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Equivariant Poincaré Series and Monodromy Zeta
Functions of Quasihomogeneous Polynomials

by

Wolfgang Ebeling and Sabir M. Gusein-Zade

Abstract

In earlier work, the authors described a relation between the Poincaré series and the
classical monodromy zeta function corresponding to a quasihomogeneous polynomial.
Here we formulate an equivariant version of this relation in terms of the Burnside rings
of finite abelian groups and their analogues.
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Let f(x1, . . . , xn) be a quasihomogeneous polynomial. In [E], [EG1], a relation

was described between the Poincaré series PX(t) of the coordinate ring of the

hypersurface singularity X = {f = 0} and the classical monodromy zeta function

ζf (t) of f . The relation involved the so-called Saito duality [S1], [S2]. Namely, in

[EG1] it was shown that

(1) PX(t) ·OrX(t) = ζ̃∗f (t),

where OrX(t) is a rational function determined by the orbit types of the natural

C∗-action on X (see, e.g., [EG2]), ζ̃f = ζf (t)/(1−t) is the reduced monodromy zeta

function of f , and ζ̃∗f (t) is the Saito dual of ζ̃f (t) with respect to the quasidegree

of the polynomial f .

This relation had no intrinsic explanation. It was obtained by computing

both sides and comparing the results. In particular, the role of the Saito duality

remained unclear. In [EG3], an equivariant version of the Saito duality for a finite
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abelian group G was formulated as a transformation between the Burnside rings of

G and of the group G∗ of its characters. Here we use the Burnside rings and their

analogues to define equivariant versions of the ingredients of the relation (1) and

to give an equivariant analogue of it. This generalization can help to understand

the role of the ingredients of the relation, in particular, of the Saito duality.

Let f be a quasihomogeneous polynomial in n variables x1, . . . , xn of degree d

with weights q1, . . . , qn (qi are positive integers, gcd(q1, . . . , qn) = 1), i.e.

f(λq1x1, . . . , λ
qnxn) = λdf(x1, . . . , xn) for λ ∈ C.

From now on we assume that f determines the system of weights (q1, . . . , qn; d)

in a unique way. This means that in the lattice Zn of monomials in x1, . . . , xn
(a point (k1, . . . , kn) ∈ Zn corresponds to the monomial xk11 · · ·xknn ), the monomials

appearing in f with non-zero coefficients generate an affine hyperplane (namely

{
∑
i qiki = d}). The system of weights (q1, . . . , qn; d) defines a C∗-action on the

space Cn:

(2) λ ∗ (x1, . . . , xn) = (λq1x1, . . . , λ
qnxn).

Let

Gf = {λ = (λ1, . . . , λn) ∈ (C∗)n : f(λ1x1, . . . , λnxn) = f(x1, . . . , xn)}

be the (abelian) symmetry group of f , i.e. the group of diagonal linear transfor-

mations of Cn preserving f . Let

Gf = {λ ∈ (C∗)n : f(λ1x1, . . . , λnxn) = α(λ)f(x1, . . . , xn)}

be the extended symmetry group of f , i.e. the group of diagonal linear transforma-

tions of Cn preserving f up to a constant factor (α : Gf → C∗ is a one-dimensional

representation of the group Gf ). In other words, this is the group of diagonal lin-

ear transformations preserving the hypersurface X = {f = 0} ⊂ Cn. The group

Gf contains both the symmetry group Gf and the group C∗ corresponding to the

action (2) and is generated by these two subgroups. The intersection of Gf and

C∗ is the cyclic subgroup of order d in C∗. (It is generated by the monodromy

transformation of f : see below.)

For a group G, let R(G) be the ring of complex representations of G. As an

abelian group, R(G) is freely generated by the isomorphism classes of irreducible

representations of G. For an abelian group G (say, for a subgroup of Gf or of Gf )

all irreducible representations are one-dimensional, i.e. are elements of the group

of characters G∗ = Hom(G,C∗).
Let G be a subgroup of the extended symmetry group Gf of the polynomial f

containing the subgroup C∗, and let G = G ∩ Gf . We shall call an irreducible
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(one-dimensional) representation α of G non-positive (α ≤ 0) or negative (α < 0)

if, for a ∈ C∗ ⊂ G, one has α(a) = ak with k non-positive or negative respectively.

Let R−(G) be the subring of R(G) generated by all non-positive representations.

The ring R−(G) contains the ideal I generated by all negative representations

of G. Let R̂−(G) be the completion of the ring R−(G) with respect to the ideal I.

Elements of the ring R̂−(G) are (formal) sums of the form
∑
α∈G∗

, α≤0 sα[α] with

integer coefficients sα. Let Î ⊂ R̂−(G) be the corresponding completion of the

ideal I.

One has the following homomorphism (isomorphism) Exp from Î regarded

as a group with respect to addition to 1 + Î regarded as a group with respect to

multiplication:

Exp
( ∑
α∈G∗

, α<0

sα[α]
)

=
∏

α∈G∗
, α<0

(1− [α])−sα .

The inverse is the homomorphism Log : 1 + Î → Î (cf. [GLM]).

Let AX = C[x]/(f) be the coordinate ring of the zero level set X = f−1(0).

The group G acts both on C[x] and on AX by a ∗ g(x) = g(a−1 ∗ x) for a ∈ G.

This representation is negative on any G-invariant one-dimensional subspace of

C[x] or of AX (say, on the subspace generated by a monomial) except the one

consisting of the constant functions on which it is non-positive. Let A be either

ACn = C[x] or AX . For a (one-dimensional) irreducible representation α of G,

let Aα be the corresponding subspace of A: Aα = {g ∈ A : a ∗ g = α(a)g for

a ∈ G}. For each α, the subspace Aα is finite-dimensional and is generated by

monomials.

Definition 1. The G-equivariant Poincaré series PG of the ring A is the element

of the completion R̂−(G) of the representation ring of the group G defined by

(3) PG =
∑

α∈G∗
, α≤0

dimAα · [α].

Remark. For G = C∗, an irreducible C∗-representation is a power of the tauto-

logical representation. If one denotes the inverse of the tautological representation

by t, one gets the Poincaré series (3) as a power series in t. In this case it coincides

with the usual Poincaré series of the ring A corresponding to the (quasihomoge-

neous) grading defined by the weights.

For A = AX or ACn we shall denote the G-equivariant Poincaré series PG

by PGX and PGCn respectively. Let αxi , i = 1, . . . , n, and αf be the representations

of G on the one-dimensional subspaces in C[x] generated by xi and f respectively.
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Proposition 2.

PGX =
1− [αf ]∏n

i=1(1− [αxi ])
.

Proof. The proof is essentially the same as in the non-equivariant case. One has

PGCn =
∑

(k1,...,kn)∈Zn≥0

[αk1x1
· · ·αk

n

xn ] =
1∏n

i=1(1− [αxi ])
.

One considers the exact sequence

0→ ACn
·f−→ ACn

π−→ AX → 0.

The homomorphism π maps AαCn to AαX . If g ∈ AαCn , i.e. a ∗ g = α(a)g for a ∈ G,

then a ∗ (fg) = α(a)αf (a) · fg, i.e. fg ∈ Aα·αfCn . Therefore dimAαX = dimAαCn −
dimA

α/αf
Cn . This yields the statement.

Corollary 3.

LogPGX =
n∑
i=1

[αxi ]− [αf ].

Note that LogPGX is an element of the representation ring R(G) (more pre-

cisely of the subring R−(G) ⊂ R(G)), not only of the completion R̂−(G).

