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Abstract

The structure of the Drinfeld realization Z/ll? " of affine quantum algebras (both untwisted
and twisted) is described in detail, and its defining relations are studied and simplified.
As an application, a homomorphism 1 from this realization to the Drinfeld and Jimbo
presentation Z/{;D T is provided, and proved to be surjective.

2010 Mathematics Subject Classification: Primary 17B37.
Keywords: quantum groups.

§0. Introduction

bra introduced by Drinfeld and Jimbo (see [Dr2] and [Jm]), and U™ = M;Dr(Xék))
its Drinfeld realization (see [Drl]).
This paper has two main goals: describing in detail the structure of the Drin-

Let Xék) be a Dynkin diagram of affine type, L[;DJ = L{?J(X(k)) the quantum alge-

feld realization L{?r with sharply simplified defining relations; and constructing
a (surjective) homomorphism ¢ from this realization to the Drinfeld and Jimbo
presentation L{f‘], as a step towards a complete proof that Z/{?J and Z/I,?r are iso-
morphic, so that they are indeed different presentations of the same C(g)-algebra
U, = Uq(Xék)) (see [Drl]).
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Understanding the isomorphism between L{(?J and L{?r stated by Drinfeld
in [Drl] has important applications in the study of the representation theory of
affine quantum algebras: using this result, the finite-dimensional irreducible rep-
resentations of affine quantum algebras are classified in [CP1], [CP2] and [CP3];
and a geometrical realization (through the quiver varieties) of finite-dimensional
representations is constructed in [N] for the untwisted simply laced cases.

The interest of the twisted case resides not only in that it is a generalization
of the untwisted frame. Actually twisted algebras appear quite naturally while
studying the untwisted setting, due to the fact that transposition of matrices estab-
lishes a duality among the affine Cartan matrices through which untwisted Cartan
matrices can correspond to twisted ones; more precisely simply laced untwisted
matrices and matrices of type Aéi) are self-dual, while transposition operates on
the remaining affine Cartan matrices by interchanging untwisted and twisted ones.
This observation is important and concrete because of results like those in [CP4],
where the quantum symmetry group of the affine Toda field theory associated to
an untwisted affine Kac—-Moody algebra is proved to be the quantum algebra asso-
ciated to the dual Kac-Moody algebra; and in [FH], where the authors conjecture
in general, and prove for the Kirillov-Reshetikhin modules, that there exists a
duality between representations of an untwisted affine quantum algebra and those
of the dual quantum algebra.

Much work has already been done in the direction of understanding Drinfeld’s
theorem. In [Be] all the relations are proved in the untwisted case. Notice that
this does not yet imply that v is an isomorphism: indeed, the argument for the
injectivity should be completed with the proof of the existence of a basis of the
integer form, necessary to conclude that the injectivity at 1 implies the injectivity
at level ¢; this point is not discussed and as far as I understand it is non-trivial.

For the twisted case there are several partial results. In [A] the author studies
case AéZ), constructing ¢ following [Be], but the proof that it is well defined is
incomplete; a contribution to this proof is given in [H].

In [Jn], [JZ2] and [JZ1], the authors construct a homomorphism from
Z/{(?J(Xék)) to L{(PY(Xék)) (the inverse of 1)) following the theorem stated by Drin-
feld in [Drl], that is, by means of g-commutators. In [Jn] the author gives some
details in the untwisted case, sketching the proof of the relations [Ey, F;] = 0
(i € Ip) in case Aé1)7 of the Serre relation EgEf — (¢ + ¢ Y)E1EoE1 + EfEy =0
in case ASP (noticing that the Serre relations involving just indices in Iy are
trivial, but the other Serre relations involving Fy are not studied, for instance
E\E2 » (q+ ¢ )EyE1Ey + E3Ey = 0 is missing) and of the relations [Ey, Fy] =
Ko— K

pa—— in cases A;l) and Cél); but a strategy for generalizing these arguments
0—4o
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is not presented, and the twisted case is just stated to be similar. In [JZ2] the
authors concentrate on the twisted case, but their work is again incomplete since
the Serre relations involving indices i # j € Iy are treated, erroneously, as in the
untwisted case, and for the other relations the authors present some examples:
the commutation between Ey and F; (i € I) is studied in cases Agz) and Dflg);
some Serre relations (but not all of them) involving Ejy are studied in cases Agi)_l
and Df’); and again a strategy for generalizing these computations is not shown.
Also in [JZ2] there is a mistake in the connection between the data of a finite
Dynkin diagram and its non-trivial automorphism on one hand and the twisted
affine Dynkin diagram on the other hand, which has consequences in the following
paper [JZ1]. Finally in [JZ1] the authors want to fill the gap about the Serre rela-
tions involving the indices 4, j € Iy such that a;; < —1 (in the twisted case), and
they use a case by case approach; but the Drinfeld relations are misunderstood,
and stated to imply relations not holding in this algebra.

These difficulties suggest the need to better understand the Drinfeld realiza-
tion, which is the aim of the present paper; the definition of the homomorphism
¥ from the Drinfeld realization to the Drinfeld and Jimbo presentation of affine
quantum algebras then becomes a simple consequence of this analysis, and it is
also proved that 1 is surjective.

In §1 and §2 we recall the notions of Dynkin diagram, Weyl group and root
system, and their properties needed in the arguments of the following sections;
in particular it is recalled how untwisted and twisted affine Dynkin diagrams,
Weyl groups and root systems are connected to finite ones, together with their
classification and basic properties.

In §3 some preliminary material about the presentation L{(PJ of Drinfeld and
Jimbo of the affine quantum algebras is summarized.

In Definitions 3.2 and 3.3 and in Remark 3.4 we recall the definition of Z/{(?J,
its main structures (Q-gradation, triangular decomposition, antiautomorphisms
Q and =, braid group action, embedding of the finite quantum algebra in the
affine one, root vectors E,) and properties (commutation of (anti)automorphisms,
connection between the braid group action and root vectors, Poincaré-Birkhoff—
Witt basis, Levendorskii-Soibelman formula).

We also recall the embeddings ¢; of the rank 1 quantum algebras L{qDJ (Agl))
and Z/{(?J (A§2)) in the general quantum algebra L{(]IDJ (X%k)) and their properties of
commutation and injectivity (Definition 3.6 and Remark 3.7). They will play a
role in the comparison between the Drinfeld realization and the Drinfeld—Jimbo
presentation in §12 (Theorem 12.7).
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In §4 we give the definition of the Drinfeld realization of affine quantum
algebras (both untwisted and twisted, see [Drl]), discussing and translating the
relations into a more explicit form, easier for the purpose of this paper. Even if
it is just a reformulation, it seems useful to give the details, since they are not
always clear in the literature.

In §5 some notation is fixed in order to simplify the analysis of the relations.
Also some relations are reformulated in terms of g-commutators, and some new
relations, including the Serre relations (S¥) and other similar ones ((72%) and
(T3%)), are introduced, which will play an important role in §10 and §11.

In §6 the main structures on U(?r are introduced: the Q-gradation; the homo-
morphisms ¢;, underlining the role of the two affine Drinfeld realizations of rank
one, Agl) and Aéz), which embed in any other Drinfeld realization, each embedding
depending on the choice of a vertex of the (“finite part” of the) Dynkin diagram;
the antiautomorphism (2, describing the correspondence between “positive” and
“negative” vectors Xfr; the automorphisms © and ¢; (for each i € Iy), which
summarize several symmetries (reflection about zero and translations) among the
“positive” vectors. Actually these structures are defined on the algebra Z;l(? ' (which
is also defined in this section), of which the Drinfeld realization is a quotient, and
the proof that they induce analogous structures on L{,?r is quickly concluded in §8,
through the discussion of §7.

In §7 the algebra Z;{(? " which is an algebra (already introduced in the previous
section) intermediate between Z/_l(?r and L{fr, is studied in detail. In particular a
first set of relations is simplified: the most important remarks are that the relations
(HX®) can be replaced by the much easier (HX L¥) (see Proposition 7.15; they
are much easier not only because they are a smaller set of relations, but mainly
because they can be expressed just in terms of g-commutation of the generators
Xf,, of Z/_{(]l)r, without using the H;,’s, see Remark 7.18); and that the relations
(HH) are also redundant (see Proposition 7.16). But also the other relations are
studied and interpreted while discussing how the structures on 2’ (see §6) induce
analogous structures on Z;{(?r (see Remarks 7.7 and 7.9).

§8 is a short and simple section where the structures defined on Z:l;)r and
induced on Z:{(?r are proved to pass also to Z/{(Pr; this simple analysis is carried
out explicitly, fixing some notation, in order to use it in further considerations,
especially in §9.

In §9 it is now possible to start concentrating on the simplification of the
relations defining U(?r over Z/ler; these are the relations involving just the Xifr’s
or just the X; s, and there is a correspondence between the two cases thanks to
the action of €. The main result of this section is that the dependence of these
relations on parameters (rq,...,7r;) € Z! (I € Z) is redundant: we can indeed just
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restrict to the same relations indexed by (r, ...,r) € Z! where r € Z (the “constant
parameter” relations), so that the dependence on Z' is reduced to a dependence
on an integer r (see Lemmas 9.12 and 9.14, Proposition 9.15 and Corollary 9.19);
on the other hand, thanks to the action of the ¢;’s, this situation can be again
simplified by just analyzing the relations relative to (0,...,0) (see Remark 9.8).

Thanks to the results of §9 the study of the relations defining Z/{(?r can be
pushed forward: in §10 further dependences among the relations are proved (Propo-
sitions 10.1 and 10.4, Corollary 10.6 and Remark 10.7). These results are summa-
rized in Theorem 10.8 and in Corollary 10.9, where a “minimal” set of relations is
provided.

The last step of this analysis is the study of the Serre relations, performed in
§11; here the relations (X D¥)-(S3%) are proved to depend, in the case of rank
greater than 1, on the (“constant parameter”) Serre relations, and these are vice
versa proved to depend on the relations (X D¥)-(93%) also in the cases in which
this is not tautologically evident (k > 1, a;; < —1). Theorem 11.18 and Corollary
11.19 state the final result of this study, and are the main tool for constructing
the homomorphism 1 and for proving that it is well defined (see §12).

§12 is devoted to constructing a homomorphism v from L[fr to Z/{,?J and to
proving that it is well defined and surjective.

In Definition 12.3, 9 : Z;{(?r — L{?J is defined, following [Be]. It just requires
some care in the determination of the sign o (Notation 12.1 and Remark 12.2).

The results of §11 and the correspondence, described in Proposition 12.4,
between the (anti)automorphisms constructed on UP" and those already known
on Z/I(?J make the goal of proving that 1/; induces ¥ on L{(]IDY trivial in the cases of
rank greater than 1, that is, in all cases different from Agl) and Af) (Theorem
12.5).

We give two different arguments to solve the cases of rank one (Theorem
12.7). The first one is based on the direct computation of the simple commutation
relation between E; and Ejy,, in Z/{(?J(Agl)) and Z/{(?J(Ag)) (Lemma 12.6). The
second one is a straightforward corollary of the result in the case of rank greater
than 1, once one recalls the embeddings (see Remark 3.7) of rank 1 quantum
algebras in general quantum algebras.

A proof that 9 is surjective is provided in Theorem 12.11: it makes use of the
correspondence between the automorphisms ¢; on Z/{;3 " and the automorphisms T},
on L{;DJ and among the Q’s (Remark 12.8), and of the braid group action on Z/{(?J.

Theorem 12.11 would also suggest how to define the inverse of 1.

An index of notation used in the paper is in the appendix (§13).
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§1. Preliminaries: Dynkin diagrams

For the preliminary material in this section see [Bo] and [K].

A Dynkin diagram T of finite or affine type is the datum (I, A) of its set of
indices I and its Cartan matrix A = (a;j)ijer € Mpxn(Z) with the following
properties:

(i) a;; =2 for all i € I;

(ii) ai; <O0foralli##jel;

(111) Q5 = 0< Qj; = 0;

(iv) the determinants of all the proper principal minors of A are positive, and
det(A) > 0 (T is of finite type if det(A) > 0 and of affine type if det(A) = 0);
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I is said to be indecomposable if furthermore:

(v) if I=T"UIl” with I'NI" =0 and I',I” # 0 then there exist i’ € I’ and
i € I" such that a;;» # 0.

Between the vertices ¢ # j € I there are max{|a;;|, |a;;|} edges, with an arrow
pointing to 4 if |a;;| > |aj;|; vertices, edges and arrows uniquely determine I'.

A Dynkin diagram automorphism of T" is a map x : I — I such that
Ay (i)x(j) = Qij for all i,j € I.

It is universally known that these data are classified (see [Bo]); the type of
the indecomposable finite data is denoted by Xu; (X = A, B,C,D, E, F,G).

In this preliminary section we recall the construction and classification of the
indecomposable Dynkin diagrams of affine type due to Kac (see [K]) and fix the
general notation used in the paper.

Let T' be an indecomposable Dynkin diagram of finite type, with set of ver-

tices I (#I = n) and Cartan matrix A = (i) jrei- To X5 there are attached:

(a) the root lattice Q = D, i La;

(b) the Weyl group W C Aut(Q) generated by the reflections {3y | i’ € I} where
5 is defined by 8; (&) = &y — ayjéy (7,5 € I);

(¢) the (uniquely determined up to a scalar factor) W-invariant bilinear form (-|-)
on Q, which induces a positive definite scalar product on R®zQ = D, 7 Rar;

(d) the root system ® C @, which is the W-orbit of the set {ay | 7 € I} and is
also characterized by ® = {& € Q | 3i’ € I such that (&|a) = (&r|@)}.

A Dynkin diagram automorphism y induces an orthogonal transformation x
of (@, () (x(&ir) = dy(ir)), and we have x o Sir = Sy (i) o X, X(®) = P.

Consider the datum (X7, x) with x a Dynkin diagram automorphism of X,
and let k be the order of y. It is well known (see [K]) that to this datum it is
possible to attach an indecomposable Dynkin diagram I' of affine type and an
indecomposable subdiagram I'g < IT" of finite type with the following properties:

(I) the sets of vertices I of I and I of Ty are related by Iy = I/x (the set of
x-orbits in I; for i’ € I denote by i’ € Iy the y-orbit of i') and I = Iy U {0};
we shall denote by n the cardinality of Iy and by {1,...,n} the set Iy (so
that I ={0,1,...,n});

(IT) the Cartan matrix Ay of Ty is connected with A through the relation

ZuGZ/kZ Axu(in)j"

frg 2 — )
ZueZ/kZ Gy ()i

Qa;r j_/

note in particular that if & = 1 we have Iy = I and Ay = A, hence I'y = I
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(III) the root lattice Qo = €D, Za; of I'g naturally embeds in the root lattice
Q = ;s Za; of T their positive subsets are Qo = Zielo Nea; and
Q-i— = Zie I Nay;

(IV) the highest root ¥ of T'y is characterized by the properties that ¥ € ®¢ (the
root system of I'g) and dg—a € Qg + for all @ € ®g; moreover (Jg|dy) > (ala)
for all a € ®y;

(V) the highest shortest root 1988) of T'y is characterized by the properties that

9§ € @y, WS 9S)) < (ala) for all a € @y, and 95 — a € Qo 4 for all
a € ® such that (ala) = (W57 [95));

(VI) the Cartan matrix A of I extends Ag: A = (a;;); jer, with

o (ailf)

:2, VEI7 12_2 B 0 — — )
rEle @16 T (o)

where
Yo if k=1,
0=1< 20" if X; = Ay, and x # id,
19(()5) otherwise.

The type of the Dynkin diagram I' thus constructed is denoted by Xék) (in-
deed it does not depend on x but just on k), and it is well known (see [K]) that
this construction provides a classification of the indecomposable affine Dynkin
diagrams, which we list in the following table.

The labels under the vertices fix an identification between I and {0,1,...,n}
such that I corresponds to {1,...,n}. For each type we also recall the coefficients
r; (for i € Io) in the expression 6 = >, ; r; (note that we correct here a

misprint in [Dal: the coefficient r,, for case Aéi)fl).

Xyng:)ﬁ(n) n (F7I) (T17 ) T’n)
1
A 1 9= (1)

(1)
Ay, >1 9 Tg- .07 0 (1,. ,1)
o0
BV 2 oo (2,...,2,1)
1 2 3 n—2 n—1 n

07(11) >1 o:>o—0...o—o<:% (1,2,,2)



Dy >3
B 6
B 7
M 8
Y 4
e 2
A 1
Agfl) >1
A, >2
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o=—>0—0
1 2 3" " ho2 no1
< o—o=—=>0

(1,1,2,...,2,1)
(2,1,2,3,2,1)
(2,2,3,4,3,2,1)

(3,2,4,6,5,4,3,2)

(27 47 3a 2)

§2. Preliminaries: Weyl group and root system

The following structures of the affine Weyl group and root system (see [Bo], [IM],
[K], [M]) will be used in the paper:

(i) the Weyl group Wy = (s; | i € Ip) € Aut(Qo) of I'y acts on @ by s;(a;) =
aj — azjo; for i € Iy, j € I and this action extends to the Weyl group
W = (s;|ielI)C Aut(Q) of T by so(a;) = a; — agiaxg for i € I;

(ii) the W-invariant bilinear form (-|-) on @ induces a positive semidefinite sym-

metric bilinear form on R ®7 @: it is obviously positive definite on R ®7 Qo,
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(iii)

(vi)

(vii)

(viii)

(ix)

I. DAMIANI

and has kernel generated by 6 = a9 +6 = >_.

icrTii € Q where 1o = 1

always;

(]-) can be uniquely normalized in such a way that there is a diagonal
matrix D = diag(d; | i € I) with 1 € {d; | i € Ip} C {d; | i € I} C Z4 and
(eilay) = diagj for all 4, j € I; for i € I, w € W set dy(q,) = di;

1 ifk=1or X® =40

for i € Iy define d; = {
d; otherwise;

the weight lattice P € R ®y Qq is ﬁ = @Dics, ZAi, where for all i € I,

i € R®zQ is defined by (\;|a;) = d;d;5 for all j € Ip; Qo naturally embeds

in P, which provides a W-invariant action on Q by z(a) = « — (z|a)d for

z€Pand acqQ;

as subgroups of Aut(Q) we have W < P x Wo; W = P x W, is called

the extended Weyl group of I' and we also have W =W x T, where T =

Aut(T) N W;

the extended braid group B is the group generated by {T}, | w € W} with

relations T,y Ty = T whenever l(ww') = I(w)l(w'), where | : W — N is

defined by

l(w) =min{r € N| Jiy,...,i, € I and 7 € T such that w =s;, - ... 8, 7T};

set T; = Ty, for i € I; recall that I(3 o, miXi) = >,y mal(N;) if m; € N
for all i € Ip;

the root system ® of I' decomposes into the union of the sets ®™ of real
roots and ®"™ of imaginary roots, where ® is the W-orbit in @ of the set
{a; | i € I} and ®™ = {md | m € Z\ {0}}; the set of positive roots is
Dy = BNQy

the multiplicity of the root o € ® is 1 if « is real and #{i € 1o | d; |m} if
o =md (m e Z\{0}); the set  of roots with multiplicities is & = & U o™
where ®™ = {(mé, ) | iely, meZ\{0}},d; | m}; the set of positive roots
with multiplicities is &, = P U <I>‘m = (B N®™®)U{(md,i) € | m > 0};

choose a sequence ¢ : Z 3 v+ 1, € I such that s, -...-s, 7, = Z;Zl Aj

for all i € Iy and ¢4 N, = Tn(er) for all r € Z, where N; = 22:1 I(A;) and
€ T; then ¢ induces a map

Supteee 8y, fr>1

Z>rw—w. €W defined by w, =
if » <0,

Sup t et Sugs

and a bijection
Z>3rw— B =wr(a,) € P,
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(xi) the total ordering < of & defined by

BT j Brfl j (’ﬁ’L(S,Z) j (m67]> j (m(S; Z) j Berl j 55
Vr<0,s>1,m>m>0,j<i€el
induces on @ a convex ordering: if & = Zi\il Yrwith M > 1,7 <X+ <vp

and a,7, € ®, for all 7 = 1,..., M, then either v; < a or v, € ®™ for all
r=1,..., M.

§3. Preliminaries: the Drinfeld—Jimbo presentation

In this section we recall the definition of the quantum algebra U, introduced by
Drinfeld and Jimbo (see [Dr2] and [Jm]), and the structures and results (see [Be],
[Da], [LS], [L]) needed in §12. First of all recall some notation.

Notation 3.1. (i) For all i € I, we denote by ¢; the element ¢; = ¢% € C(q).
(ii) Consider the ring Z[z,z~!]. Then for all m,r € Z the elements [m],, [m],!
(m > 0) and [T]x (m > 7 > 0) of Z[z,z~'] are defined by [m], = &—2"

[mlo! = TT7 [s]e and [7], = primet.

z—z—1
z!

