G) \to \mathfrak{P}(\Theta)$ is called (ρ, S) -saturated if

(2.1) $f(H) \supset \{t \in \Theta \mid \rho(t) \cap S \cap H \neq \emptyset\} \text{ for all } H \in \mathcal{S}(G).$

It is straightforward to verify the next lemma.

Lemma 2.2. Let $f : S(G) \to \mathfrak{P}(\Theta)$ be an intersection preserving ρ -compatible *G*-map and set $\Theta_H = f(H)$ and $\rho_H = \rho|_{\Theta_H} : \Theta_H \to S(H)$.

- (2.2.1) If Θ is (ρ, S) -simple, then Θ_H is $(\rho_H, S \cap H)$ -simple for $H \in \mathcal{S}(G)$ and the associated map $\rho/S : \Theta/S \to \mathcal{S}(G)$ is S-injective.
- (2.2.2) If $\rho: \Theta \to \mathcal{S}(G)$ is S-injective then $\rho_H: \Theta_H \to \mathcal{S}(H)$ is $(S \cap H)$ -injective for $H \in \mathcal{S}(G)$.
- (2.2.3) If $\rho : \Theta \to \mathcal{S}(G)$ is S-bijective and $f : \mathcal{S}(G) \to \mathfrak{P}(\Theta)$ is (ρ, S) -saturated then $\rho_H : \Theta_H \to \mathcal{S}(H)$ is $(S \cap H)$ -bijective for $H \in \mathcal{S}(G)$.

Let X be a compact, connected G-manifold, possibly with boundary ∂X . The singular set X_{sing} of X is defined by

$$X_{\text{sing}} = \bigcup_{g \in G \smallsetminus \{e\}} X^g.$$

We say that X satisfies the weak gap condition if

(2.2)
$$\dim X_{\rm sing} \le \frac{1}{2} \dim X.$$

In the case where X has even dimension 2k and satisfies the weak gap condition, we say that X satisfies the k-tame condition if

(2.3)
$$\dim X^{K} \leq k - 2$$
whenever $H < K \in \mathcal{S}(G)$, $\dim X^{H} = k$, and $H = \bigcap_{x \in X^{H}} G_{x}$,

where G_x stands for the isotropy subgroup of G at the point x. Let G(2) denote the set of all elements of G of order 2. In the case where X has even dimension 2kand satisfies the weak gap condition, we say that X satisfies the G(2)-condition if

(2.4)
$$|H| = 2$$
 whenever $H \in \mathcal{S}(G)$ and $2 \dim X^H = \dim X$.

For a subgroup H and an integer $\ell \geq 0$, let $\pi_0(X^H, \ell)$ denote the set of all connected components of dimension ℓ of X^H . For $\alpha \in \pi_0(X^H, \ell)$, we denote by X_{α} or X^H_{α} the underlying space of α . Each $\alpha \in \pi_0(X^H, \ell)$ determines the group

$$\rho_X(\alpha) = \bigcap_{x \in X_\alpha} G_x.$$

Definition 2.3. Let X be a compact, connected G-manifold, possibly with boundary, satisfying the weak gap condition. Then we set

 $S(X) = \{ g \in G \mid 2 \dim X^g = \dim X \},\$ $Q(X) = \{ g \in G \mid \dim X^g = [(\dim X - 1)/2] \},\$ $\Sigma(X) = \{ \alpha \mid H \in \mathcal{S}(G), \ \alpha \in \pi_0(X^H, \dim X/2), \text{ and } \rho_X(\alpha) = H \},\$ М. Могімото

where for a real number x, [x] denotes the greatest integer not exceeding x. The $(\dim X/2)$ -dimensional singular structure $\mathfrak{S}(X)$ associated with X is defined to be the set of all $X_s, s \in \Sigma(X)$. For each $s \in \Sigma(X)$, the manifold X_s has the unique orientation class t_s in $H_k(X_s, \partial X_s; \mathbb{Z}_2)$. The G-set $\Theta^{(2)}(X)$ is defined to be the set of all t_s , where s runs over $\Sigma(X)$. The correspondence $s \mapsto t_s$ gives a bijection $\Sigma(X) \to \Theta^{(2)}(X)$. The map $\rho_X^{(2)}: \Theta^{(2)}(X) \to \mathcal{S}(G)$ is defined by $\rho_X^{(2)}(t_s) = \rho_X(s)$ for $s \in \Sigma(X)$.

The proof of the next lemma is straightforward.

Lemma 2.4. Let X be a G-manifold as in Definition 2.3. Suppose that X has even dimension n = 2k and satisfies the G(2)-condition. Then the following hold:

- $\begin{array}{ll} (2.4.1) \ \Theta^{(2)}(X) \ is \ (\rho_X^{(2)}, S(X)) \text{-simple.} \\ (2.4.2) \ \rho_X^{(2)}/S(X) : \Theta^{(2)}(X)/S(X) \to \mathcal{S}(G) \ is \ S(X) \text{-bijective.} \end{array}$
- (2.4.3) For $H \in \mathcal{S}(G)$, $S(\operatorname{res}_{H}^{G} X)$ coincides with $S(X) \cap H$. Thus the map $H \mapsto$ $S(\operatorname{res}_{H}^{G} X)$ is intersection preserving.
- (2.4.4) For $H \in \mathcal{S}(G)$, $\Theta^{(2)}(\operatorname{res}_{H}^{G}X)$ coincides with $\{t \in \Theta^{(2)}(X) \mid \rho_{X}^{(2)}(t) \subset H\}$. Hence the map $f : \mathcal{S}(G) \to \mathfrak{P}(\Theta^{(2)}(X)); H \mapsto \Theta^{(2)}(\operatorname{res}_{H}^{G}X)$, is intersection preserving, $\rho_{X}^{(2)}$ -compatible, and $(\rho_{X}^{(2)}, S(X))$ -saturated, and furthermore $f(G) = \Theta^{(2)}(X)$.
- (2.4.5) The canonical map $\gamma: \Theta^{(2)}(X) \to \Theta^{(2)}(X)/S(X)$ is a G-map, the diagram

commutes, and

$$\gamma(\Theta^{(2)}(X)) = \Theta^{(2)}(X) / S(X)$$

Let X be a compact, connected, oriented G-manifold of dimension $n \ge 5$, possibly with boundary ∂X . Let R be a commutative ring with 1 and with trivial anti-involution $\overline{\cdot}$. The group ring R[G] has the anti-involution $\overline{\cdot}$ derived from the orientation homomorphism $w_X : G \to \{\pm 1\}$ of X, i.e.

$$\left(\sum_{g\in G} r_g g\right)^- = \sum_{g\in G} r_g w_X(g) g^{-1},$$

where $r_g \in R$. Let \widetilde{X} denote the universal covering space of X. Let \widetilde{G} denote the fundamental group $\pi_1(EG \times_G X)$, where EG is a contractible G-CW complex with

a free G-action. We have the exact sequence

$$1 \to \pi_1(X) \to \widetilde{G} \to G \to 1.$$

If X^G is nonempty then this sequence splits, i.e. $\widetilde{G} = \pi_1(X) \rtimes G$.

Let Y be a compact, connected, oriented G-manifold of dimension n, possibly with boundary ∂Y . Let $\mathbf{f} = (f, b)$ be a G-framed map, where $f : (X, \partial X) \to (Y, \partial Y)$ is a G-map such that $f : X \to Y$ is 1-connected, and $b : T(X) \oplus f^* \eta \to f^* \xi$ is a real G-vector bundle isomorphism for real G-vector bundles η and ξ over Y such that $\eta \supset \varepsilon_Y(\mathbb{R}^n)$ (cf. [2, Lemma 6.1]). Then \mathbf{f} is covered by the induced \widetilde{G} -framed map $\widetilde{\mathbf{f}} = (\widetilde{f}, \widetilde{b})$ consisting of a $\widetilde{\varphi}$ -map $\widetilde{f} : (\widetilde{X}, \partial \widetilde{X}) \to (\widetilde{Y}, \partial \widetilde{Y})$ and a real \widetilde{G} -vector bundle isomorphism $\widetilde{b} : T(\widetilde{X}) \oplus \widetilde{f}^* \widetilde{\eta} \to \widetilde{f}^* \widetilde{\xi}$, where \widetilde{Y} is the universal covering space of Y, $\widetilde{\varphi}$ is the canonical homomorphism $\widetilde{G} = \pi_1(EG \times_G X) \to \pi_1(EG \times_G Y) = \widehat{G}$, and $\widetilde{\eta}$ and $\widetilde{\xi}$ are the real \widehat{G} -vector bundles over \widetilde{Y} induced from η and ξ , respectively:

$$\begin{array}{c|c} \widetilde{X} & \xrightarrow{\widetilde{f}} \widetilde{Y} \\ \pi_{\widetilde{X},X} & & & & \\ & & & & \\ & & & & \\ X & \xrightarrow{f} & Y \end{array}$$

We note that the map $\widetilde{f}: (\widetilde{X}, \partial \widetilde{X}) \to (\widetilde{Y}, \partial \widetilde{Y})$ is not necessarily of degree one.

§3. G-surgery maps on even-dimensional manifolds

Let X be a compact, connected, oriented G-manifold of even dimension $n = 2k \ge 6$, possibly with boundary ∂X . Throughout this section, we assume that X satisfies the weak gap condition and the k-tame condition. Let R be a commutative ring with 1 and with trivial anti-involution $\overline{\cdot}$. We set $\lambda = (-1)^k$, S = S(X) and Q = Q(X); further define

$$(Q)_R = R[Q] + \{x - \lambda \overline{x} \mid x \in R[G]\}, \quad (S)_R = R[S] + \{x + \lambda \overline{x} \mid x \in R[G]\}.$$

Then

$$\boldsymbol{A}_X = (R[G], (\bar{\cdot}, \lambda), (S)_R, G, R[S], (Q)_R + R[S])$$

is a double parameter algebra in the sense of [2, Definition 2.5].

Let $\mathfrak{S} = \{X_s \mid s \in \Sigma\}$ be a set of compact connected k-dimensional neat submanifolds of X, where Σ is a G-set, such that $gX_s = X_{gs}$ for all $g \in G$ and $s \in \Sigma$. Set

$$X_{\mathfrak{S}} = \bigcup_{s \in \Sigma} X_s.$$

In this paper, we assume that \mathfrak{S} satisfies the *k*-tame condition, i.e.

(3.1)
$$X_s \cap X_t$$
 is a neat submanifold of X_s of dimension $\leq k-2$

for all $s, t \in \Sigma$, $s \neq t$. If $\mathfrak{S} \supset \mathfrak{S}(X)$ then we call \mathfrak{S} a k-singular structure of X. The index set Σ decomposes into the disjoint union of Σ_+ and Σ_- consisting of all elements $s \in \Sigma$ such that X_s is orientable and non-orientable, respectively. Let $\Theta^{(0)}(\mathfrak{S})$ denote the set of all generators of $H_k(X_s, \partial X_s; \mathbb{Z})$, where s runs over Σ_+ , and let $\Theta^{(2)}(\mathfrak{S})$ denote the set of all generators of $H_k(X_s, \partial X_s; \mathbb{Z}_2)$, where s runs over Σ . The sets $\Theta^{(0)}(\mathfrak{S})$ and $\Theta^{(2)}(\mathfrak{S})$ have canonical actions of $G \times \{\pm 1\}$ and G, respectively. In addition, there is a canonical map $p_{\mathfrak{S}} : \Theta^{(0)}(\mathfrak{S}) \to \Theta^{(2)}(\mathfrak{S})$; for a generator x of $H_k(X_s, X_s; \mathbb{Z})$, $p_{\mathfrak{S}}(x)$ is the generator of $H_k(X_s, X_s; \mathbb{Z}_2)$. We have a natural one-to-one correspondence from Σ to $\Theta^{(2)}(\mathfrak{S})$. Thus we often identify $\Theta^{(2)}(\mathfrak{S})$ with Σ as G-sets. On the other hand, we may not have a $(G \times \{\pm 1\})$ bijection from $\Theta^{(0)}(\mathfrak{S})$ to $\Sigma_+ \times \{\pm 1\}$, although there is a non-equivariant bijection between these sets. Let $\rho_{\mathfrak{S}}$ denote the map $\Theta^{(2)}(\mathfrak{S}) = \Sigma \to \mathcal{S}(G)$ defined by

$$\rho_{\mathfrak{S}}(s) = \bigcap_{x \in X_s} G_x \quad (s \in \Sigma)$$

Let $\Theta(\mathfrak{S})$ denote the datum

$$(\Theta^{(0)}(\mathfrak{S}), \Theta^{(2)}(\mathfrak{S}), p_{\mathfrak{S}}, \rho_{\mathfrak{S}}).$$

 Set

$$\begin{split} \widetilde{Q} &= Q_{\widetilde{X}} \ (= \{g \in \widetilde{G}(2) \mid \dim \widetilde{X}^g = k - 1\}), \\ \widetilde{S} &= S_{\widetilde{X}} \ (= \{g \in \widetilde{G}(2) \mid \dim \widetilde{X}^g = k\}), \\ (\widetilde{Q})_R &= R[\widetilde{Q}] + \{x - \lambda \overline{x} \mid x \in R[\widetilde{G}]\}, \quad (\widetilde{S})_R = R[\widetilde{S}] + \{x + \lambda \overline{x} \mid x \in R[\widetilde{G}]\}. \end{split}$$

Then

$$\widetilde{\boldsymbol{A}} = \boldsymbol{A}_{\widetilde{X}} = (R[\widetilde{G}], (\bar{\cdot}, \lambda), (\widetilde{S})_R, \widetilde{G}, R[\widetilde{S}], (\widetilde{Q})_R + R[\widetilde{S}])$$

is a double parameter algebra.

Let $\mathfrak{S}=\{X_s\mid s\in\Sigma\}$ be a k-singular structure of X as above. Consider the set

$$\widetilde{\mathfrak{S}} = \{ \widetilde{X}_t \mid t \in \widetilde{\Sigma} \}$$

of all connected components \widetilde{X}_t of $\pi_{\widetilde{X},X}^{-1}(X_s)$, $s \in \Sigma$, where $\pi_{\widetilde{X},X}$ is the canonical projection $\widetilde{X} \to X$. Here we have canonical surjections $\widetilde{\mathfrak{S}} \to \mathfrak{S}$ and $\widetilde{\Sigma} \to \Sigma$. We call $\widetilde{\mathfrak{S}}$ the *k*-singular structure of \widetilde{X} induced from \mathfrak{S} . Note that \widetilde{X} and \widetilde{X}_t are possibly non-compact. The index set $\widetilde{\Sigma}$ decomposes into the disjoint union of $\widetilde{\Sigma}_+$ and $\widetilde{\Sigma}_-$ consisting of all elements $t \in \widetilde{\Sigma}$ such that \widetilde{X}_t is orientable and non-orientable, respectively. Let $\Theta^{(0)}(\widetilde{\mathfrak{S}})$ denote the set of all generators of $H_k^{\text{loc.fin.}}(\widetilde{X}_t, \partial \widetilde{X}_t; \mathbb{Z})$, where t runs over $\widetilde{\Sigma}_+$, and let $\Theta^{(2)}(\widetilde{\mathfrak{S}})$ denote the set of all generators of $H_k^{\text{loc.fin.}}(\widetilde{X}_t, \partial \widetilde{X}_t; \mathbb{Z}_2)$, where t runs over $\widetilde{\Sigma}$. The sets $\Theta^{(0)}(\widetilde{\mathfrak{S}})$ and $\Theta^{(2)}(\widetilde{\mathfrak{S}})$ have canonical actions of $\widetilde{G} \times \{\pm 1\}$ and \widetilde{G} , respectively. In addition, we have the canonical map $p_{\widetilde{\mathfrak{S}}}: \Theta^{(0)}(\widetilde{\mathfrak{S}}) \to \Theta^{(2)}(\widetilde{\mathfrak{S}})$. Define the map

$$\rho_{\widetilde{\mathfrak{S}}}: \Theta^{(2)}(\widetilde{\mathfrak{S}}) = \widetilde{\mathfrak{S}} = \widetilde{\Sigma} \to \mathcal{S}(\widetilde{G}) \quad \text{by} \quad \rho_{\widetilde{\mathfrak{S}}}(t) = \bigcap_{x \in \widetilde{X}_t} \ \widetilde{G}_x$$

Let $\Theta(\widetilde{\mathfrak{S}})$ denote the datum

$$(\Theta^{(0)}(\widetilde{\mathfrak{S}}), \Theta^{(2)}(\widetilde{\mathfrak{S}}), p_{\widetilde{\mathfrak{S}}}, \rho_{\widetilde{\mathfrak{S}}}).$$

The next lemma is well-known.

Lemma 3.1. Let $\mathbf{f} = (f, b)$ be a *G*-framed map and \mathfrak{S} a *k*-singular structure of *X* as above. Suppose the map $f : (X, \partial X) \to (Y, \partial Y)$ has degree one. Then \mathbf{f} can be converted to a *G*-framed map $\mathbf{f}' = (f', b')$, where $f' : (X', \partial X') \to (Y, \partial Y)$ and $b' : T(X') \oplus f'^*\eta \to f'^*\xi$, such that $f' : X' \to Y$ is *k*-connected, by a *G*-surgery on *X* relative to $X_{sing} \cup X_{\mathfrak{S}} \cup \partial X$.

First, note that the degree of the resulting map $f': (X', \partial X') \to (Y, \partial Y)$ above is 1. Second, note that if $f: X \to Y$ is k-connected then the mapping cylinder $M_{\tilde{f}}$ of $\tilde{f}: \tilde{X} \to \tilde{Y}$ is the universal covering space of the mapping cylinder M_f of $f: X \to Y$, the group $\pi_{k+1}(\tilde{f})$ can be identified with $\pi_{k+1}(f)$, and the canonical homomorphism $\pi_{k+1}(\tilde{f}) \to K_k(\tilde{f}; \mathbb{Z})$ is an isomorphism, where $\pi_{k+1}(\tilde{f}) = \pi_{k+1}(M_{\tilde{f}}, \tilde{X})$ and

$$K_k(\widetilde{f};\mathbb{Z}) = \operatorname{Ker}[\widetilde{f}_* : H_k(\widetilde{X};\mathbb{Z}) \to H_k(\widetilde{Y};\mathbb{Z})].$$

Now let R be \mathbb{Z} or $\mathbb{Z}_{(p)}$ for a prime p. We denote by $\mathcal{P}_p(G)$ the set of all subgroups of G with p-power order. Thus we have

$$\mathcal{P}(G) = \bigcup_{p \text{ prime}} \mathcal{P}_p(G)$$

Let $\mathbf{f} = (f, b), f: (X, \partial X) \to (Y, \partial Y)$ be a *G*-framed map and \mathfrak{S} a *k*-singular structure of X as above. Then let $\tilde{\mathbf{f}} = (\tilde{f}, \tilde{b}), \tilde{f}: (\tilde{X}, \partial \tilde{X}) \to (\tilde{Y}, \partial \tilde{Y})$, denote the \tilde{G} -framed map induced from \mathbf{f} , where \tilde{X} and \tilde{Y} are the universal covering spaces of X and Y, respectively. Let \mathfrak{S} denote the induced *k*-singular structure of \tilde{X} .

Definition 3.2. Let f be the *G*-framed map above. We define the $R[\widetilde{G}]$ -module $M(\widetilde{f}; R)$ by

$$M(\widetilde{f};R) = \pi_{k+1}(\widetilde{f}) \otimes R.$$

We call f a (G, R)-surgery map if the following conditions are fulfilled:

- (3.2.1) $f: X \to Y$ is of degree one.
- (3.2.2) $f: X \to Y$ is 1-connected.
- (3.2.3) $f_*: H_j(X; R) \to H_j(Y; R), j < k$, are all isomorphisms, and $f_*: H_k(X; R) \to H_k(Y; R)$ is surjective.
- (3.2.4) $\partial f_*: H_j(\partial X; R) \to H_j(\partial Y; R), j \le n-1$, are all isomorphisms.
- (3.2.5) $f: X \to Y$ is k-connected, or the canonical map $M(\tilde{f}; R) \otimes_{R[\tilde{G}]} R[G] \to K_k(f; R)$ is an isomorphism, where

$$K_k(f;R) = \operatorname{Ker}[f_*: H_k(X;R) \to H_k(Y;R)].$$

- (3.2.6) In the case $R = \mathbb{Z}, f^P : X^P \to Y^P$ are \mathbb{Z}_q -homology equivalences for all subgroups $P \in \mathcal{P}(G)$ with $P \neq \{e\}$, and primes q dividing |P|. In the case $R = \mathbb{Z}_{(p)}, f^P : X^P \to Y^P$ are \mathbb{Z}_p -homology equivalences for all $P \in \mathcal{P}_p(G)$ with $P \neq \{e\}$.
- (3.2.7) $\chi(X^g) = \chi(Y^g)$ for all $g \in G, g \neq e$.

We have the Poincaré pairing

$$H_k^{\text{loc.fin.}}(\widetilde{X}, \partial \widetilde{X}; \mathbb{Z}) \times H_k(\widetilde{X}; \mathbb{Z}) \to \mathbb{Z}.$$

Passing along the canonical homomorphisms

$$\pi_{k+1}(\widetilde{f}) \to H_{k+1}(M_{\widetilde{f}}, \widetilde{X}; \mathbb{Z}) \to K_k(\widetilde{f}; \mathbb{Z}) \subset H_k(\widetilde{X}; \mathbb{Z}) \to H_k^{\text{loc.fin.}}(\widetilde{X}, \partial \widetilde{X}; \mathbb{Z})$$

we obtain the intersection form $\widetilde{B}_0: M(\widetilde{f}; R) \times M(\widetilde{f}; R) \to R$, and hence the \widetilde{G} -equivariant intersection form

$$\widetilde{B}: M(\widetilde{f}; R) \times M(\widetilde{f}; R) \to R[\widetilde{G}]; \ \widetilde{B}(x, y) = \sum_{g \in \widetilde{G}} \widetilde{B}_0(x, g^{-1}y)g.$$

Let $x \in \pi_{k+1}(\widetilde{f})$. Then x is represented by a commutative diagram

By virtue of this diagram and the bundle isomorphism b, the induced bundle $\alpha^*T(\widetilde{X})$ is stably trivial. Thus x is represented by an immersion $\alpha: S^k \to \widetilde{X}$ with trivial normal bundle. Let g be an element in \widetilde{G} of order 2 satisfying dim $\widetilde{X}^g \leq k-2$. Then the regular homotopy classes of immersions $S^k \to \widetilde{X}$ correspond in a one-to-one way to the regular homotopy classes of immersions $S^k \to \widetilde{X} \sim \widetilde{X}^g$. Hence

Theorem 5.2 of [18] provides the $\langle g \rangle$ -equivariant self-intersection form

$$\widetilde{q}_{\langle g \rangle} : \pi_{k+1}(\widetilde{f}) \to \mathbb{Z}[\langle g \rangle] / \{a - \lambda \overline{a} \mid a \in \mathbb{Z}[\langle g \rangle]\}$$

Assembling the data of the \tilde{G} -equivariant intersection form \tilde{B} and the $\langle g \rangle$ -equivariant self-intersection forms $\tilde{q}_{\langle g \rangle}$ (cf. [2, Definition 4.11]), we obtain the \tilde{G} -equivariant self-intersection form

$$\widetilde{q}: M(\widetilde{f}; R) \to R[\widetilde{G}]/((Q_{\widetilde{X}})_R + R[S_{\widetilde{X}}]) \quad \text{ (cf. [2, p. 567, \ell. 3])}.$$

For a generator $\alpha \in H_k^{\text{loc.fin.}}(\widetilde{X}_t, \partial \widetilde{X}_t; \mathbb{Z})$, where $t \in \widetilde{\Sigma}_+$, we have the element

$$j_* \alpha \in H_k^{\text{loc.fin.}}(X, \partial X; \mathbb{Z}),$$

where $j_* : H_k^{\text{loc.fin.}}(\widetilde{X}_t, \partial \widetilde{X}_t; \mathbb{Z}) \to H_k^{\text{loc.fin.}}(\widetilde{X}, \partial \widetilde{X}; \mathbb{Z})$ is the canonical homomorphism. Via the intersection paring (or the Poincaré pairing up to sign)

$$H_k^{\text{loc.fin.}}(\widetilde{X}, \partial \widetilde{X}; \mathbb{Z}) \times H_k(\widetilde{X}; \mathbb{Z}) \to \mathbb{Z}$$

and the canonical map $M(\tilde{f};\mathbb{Z}) \to H_k(\tilde{X};\mathbb{Z}), j_*\alpha$ determines an element

$$\widetilde{\theta}^{(0)}(\alpha) \in M(\widetilde{f}; \mathbb{Z})^{\#}, \quad \text{where} \quad M(\widetilde{f}; \mathbb{Z})^{\#} = \text{Hom}_{\mathbb{Z}[\widetilde{G}]}(M(\widetilde{f}; \mathbb{Z}), \mathbb{Z}[\widetilde{G}]).$$

Thus we obtain the $(\widetilde{G} \times \{\pm 1\})$ -map

$$\widetilde{\theta}^{(0)}: \Theta^{(0)}(\widetilde{\mathfrak{S}}) \to M(\widetilde{f}; R)^{\#}, \quad \text{where} \quad M(\widetilde{f}; R)^{\#} = \text{Hom}_{R[\widetilde{G}]}(M(\widetilde{f}; R), R[\widetilde{G}]).$$

Similarly we obtain the \tilde{G} -map

$$\widetilde{\Theta}^{(2)}: \Theta^{(2)}(\widetilde{\mathfrak{S}}) \to M(\widetilde{f}; R/2R)^{\#}$$

where

$$M(\widetilde{f}; R/2R)^{\#} = \operatorname{Hom}_{R/2R[\widetilde{G}]}(M(\widetilde{f}; R/2R), R/2R[\widetilde{G}]).$$

Putting all this together, we obtain the surgery module

$$\boldsymbol{M}_{\widetilde{\boldsymbol{f}},\widetilde{\mathfrak{S}}} = (M(\widetilde{f};R),\widetilde{B},\widetilde{q},\widetilde{\theta}^{(0)},\widetilde{\theta}^{(2)}).$$

By the hypothesis $M(\widetilde{f};R)\otimes_{R[\widetilde{G}]}R[G]=K_k(f;R),$ we obtain the commutative diagram

$$\begin{array}{cccc} \Theta^{(0)}(\widetilde{\mathfrak{S}}) & \longrightarrow & H_k^{\mathrm{loc.fin.}}(\widetilde{X}, \partial \widetilde{X}; R) & \longrightarrow & M(\widetilde{f}; R)^{\#} \\ & & & & \downarrow & & \downarrow \\ \Theta^{(2)}(\widetilde{\mathfrak{S}}) & \longrightarrow & H_k^{\mathrm{loc.fin.}}(\widetilde{X}, \partial \widetilde{X}; R/2R) & \longrightarrow & M(\widetilde{f}; R/2R)^{\#} \\ & & & \downarrow & & \downarrow \\ \Theta^{(2)}(\mathfrak{S}) & \longrightarrow & K_k(f, \partial f; R/2R) & \longrightarrow & K(f; R/2R)^{\#} \end{array}$$

Moreover we note

$$K_k(f, \partial f; R) = K_k(f; R), \quad K_k(f, \partial f; R/2R) = K_k(f; R/2R),$$

$$K_k(f; R)^{\#} = K_k(f; R) \quad \text{and} \quad K_k(f; R/2R)^{\#} = K_k(f; R/2R).$$

Thus by the hypothesis $M(\tilde{f}; R) \otimes_{R[\tilde{G}]} R[G] = K_k(f; R)$, we obtain the surgery module

$$\boldsymbol{M}_{\boldsymbol{f},\mathfrak{S}} = \boldsymbol{M}_{\boldsymbol{\tilde{f}},\boldsymbol{\tilde{S}}} \otimes_{R[\boldsymbol{\tilde{G}}]} R[\boldsymbol{G}] = (K_k(f;R), B_f, q_{\boldsymbol{f}}, \theta^{(0)}, \theta^{(2)}),$$

where

$$B_f: K_k(f; R) \times K_k(f; R) \to R[G]$$

is the G-equivariant intersection form,

$$q_{\mathbf{f}}: K_k(f; R) \to R[G]/((Q)_R + R[S])$$

is the G-equivariant self-intersection form, and

$$\theta^{(0)} : \Theta^{(0)}(\mathfrak{S}) \to K_k(f; R)^{\#} = K_k(f; R), \theta^{(2)} : \Theta^{(2)}(\mathfrak{S}) \to K_k(f; R/2R)^{\#} = K_k(f; R/2R)$$

are positioning maps (cf. [2, §5, pp. 563–564]).

By similar arguments to [2, p. 575, ℓ . 24 – p. 578, ℓ . 2], we obtain the next lemma.

Lemma 3.3. Let \mathbf{f} be a (G, R)-surgery map and \mathfrak{S} a k-singular structure as above. If there exists an $R[\tilde{G}]$ -submodule \tilde{L} of $M(\tilde{f}; R)$ satisfying the conditions below then \mathbf{f} can be converted to a (G, R)-surgery map $\mathbf{f}' = (f', b')$, where f': $(X', \partial X') \to (Y, \partial Y)$ and $b': T(X') \oplus f'^*\eta \to f'^*\xi$, such that $f': X' \to Y$ is an R-homology equivalence via G-surgery on X relative to $X_{sing} \cup X_{\mathfrak{S}} \cup \partial X$.

- (3.3.1) $\tilde{\theta}^{(0)}(\alpha)(\tilde{L}) = 0$ for all $\alpha \in \Theta^{(0)}(\tilde{\mathfrak{S}})$ and $\tilde{\theta}^{(2)}(\beta)(\tilde{L}) = 0$ for all $\beta \in \Theta^{(2)}(\tilde{\mathfrak{S}})$.
- $(\mathbf{3.3.2}) \ \widetilde{B}(\widetilde{L},\widetilde{L}) = 0.$
- (3.3.3) $\tilde{q}(\tilde{L}) = 0.$
- (3.3.4) The canonical image L in $K_k(f; R)$ of \tilde{L} is an R[G]-free direct summand of $K_k(f; R)$ of half the rank, i.e. $2 \cdot \operatorname{rank}_R L = \operatorname{rank}_R K_k(f; R)$.

Lemma 3.4. Let p be a prime and $R = \mathbb{Z}_{(p)}$. Let $\mathbf{f} = (f, b)$ be a (G, R)-surgery map and \mathfrak{S} a k-singular structure of X as above. Suppose the following.

(3.4.1) $\pi_1(X)$ is finite and $|\pi_1(X)|$ is prime to p.

(3.4.2) the canonical homomorphism $\widetilde{G} \to G$ has a splitting, i.e. $\widetilde{G} = \pi_1(X) \rtimes G$.

(3.4.3) $f: X \to Y$ is k-connected.

(3.4.4) $\pi_{\widetilde{X}_X}(\widetilde{X}_t)$ are orientable for all $t \in \widetilde{\Sigma}_+$.

If the module

$$\boldsymbol{M}_{\boldsymbol{f},\mathfrak{S}} = (K_k(f;R), B_f, q_{\boldsymbol{f}}, \theta^{(0)}, \theta^{(2)})$$

has an R[G]-free Lagrangian L, then there exists a submodule \tilde{L} of M(f; R) satisfying the conditions (3.3.1)–(3.3.4).

Before proving this lemma, we give an important application of the two lemmas above. Let

$$W_n(\boldsymbol{A}_X, \boldsymbol{\Theta}(\mathfrak{S}))_{\text{free}}$$

denote the surgery obstruction group

$$W_n(R,G,Q_X,S_X,\boldsymbol{\Theta}(\mathfrak{S}))_{ ext{free}}$$

defined in [2, p. 545, Definition 3.33]. In the case $R = \mathbb{Z}_{(p)}$, a (G, R)-surgery map \boldsymbol{f} with k-singular structure \mathfrak{S} determines the module $\boldsymbol{M}_{\boldsymbol{f},\mathfrak{S}}$ above, and further the element $\sigma(\boldsymbol{f},\mathfrak{S})$ of $W_n(\boldsymbol{A}_X, \boldsymbol{\Theta}(\mathfrak{S}))_{\text{free}}$ as the equivalence class of $\boldsymbol{M}_{\boldsymbol{f},\mathfrak{S}}$. By Lemmas 3.3, 3.4 and [18, Lemma 5.5], we obtain the next theorem.

Theorem 3.5. Let $R = \mathbb{Z}_{(p)}$ for a prime p, \mathbf{f} a (G, R)-surgery map and \mathfrak{S} a k-singular structure satisfying the conditions (3.4.1)–(3.4.4). If $\sigma(\mathbf{f}, \mathfrak{S}) = 0$ in $W_n(\mathbf{A}_X, \Theta(\mathfrak{S}))_{\text{free}}$ then \mathbf{f} can be converted to $\mathbf{f}' = (f', b')$ such that $f' : X' \to Y$ is an R-homology equivalence via a G-surgery on X relative to $X_{\text{sing}} \cup X_{\mathfrak{S}} \cup \partial X$.

Proof of Lemma 3.4. Let L be an R[G]-free Lagrangian of $M_{f,\mathfrak{S}}$. Let $\{x_1, \ldots, x_m\}$ be an R[G]-basis of L and $\{y_1, \ldots, y_m\}$ be elements of $K_k(f; R)$ such that

$$B_f(x_i, y_j) = \delta_{ij}$$

for $1 \leq i, j \leq m$. Thus $\{x_1, \ldots, x_m, y_1, \ldots, y_m\}$ is an R[G]-basis of $K_k(f; R)$. Arbitrarily choose liftings $\tilde{x}_1, \ldots, \tilde{x}_m, \tilde{y}_1, \ldots, \tilde{y}_m \in M(\tilde{f}; R)$ of $x_1, \ldots, x_m, y_1, \ldots, y_m$, respectively. Define a map $\tau : K_k(f; R) \to M(\tilde{f}; R)$ by

$$\tau\left(\sum_{i}(a_{i}x_{i}+b_{i}y_{i})\right)=\frac{1}{|\pi_{1}(X)|}\sum_{i}\sum_{h\in\pi_{1}(X)}(ha_{i}\widetilde{x_{i}}+hb_{i}\widetilde{y_{i}}).$$

This map is an R[G]-splitting of the canonical map $M(\tilde{f}; R) \to K_k(f; R)$. Clearly, $\pi_1(X)$ acts trivially on the image of τ . Set

$$\tilde{L} = \tau(L).$$

That $\widetilde{B}(\widetilde{L},\widetilde{L}) = 0$ and $\widetilde{q}(\widetilde{L}) = 0$ follows from Steps 1 and 2 in the proof of [11, Theorem 2.6].

Thus it suffices to show that $\tilde{\theta}^{(0)}(\alpha)(\tilde{L}) = 0$ for $\alpha \in \Theta^{(0)}(\tilde{\mathfrak{S}})$, and $\tilde{\theta}^{(2)}(\beta)(\tilde{L}) = 0$ for $\beta \in \Theta^{(2)}(\tilde{\mathfrak{S}})$. Let $\tilde{\varepsilon} : R[\tilde{G}] \to R$ and $\varepsilon : R[G] \to R$ be the

homomorphisms of taking the coefficients of the identity elements of \widetilde{G} and G, respectively. For $\alpha \in \Theta^{(0)}(\widetilde{\mathfrak{S}})$, let $[\alpha]$ denote the canonical image of α in $\Theta^{(0)}(\mathfrak{S})$ and let $\pi_1(X)_{\alpha}$ denote the isotropy subgroup of the $\pi_1(X)$ -action on $\Theta^{(0)}(\widetilde{\mathfrak{S}})$ at the point α . Then the canonical map $M(\widetilde{f}; R) \to K_k(f; R)$ assigns $m\theta^{(0)}([\alpha])$ to $\widetilde{\theta}^{(0)}(\alpha)$ with $m = |\pi_1(X)_{\alpha}|$. Thus for $x \in L$, we get

$$\varepsilon(\theta^{(0)}([\alpha])(x)) = \sum_{h \in \pi_1(X)} \widetilde{\varepsilon} \left(\frac{1}{m} \widetilde{\theta}^{(0)}(\alpha)(h^{-1}\tau(x)) \right)$$
$$= \sum_{h \in \pi_1(X)} \widetilde{\varepsilon} \left(\frac{1}{m} \widetilde{\theta}^{(0)}(\alpha)(\tau(x)) \right)$$
$$= |\pi_1(X) : \pi_1(X)_{\alpha}| \widetilde{\varepsilon} \left(\widetilde{\theta}^{(0)}(\alpha)(\tau(x)) \right),$$

and hence

$$\widetilde{\varepsilon}\big(\widetilde{\theta}^{(0)}(\alpha)(\tau(x))\big) = \frac{|\pi_1(X)_\alpha|}{|\pi_1(X)|} \varepsilon\big(\theta^{(0)}([\alpha])(x)\big) = 0$$

Since

$$\widetilde{\theta}^{(0)}(\alpha)(\tau(x)) = \sum_{g \in \widetilde{G}} \widetilde{\varepsilon} \big(\widetilde{\theta}^{(0)}(\alpha)(\tau(g^{-1}x)) \big) g,$$

the triviality $\theta^{(0)}([\alpha])(L) = 0$ implies $\tilde{\theta}^{(0)}(\alpha)(\tau(x)) = 0$.

We can similarly show that $\tilde{\theta}^{(2)}(\beta)(\tau(x)) = 0$.

§4. The Mackey structure of surgery obstruction groups

In this section, let R be a principal ideal domain, hence necessarily a commutative ring, with 1 satisfying the square condition, i.e.

(4.1)
$$r \equiv r^2 \mod 2R$$
 for each $r \in R$.

Let Θ be a finite G-set, $\rho : \Theta \to S(G)$ a G-map, and S a conjugation invariant subset of G(2). The map $S(G) \to \mathfrak{P}(S)$; $H \mapsto S_H = S \cap H$, preserves intersection. Let $SGW_0(R, G, S, \Theta)$ denote the special Grothendieck–Witt group defined in [10, p. 2358].

Lemma 4.1 ([10, Proposition 5.4]). If ρ is S-injective then SGW₀(R, G, S, Θ) is a commutative ring possibly without 1, and moreover the canonical map

$$\mathrm{SGW}_0(\mathbb{Z}, G, S, \Theta) \to \mathrm{SGW}_0(R, G, S, \Theta)$$

of ring change is a ring homomorphism. If ρ is S-bijective then SGW₀(R, G, S, Θ) possesses the unit 1.

Let

$$f: \mathcal{S}(G) \to \mathfrak{P}(\Theta); \ H \mapsto \Theta_H,$$

be an intersection preserving ρ -compatible *G*-map and let $w : G \to \{\pm 1\}$ be a homomorphism. We denote by w_H the restriction $w|_H : H \to \{\pm 1\}$.

Definition 4.2 (cf. [10, p. 2357]). For a Θ -positioning Hermitian form $\boldsymbol{M} = (M, B, \theta)$, where M is an R-free R[G]-module, $B: M \times M \to R$ is a G-invariant (or w-invariant) symmetric bilinear form, and $\theta: \Theta \to M$ is a G-map, and for $s \in S, x \in M$, we define the trace $\Delta_{\theta}(s) \in M$ of (θ, ρ) at s and the ∇ -invariant $\nabla_{\boldsymbol{M}}(x)(s) \in R/2R$ of \boldsymbol{M} at (x, s) by

$$\Delta_{\boldsymbol{\theta}}(s) = \sum_{t \in \Theta} \{\boldsymbol{\theta}(t) \mid \boldsymbol{\rho}(t) \ni s\}, \quad \nabla_{\boldsymbol{M}}(x)(s) = [B(\Delta_{\boldsymbol{\theta}}(s) - x, sx)].$$

We remark that what we precisely need for the definition is $B: M \times M \to R/2R$ rather than $B: M \times M \to R$.

Lemma 4.3. Let H and K be subgroups of G and let $\varphi = (\varphi, \psi)$ be a pair consisting of a monomorphism $\varphi : H \to K$ which is a composition of inclusion and conjugation and the associated injective φ -map $\psi : \Theta_H \to \Theta_K$. Let $g_1, \ldots, g_m \in K$ be a complete set of representatives of $K/\varphi(H)$. Further let $\mathbf{M} = (M, B, \alpha)$ be a positioning Hermitian module, where M is an R-free R[H]-module, $B : M \times M \to R$ is an H-invariant (or w_H -invariant) symmetric bilinear form, and $\alpha : \Theta_H \to M$ is an H-map. Then the ∇ -invariant of the induced module $\mathbf{M}' = \varphi_{\#}M$ satisfies

$$\nabla_{\boldsymbol{M}'}(g_i \otimes_{\varphi} x)(s') = \begin{cases} \nabla_{\boldsymbol{M}}(x)(\varphi^{-1}(g_i^{-1}s'g_i)) & (g_i^{-1}s'g_i \in \varphi(H)), \\ 0 & (g_i^{-1}s'g_i \notin \varphi(H)), \end{cases}$$

for $x \in M$ and $s' \in S_K = S \cap K$.

Proof. By definition, $\mathbf{M}' = (M', B', \alpha')$ is given by $M' = R[K] \otimes_{R[H], \varphi} M$,

$$B'(g_j \otimes_{\varphi} x, g_k \otimes_{\varphi} y) = \delta_{jk} B(x, y), \text{ and}$$
$$\alpha'(t') = \sum_{(i,t)} \{g_i \otimes \alpha(t) \mid t \in \Theta_H, g_i \psi(t) = t'\},$$

where $x, y \in M, t' \in \Theta_K$. Let $s' \in S_K$. We have

$$\nabla_{\boldsymbol{M}'}(g_i \otimes_{\varphi} x)(s') = B'(\Delta_{\alpha'}(s') - g_i \otimes_{\varphi} x, s'(g_i \otimes_{\varphi} x)).$$

Moreover the following equalities hold:

$$\begin{split} B'(\Delta_{\alpha'}(s'), s'(g_i \otimes_{\varphi} x)) &= B'(\Delta_{\alpha'}(s'), g_i \otimes_{\varphi} x) \\ &= \sum_{t' \in \Theta_K} \{B'(\psi_{\#}\alpha(t'), g_i \otimes_{\varphi} x) \mid \rho_K(t') \ni s'\} \\ &= \sum_{t' \in \Theta_K} \sum_{j,t} \{B'(g_j \otimes_{\varphi} \alpha(t), g_i \otimes_{\varphi} x) \mid t \in \Theta_H, g_j \psi(t) = t', g_j \varphi(\rho_H(t)) g_j^{-1} \ni s'\} \\ &= \sum_{t' \in \Theta_K} \sum_t \{B(\alpha(t), x) \mid t \in \Theta_H, g_i \psi(t) = t', g_i \varphi(\rho_H(t)) g_i^{-1} \ni s'\} \\ &= \sum_{t \in \Theta_H} \{B(\alpha(t), x) \mid \varphi(\rho_H(t)) \ni g_i^{-1} s' g_i\} \\ &= \sum_{t \in \Theta_H} \{B(\alpha(t), x) \mid \rho_H(t) \ni \varphi^{-1}(g_i^{-1} s' g_i)\}. \end{split}$$

On the other hand, we have

$$B'(g_i \otimes_{\varphi} x, s'(g_i \otimes_{\varphi} x)) = \begin{cases} B(x, \varphi^{-1}(g_i^{-1}s'g_i)x) & (g_i^{-1}s'g_i \in \varphi(H)), \\ 0 & (g_i^{-1}s'g_i \notin \varphi(H)). \end{cases}$$

Thus we obtain

$$\nabla_{\boldsymbol{M}'}(g_i \otimes_{\varphi} x)(s') = \begin{cases} \nabla_{\boldsymbol{M}}(x)(\varphi^{-1}(g_i^{-1}s'g_i)) & (g_i^{-1}s'g_i \in \varphi(H)), \\ 0 & (g_i^{-1}s'g_i \notin \varphi(H)). \end{cases}$$

Lemma 4.4. If $f : S(G) \to \mathfrak{P}(\Theta)$ is (ρ, S) -saturated then the correspondence

$$H \mapsto \mathrm{SGW}_0(R, H, S_H, \Theta_H) \quad (H \in \mathcal{S}(G))$$

affords a Mackey functor.

Proof. This follows from the proof of [10, Proposition 11.2] with a modification using Lemma 4.3.

Lemma 4.5 ([10, Theorem 11.3]). If $\rho : \Theta \to S(G)$ is S-bijective and f is (ρ, S) -saturated then the correspondence

$$H \mapsto \mathrm{SGW}_0(R, H, S_H, \Theta_H) \quad (H \in \mathcal{S}(G))$$

affords a Green functor. Moreover, the canonical homomorphisms

$$\mathrm{SGW}_0(\mathbb{Z}, H, S_H, \Theta_H) \to \mathrm{SGW}_0(R, H, S_H, \Theta_H)$$

of ring change afford a natural transformation of Green functors.

Let $w : G \to \{\pm 1\}$ be a homomorphism and let $\overline{\cdot}$ denote the anti-involution on $\mathbb{Z}[G]$ associated with w. Let $\lambda = (-1)^k$. Then $(\overline{\cdot}, \lambda)$ is an anti-structure of $\mathbb{Z}[G]$. Let Q be a conjugation invariant subset of G(2). Suppose

$$S \subset G(2)^{\lambda} = \{g \in G(2) \mid g = \lambda \overline{g}\}, \quad Q \subset G(2)^{-\lambda} = \{g \in G(2) \mid g = -\lambda \overline{g}\}.$$

Then we obtain the double parameter algebra

$$\boldsymbol{A} = (R[G], (\bar{\cdot}, \lambda), (S)_R, G, R[S], (Q)_R + R[S])$$

in the sense of [2, Definition 2.5]. Let $\Theta^{(0)}$ and $\Theta^{(2)}$ be a finite $(G \times \{\pm 1\})$ set and a finite *G*-set, respectively and let $p_{\Theta^{(0)}} : \Theta^{(0)} \to \Theta^{(2)}$ be a *G*-map. Throughout this paper we assume that $\{\pm 1\}$ acts freely on $\Theta^{(0)}$ and $p_{\Theta^{(0)}}^{-1}(p_{\Theta^{(0)}}(t))$ coincides with $\{t, -t\}$ for all $t \in \Theta^{(0)}$. Let $\rho_{\Theta^{(2)}} : \Theta^{(2)} \to \mathcal{S}(G)$ be a *G*-map and set $\mathbf{\Theta} = (\Theta^{(0)}, \Theta^{(2)}, p_{\Theta^{(0)}}, \rho_{\Theta^{(2)}})$. We use the notation

$$W_n(\boldsymbol{A},\boldsymbol{\Theta})_{\text{free}} = W_n(R,G,Q,S,\boldsymbol{\Theta})_{\text{free}}, \quad W_n(\boldsymbol{A},\boldsymbol{\Theta})_{\text{proj}} = W_n(R,G,Q,S,\boldsymbol{\Theta})_{\text{proj}},$$

where n = 2k, defined in [2, Definition 3.33].

Let Θ be a finite G-set and $\rho: \Theta \to \mathcal{S}(G)$ a G-map. Let $\gamma: \Theta^{(2)} \to \Theta$ be a G-map such that the diagram

commutes and

(4.3)
$$\gamma(\Theta^{(2)}) = \Theta.$$

Lemma 4.6. If $\rho : \Theta \to S(G)$ is S-bijective then $W_n(\mathbf{A}, \mathbf{\Theta})_{\text{free}}$ is a module over $SGW_0(R, G, S, \Theta)$.

Proof. Let $\mathbf{M}_1 = (M_1, B_1, \alpha_1)$ be a Θ -positioning, non-singular Hermitian R[G]module with trivial ∇ -invariant, where M is an R-free R[G]-module, $B_1 : M_1 \times M_1$ $\rightarrow R$ and $\alpha_1 : \Theta \rightarrow M$. Let $\mathbf{M}_2 = (M_2, B_2, q_2, \alpha^{(0)}, \alpha^{(2)})$ be an object in $\nabla \mathcal{Q}(\mathbf{A}, \Theta)$ defined in [2, p. 535] such that M_2 is a stably R[G]-free module, where $B_2 :$ $M_2 \times M_2 \rightarrow R[G], q_2 : M_2 \rightarrow R[G]/((Q)_R + R[S]), \alpha^{(0)} : \Theta^{(0)} \rightarrow M_2$, and $\alpha^{(2)} : \Theta^{(2)} \rightarrow M_2/2M_2$. Then we define

$$\boldsymbol{M} = \boldsymbol{M}_1 \cdot \boldsymbol{M}_2 = (M, B, q, \theta^{(0)}, \theta^{(2)}) \in \mathcal{Q}(\boldsymbol{A}, \boldsymbol{\Theta})$$

as follows. The triple (M, B, q) is described in [10, §9]. The map $\theta^{(0)} : \Theta^{(0)} \to M = M_1 \otimes_R M_2$ is given by

$$\theta^{(0)}(t) = \alpha_1(\gamma(p_{\Theta^{(0)}}(t))) \otimes_R \alpha^{(0)}(t) \quad \text{for } t \in \Theta^{(0)},$$

and the map $\theta^{(2)}: \Theta^{(2)} \to M/2M$ is given by

 $\theta^{(2)}(t) = \alpha_1(\gamma(t)) \otimes_B \alpha^{(2)}(t)$

for $t \in \Theta^{(2)}$. It is easy to verify the ∇ -triviality of \boldsymbol{M} , i.e. $\boldsymbol{M} \in \nabla \mathcal{Q}(\boldsymbol{A}, \boldsymbol{\Theta})$. The correspondence $(\boldsymbol{M}_1, \boldsymbol{M}_2) \mapsto \boldsymbol{M}$ affords the module structure

$$\mathrm{SGW}_0(R, G, S, \Theta) \times W_n(\boldsymbol{A}, \boldsymbol{\Theta})_{\mathrm{free}} \mapsto W_n(\boldsymbol{A}, \boldsymbol{\Theta})_{\mathrm{free}}$$

In this section we set

$$Q_H = Q \cap H$$
 for $H \in \mathcal{S}(G)$.

Then the map $\mathcal{S}(G) \to \mathfrak{P}(Q)$; $H \mapsto Q_H$, preserves intersection.

We regard $\mathcal{S}(G)$ as a $(G \times \{\pm 1\})$ -set, with the trivial $\{\pm 1\}$ -action. Let $f_{\Theta} = (f_{\Theta^{(0)}}, f_{\Theta^{(2)}})$ be a pair of an intersection preserving $(G \times \{\pm 1\})$ -map $f_{\Theta^{(0)}} : \mathcal{S}(G) \to \mathfrak{P}(\Theta^{(0)}); H \mapsto \Theta_{H}^{(0)}$, and an intersection preserving $\rho_{\Theta^{(2)}}$ -compatible *G*-map $f_{\Theta^{(2)}} : \mathcal{S}(G) \to \mathfrak{P}(\Theta^{(2)}); H \mapsto \Theta_{H}^{(2)}$, satisfying

$$p_{\Theta^{(0)}}(\Theta_H^{(0)}) \subset \Theta_H^{(2)}$$

for $H \in \mathcal{S}(G)$. Define $p_{\Theta_{H}^{(0)}} : \Theta_{H}^{(0)} \to \Theta_{H}^{(2)}$ as the restriction of $p_{\Theta^{(0)}}$, and $\rho_{\Theta_{H}^{(2)}} : \Theta_{H}^{(2)} \to \mathcal{S}(H)$ as the restriction of $\rho_{\Theta^{(2)}}$. Then we obtain the double parameter algebras

$$\boldsymbol{A}_{H} = (R[H], (\bar{\cdot}, \lambda), (S_{H})_{R}, H, R[S_{H}], (Q_{H})_{R} + R[S_{H}])_{R}$$

where $S_H = S \cap H$, and the positioning data

$$\boldsymbol{\Theta}_{H} = (\Theta_{H}^{(0)}, \Theta_{H}^{(2)}, p_{\Theta_{H}^{(0)}}, \rho_{\Theta_{H}^{(2)}}), \quad \text{where } H \in \mathcal{S}(G).$$

Lemma 4.7. If $f_{\Theta^{(2)}} : \mathcal{S}(G) \to \mathfrak{P}(\Theta^{(2)})$ is $(\rho_{\Theta^{(2)}}, S)$ -saturated then the correspondences

$$H \mapsto W_n(\boldsymbol{A}_H, \boldsymbol{\Theta}_H)_{\text{proj}} \quad (H \in \mathcal{S}(G))$$

and

$$H \mapsto W_n(\boldsymbol{A}_H, \boldsymbol{\Theta}_H)_{\text{free}} \quad (H \in \mathcal{S}(G))$$

afford Mackey functors, respectively.

Proof. Recalling [10, Proposition 10.3], we will prove the lemma by showing that

$$H \mapsto W_n(\boldsymbol{A}_H, \boldsymbol{\Theta}_H)_{\text{proj}}, W_n(\boldsymbol{A}_H, \boldsymbol{\Theta}_H)_{\text{free}} \quad (H \in \mathcal{S}(G))$$

are w-Mackey functors. Most of the proof is already given in the proof of Theorem 12.10 of [10]. It suffices to discuss the part concerning the $(H \times \{\pm 1\})$ -sets $\Theta_H^{(0)}$, where $H \in \mathcal{S}(G)$.

Let H and K be subgroups of G. Given an injective homomorphism φ : $H \to K$, we have the canonical injective homomorphism φ_{\pm} : $H \times \{\pm 1\} \to K \times \{\pm 1\}$ defined by $\varphi_{\pm}(h, \epsilon) = (\varphi(h), \epsilon)$ for $h \in H$ and $\epsilon \in \{\pm 1\}$. The sets $\Theta_{H}^{(0)}$ and $\Theta_{K}^{(0)}$ are an $(H \times \{\pm 1\})$ -set and a $(K \times \{\pm 1\})$ -set, respectively, on which the group $\{\pm 1\}$ acts freely. Let $\psi : \Theta_{H}^{(0)} \to \Theta_{K}^{(0)}$ be a φ_{\pm} -map, i.e.

$$\psi((h,\epsilon)t) = \varphi_{\pm}(h,\epsilon)\psi(t) \ (= (\varphi(h),\epsilon)\psi(t))$$

for $h \in H$, $\epsilon \in \{\pm 1\}$, and $t \in \Theta_H^{(0)}$. Let φ denote the pair (φ, ψ) .

An R[K]-module N is usually regarded as an $R[K \times \{\pm 1\}]$ -module via $(k, \epsilon)x = \epsilon(kx)$ for $k \in K$, $\epsilon \in \{\pm 1\}$, and $x \in N$. For a pair $\mathbf{N} = (N, \beta)$ consisting of an R[K]-module N and a $(K \times \{\pm\})$ -map $\beta : \Theta_K^{(0)} \to N$, we define $\varphi^{\#} \mathbf{N} = (\varphi^{\#}N, \psi^{\#}\beta)$, where $\varphi^{\#}N$ is an R[H]-module and $\psi^{\#}\beta : \Theta_H^{(0)} \to \varphi^{\#}N$, so that the underlying R-module of $\varphi^{\#}N$ is the same as N but the H-action on $\varphi^{\#}N$ is given by $(h, x) \mapsto \varphi(h)x$ for $h \in H$ and $x \in \varphi^{\#}N$, and $\psi^{\#}\beta(t) = \beta(\psi(t))$ for $t \in \Theta_H^{(0)}$.

For a pair $\boldsymbol{M} = (M, \alpha)$ consisting of an R[H]-module M and an $(H \times \{\pm 1\})$ map $\alpha : \Theta_{H}^{(0)} \to M$, we define $\boldsymbol{\varphi}_{\#}\boldsymbol{M} = (\varphi_{\#}M, \psi_{\#}\alpha)$, where $\varphi_{\#}M$ is an R[K]module and $\psi_{\#}\alpha : \Theta_{K}^{(0)} \to \varphi_{\#}M$, by $\varphi_{\#}M = R[K] \otimes_{R[H],\varphi} M$ and

$$\psi_{\#}\alpha(t) = \sum_{[g,t']} \{g \otimes \alpha(t') \mid [g,t'] \in K \times_{H,\varphi} \Theta_H^{(0)} \text{ such that } g\psi(t') = t\}$$

for $t \in \Theta_K^{(0)}$.

These $\varphi^{\#}N$ and $\varphi_{\#}M$ are simple analogies of those in [10, p. 2347]. Thus the conclusion of the lemma above follows from the same arguments used in the proof of Theorem 12.10 of [10].

Let $\rho: \Theta \to \mathcal{S}(G)$ be a *G*-map and $f: \mathcal{S}(G) \to \mathfrak{P}(\Theta); H \mapsto \Theta_H$, an intersection preserving, ρ -compatible *G*-map such that $f(G) = \Theta$. Let $\gamma: \Theta^{(2)} \to \Theta$ be a *G*-map such that the diagram (4.2) commutes and

(4.4)
$$\gamma(\Theta_H^{(2)}) = \Theta_H \quad (H \in \mathcal{S}(G)).$$

Lemma 4.8. If $\rho: \Theta \to \mathcal{S}(G)$ is S-bijective, $f: \mathcal{S}(G) \to \mathfrak{P}(\Theta)$ is (ρ, S) -saturated and $f_{\Theta^{(2)}}: \mathcal{S}(G) \to \mathfrak{P}(\Theta^{(2)})$ is $(\rho^{(2)}, S)$ -saturated, then the correspondence

$$H \mapsto W_n(\boldsymbol{A}_H, \boldsymbol{\Theta}_H)_{\text{free}} \quad (H \in \mathcal{S}(G))$$

is a module over the Green functor

$$H \mapsto \mathrm{SGW}_0(R, H, S_H, \Theta_H) \quad (H \in \mathcal{S}(G)).$$

Proof. We can argue in the same way as in the proof of [10, Theorem 12.10] with a modification using Lemma 4.6.

§5. A deleting-inserting theorem

Deleting (resp. inserting) *G*-fixed submanifolds from (resp. to) given ambient *G*manifolds is useful for the study of fixed point data of *G*-manifolds. For example, it has been applied to the study of the Smith problem on tangential representations at fixed points on spheres. In this section we prove Theorem 5.1 below. Let $\mathcal{G}_p^1(G)$ denote the set of all subgroups *H* of *G* possessing normal subgroups $P \trianglelefteq H$ such that *P* has *p*-power order and H/P is cyclic, where *P* is possibly the trivial group. An element *H* of $\mathcal{G}_p^1(G)$ is called a *mod*- \mathcal{P}_p cyclic group. We set

$$\mathcal{G}^1(G) = \bigcup_{p \text{ prime}} \mathcal{G}^1_p(G).$$

If H lies in $\mathcal{G}^1(G)$ then H is referred to as a mod- \mathcal{P} cyclic group.

Theorem 5.1 (Deleting-inserting theorem). Let G be a finite Oliver group and Y a smooth G-manifold such that the underlying manifold of Y is diffeomorphic to the disk of dimension $n \ge 5$ and $Y^G \ne \emptyset$. Let F_1, \ldots, F_t denote all the underlying spaces of connected components of Y^G , and let n_1, \ldots, n_t be non-negative integers. Suppose the following:

- (5.1.1) Y satisfies the weak gap condition on $\mathcal{PH}(G)$.
- (5.1.2) dim $Y^{=H} \ge 3$ for any $H \in \mathcal{G}^1(G)$.
- (5.1.3) dim $Y^P \ge 5$ for any $P \in \mathcal{P}(G)$.
- (5.1.4) $\pi_1(Y^P)$ is finite and of order prime to |P| for any $P \in \mathcal{P}(G)$.
- (5.1.5) For $1 \le i, j \le t$, n_i coincides with n_j if some connected component Y^H_{α} of Y^H , $H \in \mathcal{L}(G)$, contains both F_i and F_j .
- (5.1.6) For $1 \leq i \leq t$, n_i is equal to 1 if some connected component Y^H_{α} of Y^H , $H \in \mathcal{L}(G)$, contains F_i and $\partial Y^H_{\alpha} \neq \emptyset$.
- (5.1.7) If dim $Y^P = 2 \dim Y^H$ for $(P, H) \in \mathcal{PH}(G)$ then $(P, H) \in \mathcal{PH}_2(G)$ and $\dim Y^{>H} < \dim Y^H 2$.

Then there exists a smooth G-action on the disk D of dimension n such that

(i) ∂D is G-diffeomorphic to ∂Y ,

(ii) D^G has the form of the disjoint union of copies of F_i 's:

$$D^{G} = \prod_{i=1}^{t} \prod_{j=1}^{n_{i}} F_{i,j} \quad (each \ F_{i,j} \ is \ diffeomorphic \ to \ F_{i}), \ and$$

(iii) the normal bundle $\nu(F_{i,j}, D)$ is G-isomorphic to $\nu(F_i, Y)$.

Furthermore if Y^H (resp. Y^P) is connected (resp. simply connected) for an element $H \in \mathcal{G}^1(G)$ (resp. $P \in \mathcal{P}(G)$), then one can choose the G-action so that D^H (resp. D^P) is connected (resp. simply connected) for the subgroup H (resp. P).

Proof. The procedure is the same as that of proving Theorem 1.3 of [11, §5]. Let $\mathbf{f} = (f, b), f : (X, \partial X) \to (Y, \partial Y)$ and $b : T(X) \oplus \varepsilon_X(\mathbb{R}^u) \to f^*T(Y) \oplus \varepsilon_X(\mathbb{R}^u)$, be the degree-one *G*-framed map obtained in Section 4 of [11]. Note that for $P \in \mathcal{P}(G), Y^P$ is orientable and the map $f^P : (X^P, \partial X^P) \to (Y^P, \partial Y^P)$ has degree one.

The details of the proof differ in some points from the proof of Theorem 1.3 of [11, §5]. The differences occur in Steps A and B below.

- **Step A.** The step converting $f^P : X^P \to Y^P$ to a mod p homology equivalence, where $P \in \mathcal{P}(G)$ possesses $H \in \mathcal{S}(G)$ such that $2 \dim X^H = \dim X^P$ and p is the prime dividing |P|.
- **Step B.** The step converting $f: X \to Y$ to a homotopy equivalence, when there is (at least one) $H \in \mathcal{S}(G)$ such that $2 \dim X^H = \dim X$.

In these steps, the condition (5.1.7) is used to get rid of technical difficulties.

Step A. In this step, we set $n_P = \dim X^P$, $k_P = n_P/2$, $\lambda = (-1)^{k_P}$, $T = N_G(P)/P$, $w = w_{X^P} : T \to \{\pm 1\}$, and furthermore

$$\begin{split} R &= \mathbb{Z}_{(p)}, \\ S &= \{g \in T(2) \mid \dim(X^P)^g = k_P\} \ (= S(X^P)), \\ Q &= \{g \in T(2) \mid \dim(X^P)^g = k_P - 1\} \ (= Q(X^P)), \\ \mathfrak{S} &= \{(X^P)^g \mid g \in S\} \ (= \mathfrak{S}(X^P)), \\ \Theta^{(0)} &= \Theta^{(0)}(X^P), \quad \Theta^{(2)} = \Theta^{(2)}(X^P), \\ \rho &= \rho_{X^P}^{(2)} : \Theta^{(2)} \to \mathcal{S}(T), \quad \mathbf{\Theta} = (\Theta^{(0)}, \Theta^{(2)}, p_{\Theta^{(0)}}, \rho), \end{split}$$

where $p_{\Theta^{(0)}}: \Theta^{(0)} \to \Theta^{(2)}$ is the canonical map. Without any loss of generality we can suppose that $f^P: X^P \to Y^P$ is k_P -connected. Then by Theorem 3.5 the *T*-surgery obstruction $\sigma(f^P, b^P)$ to the (T, R)-surgery map (f^P, b^P) being a $\mathbb{Z}_{(p)}$ -homology equivalence lies in $W_{n_P}(R, T, S, Q, \Theta)_{\text{free}}$. Μ. Μογιμοτο

For a subgroup K of T, set $S_K = S(\operatorname{res}_K^T X^P)$, $Q_K = Q(\operatorname{res}_K^T X^P)$, $\mathfrak{S}_K = \mathfrak{S}(\operatorname{res}_K^T X^P)$, $\Theta_K^{(0)} = \Theta^{(0)}(\operatorname{res}_K^T X^P)$, $\Theta_K^{(2)} = \Theta^{(2)}(\operatorname{res}_K^T X^P)$, $\rho_K = \rho_{\operatorname{res}_K^T X^P}^{(2)}$: $\Theta_K^{(2)} \to \mathcal{S}(K)$, and

$$\boldsymbol{\Theta}_{K} = (\Theta_{K}^{(0)}, \Theta_{K}^{(2)}, p_{\Theta_{K}^{(0)}}, \rho_{K}).$$

By Lemmas 2.4, 4.7 and 4.8, the correspondence

$$K \mapsto W_{n_P}(R, K, S_K, Q_K, \boldsymbol{\Theta}_K)_{\text{free}} \quad (K \in \mathcal{S}(T))$$

affords a Mackey functor, and moreover a module over the Green functor

$$K \mapsto \mathrm{SGW}_0(\mathbb{Z}, K, S_K, \Theta_K^{(2)}/S_K) \quad (K \in \mathcal{S}(T)).$$

 $\langle \alpha \rangle$

Thus the argument in [11, §5, Case 2] using the relation between the equivariant connected sum operation and the $\Omega(T)$ -action on the surgery obstruction group (cf. [11, (5.2)], works in the present situation. This ensures that by using equivariant connected sum and G-surgery of isotropy type (P), we can convert $f^P: X^P \to Y^P$ to a $\mathbb{Z}_{(p)}$ -homology equivalence.

Step B. In this case, Y is 1-connected and $n = \dim Y = \dim X$. We set k = n/2, $\begin{array}{l} \lambda = (-1)^k, \ w = w_X : G \to \{\pm 1\}, \ R = \mathbb{Z}, \ S = S(X), \ Q = Q(X), \ \mathfrak{S} = \mathfrak{S}(X), \\ \Theta^{(0)} = \Theta^{(0)}(X), \ \Theta^{(2)} = \Theta^{(2)}(X), \ \rho = \rho_X^{(2)} : \Theta^{(2)} \to \mathcal{S}(G), \ \mathrm{and} \end{array}$

$$\boldsymbol{\Theta} = (\Theta^{(0)}, \Theta^{(2)}, p_{\Theta^{(0)}}, \rho),$$

where $p_{\Theta^{(0)}}: \Theta^{(0)} \to \Theta^{(2)}$ is the canonical map. Without loss of generality we can suppose that $f: X \to Y$ is k-connected. Since

$$K_k(f;R) = \operatorname{Ker}[f_*: H_k(X;R) \to H_k(Y;R)]$$

is a projective R[G]-module but not necessarily a stably free R[G]-module, Theorem 6.3 in [2] says that the G-surgery obstruction $\sigma(f, b)$ to the (G, R)surgery map (f, b) being a homotopy equivalence lies in the obstruction group $W_n(R, G, S, Q, \Theta)_{\text{proj}}$. But by employing the relation

$$(1 + (-\beta)^{\%})\widetilde{K}_0(R[G]) = 0$$

described in [11, §5, Case 3] and by taking a suitable equivariant connected sum, we may assume that $K_k(f; R)$ is a stably free R[G]-module. Then $\sigma(f, b)$ lies in the obstruction group $W_n(R, G, S, Q, \Theta)_{\text{free}}$.

For a subgroup K of G, set $S_K = S(\operatorname{res}_K^G X), Q_K = Q(\operatorname{res}_K^G X), \mathfrak{S}_K = \mathfrak{S}(\operatorname{res}_K^G X), \Theta_K^{(0)} = \Theta^{(0)}(\operatorname{res}_K^G X), \Theta_K^{(2)} = \Theta^{(2)}(\operatorname{res}_K^G X), \rho_K = \rho_{\operatorname{res}_K^G X}^{(2)} : \Theta_K^{(2)} \to \mathfrak{S}_K^{(2)}$ $\mathcal{S}(K)$, and $(\Omega^{(0)} \ \Omega^{(2)})$ e

$$\boldsymbol{\Theta}_K = (\Theta_K^{(0)}, \Theta_K^{(2)}, p_{\Theta_K^{(0)}}, \rho_K).$$

By Lemmas 2.4, 4.7 and 4.8, the correspondence

$$K \mapsto W_n(R, K, S_K, Q_K, \boldsymbol{\Theta}_K)_{\text{free}} \quad (K \in \mathcal{S}(G))$$

affords a Mackey functor, and a module over the Green functor

$$K \mapsto \mathrm{SGW}_0(\mathbb{Z}, K, S_K, \Theta_K^{(2)}/S_K) \quad (K \in \mathcal{S}(G)).$$

Thus the argument in [11, §5, Case 3] works in the present situation. Hence, by using equivariant connected sum and G-surgery of isotropy type ($\{e\}$), we can convert $f: X \to Y$ to a homotopy equivalence.

Putting all this together, we have proved the theorem above.

§6. Applications of the deleting-inserting theorem

Let G be a finite group. One may conjecture that if V and W are \mathcal{P} -matched \mathcal{L} -free real G-modules then V and W are stably Smith equivalent, with which the following is concerned.

Definition 6.1. We call a real G-module V admissible if it satisfies the following conditions.

- (6.1.1) V satisfies the weak gap condition on $\mathcal{PH}(G)$.
- (6.1.2) dim $V^{=H} \ge 3$ for any $H \in \mathcal{G}^1(G)$.
- (6.1.3) dim $V^P \ge 5$ for any $P \in \mathcal{P}(G)$.
- (6.1.4) If dim $V^P = 2 \dim V^H$ for $(P, H) \in \mathcal{PH}(G)$ then (P, H) belongs to $\mathcal{PH}_2(G)$ and dim $V^{>H} \leq \dim V^H - 2$.

The next lemma is an elaboration of [6, Theorem B]. In [6], we worked with real G-modules V such that all transformations $g: V^H \to V^{gHg^{-1}}$ are orientation preserving for $g \in G$ and $H \in \mathcal{S}(G)$ (cf. [6, p. 491 (3.3.6)]).

Lemma 6.2. Let G be an Oliver group, m a positive integer, and V an admissible real G-module. Then there exists a smooth G-action on the standard sphere S_V such that S_V^G consists of m points x_1, \ldots, x_m and each $T_{x_i}(S_V)$, $1 \le i \le m$, is isomorphic to V.

Proof. Let Y be the unit disk D(V) of V with respect to some G-invariant inner product. Then Y satisfies the conditions (5.1.1)–(5.1.7). By Theorem 5.1, we obtain a smooth G-action on a disk D_0 such that D_0 does not have G-fixed points and ∂D_0 is G-diffeomorphic to $S(V) = \partial D(V)$. On the other hand, by Theorem 5.1 there exists a smooth G-action on a disk D_m such that D_m^G consists of m points $x_1, \ldots, x_m, \partial D_0$ is G-diffeomorphic to $S(V) = \partial D(V)$, and the tangential representations $T_{x_i}(D_m)$ are all isomorphic to V. Then glue D_0 and D_m along the boundary and obtain a smooth G-action on a homotopy sphere Σ_V such that Σ_V^G consists of m points x_1, \ldots, x_m and $T_{x_i}(\Sigma_V)$ are isomorphic to V. Taking the equivariant connected sum of copies of Σ_V (cf. [7, Proposition 1.3, Example 1.2]), we can obtain a smooth G-action on the standard sphere as desired.

Lemma 1.1 implies that $\mathbb{R}[G]_{\mathcal{L}}^{\oplus 3}$ is an admissible real *G*-module. Hence Theorems 1.3 and 1.4 immediately follow from the lemma above.

Theorem 6.3. Let G be an Oliver group. Let V_1, \ldots, V_m be \mathcal{L} -free real G-modules any two of which are \mathcal{P} -matched. Then there exists an integer N_1 such that for any integer $\ell \geq N_1$, there exists a smooth G-action on the disk D with exactly m G-fixed points x_1, \ldots, x_m for which the tangential representation $T_{x_i}(D)$ is isomorphic to $V_i \oplus \mathbb{R}[G]_{\mathcal{L}}^{\oplus \ell}$ for $1 \leq i \leq m$.

Proof. Consider the space $F = \{x_1, \ldots, x_m\}$ with the trivial *G*-action. We have the \mathcal{L} -free real *G*-vector bundle $\nu = \varepsilon_{\{x_1\}}(V_1) \amalg \cdots \amalg \varepsilon_{\{x_m\}}(V_m)$ over *F*. Clearly res^{*G*}_{*e*} ν is isomorphic to $\varepsilon_F(\mathbb{R}^n)$ for $n = \dim V_1$ and res^{*G*}_{*P*} ν is isomorphic to $\varepsilon_F(\operatorname{res}^{G}_{P}V_1)$ for any $P \in \mathcal{P}(G)$. By [14, Theorem 21], there exists an integer N_1 as desired.

Proof of Theorem 1.5. Let N_1 be the non-negative integer obtained in Theorem 6.3 for the *G*-modules V_1, \ldots, V_m . There exists an integer $N \ge N_1$ such that the real *G*-modules $V_i \oplus \mathbb{R}[G]_{\mathcal{L}}^{\oplus N}$, $1 \le i \le m$, are all admissible. Then for all $\ell \ge N$, the real *G*-modules

$$W_i = V_i \oplus \mathbb{R}[G]_{\mathcal{L}}^{\oplus \ell}, \quad 1 \le i \le m,$$

are also admissible. Again by Theorem 6.3, there exists a smooth G-action on the disk Y such that $Y^G = \{x_1, \ldots, x_m\}$ and $T_{x_i}(Y) \cong W_i$ for $1 \leq i \leq m$. Let Z denote the double $Y \cup_{\partial Y} Y$ of Y. Then Z is a sphere having the G-fixed points x_1, \ldots, x_m , x'_1, \ldots, x'_m such that $T_{x_i}(Z) \cong T_{x'_i}(Z) \cong W_i$ for $1 \leq i \leq m$. By Lemma 6.2, there exist smooth G-actions on spheres S_i , $1 \leq i \leq m$, such that $S_i^G = \{x''_i\}$ and $T_{x''_i}(S_i) \cong W_i$. Let S denote the G-manifold obtained as the G-connected sum of Z and S_i , $1 \leq i \leq m$, at pairs $(x'_i, x''_i) \in Z \times S_i$. Then the underlying manifold of S is diffeomorphic to the standard sphere and moreover S possesses the properties required in Theorem 1.5.

Let WP(G) denote the set consisting of $[V] - [W] \in \operatorname{RO}(G)^{\mathcal{L}}$ such that V and W both are \mathcal{L} -free and satisfy the weak gap condition on $\mathcal{PH}_2(G)$. Note that G is a weak gap group if and only if WP(G)_{\mathcal{P}} = RO(G)^{\mathcal{L}}. Since the set

$$-WP(G) = \{-x \in RO(G) \mid x \in WP(G)\}$$

coincides with WP(G), we can prove the next proposition without difficulties.

Proposition 6.4. The set WP(G) is a subgroup of RO(G).

Theorem 1.9 can be reformulated as follows:

Theorem 6.5. If H is a subgroup of an Oliver group G then

 $\operatorname{ind}_{H}^{G}(WP(H)_{\mathcal{P}}) \subset \operatorname{Sm}(G)_{\mathcal{P}}^{\mathcal{L}}.$

For a pair $(P, H) \in \mathcal{PH}(G)$, define a \mathbb{Z} -linear map $f_{P,H} : \mathrm{RO}(G) \to \mathbb{Z}$ by

 $f_{P,H}([V]) = \dim V^P - 2\dim V^H.$

Next define

$$\mathbf{P}_{+}(\mathcal{PH}_{2}(G)) = \{ x \in \mathrm{RO}(G)^{\mathcal{L}} \mid f_{P,H}(x) \ge 0 \text{ for all } (P,H) \in \mathcal{PH}_{2}(G) \}$$

 $P_{-}(\mathcal{PH}_{2}(G)) = \{ x \in \mathrm{RO}(G)^{\mathcal{L}} \mid f_{P,H}(x) \leq 0 \text{ for all } (P,H) \in \mathcal{PH}_{2}(G) \}.$

It is clear that $P_{-}(\mathcal{PH}_{2}(G)) = -P_{+}(\mathcal{PH}_{2}(G)).$

Lemma 6.6. For an arbitrary finite group G, we have

 $\mathcal{P}_+(\mathcal{PH}_2(G)) \cup \mathcal{P}_-(\mathcal{PH}_2(G)) \subset \mathcal{WP}(G).$

Proof. Let $x = [V] - [W] \in P_+(\mathcal{PH}_2(G))$, where V and W are \mathcal{L} -free real G-modules. By [13, Proposition 2.3], W is isomorphic to a G-submodule of $\mathbb{R}[G]_{\mathcal{L}}^{\oplus m}$, where $m = \dim W$. Thus we can assume $W = \mathbb{R}[G]_{\mathcal{L}}^{\oplus m}$ without any loss of generality. Then the inequality

$$f_{P,H}(x) = (\dim V^P - 2\dim V^H) - m(\dim (\mathbb{R}[G]_{\mathcal{L}})^P - 2\dim (\mathbb{R}[G]_{\mathcal{L}})^H) \ge 0$$

for $(P, H) \in \mathcal{PH}_2(G)$ reads

$$\dim V^P - 2\dim V^H \ge m(\dim \left(\mathbb{R}[G]_{\mathcal{L}}\right)^P - 2\dim \left(\mathbb{R}[G]_{\mathcal{L}}\right)^H)$$

Since the right-hand side above is non-negative, V satisfies the weak gap condition on $\mathcal{PH}_2(G)$ as also does $W = \mathbb{R}[G]_{\mathcal{L}}^{\oplus m}$, which ensures that the element x = [V] - [W] belongs to WP(G), hence $P_+(\mathcal{PH}_2(G)) \subset WP(G)$.

In addition, we have

$$P_{-}(\mathcal{PH}_{2}(G)) = -P_{+}(\mathcal{PH}_{2}(G)) \subset -WP(G) = WP(G).$$

This completes the proof.

The next claim immediately follows from Theorem 6.5 and Lemma 6.6.

Theorem 6.7. If H is a subgroup of an Oliver group G then

$$\operatorname{ind}_{H}^{G}\left(\mathcal{P}_{+}(\mathcal{P}\mathcal{H}_{2}(H))_{\mathcal{P}}\cup\mathcal{P}_{-}(\mathcal{P}\mathcal{H}_{2}(H))_{\mathcal{P}}\right)\subset \operatorname{Sm}(G)_{\mathcal{P}}^{\mathcal{L}}$$

Proof of Theorem 1.10. It is clear that

$$\operatorname{RO}(H)_{\mathcal{H}}^{\mathcal{L}} \subset \operatorname{P}_{+}(\mathcal{PH}_{2}(H))_{\mathcal{H}} \subset \operatorname{P}_{+}(\mathcal{PH}_{2}(H))_{\mathcal{P}}$$

and

$$\operatorname{ind}_{H}^{G}(\operatorname{RO}(H)_{\mathcal{H}}) \subset \operatorname{RO}(G)_{\mathcal{H}}.$$

Thus Theorem 1.10 follows from Theorem 6.7.

Acknowledgements

The author wishes to express his deepest gratitude to the referee for helpful comments. This research was partially supported by a Grant-in-Aid for Scientific Research (KAKENHI) No. 225400875.

References

- A. Bak, K-theory of forms, Ann. of Math. Stud. 98, Princeton Univ. Press, Princeton, 1981. Zbl 0465.10013 MR 0632404
- [2] A. Bak and M. Morimoto, Equivariant intersection theory and surgery theory for manifolds with middle dimensional singular sets, J. K-Theory 2 (2008), Special Issue 03, 507–600. Zbl 1156.57028 MR 2465449
- [3] S. E. Cappell and J. L. Shaneson, The codimension two placement problem and homology equivalent manifolds, Ann. of Math. 99 (1974), 277–348. Zbl 0279.57011 MR 0339216
- [4] X. M. Ju, The Smith set of the group $S_5 \times C_2 \times \cdots \times C_2$, Osaka J. Math. **47** (2010), 215–236. Zbl 1228.55004 MR 2666133
- [5] X. M. Ju, K. Matsuzaki and M. Morimoto, Mackey and Frobenius structures on odd dimensional surgery obstruction groups, K-Theory 29 (2003), 285–312. Zbl 1044.19003 MR 2029081
- [6] E. Laitinen and M. Morimoto, Finite groups with smooth one fixed point actions on spheres, Forum Math. 10 (1998), 479–520. Zbl 0905.57023 MR 1631012
- [7] E. Laitinen, M. Morimoto and K. Pawałowski, Deleting-inserting theorem for smooth actions of finite nonsolvable groups on spheres, Comment. Math. Helv. 70 (1995), 10–38. Zbl 0843.57034 MR 1314939
- [8] M. Morimoto, Bak groups and equivariant surgery, K-Theory **2** (1989), 465–483. Zbl 0669.57018 MR 0990572
- [9] _____, Bak groups and equivariant surgery II, K-Theory **3** (1990), 505–521. Zbl 0712.57013 MR 1071893
- [10] _____, Induction theorems of equivariant surgery obstruction groups, Trans. Amer. Math. Soc. 355 (2003), 2341–2384. Zbl 1019.19002 MR 1973993
- [11] _____, Fixed-point sets of smooth actions on spheres, J. K-Theory 1 (2008), 95–128. Zbl 1154.57037 MR 2424568
- [12] M. Morimoto and K. Iizuka, Extendibility of G-maps to pseudoequivalences to finite G-CW-complexes whose fundamental groups are finite, Osaka J. Math. 21 (1984), 59–69. Zbl 0542.57031 MR 0736970
- [13] M. Morimoto and K. Pawałowski, The equivariant bundle subtraction theorem and its applications, Fund. Math. 161 (1999), 279–303. Zbl 0947.57035 MR 1716021

- [14] _____, Smooth actions of finite Oliver groups on spheres, Topology 42 (2003), 395-421. Zbl 1019.57020 MR 1941442
- $[15] \ B. \ Oliver, Fixed point sets and tangent bundles of actions on disks and euclidean spaces, Topology 35 (1996), 583–615. \ Zbl 0861.57047 \ MR 1396768$
- [16] _____, Fixed-point sets of groups on finite acyclic complexes, Comment. Math. Helv. 50 (1975), 155–177. Zbl 0304.57020 MR 0375361
- [17] K. Pawałowski and R. Solomon, Smith equivalence and finite Oliver groups with Laitinen number 0 or 1, Algebr. Geom. Topol. 2 (2002), 843–895. Zbl 1022.57019 MR 1936973
- [18] C. T. C. Wall, Surgery on compact manifolds, Academic Press, London, 1970. Zbl 0219.57024 MR 0431216