Now we recall the necessary definitions and facts about Burnside rings of finite

groups (for more details see, e.g., [EG3]) and give an appropriate extension of this

notion to subgroups of Gf containing C∗.
Let G be a finite group. A G-set is a set with an action of G. A G-set is irre-

ducible if the action of G on it is transitive. Isomorphism classes of irreducible G-

sets are in one-to-one correspondence with conjugacy classes of subgroups of G: to

the conjugacy class containing a subgroup H ⊂ G one associates the isomorphism

class [G/H] of the G-set G/H. The Grothendieck ring K0(f.G -sets) of finite G-sets

(also called the Burnside ring of G; see, e.g., [K]) is the (abelian) group generated

by the isomorphism classes of finite G-sets modulo the relation [AqB] = [A]+ [B]

for finite G-sets A and B. Multiplication in K0(f.G -sets) is defined by the cartesian

product. As an abelian group, K0(f.G -sets) is freely generated by the isomorphism

classes of irreducible G-sets. The element 1 in K0(f.G -sets) is represented by the

G-set consisting of one point (with the trivial G-action).

There is a natural homomorphism from K0(f.G -sets) to R(G) which sends a

G-set X to the (vector) space of (complex valued) functions on X.

For a subgroup H ⊂ G there are natural maps ResGH : K0(f.G -sets) →
K0(f.H -sets) and IndGH : K0(f.H -sets)→ K0(f.G -sets). The restriction map ResGH
sends a G-set X to the same set considered with the H-action. The induction map
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IndGH sends an H-set X to the product G × X factorized by the natural equiv-

alence: (g1, x1) ∼ (g2, x2) if there exists g ∈ H such that g2 = g1g, x2 = g−1x1
with the natural (left) G-action. The induction map IndGH sends [H/H ′] (H ′ is a

subgroup of H) to [G/H ′]. Both maps are group homomorphisms, but IndGH is not

a ring homomorphism.

For an action of a group G on a set X and for x ∈ X, let Gx = {g ∈ G :

gx = x} be the isotropy group of x. For a subgroup H ⊂ G let X(H) = {x ∈ X :

Gx = H} be the set of points with isotropy group H.

We recall the definition of the G-equivariant zeta function of f from [EG3].

See an explanation of this notion therein.

The monodromy transformation of f can be defined as the element h =

hf ∈ Gf given by

h = (exp(2πi q1/d), . . . , exp(2πi qn/d)) .

As a map from the Milnor fibre Vf = f−1(1) to itself, h defines a (faithful) action

of the cyclic group Zd = 〈h〉 of order d on Vf . Let

(4) ζf (t) =
∏
q≥0

(
det(id− t · h∗|Hq(Vf ))

)(−1)q
be the (classical) monodromy zeta function of f (that is, the zeta function of the

transformation h). One can show that in the above-described situation one has

ζf (t) =
∏
m|d

(1− tm)sm ,

where sm = χ(V
(Zd/m)

f )/m are integers. If in (4) one considers the action of h∗
on the reduced homology groups of Vf , one obtains the reduced monodromy zeta

function ζ̃f (t) = ζf (t)/(1− t).
There is a natural one-to-one correspondence between functions of the form

(5) ϕ(t) =
∏
m|d

(1− tm)sm

and elements of the Burnside ring K0(f.Zd -sets) of the cyclic group Zd (see [EG3]).

The function ϕ(t) from (5) corresponds to the element∑
m|d

sm[Zd/Zd/m] ∈ K0(f.Zd -sets).

For the monodromy transformation hf in these terms one has

(6) ζf =
∑
H⊂Zd

χ(V
(H)
f /Zd)[Zd/H] ∈ K0(f.Zd -sets).
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The coefficient χ(V
(H)
f /Zd) is the Euler characteristic of the space (manifold) of

orbits of type Zd/H in Vf .

Now let G be a subgroup of the symmetry group Gf of the quasihomogeneous

polynomial f containing the monodromy transformation h. Equation (6) inspires

the following definition (see [EG3]).

Definition 4. The G-equivariant zeta function of f is the element

(7) ζGf =
∑
H⊂G

χ(V
(H)
f /G)[G/H]

of the Burnside ring K0(f.G -sets).

The coefficient χ(V
(H)
f /G) is the Euler characteristic of the space (manifold)

of orbits of type G/H in Vf .

Definition 5. The reduced G-equivariant zeta function of f is ζ̃Gf = ζGf − 1.

Let K0(f.G -sets) be the Grothendieck group of G-sets with finite numbers of

orbits and finite isotropy groups of points. This group is freely generated by the

classes of the G-sets G/H with finite subgroups H.

Remark. There is no natural ring structure on K0(f.G -sets).

As above (for finite groups), one also has the natural induction map IndGG :

K0(f.G -sets)→ K0(f.G -sets) which sends [G/H] to [G/H] for a subgroup H ⊂ G.

A left inverse to this map is the reduction map Red : K0(f.G -sets)→ K0(f.G -sets)

which sends [G/H] to [G/H ∩G] (H ⊂ G, |H| <∞).

The group G acts on the zero level set X of f . The G-equivariant orbit in-

variant OrGX counts the orbits of the G-action on X of different types.

Definition 6 (cf. the definition in [EG1], [EG2]).

OrGX :=
∑

H⊂G, |H|<∞

χ(X(H)/G)[G/H] ∈ K0(f.G -sets).

Let the tautological map Tau from the ideal I ⊂ R−(G) to the group

K0(f.G -sets) be the (additive) group homomorphism mapping the class [α] of

a one-dimensional representation α to the class of the punctured space C∗ of the

space (line) C1 of the representation with the action of G defined by α. Note that

Tau [α] can be defined in the same way for a positive representation α and one

has Tau [α] = Tau [α−1] (via the isomorphism of C∗ with itself which sends z ∈ C∗

to z−1).
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Theorem 7. One has

(8) Tau(LogPGX )−OrGX = IndGG ζ̃
G
f

in K0(f.G -sets).

Proof. For I ⊂ I0 = {1, . . . , n}, let |I| be the number of elements of I, let (C∗)I :=

{(x1, . . . , xn) ∈ Cn : xi 6= 0 for i ∈ I, xi = 0 for i /∈ I} be the corresponding

coordinate torus of dimension |I| ((C∗)∅ = ∅), and let GI ⊂ G be the isotropy

subgroup {a ∈ G : ax = x for all x ∈ (C∗)I}. Let XI = X∩(C∗)I and Y I = XI/G.

One has

OrGX =
∑
I

χ(Y I) · [G/GI ].

The Milnor fibre Vf = f−1(1) is the union
⋃
I(Vf ∩ (C∗)I) of G-invariant

varieties. Therefore

ζ̃Gf =
∑
I

χ((Vf ∩ (C∗)I)/G)[G/GI ]− 1 =
∑
I

[
χ((C∗)I/G)− χ(Y I)

]
[G/GI ]− 1.

Note that, if GI 6⊂ G, then Vf ∩ (C∗)I = ∅. For |I| 6= 1, one has χ((C∗)I/G) = 0,

and for |I| = 1, χ((C∗)I/G) = 1. Therefore

OrGX + IndGG ζ̃
G
f =

n∑
i=1

[G/G{i}]− IndGG 1 = Tau(LogPGX ).

Remark. 1. One could prefer to have an equation like (8) in the Burnside ring

K0(f.G -sets). One can see that (8) implies the equation

(9) ζ̃Gf = Red(Tau(LogPGX )−OrGX)

in K0(f.G -sets) with the reduction map Red : K0(f.G -sets)→ K0(f.G -sets). How-

ever from a formal point of view (9) is weaker than (8).

2. Looking at the relation (8), one observes that there is no Saito duality in

the sense of [EG3] involved in it. It appears in (1) because of the method used to

encode the C∗-action on X in OrX(t).

3. One can see that, generally speaking, both OrGX and ζ̃Gf contain much

more summands than Tau(LogPGX ). In particular, Tau(LogPGX ) contains only

summands represented by irreducible G-sets isomorphic (as varieties) to C∗. This

gives the hint that (8) (and therefore also (1)) is essentially a relation between

OrGX and ζ̃Gf , where the Poincaré series PGX plays rather the role of a correction

term.
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