(iii) Consider the field C(q) and, given v € C(g) \ {0}, the natural homomorphism
Zlx,x7'] — C(q) determined by the condition = +— v; then for all m,r € Z
[m]y, [m]y! (m > 0) and [T]U (m > r > 0) denote the images in C(q) of [m],,
[m],! and [T]m respectively.

Definition 3.2. Let I' = (I, A) be a Dynkin diagram of finite or affine type.

(i) The (Drinfeld-Jimbo) quantum algebra of type T' is the C(q)-algebra U, =
U, (T') generated by
(B, Fi, KX |ieTl}
with relations
K,K;'=1=K'K;, KK;=K;K; Vijel,
KiEj = q;lijE'jf(i7 KiFj = q;aiijKi V’L,] c .[7

K, - K!
[Ei,Fj]:(sijijl Vi, j €1,
l—aij 1
— Q45 —a;— . .
> '] mrmET T =0 vizjel
u
u=0 qi
1—ay; 1
— Q45 u —a;j—u . .
> { ] FURFT Vit el
" .
u=0 qi

the last two sets of relations are called the Serre relations.
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If T is affine of type Xék) we also set:

(i) U’ = Z/{?J(Xék)) = Uy(T"), to stress the distinction of this affine quantum
algebra from its Drinfeld realization;
(iif) U = Ui (X)) = Uy (To) (see §1(T)).

Definition 3.3. Recall that U/, is endowed with the following structures:

(i) the Q-gradation Uy = P, ¢ Uq,o determined by the conditions:

Ei €Uy, Fi€lUy o, Kecl,y Viel
Ug,ollgp CUgarp Vo, B € Q;
(i) the triangular decomposition: U, = U, QUL QU , where U, , U and U+ are

the subalgebras of U, generated respectively by {E; | i € I}, {Kiil |iel}
and {F; | i € I}; in particular

Z/[q,ozg @ U(;_[,@Ug@)u;w VQEQ
BYEQ4:y—B=a
where Z/{é%a =Uza N Z/l;t;
(iii) the C-antilinear antiinvolution Q : U, — U, defined by

Qo =q¢ Y QE)=F, QUE)=E, QUK)=K ' Viel,
(iv) the C(g)-linear antiinvolution Z : U, — U, defined by
E(E)=E;, ZF)=F, ZK)=K' Viel
(v) the braid group action defined by

Ti(K;) = K;K; " Vi jel,
T,(E;) = -FK;, Ty(F)=-K'E, Viel,
TUE) = Y (-1 g BTV BB, T(E) = ATUE) Vit j el

i i
r=0

where El-(m) = E"/[m]g,! for m € N;

(vi) anatural Aut(I')-action: 7(K;) = K.y, T(E;) = E.;, T(F;) = Fy;) for all
7 € Aut(T") and i € Io; if T' is affine then setting T = 7 extends the braid
group action to an extended braid group action;

(vii) if I' — I" is a Dynkin diagram embedding then the C-homomorphism

orr U (T) — Uy (T)
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is naturally defined by
g gnildliel - g EL L gEL B By B B (i€ D)
in particular if I' is of affine type, ¢ = @r,r : Ug‘“ — Z/{E‘] is a C(q)-
homomorphism;
(viii) positive and negative root vectors E, € U3 and F, = Q(E,) € Ugi’;
(a € &) such that if T is of affine type then Es = T, (E,,) for r > 1,
Ep, =T ~(B,) for r <0, and B, = ~Eg -0, Bi + 4; "EiBj;5_,
for r > 0 and i € .
Remark 3.4. (i) Q=2 =20, QT; =T;Q for alli € [ and Qr =7Q for all 7 € T;
(ii) ET; =T, 'Eforalli € [ and Er = 7= for all 7 € T;
moreover if T' is of affine type:
(i) ¢ commutes with Q, Z and T; (i € Ip);
(iv) in cases A" and AYY, ENVTy, = T 'ETy (vecall that Ty, = ToT, = T, T},
where (1) = Aut(T") in case Agl), and Ty, = TpT} in case AéQ));
(v) TwUP2) =UPL ., for all w e W, acQ;

gw(e)
(Vi) Tw(E;) € Z/{;D;]U’(J;i) if we W and i € I are such that w(e) € Q4 (ie.
l(ws;) > l(w));

Vi) B gsia, = I\, (Ei) and F ;5. =T\ "™ (F;) for all m € N and i € Io;
(viii) {Ko | @ € Q} is a basis of UP"0, where Ko = [[,c; K™ if @ = 32,0 maiay
€Q;
(iX) {E(’Y) = Ey ... By | M eN v = ('71 = = ’YM)a Yh € (i)—i-
Vh=1,...,M} is a basis of U>"F;
() {EMEQE(Y)) [a€Qy=(m = Zqu) €Y, v/ = (3 2+ 27ip)
€ (I)f ,M, M’ € N} is a basis of U(?J, called the PBW-basis;
(xi) foralla < B € &, EgE,—q*P E,Ep is a linear combination of { E(y) | v =
(1 < < ym) €Y, M €N, a <~} (Levendorskii-Soibelman formula).
Remark 3.5. If T' is affine Remark 3.4(ix) implies that dim)5" = dim /% +
for all & € Qo +. In particular ¢ is injective.
Definition 3.6. If T is affine, for i € Iy let
o {ufJ(A&”) —uPl(x) it (x i) # (A8 1),
i 2 N k) 2
UP (AT U (GD) it (G0 = (A5, 1),
be the C-homomorphisms defined on the generators as follows:

¢—q, KI'eKP Ei—E, F—F
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and
- ] ) oy (R) 2)
Ky — Kdi(;,aia Ep— Ediéfom Fo — Fdiafoﬁ if (Xﬁ 1) # (Ag,, 1),
Ko Ks_2ay:  Eot> Es—sayy  Fors Fy_g,  if (XP0) = (4D 1)

Remark 3.7. (i) ¢;Q = Qu;, ;71 = T;p; and o; Ty, = T, p; for all i € Ip;
(ii) s (i € Ip) is injective (thanks to the PBW-bases).

84. The Drinfeld realization L[,?r: definition

In this section the definition of the Drinfeld realization Z/l(?r(Xék)) of the affine
quantum algebra of type Xék) is presented; the definition is discussed and refor-
mulated using the set Iy X Z as index set for the generators instead of the set I x Z
used in [Drl] and followed in the literature (see for instance [CP3], [Ju], [JZ2]),
because the relations translated from I x Z to Iy x Z seem simpler to handle, even
though they lose the immediate connection with the datum (I~ ,X). This reformu-
lation, which is useful if one aims to compare the Drinfeld realization with the
Drinfeld—Jimbo presentation, is not difficult, but it is presented with some care in
order to avoid any ambiguity.

Notation 4.1. (i) w denotes a primitive k'" root of 1.
(ii) Fix the normalization of the W-invariant bilinear form (:|-) on @ such that
min{},ez12(@ir Gyuin) |7 € 1} = 2.
(iii) Denote d = max{d; | i € I} (in case Aéi), d =1, otherwise d = k).
(iv) Let Y be a function from Z' (I € N) to any algebra; given ¢ € S; and
p=(p1,....m) € Z set 0.(Y (p)) = Y(0.p) =Y (Po-1(1),- - -+ Po-1(1))-
(v) Analogously if f € C(q)[[uf?,...,uf"]] and u = (uy,...,u;) define o.(f(u))
by o.(f(u)) = f(us-1(1);- -+, ue—1()) for all o € &,
(vi) By “(R%) is the relation S* = 0” is meant that “(R*) is the relation ST = 0
and (R7) is the relation S™ = 0".
(vii) More generally “A* has property P*” means “A7 has property Pt and A~
has property P~”.

For the definition of the Drinfeld realization of affine quantum algebras, which
we recall here, see [Drl].

Definition 4.2. Let Xék) be a Dynkin diagram of affine type; the Drinfeld real-
ization of the quantum algebra of type X,%k) is the C(q)-algebra Z/I;DY(XgC)) =Uuyr
generated by

@) ¢ K el XF () elxD). Ho, (7,r) € Ix(Z\{0}),
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with the following relations (DR):

(2) Ky =K,  Hyuyr =wHo, (@ €I, reZ\{0}),
(Z2x¥) Xy =W X, (i) e IxZ),
©) cc'=1, [C,x]=0 Va,
(KK) Kokt =1=K;'Ky, KuKy =KpKy (i',5 €l),
(KX™F) KuXiE, = gt Zuem@oliaan) ¥t K, (i j' € I, r € Z),
(KH) K, Hj ) =0 (.5 €I, reZ\{0}),

EZ;(l) 5x’“(i’)~,j’wus C° Ky Hz s Ky 17'[1_ r+s

(XX) [XiJ’rN Xis} = —
o S b (€= a5 Luezynz(Gyiinldn)lg

((@,7), (4", 5) € I x Z),
(HX™)
(M, X5 ) = by C5 X5 (7)€ T x (Z\{0}), (7',5) € T x Z),
cr— o
(@ = a5 Xueznz (G ag)lg
((@,7), (4" 8) € I x (Z\{0})),
(ngi) Fij,tj,(ul,ug)Xij,E(ul)XJ#,E(ug) = ij,(ul,ug)ij,E(ug)Xff(ul) (i', 5" e f),

(HH) [Hi’,rvﬂj/,s} = 5r+s,0(~)z”j’r

(A35%) D 0u((q7% i — (g +¢7up® + ¢ u5 )X (un) X7 (u2) X (us)) = 0

oES ~
’ (7’/ € Ia &X(i’)i’ = 71)’
(%)
1—aij
= Gy + £ oyt pE + —
S S o] w0
qi

oS a;; U= 0
(k=1,¢j €I,i+#j),

(XPE) 3 o (P, 0a) (X () (1) X (02)
€S,
12 oy X (un) X (0) X (u2) + X (wn) X (uz) X (v))) —0
(k > 1a il?j/ € iv X(Zl) 7&]‘/7 di/j’ < O>7

+ + + +
where H;; ., by gy Xy (u), Fi’j’(ul’u2)’ Gy (u1,u2), €, Pi'j’(ulaU/?) and m; ;. are
defined as follows:

SO HE —eXp(i(q—q_l)[; S (G |G } S, iru)

reZ wEZ/KZ qr>0

i ,r
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" | ru
B'/ Y- ZU:O[T(ai’laxu(j/))]qw
J 7’[% Z"GZ/kZ(di’|O~ZXu(i,))]q’

X (u) = Z Xijiru_r;

r€EZ
Ff(uug) = [ (= w'q® @006 uy);
~ vEZL/KZ
ai/yxv(j/);ﬁﬂ
Gii,j/(uhu?) — H (q:t(di/\&xuu/))ul _ wuu2);
vEZ/KL
@51 v (51 F0
€ ==1;
. 1 if @y ) = 0 and x(j') # 4/, or x(i') =4,
P = { gt o
m ot erwise;
q
k oo~ . . , .
= Z diru(iry if @y iy = 0 and x(j') # 5, or x(i") =7,
mgr i = u€Z/KZ
k otherwise.

Remark 4.3. 1In [Drl] not all the relations (X'3%) appear, but just (X3%17F)
and (X3757); the relations (X371T) and (X3Y7) are introduced in [CP3] as
consequences of (Z)-(XFGT), (X341), (X3717), (§%), (XPF), since their use
simplifies some calculations, making evident some symmetries (the stability of the
relations under the antiautomorphism Q and the automorphism ©). Here we use
the relations (AX'3%%) for the same reasons of simplification (see Remarks 8.3 and
8.5), proving in Proposition 10.1 the equivalence stated in [CP3].

Remark 4.4. (i) For all r € Z, the algebra generated by {V | i’ € I} with
relations {V, ) = WV | 7' € I} is isomorphic to the algebra generated by
{Y; | i € Iy} with relations {Y; = wrtli el =i}y, | i € Ip}, where a section
T Iy — I induces an isomorphism Y; — );.

(ii) Consider i’ € T and let i € Iy = I/x be the x-orbit of i’. Notice that x(i') = i’
< k|d;; more precisely -, 7 17 0 xuir) = di and di#t{i’ € I |/ =i} = k.

(iii) For all » € Z, the algebra generated by {Y; | i € Iy} with relations
{Y; = wh/ dy; | © € Iy} is trivially isomorphic to the algebra generated
by {Y; | i € Ip} with relations {Y; = 0 | d; { r}, which is trivially isomorphic
to the free algebra generated by {Y; | i € Iy, d; |r}.

(iv) Hence, for all r € Z, the algebra generated by {)y | i’ € I} with relations
{Vyay =w Vi |i' € I} is isomorphic to the algebra generated by {Y; | i € Iy}
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with relations {Y; = 0 | d; f r}, where a section " : Iy — I induces an
isomorphism Y; — );.

(v) Finally, the algebra generated by {Vy, | i € I,r € Z} with relations
{Vxyr = Wiy | i € I,re Z} is isomorphic to the algebra generated
by {Yi, | i € Io, r € Z} with relations {Y;, = 0 | d; { 7}, or equivalently to
the free algebra generated by {Vi,. |i € Iy, r € Z, d; | r}.

Notation 4.5. Set Iz = {(i,r) € Iy x Z | d; | }.
Corollary 4.6. (i) Ul?r is (isomorphic to) an algebra generated by

(@) C* K (iely), XE ((,r)eloxZ), H, ((i,r) € Iyx(Z\{0}));

i,r

the relations

(ZX*) X5 =0 V(ir) ey xZ)\ Iz
(ZH) Hi, =0 V(i,r)e(IoxZ)\I

hold in L{(Pr.
(i) UPT is generated by

(@) C*, K (iel), X5 ((r)€lz), Hi () € Iz\ (I x {0})).
Remark 4.7. The relations (ZX*) are equivalent to the condition Xxi(i,)(u) =
XF(wtu) for all i’ € I.

Notation 4.8. Given i,j € Iy we set Jij = max{Ji, J]}

Remark 4.9. (i) If 4 (i’ € I) is a short root then (ay|dy) = 2k/d;

(i) for all i’ € I we have > uezwz(Qir By (in) = 2dg.

Remark 4.10. (i) Note that there exists a section ~: Iy — I such that given
i,j € lo we have a;; # 0 = a;; # 0 (of course it is always true that a; ;» # 0
= a;/‘;/ 7£ 0),

(i) let = be a section as in (i); then, if k > 1, d;a;; = max{d;, d; }a;;.

Remark 4.11. (i) The relations (KK), (KX%) and (KH) are compatible with
(2) and (ZX¥), in the sense that for all ', j’ € I, r € Z, s € Z.\ {0},
(ICK)X(i’),j’ = (K’C)i')j/ - (I(:IC)7;/7X(‘7'/)7
(KXF)yiry,grr = KXD)ir s (KXF)i ), = 0" (AT )i o,
(K:H)X(i’),j’,s = (K:H)i’,j’,sv (K:H)i’,x(j’),s = wS(K:H)i’,j’,s;
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(i) if i,j € Iy are such that ¢/ =4, j' = j, then (ICX )ir j+ is equivalent to
+ _ Faij 4+ )
Ici")cj’,r =4q; ’Xj,’TICZ/
(see §1(1T), Remark 4.9(ii) and Notation 3.1(i)).
Remark 4.12. (i) If we apply x to the expression ) _,Hir +ru” (i’ € I) we get

(see (2))
ZHx(z)iru *Z,H’:I:r wt U

>0 >0

(ii) From (i) and from Definition 4.2 we get
ZHi i)t —Z’H,ir (W)™ Wi e,
rEZ rEZL
that is, H} ;) = w"H, . for all (i',r) € I x (Z\ {0}).
(iii) The relations (XX) are compatible with (Z) and (ZX%):

(XX)x(i'),r;j’,s = WT(XX)i’,T;j’,sv (XX)Z rix(d),s = wS(XX)i’,r;j’,s~

(iv) If " is as in Remark 4.10 and i, j € Iy, then (XYX); .= _ is equivalent to
COKH , —CTRH ;|
0i; Lt SR if d | s
+ -1 )i ’
[X:L‘,T’ X;,s] - ! (Qz - qz ) ’
0 otherwise

(see Remark 4.4(ii)).

Remark 4.13. Let i/,j' € I, r € Z; then:

- 1 k-1 r(di/|o~z u('/))
0 - 152 )]
s

u=0 4 il
(11) bx(i’)j’r = w"bi/jlr and bi/x(j’)r = w_’rbi/j/,r;
(iii) the relations (HXE) and (HH) are compatible with (Z) and (ZX%):
(H‘Xi)x(i’)yr;j’,s = wT(HXi)i’m;j’,Sa (HXJ[)i/,r;x(j’)S = wS(HXi)i’m;j”S
(HH)X(i’)7r;j’7s = wr(HrH)i’,r;j/,Sa (HH)i’,r;X(j’),s = ws(rHH)i/,r;j’,s-

Notation 4.14. Let 4,5 € Iy and r € Z; then set
0 if dijfr,
bijr = 4 [2r]g(@® + (=17 + g ) /r i (X 4,5) = (AG),1,1),

[Faijlq. /T otherwise, with 7= r/d; ;.
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Proposition 4.15. If "is as in Remark 4.10, then i’%jr = byjr for alli,j € Iy and

r € Z. In particular (HX); s and (HH); s are equivalent to
rF|r CT _ C_r
[,H;’"’ ] +bijnC = ;EHS and [Hh«v/’% 1= Opts,00450 —————

4 —q'

Proof. If k = 1 the claim is trivial. Suppose now k > 1 (so that Xj is simply
laced) and notice that (see Remark 4.9(i))

k-1
- 1 Tk, ;)
bgﬁr:Z[ X J:| wru;
’ " u=0 dd qi
moreover if d;; = k then either x(i) =4 or x(j) = J so that () = Gg; for all w,
7 =r/k, dp = dy, for all h € Iy, d = k and, thanks to Remark 4.10(ii),
if kir,
mﬂ} _ Pile g,
d g r

o oL [Tk:aw} Zw

9i u=0

= @
| — |

1t (X i,5) = (A2),1,1) then
1 , 1 o
bige = —([4rlg + (=1)"[=2rlg) = —[2r]g (¢ + (=1)" " +477).

In the remaining cases a;,.(;) = 0 when k { u, 7 = r and max{d;, d;} = k/d, hence

T r

- {k}ra~~

i 1 L.
dd-ﬂ} = ~lraijle, = [Faile..

In the next remarks as well as in all the paper the g-commutators play a funda-
mental role in simplifying the description of the elements and in the computations.
We recall here their definition and simple properties (see also [Jn]).

Notation 4.16. Given v € C(g) \ {0} and «a,b elements of a C(g)-algebra, the
element [a, b], is defined by [a, b], = ab — vba.

Remark 4.17. Let a,b,c € Z;l(?r and w,v,w € C(q) \ {0}. Then:

(i) la,blu = —ub, aly-1;
(ii) [[a,b]u,ble = [[@; ]y, blu = ab® — (u + v)bab + uvb?a;
(111) [[ ]ua C] [ a, [ba C]v/w]uw - u[b7 [aa C]w]v/uw'

If moreover a € UP, b € UD and i € I then:

g,

(iv) [kia, blu = ki[a,b] ,~ o185
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(v) [a, kibly, = g~ @lo)k,[a, b yalary.
Remark 4.18. Let i/, 5 € I; then:

(i) Ff,;,(ul,ug) and G;',Ej, (u1,ug) are homogeneous polynomials of the same de-

gree d;
(H) F;(t(i/)j/ (u17 UQ) = wdFi:’tj’ (wilul, u2)ﬂ F;:Fx(j/)(ulﬂ u2) = Fi:’tj’ (u17w71u2);
(iii) Gi(i,)j, (ug,uz) = de;',Ej, (w™tug, ug), G;I,:X(j,)(’LH,UQ) = G;'Fj, (w1, w ™ uy);

(iv) the relations (X FGF) are compatible with (ZX%):

(ng In(iry,jr (U1, uz) = w (ngi)m,(w lul,ug)
(X]:g )z X (g’ )(ulaUQ) (X]:g ) (u17w 1u2)

Remark 4.19. Let i/,j € I be such that ay vy = 0 for all r € Z; this is
equivalent to the condition a; 7 = 0. Then:

(1) Fiy(ur,u) = Gy (un, up) = 15

(i) the relation (X FGE); ;s is equivalent to (X (wr), ij,t(uQ)} = 0, that is, to

[Xi/i’r,)(ﬁs] =0 VrselZ
Remark 4.20. Let 7,5 € I.

(i) The condition (d; |&X r()) = (Gu|dyr) # 0 for all r € Z is equivalent to the

conditions a5 # 0, ds 7 = k and implies that d; jlair|ay) =dpag;
(ii) the condition that there is a unique r € Z/kZ such that (& |dyry) # 0 is
=1, (XM, 7.5 # (A9, 1,1);

dpz =
this condition implies that (&|dyr (1)) = dpag ;.

equivalent to the conditions a;; # 0,

Let i, 5 € Iy and choose ~ as in Remark 4.10.

