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To women.

Especially to those who do not have

even the opportunity to imagine

how much they would like mathematics

and to those who are forced to forget it

Abstract

The structure of the Drinfeld realization UDr
q of affine quantum algebras (both untwisted

and twisted) is described in detail, and its defining relations are studied and simplified.
As an application, a homomorphism ψ from this realization to the Drinfeld and Jimbo
presentation UDJ

q is provided, and proved to be surjective.
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§0. Introduction

Let X
(k)
ñ be a Dynkin diagram of affine type, UDJ

q = UDJ
q (X

(k)
ñ ) the quantum alge-

bra introduced by Drinfeld and Jimbo (see [Dr2] and [Jm]), and UDr
q = UDr

q (X
(k)
ñ )

its Drinfeld realization (see [Dr1]).

This paper has two main goals: describing in detail the structure of the Drin-

feld realization UDr
q with sharply simplified defining relations; and constructing

a (surjective) homomorphism ψ from this realization to the Drinfeld and Jimbo

presentation UDJ
q , as a step towards a complete proof that UDJ

q and UDr
q are iso-

morphic, so that they are indeed different presentations of the same C(q)-algebra

Uq = Uq(X(k)
ñ ) (see [Dr1]).
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Understanding the isomorphism between UDJ
q and UDr

q stated by Drinfeld

in [Dr1] has important applications in the study of the representation theory of

affine quantum algebras: using this result, the finite-dimensional irreducible rep-

resentations of affine quantum algebras are classified in [CP1], [CP2] and [CP3];

and a geometrical realization (through the quiver varieties) of finite-dimensional

representations is constructed in [N] for the untwisted simply laced cases.

The interest of the twisted case resides not only in that it is a generalization

of the untwisted frame. Actually twisted algebras appear quite naturally while

studying the untwisted setting, due to the fact that transposition of matrices estab-

lishes a duality among the affine Cartan matrices through which untwisted Cartan

matrices can correspond to twisted ones; more precisely simply laced untwisted

matrices and matrices of type A
(2)
2n are self-dual, while transposition operates on

the remaining affine Cartan matrices by interchanging untwisted and twisted ones.

This observation is important and concrete because of results like those in [CP4],

where the quantum symmetry group of the affine Toda field theory associated to

an untwisted affine Kac–Moody algebra is proved to be the quantum algebra asso-

ciated to the dual Kac–Moody algebra; and in [FH], where the authors conjecture

in general, and prove for the Kirillov–Reshetikhin modules, that there exists a

duality between representations of an untwisted affine quantum algebra and those

of the dual quantum algebra.

Much work has already been done in the direction of understanding Drinfeld’s

theorem. In [Be] all the relations are proved in the untwisted case. Notice that

this does not yet imply that ψ is an isomorphism: indeed, the argument for the

injectivity should be completed with the proof of the existence of a basis of the

integer form, necessary to conclude that the injectivity at 1 implies the injectivity

at level q; this point is not discussed and as far as I understand it is non-trivial.

For the twisted case there are several partial results. In [A] the author studies

case A
(2)
2 , constructing ψ following [Be], but the proof that it is well defined is

incomplete; a contribution to this proof is given in [H].

In [Jn], [JZ2] and [JZ1], the authors construct a homomorphism from

UDJ
q (X

(k)
ñ ) to UDr

q (X
(k)
ñ ) (the inverse of ψ) following the theorem stated by Drin-

feld in [Dr1], that is, by means of q-commutators. In [Jn] the author gives some

details in the untwisted case, sketching the proof of the relations [E0, Fi] = 0

(i ∈ I0) in case A
(1)
3 , of the Serre relation E0E

2
1 − (q + q−1)E1E0E1 + E2

1E0 = 0

in case A
(1)
n (noticing that the Serre relations involving just indices in I0 are

trivial, but the other Serre relations involving E0 are not studied, for instance

E1E
2
0 − (q + q−1)E0E1E0 + E2

0E1 = 0 is missing) and of the relations [E0, F0] =
K0−K−1

0

q0−q−1
0

in cases A
(1)
n and C

(1)
2 ; but a strategy for generalizing these arguments
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is not presented, and the twisted case is just stated to be similar. In [JZ2] the

authors concentrate on the twisted case, but their work is again incomplete since

the Serre relations involving indices i 6= j ∈ I0 are treated, erroneously, as in the

untwisted case, and for the other relations the authors present some examples:

the commutation between E0 and Fi (i ∈ I) is studied in cases A
(2)
2 and D

(3)
4 ;

some Serre relations (but not all of them) involving E0 are studied in cases A
(2)
2n−1

and D
(3)
4 ; and again a strategy for generalizing these computations is not shown.

Also in [JZ2] there is a mistake in the connection between the data of a finite

Dynkin diagram and its non-trivial automorphism on one hand and the twisted

affine Dynkin diagram on the other hand, which has consequences in the following

paper [JZ1]. Finally in [JZ1] the authors want to fill the gap about the Serre rela-

tions involving the indices i, j ∈ I0 such that aij < −1 (in the twisted case), and

they use a case by case approach; but the Drinfeld relations are misunderstood,

and stated to imply relations not holding in this algebra.

These difficulties suggest the need to better understand the Drinfeld realiza-

tion, which is the aim of the present paper; the definition of the homomorphism

ψ from the Drinfeld realization to the Drinfeld and Jimbo presentation of affine

quantum algebras then becomes a simple consequence of this analysis, and it is

also proved that ψ is surjective.

In §1 and §2 we recall the notions of Dynkin diagram, Weyl group and root

system, and their properties needed in the arguments of the following sections;

in particular it is recalled how untwisted and twisted affine Dynkin diagrams,

Weyl groups and root systems are connected to finite ones, together with their

classification and basic properties.

In §3 some preliminary material about the presentation UDJ
q of Drinfeld and

Jimbo of the affine quantum algebras is summarized.

In Definitions 3.2 and 3.3 and in Remark 3.4 we recall the definition of UDJ
q ,

its main structures (Q-gradation, triangular decomposition, antiautomorphisms

Ω and Ξ, braid group action, embedding of the finite quantum algebra in the

affine one, root vectors Eα) and properties (commutation of (anti)automorphisms,

connection between the braid group action and root vectors, Poincaré–Birkhoff–

Witt basis, Levendorskii–Soibelman formula).

We also recall the embeddings ϕi of the rank 1 quantum algebras UDJ
q (A

(1)
1 )

and UDJ
q (A

(2)
2 ) in the general quantum algebra UDJ

q (X
(k)
ñ ) and their properties of

commutation and injectivity (Definition 3.6 and Remark 3.7). They will play a

role in the comparison between the Drinfeld realization and the Drinfeld–Jimbo

presentation in §12 (Theorem 12.7).
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In §4 we give the definition of the Drinfeld realization of affine quantum

algebras (both untwisted and twisted, see [Dr1]), discussing and translating the

relations into a more explicit form, easier for the purpose of this paper. Even if

it is just a reformulation, it seems useful to give the details, since they are not

always clear in the literature.

In §5 some notation is fixed in order to simplify the analysis of the relations.

Also some relations are reformulated in terms of q-commutators, and some new

relations, including the Serre relations (S±) and other similar ones ((T2±) and

(T3±)), are introduced, which will play an important role in §10 and §11.

In §6 the main structures on UDr
q are introduced: the Q-gradation; the homo-

morphisms φi, underlining the role of the two affine Drinfeld realizations of rank

one, A
(1)
1 and A

(2)
2 , which embed in any other Drinfeld realization, each embedding

depending on the choice of a vertex of the (“finite part” of the) Dynkin diagram;

the antiautomorphism Ω, describing the correspondence between “positive” and

“negative” vectors X±i,r; the automorphisms Θ and ti (for each i ∈ I0), which

summarize several symmetries (reflection about zero and translations) among the

“positive” vectors. Actually these structures are defined on the algebra ŪDr
q (which

is also defined in this section), of which the Drinfeld realization is a quotient, and

the proof that they induce analogous structures on UDr
q is quickly concluded in §8,

through the discussion of §7.

In §7 the algebra ŨDr
q , which is an algebra (already introduced in the previous

section) intermediate between ŪDr
q and UDr

q , is studied in detail. In particular a

first set of relations is simplified: the most important remarks are that the relations

(HX±) can be replaced by the much easier (HXL±) (see Proposition 7.15; they

are much easier not only because they are a smaller set of relations, but mainly

because they can be expressed just in terms of q-commutation of the generators

X±i,r of ŪDr
q , without using the Hi,r’s, see Remark 7.18); and that the relations

(HH) are also redundant (see Proposition 7.16). But also the other relations are

studied and interpreted while discussing how the structures on ŪDr
q (see §6) induce

analogous structures on ŨDr
q (see Remarks 7.7 and 7.9).

§8 is a short and simple section where the structures defined on ŪDr
q and

induced on ŨDr
q are proved to pass also to UDr

q ; this simple analysis is carried

out explicitly, fixing some notation, in order to use it in further considerations,

especially in §9.

In §9 it is now possible to start concentrating on the simplification of the

relations defining UDr
q over ŨDr

q ; these are the relations involving just the X+
i,r’s

or just the X−i,r’s, and there is a correspondence between the two cases thanks to

the action of Ω̃. The main result of this section is that the dependence of these

relations on parameters (r1, . . . , rl) ∈ Zl (l ∈ Z+) is redundant: we can indeed just
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restrict to the same relations indexed by (r, . . . , r) ∈ Zl where r ∈ Z (the “constant

parameter” relations), so that the dependence on Zl is reduced to a dependence

on an integer r (see Lemmas 9.12 and 9.14, Proposition 9.15 and Corollary 9.19);

on the other hand, thanks to the action of the t̃i’s, this situation can be again

simplified by just analyzing the relations relative to (0, . . . , 0) (see Remark 9.8).

Thanks to the results of §9 the study of the relations defining UDr
q can be

pushed forward: in §10 further dependences among the relations are proved (Propo-

sitions 10.1 and 10.4, Corollary 10.6 and Remark 10.7). These results are summa-

rized in Theorem 10.8 and in Corollary 10.9, where a “minimal” set of relations is

provided.

The last step of this analysis is the study of the Serre relations, performed in

§11; here the relations (XD±)–(S3±) are proved to depend, in the case of rank

greater than 1, on the (“constant parameter”) Serre relations, and these are vice

versa proved to depend on the relations (XD±)–(S3±) also in the cases in which

this is not tautologically evident (k > 1, aij < −1). Theorem 11.18 and Corollary

11.19 state the final result of this study, and are the main tool for constructing

the homomorphism ψ and for proving that it is well defined (see §12).

§12 is devoted to constructing a homomorphism ψ from UDr
q to UDJ

q and to

proving that it is well defined and surjective.

In Definition 12.3, ψ̃ : ŨDr
q → UDJ

q is defined, following [Be]. It just requires

some care in the determination of the sign o (Notation 12.1 and Remark 12.2).

The results of §11 and the correspondence, described in Proposition 12.4,

between the (anti)automorphisms constructed on UDr
q and those already known

on UDJ
q make the goal of proving that ψ̃ induces ψ on UDr

q trivial in the cases of

rank greater than 1, that is, in all cases different from A
(1)
1 and A

(2)
2 (Theorem

12.5).

We give two different arguments to solve the cases of rank one (Theorem

12.7). The first one is based on the direct computation of the simple commutation

relation between E1 and Eδ+α1
in UDJ

q (A
(1)
1 ) and UDJ

q (A
(2)
2 ) (Lemma 12.6). The

second one is a straightforward corollary of the result in the case of rank greater

than 1, once one recalls the embeddings (see Remark 3.7) of rank 1 quantum

algebras in general quantum algebras.

A proof that ψ is surjective is provided in Theorem 12.11: it makes use of the

correspondence between the automorphisms ti on UDr
q and the automorphisms Tλi

on UDJ
q and among the Ω’s (Remark 12.8), and of the braid group action on UDJ

q .

Theorem 12.11 would also suggest how to define the inverse of ψ.

An index of notation used in the paper is in the appendix (§13).
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my maestro: for his always caring presence (even when he did not approve my
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§1. Preliminaries: Dynkin diagrams

For the preliminary material in this section see [Bo] and [K].

A Dynkin diagram Γ of finite or affine type is the datum (I, A) of its set of

indices I and its Cartan matrix A = (aij)i,j∈I ∈ Mn×n(Z) with the following

properties:

(i) aii = 2 for all i ∈ I;

(ii) aij ≤ 0 for all i 6= j ∈ I;

(iii) aij = 0⇔ aji = 0;

(iv) the determinants of all the proper principal minors of A are positive, and

det(A) ≥ 0 (Γ is of finite type if det(A) > 0 and of affine type if det(A) = 0);
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Γ is said to be indecomposable if furthermore:

(v) if I = I ′ ∪ I ′′ with I ′ ∩ I ′′ = ∅ and I ′, I ′′ 6= ∅ then there exist i′ ∈ I ′ and

i′′ ∈ I ′′ such that ai′i′′ 6= 0.

Between the vertices i 6= j ∈ I there are max{|aij |, |aji|} edges, with an arrow

pointing to i if |aij | > |aji|; vertices, edges and arrows uniquely determine Γ.

A Dynkin diagram automorphism of Γ is a map χ : I → I such that

aχ(i)χ(j) = aij for all i, j ∈ I.

It is universally known that these data are classified (see [Bo]); the type of

the indecomposable finite data is denoted by X#I (X = A,B,C,D,E, F,G).

In this preliminary section we recall the construction and classification of the

indecomposable Dynkin diagrams of affine type due to Kac (see [K]) and fix the

general notation used in the paper.

Let Γ̃ be an indecomposable Dynkin diagram of finite type, with set of ver-

tices Ĩ (#Ĩ = ñ) and Cartan matrix Ã = (ãi′j′)i′,j′∈Ĩ . To Xñ there are attached:

(a) the root lattice Q̃ =
⊕

i′∈Ĩ Zα̃i′ ;
(b) the Weyl group W̃ ⊆ Aut(Q̃) generated by the reflections {s̃i′ | i′ ∈ Ĩ} where

s̃i′ is defined by s̃i′(α̃j′) = α̃j′ − ãi′j′ α̃i′ (i′, j′ ∈ Ĩ);

(c) the (uniquely determined up to a scalar factor) W̃ -invariant bilinear form (·|·)
on Q̃, which induces a positive definite scalar product on R⊗ZQ̃ =

⊕
i′∈Ĩ Rα̃i′ ;

(d) the root system Φ̃ ⊆ Q̃, which is the W̃ -orbit of the set {α̃i′ | i′ ∈ Ĩ} and is

also characterized by Φ̃ = {α̃ ∈ Q̃ | ∃i′ ∈ Ĩ such that (α̃|α̃) = (α̃i′ |α̃i′)}.

A Dynkin diagram automorphism χ induces an orthogonal transformation χ

of (Q̃, (·|·)) (χ(α̃i′) = α̃χ(i′)), and we have χ ◦ s̃i′ = s̃χ(i′) ◦χ, χ(Φ̃) = Φ̃.

Consider the datum (Xñ, χ) with χ a Dynkin diagram automorphism of Xñ,

and let k be the order of χ. It is well known (see [K]) that to this datum it is

possible to attach an indecomposable Dynkin diagram Γ of affine type and an

indecomposable subdiagram Γ0 ↪→ Γ of finite type with the following properties:

(I) the sets of vertices I of Γ and I0 of Γ0 are related by I0 = Ĩ/χ (the set of

χ-orbits in Ĩ; for i′ ∈ Ĩ denote by ī′ ∈ I0 the χ-orbit of i′) and I = I0 ∪ {0};
we shall denote by n the cardinality of I0 and by {1, . . . , n} the set I0 (so

that I = {0, 1, . . . , n});
(II) the Cartan matrix A0 of Γ0 is connected with Ã through the relation

aī′ j̄′ = 2

∑
u∈Z/kZ ãχu(i′)j′∑
u∈Z/kZ ãχu(i′)i′

;

note in particular that if k = 1 we have I0 = Ĩ and A0 = Ã, hence Γ0 = Γ̃;
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(III) the root lattice Q0 =
⊕

i∈I0 Zαi of Γ0 naturally embeds in the root lattice

Q =
⊕

i∈I Zαi of Γ; their positive subsets are Q0,+ =
∑
i∈I0 Nαi and

Q+ =
∑
i∈I Nαi;

(IV) the highest root ϑ0 of Γ0 is characterized by the properties that ϑ0 ∈ Φ0 (the

root system of Γ0) and ϑ0−α ∈ Q0,+ for all α ∈ Φ0; moreover (ϑ0|ϑ0) ≥ (α|α)

for all α ∈ Φ0;

(V) the highest shortest root ϑ
(s)
0 of Γ0 is characterized by the properties that

ϑ
(s)
0 ∈ Φ0, (ϑ

(s)
0 |ϑ

(s)
0 ) ≤ (α|α) for all α ∈ Φ0, and ϑ

(s)
0 − α ∈ Q0,+ for all

α ∈ Φ0 such that (α|α) = (ϑ
(s)
0 |ϑ

(s)
0 );

(VI) the Cartan matrix A of Γ extends A0: A = (aij)i,j∈I , with

a00 = 2, ∀i ∈ I0, a0i = −2
(θ|αi)
(θ|θ)

, ai0 = −2
(αi|θ)
(αi|αi)

,

where

θ =


ϑ0 if k = 1,

2ϑ
(s)
0 if Xñ = A2n and χ 6= id,

ϑ
(s)
0 otherwise.

The type of the Dynkin diagram Γ thus constructed is denoted by X
(k)
ñ (in-

deed it does not depend on χ but just on k), and it is well known (see [K]) that

this construction provides a classification of the indecomposable affine Dynkin

diagrams, which we list in the following table.

The labels under the vertices fix an identification between I and {0, 1, . . . , n}
such that I0 corresponds to {1, . . . , n}. For each type we also recall the coefficients

ri (for i ∈ I0) in the expression θ =
∑
i∈I0 riαi (note that we correct here a

misprint in [Da]: the coefficient rn for case A
(2)
2n−1).

X
(k)
ñ=ñ(n) n (Γ, I) (r1, . . . , rn)

A
(1)
1 1 ◦

0
====◦

1
(1)

A
(1)
n >1 ◦

1

�
�
�

−−◦
2
. .

◦
0

.◦
n−1
−−�
�
�

◦
n

(1, . . . , 1)

B
(1)
n >2 ◦

1
<====◦

2
−−◦

3
. . . ◦
n−2
−−◦
n−1

∣∣◦0
−−◦

n
(2, . . . , 2, 1)

C
(1)
n >1 ◦

1
====>◦

2
−−◦

3
. . . ◦
n−1
−−◦

n
<====◦

0
(1, 2, . . . , 2)



Drinfeld Realization: the Relations 669

D
(1)
n >3 ◦

2
−−◦

3

∣∣◦1
−−◦

4
. . . ◦
n−2
−−◦
n−1

∣∣◦0
−−◦

n
(1, 1, 2, . . . , 2, 1)

E
(1)
6 6 ◦

2
−−◦

3
−−◦

4

∣∣◦1
∣∣◦0
−−◦

5
−−◦

6
(2, 1, 2, 3, 2, 1)

E
(1)
7 7 ◦

0
−−◦

2
−−◦

3
−−◦

4

∣∣◦1
−−◦

5
−−◦

6
−−◦

7
(2, 2, 3, 4, 3, 2, 1)

E
(1)
8 8 ◦

2
−−◦

3
−−◦

4

∣∣◦1
−−◦

5
−−◦

6
−−◦

7
−−◦

8
−−◦

0
(3, 2, 4, 6, 5, 4, 3, 2)

F
(1)
4 4 ◦

1
−−◦

2
<====◦

3
−−◦

4
−−◦

0
(2, 4, 3, 2)

G
(1)
2 2 ◦

1
<≡≡≡≡◦

2
−−◦

0
(3, 2)

A
(2)
2 1 ◦

1
<=

=
=
=
=
=◦

0
(2)

A
(2)
2n >1 ◦

1
<====◦

2
−−◦

3
. . . ◦
n−1
−−◦

n
<====◦

0
(2, . . . , 2)

A
(2)
2n−1 >2 ◦

1
====>◦

2
−−◦

3
. . . ◦
n−2
−−◦
n−1

∣∣◦0
−−◦

n
(1, 2, . . . , 2, 1)

D
(2)
n+1 >1 ◦

1
<====◦

2
−−◦

3
. . . ◦
n−1
−−◦

n
====>◦

0
(1, . . . , 1)

E
(2)
6 4 ◦

0
−−◦

1
−−◦

2
<====◦

3
−−◦

4
(2, 3, 2, 1)

D
(3)
4 2 ◦

0
−−◦

1
<≡≡≡≡◦

2
(2, 1)

§2. Preliminaries: Weyl group and root system

The following structures of the affine Weyl group and root system (see [Bo], [IM],

[K], [M]) will be used in the paper:

(i) the Weyl group W0 = 〈si | i ∈ I0〉 ⊆ Aut(Q0) of Γ0 acts on Q by si(αj) =

αj − aijαi for i ∈ I0, j ∈ I and this action extends to the Weyl group

W = 〈si | i ∈ I〉 ⊆ Aut(Q) of Γ by s0(αi) = αi − a0iα0 for i ∈ I;

(ii) the W -invariant bilinear form (·|·) on Q induces a positive semidefinite sym-

metric bilinear form on R⊗ZQ: it is obviously positive definite on R⊗ZQ0,
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and has kernel generated by δ = α0 + θ =
∑
i∈I riαi ∈ Q where r0 = 1

always;

(iii) (·|·) can be uniquely normalized in such a way that there is a diagonal

matrix D = diag(di | i ∈ I) with 1 ∈ {di | i ∈ I0} ⊆ {di | i ∈ I} ⊆ Z+ and

(αi|αj) = diaij for all i, j ∈ I; for i ∈ I, w ∈W set dw(αi) = di;

(iv) for i ∈ I0 define d̃i =

{
1 if k = 1 or X

(k)
ñ = A

(2)
2n ,

di otherwise;

(v) the weight lattice P̂ ⊆ R ⊗Z Q0 is P̂ =
⊕

i∈I0 Zλi, where for all i ∈ I0,

λi ∈ R⊗ZQ0 is defined by (λi|αj) = d̃iδij for all j ∈ I0; Q0 naturally embeds

in P̂ , which provides a W -invariant action on Q by x(α) = α − (x|α)δ for

x ∈ P̂ and α ∈ Q;

(vi) as subgroups of Aut(Q) we have W ≤ P̂ o W0; Ŵ = P̂ o W0 is called

the extended Weyl group of Γ and we also have Ŵ = W o T , where T =

Aut(Γ) ∩ Ŵ ;

(vii) the extended braid group B̂ is the group generated by {Tw | w ∈ Ŵ} with

relations TwTw′ = Tww′ whenever l(ww′) = l(w)l(w′), where l : Ŵ → N is

defined by

l(w) = min{r ∈ N | ∃i1, . . . , ir ∈ I and τ ∈ T such that w = si1 · . . . · sirτ};

set Ti = Tsi for i ∈ I; recall that l(
∑
i∈I0 miλi) =

∑
i∈I0 mil(λi) if mi ∈ N

for all i ∈ I0;

(viii) the root system Φ of Γ decomposes into the union of the sets Φre of real

roots and Φim of imaginary roots, where Φre is the W -orbit in Q of the set

{αi | i ∈ I} and Φim = {mδ | m ∈ Z \ {0}}; the set of positive roots is

Φ+ = Φ ∩Q+;

(ix) the multiplicity of the root α ∈ Φ is 1 if α is real and #{i ∈ I0 | d̃i |m} if

α = mδ (m ∈ Z\{0}); the set Φ̂ of roots with multiplicities is Φ̂ = Φre∪ Φ̂im

where Φ̂im = {(mδ, i) | i ∈ I0, m ∈ Z \ {0}}, d̃i |m}; the set of positive roots

with multiplicities is Φ̂+ = Φre
+ ∪ Φ̂im

+ = (Φ+ ∩Φre) ∪ {(mδ, i) ∈ Φ̂ | m > 0};
(x) choose a sequence ι : Z 3 r 7→ ιr ∈ I such that sι1 · . . . · sιNi τi =

∑i
j=1 λj

for all i ∈ I0 and ιr+Nn = τn(ιr) for all r ∈ Z, where Ni =
∑i
j=1 l(λj) and

τi ∈ T ; then ι induces a map

Z 3 r 7→ wr ∈W defined by wr =

{
sι1 · . . . · sιr−1

if r ≥ 1,

sι0 · . . . · sιr+1
if r ≤ 0,

and a bijection

Z 3 r 7→ βr = wr(αιr ) ∈ Φre
+ ;
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(xi) the total ordering � of Φ̂+ defined by

βr � βr−1 � (m̃δ, i) � (mδ, j) � (mδ, i) � βs+1 � βs
∀r ≤ 0, s ≥ 1, m̃ > m > 0, j ≤ i ∈ I0

induces on Φ+ a convex ordering: if α =
∑M
r=1 γr with M > 1, γ1 � · · · � γM

and α, γr ∈ Φ+ for all r = 1, . . . ,M , then either γ1 ≺ α or γr ∈ Φim for all

r = 1, . . . ,M .

§3. Preliminaries: the Drinfeld–Jimbo presentation Uq

In this section we recall the definition of the quantum algebra Uq introduced by

Drinfeld and Jimbo (see [Dr2] and [Jm]), and the structures and results (see [Be],

[Da], [LS], [L]) needed in §12. First of all recall some notation.

Notation 3.1. (i) For all i ∈ I0 we denote by qi the element qi = qdi ∈ C(q).

(ii) Consider the ring Z[x, x−1]. Then for all m, r ∈ Z the elements [m]x, [m]x!

(m ≥ 0) and
[
m
r

]
x

(m ≥ r ≥ 0) of Z[x, x−1] are defined by [m]x = xm−x−m
x−x−1 ,

[m]x! =
∏m
s=1[s]x and

[
m
r

]
x

= [m]x!
[r]x![m−r]x! .

(iii) Consider the field C(q) and, given v ∈ C(q)\{0}, the natural homomorphism

Z[x, x−1] → C(q) determined by the condition x 7→ v; then for all m, r ∈ Z
[m]v, [m]v! (m ≥ 0) and

[
m
r

]
v

(m ≥ r ≥ 0) denote the images in C(q) of [m]x,

[m]x! and
[
m
r

]
x

respectively.

Definition 3.2. Let Γ = (I, A) be a Dynkin diagram of finite or affine type.

(i) The (Drinfeld–Jimbo) quantum algebra of type Γ is the C(q)-algebra Uq =

Uq(Γ) generated by

{Ei, Fi,K±1
i | i ∈ I}

with relations

KiK
−1
i = 1 = K−1

i Ki, KiKj = KjKi ∀i, j ∈ I,

KiEj = q
aij
i EjKi, KiFj = q

−aij
i FjKi ∀i, j ∈ I,

[Ei, Fj ] = δij
Ki −K−1

i

qi − q−1
i

∀i, j ∈ I,

1−aij∑
u=0

[
1− aij
u

]
qi

Eui EjE
1−aij−u
i = 0 ∀i 6= j ∈ I,

1−aij∑
u=0

[
1− aij
u

]
qi

Fui FjF
1−aij−u
i ∀i 6= j ∈ I;

the last two sets of relations are called the Serre relations.
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If Γ is affine of type X
(k)
ñ we also set:

(ii) UDJ
q = UDJ

q (X
(k)
ñ ) = Uq(Γ), to stress the distinction of this affine quantum

algebra from its Drinfeld realization;

(iii) Ufin
q = Ufin

q (X
(k)
ñ ) = Uq(Γ0) (see §1(I)).

Definition 3.3. Recall that Uq is endowed with the following structures:

(i) the Q-gradation Uq =
⊕

α∈Q Uq,α determined by the conditions:

Ei ∈ Uq,αi , Fi ∈ Uq,−αi , K±1
i ∈ Uq,0 ∀i ∈ I;

Uq,αUq,β ⊆ Uq,α+β ∀α, β ∈ Q;

(ii) the triangular decomposition: Uq ∼= U−q ⊗U0
q ⊗U+

q , where U−q , U0
q and U+

q are

the subalgebras of Uq generated respectively by {Ei | i ∈ I}, {K±1
i | i ∈ I}

and {Fi | i ∈ I}; in particular

Uq,α ∼=
⊕

β,γ∈Q+: γ−β=α

U−q,−β ⊗ U
0
q ⊗ U+

q,γ ∀α ∈ Q

where U±q,α = Uq,α ∩ U±q ;

(iii) the C-antilinear antiinvolution Ω : Uq → Uq defined by

Ω(q) = q−1; Ω(Ei) = Fi, Ω(Fi) = Ei, Ω(Ki) = K−1
i ∀i ∈ I;

(iv) the C(q)-linear antiinvolution Ξ : Uq → Uq defined by

Ξ(Ei) = Ei, Ξ(Fi) = Fi, Ξ(Ki) = K−1
i ∀i ∈ I;

(v) the braid group action defined by

Ti(Kj) = KjK
−aij
i ∀i, j ∈ I,

Ti(Ei) = −FiKi, Ti(Fi) = −K−1
i Ei ∀i ∈ I,

Ti(Ej) =

−aij∑
r=0

(−1)r−aijq−ri E
(−aij−r)
i EjE

(r)
i , Ti(Fj) = Ω(Ti(Ej)) ∀i 6= j ∈ I

where E
(m)
i = Emi /[m]qi ! for m ∈ N;

(vi) a natural Aut(Γ)-action: τ(Ki) = Kτ(i), τ(Ei) = Eτ(i), τ(Fi) = Fτ(i) for all

τ ∈ Aut(Γ) and i ∈ I0; if Γ is affine then setting Tτ = τ extends the braid

group action to an extended braid group action;

(vii) if Γ ↪→ Γ′ is a Dynkin diagram embedding then the C-homomorphism

ϕΓ,Γ′ : Uq(Γ)→ Uq(Γ′)
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is naturally defined by

q 7→ qmin{d′i|i∈I}, K±1
i 7→ K±1

i , Ei 7→ Ei, Fi 7→ Fi (i ∈ I);

in particular if Γ is of affine type, ϕ = ϕΓ0,Γ : Ufin
q → UDJ

q is a C(q)-

homomorphism;

(viii) positive and negative root vectors Eα ∈ UDJ,+
q,α and Fα = Ω(Eα) ∈ UDJ,−

q,−α
(α ∈ Φ̂+) such that if Γ is of affine type then Eβr = Twr (Eιr ) for r ≥ 1,

Eβr = T−1

w−1
r

(Eιr ) for r ≤ 0, and E(d̃irδ,i)
= −Ed̃irδ−αiEi + q−2

i EiEd̃irδ−αi
for r > 0 and i ∈ I0.

Remark 3.4. (i) ΩΞ = ΞΩ, ΩTi = TiΩ for all i ∈ I and Ωτ = τΩ for all τ ∈ T ;

(ii) ΞTi = T−1
i Ξ for all i ∈ I and Ξτ = τΞ for all τ ∈ T ;

moreover if Γ is of affine type:

(iii) ϕ commutes with Ω, Ξ and Ti (i ∈ I0);

(iv) in cases A
(1)
1 and A

(2)
2 , ΞT1Tλ1

= T−1
λ1

ΞT1 (recall that Tλ1
= T0Tτ = TτT1,

where 〈τ〉 = Aut(Γ) in case A
(1)
1 , and Tλ1 = T0T1 in case A

(2)
2 );

(v) Tw(UDJ
q,α) = UDJ

q,w(α) for all w ∈ Ŵ , α ∈ Q;

(vi) Tw(Ei) ∈ UDJ,+
q,w(αi)

if w ∈ Ŵ and i ∈ I are such that w(αi) ∈ Q+ (i.e.

l(wsi) > l(w));

(vii) Emd̃iδ+αi = T−mλi (Ei) and Fmd̃iδ+αi = T−mλi (Fi) for all m ∈ N and i ∈ I0;

(viii) {Kα | α ∈ Q} is a basis of UDJ,0
q , where Kα =

∏
i∈I K

mi
i if α =

∑
i∈I miαi

∈ Q;

(ix) {E(γ) = Eγ1 · . . . · EγM | M ∈ N, γ = (γ1 � · · · � γM ), γh ∈ Φ̂+

∀h = 1, . . . ,M} is a basis of UDJ,+
q ;

(x) {E(γ)KαΩ(E(γ′)) | α ∈Q, γ = (γ1 � · · · � γM ) ∈ Φ̂M+ , γ′ = (γ′1 � · · · � γ′M ′)
∈ Φ̂M

′

+ ,M,M ′ ∈ N} is a basis of UDJ
q , called the PBW-basis;

(xi) for all α ≺ β ∈ Φ̂+ EβEα−q(α|β)EαEβ is a linear combination of {E(γ) | γ =

(γ1 � · · · � γM ) ∈ Φ̂M+ , M ∈ N, α ≺ γ1} (Levendorskii–Soibelman formula).

Remark 3.5. If Γ is affine Remark 3.4(ix) implies that dimUDJ,+
q,α = dimUfin,+

q,α

for all α ∈ Q0,+. In particular ϕ is injective.

Definition 3.6. If Γ is affine, for i ∈ I0 let

ϕi :

{
UDJ
q (A

(1)
1 )→ UDJ

q (X
(k)
ñ ) if (X

(k)
ñ , i) 6= (A

(2)
2n , 1),

UDJ
q (A

(2)
2 )→ UDJ

q (X
(k)
ñ ) if (X

(k)
ñ , i) = (A

(2)
2n , 1),

be the C-homomorphisms defined on the generators as follows:

q 7→ qi, K±1
1 7→ K±1

i , E1 7→ Ei, F1 7→ Fi
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and

K0 7→ Kd̃iδ−αi , E0 7→ Ed̃iδ−αi , F0 7→ Fd̃iδ−αi if (X
(k)
ñ , i) 6= (A

(2)
2n , 1),

K0 7→ Kδ−2α1
, E0 7→ Eδ−2α1

, F0 7→ Fδ−2α1
if (X

(k)
ñ , i) = (A

(2)
2n , 1).

Remark 3.7. (i) ϕiΩ = Ωϕi, ϕiT1 = Tiϕi and ϕiTλ1
= Tλiϕi for all i ∈ I0;

(ii) ϕi (i ∈ I0) is injective (thanks to the PBW-bases).

§4. The Drinfeld realization UDr
q : definition

In this section the definition of the Drinfeld realization UDr
q (X

(k)
ñ ) of the affine

quantum algebra of type X
(k)
ñ is presented; the definition is discussed and refor-

mulated using the set I0×Z as index set for the generators instead of the set Ĩ×Z
used in [Dr1] and followed in the literature (see for instance [CP3], [Jn], [JZ2]),

because the relations translated from Ĩ×Z to I0×Z seem simpler to handle, even

though they lose the immediate connection with the datum (Ĩ , χ). This reformu-

lation, which is useful if one aims to compare the Drinfeld realization with the

Drinfeld–Jimbo presentation, is not difficult, but it is presented with some care in

order to avoid any ambiguity.

Notation 4.1. (i) ω denotes a primitive kth root of 1.

(ii) Fix the normalization of the W̃ -invariant bilinear form (·|·) on Q̃ such that

min{
∑
u∈Z/kZ(α̃i′ |α̃χu(i′)) | i′ ∈ Ĩ} = 2.

(iii) Denote d̃ = max{d̃i | i ∈ I0} (in case A
(2)
2n , d̃ = 1, otherwise d̃ = k).

(iv) Let Y be a function from Zl (l ∈ N) to any algebra; given σ ∈ Sl and

p = (p1, . . . , pl) ∈ Zl set σ.(Y (p)) = Y (σ.p) = Y (pσ−1(1), . . . , pσ−1(l)).

(v) Analogously if f ∈ C(q)[[u±1
1 , . . . , u±1

l ]] and u = (u1, . . . , ul) define σ.(f(u))

by σ.(f(u)) = f(uσ−1(1), . . . , uσ−1(l)) for all σ ∈ Sl.
(vi) By “(R±) is the relation S± = 0” is meant that “(R+) is the relation S+ = 0

and (R−) is the relation S− = 0”.

(vii) More generally “A± has property P±” means “A+ has property P+ and A−

has property P−”.

For the definition of the Drinfeld realization of affine quantum algebras, which

we recall here, see [Dr1].

Definition 4.2. Let X
(k)
ñ be a Dynkin diagram of affine type; the Drinfeld real-

ization of the quantum algebra of type X
(k)
ñ is the C(q)-algebra UDr

q (X
(k)
ñ ) = UDr

q

generated by

(G) C±1, K±1
i′ (i′ ∈ Ĩ), X±i′,r ((i′, r) ∈ Ĩ×Z), Hi′,r ((i′, r) ∈ Ĩ×(Z\{0})),
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with the following relations (DR):

Kχ(i′) = Ki′ , Hχ(i′),r = ωrHi′,r (i′ ∈ Ĩ , r ∈ Z \ {0}),(Z)

X±χ(i′),r = ωrX±i′,r ((i′, r) ∈ Ĩ × Z),(ZX±)

CC−1 = 1, [C, x] = 0 ∀x,(C)
Ki′K−1

i′ = 1 = K−1
i′ Ki′ , Ki′Kj′ = Kj′Ki′ (i′, j′ ∈ Ĩ),(KK)

Ki′X±j′,r = q±
∑
u∈Z/kZ(α̃i′ |α̃χu(j′))X±j′,rKi′ (i′, j′ ∈ Ĩ , r ∈ Z),(KX±)

[Ki′ ,Hj′,r] = 0 (i′, j′ ∈ Ĩ , r ∈ Z \ {0}),(KH)

[X+
i′,r,X

−
j′,s] =

∑k−1
u=0 δχu(i′),j′ω

us∑k−1
u=0 δχu(i′),i′

·
C−sKi′H̃+

i′,r+s − C−rK
−1
i′ H̃

−
i′,r+s

(q − q−1)[ 1
2

∑
u∈Z/kZ(α̃χu(i′)|α̃i′)]q

(XX )

((i′, r), (j′, s) ∈ Ĩ × Z),

[Hi′,r,X±j′,s] = ±b̃i′j′rC
r∓|r|

2 X±j′,r+s ((i′, r) ∈ Ĩ × (Z \ {0}), (j′, s) ∈ Ĩ × Z),

(HX±)

[Hi′,r,Hj′,s] = δr+s,0b̃i′j′r
Cr − C−r

(q − q−1)[ 1
2

∑
u∈Z/kZ(α̃χu(j′)|α̃j′)]q

(HH)

((i′, r), (j′, s) ∈ Ĩ × (Z \ {0})),

F±i′j′(u1, u2)X±i′ (u1)X±j′ (u2) = G±i′j′(u1, u2)X±j′ (u2)X±i′ (u1) (i′, j′ ∈ Ĩ),(XFG±) ∑
σ∈S3

σ.((q−3εu±ε1 − (q + q−1)u±ε2 + q3εu±ε3 )X±i′ (u1)X±i′ (u2)X±i′ (u3)) = 0(X3ε,±)

(i′ ∈ Ĩ, ãχ(i′)i′ = −1),

∑
σ∈S1−aij

σ.

1−aij∑
u=0

(−1)u
[
1− aij
u

]
qi

X±i′,p1
· . . . · X±i′,puX

±
j′,vX

±
i′,pu+1

· . . . · X±i′,p1−aij
= 0

(S±)

(k = 1, i′, j′ ∈ Ĩ , i′ 6= j′),∑
σ∈S2

σ.
(
P±i′j′(u1, u2)

(
X±j′ (v)X±i′ (u1)X±i′ (u2)(XP±)

−[2]qmi′j′X
±
i′ (u1)X±j′ (v)X±i′ (u2) + X±i′ (u1)X±i′ (u2)X±j′ (v)

))
= 0

(k > 1, i′, j′ ∈ Ĩ , χ(i′) 6= j′, ãi′j′ < 0),

where H̃±i′,r, b̃i′j′r, X
±
i′ (u), F±i′j′(u1, u2), G±i′j′(u1, u2), ε, P±i′j′(u1, u2) and mi′j′ are

defined as follows:∑
r∈Z
H̃±i′,±ru

r = exp

(
±(q − q−1)

[
1

2

∑
u∈Z/kZ

(α̃χu(i′)|α̃i′)
]
q

∑
r>0

Hi′,±rur
)

;
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b̃i′j′r =

∑k−1
u=0[r(α̃i′ |α̃χu(j′))]qω

ru

r[ 1
2

∑
u∈Z/kZ(α̃i′ |α̃χu(i′))]q

;

X±i′ (u) =
∑
r∈Z
X±i′,ru

−r;

F±i′j′(u1, u2) =
∏

v∈Z/kZ
ãi′,χv(j′) 6=0

(u1 − ωvq±(α̃i′ |α̃χv(j′))u2);

G±i′j′(u1, u2) =
∏

v∈Z/kZ
ãi′,χv(j′) 6=0

(q±(α̃i′ |α̃χv(j′))u1 − ωvu2);

ε = ±1;

P±i′j′(u1, u2) =


1 if ãi′,χ(i′) = 0 and χ(j′) 6= j′, or χ(i′) = i′,

q±2kuk1 − uk2
q±2u1 − u2

otherwise;

mi′j′ =


k

d̃

∑
u∈Z/kZ

δi′χu(i′) if ãi′,χ(i′) = 0 and χ(j′) 6= j′, or χ(i′) = i′,

k otherwise.

Remark 4.3. In [Dr1] not all the relations (X3ε,±) appear, but just (X31,+)

and (X3−1,−); the relations (X3−1,+) and (X31,−) are introduced in [CP3] as

consequences of (Z)–(XFG±), (X31,+), (X3−1,−), (S±), (XP±), since their use

simplifies some calculations, making evident some symmetries (the stability of the

relations under the antiautomorphism Ω̃ and the automorphism Θ̃). Here we use

the relations (X3ε,±) for the same reasons of simplification (see Remarks 8.3 and

8.5), proving in Proposition 10.1 the equivalence stated in [CP3].

Remark 4.4. (i) For all r ∈ Z, the algebra generated by {Yi′ | i′ ∈ Ĩ} with

relations {Yχ(i′) = ωrYi′ | i′ ∈ Ĩ} is isomorphic to the algebra generated by

{Yi | i ∈ I0} with relations {Yi = ωr#{i
′∈Ĩ | ī′=i}Yi | i ∈ I0}, where a section

˜: I0 → Ĩ induces an isomorphism Yi 7→ Yĩ.
(ii) Consider i′ ∈ Ĩ and let i ∈ I0 = Ĩ/χ be the χ-orbit of i′. Notice that χ(i′) = i′

⇔ k | d̃i; more precisely
∑
u∈Z/kZ δi′,χu(i′) = d̃i and d̃i#{i′ ∈ Ĩ | ī′ = i} = k.

(iii) For all r ∈ Z, the algebra generated by {Yi | i ∈ I0} with relations

{Yi = ωkr/d̃iYi | i ∈ I0} is trivially isomorphic to the algebra generated

by {Yi | i ∈ I0} with relations {Yi = 0 | d̃i - r}, which is trivially isomorphic

to the free algebra generated by {Yi | i ∈ I0, d̃i | r}.
(iv) Hence, for all r ∈ Z, the algebra generated by {Yi′ | i′ ∈ Ĩ} with relations

{Yχ(i′) = ωrYi′ | i′ ∈ Ĩ} is isomorphic to the algebra generated by {Yi | i ∈ I0}
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with relations {Yi = 0 | d̃i - r}, where a section ˜ : I0 → Ĩ induces an

isomorphism Yi 7→ Yĩ.
(v) Finally, the algebra generated by {Yi′,r | i′ ∈ Ĩ , r ∈ Z} with relations

{Yχ(i′),r = ωrYi′,r | i′ ∈ Ĩ , r ∈ Z} is isomorphic to the algebra generated

by {Yi,r | i ∈ I0, r ∈ Z} with relations {Yi,r = 0 | d̃i - r}, or equivalently to

the free algebra generated by {Yi,r | i ∈ I0, r ∈ Z, d̃i | r}.

Notation 4.5. Set IZ = {(i, r) ∈ I0 × Z | d̃i | r}.

Corollary 4.6. (i) UDr
q is (isomorphic to) an algebra generated by

(G) C±1, k±1
i (i ∈ I0), X±i,r ((i, r) ∈ I0×Z), Hi,r ((i, r) ∈ I0×(Z\{0}));

the relations

X±i,r = 0 ∀(i, r) ∈ (I0 × Z) \ IZ,(ZX±)

Hi,r = 0 ∀(i, r) ∈ (I0 × Z) \ IZ(ZH)

hold in UDr
q .

(ii) UDr
q is generated by

(G′) C±1, k±1
i (i ∈ I0), X±i,r ((i, r) ∈ IZ), Hi,r ((i, r) ∈ IZ \ (I0 × {0})).

Remark 4.7. The relations (ZX±) are equivalent to the condition X±χ(i′)(u) =

X±i′ (ω−1u) for all i′ ∈ Ĩ.

Notation 4.8. Given i, j ∈ I0 we set d̃ij = max{d̃i, d̃j}.

Remark 4.9. (i) If α̃i′ (i′ ∈ Ĩ) is a short root then (α̃i′ |α̃i′) = 2k/d̃;

(ii) for all i′ ∈ Ĩ we have
∑
u∈Z/kZ(α̃i′ |α̃χu(i′)) = 2dī′ .

Remark 4.10. (i) Note that there exists a section ˜ : I0 → Ĩ such that given

i, j ∈ I0 we have aij 6= 0 ⇒ ãĩj̃ 6= 0 (of course it is always true that ãi′j′ 6= 0

⇒ aī′ j̄′ 6= 0);

(ii) let ˜ be a section as in (i); then, if k > 1, diaij = max{di, dj}ãĩj̃ .

Remark 4.11. (i) The relations (KK), (KX±) and (KH) are compatible with

(Z) and (ZX±), in the sense that for all i′, j′ ∈ Ĩ, r ∈ Z, s ∈ Z \ {0},

(KK)χ(i′),j′ = (KK)i′,j′ = (KK)i′,χ(j′),

(KX±)χ(i′),j′,r = (KX±)i′,j′,r, (KX±)i′,χ(j′),r = ωr(KX±)i′,j′,r,

(KH)χ(i′),j′,s = (KH)i′,j′,s, (KH)i′,χ(j′),s = ωs(KH)i′,j′,s;
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(ii) if i, j ∈ I0 are such that ī′ = i, j̄′ = j, then (KX±)i′,j′ is equivalent to

Ki′X±j′,r = q
±aij
i X±j′,rKi′

(see §1(II), Remark 4.9(ii) and Notation 3.1(i)).

Remark 4.12. (i) If we apply χ to the expression
∑
r>0Hi′,±rur (i′ ∈ Ĩ) we get

(see (Z)) ∑
r>0

Hχ(i′),±ru
r =

∑
r>0

Hi′,±r(ω±1u)r.

(ii) From (i) and from Definition 4.2 we get∑
r∈Z
H̃±χ(i′),±ru

r =
∑
r∈Z
H̃±i′,±r(ω

±1u)r ∀i′ ∈ Ĩ ,

that is, H̃±χ(i′),r = ωrH̃±i′,r for all (i′, r) ∈ Ĩ × (Z \ {0}).
(iii) The relations (XX ) are compatible with (Z) and (ZX±):

(XX )χ(i′),r;j′,s = ωr(XX )i′,r;j′,s, (XX )i′,r;χ(j′),s = ωs(XX )i′,r;j′,s.

(iv) If ˜ is as in Remark 4.10 and i, j ∈ I0, then (XX )ĩ,r;j̃,s is equivalent to

[X+

ĩ,r
,X−

j̃,s
] =

δij
C−sKĩH̃

+

ĩ,r+s
− C−rK−1

ĩ
H̃−
ĩ,r+s

(qi − q−1
i )

if d̃j | s,

0 otherwise

(see Remark 4.4(ii)).

Remark 4.13. Let i′, j′ ∈ Ĩ, r ∈ Z; then:

(i) b̃i′j′r =
1

r

k−1∑
u=0

[
r(α̃i′ |α̃χu(j′))

dī′

]
q
ī′

ωru;

(ii) b̃χ(i′)j′r = ωr b̃i′j′r and b̃i′χ(j′)r = ω−r b̃i′j′r;

(iii) the relations (HX±) and (HH) are compatible with (Z) and (ZX±):

(HX±)χ(i′),r;j′,s = ωr(HX±)i′,r;j′,s, (HX±)i′,r;χ(j′),s = ωs(HX±)i′,r;j′,s

(HH)χ(i′),r;j′,s = ωr(HH)i′,r;j′,s, (HH)i′,r;χ(j′),s = ωs(HH)i′,r;j′,s.

Notation 4.14. Let i, j ∈ I0 and r ∈ Z; then set

bijr =


0 if d̃i,j - r,
[2r]q(q

2r + (−1)r−1 + q−2r)/r if (X
(k)
ñ , i, j) = (A

(2)
2n , 1, 1),

[r̃aij ]qi/r̃ otherwise, with r̃ = r/d̃i,j .
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Proposition 4.15. If ˜is as in Remark 4.10, then b̃ĩj̃r = bijr for all i, j ∈ I0 and

r ∈ Z. In particular (HX )ĩ,r;j̃,s and (HH)ĩ,r;j̃,s are equivalent to

[Hĩ,r,X
±
j̃,s

] = ±bijrC
r∓|r|

2 X±
j̃,r+s

and [Hĩ,r,Hj̃,s] = δr+s,0bijr
Cr − C−r

qj − q−1
j

.

Proof. If k = 1 the claim is trivial. Suppose now k > 1 (so that Xñ is simply

laced) and notice that (see Remark 4.9(i))

b̃ĩj̃r =
1

r

k−1∑
u=0

[
rkãĩχu(j̃)

d̃di

]
qi

ωru;

moreover if d̃ij = k then either χ(̃i) = ĩ or χ(j̃) = j̃ so that ãĩχu(j̃) = ãĩj̃ for all u,

r̃ = r/k, d̃h = dh for all h ∈ I0, d̃ = k and, thanks to Remark 4.10(ii),

b̃ĩj̃r =
1

r

[
rkãĩj̃

d̃di

]
qi

k−1∑
u=0

ωru =


0 if k - r,
1

r̃

[
raij

d̃

]
qi

=
[r̃aij ]qi
r̃

if k | r.

If (X
(k)
ñ , i, j) = (A

(2)
2n , 1, 1) then

b̃ĩj̃r =
1

r
([4r]q + (−1)r[−2r]q) =

1

r
[2r]q

(
q2r + (−1)r−1 + q−2r

)
.

In the remaining cases ãĩχu(j̃) = 0 when k - u, r̃ = r and max{di, dj} = k/d̃, hence

b̃ĩj̃r =
1

r

[
krãĩj̃

d̃di

]
qi

=
1

r
[raij ]qi =

1

r̃
[r̃aij ]qi .

In the next remarks as well as in all the paper the q-commutators play a funda-

mental role in simplifying the description of the elements and in the computations.

We recall here their definition and simple properties (see also [Jn]).

Notation 4.16. Given v ∈ C(q) \ {0} and a, b elements of a C(q)-algebra, the

element [a, b]v is defined by [a, b]v = ab− vba.

Remark 4.17. Let a, b, c ∈ ŨDr
q and u, v, w ∈ C(q) \ {0}. Then:

(i) [a, b]u = −u[b, a]u−1 ;

(ii) [[a, b]u, b]v = [[a, b]v, b]u = ab2 − (u+ v)bab+ uvb2a;

(iii) [[a, b]u, c]v = [a, [b, c]v/w]uw − u[b, [a, c]w]v/uw.

If moreover a ∈ UDr
q,α, b ∈ UDr

q,β and i ∈ I0 then:

(iv) [kia, b]u = ki[a, b]q−(αi|β)u;



680 I. Damiani

(v) [a, kib]u = q−(α|αi)ki[a, b]q(αi|α)u.

Remark 4.18. Let i′, j′ ∈ Ĩ; then:

(i) F±i′j′(u1, u2) and G±i′j′(u1, u2) are homogeneous polynomials of the same de-

gree d;

(ii) F±χ(i′)j′(u1, u2) = ωdF±i′j′(ω
−1u1, u2), F±i′χ(j′)(u1, u2) = F±i′j′(u1, ω

−1u2);

(iii) G±χ(i′)j′(u1, u2) = ωdG±i′j′(ω
−1u1, u2), G±i′χ(j′)(u1, u2) = G±i′j′(u1, ω

−1u2);

(iv) the relations (XFG±) are compatible with (ZX±):

(XFG±)χ(i′),j′(u1, u2) = ωd(XFG±)i′,j′(ω
−1u1, u2),

(XFG±)i′,χ(j′)(u1, u2) = (XFG±)i′,j′(u1, ω
−1u2).

Remark 4.19. Let i′, j′ ∈ Ĩ be such that ãi′,χr(j′) = 0 for all r ∈ Z; this is

equivalent to the condition aī′ j̄′ = 0. Then:

(i) F±i′j′(u1, u2) = G±i′j′(u1, u2) = 1;

(ii) the relation (XFG±)i′,j′ is equivalent to [X±i′ (u1),X±j′ (u2)] = 0, that is, to

[X±i′,r,X
±
j′,s] = 0 ∀r, s ∈ Z.

Remark 4.20. Let i′, j′ ∈ Ĩ.

(i) The condition (α̃i′ |α̃χr(j′)) = (α̃i′ |α̃j′) 6= 0 for all r ∈ Z is equivalent to the

conditions aī′ j̄′ 6= 0, d̃ī′ j̄′ = k and implies that d̃ī′ j̄′(α̃i′ |α̃j′) = dī′aī′ j̄′ ;

(ii) the condition that there is a unique r ∈ Z/kZ such that (α̃i′ |α̃χr(j′)) 6= 0 is

equivalent to the conditions aī′ j̄′ 6= 0, d̃ī′ j̄′ = 1, (X
(k)
ñ , ī′, j̄′) 6= (A

(2)
2n , 1, 1);

this condition implies that (α̃i′ |α̃χr(j′)) = dī′aī′ j̄′ .

Let i, j ∈ I0 and choose ˜ as in Remark 4.10.

(iii) If aij 6= 0 and (X
(k)
ñ , i, j) 6= (A

(2)
2n , 1, 1) (that is, ĩ, j̃ satisfy the conditions of

(i) or (ii) with r = 0) then

F±
ĩj̃

(u1, u2) = u
d̃ij
1 − q±aiji u

d̃ij
2 , G±

ĩj̃
(u1, u2) = q

±aij
i u

d̃ij
1 − ud̃ij2 ,

and the relation (XFG±)ĩ,j̃ is equivalent to

[u
d̃ij
1 X

±
ĩ

(u1),X±
j̃

(u2)]
q
±aij
i

+ [u
d̃ij
2 X

±
j̃

(u2),X±
ĩ

(u1)]
q
±aij
i

= 0,

that is, to

[X±
ĩ,r+d̃ij

,X±
j̃,s

]
q
±aij
i

+ [X±
j̃,s+d̃ij

,X±
ĩ,r

]
q
±aij
i

= 0 ∀r, s ∈ Z.
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Notice that

[X−
ĩ,r+d̃ij

,X−
j̃,s

]
q
−aij
i

= −q−aiji [X−
j̃,(s+d̃ij)−d̃ij

,X−
ĩ,r+d̃ij

]
q
aij
i

so that (XFG±)ĩ,j̃ is equivalent to

[X±
ĩ,r±d̃ij

,X±
j̃,s

]
q
aij
i

+ [X±
j̃,s±d̃ij

,X±
ĩ,r

]
q
aij
i

= 0 ∀r, s ∈ Z.

Remark 4.21. Let (X
(k)
ñ , i, j) = (A

(2)
2n , 1, 1); then if ˜ is as in Remark 4.10:

(i) F±
ĩj̃

(u1, u2) = (u1 − q±4u2)(u1 + q∓2u2) = u2
1 − (q±4 − q∓2)u1u2 − q±2u2

2,

G±
ĩj̃

(u1, u2) = q±2u2
1 − (q±4 − q∓2)u1u2 − u2

2;

(ii) the relation (XFG±)ĩj̃ is equivalent to

[u2
1X±1̃ (u1),X±

1̃
(u2)]q±2 + [u2

2X±1̃ (u2),X±
1̃

(u1)]q±2

− (q±4 − q∓2)
(
u1X±1̃ (u1)u2X±1̃ (u2) + u2X±1̃ (u2)u1X±1̃ (u1)

)
= 0,

that is, to

[X±
1̃,r+2

,X±
1̃,s

]q±2 − q±4[X±
1̃,r+1

,X±
1̃,s+1

]q∓6

+ [X±
1̃,s+2

,X±
1̃,r

]q±2 − q±4[X±
1̃,s+1

,X±
1̃,r+1

]q∓6 = 0 ∀r, s ∈ Z.

As in Remark 4.20 notice that in this case (XFG±)ĩj̃ is equivalent to

[X±
1̃,r±2

,X±
1̃,s

]q2 − q4[X±
1̃,r±1

,X±
1̃,s±1

]q−6

+ [X±
1̃,s±2

,X±
1̃,r

]q2 − q4[X±
1̃,s±1

,X±
1̃,r±1

]q−6 = 0 ∀r, s ∈ Z.

Remark 4.22. Let i′ ∈ Ĩ; then

(i) the relations (X3ε,±) are compatible with (ZX±):

(X3ε,±)χ(i′)(u1, u2, u3) = (X3ε,±)i′(ω
−1u1, ω

−1u2, ω
−1u3);

(ii) the condition ãχ(i′)i′ = −1 is equivalent to (X
(k)
ñ , ī′) = (A

(k)
2n , 1);

(iii) the relations (X3ε,±) are equivalent to∑
σ∈S3

σ.
(
q−3εu±ε1 X

±
i′ (u1)X±i′ (u2)X±i′ (u3)− q−εX±i′ (u2)u±ε1 X

±
i′ (u1)X±i′ (u3)

−qεX±i′ (u3)u±ε1 X
±
i′ (u1)X±i′ (u2) + q3εX±i′ (u3)X±i′ (u2)u±ε1 X

±
i′ (u1)

)
= 0,

which is

q−3ε
∑
σ∈S3

σ.[[u±ε1 X
±
i′ (u1),X±i′ (u2)]q2ε ,X±i′ (u3)]q4ε = 0
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or equivalently∑
σ∈S3

σ.[[X±i′,r1±ε,X
±
i′,r2

]q2ε ,X±i′,r3 ]q4ε = 0 ∀r1, r2, r3 ∈ Z.

Remark 4.23. The relations (S±) are compatible with (ZX±).

Remark 4.24. Let k > 1, i′, j′ ∈ Ĩ be such that χ(i′) 6= j′, ãi′j′ < 0 (this is

equivalent to k > 1, aī′ j̄′ < 0). It is immediate to see that:

(i) P±χ(i′)j′(u1, u2) = P±i′j′(u1, u2) = P±i′χ(j′)(u1, u2);

(ii) mχ(i′)j′ = mi′j′ = mi′χ(j′);

(iii) P±i′j′(u1, u2) is homogeneous (of some degree d);

(iv) the relations (XP±) are compatible with (ZX±):

(XP±)χ(i′),j′(u1, u2; v) = ωd(XP±)i′,j′(ω
−1u1, ω

−1u2; v)

(XP±)χ(i′),j′(u1, u2;ω−1v) = (XP±)i′,j′(u1, u2; v).

Moreover if i, j ∈ I0 are such that i = ī′, j = j̄′ then:

(v) the condition ãi′,χ(i′) = 0 and χ(j′) 6= j′, or χ(i′) = i′ is equivalent to

aij = −1;

(vi) mi′j′ =

{
di if aij = −1,

k(= −aij) otherwise;

(vii) the relation (XP±)i′,j′ is equivalent to∑
σ∈S2

σ.
∑
r,s≥0

r+s=−1−aij

q±2s
(
X±j′ (v)us1X±i′ (u1)ur2X±i′ (u2)

− [2]qmi′j′ u
s
1X±i′ (u1)X±j′ (v)ur2X±i′ (u2) + us1X±i′ (u1)ur2X±i′ (u2)X±j′ (v)

)
= 0,

that is,∑
σ∈S2

σ.
∑
r,s≥0

r+s=−1−aij

q±2s
(
X±j′,vX

±
i′,p1+sX

±
i′,p2+r

− [2]qmi′j′X
±
i′,p1+sX

±
j′,vX

±
i′,p2+r + X±i′,p1+sX

±
i′,p2+rX

±
j′,v

)
= 0,

or equivalently∑
σ∈S2

σ.
∑
r,s≥0

r+s=−1−aij

q2s
(
X±j′,vX

±
i′,p1±sX

±
i′,p2±r

− [2]qmi′j′X
±
i′,p1±sX

±
j′,vX

±
i′,p2±r + X±i′,p1±sX

±
i′,p2±rX

±
j′,v

)
= 0.
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We are now ready to write down an equivalent definition of UDr
q (X

(k)
ñ ), using

the generators (G).

Proposition 4.25. UDr
q (X

(k)
ñ ) is (isomorphic to) the C(q)-algebra generated by

(G) C±1, k±1
i (i ∈ I0), X±i,r ((i, r) ∈ I0×Z), Hi,r ((i, r) ∈ I0×(Z\{0})),

with the following relations (DR):

(ZX±) X±i,r = 0 ∀(i, r) ∈ (I0 × Z) \ IZ,
(ZH) Hi,r = 0 ∀(i, r) ∈ (I0 × Z) \ IZ,
(CUK) [C, x] = 0 ∀x, kikj = kjki (i, j ∈ I0),

(CK) CC−1 = 1, kik
−1
i = 1 = k−1

i ki (i ∈ I0),

(KX±) kiX
±
j,r = q

±aij
i X±j,rki (i ∈ I0, (j, r) ∈ I0 × Z),

(KH) [ki, Hj,s] = 0 (i ∈ I0, (j, s) ∈ I0 × (Z \ {0})),

(XX) [X+
i,r, X

−
j,s] =

δi,j
C−skiH̃

+
i,r+s − C−rk

−1
i H̃−i,r+s

qi − q−1
i

if d̃j |s

0 otherwise

((i, r), (j, s) ∈ I0 × Z),

(HX±) [Hi,r, X
±
j,s] = ±bijrC

r∓|r|
2 X±j,r+s ((i, r) ∈ I0×(Z\{0}), (j, s) ∈ I0×Z),

(HH) [Hi,r, Hj,s] = δr+s,0bijr
Cr − C−r

qj − q−1
j

((i, r), (j, s) ∈ I0 × (Z \ {0})),

(XD±) [X±
i,r±d̃ij

, X±j,s]qaiji
+[X±

j,s±d̃ij
, X±i,r]qajij

= 0 ((i, r), (j, s) ∈ I0×Z, aij<0),

(X1±)
∑
σ∈S2

σ.[X±
i,r1±d̃i

, X±i,r2 ]q2
i

= 0 ((r1, r2) ∈ Z2, (X
(k)
ñ , i) 6= (A

(2)
2n , 1)),

(X2±)
∑
σ∈S2

σ.([X±1,r1±2, X
±
1,r2

]q2 − q4[X±1,r1±1, X
±
1,r2±1]q−6) = 0

((r1, r2) ∈ Z2, X
(k)
ñ = A

(2)
2n ),

(X3ε,±)
∑
σ∈S3

σ.[[X±1,r1±ε, X
±
1,r2

]q2ε , X±1,r3 ]q4ε =0 ((r1, r2, r3)∈Z3, X
(k)
ñ =A

(2)
2n ),

(SUL±)
∑

σ∈S1−aij

σ.

1−aij∑
u=0

(−1)u
[
1− aij
u

]
qi

X±i,r1 ·. . .·X
±
i,ru

X±j,sX
±
i,ru+1

·. . .·X±i,r1−aij = 0

(i 6= j ∈I0, aij ∈ {0,−1} if k 6= 1, r = (r1, . . . , r1−aij ) ∈ Z1−aij , s ∈ Z),

(S2±)
∑
σ∈S2

σ.
(
q(X±j,sX

±
i,r1±1X

±
i,r2
− [2]q2X±i,r1±1X

±
j,sX

±
i,r2

+X±i,r1±1X
±
i,r2

X±j,s)

+ q−1(X±j,sX
±
i,r1

X±i,r2±1 − [2]q2X±i,r1X
±
j,sX

±
i,r2±1 +X±i,r1X

±
i,r2±1X

±
j,s)
)

= 0

(i, j ∈ I0, aij = −2, k = 2, (r1, r2) ∈ Z2, s ∈ Z),
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(S3±)
∑
σ∈S2

σ.
(
q2(X±j,sX

±
i,r1±2X

±
i,r2
− [2]q3X±i,r1±2X

±
j,sX

±
i,r2

+X±i,r1±2X
±
i,r2

X±j,s) + (X±j,sX
±
i,r1±1X

±
i,r2±1 − [2]q3X±i,r1±1X

±
j,sX

±
i,r2±1

+X±i,r1±1X
±
i,r2±1X

±
j,s) + q−2(X±j,sX

±
i,r1

X±i,r2±2

− [2]q3X±i,r1X
±
j,sX

±
i,r2±2 +X±i,r1X

±
i,r2±2X

±
j,s)
)

= 0

(i, j ∈ I0, aij = −3, k = 3, (r1, r2) ∈ Z2, s ∈ Z),

where ε ∈ {±1} and H̃±i,r and bijr are defined as follows:∑
r∈Z

H̃±i,±ru
r = exp

(
±(qi − q−1

i )
∑
r>0

Hi,±ru
r
)

;

bijr =


0 if d̃i,j - r,
[2r]q(q

2r + (−1)r−1 + q−2r).r if (X
(k)
ñ , i, j) = (A

(2)
2n , 1, 1),

[r̃aij ]qi/r̃ otherwise, with r̃ = r/d̃i,j .

An isomorphism is given by

C±1 7→ C±1, k±1
i 7→ K±1

ĩ
, X±i,r 7→ X

±
ĩ,r
, Hi,s 7→ Hĩ,s

where (i, r), (i, s) ∈ I0 × Z (s 6= 0) and ˜: I0 → Ĩ is a section as in Remark 4.10;

its inverse is

C±1 7→ C±1, K±1
i′ 7→ k±1

ī′
, X±

χu (̃i),r
7→ ωurX±i,r, Hχu (̃i),s 7→ ωusHi,s

(i′ ∈ Ĩ, i ∈ I0, u, r ∈ Z, s ∈ Z \ {0}).

Proof. The claim follows from Remarks 4.4, Corollary 4.6, Remarks 4.11–4.13,

Proposition 4.15 and Remarks 4.18–4.24.

Remark 4.26. UDr
q (X

(k)
ñ ) is (isomorphic to) the C(q)-algebra generated by

(G′) C±1, k±1
i (i ∈ I0), X±i,r ((i, r) ∈ IZ), Hi,r ((i, r) ∈ IZ \ (I0×{0})),

with relations (CUK ′)–(S3′±), where, for a relation (R), the relation (R′) is the

set of relations in (R) whose left hand side does not involve indices in (I0×Z)\IZ.

Note that the only case where the right hand side of some relation in (R′)

involves indices in (I0 ×Z) \ IZ is (R) = (HX±): in this situation if (j, r+ s) 6∈ IZ
then d̃j - r and bijr = 0, hence (HX ′±) is the following relation:

[Hi,r, X
±
j,s] =

{
0 if d̃j - r
±bijrC

r∓|r|
2 X±j,r+s if d̃j | r

((i, r) ∈ IZ \ (I0×{0}), (j, s) ∈ IZ).
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Remark 4.27. Since in the C(q)-algebra generated by (G) for any of the relations

(R) defining UDr
q (X

(k)
ñ ) the relations (ZX,ZH,R) are equivalent to (ZX,ZH,R′),

by abuse of notation we shall denote (R′) also by (R).

It is with the presentation of UDr
q given in Proposition 4.25 that we shall deal

from now on.

§5. More about the definition of UDr
q

The material of this section is presented in order to simplify the exposition and

to handle more easily the relations defining UDr
q , with the aim of sharply reducing

them: some notation will be fixed; a new formulation will be given, mainly in

terms of q-commutators, of some of the relations of Proposition 4.25; and some new

relations ((T2±) and (T3±)) will be introduced and proved to be equivalent, under

suitable conditions, to (S2±) and (S3±). Also the Serre relations are introduced

here, but they will be studied in detail in §11.

Notation 5.1. Let U be an algebra and let (R) denote the relations

(R) Sζ(r, s) = 0 (ζ ∈ Z, r ∈ Zl, s ∈ Zl̃),

where Z is a set, l ∈ Z+, l̃ ∈ {0, 1}, Sζ(r, s) ∈ U . Then:

(i) for all ζ ∈ Z, denote by (Rζ) the relations

(Rζ) Sζ(r, s) = 0 (r ∈ Zl, s ∈ Zl̃);

of course if #Z = 1 and Z = {ζ} then (R) = (Rζ);

(ii) denote by I(R) the ideal of U generated by the Sζ(r, s)’s:

I(R) = (Sζ(r, s) | ζ ∈ Z, r ∈ Zl, s ∈ Zl̃);

of course I(R) = (I(Rζ) | ζ ∈ Z);

(iii) if ((h)R) (h = 1, . . . ,m) are the relations

((h)R) (h)Sζ(r, s) = 0 (ζ ∈ (h)Z, r ∈ Zlh , s ∈ Zl̃h),

where (h)Z is a set, lh ∈ Z+, l̃h ∈ {0, 1}, (h)S±ζ (r, s) ∈ U , define

I((1)R, . . . ,(m)R) = (I((1)R), . . . , I((m)R));

(iv) if (R±) denotes the relations

(R±) S±ζ (r, s) = 0 (ζ ∈ Z, r ∈ Zl, s ∈ Zl̃),
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where Z is a set, l ∈ Z+, l̃ ∈ {0, 1}, S±ζ (r, s) ∈ U , denote by (R) the relations

(R) Sζ′(r, s) = 0 (ζ ′ ∈ Z × {±}, r ∈ Zl, s ∈ Zl̃),

where S(ζ,±)(r, s) = S±ζ (r, s); in particular

I(R) = (I(R+), I(R−));

moreover denote by I±(R) the ideals

I+(R) = I(R+) and I−(R) = I(R−).

Notation 5.2. For i, j ∈ I0, l ∈ N, a ∈ Z, r = (r1, . . . , rl) ∈ Zl, s ∈ Z we set

X±i,j;l;a(r; s) =

l∑
u=0

(−1)u
[
l

u

]
qai

X±i,r1 · . . . ·X
±
i,ru

X±j,sX
±
i,ru+1

· . . . ·X±i,rl .

Remark 5.3. The relations (SUL±), (S2±) and (S3±) can be written in a more

compact form as: ∑
σ∈S1−aij

σ.X±i,j;1−aij ;1(r; s) = 0,

which is (SUL±), and∑
σ∈S2

σ.
∑
u,v≥0

u+v=−1−aij

qv−uX±i,j;2;−aij (r1 ± v, r2 ± u; s) = 0,

which is (S2±), (S3±) and also (SUL±) in the case aij = −1.

In order to express the relations (SUL±) in terms of q-commutators, and for

further use and simplifications, we introduce the following notation.

Notation 5.4. For i 6= j ∈ I0, l ∈ N, a ∈ Z, r = (r1, . . . , rl) ∈ Zl, s ∈ Z set

M±i,j;l;a(r1, . . . , rl; s) =

X
±
j,s if l = 0,

[M±i,j;l−1;a(r1, . . . , rl−1; s), X±i,rl ]q−aij−2a(l−1)

i

if l > 0.

Remark 5.5. The relations (SUL±) can be formulated in terms of q-commutators

as ∑
σ∈S1−aij

σ.M±i,j;1−aij ;1(r; s) = 0

(i 6= j ∈ I0, aij ∈ {0,−1} if k 6= 1, r ∈ Z1−aij , s ∈ Z).

Remark 5.6. Also the relations (S2±) and (S3±) can be formulated in terms of

q-commutators:
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(i) (S2±) can be written as∑
σ∈S2

σ.
(
(q2 +q−2)[[X±j,s, X

±
i,r1±1]q2 , X±i,r2 ]+q2[[X±i,r1±1, X

±
i,r2

]q2 , X±j,s]q−4

)
= 0;

(ii) moreover (S2+) can be written in one of the following equivalent ways:∑
σ∈S2

σ.
(
(q2 + q−2)[[X+

j,s, X
+
i,r1

]q−2 , X+
i,r2+1] + [X+

j,s, [X
+
i,r2+1, X

+
i,r1

]q2 ]q−4

)
= 0;

∑
σ∈S2

σ.
(
[[X+

j,s, X
+
i,r1+1]q−2 , X+

i,r2
]− q2[X+

i,r1+1, [X
+
j,s, X

+
i,r2

]q−2 ]q−4

)
= 0;

(iii) (S3±) can be formulated in terms of q-commutators as follows:∑
σ∈S2

σ.
(
(q2 + q−4)[[X±j,s,X

±
i,r1±2]q3 ,X±i,r2 ]q−1

+ (1− q−2 + q−4)[[X±j,s,X
±
i,r1±1]q3 ,X±i,r2±1]q

+ q2[[X±i,r1±2, X
±
i,r2

]q2 + [X±i,r2±1, X
±
i,r1±1]q2 , X±j,s]q−6

)
= 0.

Definition 5.7. Consider the case k > 1, X
(k)
ñ 6= A

(2)
2n and introduce the relations

(Tk±):

(T2±)
∑
σ∈S2

σ.[[X±j,s, X
±
i,r1±1]q2 , X±i,r2 ] = 0 (i, j ∈ I0, aij = −2, r ∈ Z2, s ∈ Z);

(T3±)
∑
σ∈S2

σ.((q2+1)[[X±j,s, X
±
i,r1±2]q3 , X±i,r2 ]q−1 +[[X±j,s, X

±
i,r1±1]q3 , X±i,r2±1]q)=0

(i, j ∈ I0, aij = −3, r ∈ Z2, s ∈ Z).

Proposition 5.8. Let k > 1, X
(k)
ñ 6= A

(2)
2n . Then I(X1±, Sk±) = I(X1±, Tk±).

More precisely if i, j ∈ I0 are such that aij < −1 we have

I(X1±i , Sk
±) = I(X1±i , Tk

±) (see Notation 5.1(i)).

In particular, (S2±) and (S3±) can be replaced respectively by (T2±) and (T3±)

among the defining relations of UDr
q .

Proof. It is enough to notice that[ ∑
σ∈S2

σ.[X±i,r1±1, X
±
i,r2

]q2 , X±j,s

]
q−4

and

[[X±i,r1±2, X
±
i,r2

]q2 + [X±i,r2±1, X
±
i,r1±1]q2 , X±j,s]q−6

belong to I(X1±i ).
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Definition 5.9. We also recall the Serre relations

(S±)
∑

σ∈S1−aij

σ.X±i,j;1−aij ;1(r; s) = 0 (i 6= j ∈ I0, r ∈ Z1−aij , s ∈ Z).

Remark 5.10. The Serre relations can be formulated in terms of q-commutators

as ∑
σ∈S1−aij

σ.M±i,j;1−aij ;1(r; s) = 0 (i 6= j ∈ I0, r ∈ Z1−aij , s ∈ Z).

Remark 5.11. The right hand sides of relations (Tk±) and (S±) are zero, hence

Remark 4.27 holds for these relations (see also Remark 4.26).

The comparison of the defining relations of UDr
q with the Serre relations is the

subject of §11.

Notation 5.12. Let us also introduce the following notation:

(i) for i, j ∈ I0 and r, s ∈ Z,

M±(2)((i, r), (j, s)) = [X±
i,r±d̃ij

, X±j,s]qaiji
+ [X±

j,s±d̃ij
, X±i,r]qajij

;

(ii) for i ∈ I0 and r = (r1, r2) ∈ Z2,

M±i (r) = [X±
i,r1±d̃i

, X±i,r2 ]q2
i
;

(iii) if X
(k)
ñ = A

(2)
2n and r = (r1, r2) ∈ Z2,

M±(2,2)(r) = [X±1,r1±2, X
±
1,r2

]q2 − q4[X±1,r1±1, X
±
1,r2±1]q−6 ;

(iv) if X
(k)
ñ = A

(2)
2n and r = (r1, r2, r3) ∈ Z3,

Mε,±
(3) (r) = [[X±1,r1±ε, X

±
1,r2

]q2ε , X±1,r3 ]q4ε ;

(v) if k > 1 and r = (r1, r2) ∈ Z2, s ∈ Z,

X±[k](r; s) =
∑
u,v≥0

u+v=k−1

qv−uX±i,j;2;k(r1 ± v, r2 ± u; s)

where i, j ∈ I0 are such that aij = −k;

(vi) if k = 2, X
(k)
ñ 6= A

(2)
2n and r = (r1, r2) ∈ Z2, s ∈ Z,

M±[2](r; s) = M±i,j;2;1(r1 ± 1, r2; s)

where i, j ∈ I0 are such that aij = −2;
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(vii) if k = 3 and r = (r1, r2) ∈ Z2, s ∈ Z,

M±[3](r; s) = (q2 + 1)M±i,j;2;2(r1 ± 2, r2; s) +M±i,j;2;1(r1 ± 1, r2 ± 1; s)

where i, j ∈ I0 are such that aij = −3.

Remark 5.13. Of course the following relations depend on (ZX±):

(i) M±(2)((i, r), (j, s)) = 0 if (r, s) 6∈ d̃iZ× d̃jZ;

(ii) M±i (r) = 0 if r 6∈ (d̃iZ)2;

(iii) M±i,j;l;a(r; s) = 0 if (r, s) 6∈ (d̃iZ)l × d̃jZ;

(iv) X±i,j;l;a(r; s) = 0 if (r, s) 6∈ (d̃iZ)l × d̃jZ;

(v) X±[k](r; s) = 0 if s 6∈ d̃Z;

(vi) M±[k](r; s) = 0 if s 6∈ kZ.

Remark 5.14. Recalling Remark 4.27 (and Remark 5.13) we have the following

obvious reformulation of the relations (XD±)–(S3±), (T2±), (T3±) and (S±) in

terms of the notation just introduced (5.2, 5.4, 5.12):

M±(2)((i, d̃ir), (j, d̃js)) = 0 (i, j ∈ I0, aij < 0, r, s ∈ Z);(XD±) ∑
σ∈S2

σ.M±i (d̃ir) = 0 (i ∈ I0, (X
(k)
ñ , i) 6= (A

(2)
2n , i), r ∈ Z2);(X1±)

∑
σ∈S2

σ.M±(2,2)(r) = 0 (r ∈ Z2);(X2±)

∑
σ∈S3

σ.Mε,±
(3) (r) = 0 (r ∈ Z3);(X3ε,±)

∑
σ∈S1−aij

σ.M±i,j;1−aij ;1(d̃ir; d̃js) = 0(S(UL)±)

or equivalently ∑
σ∈S1−aij

σ.X±i,j;1−aij ;1(d̃ir; d̃js) = 0

(i 6= j ∈ I0 (aij ∈ {0,−1} if k 6= 1), r ∈ Z1−aij , s ∈ Z);∑
σ∈S2

σ.X±[k](r; d̃s) = 0 (r ∈ Z2, s ∈ Z);(Sk±)

∑
σ∈S2

σ.M±1
[k] (r; ks) = 0 (r ∈ Z2, s ∈ Z).(Tk±)
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§6. ŪDr
q and its structures

In order to study the relations defining UDr
q it is convenient to proceed by steps:

the algebras ŪDr
q = ŪDr

q (X
(k)
ñ ) and ŨDr

q = ŨDr
q (X

(k)
ñ ) here defined are such that

ŨDr
q is a quotient of ŪDr

q and UDr
q is a quotient of ŨDr

q .

This section is devoted to introduce some important structures on ŪDr
q (Q-

gradation, homomorphisms between some of these algebras, automorphisms and

antihomomorphisms of each of them), which will be proved to induce analogous

structures on ŨDr
q (see also §7) and, what is finally important, on UDr

q (see also §7
and §8).

Some remarks point out the first (trivially) unnecessary relations: (ZH) and

(KH) are redundant.

Definition 6.1. We denote by:

(i) ŨDr
q (X

(k)
ñ ) the C(q)-algebra generated by (G) with the relations (ZX±),

(CUK), (CK), (KX±), (XX) and

(HXL±) [Hi,r, X
±
j,s] = ±bijrC

r∓|r|
2 X±j,r+s ((i, r), (j, s) ∈ IZ, d̃i ≤ |r| ≤ d̃ij);

(ii) ŪDr
q (X

(k)
ñ ) the C(q)-algebra generated by

(Ḡ) C±1, k±1
i (i ∈ I0), X±i,r ((i, r) ∈ I0 × Z)

with the relations (ZX±), (CUK), (CK).

Remark 6.2. UDr
q (X

(k)
ñ ) is obviously a quotient of ŨDr

q (X
(k)
ñ ).

We shall prove that also ŨDr
q (X

(k)
ñ ) is a quotient of ŪDr

q (X
(k)
ñ ).

Since ŪDr
q (X

(k)
ñ )→ ŨDr

q (X
(k)
ñ ) is obviously well defined, we just need to prove

that this map is surjective, or equivalently that ŨDr
q (X

(k)
ñ ) is generated by (Ḡ). To

this end we need some simple remarks.

Remark 6.3. In ŨDr
q (hence in UDr

q ) the following hold:

(i) H̃±i,0 = 1 for all i ∈ I0;

(ii) H̃±i,∓r = 0 for all i ∈ I0 and r > 0;

(iii) for each r > 0, H̃±i,±r ∓ (qi − q−1
i )Hi,±r belongs to the C(q)-subalgebra gen-

erated by {Hi,±s | 0 < s < r}; in particular {Hi,±s | (i, s) ∈ IZ, 0 < s < r}
and {H̃±i,±s | (i, s) ∈ IZ, 0 < s < r} generate the same C(q)-subalgebra.

Remark 6.4. In ŨDr
q (hence in UDr

q ), for all i ∈ I0 and r ∈ Z+ we have

H̃±i,±r = (qi − q−1
i )k∓1

i [X±i,±r, X
∓
i,0].
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In particular for all (i, r) ∈ I0 ×Z, H̃±i,r lies in the subalgebra of ŨDr
q (X

(k)
ñ ) gener-

ated by (Ḡ).

Consequently (see Remark 6.3), for all (i, r) ∈ I0 × Z also Hi,r lies in the

subalgebra of ŨDr
q (X

(k)
ñ ) generated by (Ḡ).

Corollary 6.5. (i) ŨDr
q (X

(k)
ñ ) and UDr

q (X
(k)
ñ ) are generated by (Ḡ);

(ii) ŨDr
q (X

(k)
ñ ) is a quotient of ŪDr

q (X
(k)
ñ ).

Notation 6.6. We denote by H̃±i,±r also the elements in ŪDr
q defined by

H̃±i,±r =


(qi − q−1

i )k−1
i [X+

i,r, X
−
i,0] if r,±r > 0,

(qi − q−1
i )[X−i,−r, X

+
i,0]ki if r > 0,±r < 0,

1 if r = 0,

0 if r < 0,

and by Hi,r the elements of ŪDr
q defined by∑

r∈Z
H̃±i,±ru

r = exp
(
±(qi − q−1

i )
∑
r>0

Hi,±ru
r
)
.

Remark 6.7. The relations (ZH) are trivial in ŪDr
q (X

(k)
ñ ).

Remark 6.8. (i) ŪDr
q = ŪDr

q (X
(k)
ñ ) is Q-graded:

ŪDr
q =

⊕
α∈Q
ŪDr
q,α,

where C±1, k±1
i ∈ ŪDr

q,0, X±i,r ∈ ŪDr
q,±αi+rδ for all i ∈ I0 and r ∈ Z, and

ŪDr
q,αŪDr

q,β ⊆ ŪDr
q,α+β .

(ii) H̃±i,r (r ∈ Z) and Hi,r (r ∈ Z \ {0}) are homogeneous of degree rδ for all

i ∈ I0.

(iii) Since the relations defining ŨDr
q and UDr

q are homogeneous, the Q-gradation

of ŪDr
q induces Q-gradations on ŨDr

q =
⊕

α∈Q ŨDr
q,α and on UDr

q =
⊕

α∈Q UDr
q,α.

Notation 6.9. The C(q)-algebra C(q)[C±1, k±1
i | i ∈ I0] is Q-graded, with one-

dimensional homogeneous components C(q)kα (α ∈ Q) where we set

kmδ+
∑
i∈I0

miαi = Cm
∏
i∈I0

kmii (m,mi ∈ Z ∀i ∈ I0).

Indeed C(q)[C±1, k±1
i | i ∈ I0] = C(q)[Q].

Recall that C(q)[C±1, k±1
i | i ∈ I0] naturally maps into ŪDr

q,0 ⊆ ŪDr
q (hence

into ŨDr
q,0 ⊆ ŨDr

q and into UDr
q,0 ⊆ UDr

q ).
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Remark 6.10. (i) The relations (CUK), (CK) and (KX±) are equivalent to (a)

and (b) where:

(a) the C(q)-subalgebra generated by {C±1, k±1
i | i ∈ I0} is a quotient of the

ring of Laurent polynomials C(q)[k±1
i | i ∈ I] (C =

∏
i∈I k

ri
i );

(b) for all α, β ∈ Q and all x of degree β we have kαx = q(α|β)xkα.

(ii) The relations (KH) depend on (CUK), (CK) and (KX±), and in particular

are trivial in ŨDr
q (X

(k)
ñ ).

Definition 6.11. We denote by F+
q = F+

q (X
(k)
ñ ) and F−q = F−q (X

(k)
ñ ) the C(q)-

algebras generated respectively by

(G+) X+
i,r ((i, r) ∈ I0 × