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Abstract

Let G be a finite group and X a compact smooth manifold. It is of interest which smooth
manifolds can be the G-fixed point sets of smooth G-actions on X. The deleting-inserting
theorem of this paper is related to this problem and has applications to one-fixed-point
actions on spheres as well as to Smith equivalence.
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§1. Introduction

Let G be a finite group. In this paper, a manifold and a G-manifold mean a
smooth manifold and a smooth G-manifold, respectively. Given a manifold X, it is
a fundamental problem to study which manifolds and real vector bundles can be
the G-fixed point sets and the normal bundles of G-fixed point sets, respectively,
of smooth G-actions on X. This problem for the case where X is a disk was
studied by B. Oliver [15], and for X a sphere in [11] under the gap condition. The
Smith problem on tangential representations at fixed points on spheres is a part
of the problem above and has been studied by various authors. It has been useful
for the study of the problem to delete (or insert) manifolds from (or to) a given
manifold X as G-fixed point sets. More precisely, for a given G-manifold Y having
the diffeomorphism type of X and the G-fixed point set
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and given integers 1 < r; < --- <71, < m, it is of interest whether there exists a
G-manifold Z having the diffeomorphism type of X and the G-fixed point set

Z9%=F, 1I...1F, .

A finite group G is called an Oliver group if there exists a smooth G-action on a
disk without G-fixed points, or equivalently if there never exists a normal series
P <4 H <4 G such that P and G/H have prime power order and H/P is a cyclic
group (cf. [16, 15, 6]). We studied such deleting-inserting methods for an Oliver
group G invoking the gap condition for which the main requirement is

2dimYY9 < dimY

for all non-trivial elements g of G, i.e. ¢ # e. In the current paper we give a
deleting-inserting theorem (Theorem 5.1) for an Oliver group under the weak gap
condition which allows the case that 2dimY¥ = dimY for g € G. This theorem
yields Theorems 1.3-1.10 below as applications.

Let S(G) denote the set of all subgroups of G, and P(G) the set of all prime-
power-order subgroups of GG, where by convention {e} € P(G). For a prime p, let
G} denote the smallest normal subgroup N of G such that |G/N| is a power
of p, possibly |G/N| = 1. Let £(G) denote the set of all subgroups H containing
G1P} for some prime p. A (finite-dimensional) real G-module V is called £-free if
VL =0 for all L € £(G). We define a G-submodule V. of V by

Ve=(V-Ve - @@ (v —ve

p prime

Let R[G] denote the group ring of G with real coefficients having the canonical
(left) G-action. Recall the following fact.

Lemma 1.1 (|6, Theorem 2.3]). The real G-module V = R[G]. has the following
properties:

(1.1.1) VH =0 if and only if H € L(G).

(1.1.2) dimV¥H > |K : H|dim VE for all H < K € §(G).

(1.1.3) The equality dim VH = 2dim VE holds, where H < K € S(G), if and only
if K : H| =2, |KG : HG1? =2, and HG19} = G for all odd primes q.

By straightforward computation, we can show the next lemma.

Lemma 1.2 ([13, Proposition 1.9]). If G is an Oliver group then dim (R[G])”
> 2 for all P € P(G).
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The following two theorems are an elaboration of [6, Theorem BJ. In partic-
ular, for m = 1 they give smooth one-fixed-point actions on spheres.

Theorem 1.3. Let G be an Oliver group and m a positive integer. Then for any
integer £ > 3 there exists a G-action on the standard sphere S of dimension

de=¢-{(GI-1) = Y (G/GW - 1)}

pl|G|

with exactly m G-fized points x1,...,x, for which the tangential representations
T...(S) are all isomorphic to the {-fold direct sum R[G]E" of R[G].

Let PH(G) denote the set of all pairs (P, H) consisting of P € P(G) and
H € 8(G) with P < H. Let PH2(G) denote the set of all pairs (P, H) € PH(G)
such that |H : P| = 2, |HG?} : PG{?}| = 2, and PG19} = G for all odd primes q.
For a set A of pairs (H, K) with H < K € §(G), we say that a real G-module V
satisfies the gap condition (resp. the weak gap condition) on A if

(1.1) dimV# > 2dim VK (resp. dim V7 > 2dim V)

for any (H,K) € A. It should be remarked that if an L-free real G-module V
satisfies the weak gap condition on PHo(G) then V & R[G]E™ satisfies the weak
gap condition on PH(G) for any m > dim V.

Theorem 1.4. Let G be an Oliver group, m a positive integer, and V' an L-free
real G-module satisfying the weak gap condition on PHa(G). Then there exists
an integer N such that for every integer £ > N there exists a G-action on the
standard sphere S with exactly m G-fived points x1, ..., x,, for which the tangential
representations Ty, (S) are all isomorphic to V @ R[G] %"

Let RO(G) denote the real representation ring. For a subset A of RO(G), Ap
stands for the set

AN () Kerfres§ : RO(G) — RO(P))].
PeP(G)

Real G-modules V' and W are called Smith equivalent if there exists a homotopy
sphere ¥ with a G-action such that 3¢ consists of exactly two points a and b,
and the tangential representations T, (X) and T;(X) are isomorphic to V' and W,
respectively. Let Sm(G) denote the Smith set of G, i.e.

Sm(G) = {[V] — [W] € RO(G) | V is Smith equivalent to W}.
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The subset Sm(G)p is called the primary Smith set of G. For a subset A of RO(G),
A~ stands for the set

{V]-=[W]eA|VE=0and WX =0 for all L € L(G)}.

We say that two real G-modules V and W are P-matched if res& V and res§ W
are isomorphic for all P € P(G).

Theorem 1.5. Let G be an Oliver group. Let Vi, ..., Vy, be L-free real G-modules
satisfying the weak gap condition on PHa2(G), of which arbitrary two are P-matched.
Then there exists an integer N such that for any integer £ > N, there exists a
smooth G-action on the standard sphere S with exactly m G-fized points x1,...,Tm
for which the tangential representation Ty, (S) is isomorphic to V; ® R[G]E, 1 <
i< m.

In the case m = 2, we obtain the next theorem on Smith equivalence.

Theorem 1.6. Let G be an Oliver group and let V and W be P-matched and L-
free real G-modules both satisfying the weak gap condition on PHa(G). Then there
exists an integer N such that for any integer £ > N there exists a smooth G-action
on the standard sphere S with exactly two G-fized points x1 and xo for which the
tangential representations Ty, (S) and Ty, (S) are isomorphic to V @ R[G]EF* and
W e R[G]?z, respectively. In particular, V. and W are stably Smith equivalent.

Let X be a G-manifold and S a smooth G-action on the standard sphere with
exactly one G-fixed point a and T, (S) = R[G]E*. Then the cartesian product ¥ =
X xS has the diagonal G-action and the G-fixed point set of Y is X x {a}. For each
z € X%, the tangential representation T{, ,)(Y) is isomorphic to T}, (X) & R[G]£*.
The next theorem follows from Theorems 1.3 and 1.6.

Theorem 1.7. Let G be an Oliver group and (V;, W) a pair of L-free P-matched
real G-modules V; and W; for each 1 < i < m. Suppose all V; and W;, 1 <i < m,
satisfy the weak gap condition on PHa(G). Let X be a G-manifold with G-fized
point set

XC ={z} - -1 {z,} IF (disjoint union)

such that for each 1 < i < m, the tangential representation T,,(X) is isomorphic
to Vi, where I is a union of connected components of X&. Then there exists an
integer N such that for any integer £ > N there exists a G-manifold Y with G-fixed
point set X& for which the underlying space is diffeomorphic to X x S(REBR[G]%Z)
and the tangential representation Ty, (Y) is isomorphic to W; @ R[G]E for each
1< <m.
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A finite group G is called a gap group if each element z of RO(G)%J can be
written in the form x = [V] — [W] with L-free real G-modules V and W satisfying
the gap condition on PH(G). We remark that G with L(G) N P(G) = 0 is a
gap group if and only if there exists an L-free real G-module V satisfying the
gap condition on PHy(G). An Oliver group G is a gap group if G is nilpotent,
or G = G} or G # G} for at least two odd primes p. In the case where G
is a gap Oliver group, we could determine the geometrically defined set Sm(G)%
in algebraic terms: Sm(G)% coincides with RO(G)% (cf. [17, p. 850, Realization
Theorem|). But it is difficult to determine Sm(G) or even Sm(G)% when G is not
a gap group. Let us call a finite group G a weak gap group if each element x of
RO(G)% can be written in the form 2 = [V]—[W] with £-free real G-modules V and
W satisfying the weak gap condition on PH(G). For example, G = S5xCoyx---xCo
is not a gap group but a weak gap group (cf. [4]), where S5 is the symmetric group
on five letters and C5 is a group of order 2. Since Sm(G)f, C RO(G)%7 we obtain
the next result.

Theorem 1.8. If G is a weak gap Oliver group then Sm(G)% coincides with
RO(G)5.

Let H be a subgroup of G. For a real H-module V', we denote by indg V the
real G-module R[G] ®gpg) V. If V satisfies the weak gap condition on PH(H) then
ind% V satisfies the weak gap condition on PH(G); if V is L-free then ind$ V
is also L-free; and if V and W are P-matched real H-modules then indg V' and
ind% W are P-matched real G-modules. Let ind$; denote the induction homomor-
phism RO(H) — RO(G). Then the inclusion ind%(RO(H)5) € RO(G)4 holds.
Thus we obtain the next result from Theorem 1.6.

Theorem 1.9. Let H be a subgroup of an Oliver group G.

(1.9.1) If V and W are L-free P-matched real H-modules satisfying the weak gap
condition on PHy(H) then [ind% V] — [ind$ W] belongs to Sm(G)%.
(1.9.2) If H is a weak gap group then
ind% (Sm(H)%) ¢ ind§(RO(H)5) € Sm(G)5.

Let H(G) denote the set of all subgroups H of G for which there exists P €
P(G) such that P < H and |H : P| < 2. For a subset A C RO(G), we define Ay
to be the set of all elements € A such that res$ z = 0 for all H € H(G). It is
obvious that A%, C RO(G)5.

Theorem 1.10. If H is a subgroup of an Oliver group G then
ind%(RO(H)%) € Sm(G)%, ¢ Sm(G)%.
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This paper is organized as follows. Section 2 is devoted to preparation of basic
terms and notation concerning G-manifolds and G-framed maps. In Section 3, we
discuss equivariant surgery to obtain homology equivalences on even-dimensional
manifolds satisfying the weak gap condition. Theorem 3.5 describes a surgery
obstruction to Z,)-homology equivalence in algebraic terms. Section 4 is devoted
to the induction theory of equivariant surgery obstruction groups. In Section 5 we
prove Theorem 5.1 which provides a method of deleting or inserting fixed point
manifolds. Theorems 1.3-1.5 and 1.10 are proved in Section 6.

§2. Preliminaries

For families A, B of sets closed under intersection, and a map f : A — B, we say
that f preserves intersection or is intersection preserving if

f(A1 n AQ) = f(Al) N f(AQ) for all Al,AQ € .A

Let © be a G-set, p: © = S(G) a G-map, where G acts on S(G) by conjuga-
tion, and S a conjugation invariant subset of G consisting of elements of order 2.
The group G acts on S by conjugation. The set O is called (p, S)-simple if for each
t € O, the set p(t) contains at most one element in S.

Definition 2.1. For a (p,S)-simple G-set ©, we define the S-contraction
(©/S,p/S) of (©,p) as follows. Let ~g denote the equivalence relation on © such
that t ~g ¢’ if and only if p(¢)NS = p(¢')NS. Denote by ©/S the set of equivalence
classes with respect to ~g. The map p/S : ©/S — S(G) is defined by

p/S([t]) = {e} U (p(t) NS)

for the ~g-equivalence class [t] of t € ©. Then ©/S has a canonical G-action and

p/S :0/S = S(G) is a G-map.

A G-map p : © = S(G) is called S-injective (resp. S-bijective) if for each
s € S, there exists at most one (resp. exactly one) element ¢ € © such that p(¢)
contains s.

Let P(©) denote the set of all subsets of ©. Clearly P(©) has the induced
G-action. A G-map [ : S(G) — B(O) is called p-compatible if p(f(H)) C S(H)
for all H € S(G). A G-map f : S(G) — PB(O) is called (p, S)-saturated if

(2.1) FH)D{te®|pt)NSNH#P} forall He S(G).
It is straightforward to verify the next lemma.

Lemma 2.2. Let f : S(G) — PB(O) be an intersection preserving p-compatible
G-map and set Oy = f(H) and pg = pley, : O — S(H).
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(2.2.1) If© is (p,S)-simple, then Oy is (pm, SN H)-simple for H € S(G) and the
associated map p/S : ©/S — S(G) is S-injective.

(2.2.2) If p: © = S(G) is S-injective then py : O — S(H) is (S N H)-injective
for H € §(G).

(2.2.3) If p : ©® = S(Q) is S-bijective and f : S(G) — P(O) is (p,S)-saturated
then pgr : O — S(H) is (S N H)-bijective for H € S(G).

Let X be a compact, connected G-manifold, possibly with boundary dX. The
singular set Xging of X is defined by

Xsing = U X9,
geG~A{e}

We say that X satisfies the weak gap condition if
1
(2.2) dim Xgng < 3 dim X.

In the case where X has even dimension 2k and satisfies the weak gap condition,
we say that X satisfies the k-tame condition if
dim X% <k -2

(2:3) whenever H < K € S(G), dim X* =k, and H = ﬂ G,
zeXH

where G, stands for the isotropy subgroup of G at the point z. Let G(2) denote
the set of all elements of G of order 2. In the case where X has even dimension 2k
and satisfies the weak gap condition, we say that X satisfies the G(2)-condition if

(2.4) |H| =2 whenever H € S(G) and 2dim X* = dim X.

For a subgroup H and an integer ¢ > 0, let 7o(X*,¢) denote the set of all
connected components of dimension ¢ of X*. For a € mo(XH,¢), we denote by
X, or X the underlying space of a. Each a € mo(XH,¢) determines the group

px(a) = ﬂ Ga.
rz€EX
Definition 2.3. Let X be a compact, connected G-manifold, possibly with
boundary, satisfying the weak gap condition. Then we set
S(X)={g€G|2dimXY=dim X},
QX)={g€eG|dimXI=[(dimX —1)/2]},
Y(X) ={a| HecS(G), acm(X?, dimX/2), and px(a) = H},
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where for a real number x, [x] denotes the greatest integer not exceeding x. The
(dim X /2)-dimensional singular structure &(X) associated with X is defined to
be the set of all X,, s € £(X). For each s € ¥(X), the manifold X, has the unique
orientation class t, in Hy(X,,0Xy;Zs). The G-set ©)(X) is defined to be the
set of all ts, where s runs over X(X). The correspondence s — t, gives a bijection
»(X) — 0@ (X). The map pg?) :0)(X) — S(Q) is defined by pg?) (ts) = px(s)
for s € X(X).

The proof of the next lemma is straightforward.

Lemma 2.4. Let X be a G-manifold as in Definition 2.3. Suppose that X has
even dimension n = 2k and satisfies the G(2)-condition. Then the following hold:

(2.4.1) @ (X) is (02, S(X))-simple.

(2.4.2) PP /S(X): O (X)/S(X) — S(G) is S(X)-bijective.

(2.4.3) For H € S(G), S(res§ X) coincides with S(X) N H. Thus the map H
S(res$ X) is intersection preserving.

(2.4.4) For H € S(G), ©@ (res X) coincides with {t € ) (X) | pg)(t) C H}.
Hence the map f : S(G) — P(OP(X)); H — 0@ (res§ X), is intersec-
tion preserving, pg?)—compatible, and (pg?),S(X))—satumted, and further-
more f(G) =03 (X).

(2.4.5) The canonical map v : 0 (X) — 03 (X)/S(X) is a G-map, the diagram

o

0)(X) ——S5(G)

P /8(X)

0 (X)/S(X)

commutes, and
Y(OP(X)) = 0P(X)/S(X).

Let X be a compact, connected, oriented G-manifold of dimension n > 5,
possibly with boundary 9X. Let R be a commutative ring with 1 and with trivial
anti-involution ~. The group ring R[G] has the anti-involution = derived from the
orientation homomorphism wx : G — {£1} of X, i..

(Z ’"gg)i = roux(9)g™,

geG geG

where 7, € R. Let X denote the universal covering space of X. Let G denote the
fundamental group 7 (EG x ¢ X), where EG is a contractible G-CW complex with
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a free G-action. We have the exact sequence
1-m(X)=G—G—1.

If X is nonempty then this sequence splits, i.e. G= m(X) % G.

Let Y be a compact, connected, oriented G-manifold of dimension n, possibly
with boundary 0Y. Let f = (f,b) be a G-framed map, where f : (X,0X) —
(Y,9Y) is a G-map such that f : X — Y is 1-connected, and b : T'(X)® f*n — f*¢
is a real G-vector bundle isomorphism for real G-vector bundles 1 and £ over Y
such that n > ey (R") (cf. [2, Lemma 6.1]). Then f is covered by the induced
G-framed map f = (f,b) consisting of a g-map IR (X 0X) — (Y dY) and a real
G-vector bundle isomorphism b T(X ) @ f *77 — f f, where Y is the universal
covering space of Y, ¢ is the canonical homomorphlsm G = m1(EG Xa X) —

T (EG x¢Y) = G, and 7] and € are the real G-vector bundles over Y induced
from n and &, respectively:
~ 7 o~

—_—

X %
l l"rff Y
x—t.vy

R

—_—

We note that the map ]ch (X 0X ) (Y, 817) is not necessarily of degree one.

§3. G-surgery maps on even-dimensional manifolds

Let X be a compact, connected, oriented G-manifold of even dimension n =
2k > 6, possibly with boundary dX. Throughout this section, we assume that
X satisfies the weak gap condition and the k-tame condition. Let R be a commu-
tative ring with 1 and with trivial anti-involution ~. We set A = (—1)*, § = S(X)
and @ = Q(X); further define

(Q@r=R[Q]+{z - |z e RG]}, (9)r=R[S]+{z+ AT |z e R[G]}.
Then
Ax = (R[G]’ (T7 )‘)’ (S)Rv G, R[S]’ (Q)R + R[S])

is a double parameter algebra in the sense of [2, Definition 2.5].
Let 6 = {X, | s € ¥} be a set of compact connected k-dimensional neat
submanifolds of X, where ¥ is a G-set, such that gX, = X, for all g € G and

s € 2. Set
Xg = U X,.
SEX
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In this paper, we assume that G satisfies the k-tame condition, i.e.
(3.1) X, N X; is a neat submanifold of X, of dimension < k — 2

for all s,t € ¥, s #¢t. If & D &(X) then we call & a k-singular structure of X.
The index set ¥ decomposes into the disjoint union of ¥ and ¥_ consisting of
all elements s € ¥ such that X is orientable and non-orientable, respectively. Let
0 (&) denote the set of all generators of Hy(X,,dX,;Z), where s runs over ¥,
and let ©(?)(&) denote the set of all generators of Hy (X, 0X,;Zs), where s runs
over . The sets (9 (&) and ©) (&) have canonical actions of G x {£1} and G,
respectively. In addition, there is a canonical map pe : 0(&) — 03)(&); for a
generator z of Hy(X;, Xs;7Z), ps(x) is the generator of Hy (X, Xs;Z2). We have
a natural one-to-one correspondence from ¥ to ©(2)(&). Thus we often identify
0)(6) with ¥ as G-sets. On the other hand, we may not have a (G x {#1})-
bijection from ©©)(&) to ¥, x {#1}, although there is a non-equivariant bijection
between these sets. Let pg denote the map O (&) = ¥ — S(G) defined by

= ﬂ Gy (se€eX).
zeEX,
Let ©(6) denote the datum

(09(8),0(68),ps, ps).

Set
Q=Qx (={9€G(2)[dmX? =k —1}),
S =55 (={g€ G(2) | diim X9 = k}),
(Qr=R[Q|+{z— x|z € RG]}, (S)g=R[S]+{z+A|ze RG]}
Then

A=Ag = (R[G],(~A),(S)r, G, R[S, (Q)r + R[S])

is a double parameter algebra.

Let & = {X; | s € ¥} be a k-singular structure of X as above. Consider the
set

S={X;|tex}

of all connected components X, of 7T~_X (Xs), s € X, where TR X is the canoni-
cal projection X — X. Here we have canonical surjections S—>Gand ¥ > %
We call & the k- singular structure of X induced from &. Note that X and X;
are pos&bly non-compact. The index set % decomposes into the disjoint union
of ¥, and X_ consisting of all elements ¢ € % such that X, is orientable
and non-orientable, respectively. Let @(0)( ) denote the set of all generators of
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Hjoe-fin- (X;,0X;;Z), where t runs over 4, and let ©) (&) denote the set of all
generators of H;OC-ﬁn-()?t,a)?t;Zz), where ¢ runs over 3. The sets ©(©) (&) and
©@)(&) have canonical actions of G x {£1} and G, respectively. In addition, we
have the canonical map pg : 0)(&) — ©@(&). Define the map

ps OP(B)=6=2=8(G) by pg(t)=[) G

xe)?t
Let ©(6) denote the datum

(0(6),0@(8),pg. rg)-
The next lemma is well-known.

Lemma 3.1. Let f = (f,b) be a G-framed map and & a k-singular structure of X
as above. Suppose the map f: (X,0X) — (Y,9Y) has degree one. Then f can be
converted to a G-framed map f' = (f',b'), where f' : (X',0X') — (Y,0Y) and
b T(X") @ f"n — €, such that f' : X' =Y is k-connected, by a G-surgery
on X relative to Xgng U Xe UOX.

First, note that the degree of the resulting map f’ : (X’,0X’') — (¥,9Y)
above is 1. Second, note that if f : X — Y is k-connected then the mapping
cylinder M 7 of f : X — Y is the universal covering space of the mapping
cylinder My of f : X — Y, the group 7rk+1(]7) can be identified with 711(f),
and the canonical homomorphism 41 (f) — K(f;Z) is an isomorphism, where
1 () = me1(Mp, X) and

Ki(f3:Z) = Kex[f. : Hy(X;Z) — Hi(Y;Z)].

Now let R be Z or Z, for a prime p. We denote by P,(G) the set of all
subgroups of G with p-power order. Thus we have

U PG

p prime
Let f = (f,0), f: (X,0X) = (Y,0Y) be a G-framed map and & a k-singular
structure of X as above. Then let f = (f b), f (X,0X) — (Y,8Y), denote the

G-framed map induced from f where X and Y are the universal covering spaces
of X and Y, respectively. Let S denote the induced k- singular structure of X.

Definition 3.2. Let f be the G-framed map above. We define the R[G]-module
M(f; R) by ~ ~

M(f; R) = mp41(f) ® R
We call f a (G, R)-surgery map if the following conditions are fulfilled:
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(3.2.1) f: X —Y is of degree one.

(3.2.2) f: X — Y is l-connected.

(3.2.3) f.: Hj(X;R) = H;(Y; R), j <k, are all isomorphisms, and f, : Hy(X; R)
— Hy(Y; R) is surjective.

(3.2.4) O0f. : Hj(0X;R) — H;(0Y; R), j < n — 1, are all isomorphisms.

(3.25) f: X = Y is k-connected, or the canonical map M(f;R) ® i@ R[G] —
K (f; R) is an isomorphism, where

Ki(f; R) = Ker[f« : H(X; R) — Hi(Y; R)].

(3.2.6) In the case R = Z, f : X — YT are Z4-homology equivalences for all
subgroups P € P(G) with P # {e}, and primes ¢ dividing | P|. In the case
R =17, [ : XP = YT are Zy-homology equivalences for all P € P,(G)
with P # {e}.

(3.2.7) x(X9)=x(Y9) for all g € G, g # e.

We have the Poincaré pairing
Ho (X 09X 7) x Hy(X;Z) — 7.
Passing along the canonical homomorphisms
Trs1(F) = Hiyr (M7, X3 Z) — Ki(f;2) € He(X32) — HP™ (X, 0X;2)

we obtain the intersection form By : M(f;R) x M(f;R) — R, and hence the
G-equivariant intersection form

B:M(fiR) x M(f;R) = R[G); B(z,y) =Y _ Bo(z.g7'y)g.
geé

Let © € mi11(f). Then z is represented by a commutative diagram

gk . X

L

DE+l o }7

By virtue of this diagram and the bundle isomorphism b, the induced bundle
oz*T()? ) is stably trivial. Thus z is represented by an immersion a : S¥ — X with
trivial normal bundle. Let g be an element in G of order 2 satisfying dim X9 < k—2.
Then the regular homotopy classes of immersions S* — X correspond in a one-
to-one way to the regular homotopy classes of immersions S* — X . X9. Hence
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Theorem 5.2 of [18] provides the (g)-equivariant self-intersection form

gy * T2 (f) = Z[(9)]/{a — Xa | a € Z[(g)]}-

Assembling the data of the é—equivariant intersection form B and the (g)-equivari-
ant self-intersection forms g, (cf. [2, Definition 4.11]), we obtain the G-equivariant
self-intersection form

§: M(f:R) = R[G)/((Qg)r + R[Sg])  (cf. [2, p. 567, L. 3]).
For a generator a € H}fc'ﬁn'()?t, 6)~(t; Z), where t € §+, we have the element
jea € HI*0 (X 0X,7),

where j, : H}Goc'ﬁ“'(f(t,(?f(t;Z) — H,LOC-ﬁn-()?,a)?;Z) is the canonical homomor-
phism. Via the intersection paring (or the Poincaré pairing up to sign)

HP (X, 0X;2) x Hy(X;Z) — Z
and the canonical map M(f;Z) — Hy(X;Z), j.o determines an element
0O (a) € M(f;2)#, where M(f;2)* = Homy g (M(f;2), Z[G)).
Thus we obtain the (G x {#1})-map
60 - 0(8) » M(f; R)*, where M(f; R)* = Homp g (M(f; R), R[G)).
Similarly we obtain the é—map
03 . 0? (&) - M(f;R/2R)*,
where N N N
M(f;R/2R)* = Homy, » . (M(f; R/2R), R/2R|G)).
Putting all this together, we obtain the surgery module

Mj s = (M(J:R), B,q.0",0?).

By the hypothesis M (f; R)®R[é]R[G} = Kj(f; R), we obtain the commutative
diagram

Hpe ™™ (X, 0X; R) M(f: R)*

T |

(&) — Hloefin (X 9X; R/2R) — M(f; R/2R)#

| |

Ki(f,0f; R/2R) K(f;R/2R)*
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Moreover we note

Ki(f,0f; R) = Kx(f; R), Ki(f,0f; R/2R) = Ki(f; R/2R),

Ki(fi R)* = Ki(f; R) and  Ki(f; R/2R)* = Ki(f; R/2R).
Thus by the hypothesis M(f, R) Dp@ R[G] = Ki(f; R), we obtain the surgery
module

My =Mjg @pea RIG) = (Ki(f; R), By, q5,0,6%),
where
By : Ki(f; R) x Ki(f; R) — R[G]

is the G-equivariant intersection form,

a5 : Ki(f; R) = R[G]/((Q)r + R[S])
is the G-equivariant self-intersection form, and

60 : 0)(8) — Ki(f; R)* = Ki(f; R),
0 . 0?(6) = Ki(f; R/2R)* = Ki(f; R/2R)

are positioning maps (cf. [2, §5, pp. 563-564]).
By similar arguments to [2, p. 575, £. 24 — p. 578, £. 2], we obtain the next
lemma.

Lemma 3.3. Let f be a (G, R)-surgery map and & a k-singular structure as
above. If there exists an R[é]—submodule L of M(f, R) satisfying the conditions
below then f can be converted to a (G, R)-surgery map f = (f',b'), where f’ :
(X7,0X") = (Y,0Y) and b’ : T(X') @ f""n — f'°E, such that f': X' — Y is an
R-homology equivalence via G-surgery on X relative to Xgng U X UO0X.

(3.3.1) 0(0)( )( L) =0 for all a € ©©(&) and 6 (B)(L) = 0 for all § € O (&).

(3.3.2) B(L, ) 0.
(3.3.3) g(L) =
(3.3.4) The canonical image L in Ki(f; R) of L is an RI[G]-free direct summand

of Ki(f; R) of half the rank, i.e. 2 -rankrL = rankp Ki(f; R).

Lemma 3.4. Let p be a prime and R = Z,). Let f = (f,b) be a (G, R)-surgery
map and S a k-singular structure of X as above. Suppose the following.

(3.4.1) m(X) is finite and |7 (X)] is prime to p.

(3.4.2) the canonical homomorphism G — G has a splitting, i.e. G=m (X)xG.
(34.3) f: X =Y is k-connected.

(3.4.4) 75 Xt are orientable for all t € Z+

s
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If the module
My = (Ki(f;R), By,q5.0,0%)

has an R[G]-free Lagrangian L, then there exists a submodule L of M(f;R) satis-
fying the conditions (3.3.1)—(3.3.4).

Before proving this lemma, we give an important application of the two lem-
mas above. Let

Wn(AXy 6(6))free

denote the surgery obstruction group

W’IL(R? G7 QX; SXa @(6))free

defined in [2, p. 545, Definition 3.33]. In the case R = Z,), a (G, R)-surgery map
f with k-singular structure & determines the module My s above, and further
the element o(f, &) of W, (Ax,®(6))nee as the equivalence class of Mf . By
Lemmas 3.3, 3.4 and [18, Lemma 5.5|, we obtain the next theorem.

Theorem 3.5. Let R = Z,) for a prime p, f a (G, R)-surgery map and & a
k-singular structure satzsfymg the conditions (3.4.1)—(3.4.4). If o(f,&) = 0 in
Wi(Ax,©(6))gee then f can be converted to f' = (f',0') such that f' : X' —Y
is an R-homology equivalence via a G-surgery on X relative to Xgne U X UO0X.

Proof of Lemma 3.4. Let L be an R[G]-free Lagrangian of M . Let {z1,...,2p}
be an R[G]-basis of L and {yi,...,ym} be elements of Kj(f; R) such that

By (zi,y;) = 045

for 1 <i,j <m. Thus {z1,...,Zm, Y1, .., Ym} is an R[G]-basis of Ki(f; R). Arbi-
trarily choose liftings Z1,...,Zm,¥1,---,9m € M(f; R) of Z1, .., Tm, Y15+ -, Ym,
respectively. Define a map 7 : Ki(f; R) — M(f; R) by

T(Z(al‘rl + bvyz ) = X | Z Z hazz7 + hbvyz)

i @ hem(

This map is an R[G]-splitting of the canonical map M(f, R) — Ki(f; R). Clearly,
m1(X) acts trivially on the image of 7. Set

L= 7(L).

That E(E,E) =0 and (L) = 0 follows from Steps 1 and 2 in the proof of [11,
Theorem 2.6].

Thus it suffices to show that 6@ (a)(L) = 0 for a € ©©(&), and
0@ (B)(L) =0 for B € OP(S). Let £ : R[G] — R and ¢ : R[G] — R be the
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homomorphisms of taking the coefficients of the identity elements of G and G,
respectively. For v € ©()(&), let [o] denote the canonical image of a in ©() (&)
and let 71 (X)q denote the isotropy subgroup of the 1 (X)-action on () (&) at
the point «. Then the canonical map M(f; R) — K (f; R) assigns mf©([a]) to
00 (a) with m = |m1(X)a|. Thus for 2 € L, we get

Ol = 3 E( A )

> (2@ w))

and hence

Since

00 (a)(r(2)) = Y (0 (a)(r(g™"2)))g,

geé

the triviality 8 ([o])(L) = 0 implies 8 (a)(7(z)) = 0.
We can similarly show that () (3)(r(z)) = 0.

§4. The Mackey structure of surgery obstruction groups

In this section, let R be a principal ideal domain, hence necessarily a commutative
ring, with 1 satisfying the square condition, i.e.

(4.1) r =72 mod 2R for each r € R.

Let © be a finite G-set, p : © — S(G) a G-map, and S a conjugation invariant
subset of G(2). The map S(G) — P(S); H — Sy = SN H, preserves intersection.
Let SGWy (R, G, S, ©) denote the special Grothendieck-Witt group defined in [10,
p. 2358].

Lemma 4.1 ([10, Proposition 5.4]). If p is S-injective then SGW(R, G, S, 0) is
a commutative ring possibly without 1, and moreover the canonical map

SGWo(Z, G, S,0) — SGW,(R, G, S, 0)

of ring change is a ring homomorphism. If p is S-bijective then SGW(R, G, S, ©)
possesses the unit 1.
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Let
f:8(G) = B(O); H— Of,

be an intersection preserving p-compatible G-map and let w : G — {£1} be a
homomorphism. We denote by wy the restriction w|g : H — {£1}.

Definition 4.2 (cf. [10, p. 2357]). For a ©-positioning Hermitian form M =
(M, B,0), where M is an R-free R[G]-module, B : M x M — R is a G-invariant
(or w-invariant) symmetric bilinear form, and 6 : © — M is a G-map, and for
s € S, x € M, we define the trace Ayg(s) € M of (0,p) at s and the V-invariant
Vum(z)(s) € R/2R of M at (z,s) by

No(s) =D {0(t) [ p(t) 3 s}, Vm(z)(s) = [B(Ag(s) -z, 52)].

te®

We remark that what we precisely need for the definition is B: M x M — R/2R
rather than B : M x M — R.

Lemma 4.3. Let H and K be subgroups of G and let ¢ = (¢,%) be a pair con-
sisting of a monomorphism ¢ : H — K which is a composition of inclusion and
conjugation and the associated injective p-map ¢ : O g — Ok. Let g1,...,9m € K
be a complete set of representatives of K/p(H). Further let M = (M, B, «) be a po-
sitioning Hermitian module, where M is an R-free R[H]|-module, B : M x M — R
is an H-invariant (or wg-invariant) symmetric bilinear form, and o : Oy — M
is an H-map. Then the V-invariant of the induced module M' = Y M satisfies

Vm (@)~ (g7 '5'9:)) (9 '8'9: € (H)),
Vm (9i @ 2)(s') = { 1

0 (9, s'9i & p(H)),
forx e M and s’ € Sx = SNK.
Proof. By definition, M" = (M’, B’, o) is given by M’ = R[K] ®RiH]e M,

B'(g; @y @, gk @y y) = 0 B(z,y), and

()= {gi@alt)|t€Ou, gb(t) =t}
(irt)

where z,y € M, t' € Og. Let s’ € Sg. We have

Vi (9i @4 2)(s") = B'(Aar (") — gi @y 2,5 (9: @y 7).
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Moreover the following equalities hold:

BB (5'),8'(9: @ 7)) = B'(Dar (), 91 © )
= Y {B(galt),g:2, ) | pr(t) 5 5'}

t'EOK

D B9 @ alt), g @p 7) |t € On, gy0b(t) =1, gio(pu(t))g; " > '}

t'eOr jJ,t

> N {Blalt),x) |t € O, gib(t) =, giplpu(t))g; " > 5’}
t'eOk t

Y o AB(at),2) | p(pu(t) 3 g;'s'g:}

teEOy

Y {Bla(t),2) | pu(t) 3 ¢~ (g s i)}

teEOy

On the other hand, we have

B'(gi ®, x,5'(9: ® x))_{B(x’sp_l(gi_lslgi)x) (9" 5'9: € o(H)),
i Yy Ly i Yy =

0 (97 's'gi & o(H)).
Thus we obtain

Ve (95 ®p 2)(s') = {VM(w)(sO‘l(gi_lS’gi)) (g7 's'g; € p(H)),

0 (97 's'g: ¢ o(H)).

Lemma 4.4. If f : S(G) — B(O) is (p, S)-saturated then the correspondence
HHSGWO(R,H,SH,G)H) (HES(G))
affords a Mackey functor.

Proof. This follows from the proof of [10, Proposition 11.2] with a modification
using Lemma 4.3.

Lemma 4.5 ([10, Theorem 11.3]). If p: © — S(G) is S-bijective and f is (p, S)-

saturated then the correspondence
Hw— SGWy(R,H,Sy,0n) (H € S(G))
affords a Green functor. Moreover, the canonical homomorphisms
SGW(Z,H,Sy,0n) = SGWo (R, H,Si,05)

of ring change afford a natural transformation of Green functors.
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Let w : G — {£1} be a homomorphism and let ~ denote the anti-involution
on Z[G] associated with w. Let A = (—1)*. Then (%, \) is an anti-structure of Z[G].
Let @ be a conjugation invariant subset of G(2). Suppose

SCG2*={9e€G2)|g=Ag}, QCG2)*={9eCG?2)]|g=-)g}.
Then we obtain the double parameter algebra
A= (R[G]a (Ta A)a (S)Ra Ga R[S]a (Q)R + R[SD

in the sense of [2, Definition 2.5]. Let ©(®) and ©®) be a finite (G x {#1})-
set and a finite G-set, respectively and let pgwo : ©©) — ©®) be a G-map.
Throughout this paper we assume that {£1} acts freely on ©(®) and pé}o) (pow (t))
coincides with {¢, —t} for all ¢ € O0) Tet Po@ : o - S(G) be a G-map and
set © = (09,0 po), po ). We use the notation

Wn (Aa e)free = Wn(Ra Ga Qa Sa e)freea Wn(Aa e)proj = Wn (Ra Ga Qa Sa e)proja

where n = 2k, defined in [2, Definition 3.33].
Let © be a finite G-set and p : © — S(G) a G-map. Let v : ©) — O be a
G-map such that the diagram

)
e S(G)

(4.2) vl /

S)

commutes and
(4.3) v(©®) = 0.

Lemma 4.6. If p: © — S(G) is S-bijective then W, (A, O)free is a module over
SGWy(R,G, S, 0).

Proof. Let My = (Mj, By, 1) be a O-positioning, non-singular Hermitian R[G]-
module with trivial V-invariant, where M is an R-free R[G]-module, By : My x M;
— Rand a; : © — M. Let My = (My, By, g2, (%), a(?)) be an object in VO(A, ©)
defined in [2, p. 535] such that My is a stably R[G]-free module, where By :
My x My — R[G], ¢2 : My — R[G]/((Q)r + R[S]), a® : ©©) — M,, and
a® 0@ — M,/2M,. Then we define

M =M, M;=(M,B,q0, 0%)cQA,6)
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as follows. The triple (M, B, q) is described in [10, §9]. The map #(© : ©©) —
M = M; ®g M, is given by
0 (1) = a1 (v(pew (1) @r O (t)  for t € O,
and the map 6 : ©) — M/2M is given by
0P (1) = a1 (4(t)) @r (1)

for t € ©®). It is easy to verify the V-triviality of M, i.e. M € VQ(A,©). The
correspondence (M1, M5) — M affords the module structure

SGWy(R,G,S,0) x Wp,(A,0)frec = Wi(A,O)frec.
In this section we set
Qu=QnNH for He SG).

Then the map S(G) = P(Q); H — Qp, preserves intersection.

We regard S(G) as a (G x {£1})-set, with the trivial {+1}-action. Let fg =
(fow, fo ) be a pair of an intersection preserving (Gx{x1})-map fgo : S(G) —
PO H — G)gg), and an intersection preserving pgz)-compatible G-map fge) :
S(G) = P(OD); H s Gg), satisfying

e (0F)) c 0F

for H € S(G). Define pg o) : @ﬁ,f;) — @53) as the restriction of pg), and pge) :
H H

@g) — S(H) as the restriction of pge). Then we obtain the double parameter
algebras

AH = (R[HL (Tv >‘)7 (SH)R7H7R[SH]7 (QH)R + R[SH})v
where Sy = SN H, and the positioning data

Op = (@g),@g)7p®$),peg)), where H € §(G).

Lemma 4.7. If foe : S(G) — PB(OP) is (poe,S)-saturated then the corre-
spondences

H— Wn(Aa,OH)pmo; (H € S(G))
and

H— Wy(An,On)iee (H € S(G))

afford Mackey functors, respectively.
Proof. Recalling [10, Proposition 10.3], we will prove the lemma by showing that
H— Wn(AHaeH)projaWn(AHaeH)free (H S S<G))
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are w-Mackey functors. Most of the proof is already given in the proof of Theo-
rem 12.10 of [10]. It suffices to discuss the part concerning the (H x {%1})-sets
0, where H € S(G).

Let H and K be subgroups of G. Given an injective homomorphism ¢ :
H — K, we have the canonical injective homomorphism ¢y : H x {£1} —
K x {£1} defined by ¢4 (h,e) = (p(h),€e) for h € H and € € {+1}. The sets
@(13) and @g?) are an (H x {£1})-set and a (K x {£1})-set, respectively, on which
the group {+1} acts freely. Let ¢ : @g) — @gg) be a p4-map, i.e.

P((h, €)t) = px(h, €)Y(t) (= (p(h), )P (1))

for he H,ec {+1},and t € @g). Let ¢ denote the pair (¢, 1)).

An R[K]-module N is usually regarded as an R[K x {£1}]-module via (k, €)x
= e(kx) for k € K, e € {+1}, and « € N. For a pair N = (N, () consisting
of an R[K]-module N and a (K x {£})-map 3 : G(Ig) — N, we define ¢ N =
(o# N,* B), where p# N is an R[H]-module and ¢# 3 : 9(13) — p# N, so that the
underlying R-module of ¢# N is the same as N but the H-action on ¢# N is given
by (h,z) — @p(h)z for h € H and = € ¢# N, and % 3(t) = B(3(t)) for t € @(13).

For a pair M = (M, &) consisting of an R[H]-module M and an (H x {£1})-
map o : Gg) — M, we define o, M = (pxM,pya), where puM is an R[K]-
module and Yy« : @gg) — M, by oM = R[K]| ®g(m),, M and

Yypa(t) = Z{g @at)]]g,t'] € K xXg,4 653) such that g (t') =t}
l9,t']

for t € @gg).

These ¢ N and ¢4+ M are simple analogies of those in [10, p. 2347]. Thus the
conclusion of the lemma above follows from the same arguments used in the proof
of Theorem 12.10 of [10].

Let p: ©® — S(G) be a G-map and f : S(G) — P(O); H — Op, an intersec-

tion preserving, p-compatible G-map such that f(G) = ©. Let v: O — © be a

G-map such that the diagram (4.2) commutes and
(4.4) 1OF) =6n (HeS(@).

Lemma 4.8. If p: © — S(Q) is S-bijective, f : S(G) — P(O) is (p, S)-saturated
and fo@ : S(G) = P(OWP) is (p), S)-saturated, then the correspondence

H — Wn(AH,eH)free (H S S(G))
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is a module over the Green functor
H+— SGWy(R,H,Sy,0n) (H e S(Q)).

Proof. We can argue in the same way as in the proof of [10, Theorem 12.10] with
a modification using Lemma 4.6.

85. A deleting-inserting theorem

Deleting (resp. inserting) G-fixed submanifolds from (resp. to) given ambient G-
manifolds is useful for the study of fixed point data of G-manifolds. For example, it
has been applied to the study of the Smith problem on tangential representations
at fixed points on spheres. In this section we prove Theorem 5.1 below. Let Q;(G)
denote the set of all subgroups H of G possessing normal subgroups P < H such
that P has p-power order and H/P is cyclic, where P is possibly the trivial group.
An element H of G}(G) is called a mod-P, cyclic group. We set

g'@= |J ga.

p prime

If H lies in G!(G) then H is referred to as a mod-P cyclic group.

Theorem 5.1 (Deleting-inserting theorem). Let G be a finite Oliver group and' Y
a smooth G-manifold such that the underlying manifold of Y is diffeomorphic to
the disk of dimension n > 5 and YE # (. Let Fy, ..., F, denote all the underlying
spaces of connected components of Y, and let n1, ..., n: be non-negative integers.
Suppose the following:

( ) Y satisfies the weak gap condition on PH(G).

( ) dim Y= >3 for any H € G*(G).

(5.1.3) dimY? > 5 for any P € P(G).

( ) m(YT) is finite and of order prime to |P| for any P € P(G).

( ) For1<i,j <t, n; coincides with n; if some connected component YH of
YH, H € L(G), contains both F; and F}.

(5.1.6) For 1 <i <'t, n; is equal to 1 if some connected component Y of YH
H € L(G), contains F; and OV, # (.

(5.1.7) If dimY? = 2dimY# for (P,H) € PH(G) then (P,H) € PHa(G) and
dimY>H < dimY*H — 2.

Then there exists a smooth G-action on the disk D of dimension n such that

(i) 0D is G-diffeomorphic to dY,
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(ii) DY has the form of the disjoint union of copies of Fj’s:

t ng
D¢ = H H F;; (each F;; is diffeomorphic to F;), and

i=1j=1
(iii) the normal bundle v(F; ;, D) is G-isomorphic to v(F;,Y).

Furthermore if Y (resp. YT') is connected (resp. simply connected) for an element
H € GYG) (resp. P € P(Q)), then one can choose the G-action so that D (resp.
DT is connected (resp. simply connected) for the subgroup H (resp. P).

Proof. The procedure is the same as that of proving Theorem 1.3 of [11, §5]. Let
fF=00, f:(X,0X) = (Y,0Y) and b : T(X) ®ex(R*) = f*T(Y) @ ex(RY),
be the degree-one G-framed map obtained in Section 4 of [11]. Note that for
P € P(G), Y? is orientable and the map fF : (X7,0X") — (YF,0Y") has
degree one.

The details of the proof differ in some points from the proof of Theorem 1.3
of [11, §5]. The differences occur in Steps A and B below.

Step A. The step converting f¥ : X — Y to a mod p homology equivalence,
where P € P(G) possesses H € S(G) such that 2dim X = dim X* and
p is the prime dividing |P|.

Step B. The step converting f : X — Y to a homotopy equivalence, when there
is (at least one) H € S(G) such that 2dim X# = dim X.

In these steps, the condition (5.1.7) is used to get rid of technical difficulties.

Step A. In this step, we set np = dim X*, kp = np/2, A = (=1)k? T =
Ng(P)/P, w=wxr : T — {£1}, and furthermore

R=Zy),

S={g€T(2)|dim(X") =kp} (= S(x")),

Q={geT(2)|dm(X") =kp -1} (= Q(X")),

6 ={(X")7]ge s} (=6(x")),

0 = (xP) 0® =@ X",

p= p(X22:> : @(2) — S(T), 0= (@(0)7 6(2),p@(0),P),

where pgo : O — ©? is the canonical map. Without any loss of generality
we can suppose that f© : X — YT is kp-connected. Then by Theorem 3.5
the T-surgery obstruction o(fF,bF) to the (T, R)-surgery map (f7,b") being a
Z(p)-homology equivalence lies in W, (R, T, S, Q, ©)trce-
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For a subgroup K of T, set S = S(resk XP), Qx = Q(resk XT), 6k =
S(resk XP), 00 = 00 (resh XP), 0P = 0@ (rest XP), py = pi:T .
K
0 - S(K), and
Ok = (@gg)7@g)7p@<}g),PK)-

By Lemmas 2.4, 4.7 and 4.8, the correspondence
KW, (R K,Sk,QKr,OK)iree (K € S(T))

affords a Mackey functor, and moreover a module over the Green functor
K — SGW(Z, K, Sk,0% /Sk) (K € S(T)).

Thus the argument in [11, §5, Case 2| using the relation between the equivariant
connected sum operation and the Q(T)-action on the surgery obstruction group (cf.
[11, (5.2)]), works in the present situation. This ensures that by using equivariant
connected sum and G-surgery of isotropy type (P), we can convert f¥: X — Yy
to a Z,)-homology equivalence.

Step B. In this case, Y is 1-connected and n = dimY = dim X. We set k = n/2,
A= (D w=wx:G—={£l}, R=127,5 = S(X), Q = Q(X), 6 = &(X),
0 =00 (X), 0 =0 (X), p=p¥ : 0@ - §(G), and

6= (6(0)7 @(2)7p@(0) ’ p)7

where pgo) : 0 — 0@ is the canonical map. Without loss of generality we can
suppose that f: X — Y is k-connected. Since

Ky (f; R) = Ket[f. : Hy(X; R) — H(Y; R)]

is a projective R[G]-module but not necessarily a stably free R[G]-module,
Theorem 6.3 in [2] says that the G-surgery obstruction o(f,b) to the (G, R)-
surgery map (f,b) being a homotopy equivalence lies in the obstruction group
W, (R,G,S,Q,0)p0j. But by employing the relation

(1+ (=8)")Ko(R[G)) = 0

described in [11, §5, Case 3] and by taking a suitable equivariant connected sum,
we may assume that Ki(f; R) is a stably free R[G]-module. Then o(f,b) lies in
the obstruction group W, (R, G, S, @, 0 )ree-

For a subgroup K of G, set Sk = S(res® X), Qx = Q(res§ X), & =
S(rest X), @gg) = 00 (res$ X), @(Ig) = 0@ (resE X), px = piziﬁx : @(Ig) —
S(K), and

O = (®§g)v@g)7p@<}g),PK)-
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By Lemmas 2.4, 4.7 and 4.8, the correspondence
K= Wo(R,K,Sk,QK,OK)tee (K € S(G))
affords a Mackey functor, and a module over the Green functor
K+ SGWo(Z, K, S5k, 02 /SK) (K € 8(G)).

Thus the argument in [11, §5, Case 3] works in the present situation. Hence, by
using equivariant connected sum and G-surgery of isotropy type ({e}), we can
convert f: X — Y to a homotopy equivalence.

Putting all this together, we have proved the theorem above.

86. Applications of the deleting-inserting theorem

Let G be a finite group. One may conjecture that if V' and W are P-matched
L-free real G-modules then V and W are stably Smith equivalent, with which the
following is concerned.

Definition 6.1. We call a real G-module V' admissible if it satisfies the following
conditions.

(6.1.1) V satisfies the weak gap condition on PH(G).

(6.1.2) dimV=H > 3 for any H € G!(G).

(6.1.3) dim V¥ > 5 for any P € P(G).

(6.1.4) Ifdim V¥ = 2dim V¥ for (P, H) € PH(G) then (P, H) belongs to PHz(G)
and dimV># < dim V¥ — 2.

The next lemma is an elaboration of [6, Theorem B|. In [6], we worked with
real G-modules V such that all transformations g : VH — V9H 9" are orientation
preserving for g € G and H € S(G) (cf. [6, p. 491 (3.3.6)]).

Lemma 6.2. Let G be an Oliver group, m a positive integer, and V an admissible
real G-module. Then there exists a smooth G-action on the standard sphere Sy
such that SG consists of m points x1,...,xm and each Ty, (Sv), 1 < i < m, is
isomorphic to V.

Proof. Let Y be the unit disk D(V') of V' with respect to some G-invariant inner
product. Then Y satisfies the conditions (5.1.1)—(5.1.7). By Theorem 5.1, we ob-
tain a smooth G-action on a disk Dy such that Dy does not have G-fixed points
and 0Dy is G-diffeomorphic to S(V) = dD(V). On the other hand, by Theo-
rem 5.1 there exists a smooth G-action on a disk D,, such that DS consists of m
points Z1,..., Ty, 0Dy is G-diffeomorphic to S(V) = dD(V), and the tangential
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representations T, (D,,) are all isomorphic to V. Then glue Dy and D,, along
the boundary and obtain a smooth G-action on a homotopy sphere Xy such that
¢ consists of m points x1, ..., 2., and Ty, (Xy) are isomorphic to V. Taking the
equivariant connected sum of copies of Xy (cf. [7, Proposition 1.3, Example 1.2]),
we can obtain a smooth G-action on the standard sphere as desired.

Lemma 1.1 implies that R[G]E? is an admissible real G-module. Hence The-
orems 1.3 and 1.4 immediately follow from the lemma above.

Theorem 6.3. Let G be an Oliver group. Let Vi, ..., Vy, be L-free real G-modules
any two of which are P-matched. Then there exists an integer N1 such that for any
integer £ > Ny, there exists a smooth G-action on the disk D with exactly m G-fixed

POINts T1, ..., Ty for which the tangential representation T, (D) is isomorphic to
Vi @R[G]?Z for1<i<m.

Proof. Consider the space F' = {x1, ...,z } with the trivial G-action. We have the
L-free real G-vector bundle v = e,y (V1)1 - -Ileg,, 1 (Vi) over F. Clearly res{Ge} v
is isomorphic to ep(R") for n = dim V; and res@ v is isomorphic to ep(resG V1)

for any P € P(G). By [14, Theorem 21|, there exists an integer N; as desired.

Proof of Theorem 1.5. Let N; be the non-negative integer obtained in Theorem 6.3
for the G-modules Vi,...,V,,. There exists an integer N > N; such that the real
G-modules V; @ R[G]?N, 1 <4 < m, are all admissible. Then for all £ > N, the
real G-modules
W, =V;eR[GIF, 1<i<m,

are also admissible. Again by Theorem 6.3, there exists a smooth G-action on the
disk Y such that Y = {x1,..., 2} and T, (Y) = W, for 1 <i < m. Let Z denote
the double Y Uyy Y of Y. Then Z is a sphere having the G-fixed points x1, ..., T,
T, ..., oy, such that 1o, (Z2) = T,y (Z) = W, for 1 <i < m. By Lemma 6.2, there
exist smooth G-actions on spheres S;, 1 < ¢ < m, such that SiG = {z} and
T,y (S;) = W;. Let S denote the G-manifold obtained as the G-connected sum of
Z and S;, 1 < i <m, at pairs (2}, z}) € Z x S;. Then the underlying manifold of
S is diffeomorphic to the standard sphere and moreover S possesses the properties
required in Theorem 1.5.

Let WP(G) denote the set consisting of [V] — [W] € RO(G)* such that V and
W both are L-free and satisfy the weak gap condition on PHs(G). Note that G is
a weak gap group if and only if WP(G)p = RO(G)5. Since the set

~WP(G) = {~2 € RO(G) | = € WP(G)}

coincides with WP(G), we can prove the next proposition without difficulties.
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Proposition 6.4. The set WP(G) is a subgroup of RO(G).
Theorem 1.9 can be reformulated as follows:
Theorem 6.5. If H is a subgroup of an Oliver group G then
ind%(WP(H)p) C Sm(G)%.
For a pair (P, H) € PH(G), define a Z-linear map fp g : RO(G) — Z by
fra(V]) =dimV? —2dim V7.
Next define

P (PH»(G)) = {z € RO(G)* | fr.m(z)
P_(PH2(G)) = {z € RO(G)* | frn(x)

It is clear that P_(PH2(G)) = —P4(PH2(G)).

0 for all (P, H) € PHa(G)},

>
<0 for all (P,H) € PH2(G)}.

Lemma 6.6. For an arbitrary finite group G, we have
P (PH2(G)) UP_(PH2(G)) C WP(G).
Proof. Let x = [V] — [W] € P.(PH2(G)), where V and W are L-free real

modules. By [13, Proposition 2.3], W is isomorphic to a G-submodule of R[G]E
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G-

m
)

where m = dim W. Thus we can assume W = R[G]E™ without any loss of gener-

ality. Then the inequality
fra(r) = (dimVF —2dim V#) — m(dim (R[G]£)" — 2dim (R[G]2)") >0
for (P, H) € PH2(G) reads
dimV* — 2dim V¥ > m(dim (R[G]z)" — 2dim (R[G])™).

Since the right-hand side above is non-negative, V' satisfies the weak gap condition

on PHa(G) as also does W = R[G]E™, which ensures that the element
[V] — [W] belongs to WP(G), hence P, (PH2(G)) € WP(G).
In addition, we have

P_(PH2(G)) = =P+ (PH2(G)) C —WP(G) = WP(G).
This completes the proof.
The next claim immediately follows from Theorem 6.5 and Lemma 6.6.
Theorem 6.7. If H is a subgroup of an Oliver group G then
ind§; (P4 (PHa(H))p UP_(PHa(H))p) C Sm(G)%.
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Proof of Theorem 1.10. Tt is clear that
RO(H)§; C P+ (PH2(H))u C P4 (PHa(H))p

and
ind% (RO(H)3) € RO(G).
Thus Theorem 1.10 follows from Theorem 6.7.
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