(iii) If a;; # 0 and (Xék),i,j) + (Agi), 1,1) (that is, 7, j satisfy the conditions of
(i) or (ii) with r = 0) then

+ dij *a;; dij + *aij dij dij
F;j(uhw):%]_qz‘ Tuy, G;}(ulaW):qi Tuy? ’

and the relation (X FG* );.; Is equivalent to
[u‘liij X;i(m), Xj,i(ug)]q¢a,ij + [ugu in(ug), X;i(ul)] ta;; =0,
that is, to

[x* Xi] +[xF - AE] sa, =0 VrseZ

i,r—i—dij’ ,8 7, s+d77 i,7q;
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Notice that

_ — . —a - - s
% dy Gl = 9 dgy Yl
so that (X fgi)m is equivalent to
(X A e + (X X5 ] ey =0 Vs el

i,r+d;;’ 7, s:l:d 1,74,

Remark 4.21. Let (Xék),i,j) (A(2) 1,1); then if " is as in Remark 4.10:

2n 5
() FE(ui,ue) = (un — g5 ua)(ur + q¥2us) = uf = (¢ — ¢7)urup — ¢*2u3,
G (ur,u2) = ¢7%uf — (¢ = ¢ )urup — u;

(i) the relation (X FG* )7; 1s equivalent to

[ X (1), X (u2)] g2 + (U3 X (ug), X (un)] e
— (¢ - q:F2)(u1Xii(u1)u2Xii(uz) + UQXii(UQ)u1X~1;t(u1)) =0,

that is, to
+ + +47p+ +
[Xi,rJrQ’ X~ ]qi2 —4q [Xi,rJrl’ Xi,s+1}q¥6

[Xi Xi Jgre — AT

+ _
is+2 Tar1 X ppaleve =0 Vs € Z.

As in Remark 4.20 notice that in this case (X FGT )77 1s equivalent to

+ + 47 p+ +
[Xi,riQ’ Xi,s]qQ -9 [Xi r£1’ Xi sil} -6

+ [X1 ﬂ,xi} 2 —q [Xiﬂ,xfril]q,ﬁ —0 VrseZ
Remark 4.22. Let i’ € I; then

(i) the relations (X'3%%) are compatible with (ZX):
(X3€’i)x(i/)(u1,u2,u3) = (A35%) i (w tug, w ug, w tug);

(ii) the condition @,y = —1 is equivalent to (Xék),i_’) = (A(k) 1);

2n

(iii) the relations (X'35%) are equivalent to

Z 0. (q_geu%a“f'[(ul)Xij'[(uﬁXi/i(u?)) - q_EX;':(u2)u#€Xij'[(ul)Xij/[(“3)
oES3
—F X (ug)ui X (un) X5 (u2) + ¢* X7 (ug) X (u2)uif X5 (u1)) = 0,

which is

g3 Z a.[[uliaXij,[(ul),Xij/[(uz)]q"‘f’Xi’i(“?’)]q“f =0
0€S3
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or equivalently
> o llX, e X e Xy Jgae =0 Vg o, rs € Z.
oc€S3
Remark 4.23. The relations (SF) are compatible with (ZX*).

Remark 4.24. Let k > 1, i/,5' € I be such that x(i') # j, @57 < 0 (this is
equivalent to k > 1, azj < 0). It is immediate to see that:

+
Px(i')j

) (1, u2) = Py
(i) My = Mg = mingo;

)

iv)

l/j/

(u1,ug) = PE

2 (01, 02)

Pi,ij/(ul, ug) is homogeneous (of some degree d);

the relations (XP) are compatible with (ZX):
(Xpi)x(i') j’(ulaUZ;U) = wd(XPi)y,j/(wflul,W71u2;’U)
(XPE) ir).5 (ur, ugs w o) = (XPE)ir o (ur, uas v).

Moreover if i, j € Iy are such that i =i/, j = j/ then:

(v) the condition a; )y = 0 and x(j') # j’, or x(i') = i’ is equivalent to
=—1;
Q5 )

( ) dl lf aij = 71,
V1) My =
! k(= —a;;) otherwise;

(vii) the relation (XP*)y j: is equivalent to

oo > (X (0)ui X (un)ub X (up)

o€Sy r,s>0
r+s=—1—a;;
+ + + +
= 2] e W (un) X (0)ub X (u2) + ui X (wn Jup X (u2) X (v)) = 0,
that is,
+2 + + +
DD DRl C e
€S> r,5>0
r+s=—1—a;;
+ + + + + _
_ [2}(177»1/7/ Xl, pﬁ-?X o Xir potr T X p1+sX p2+TX ) =0,
or equivalently
+ + +
Z g. Z (X X pliin’,p2ir
€S, r,s>0
r+s=—1—a;;
+ + + + + +
_[ } i’j ’X plisX X ! p2tr +X plist pgj:rX ) =0.
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We are now ready to write down an equivalent definition of Z/{(?r (X ék)), using
the generators (G).

Proposition 4.25. U(?Y(Xék)) is (isomorphic to) the C(q)-algebra generated by
(@) C*, kfl(iel), X7, ((,r)€loxZ), H, ((i,r) € Iox(Z\{0})),
with the following relations (DR):

(ZX™*) X5 =0 V(i,r) e oxZ)\ Iz,
(ZH) Hi, =0 V(i,r)e€ (Ip xZ)\ Iz,
(CUK) [C, "E] =0 Ve, klk‘j = kjkl (Z,j € I())7
(CK) CO™t=1, kki'=1=k'k (icl),
(KX*) kiXE =7 XE ki (i€ 1o, (j,r) € Iy x Z),
(KH) ki, Hj | =0 (i € Iy, (j,s) € Io x (Z\ {0})),
C—*k;H —C~ Tk YA~ -
N B 5i,j i,7+8 1,748 Zf dj ‘8
(XX) [XZ rvXj,s] = Qz_qi
0 otherwise

((i,’l"), (]a 5) € IO X Z),

(HX®) [Hip, X;] = £bije rs ((67) € Iox (Z\{0}), (4, s) € Io X Z),
Js Js
cr—-cr ) ,
(HH) (Hin Hjs] = 5r+s,obmﬁ (i), (4,8) € Lo x (Z\{0})),
J J
(XD¥*) [Xi 4, X e i +[X " ed, ,Xir]q;ﬂ =0 ((i,7),(4,8) € Io X Z, a;;<0),
(X1%) Y oxE ,Xfm] 2=0 () €22, (X)) # (45, 1)),
g€Ss
(X2i) Z O"([Xfrlj:%Xi:Tg]qZ - q4[X]:f7‘1i1’Xi|,:r2i1]q_6) =0
g€Ss

((ri,r2) €22, X3 = AZ)),
(X3E,i) Z X rlﬂ:s?X?:rz] 257X?:r3] 1e=0 ((T17T27T3)€ng Xék):Aéi)%

gES3

1—aq;
(SUL*) > o Z { ] X X XX X, =0
ceS aj qi .
(i#j€ly, aij €{0,-1}if k#1, r=(r1,...,r1q,) EZ'""9, s € L),
S2i ZU X XZ:tTlilXi - [ ] 2X1 rlzl:lXi X;tr2+Xz Tl:th'L:tTQX:t )
gES,
+ qil(X]:{:in:f:rlXij,:rgil [ } 2Xz:t71X:t Xl:trgil + Xz:tan 72i1Xi )) 0

(i,j € Io, a;j = =2, k=2, (r1,m2) € Z*, s € Z),
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(S3i) Z ( (XiSXl T1i2Xi [2](13Xz T1i2Xi Xz T2

oES,
NI + oyt + + 4 vt
+ X7, 2 Xi X))+ (X X 1 X — Rl X 1 X X1
+ 72 O
+er1i1er2i1X ) (X erlergiZ

- [ ] BXz:trlX:t Xz rot2 + X Xl TgiQXi )) 0
(i,j € In, a;j = =3, k=3, (r1,72) € 72, se Z),

where ¢ € {£1} and fffr and b;j, are defined as follows:

Z]—L Lu” —exp( ZHZﬂu)

reZ r>0
0 Zf LL‘J 'I"I"
bijr = 4 Rrlg(@® + (=17 a7 )i (G0 0 4) = (457, 1,1),
[Faijle /T otherwise, with ¥ = r/d; ;.

An isomorphism is given by
+1 +1 +1 +1 + +
CH—=C*, ki = IC; ;o X X;’T, His— H;

where (i,7), (i,s) € Iy x Z (s # 0) and ~: Iy — I is a section as in Remark 4.10;
1ts tnverse is

CHl e o, K ek, xE L e w X H W H,;

xu(3),r i,ro Xt (7),s

(@' el,iely, urcl, secl\{0}).

Proof. The claim follows from Remarks 4.4, Corollary 4.6, Remarks 4.11-4.13,
Proposition 4.15 and Remarks 4.18-4.24.

Remark 4.26. L[fr(Xék)) is (isomorphic to) the C(g)-algebra generated by
(@) CF ke ), Xi () €z),  Hip ((i,r) € I\ (Io x {0})),

with relations (CUK')~(S3'F), where, for a relation (R), the relation (R’) is the
set of relations in (R) whose left hand side does not involve indices in (I X Z) \ Iz.

Note that the only case where the right hand side of some relation in (R’)
involves indices in (I x Z) \ Iz is (R) = (HX®): in this situation if (j,7 +s) &€ Iz,
then d; {r and by, = 0, hence (HX'¥) is the following relation:

[mmxm={0 i LT (ir) € B\ o x (01, G 9) € Ia).

+by,C 2 X5, ifdj|r
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Remark 4.27. Since in the C(g)-algebra generated by (G) for any of the relations
(R) defining UP* (X (") the relations (ZX, ZH, R) are equivalent to (ZX, ZH, R/),
by abuse of notation we shall denote (R') also by (R).

It is with the presentation of U(?r given in Proposition 4.25 that we shall deal
from now on.

85. More about the definition of Z/[,?r

The material of this section is presented in order to simplify the exposition and
to handle more easily the relations defining Z/l(?r, with the aim of sharply reducing
them: some notation will be fixed; a new formulation will be given, mainly in
terms of g-commutators, of some of the relations of Proposition 4.25; and some new
relations ((72%) and (7'3%)) will be introduced and proved to be equivalent, under
suitable conditions, to (S2%) and (S3%). Also the Serre relations are introduced
here, but they will be studied in detail in §11.

Notation 5.1. Let U be an algebra and let (R) denote the relations
(R) Sc(r,s) =0 (CeZ rezl sezh),
where Z is a set, [ € Z, [ € {0,1}, S¢(r,s) € U. Then:
(i) for all ¢ € Z, denote by (R) the relations
(Re) Sc(r,s) =0 (reZlseh);

of course if #Z =1 and Z = {(} then (R) = (R);
(ii) denote by Z(R) the ideal of U generated by the S¢(r,s)’s:

I(R) = (Sc(r,s) | C€ 2, r € Z!, s € ZY);

of course Z(R) = (Z(R¢) | ¢ € 2);
(iii) if (™R) (h =1,...,m) are the relations

(WR) WS (r,5) =0 (CeMZ, rez sz,
where MZ is a set, I, € Z, I, € {0, 1}, (h)SCi(r,s) € U, define
Z(YR,....(™ R) = (Z(VR),..., Z("™R));
(iv) if (R*) denotes the relations

(RF) Sgi(r,s)zo (CEZ,?‘EZI,SEZi),
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where Z is aset, | € Zy, | € {0,1}, Sgt(r7 s) € U, denote by (R) the relations
(R) Se(r,s) =0 ('€ Zx{x},rez! sezh),
where S 1(r,5) = S’<jE (r,8); in particular
I(R) = (Z(R*),Z(R"));
moreover denote by Z%(R) the ideals
I*(R)=Z(R*) and I~(R)=7Z(R").
Notation 5.2. Fori,j € Iy, €N, a€Z, v = (r1,...,m) € Z', s € Z we set

l
l
+ . _ u + + + + +
Xi,j;l;q(r’ S) - Z(fl) |:U:| Xi,rl et Xi,Tqu,in,Tu+1 R Xi,rl‘
q

u=0 i

Remark 5.3. The relations (SULT), (S2%) and (S3%) can be written in a more
compact form as:

+
Z J.Xivﬁl_aij;l(r; s) =0,

0ES1—a;;
which is (SUL®), and
- + ce) —
Z o. Z q° “Xi7j;2;_aij (ri £v,ra £u;s) =0,
€S2 u,v>0
utv=—1—a;;

which is (S2%), (53%) and also (SULF) in the case a;; = —1.

In order to express the relations (SUL*) in terms of g-commutators, and for
further use and simplifications, we introduce the following notation.

Notation 5.4. Fori#jc Iy, €N, a€Z,r=(r,...,r) €Z, s € Z set

X if 1 =0

M, (1 rips) =4 % ’
Y HH yrr il - + . + :

[Mi,j;lfl;a(rl’ ceyT—13 8), Xi,rl]q;“ij*“(“n if [ > 0.

Remark 5.5. The relations (SULY) can be formulated in terms of g-commutators
as

+ . —
E oM g, (r38) =0
06517%_7

(i#3j€lp,a;; €{0,—1}if k#1, r € Z'7%i s € Z).

Remark 5.6. Also the relations (S2%) and (S3%) can be formulated in terms of
g-commutators:
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(i) (S2%) can be written as

Z 0’-(((]2 +q_2)[[in,s7 Xzirlztl]QQ?Xz rg] 2[[X1 il Xzim] 27ij,[s]q*4) =0;
0ES,

(ii) moreover (527) can be written in one of the following equivalent ways:

Z U'((q2+q72)[[X;_‘s’Xz+71] -2 Xz ?"2-&-1} [X;:w[Xi—t_rg—i-l’Xi—t_rl]f]q_‘L) :0;
€S,

Z ([[X_]—i_sz r1+1] -2 X7, 7’2] Q[Xi—t_rl-i-l?[XIS’XZ_TQ]472]Q74) :0;
€S,

(iii) (S3%) can be formulated in terms of g-commutators as follows:

ZU'((qQ + q_4 [[inyXi r1:|:2]q37Xz TQ]
0ES?

+ (]' —q 2 )[[Xj:t97Xl letl]q VXi:t:rgﬂ:l]q
+ q [[Xz rlj:Q’Xir ] 2 + [Xz rg:bl’X;trlil]q27X;t.€]q_G) =0.

Definition 5.7. Consider the case k > 1, X(IC #* A ) and introduce the relations
(TEk*):

(T2%) Y olXF, X il X5,1 =0 (i,j €Ty, ay =—2, r €2, s € L);
g€Ss

(T?)i) Z U(( )[[ins’Xz r1:|:2}q 7Xi:f:7~2] 1+[[X_7:t37X1 T‘l:l:l}q 7Xz‘:f:r2:|:1]q):0
o€Sy

(i,j € Iy, aij = =3, r € Z*, s € 7).
Proposition 5.8. Let k> 1, X\*) % AP Then T(X1%, 5kF) = I(X1%, Tk*).
More precisely if i,7 € Iy are such that a;; < —1 we have

T(X1E,SkF) = T(X1E, Tk*)  (see Notation 5.1(i)).

In particular, (S2%) and (S3%) can be replaced respectively by (T2%) and (T3%)
among the defining relations ofujfr.

Proof. It is enough to notice that

[ZG zr1i17 17‘2]2Xi:|

—a
oES, 4

and
[[Xi:t:rli% Xi:l,:rg] 2 + [X’L okl Xi:f:rlil]qz ’ st]q_G
belong to Z(X1%).
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Definition 5.9. We also recall the Serre relations

(5%) > oXxt (r;s)=0 (i#jely,reZ™% scl).

i, gil—agg;l
o’ES1—a7¢j

Remark 5.10. The Serre relations can be formulated in terms of g-commutators
as

Z J.Miﬂ;l_aml(r; $)=0 (i#jely, reZ'™%i scZ).
06517%‘_7»

Remark 5.11. The right hand sides of relations (Tk*) and (S*) are zero, hence
Remark 4.27 holds for these relations (see also Remark 4.26).

The comparison of the defining relations of L{(Pr with the Serre relations is the
subject of §11.

Notation 5.12. Let us also introduce the following notation:
(i) fori,j € Iy and r, s € Z,
+ (s . + + + +
M) ((@7), (G, 8)) = [XT g XGilgma + 1K g0 Xl

(ii) for i € Iy and r = (ry,72) € Z2,

Mz‘i(T) = [X;f:rliji’Xi,rg]q?;
(iii) if Xék) = AP and r = (r1,1ry) € 72,
Még) (r) = [Xli,rliQ’Xli,rz]qQ - q4[X1i,7'1i17X1jfr2i1]q76;
(iv) if X = AP and r = (r1,70,73) € Z3,
MEF(r) = ([XT, 00 XT,

(v) if k>1and r = (rq,m) € Z2, s € Z,

]q2E,X1j7:T3]q4E;

X[j]g] (r;s) = Z q”qufj;Q;k(rl +o,79 £ u;s)
u,v>0
utv=k—1
where 7, j € Iy are such that a;; = —k;
vi) if k= 2, XP £ AP and r = r,r0) € Z2, s € Z,
( ) n 2n
M[jg] (r;s) = ij;m(rl +1,79;8)

where 7, j € I are such that a;; = —2;
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(vii) if k=3 and r = (r1,12) € Z%, s € Z,
M[f] (r;s) = (¢* + l)M” 20(r1 £2,72;8) + ij;m(rl + 1,79 +1;5)
where 4, j € Iy are such that a;; = —3.

Remark 5.13. Of course the following relations depend on (ZX*):

) My ((i,7), (G, 5)) = 0 if (r,5) & diZ x d;Z;
i) M ( y=0if r & (d;Z)%

iii) ”la( §) = 0if (r,s) & (d;2)" x d;Z;
iv) X, (ris) = 0if (r,s) & (diZ)! % d,Z;
) [k](rs)z()lfsg{dZ;

) M, (r;s)infsng.

(vi

Remark 5.14. Recalling Remark 4.27 (and Remark 5.13) we have the following
obvious reformulation of the relations (X D¥)-(S3%), (T2%), (T'3%) and (ST) in
terms of the notation just introduced (5.2, 5.4, 5.12):

(XD%) (2)((2 dir), (4,d;s)) =0 (i,j € Iy, aij <0, 7,5 € Z);
(X1%) S o MEdir) =0 (i€l (X0 # (A2 0), r e 2?);
gESy

(X2%) Y oM, (r)=0 (reZ’;

gESy
(X35%) Y o MGT(r) =0 (rez’);

oc€Ss
(S(UL)i) Z U'Mi:,tj;lfaij;l(czi’r;djs) =0

aesl,a”

or equivalently

Y o X aa(diridis) =0

0E€S1—a;;

(i#3j €l (a; €{0,—1}if k#1), r € Z'7%i, s € Z);

(SkF) 3 o Xi(rids) =0 (reZ? se)
g€Ss
(Tk*) > G-M[f]l(r; ks)=0 (reZ? secl).

gES>
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86. Z:{(?r and its structures

In order to study the relations defining Z/l(?r it is convenient to proceed by steps:
the algebras UD* = Z:l(?r(Xék)) and U = Z;{(?r(Xék)) here defined are such that
UPT is a quotient of Y2 and UL is a quotient of LP*.

This section is devoted to introduce some important structures on Uy" (Q-
gradation, homomorphisms between some of these algebras, automorphisms and
antihomomorphisms of each of them), which will be proved to induce analogous
structures on Z;I(?r (see also §7) and, what is finally important, on Z/[l?r (see also §7
and §8).

Some remarks point out the first (trivially) unnecessary relations: (ZH) and
(KH) are redundant.

Definition 6.1. We denote by:

(i) Z;{(?T(Xék)) the C(q)-algebra generated by (G) with the relations (ZX%),
(CUK), (CK), (KX¥*), (XX) and

(HXL*) [Hip, XE] = +b,;,C 7 XE

Grvs (7). (G8) € Iz, di < 1l < dig);

(ii) Z];DT(XSC)) the C(q)-algebra generated by

(@) cH k(e ly), XE ((,r) el xZ)

@7

with the relations (ZX*), (CUK), (CK).
Remark 6.2. L{(]IDY(Xék)) is obviously a quotient of Z;{(?Y(Xék)).

We shall prove that also Z;{(?r(XT%k)) is a quotient of H(?Y(Xék)).

Since Z;II?Y(XTEL]C)) — Z:{l?r(ch)) is obviously well defined, we just need to prove
that this map is surjective, or equivalently that Z;I,?Y(Xrgk)) is generated by (G). To
this end we need some simple remarks.

Remark 6.3. In Z;{(?r (hence in UP") the following hold:
(i) f{fo =1 for all i € Iy;
(ii) ﬁfxr =0 for all ¢ € Iy and r > 0;
(iii) for each r > 0, f[ffﬂ F (q; — q; ) H; +, belongs to the C(g)-subalgebra gen-
erated by {H; 15 | 0 < s < r}; in particular {H; 1, | (i,8) € Iz, 0 < s <r}
and {f[ﬁis | (¢,8) € Iz, 0 < s < r} generate the same C(g)-subalgebra.

Remark 6.4. In Z:l(?r (hence in UP"), for all i € Iy and r € Z; we have

f{%ﬂ:r = (¢ — qfl)kfl[Xfinfo]-

7
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In particular for all (i,7) € Iy X Z, H .. lies in the subalgebra of UDT(Xka)) gener-
ated by (G).

Consequently (see Remark 6.3), for all (i,7) € Iy x Z also H, , lies in the
subalgebra, of Z;{(?r(Xék)) generated by (G).

Corollary 6.5. (i) Z;{(]JDr(XEk)) and L{l?r(XEk)) are generated by (G);

n n

(i) UP*(xM) is a quotient of UPT(XI).

n

Notation 6.6. We denote by ﬁfﬂ also the elements in Z/_{qu defined by

(gi —q; kX, X ) if rEr >0,

Z’I‘7

gt (¢ —q; )[X;T,X:O}ki if r>0,4r <0,
BECT if =0,
0 if r <0,

and by H; , the elements of 1;{(?1” defined by

Zﬁfhur = exp( —-q; ZHl U )

rEZ r>0

Remark 6.7. The relations (ZH) are trivial in Z/_[l?r(XT%k)).

Remark 6.8. (i) UP" = L_{(?T(Xék)) is Q-graded:

7Dr __ Dr
uq - @U‘L(X’
acQ
vyher§ Cc* k;ﬂ € U(%, Xi qu ta,ars for all i € Iy and r € Z, and
Z/{(EQZ/{% L{;D;Jr
(ii) Hij;, (r € Z) and H;, (r € Z\ {0}) are homogeneous of degree rd for all
i € I.
(iii) Since the relations defining Z;{(]I)r and Z/IDr are homogeneous, the Q-gradation

of U™ induces @Q-gradations on L?(?r = ®QGQ Z/l(?a and on UP" = D.co Uy,

Notation 6.9. The C(g)-algebra C(q)[CF!, k! | i € Iy] is Q-graded, with one-
dimensional homogeneous components C(q)k, (« € Q) where we set

Fmo 433,y mio, = C™" [Ix" (mmiezvie I).
i€lo
Indeed C(q)[CF, k! | i € Iy) = C(q)[Q)].
Recall that C(q)[C*, k! | i € Ip] naturally maps into U < UPT (hence
into L{ Cc UDr and into UD§ C UPT).
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Remark 6.10. (i) The relations (CUK), (CK) and (K X*) are equivalent to (a)
and (b) where:

(a) the C(q)-subalgebra generated by {C*', k! | i € Iy} is a quotient of the
ring of Laurent polynomials C(q)[k! |i € I] (C' = [Licr ki)
(b) for all a, B € Q and all z of degree § we have koz = ¢ zk,.

(ii) The relations (K H) depend on (CUK), (CK) and (K X*), and in particular
are trivial in Z;{fr(XT%k)).

Definition 6.11. We denote by Ff = f;‘(Xék)) and F, = F, (X,%k)) the C(q)-

algebras generated respectively by

(GH) X ((i,r) € Ig x Z)
and
(G7) X, ((r)eloxZ)

with relations respectively (ZX) and (ZX ).

Remark 6.12. fj(Xék)) and fq*(XT%k)) are the free C(g)-algebras generated
respectively by

(G") X () € Iz)

and

(G"7) X5, (li,r) € Ip).

Notation 6.13. }';‘ and F_ naturally embed in L_[L?H hence they map in Z),?r

and in U2"; their images in Z],?r are denoted respectively by Z/Nl(?r’*‘ and Z;{(?T’_, and
their images in Z/{;)r by Ufr’+ and u(]]:)r7_'

Remark 6.14. (i) As subalgebras of Z:{;Dr, ]7; inherits a (Qo,+ @ ZJ)-gradation
and F_~ inherits a (—Qo + ©® Z4)-gradation;
(ii) more precisely,
FreC@e B Uliapms

a€Qo,+,07#0
mEZ

and similarly

Z;{?r’i c (C(Q) D @ Z;{;D,:rta+m53
a€Qo,+,a#0
meZ
r,+ T
U(? = C C(q) D @ Z/{;D,:ta+m5'

a€Qo,+,0#0
mEeZ
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The last part of this section is devoted to the definition of automorphisms
and antiautomorphisms of the algebras just introduced, which make evident some
symmetries in the generators and relations of Z/{(]I)r. Thanks to these structures the
study of the apparently very complicated relations defining Z/l;)r will be strongly
simplified in §7, §9 and the following sections.

The next definitions depend on the choice of an automorphism 7 of C. A short
discussion about the choice of 7 is in Remark 6.17.

Definition 6.15. Let us introduce the following homomorphisms and antihomo-
morphisms:

(i) Q:UP" — UP" is the antihomomorphism defined on the generators by

Q.=n q—qg' w0, ek, X5 e XT

i,r i,—r"

(i) ©F : 7/ — F and ©% : F, — F, are the homomorphisms defined on the

generators by

OL: Ofl.=mn a—q¢t XX,
Or: Oxlo=n amql X=X,

(iii) O Z;{(Pr — Z;{(Pr is the homomorphism defined on the generators by

@|C:777 g q Y, CFle ot B e kT

X =X kCTT, X e —kTCTTX

(iv) For all i € Iy, t; : UP* — UP" is the C(g)-homomorphism defined on the

generators by

+1 +1 +1 —8idi £l + +
C =07, k5 = (kO )=, vaTHXj,rxéijd};'

(v) For i € I let

n

UPr(AY) —uPr(x Py it (xPi) = (A, 1),

7 .

: {L_{(?%A%”HH?(XE’“U it (X0 4) £ (A2 1),

be the C-homomorphisms defined on the generators as follows:

g q, CHo ¥l pELSEEL XE o X

7" i7di7”.
Remark 6.16. It is immediate to notice that:
(i) Q, Gﬂ;—, O, t; and ¢; are all well-defined;
(i) QFH) = FF:

(iii) @ and © are involutions of U," if ) is an involution of C;
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(iv) the #;’s are automorphisms of 4" (of infinite order) for all i € Ip; more
precisely (¢; | i € Io) = Z'o;
(v) the following commutation properties hold:
00=00, Q=04 6=01" Lit;=1tt Vi jcl

K2

as maps of Z;{(?T(Xék)) into itself; moreover, for all ¢ € Iy,

Qpi = 02,  O¢i =00, by = dit1, tjgi=¢i Vjelp\{i}
as maps from Z;{(?r(A(ll)) to Z:l;)r(Xék)) if (Xék),i) # (Agi),l), and from
~Dr —Dr/ v (k) k) .
Ups(AS) o UPr(xX ) it () = (45, 1);
(vi) for all « = 8 +md € Q with 8 € Qp, m € Z we have

Q(ka) = k—aa é(kﬁ-‘rm&) = k—,@-{-méa El(ka) = k)\i(a)v
Q(a?,é) = 2’71?,1;00 é( 7(?,2%»7115) = Z;[;D,Efm(?? EZ(Z;{?,&) = Zj{z?,i(oz)’
moreover for all my,m € Z and i € I,
- - r * r k
Gilkimrantms) = Koo sdims A GilUDE 0 pms(AS) CUPE (X,
(vii) on the elements H; , and ﬁf,, we have
Q(ﬁ::r) = gi:,F—r7 Q(H’L,T‘) - i
(E’L(Ijlljfr) = Hiid*rv (EZ'<H17’I‘> = HLJ“" Vi € I.

s i

s

Remark 6.17. For the purpose of the present paper, the definition of 2, @;, e)
given in Definition 6.15 could be simplified by requiring these maps to be C-
linear (that is, » = idc¢). But the choice of a nontrivial automorphism 7 of C
becomes sometimes necessary, as when specializing ¢ at a complex value € # +1:
indeed a homomorphism defined over C(g) (and mapping ¢ to ¢—!) induces a
homomorphism on the specialization at € if and only if the ideal (¢ — €) is stable;
if, for example, € is a root of 1, this could be obtained by choosing 7(z) = z for all
z € C, that is, by requiring the homomorphism to be C-antilinear. For this reason,
from now on we suppose 7 to be the conjugation on C, that is Q, ©%, © to be
C-antilinear (see Definitions 8.2 and 8.4, and compare also with Definition 3.3).

Of course one needs to pay more attention and eventually choose a different n
when one is interested in specializing at complex values € such that |e| # 1.

Our goal is of course to show that Q, ©, ¢; and ¢; induce Q, O, t; and ¢;
on L{?r. This is indeed very easy to show, but we take this opportunity to sim-
plify the relations that we have to deal with, passing through Z;{fr for two reasons:
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underlining the first redundancies of the relations (see Corollary 7.17); and dis-
cussing separately the relations (XDT)-(S3%) whose first simplification can be
made simultaneously, as examples of a general case (see §9).

§7. The algebra 1"

The algebra Z;l(?r and its structures, to which this section is devoted, play a fun-
damental role in the study and simplification of the relations (X D*)-(S3%). In
particular the relations are analyzed by underlining their consequences on the
(anti)automorphisms Q, © and #; (i € Io); the relations (HX*) and (HH) are
proved to be redundant; and much smaller sets of generators are provided.

Remark 7.1. Remarks 6.10(i) and 6.16(vi) imply immediately that 2, ©, ; and
é; preserve the relations (K X7).

Remark 7.2. For all i € I, ¢; obviously induces

5 {QE%APHL}?(X,%’“) i (X,0) # (45),1),

U s U () it (oGP0 = (457, 1),
and

5 {quf<A§”> = UP(X) i OGR 6 # (45 1),

A s U gl it (G = (g ).

Remark 7.3. (i) QZ+(HXL)) = Z~(HXL) and QI+ (HX)) = I~ (HX);
(ii) Q preserves the relations (HXL*) and (HX¥).

Notation 7.4. Define relations (XX D), (XXFE), (XXH™") and (XX H™) by:

(XXD) (X5 X5 =0 ((6,7),(G,s) € In, i # J),
_ CTk; — C_Tk;l X
(XXE) (X, X, = B ((i,7) € Iz),
4 _ Ciskigi—*_rJrs . .
(XXHT) (X X = ———=—  ((i,7),(i,8) € Iz, 7+ 5 > 0),
qi — 4;
C"H . k!
(XXH_) [X:_raX;s] = _17—7%"__81Z ((i,?"), (7"3) S IZ7 r+s< O)a
i qi — 4q;

Remark 7.5. (i) Z(XX) =Z(XXD,XXE, XXH);

(i) UZ(XXD)) =Z(XXD) and UI(XXE)) = T(XXE);
(iii) QZT(XXH))=Z (XXH);

(iv) € preserves the relations (X X).

Corollary 7.6. Q induces () :Z;I(?r — Z;{(?r.
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Remark 7.7. (i) #;(Z(XXD)) = Z(XXD) and #;(Z(XXE)) = Z(XXE) for all
i € Ip;
(i) Z(XX D, X X E) is the £ -stable ideal (for all i € Iy) generated by

i,je]o}.

We want to show now that for all i € I, #; induces %; : Z;{(?r — Z;l(?r. Since
t; commutes with Q, Remarks 7.1, 7.3(i), 7.5(i)&(iii) and 7.7(i) imply that it is
enough to concentrate on Z*¥(HXL), It (XXH).

_ ki — Kt
{[XZ_O’XJ‘,O] - 5z‘j%77q_1

4 i

Remark 7.8. (i) Note that if r + s > 0,

X)) = &),

[3 7,7+s

(@ — a7 Ok X X = 8/ (4 — a7 kT X,

2,7 s [ 2,7+s?

so that the relations (X X H™) are equivalent to

E(Hf)=H Viel,r>0 s€cl;

/l'7

(it) FY(ZH(XXH)) = TH(XXH) for all i € Iy;
(iif) ZH(XXH) is the # ' -stable ideal (for all i € Iy) generated by

{ﬂ(ﬁfﬁ) - I:I:“T | i € I, r > 0}.
Remark 7.9. Note that for all (i,r) € Iz \ (Ip x {0}), (4, s) € Iz and h € Iy,

BV ([ How, XT) — by C 2" X vs)

7l A + oS et
o [th (HZ’T%XJ}S:FZSJ')IJ]'] bijrC Xj’TJrS:Flsthj.

Then, thanks to Remark 7.8 and to the definition of #; (see Definition 6.15), we
have:

(i) £1(ZT(HX)) C IT(XXH, HX);
(i) EY(ZT(HXL)) C TH(XXH, HXL);
(iii) ZH(XX H, HXL) is the t:'-stable ideal (for all i € Iy) generated by

s—

_ L~ ~ | ~ ~
{ti(H,) — Hf [His, X[l = 0ijsC2 X[ i€ Io, v >0, di < |s| < di}.

1,77

Corollary 7.10. (i) For alli € Iy, t; induces t; :Z;{?r — Z;{(?r;
(ii) for alli,j € Iy, fl(f{;) = I}; for each r € Z and t;(H;,) = Hj, for each
r e Z\ {0}.

We come now to © recalling that ©Q = QO and (:)fiil = ﬁFl(:) for all 7 € I.
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Remark 7.11. Notice that [X;ro,Xj_,o] 5,Jk'7’;'_1 is fixed by ©; hence, thanks
to Remark 7.7(ii), Z(X XD, X X E) is ©-stable.
Remark 7.12. (i) For all ¢ € Iy and r > 0,

O(H,) =" (H;_,) + (¢ — a; VX, X g, k]C™
(i) for all i € Iy and r > 0, O(H;,) — H, and O(H, +,) — H; 5, lie in
(KX, X X HF);

(iii) for all ¢ € Iy and r > 0,
O(H,) — H) = £ (O(H,)) - O(H;,) € (KX, XXH™);
(iv) for all i,j € In, d; < |r| < dij, s € Z,

|7

G)([Hi,mX; ] szrcv7 2 ]r+s)

+ (0~ (r+s)
(r+s kJC e

Z]T

= —[O(Hi ), X k;C™]

= —([O(Hiy), X;_ ki = biypC 7 k;C~*

X rhs)
belongs to Z(KX,XXH,HXL™).
Then:
(v) OT+(XXH)) C T(KX, XXH");
(vi) O (HXL)) CI(KX,XXH,HXL");
(vii) Z(KX,XXH) and Z(KX, XX H, HX L") are O-stable.

Corollary 7.13. (i) © mduces 6: Z/{Dr Z;IDr
(ii) for alli € Iy, @(H+) for each v € Z and ©(H;,) = H; _, for each
r € Z\ {0}.

Remark 7.14. (i) Let f: Qo+ — Z be defined by

f(0)=0, fla+aw)=[f(e)+ (a|lag) Va€ Qo+, i€ Ip;

notice that f is well defined, because (a|a;) + (o + a; | o) = (alay) +
(a+aj | ).

(ii) Forall Xt € F . sand X~ € F_ . s (where a € Qo 4, m € Z) we find
that in Z/l(?r,

Ort(XT) = (-1)"¢/@rteL(XHk.C™,
Or (X)) = (-1)'¢g F @Ok mm 0L (X ),

where 7% : ]-';E — I;{?r is the restriction to fl;t of the natural projection

7 Dr “Dr _ s _ .
U —=UT, and h = ZieIO m; if o = ZieIO m;oy.
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(iii) In particular ©7+(X*) and 7*OE(XF) are equal up to invertible elements
of Z:ll?r.
We now present some more remarks about generators and relations of Z;l;)r.
For the next proposition see the analogous results for 27 in [Be] and [Dal.

Proposition 7.15. In Z:{(]IDr we have T*(HX) C I*(XD, X1, X2).

Proof. In order to avoid repetitive computations we use the behaviour of the rela-
tions (X D*), (X1%) and (X2F) under the action of Q, © and #; (i € Io), which is
an independent result proved in Remarks 9.8 and 9.20; here it allows us to reduce
to the study of [H; ., X o] with 7 > 0. Indeed:

{;([Hi,r,xjfo]):[ﬂi,r,xf -s] and (X)) =X"

J,r— djs
[Hir, X} ) =0 and by, X[ =0 ifd;{s,
O([His X)) = —[Hiry X/ Jk;C and O(X], ) = —X;_,_ k;C7",
Q([H’i,r,X;S]):—[ Z-’,T,Xjf_s] and Q(CinMg)_C%“X;_T_S’

and of course b, = t;(bijr) = O(bijr) = Ubijr) = bij_r.

Given an element z € Z:{l?r define the operators ;x and ,.xz on Z;I(?r respectively
as left and right multiplication by z; if we have elements x4 € Z:l(?r (s € N) set
1w(u) = enizsu® and px(u) = Yy rosu’; notice that if f : Z/N{;)r — Z:l(?r is such
that f(zs) = xs for all s € N then ;2(u) and ,z(u) commute with f.

Let i,7 € Ip: we want to study (;H;" (u) — ,fIf(u))(st) and deduce from it
(H;(u) — THZ-(u))(Xij) (setting H; o = 0). To this end, note that

VG (u) = exp((gi — q; iHi(w), o H (u) = exp((gi = ¢; ') Hi(u)

and both commute with ;.
The next computations are performed in Z:{t?r/I"’(XD, X1, X2).
Remarking that (r > d;;)

[H:_meJr] (Q1 )k 1[[ i,r? 7, ] X;_O] aij
= (Qz‘ - qi_l)ki_l([Xz I [Xz o,X] o]] "m - [XiTO’ [XINX;,_O]Q?U])
vy -1 ai ki — k_ _
= (@ —q; k' g ’{5@ X0 XL X ]q‘_z"’j’Xi,O])
i —q; q; ‘¥
= (qz _ qul)]ngl((s”[Q]qlkzX:} + [[X;:WX;:O]q:ij’XijO])’

let us distinguish two cases:
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(1) (X® i) # (A2 1,1): then, thanks to (XDT), (X1*) and (HXL*),

2n v 4

[ijX ] (g — 4 )ki_l((sij[z]QikiX:_T - [[XIJ“’X:T,JU](]?U’Xij()])

= (qi — q; ki (03 [2q ki X, — (X IXE o Xl e
+a 1X g X Xaoll o)

ir—di;’ © jidiy’
_ 1 5
= (¢ — q; 1)5ij ([Q]QiXi—t_r - A[H;“J_,X;FT_&])
ql _ qZ Ehad 2 9 T
+ (Qi - q_l) al]k [[ z,T*dij’XijOL X;_(Zij]q;aij
= (00 = a; 0i([2q, X5 = [H; g, XD+ a7 [H 5 X5 ] 2y
5 pres T,T— ,T ij ij d;

— au + + _ T%iyt gt
B Hz r—d ij,tf,-j 4 Xj,dij Hi,r—dij’
hence, using again (HXL™),

aij 7 —aij 7 r—dij/d;j di;
i lH;r(u)_qi rH'Jr(u))ﬁj / ud](X;,rO)7

(H, (u) = HF (w) (X ) = (g ;
or equivalently
] ay; 7—di; /d;  di; 7 —aiji—dij/d;  d;; .
VL (u) (1= g8 Bt ) (X ) = B (u) (1 — g " ) (X ),

from this we get

(¢ — ¢ ) Hi(u) — nHi(u)) (X))

= (log(1 — g; ", ™/ uls) — log(1 — g, ™/ Dul)) (x}y),
that is,
0 if Czij Jf’f’,
[H;., X = raij/di; _ —rai;/di;
w0 i 9 Xfr = bier;r otherwise.

(r/dij)(¢i —gq; ") "

(if) (X T(Lk),z j) = (A(Q) 1,1): the computations are a little more complicated

2n -

than in case (i), but substantially similar; we separate the cases r = 2 and r > 2
and, thanks to (X2%) and (HXL™), we get

[H1+27X1 0] (q_q_l)k ([ I k1X1+2 [[XI27X1Jfo]q27X1_,o])
= (¢ —a Dk (Rlgk1 X + (6" — ¢ )(XT)?, X1 0))
= (q—q "k (2, ki X, + (¢" - q_z)(leﬂlepr |+ (X5, X0l X))
=(¢—q "2, sz +(¢* —¢q 2)(‘172XI~:1H£‘:1 + Hile,l)
= (® = )X{, + (" — ¢ H XS + (- a7 HXT L HE,
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hence, for all s € Z,

[ﬁfza X1+,s] = (q2 - q_Q)Xf,erz + (q4 - q_2)[ﬁ1+,17X1+,s+1]—q—2

for r > 2:

(A Xl = (0= ¢ Dk (Rl XT + 11X Xiole, Xio))
= (¢ = ki ([2gka X7, + [(¢f = a7 X X ) = (X, X o]y X))
= (¢ —q ki ([2gka X,
+(¢* - q72)[Xf_r 15 [X;thl_,OH—l +(¢" —q” )[Xii_l’ (X7 o1 X1 o)1
[Xi% [XlJTT 2 X1 ollgz + 4 [XiT727[X]t27X170]]q72)
= (" —a )XY,
+(¢* - _2)[H1JT1a X logo + (¢* - q_2)[ﬁir—17 X
+ QZ[Eir—QinQ]q*‘* - [ﬁfQ,Xf'r )
=(¢" - q_Q)ﬁir—lxil +(*—q )X1 1H1 r—1
+ qQE[f':T—QX;':2 - q72Xii:2[:If:r—27
this implies, using again (HXL™), that

GH (w) = By () (X)) = (0" = ¢72) By (Wit (@ = g7 By (w)i

+¢* 1 () a)? — 2 H () (7)) (X ),

s

or equivalently

VY () (L= ) (Lg% ) (X ) = o B (w) (1= ¢4 ) (TP ) (X )

from this we get

(g —a " (H (u) = Hi(w)(X) = (log(1 — ¢~ (I ') + log(1 + ¢* (i1 'u))
—log(1 — ¢*(f; 'u)) —log(1 + ¢~ *(F; ")) (X7),

that is,

q—4r + (_1)r 1q2r + q ( l)r—lq—2r

rlg—q7")
Proposition 7.16. In Z;{(?r we have Z(HH) CZT(HX).

[Hy X5 0] Xf:r:blerii:r-
Proof. Thanks to Remark 6.3, to the fact that
[H“«,H ] [HJ s Hi, ] _Q[Hj,—37Hi7—7"]v
and to the definition of b;;,, it is enough to prove that in Z;{(]IDY/I(HX),
[Hi o, HY ] = 0rys0bijn(CT = C77)  if 1| > 5> 0.
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This is an easy computation:

[Hi,rvﬁ[;s] = (g5 — Q;I)kj (Hir, [X X H

J,s?

(a5 — a5 Dk ([ Hir Xf] Xjol = [[Hir, X50], X7.])
_ || _ T+I | _
= ((Ij -4 1)bijrk (C 2 [ +7«+57Xj 0] - C [X;rs’Xj,r])
r—|r| Til\,s 17—
szrk (C k Hj+7+.s ¢ k HJaT+5

T-H |

—C7z k er+s+c *Sk 1H]jr+s)
_ r=lrl =rdlrl ~lr] s _
= bijek; '((C= = C Ve Hi g+ ( A _ o= )CkT H, L)
= szT‘k (OT 2|T| -C 7“” )k Hj+7‘+s - 57-+s,0bij7'(cr -Cc )

Corollary 7.17. (i) The relations (ZH) and (KH) are redundant.

(ii) In Z;{?r the relations (HX?*) depend on (XDF), (X1%) and (X2%), and the
relations (HH) depend on (XD), (X1) and (X2).

(iii) Z/ll?r(Xék)) is the quotient of Z:l(?r(Xék)) by the ideal generated by the relations
(XD*)-(53%).

Remark 7.18. It is worth remarking that Corollary 7.17(ii) allows us to reduce
the relations (HX?*) and (H H) to relations involving just the Xfr’s, without using
the H;,’s whose connection with the ﬁ i ’s (these last can be expressed in terms
of commutators between the X" ’s and the X;,’s, see Remark 6.4) is complicated
to handle. Indeed the relations (H XL*) can be translated as follows:

(i) if d; < |r| < dij then [H;, T,Xi ] = 0, that is, X , commutes with the subalge-
bra generated by {H; . | d; < Ir| < d”}, which is the subalgebra generated by
{I;Tij; | d; < |r| < di;} (see Remark 6.3); hence these relations can be rewritten
as

[H, X ]=0 and [HY, X;]=0 if|r| <d;

(i) if |7| = d;; and +r > 0 then f[ﬁ F (¢ — q; ') H;,» commutes with XjE , by (i)

and Remark 6.3, hence in the relations [HW,in, ]==b o |XjE

s We
can replace H; , with j:Hij; (q; — qi_l).

zgd

Thus the relations (HXL%) are equivalent to
[[Xz’:t:iﬂ XfO]’ X]:'l,:s]qaij = bi]’”kilX]:tsiﬂ

[XEL XE) X o = —bin CHREIXT,

with 0 < 7 < dj;.
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Note also that among the relations defining L{?r there are no other relations
involving the H;,’s.

1,7

generates Tm(¢;) C Z:l(?r over C(g;). Therefore the following sets generate Im(¢;)
(hence Im(¢;) C UPT) over C(g;):

Remark 7.19. Note that for each i € I, ~{C'id~i,l<:ijﬂ,X.jE H;, | di|rs; s#0}

() {4 K XE | i)
(11) {Oii ’ kz;tlv Xi:t:Ov H',:I:Ji }’

2

I 141 v vt
(iif) {Cid’vki 7)(Z.’O,)(i’:':@}.

Moreover

(iv) {Cil,kiﬂ,XfO, iﬁ | i € In} (where 4o is any fixed element of Iy with

U 10,

d;, = 1) generates U™ (hence UPT) over C(q).

Proof. (i) See Remarks 6.3 and 6.4.
(ii) follows from (i) by induction on |r|, using that
+1-1

— d; v+
VreZ [Hi,iii7Xi-t_r]_biiJiC 2 Xi,r:tczi

and applying © (the set {Ci‘zi,k;tl,Xfo,Hi 44, is Q-stable).

(iii) is an immediate consequence of (ii) and of the fact that [X;'Ji,XijO] =
kiH, ; , again applying Q.

(iv) For each i € Ij there exists a sequence of different indices ig, i1, ...,4 =i
in Iy such that a;, i, <0and d;, ,|d;, forall h=1,... L

We prove by induction on h that Im(¢;, ) is contained in the C(g)-subalgebra of
Z/{,?r generated by {CF! k!, Xfo, Xi:E,Il | € Ip}, the claim for h = 0 being (iii).

For h > 0 it is again enough to use (iii), noting that

cdnxt _ £0

ih—1indiy, ih,—diy,

[H 7 X;;,o}:b

in—1,—di,”’

and applying Q.

§8. U,: (anti)automorphisms and relations

The main point of this section is to describe in some detail how the (anti)automor-
phisms Q, © and #; (i € Iy) act on the generators of the ideal of U, defining U,.
As a corollary, Q, © and #; (i € I) induce analogous 2, © and t; (i € Iy) on U,.
But the important consequence of this analysis (together with the study of the
commutation with the elements H; ,’s) is the reduction of the huge amount of
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the relations (X D*)-(S3%) to relations involving only the positive X;fr (which
is obvious and well known) and, what is new, to the analogous relations with
“constant parameters” (see §9). Lemmas 9.12 and 9.14 are the fundamental tool
of this paper, which makes possible and easy the computations of the following
sections, leading to Theorems 10.8 and 11.18.

Notation 8.1. Let [ € N; then:
i) 1=1,=(1,...,1) €2z}

(ii) {e1,...,e;} is the canonical basis of Z/;
(iii) for all 7 = (ry,...,m) € Z!, ¥ € Z! denotes 7 = (r7,...,71).
Definition 8.2. Q) : Z/I(?T — L{?r is the C-antilinear antihomomorphism induced

by Q (and by €, see Definition 6.15 and Remark 6.16(vii)), that is, the C-antilinear
antihomomorphism defined on the generators by

¢g—qt, ot B'e R, XE e XT H;,— H;i .

i,—T

Remark 8.3. () is a well-defined involution of L{?r. Indeed

QM) ((1,7), (G:8)) = —a; MG (i —r), (7, ~9)),
QM (r)) = —q; M (=),
QMG ) (r) = =g > M o) (1),
MG (1) = MG (1),
QM 0 (73)) = (1)l DIME (i),
QX ia(ri) = (F)'X T, (<75 =),
QX (r; 9) = X[ (=75 =),
(M (r; ) = g > M (—r; —s),
Q(ME (r;s)) = q74M[jF3](—T» —s).

Definition 8.4. O : Z/{(?r — L{(?r is the C-antilinear homomorphism induced by

© (and by ©, see Definition 6.15 and Corollary 7.13(ii)), that is, the C-antilinear
homomorphism defined on the generators by
g—q ', CT 0 kT R
X =X kC™, X - —k7'CTX; ., Hi,— H;_,.

Remark 8.5. O is a well-defined involution of L{(Pr. Indeed

@;(Mé)((’h T)v (.7, S))) = _q;aijM(jé)((i? -+ dij)v (]7 —S+ d~ij))7



704 I. DAMIANI

OF (M (r) = —q; > M (=7 F dij1),
OF (M () = *2M§ o (—7 F 21),
OE(MGF (r) = M= (—7),
Gi(Xzi]la rs)) = z]la( T —$),
@i(Xﬁ,E] (r;8)) = ( rF (k—1)1;—s).

Definition 8.6. Foralli € Iy, t; : U;" — UP" is the C(g)-homomorphism induced
by t; (and by #;, see Definition 6. 15 and Corollary 7.10(ii)), that is, the C(q)-
homomorphism defined on the generators by
+ + + —8idi\E + + ) )
CHom CFL B e (O™ M) EL X e X s He Hyy

Remark 8.7. It is immediate to check that the ¢;’s are well-defined automor-
phisms of Z/{(Pr. Indeed

£ (M5 (3, ), (h, 8)) = M5 (G, F 8ijdy), (hy s F Gindy),
th(Mji(T)) = Mji(r + 51‘;'651'1)7
;(Méz)(r)) M(:;Q)(T Fdirl),
{z(M(sg)lL(T)) = M(sg)i(r F dinl),
ti( fh;l;a(“ s)) = Mjih I oTF 5ijcz‘]1' s+ 5ih€Zi)
ti( fh;l’a(r; 5)) = inh I LW F 5wd 1;s F 0;nd; ),
(X (13)) = X2 (r F 0L s 7 ),
£:(Mjy (r35)) = Mg (r F 63513 5 F dunk);

in the last two identities, j, h € Iy are such that a;, = —k.
Remark 8.8. Of course (see Remark 6.16(v)&(vi))
00 =00, Q=0 0=0t" tit;=tit; Vi jecl
as maps of U(?T(Xék)) into itself, and, for all ¢ € I,
Qo = 0,  Op; = ;0, tip; =¢it1, tigi=¢; Vjelp\{i}
as maps from L{?r(A(l)) to U™ (X (k)) if (X(k) i) # (Agi), 1), and from Z/l(?r(Af))
to UPT (X)) if (X, 4) = (A<2> 1).

2n >

Moreover, for all « € Q, 8 € Qo, m € Z, i € Iy we have

Q(u(?r) uDr—ow @(Z/[ ﬁ+m5) uDg—mév tl(u;),é) = qu,§7(O¢)

q, q;
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89. Reduction to relations with constant parameter

We shall now apply the structures introduced until now to the analysis of the
relations defining L{(?r.

Notation 9.1. Let (R) be relations as in Notation 5.1 and define the following
ideals of U:

Teonst(R) = (Sc(rly,s) | C€ Z,r€Z,s€Zl), To(R) = (S:(0) | ¢ € 2),

where 0 € Z”i; more precisely, if #Z = 1 and Z = {(}, then given r € Z and
s €7 let

Zr,5)(R) (= Z,5)(Rc)) = (S¢(rly, ).
If (™R) (h=1,...,m) are as in Notation 5.1(iii), define

Iconst((l)Ry ceey (m)R) = (Iconst((l)R)7 cee 7Iconst((m)R))7
IO((l)Ra ) (m)R) = (IO((l)R)v s 710((m)R))

Finally, if moreover each (R) is (MR*)U(MR~) where ("R*) is as in Notation
5.1(iv), we shall also use the notation

T(MR,...,("R) = (Z(VR*), ..., L.("RY))
where * € {0, const, 0}.
Remark 9.2. With the notation fixed in Notations 5.1 and 9.1 we have:

(1) ( ) € Zeonst (R) - I(R)§

(ii) Z.(R) = (Z.(R¢) | ¢ € Z) for each x € {(Z),const,O};~

(ili) for all ¢ € Z, Teonst(R¢) = (L) (Re) | (1,5) € ZMF1);
)

(IV =1= Iconst (R) I(R)

Remark 9.3. Let (R*) be relations in Z;{?r as in Notation 5.1(iv) and suppose
that for all ( € Z, r € Z!, s € Z! there exists an invertible element U¢,r,s Of Z;{?r
such that Q(S+(7“ 8)) = uc,r,sS; (=7, —s) (notice that if (R*) has this property
then so does (Ri)) With the notation fixed in Notations 5.1 and 9.1 we have:

( ) (Ir s( )) Ii (RC) forall ( € Z, (r’ 3) c Zl+i;
(i) QTHR)) = I~ (R), ULy (F)) = Lognee () and QT () = 5 (R):
(i) Z

R), Conbt( ) and Zy(R) are the Q-stable ideals generated respectively by

IH(R), I}, (R) and T (R).

const
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Remark 9.4. Let (R) be relations in Z;{(Pr as in Notation 5.1 and suppose that
for all ¢ € Z there exist 4, € I such that for all r € Z!, s € Z' we have:

?

Sc(’r — ]ll,S),
-1
) = Sc(r,s)  Vh#i,j.

SUSh o
— =~ =
LA
— — —
3 3 3
w »

2 2

=z

I

n

e

—

3

w

Then:

(1) Z(R¢) and Zeonst (R¢) are ffl—stable for all ¢ € Z and i € I;
(i) for all ¢ € Z and (r,s),(7,35) € 721 there exists { € (t; | i € Iy) such that
L5, (Re) = HZir,) (Re))s
(iif) for all ¢ € Z and (r,s) € Z', Teonsi(Re) is the £ -stable (for all i € Iy)
ideal generated by Z(, o) (R¢);
(iv) Zeonst (R) is the #:--stable ideal (for all i € Iy) generated by Zo(R).

Corollary 9.5. (i) If (R) satisfies the conditions of Remarks 9.3 and 9.4 then
Teonst (R) is the Q-stable and t;-stable (for alli € Iy) ideal generated by I (R).
More precisely for each ¢ € Z, Iconst(RC) is the Q-stable and t;-stable (for all
i € Iy) ideal generated by I (R¢).

(ii) Let (VR*) and (PR*) be as in Remarks 9.3 and 9.4, and suppose that
I (WR) C ZE . (PR); then Teonst(VR) C Teonst (PR).

const

(@)R) if and only if for all ¢ € M Z there exists
(®R), and if this is the case we

More precisely T . (WR) C 7F

- const

(r,s) € Z x Z' such that T (WR¢) C I

(r,s) const

have also IC_OnSt((l)R) C Z(;nst(@)R)_

Remark 9.6. With the notation fixed in Notation 5.1 suppose that
0.8¢(r,s) = S¢(r,s) V(e Z,re 7!, s e Z[, o €S,

where 0.5:(r,s) = S¢(o.1,s) (see Notation 4.1(iv).
This condition is equivalent to the existence of elements N¢(r,s) € Z/{(Pr such
that

Se(r,s) = Z 0.N¢(r, s).

ocES;

Notice that in general the elements N¢(r,s) (r € Z!, s € Z[) are not uniquely
determined by the S¢(r, s)’s. ~
But N¢(rly,s) = #:.S¢(rly, s) for all (r,s) € Z x Z!.
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Remark 9.7. In the hypotheses of Remark 9.6 suppose that:

. Iy if [ =0,
i) 2cs e
{(i,j) ey x Io |t # 3} if l=1;

(ii) if [ = 0 and i € Z C I, there exists ¢, , € C(q) (p € Z!, o € §;) such that for
all r € Z,

() — + . xt :
Ni(r) Z Cp’aXi,di(Ta(l)-‘rpl) o Xi7di(Tg(z)+pz)7
peZt
ogES;
(iii) if I = 1 and (i,5) € Z C Iy x Iy there exists &, 0. € Clq) (p € Z!, 0 € S,
u € {0,...,1}) such that for all (r,s) € Z! x Z,

_ . + + +
N(Z’J)(T7 8) Z Cp’o’uXi,di(Taer:Dl) o Xi,di(%(u,)JrPu)Xj,djs
peZl ceS;
u=0,...,l
X+~ +_
4,di (T (ut1)+FPut1) i,di (ro 1) +P1)

Then the conditions of Remark 9.4 are satisfied.

Remark 9.8. The relations (X D¥)-(S93%), as well as (Tk*) and (S*), are of
the form described in Remark 9.7 and satisfy the hypotheses of Remark 9.3, so
that they all satisfy the conditions of Remarks 9.3 and 9.4 and in particular the
properties stated in Corollary 9.5(i).

Remark 9.9. If the relations (R) are of the form described in Remarks 9.6 and
9.7 we find that for all h € Iy and p € Z,:

l
[H p, Si(r)] = briy u; S, (7’ T geu) if[=0,

l
[Hh)p, S(i,j) (T, S)] = bhjpS(Lj) (T, s + g) + bhip Z S(i,j) (T + geu, S) if ZZ 1,
J u=1 i

where S¢(r,s) =0 if (r,s) & /5l

Our next goal is studying the ideals Z*(R) and Z(R) (see Notations 5.1 and
9.1), providing a set of generators smaller and simpler than all of {Sci(r, s)|CeZ,
reZl,s e Z[}. More precisely we shall show that under suitable hypotheses
(fulfilled by the relations defining 2" over Z;{(?r) we have Z¥(R) = ZX . (R).

const

Remark 9.10. The relations (X D7) satisfy the conditions of Remark 9.2(iv),
hence in particular ZH(X D) = Zt (X D) and Z(X D) = Zeonst (X D) (see Re-
marks 9.3 and 9.8).



708 I. DAMIANI

We shall generalize in two steps this result for (X D*) to relations (R) satis-
fying the properties described in Remarks 9.3 and 9.7: the cases [ = 2, =0 (in
particular (X1%) and (X2%)) will follow from Lemma 9.12, while the general case
will be an application of Lemma 9.14.

Note that if we considered U>* /Z(H X) instead of UP* we would not need to
deal with the two cases separately, but the result would follow in both cases from
Lemma 9.14.

For the next remark recall Notation 8.1.

Remark 9.11. Consider an algebra U over a field of characteristic 0, an auto-

morphism ¢ of U, and elements z, N(r) € U (r € Z?) such that:

(i) t(N(r)) = N(r+ 1) for all r € Z?;

(ii) [z, N(r)] = N(r+e1) + N(r +e3) = N(r; + 1,79) + N(r1,r2 + 1) for all
r=(ry,re) € Z2.

If we put S(r) = 20652

(a) S(r) = S(7) for all r € Z?;

(b) S(r) satisfies (i) and (ii);

(c¢) S(0) =2N(0).

Lemma 9.12. Let U, t, z, N(r), S(r) be as in Remark 9.11. If N(0) = 0 then

S(r) =0 for allr € 7.

N(o(r)) then of course:

Proof. First of all Remark 9.11 implies that it is enough to prove that S(0,7) =0
for all » € N: indeed (a) of Remark 9.11 implies that one can suppose r1 < 79;
moreover applying ¢~ one reduces to the case r; = 0.

Let us proceed by induction on r: if » = 0 the claim is true by hypothesis; let
r > 0; then by the inductive hypothesis S(0,r —1) =0 and 0 = [2,5(0,r — 1)] =
S(1,r—1)+5(0,7); if r = 1 then S(1,r—1)+5(0,7) = S(1,0)+5(0,1) = 25(0, 1),
so that S(0,1) = 0; if r > 1 then S(1,r — 1) = ¢(S(0,r — 2)) = 0 by the inductive
hypothesis, so that also S(0,r) = 0.

Remark 9.13. Consider an algebra U/ over a field of characteristic 0, an auto-
morphism ¢ of U, elements z,, N,(r) €U (m € Zy, y €U, r € Z! with | € Z;
fixed) such that:

(i) t(Ny(r)) = Ny(r + 1) for all y € U, r € Z';

(i) [oms Ny(r)] = Nizyy 1 () + oy Nyl + mew).
If we put Sy(r) = >_,cs, Ny(o(r)) then of course:
(a) Sy(r) = Sy(o(r)) for all o € S;
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(b) Sy(r) satisfies (ii) and (iii);
() 5,(0) = I'N, (0).

Lemma 9.14. Let U, t, zp,, Ny(r), Sy(r) be as in Remark 9.13 and let Y C U
be a subset such that [2,,, Y] CY for allm € Z,. If Ny(0) =0 for ally € Y then
Sy(r)=0forally €Y andr € 7.

Proof. First of all Remark 9.13 implies that it is enough to prove that S,(r) =0
forally € Y and r = (ry,...,7) € Z! such that 0 = r; < --- < r;: indeed (a) of
Remark 9.13 implies that one can suppose 1 < --- < r;; moreover applying ¢~
one reduces to the case ry = 0.

Let v = max{u = 1,...,1 | r, = 0} and proceed by induction on v: if v = {
then r = 0 and the claim is true by hypothesis; let v < [ and choose m = ry41;
then

max{u=1,....0| (r—mey+1), =0} =v+1,

max{u =1,...,0| (r—meyy1 + mey)y =0} =v+1 VYw>v+1,

hence by the inductive hypothesis Sy (r—me,4+1) = 0 and Sy (r—me,11+mey,) =0
for all y € Y and w > v + 1; it follows that

!
0 = [2m, Sy(r — meyy1)] = Sz, 4 (1 — meyy1) + Z Sy(r — meyp1 + mey)

w=1
v+1
= Z Sy(r — meyp1 +mey) = (v +1)5,(r).

w=1
Proposition 9.15. Consider the notation fixed in Notation 5.1 and suppose that
(R™) satisfies the hypotheses of Remark 9.7. Then:

(i) ifl =2 and I = 0 we have T+(R) = I, . (R) in Z;{(?r(Xék));

(ii) in any case I (R) = I . (R) in Z]t?r(Xék))/I(HXﬂ;
(iii) if moreover the hypotheses of Remark 9.3 are satisfied then we also have

I (R) = Zonst(R) (in Z:{(?T(ng)) and in LNI(PY(Xék))/I(HX_) respectively).

n

Proof. Let ¢ € Z; thanks to Remarks 9.4(iv) and 7.9, for all i € Iy, #; induces an
automorphism ¢ of Z/N{(?T(Xék))/I‘;nst(Rg) and of Z/[L?Y(ch))/Ig'[mSt (HX,R¢).
(i) Fix i € Z C I, and notice that the data

- 1
U=U) T (Re), t=t7" z=3—H,z). N@)=Nr) (rez?

(23

satisfy the conditions of Remark 9.11 and Lemma 9.12.
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Since Z¢f (R;) = 0 in UP" /I, (R;), Lemma 9.12 implies that Z+(R;) = 0 in

Z:{(?T/I;;nst(Rq;), or equivalently that Z+(R;) C T .. (R;) in Z:l(?r, and this for all
i€ Iy C Z,s0 that ZH(R) = T .. (R) thanks to Remark 9.2(i)&(ii).
(ii) Fix
Jiezc if =0,
(i,j)e ZCIyx I, ifl=1,
and notice that the data
~Dr B 1
U=UT I (HX,Re), t=t" z,= o Hidmy ¥m €Ly,
iidm
{0,1} if [ =0,
B {CLX;'&_S |seZ,aeClq)} ifl=1,
and for r € Z!,
yN;(r) if [ =0,
Ny(r) = aN7t (rs) ifl=1y=aXF
@)\ YT g

satisfy the conditions of Remark 9.13 and Lemma 9.14.

Since Zf (R;) = 0 in UPT/Th (HX,R;) if | = 0, and I3 (R(; ;) = 0 in
Z;{(?Y/I;)nst(HX, R jy) for all s € Z if [ =1, Lemma 9.14 implies that Z+(R¢) = 0
in UPT /T (HX, Re), or equivalently Z+(R¢) C T (R¢) in UPT /T, o (HX),
so that ZT(R) = Z. . (R) thanks to Remark 9.2(i)&(ii).

It follows that Z+(R) C (ZT(HX), T/« (R))-

(iii) follows from (i) and (ii) thanks to Remarks 9.3 and 7.3.

Remark 9.16. In Proposition 9.15(i) the hypothesis [ = 0 is not necessary: the
claim would hold also in case [ = 1. But this case is omitted here because it is
not really needed in this paper and its proof, very similar, would just require a
little more complicated, and repetitive, exposition (see the proof of Proposition
9.15(ii)).

Corollary 9.17. (i) Z¥(X1) = 7%

const

(ii) If (R*) is one of (X35%)—(S3%), (Tk*) and (ST) then

(X1) and T+(X2) = 7=

const

(X2).

TH(R) C (T (HX), Tignst (R)).

(iii) If (R*) is one of (X35%)~(S3%) and (S*) then

TH(R,XD,X1,X2)=T% (R, XD, X1,X2).
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Proof. The claims follow from Proposition 9.15, Remarks 9.8 and 9.10 and Propo-
sition 7.15.

Remark 9.18. Remark 9.16 would imply that furthermore Z*(R) = ZZ . (R)
even in the case when (R*) is one of (Sk*), (Tk*) and, if a;; = —1, also
(SWLYE,).

Corollary 9.19. Proposition 9.15 implies that

UPT=UP" [Teonst (XD, X1,X2,X3°, SUL, S2, S3).

The final remark of this section is a straightforward consequence of Re-
mark 8.5.

Remark 9.20. (i) If (R*) is one of (X D¥)—(X2%), (SUL*)—(S3%), (Tk*), (S*)

then Zt(R) and 7 (R) are O-stable.

(i) ZT(X3', X371) and T (X3!, X3~ 1) are the O-stable ideals generated re-
spectively by Z(X3') and Zf ., (X3');

(iil) Zf . (X3', X371) is the O-stable and t;-stable ideal (for all i € Iy) generated
by Iy (X3%);

(iv) Z(X3', X371, X2) = Zeonst (X3, X371, X2) is the Q-stable, O-stable and #;-

stable ideal (for all i € Iy) generated by Z,” (X3!, X2).

810. More about redundant relations

In this section we prove some dependences among the relations (X D¥)-(S3%),
making systematic recourse to the properties of g-commutators (Remark 4.17)
and to Corollary 9.5(ii).

Proposition 10.1. With the notation of Remark 9.1,
(X2),ZE (X371 C £ . (X3Y).

+
Z » “~“const const

const

Proof. To prove I (X2) C Z.f

const

(X3'), note that
(X3");

const

[[[XflvXIO]qQ’XiO}q“le_,—l] €],

but
N Cky — C k!
[[[XilvXlJTO]qzleJCO]q“’Xl,fl] = qu1 ! =X1+,0 7X1Jfo §
q q

—+ [[XilkalHl,fl]qz’XlJCO]q4 + [[XlJflﬂXlJCO]qz’klel,*ﬂq‘l
:kfl(QQ[z}qC_l[XﬁO’XIO]Q"' _QQHHL—lef:l]’XIO]qG _q4[H1,—17 [Xilvxito]qQ])

2

=—¢" 3O T (X XY e — (0" — a7 ) (XT0)*) = —¢" (38!0 Tk T M, (0),
SO I(]L(X2) - I:Znst(Xgl)‘
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For the other inclusion, notice that

+
Iconst

(X34 >

L (Hu, MO

iid;
= [[Xilei—l]quXf:—l]q“ + [[XiOino]quXi—l]q“ + [[Xf:O’Xi—l]qQ?XiO]Q‘l
= [[XilaXi—1]q2 - (q4 - q_2)(X1JTo)27X1+,—1]q4
(o' a7+ 11— ¢ = g")(X )Xy
+ (14 @)X 0 X X + (= + ¢ = ¢+ ¢° = ) XT 1 (X{p)?,
so that

—(* -1+ q_g)((Xio)QXlJT—l — (" + q2)X1+70X1+,—1X1Jf0 + ‘IGX;T_1(X1+70)2)

= *QG(Q2 -1+ qiz)[[Xf:—laXf:o}q*%Xf:o]q*“ = *QG(QQ -1+ qiz)M(;)lﬁ_(O)

is an element of Z7 . (X3!). The claim follows again from Corollary 9.5.

const

Corollary 10.2. (i) Z5(X3') = 7= .. (X3") (see Corollary 9.17(iii));

— “~“const
(i) Zh (X34 = TF (X371 is O-stable;

const const
i) (ZF (X3, T2 (X371)) = Teonst (X3Y) = Zeonst (X371 is Q-stable.
const const

Proposition 10.3. (i) UP"(A") = UPT(ATY)/Zeonse (X 1);
(it) UPT(AP) = UPT(AS) /Teonst (X31) = UPT(AS)) /(T (X31), Tognet (X371)).

» ~“const
Proposition 10.4. 72 __ (XD) C ZZ, . (SUL).

const

Proof. Let i,j € Iy be such that a;; < 0; since —1 € {a;;,a;;}, in the study of

+ + + + _ : :
[Xz',d]-j , ijo]q:‘ij + [Xj,dij , Xiyo]qjij we can suppose that a;; = —1, and in particular

ch <d; = Jij and, if Xrgk) = Agi), 1 # 1. Then [[X;O,Xj,o]q,Xj’O]q—l is an element
of T, .« (SUL), and so is [[X ], Xifo]q,Xf’O]

const 7,00 q_l7Xi7d~7i]. But

[[[X]—i,_()? X;t_o]qa X7;+,()](I71 ’ X;L]

= [[X;,rmXiJ,ro]q,C_dikiH‘ cii}q* + [[XIO’

l, C™MkiH, 3 1g, Xlg
= Cidiki(qil [[X;L_Ov Xi_t—o]m Hz ] + Q[[Xj—t—m Hiyji]a Xi—t—o]q*S)

Jd;
= C_diki(_bii(iiq_l[X;,rm X;fgi]q - bij(iiq_l[X;d”iaXzTO]q - bijdiq[X+

3di’ Xio}q—s)

= (200, O™ " ki (X[, XFolg—r + X7 Xifolg).

Thus Z} (X D) C T

const

(SUL), and the claim follows using Corollary 9.5.
Lemma 10.5. Fori € Iy, a € N define Y; , € Z;{(?r(Xék)) as follows:

_ oyt _ +
Yio=X"7, Yiap1= D/i,mXi,()]q?(aJrl)-
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(Notice that Y; 1 = M;(0).) Then:

(1) [Yia, XiTO] = (b, — lalg,[a+ 1]g,)kiYi a—1 for all a > 0;
(i) (X510, (0500, X 1= C™Mksbyg Vi,

Proof. (i) We have

[Yiar Xiol :[[[[X X "olg2 v Xl Xl e, X i)

Hi,di’X;,ro]qfv .. .Xxo]q?u, . .X;:O]q?a

ks
+Za: X Xl XK M X7 X
' i,d;’ 4,0 qz‘z(uilh qi 0 2(u+1) a0

u=1 —q g2 q; q2e
=kil...[.. [HZ d; ,X ] Xi—t_o]q_z(u,_l), . Xi—t_o]qg(a—l)
a —2u
4q; - ql
+Z:17qi — ki[...[[...[X:di,X;fo]qiz,...X:‘O}q?u_l),X;'O]qgu,..-XZ_O]ﬁ(a—l)
=g kil [ [de;’ Xifolgzs - Xitol ot Xifo] 2tany
— Z[2u]q1kl[ .. [[ .. [X:,rd'i7X;7r0]q1-2’ N XiTO]q?(“*l) 5 X;,ro]qf“a . X?:O]qf(afl)
u=1
= (bizd~i - [a’]Qi [a + l}qi)ki}/i,a—L
(if) We have
[X:»j;lfal (O 0) X] d”]
= H o [ o [X;rm X+0}q;’ij yre X:_O]q;lij‘*'2(u—1) g Xi—t_O}q;aij s Xj_)d“]
1 p -
=— [...[.. C %k, HN . X iy, XT0] ayitoun, ... X —as
a4 — qj_l[ [ [ I diy Z7O]qi v z,O]qi ij F2(u—1) z,O]qi ij
C~dik; -
- ﬁ[. I [H;gij’XzTo]v Xl g, .X;jo]q_,zaij .
J j ‘ :
Recalling Remark 7.18 we get
[Xi-t_j'lfaij;l(o;o)?Xj_,czij]
=C~ kabﬂd [..]-.- [X:J,ij’X;arO]q?’ e X;fo]qiz(u_l),...X:O]q;aaij
- C ]kjbjzd Y;’*az‘j'

Corollary 10.6. Leti,j € Iy be such that a;; < 0 with the condition that a;; = —1
if k > 1; then M (0) € Z5,..«(SUL). In particular:

const
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(i) in the cases of rank greater than 1 (that is, X(k) # Agl),Ag)) and different
from D(—i)-l and D( ) we have T (X1) C Icionst(SUL)'

const
(ii) in cases D and Dfl ) we have T (X1) C (T£,.(SUL),IE, . (X1})).

n+1 const

Proof. This is an immediate consequence of Lemma 10.5 (and of Corollary 9.5)
once one notices that the hypotheses imply that X" 1(0;0) € Th «(SUL),

i,J;1—ai;
]zd 7éoa“ndbud *[]

Remark 10.7. If k =2, Xék) # Aéi) and 4, j € Iy are such that a;; = —2 then

Iél(:)nst (Xl ) C I;‘(:)nst (T2)
In particular Z= , (T2) = = . (X1;, 52).

Proof. [[X1,, X" ez L X o] lies in 7"

7,00 const

(T'2) and so does

(X0, X1l XJOLXJ-,OFHW xt]

; ,Xj]: ki [X X
7,0 2 —q ,0 [ 1 }

q2
Theorem 10.8.

0 uproe) - {L:{?]jr(A%?)/ )=
U, r(Xﬁ )/Zeonst (SUL)  otherwise;
(i) U (x?) = {Z%?r(Aéi))/Iconst(X SUL,S2) if Xn = Asy,
Z/{;Dr(Xé?))/ Zeonst (SUL, T2) otherwise;
(ifi) UP (DSY) = U™ (D) /Zeonst (X 11,SUL,S3)
= UPT (D) /T oomst (X 11,SU L,T3)

Corollary 10.9. Let U be a C(q)-algebra, tEU) (i € Iy) be C(q)-automorphisms
of U, QW) be a C-antilinear antiautomorphism of U, and f : Z;{(]JDr(X,%k)) - U
be a homomorphism of C(q)-algebras such that fot; = tEU) of for allie Iy and
foQt=0W . If:

(i) F(ZF(X1)) =0 in case X(k) A(l)

(ii) f(ZS(SUL)) =0 in case k =1, X #Al ;
(i) f(ZS (X3, SUL,S2)) =0 in case X Aéi,
(iv) f(IS'(SUL T2)) =0 in case k = 2, X(k) + Aéi);
(v) f(Zf(X1,,SUL,T3)) =0 in case Di ),

then f induces f :U?T(X,%k)) — U and we have fot; = tEU) of foralli € Iy, and
Fo=QW,f.
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Proof. Since the hypotheses imply that ker( f ) is a t;-stable (for all i € Ip) and
Q-stable ideal of Z/l(?r(Xék)), the claim is an immediate consequence of Theorem
10.9 and of Corollary 9.5(i).

811. The Serre relations

This section is devoted to the study of the Serre relations (see Definition 5.9). In
particular we prove that the Serre relations hold in L{;3 . and that in the case of rank
greater than 1 the Serre relations alone are indeed equivalent to (X D*)~(S3%) (in
Z;{?r), that is, Z/l(?r = L?(?r/zconst(si). We use the notation fixed in Notations 5.1
and 9.1.

Remark 11.1. (i) If k=1 (S*) = (SUL%);

(ii) if K > 1 and i, j € Iy are such that a;; < —1 then (S*) = (SUL*) U (Sa?j)).
Before passing to the proof that the Serre relations hold in Z/Il?r, we state the

following remark on g-commutators, which simplifies many computations in the

next propositions.

Lemma 11.2. Leta € Z;l(?r and i € Iy be such that (Xék),i) # (Agi), 1), and let

u,v € C(q). Then in Z;{(?r/Iégnst(Xli) we have, for oll v € Z:

(i) [la, XiJ,rr]uv XZTT-FCL‘,]U = Qii2[[a7 X:T,_i_d”i]qfvﬂ X;,rr]qgu"

(11) [[(J’?X;T_i_zdi}THXi—t_r]U :qzz[[U’?Xi_t—r]qJZU’X:T+2J,i]q;2u+ (q2 - 1)[a7(X;:_T+d~i)2]q,72uv'

i

Proof. 1t is a simple computation using Remark 4.17(iii).

Proposition 11.3. If k = 2, X;f) #* Agi) and i,j € Iy are such that a;; = —2,
then

Is(:)nst(s(i,j)) g Ii

const

(T2).

Proof. In this proof we use that ZZ . (X1;) C ZZ,..(T2) (see Proposition 10.7)

B onst onst
and make computations in 2" JTE o (T2).

Since [H; 1, [Xo, X 5olg2, X, ]] lies in ZF, (T'2) (see Definition 5.7) we see
that
[[X;tO’X;,rl]qQ’erl] + [[X;,rovx;,ro]quXiTO] =0

in Y27 /TF . (T2); but, thanks to Lemma 11.2(ii), we have

(15

g,Oinl]quX;71} = QQHX'+ Xifl}q’27xil] + (q2 - 1)[X;,r0> (X;,ro>2]a

7,07
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so that
0= q2[[X]—’i,_OaXi—t_—1]q*27Xi—i_1] + [Xg—'t—Oa (¢* — 1)(X2_0)2] + [[X;,FO»XIO]q%X;,Fo]
= q2[[X:0,X;71]q72,XI1] + q2[[XIOa Xio]q*"‘aXi—i_o}
and also

X0, X3l ilg==, X ] + [[X,

5,00 0 X2 Xl Xl = 0.

Now, thanks to Lemma 11.2(i) and to the relations (72%),

(11

g,O?XiJ,rfl]q’zaXiJ,rl]’XiTO}ﬁ = [[[XJF ‘X;,ro]q%‘XiJ,rflL*Xij,Ll]q*2 =0,

7,07

so that
[[[Xfr X;fo]qq,Xj’O],Xfo]qz =0,

7,07
which implies Z:5,4 (S(i j)) € Tinnet(T2), thanks to Corollary 9.5.

const

2
Let us concentrate now on case Aén) .

Lemma 11.4. Let Xrgk) = A(Qi); then
[1X 1 X1z, Xiolgt — (6 = 1)(a* = D(@® + a7 2)(X[1)? € Tt (X3Y).
Proof. By Corollary 10.2,

[[ijzvaﬁ]qZ,Xfo]q‘l + HX;:wao]qzvaﬂq‘l + [Xf:pXiﬂq%Xil]q‘*

belongs to ZT(X3') =7t (X3').
But [X77, X{oler — (¢* — ¢72)(X7))? € 5, (X3") (see Proposition 10.1),
so that
X720 Xl Xifolgr + (L= a")(g" — a7 + 1= ¢*)(X]))°
lies in ZF ., (X31).

Proposition 11.5. If X}f) = Aéi) and i,j € Iy are such that a;; = —2 (1 = 1,
Jj= 2)7 then Iél(:)nst(s(i,j)) - Iéln:)nst(XDaX31752)'

Proof. Recall that by the very definition of Z, . (S2) we have (see Remark 5.6)

onst
(¢ + q72)[[XI07X;,r1}q2’X;,ro} + ‘12[[X;,r17X;,r0]q2vX;,ro]q*4 € I, (52),

onst

so that also

(q2 + q_Q)[Xi-Ll’ HX;,_O’ Xz_l]qzaXZO]]q*Z + qz[Xszl’ [[Xi-t_l’ Xi—t_o}q% X;,_O}q*‘*]q*?

belongs to Zf .. (S2), and let us compute the two summands separately in the
algebra UD* /I5 (XD, X3, 52):
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[Xz —17[[XJ OvX ] X{i_o]]qu

—PX X X lgme, Xl = @I L IXG Xl Xl
ZQQ[[qua[XL:on] —2], X ] -2 +q HXJ 1,X 0la- [Xi—t_—lei—t_O]q*z]
Z g X G X galea Xifolo— — (X5, Xifola—2, [Xio X3 lge]

J,L
= _q4[[Xi+O’ [XJ+17X+ ] —2]q—4=XzT0]q‘2
[X;rla [Xj,oa [X;roniT—l]qz]q[‘]q—G + q_Q[Xij,Lm [X;rlv [X;,LOv X:—l}qz}q—“]ﬁ

XDé(T q [[X;,rov[X;roaX;,ro]q*?]q*“’XiJ,ro]tf2
+ q_Q[X;,r()u [ij [X;,rmXiJ,r—l]qZ]q“‘}qG
2 (10, Xiolae, Kol Xl
= (L4 a7 HIXG [1XG 0 X512 Xifollge
X:D [[[Xg 0 X, o]qzvX o] 4’Xi,0]q’2 + (¢* + 1)[“Xg O7X o] 2aXiT0]’X;,r0]q*6
and

[Xz —17[[X117X10] 25 X ] ]<r2
:[[Xz—la[X:rle:ro] 2]q 4aX;,ro]q*2+q74HX;r1vX;ro] 2 [Xz—er;ro] 2]

XD _
6[ ]O’[[Xj17Xj0]q ,XJZ lgtlez + a7 [[X:rleero]q v[XwaX 1lg—2]

B 1= g2 (1 - (@ + DX, (X))
*%[XJO,X* oz (X, X folee]
=(1-q )1 -q " +q )Xo (X70)%ee

2 } 2]qt]g-s + q74[XJ—',t1a [X;:m [Xi—t_la Xi-t_o]qz]q*[‘}q"

—4q Xan[ 17[ i X
D1 -+ e
+ QQ[Xj,ov [[leaXJro] XJF_ 1lg-1]g-s
2@+ (1= g) =g X (X))
= (X0, [1X5 10 X g2, Xifollgo)
D (0 ) K ()l
+q [[[Xme+] *vaio]an,o]qG)-
It follows that
[[[X;'_O’X’L o]quon]q%X 0lg-2 +(q4+1)[[[X;,_0»X{F0] 2, X% "ol X ola-
+ (@ = 1)1 = q X0 (X0 lge + a7 [[[Xfo7X+] ZaX;fo]’XiTo]qG
= (a+a )@ +a7°) (X[ (Xh)? = (¢ + 1+ ¢72) X X (X7)?
+(@ + 1+ ¢ (G2 XF X — (XG0)°XT)
is an element of Z (XD, X3',52), hence Z{ (S(; j)) C I, (XD, X 31, 52).
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Thanks to Corollary 9.5 we obtain Z5, . (S(i.j)) € T (XD, X3, S2).
Proposition 11.6. Ifk=3 andi,j € Iy are such that a;; =—3, then chc:)nst(s(i,j))
C Isc:)nst (X]'l? T3) .

Proof. Let us start from

(@* + DX, Xalge, Xifolg-1 + (X

7,00 Xi—t_l]qg ) Xi—t_l](b

which is an element of Z}

(T'3), and remark that

[[X?r X;,rz]q%X;,ro]q*l - QQ[[X+ X;,ro]q*‘”"X;,rz]q - (q2 - 1)[X;,r07 (X;,r1)2]

3,0 3,07
belongs to Z.0 (X 1;); but
(q2 + 1)(q2 - 1)[Xj+,0a (Xi+,1)2] + [[XIWX;,rl]qS’XIl]q = q4[[X;,roa X;fl]q’3’Xil]q71’
so that
[[Xjf(ﬁ Xj,l]q*%X;,rl]q*l +(1+ q_g)[[X;,LszTO]q’%XiJ,FZ]q
lies in ZF .. (X1;,T3), hence
[[X;,lgvX;,rzL]qC‘vX;,rl]q*l +(1+ q72)[[XI73vX;,r3}q3’X;,r2}q

and (applying fj_lt? and g-commuting by X:‘O)

[[[X;,FOvX;,rz]q?"vX;,rA]q*l +(1+ q_Q)[[X;,FOaXIﬂq%X;,ro]an;,ro]q*

lie in Z.} (XD, X1;,T3); but
[[[XIO’XiTQ]q?”XiT—l]q*le;,ro]q* - q_2H[X;,rovX;,r2]q37XiJ,ro]q*17X;,r—1]q

belongs to Z.\ (X 1;) by Lemma 11.2,

—2
q
Xz‘—t_2]q3a Xi—t_o]q*1 ; Xi—t_fl]q + [HX+ Xi-t_l]q3v Xi—t_l]qv Xi-t_fl]q

211 v+
q "[[[X; £+ 150

J,0°

belongs to Z. . (T3),

11X, XiH s, Xilas Xi ol
_ QQ[HX;,FO’X;,rl]qs,X;,Fﬂ]qﬂ,X;,rl]q—l —(¢" — 1)[[X;T0’X;,rl}q3’ (Xi%o)’]

belongs to Z;,

const

(X1;) again by Lemma 11.2,

q2[[[X;,r0» X;,rl]q3 ) XiJ,r—l]q—l ) Xifl]q_l +

2 +1 [HX;,FOv X;,ro]q?’v Xifo]qv Xz'J,rl]q‘l

belongs to Z;,

const

(T3) and

[[[X;,r()a X;,ro]q3 ) X;,ro]m X;,r1]q*1 - q—4[[[X+

4,00 X:—1]q3 ’ Xi-t_o]q5 ) Xi-t_o]q3

belongs to 7.,

const

(X1;) (by Lemma 11.2). So we can conclude that
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4 —2
q 1—¢
(q2 + 1)2 [[[X;_OvXi-t_l]q37X:_0]q5aX:_0}q3 - qg +1 [[X]-‘t_mX;:l]qu (X:O)Z]
+(1+ qu)[[[X;,FOa X;,L1]q3»X;,ro]q7 X;,ro]q‘3
(@2 +1+q2)?
= ﬁ[[[X;,roaX;,rl]q%X;,ro]q,X;,ro]q*l
(¢>+1)
lies in I:gnst(XD, X1;,T3).
Thus [[[[X;,ro,X;,r1]q37X;,ro]qvX;,ro]qfl’X;,lﬂqS € Ichnst(XlivT?)); but
[[[[X;,rmX;,r1]q37X;,ro]qaX;,ro]qfl’Xi—,F—l}qB'

- q4[[[[Xj+,07 XiJ,rl]qS’ XiJ,r—l]q‘l ) ‘Xifo]q—1 ) X;,r()]q—3

belongs to It

const

(X1;) and since

(T3)

const

(¢® + DX o, XiH e, XiF1Jgr + (X0, Xiolgs, Xifolg € T
it follows that

liners

so that Zo (S(i.j)) € Zohnet (X1, T3). Hence ZE,  (Si.s)) € T

const

(X1,T3),

const

Xifo]qsaXz‘J,ro]qa X;,ro]qfl’Xifo]q*S € I
(X1,T3).
Corollary 11.7. Zconst(S) = 0 in UP".

Proof. The claim is a straightforward consequence of Remark 11.1 and Proposi-
tions 11.3, 11.5, 11.6.

We are now able to prove that the quantum algebra Z/l}?“ of finite type is
mapped in U(?r, which was not otherwise clear.

Definition 11.8. Let ¢ : Ugn — Z/{?r be the C(g)-homomorphism given by

K =k, Ei- X, Fe X, (i€l).

?

Remark 11.9. ¢ is well defined.

Proof. This is a straightforward consequence of Corollary 11.7 (and of (CUK),
(CK), (KX*), (XXE)).

We shall now complete the study of the ideal generated by the Serre relations.
Remark 11.10. 73

const

(XD) C 15

const

(S). If n > 1 then

+
Z-comst

(K1), Tok o (X2), T (X3), T (X371) S TE,,(S).

» ~“const » ~const » ~const

Proof. That T

const(XD) g Ii
mark 11.1.

const

(S) follows from Proposition 10.4 and from Re-
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That ZE (X1) C ZZ_..(S) is a consequence of Lemma 10.5 and of Corol-
lary 9.5 (see also Corollary 10.6).

Finally that 7= __ (X3') C 72 .. (S) follows again from Lemma 10.5 and from
Corollary 9.5, once one notices that (X,%k),i,j) = (Aéi), 1,2) implies ¢; = q, bjz‘d]-j
# 0 and by, = [2]4[3],-

From this it follows that 7

COIISt(XQ) Ii (XS_l) g Ii
tion 10.1).

» ~const const

(S) (see Proposi-

Corollary 11.11. (i) Z(S) = ZZ,..(S) (see Corollary 9.17(iii) and Remark
11.10);
(i) Z(S) =0 in UP" (see Corollary 11.7).

Remark 11.12. Ifk > 1 and X7 # As, then 72X

const(Sk) g Ii)nst(s) Aag Ii
g Icinst(s)'

const

(Tk)

Proof. Of course we can suppose n > 1; then the claim depends on the fact
that (ZZ,.,(X1),TE .. (Sk)) = (ZE .. (X1),ZE .. (Tk)) (see Remark 5.8) and that

const » “~“const
Tt (X1) CTE . (S) (see Remark 11.10).

Proposition 11.13. 72 (S2) C 7Z,..(S).

Proof. Suppose that k& = 2 and let 4,5 € Iy be such that a;; = —2. Then
(11X 0s XiTolg2s Xifol, Xifolg—2 is an element of Z7,, . (S), so that

I;)nst(s) > [H[X;,roa X;,ro]q2 ) X;,ro]a Xifo]qu ) Xijl]

= H[X;,rmC_lkiHi,l]q27Xj,o]vX;,ro]q*Z + [HX;o’Xj,o]q?aC_lkiHi,ILX;,ro]q*

+ [[[X;07 Xifo]qza X;,ro]a C_lkiHi’l]q*2
= _C_lki(qz[[[Hi,la X;O},X;fo]qu, X;.,ro]q*“ + H[Hi,l’XIO]»X;,FO]q%X;,FO]q*“
+ HX;,FW [Hi,lv X;:o]]qzinTO]q—4 + q_2[ [Hi,lﬂ X;,FOLX;,FO]!Jz?XiTO]

[
+ q_2[[X;,r0ﬂ [Hi,h Xifo]]q%Xz‘J,rO] + q_2[[X;,r07 X;,ro]qzﬂ [Hi,h X;LO]])

- —c—lki(biﬂ(qujfl, Xifo]q_z,XifO]q_4 + [[X Xifo]qz,Xifo]q_4

7,1

+ q_2[[X;,r1a *Xv;,ro]q2 ’ X:,ro]) + biil([[X;,FO’ X;,rl]qz ) *X;,ro]q—4

+ a7 [[X o, X, Xifo] + a2 [1X 0, Xifolee, X30))

= *Cilki([?’]qbijl(X;,_l(X;,ro)Q -+ 1)X2_0X;,F1X2—0 + qiz(XZ_O)QX;)
+ [3]qbii1(q72X;,roX;,r1XiTo - X;:lX;,roX;,ro - 472X;0XI0X;1 + Xonle;,ro)
+ biil(*q%XIo[X;_le:o]q? + [Xifle:o]qQX;,ro))

- *Cilki(B]qbijl[[X;,rlvXifo]quaXj,_o]
+ q72[3]qbiil[[X;0a Xi—t_l]qQ ) Xi—i,ro] + bii [[Xi—t_l’ Xz'—ifo]q2 ) X;,ro]q*4)~
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Now notice that if Xz # Ag, we have b1 # 0, [Xj)'l,XZ'O] 2 € TF . (S) (see
Remark 11.10) and d; =2, hence b;;, =0; we can conclude that [[on, le]qz,X o)
is an element of Zt __ (S5), so that Z _ (T2) C Z.t .. (S) (see Corollary 9.5), Wthh
thanks to Remark 11.12, is equivalent to Z.t __ (52) C COHSt(S ).

On the other hand, if X5 = Agn we have b;;1 = [2]4[3]g, d =1, bjj1 = —[2],
and [X;5), X[l + (X5, Xl € Th,.4(S) (see Remark 11.10); then

(q +q )HXJO’X ]2in+0]+q [[levX ]Q’X;_O]q*‘*

is an element of Z . (S), that is, Zt . (52) C T} . (9).
In both cases using Corollary 9.5 we get Z- . (S2) C TE .. (S).

Proposition 11.14. ZZ_ (T3) C 7 ..(S).

Proof. Let k=3 (X% = D)) and i, j € I, be such that a;; = —3 (i = 1, j = 2).
Then [[[[X+ on]qs,XfO]q,X g1, X ‘0lg-3 is an element of TF .« (S), so that,

recalling t}ia?t, bij1 =0 and b;;; = [2 ]q,

Iojt_)nst(s) [HHXJ_O’XTO]Q%X'L o]an ] -1 Xz 0] -3 Xijl]
= [[[[X}o, C™ ki Hinlgs, Xifolg, Xifolg— XzO] -3
+ 11X 0, Xilolgs, O~ ki Hi 1, Xifol-1, Xifolq-
+[[[[X5o, Xilolg, XiTola, € 1k‘Hi1] 1, Xifolo-
+[[[[XFo, Xifolg2 X+]q,Xz,o] -, 07 1k iHialg-

=-C" 1ki( HHHila ]o]a zoq 17X¢,] -3 Xzo]
[[Hi,h[X;erJr]qd]a zo]q 3’Xifo]q*5

+q 1[[Hi,17[[X] 07X ]q3aX:ro]q]vX;,ro]q*5

+q_3[Hi,1vaj0aX ]anX;ro] X‘Jr] -1])

:_[2] C_lk‘( H[X;ro=Xz+1]q3vX;ro] -3 X ]

5

[[[Xj O’Xl 1]q »X:ro]qu;ro]q‘5
[[[X_] 0 X, o]q »X:rﬂqu:ro] -5 +q [[[X_] O’X:rl]q sz'J,ro]qu;,ro]q—l)
[[[X;FO’XJF] 3»X:,r1]q’Xz+o] -1)+ [[[X;ronero]q 7Xxo]qu:1]q—1)§

then, thanks to Remarks 11.10 and 11.2, we infer that

[[[X]_‘—OvX g ano} -3 Xi+0] -5 +q71[[[X;_0’X;_1] Xi+0] Xi+0] -
+q [[[Xfo’le]qd’Xz 0les 7X olg—s + 4~ H[X;roaX:rl]qdaX:ro]an;,ro]q*)
H[X X ] Xxo]qsaX{fo]q*) H[X;_mX:_o]q vX:_O]qE’vX:—l}ﬁ

7,00
= q_g(qz +4q 2)[3] [[[X;FO,le]qs,Xz o]anJro]cr1
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belongs to Z .. (S); then so does

[[[[X;L_Ov X;i_l}q.%, Xi—t_o}qfl ) Xi—t_O](b Xij—l]

H[ij Cki — C—llkfl] ’on} ’on}
q—q 3 ’ —1 ’
q q q

+[[[ 5,00 1]q37k2 H; 71] leiJ,ro]q"’[[[XJo’X ]dvx;,ro]qflakleiﬁl]q
=k; ([3] [[Xfo’ zo]q’XzTo]qS
_q_l[[[Hi,fla[X;erJr] sl X;,ro]q3 _q[Hi,*h[[X] 0 X, 1]q 7X+o]q*1])
:C_lk'il([?)] [[X;LWXZTOM?”X;LO] _q_l[] HX;()’XjO]q ’XJro]qS
—q[2], HXJ+07X1+O]Q aXiJ,ro]q—l —q[2]q [[X] O’Xz 1]q 7X+—1]q—1)
= —C7 Mk (1K, Xifolgr, Xifola + al20[[X o, X35 )ge, Xif_a]g0);

hence Z; (T3) C .}

const

(S) and, using Corollary 9.5, ZE  (T3) C ZE .. (S).
53) C Icionbt(s)

Corollary 11.15.

const(
Proof. This follows from Remark 11.12 and from Proposition 11.14.

Corollary 11.16. If n > 1 then 1T, (XD,X1,X2 X3+ SUL,S2,83) =

Teonst (9)-

Proof. This follows from Corollary 11.7, Remarks 11.1 and 11.10, Proposition
11.13 and Corollary 11.15.

Remark 11.17. In 4P" (DY) we have [[X7o, X;H 142, X[ ol Xifolg-1 = 0.
Proof. See the proof of Proposition 11.14.

Theorem 11.18. (i) UP"(AY) = UP (AW /Teonss (X1);

(i) UPT(ASY) = UL (AD) [ Teonst (X 3Y);

(iii) UP* (X)) = UP (X)) [ Teonst (S) if > 1 (that is, X\ # AN, AD)).
Proof. The claims follow from Theorem 10.8 and Corollary 11.16.

Corollary 11.19. Let U be a C(q)-algebra, tl(-U) (i € Iy) be C(q)-automorphisms
of U, QW) be a C-antilinear antiautomorphism of U, and f : Z;[;Dr(Xék)) - U

be a homomorphism of C(q)-algebras such that fofi = tl(»U) of for alli € Iy and
foQ=0W .. If:

(i) f(Z5(X1)) =0 in case X Agl ;
(il) f(ZS(X3Y) =0 in case Xék) = Aém,
(iii) F(Z(S)) =0 in case XV # AWM AP,
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then f induces f : L{(Pr(Xék)) — U and we have fot; = tEU) of foralli€ Iy, and
fod=0W,f.

Proof. Since the hypotheses imply that ker(f) is a t;-stable (for all i € Iy), Q-stable
ideal of U,?Y(Xék)), the claim is an immediate consequence of Theorem 11.18 and

of Corollary 9.5.

Remark 11.20. It is useful to compare the results of this section with those of §10.
The simplification of the relations given in §10 (Theorem 10.8 and Corollary 10.9)
provides a minimal set of relations of lowest “degree” (where the degree of X;, ,, -

- X, r, 18 meant to be h); this minimality can be often useful, in spite of the
more complicated appearance of relations like (S2%) compared with the simple and
familiar Serre relations. On the other hand the advantage of the Serre relations
is evident in all those cases, like the application of Theorem 11.18 and Corollary
11.19 given in §12, when the Serre relations play a central role; in this connection
recall that the Serre relations are the minimal degree relations defining the positive
part of L{g‘n (see Definition 11.8 and Remark 11.9, and recall [L]).

§12. The homomorphism ¢ from U;)r onto L{l?‘]

This section is devoted to exhibiting a homomorphism ) : Z/{(?r — Z/{(IID J and proving
that it is surjective.

Notation 12.1. In the following, o : Iy — {£1} will be a map such that:

(a) a;; # 0= 0(i)o(j) = —1 (see [Be] for the untwisted case);
(b) in the twisted case different from ASL), a;;j =—2=o0(i) = 1.

Remark 12.2. A map o as in Notation 12.1 exists and is:

(i) determined up to sign in the untwisted case and in cases Aéi) and D513);

(ii) uniquely determined in cases Agi)_l and Eé2).

Definition 12.3. Let ¢) = @ng) : Z/Nl(?r(Xék)) — L{(?J(Xék)) be the C(q)-algebra
homomorphism defined on the generators as follows:

CH e KFL kP e KEY (e by),
Xt e o(i) Ty (B, X o) T3 (F) (i € o, 7 € 2),

) E if r>0
n {o(z) (o) AT

(i € Iy, r € Z\ {0}).
o(i) F(_g,p0 7 <0 ’ MO

i,d,‘,T
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Proposition 12.4. (i) 1 is well defined;

(ii) Yol =Qot);

(i) @ ot; = Ty, o9 for alli € Iy;

(iv) Yod; = @iot for all i € Iy;

(V) ¥0® = (QET}) 0tp in cases A(ll) and Agz).

Proof. (i) The relations (ZX*), (CUK), (CK) and (KX%*) are obviously pre-
served by ¢; also (X X) (see [Be] and [Da]) and (HXL*) hold in U,: it is enough
to notice that for all i,j € Iy and r € Z such that max{d;,d;}|r we have
bijr = (0(i)o(4))"xjr where 7 = r/max{d;,d;} and

(oli)o(j))r " %ila if k=1, or X = 4D and (i) £ (1,1),
T
2r _ _ . .
Tijr = [T]Q<q2r+<—1>’“ Prg) it (X, 5) = (A5, 1,1),
. ~[7'afj}q

otherwise,
with af; = max{a;;,a;;} (see [Da]).
(ii)—(v) are trivial.
Theorem 12.5. Let Xék) be different from Agl) and A§2). Then 1 induces
b=ty U X)) U (D),

Proof. Thanks to Corollary 11.19(iii) and Proposition 12.4(i)—(iii) it is enough to
prove that 1 (Z; (S)) = 0; but this is obvious since ¥(Z; (S5)) is the ideal generated
by the (“positive”) Serre relations.

In order to prove that 1 is well defined also in the remaining cases we propose
two different arguments: a direct one, requiring just some simple commutation
relations in Z/{q(Agl)) and Z/{q(Ag)) (see Lemma 12.6); and an argument using the
injections ¢; (see 3.7).

Lemma 12.6. In Z/lq(Agl)) we have
(i) Estoa.E1 = ¢*Er1Esta,.
In Z/Iq(Aéz)) we have:

(il) Estar B — @ B1Bsia, = —[4gEsi20,;
(iil) Estoa, B1 = ¢*E1Es10a,;
(iv) ¢ 3Essa1E? — (¢+ ¢ E1Essa—1E1 + PE}Esiq_1 = 0.
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Proof. (i) is an immediate application of the Levendorskii-Soibelman formula
(see [LS] and [Da]); for (ii) see [Dal; (iii) is an immediate application of the
Levendorskii-Soibelman formula (see [LS] and [Da]); and (iv) follows from (ii)
and (iii).

Theorem 12.7. ¢ induces 1 = (e :U(?r(Xék)) — U?J(Xék)).

Proof. Thanks to Corollary 11.19(i)&(ii), Proposition 12.4 and Theorem 12.5 it is
enough to notice that 9 (Z; (X1)) = 0 in case A§1) and 9 (Z5 (X3')) = 0 in case
Aéz), which are immediate consequences of Lemma 12.6(1)&(iv).

Another proof:

(k) @) . 2 ifh=1 . .
Let h=1,2, X;” =A,",i= and consider the following well-
) 1 ifh=2
defined diagram:
Dr( 4() Pag (h)
Uy (A,") : U’ (A”)
\L i‘/’z‘
uDr (A(h)> uDr(X(k)) uDJ (X(k))
Without loss of generality we can suppose this diagram is commutative, by choos-
ing OA(h) 1l OX(k)(')

Then wA(m factors through L{Dr(A(h)) (that is, ¥, is well defined) because
h
; is injective (see Remark 3.7).
Remark 12.8. (i) 9o Q = Qo1);
(11) Pot; = T,\i o1 for all i € Iy;
(iii) Yo d; = @i ot for all i € I;
(iv) 0O = (QET}) o) in cases Agl) and A§2>;
(V) Yod =0
Proof. (i)—(iv) follow from Proposition 12.4 and Theorem 12.7, while (v) follows
from Remark 11.9 and Theorem 12.7.

—

Corollary 12.9. ¢ is injective.

Proof. This follows from Remark 12.8(v), since ¢ is injective (see Remark 3.7).
We now turn to the surjectivity of .

Remark 12.10. By the definition of ¢ it is obvious that Ei,Fi,KijEl are in the
image of 1 for all ¢ € Iy. Moreover, since Kgﬂ is in the image of v, also KOjEl is. But
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by Remark 12.8, Im(v) is Q-stable, so it contains Ejy if and only if it contains Fp.
Thus it is enough to prove that Ey € Im(v)).

In the next theorem it will be used that for ¢ € I, Im(v)) is a T),-stable
subalgebra of U’ containing Ej,Fj,KEil (j € In, 7 € I) (see Remark 12.8); in

particular Ugi’f C Im(y) for all a =, ; m;a;.

Theorem 12.11. o :Z/l(?r — L{?J 1s surjective.

}j’roof, Let 0 =6 —qap = Zielo Q. NE)te that there exists ¢ € I such that either
d; = r; = 1 (recall that 0 is a root) or d; = 1, r; = 2, a;o # 0 (so that in particular
ap + «; and 6 — «; are roots). Choose such an i € Iy and let 0=0-— (ri — Doay;
notice that 6 is a root.

Let \; = Tis4, ...~ 85y (with (I(\;) = N, 7; € T); then A\() =6 —6 < 0,
so that there exists h such that s;y - ...- s, (qs,) = 0, and we deduce that
_ =1 -1 DJ,—
f=T .. T, (F,) € L{q7_§ C Im(e).
Since Im(w)) is T,-stable we infer that T, (f) = —1,T;, - .. .-Tir_l(KizlEir) =

—K(;_lée belongs to Im(v)), hence so does e with e € U(?;’jé.

If r; = 1 then 6 — f = o and the claim follows (e = Ey € Im(1))).

If r; =2thene€ Ugiﬁ_ai; note that if we are not in case ASB, since I(s;\;) =

I(A\;)+1and a;0 = —1, Ti(e) € Z/{(?ij, so that e = Ti_l(EO); on the other hand
in case A(Qi), since 1(soA;) = I(\;) — 1 and ag; = —1, we have T, '(e) € U, so

that e = Ty(£;). In both cases e = —[Fy, ;] 2:0. Commuting e with F; (€ Im(z))
we get Im(’(/)) B [—[E(), Ei]q?io s Fz] = qf“’[[Ei, FZ], Eo]q‘—aio = [aio]qi K, Ey, which
concludes the proof. '

Proving that v is injective requires further analysis.

813. Appendix: notation

In this appendix, in order to make it easier for the reader to follow the exposition,
most of the notation defined in the paper is collected, with the indication where
it is introduced and possibly characterized.

The present list includes neither the notation related to the definition and the
structure of the Drinfeld-Jimbo presentation of the quantum algebras, since they
are all given synthetically in §3 where they can be easily consulted, nor the notation
introduced in Definition 4.2, because there is no reference to them outside §4.

Also the relations listed in Proposition 4.25 are not redefined in this appendix,
but for some of them other descriptions proposed and used throughout the paper
are here recalled.
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Dynkin diagrams, root and weight lattices:

r

~n
Il

ESIIP N R
Il

)\it

(indecomposable) Dynkin diagram of finite type
set of vertices of T

#I

Cartan matrix of T

automorphism of r

o(x)

= I/x
= #I

I — I natural projection
IO — IN section (aij 75 0= d;y; ;é O)

= I, U{0}

Dynkin diagram of affine type with set of vertices I
Dynkin subdiagram of I'" with set of vertices Iy

(aij)ijer Cartan matrix of T’

= (a;j)ijer, Cartan matrix of I'y

min{d; | i € I} =1, diag(d; |i € I)A symmetric
{1 if k=1o0r X% =AY

d; otherwise

= max{di7 J]}

max{d; | i € Io}
2 = @ zay
irel
W-invariant, (& | &) = 2k/d if @ is short

= 2" =P Za;

il

@Zai
iclp
d;a;;
d€Q,0—ap €Qo(4Q)=0
0= Zriai

il
0 — ag
(Niley) = didij (i,5 € Io)

727

§1
§1
§1
§1
§1
§1
§1
§1
§1
4.4 (4.10)
§1
§1
§1
§1
§1
§2

§2

4.8
4.1

§1
4.1
§1
§1

§2
§2
§1,82

§1
§2
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Other notation:

w = primitive k" root of 1

= q"“
Ip = {(i,r) € Iy x Z | d; | 7}
e= %1
0 if (i@j J[?"
bijr = { [2r]4(¢* + (1) g2 e if (X4, ) = (

[
[
[a,b], = ab— uba
1=1,=(1,...,1) eZ
{e1,...,e;} = canonical basis of Z!
(riy...,r) = (rgy...yr1)
o: Iy — {£1}, ai; # 0= o0(i)o(j) = —1,
if k#1and X £ AP a; = 2= o(i) =1

Generators of C(g)-algebras:

G ={CT K" X M| i €1, rs €L, s #0}
G={C* K Xt H;,|iclyrscZ, s+0}

i,r?

G ={CH K X5 Hi i€y, rsedl, s+#0}

G={C* K X} |icl,redl}
Gt ={X], | (i,r) e Iy x Z}

G = {X;T (t,r) € Iy x Z}
Gt = {X;fr (i,r) € I}
G~ = {XZT (i,7) € Iz}

Relations in C(g¢)-algebras:

(DR) = (2,2X,C,KK, KX, KH, XX, HX , HH,
XFG, X3¢, S, XP)

(DR) = (ZX,ZH,CUK,CK,KX,KH,XX,HX,HH,
XD, X1,X2,X3°, SUL,S2,S3)
(ZX*),(ZH)

4.1
3.1
4.5

4.2,4.25

AP 1,1) 4.14

Taijlq. /T otherwise, with 7 = r/d; ;

4.16
8.1
8.1
8.1

12.1

4.2
4.6,4.25
4.6,4.26
6.1

6.11
6.11
6.12
6.12

4.2

4.25

4.6
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0 if djfr
Hip, X5, = . !
[ ] {:I:bmrc Fir \Xi

M(g)((l dir), (],djs)) =0
Z o’Mli(er) =0

oc€Ss

Z U.MéQ) (r)y=20

oc€Ss

E:t _
> Mgy (r) =0
g€S3

Z O-Xzi]l a; 1(T§3>:

UeSl—aij

+
Z U'Mi,j;lfaij;l(r; s) =0

0'631—%]-

Z U.ij;lfaij;l(ciir;czjs) =0

0'631—(;”

Z J.ij;l_aij;l(dﬁ;lijs) =0

06517%]

Z J(( 2 )[[X;rs’Xz r1+1]q 7XiJ,rr2]
g€Ssy
+q [[Xz r1+1’X7, ’I"2] 2, X ] ) :0
Z 0‘.(((]2 )[[Xj_‘s’Xz—i_n] -2 X1 7‘2+1]
€S,
[XJ+S7 [X1 r2+l7XiJ,rr1]q2]q_4) =0
Z (HX] saXz T1+1] -2 Xz Tz}
€S,
—q [Xz T‘1+17[X_7 s’Xz 7"2] 2} _4) =0

§ : + +
g. q +4q 4 [Xj,s7Xz r1i2]q37Xz 7‘2]
oc€Ss

+ (1 —dq 2 )[[X]:ts’Xl rlil]q 7Xi:f:r2i1]q
+ QQ[[Xfrlizvam] 2 + [Xz‘j,crgipXij,tnﬂ]q%X;,Es}q*ﬁ) =0

Yoo Y X (et uss) =0

oEeSy u,v>0
ut+v=—1—a;;

Z U.X[jg] (r;ds) =0

oc€Ss
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4.26

5.14
5.14

5.14

5.14

5.3,5.9

5.5,5.10

5.14

5.14

5.6

5.6

5.6

5.6

5.3

5.14
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(T2%): ) ollXGh, X5 e X551 =0

oESy
Z J.M[j;] (r;2s) =0
gESy
(T3%) . > o + DX X5 wales, X5l
oESy
[[ins’ Xzirlil]q 7Xi:f:r2i1]q) =0
Z a.M[3] (r;3s) =0
gESy
(HXL*): [H;,, X7,] = £bijp _]:tr-‘rs (di < |r| < dij)
(XXD): [Xf,X;]=0 (i#])
rL.. _ (—rE—1
(XXE) . [ijxliir] — M
’ qi — 4q;
C'Sk'Hj}+e
(XXH?): (XX ]=—25 (r45>0)
qi — 4q;
_ + — C TH27r+skz !
(XXH7): [X7,X;]= Y= (r+s<0)
3

C(g)-algebras:

U, = Drinfeld and Jimbo quantum algebra

U;DJ = L{q(F)
U™ =1, (To)
Uy = (G | DR)
U = (G| DR)

(
U = (G| ZX*,CUK,CK, KX* XX HXL¥)
UPT = (G| ZX* CUK,CK)
=(G* | Z2X*) = (G")
Elements in C(q)-algebras:

1j:r 'LT . Z j:ru —exp( '_qz ZHZ:I:TU)

reZ r>0
(¢ —q; )k [XjT,X;O] if 7,7 >0
it (g; — )[Xf_inJfo]ki ifr>0,+r<0

1 if r=20
0 if r <0,

5.7
5.14

5.7

5.14

6.1
7.4

7.4

7.4

7.4

3.2
3.2
3.2
4.2
4.25,4.26
6.1
6.1
6.11,6.12

4.25 (6.6)

6.6
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Xijiaa(r;s) = Zl%(—l)“ [i qaxfh e XEUXEXE XS B2
X if 1 =0
M; ji.a(r;s) = [Miij;l_l;a(rl, e 77“1,1;s),Xfrl]qfaij72a<zfl> ifl>0
ME (), (o)) = [XE g XKoo + X5 K] o 5.1
MER) = X5 X 5.12
(2 2) (r) = [X3] a2 X1 rz} q4[X1jfr1i1a Xffrzﬂ]q—“ 5.12
MEGE() = [XE, o XE, s X e 5.12
Xi (r;s) = Z v “XfJQk(rl +o,ry +u;s) 5.12
P
M (r;8) = M50, (r1 £ 1,7259) 5.12
Mé]( 18) = (1) M5 00 (r1£2, 703 8)+ M5 o (r1 £ 1,70 £ 15 5) 5.12
kot kmsiy,, mia; = C I % 6.9
i€lo
Relations and ideals:
(a) given the relations
(R) Sc(r,s)=0 (CeZ,reZ, sezh
denote by (R¢) (¢ € Z) the relations
(R¢) Se(rs)=0 (rez', sezl); 5.1
(b) given the relations
(R*) SE(rs)=0(Ce2, relZ, sel)
denote by (R) the relations
(R) Se(rs)=0 (e Zx{t},rez sell) 5.1
where Si¢ 1) = Sgi;
(c) given relations (R) as in (a), denote by Z(R) the ideal
I(R) = (Sc(r,s) | C€ Z,re !, s €T, 5.1

by Zeonst (R) the ideal

Teonst(R) = (Sc(rly,s) | C€ 2, r € Z, s € 7)), 9.1
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by Zo(R) the ideal
Zo(R) = (S¢(0) [ ¢ € 2) 9.1

and,if (€ Z,reZ!, sc z!, by Zr ) (R¢) the ideal
Zir,5)(Re) = (Sc(rly, s)); 9.1
(d) given relations (R*) as in (a), denote by ZF(R) the ideals
IHR) =T.(R"), I,(R)=Z.(R") (x € {0,const,0}); 5.1,9.1

(e) given a family of relations (WR) as in (a) denote by Z.(‘VR, ..., "™R) the
ideals

Z.("WR,...,"™R) = (Z.(VR), ..., T,("™R))  (x € {0, const,0}). 5.1,9.1

(Anti)homomorphisms:

0,0,0: g g !, CF e CFL B s kT X e X 6.15,7.6,8.2
OF:q—q !, X X, 6.15
Or:q—q ', X, X, 6.15

0,0,0: ¢ q ', CF s OF) EFL s BT 6.15,7.13,8.4

Xt =X kCT X e —kTICTTX
6t s CFL s OFL kL o (k0 0udny$l ) x* ) x* 6.15,7.10,8.6
iy Uiy Ug - s vy J » g G, Foisd; e
Ginbir i+ g qiy, CF oy CF0 | kL XF o X 6.15,7.2
¢: Kf' = k', By X, Fim X (i € Io) 11.8
Yop s OFL s KFY KR e KL 12.3,12.5,12.7

X7 o) Ty (B, X7 o(i) T} (F)

References

[A] T. Akasaka, An integral PBW basis of the quantum affine algebra of type Af), Publ.
RIMS Kyoto Univ. 38 (2002), 803—-894. Zbl 1038.17005 MR 1917164

[Be] J. Beck, Braid group action and quantum affine algebras, Comm. Math. Phys. 165 (1994),
555-568. Zbl 0807.17013 MR 1301623

[Bo] N. Bourbaki, Groupes et algébres de Lie 4, 5, 6, Hermann, Paris, 1968. Zbl 0186.33001
MR 0240238

[CP1] V. Chari and A. Pressley, Quantum affine algebras, Comm. Math. Phys. 142 (1991),
261-283. Zbl 0739.17004 MR 1137064

, Quantum affine algebras and their representations, in Representations of groups
(Banff, AB, 1994), CMS Conf. Proc. 16, Amer. Math. Soc., Providence, RI, 1995, 59-78.
Zbl 0855.17009 MR 1357195

[CP2]



http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1038.17005&format=complete
http://www.ams.org/mathscinet-getitem?mr=1917164
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0807.17013&format=complete
http://www.ams.org/mathscinet-getitem?mr=1301623
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0186.33001&format=complete
http://www.ams.org/mathscinet-getitem?mr=0240238
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0739.17004&format=complete
http://www.ams.org/mathscinet-getitem?mr=1137064
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0855.17009&format=complete
http://www.ams.org/mathscinet-getitem?mr=1357195

[CP3]
[CP4]

[Da]

[Dr1]
[Dr2]

[FH]

[GK]

(IM]

[Jm]

[Jn]

[1Z1]

[122]

[LS]
(L]
(M]

(N]

DRINFELD REALIZATION: THE RELATIONS 733

, Twisted quantum affine algebras, Comm. Math. Phys. 196 (1998), 461-476.
Zbl 0915.17013 MR 1645027

, Yangians, integrable quantum systems and Dorey’s rule, Comm. Math. Phys.
181 (1996), 265-302. Zbl 0869.17015 MR 1414834

I. Damiani, The R-matrix for (twisted) affine quantum algebras, in Representations
and quantizations (Shanghai, 1998), China High. Educ. Press, Beijing, 2000, 89-144.
Zbl 1007.17012 MR 1802170

V. G. Drinfel’d, A new realization of Yangians and of quantum affine algebras, Dokl.
Akad. Nauk SSSR 296 (1987), 13-17 (in Russian). Zbl 0667.16004 MR 0914215

, Hopf algebras and the quantum Yang-Baxter equation, Dokl. Akad. Nauk SSSR
283 (1985), 1060-1064 (in Russian). Zbl 0588.17015 MR 0802128

E. Frenkel and D. Hernandez, Langlands duality for finite-dimensional representations
of quantum affine algebras, Lett. Math. Phys. 96 (2011), 217-261. Zbl 1222.17014
MR 2788912

O. Gabber and V. G. Kac, On defining relations of certain infinite-dimensional Lie alge-
bras, Bull. Amer. Math. Soc. (N.S.) 5 (1981), 185-189. Zbl 0474.17007 MR 0621889

D. Hernandez, Kirillov—Reshetikhin conjecture: the general case, Int. Math. Res. Notices
2010, 149-193. Zbl pre05665748 MR 2576287

N. Iwahori and H. Matsumoto, On some Bruhat decomposition and the structure of the
Hecke rings of p-adic Chevalley groups, Inst. Hautes Etudes Sci. Publ. Math. 25 (1965),
5-48. Zbl 0228.20015 MR 0185016

M. Jimbo, A g-difference analogue of U(g) and the Yang—Baxter equation, Lett. Math.
Phys. 10 (1985), 63-69. Zbl 0587.17004 MR 0797001

N. H. Jing, On Drinfeld realization of quantum affine algebras, in The Monster and Lie
algebras (Columbus, OH, 1996), Ohio State Univ. Math. Res. Inst. Publ. 7, de Gruyter,
Berlin, 1998, 195-206. Zbl 0983.17013 MR 1650669

N. H. Jing and H. L. Zhang, Addendum to ‘Drinfeld realization of twisted quantum affine
algebras’ , Comm. Algebra 38 (2010), 3484-3488. Zbl 1219.17009 MR, 2724232

, Drinfeld realization of twisted quantum affine algebras, Comm. Algebra 35
(2007), 3683-3698. Zbl 1168.17012 MR 2362678

V. G. Kac, Infinite dimensional Lie algebras, Birkhauser, Boston, 1983. Zbl 0537.17001
MR 0739850

S. Z. Levendorskii and Ya. S. Soibel’'man, Some applications of the quantum Weyl groups,
J. Geom. Phys. 7 (1990), 241-254. Zbl 0729.17009 MR 1120927

G. Lusztig, Finite dimensional Hopf algebras arising from quantized universal enveloping
algebras, J. Amer. Math. Soc. 3 (1990), 257-296. Zbl 0695.16006 MR 1013053

H. Matsumoto, Générateurs et relations des groupes de Weyl généralisés, C. R. Acad. Sci.
Paris 258 (1964), 3419-3422. Zbl 0128.25202 MR 0183818

H. Nakajima, Quiver varieties and finite-dimensional representations of quantum affine
algebras, J. Amer. Math. Soc. 14 (2001), 145-238. Zbl 0981.17016 MR 1808477



http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0915.17013&format=complete
http://www.ams.org/mathscinet-getitem?mr=1645027
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0869.17015&format=complete
http://www.ams.org/mathscinet-getitem?mr=1414834
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1007.17012&format=complete
http://www.ams.org/mathscinet-getitem?mr=1802170
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0667.16004&format=complete
http://www.ams.org/mathscinet-getitem?mr=0914215
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0588.17015&format=complete
http://www.ams.org/mathscinet-getitem?mr=0802128
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1222.17014&format=complete
http://www.ams.org/mathscinet-getitem?mr=2788912
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0474.17007&format=complete
http://www.ams.org/mathscinet-getitem?mr=0621889
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:05665748&format=complete
http://www.ams.org/mathscinet-getitem?mr=2576287
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0228.20015&format=complete
http://www.ams.org/mathscinet-getitem?mr=0185016
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0587.17004&format=complete
http://www.ams.org/mathscinet-getitem?mr=0797001
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0983.17013&format=complete
http://www.ams.org/mathscinet-getitem?mr=1650669
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1219.17009&format=complete
http://www.ams.org/mathscinet-getitem?mr=2724232
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1168.17012&format=complete
http://www.ams.org/mathscinet-getitem?mr=2362678
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0537.17001&format=complete
http://www.ams.org/mathscinet-getitem?mr=0739850
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0729.17009&format=complete
http://www.ams.org/mathscinet-getitem?mr=1120927
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0695.16006&format=complete
http://www.ams.org/mathscinet-getitem?mr=1013053
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0128.25202&format=complete
http://www.ams.org/mathscinet-getitem?mr=0183818
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0981.17016&format=complete
http://www.ams.org/mathscinet-getitem?mr=1808477

	Introduction
	Preliminaries: Dynkin diagrams
	Preliminaries: Weyl group and root system
	Preliminaries: the Drinfeld–Jimbo presentation Uq
	The Drinfeld realization UDrq: definition
	More about the definition of UDrq
	qDr and its structures
	The algebra qDr
	Uq: (anti)automorphisms and relations
	Reduction to relations with constant parameter
	More about redundant relations
	The Serre relations
	The homomorphism  from UDrq onto UqDJ
	Appendix: notation
	References

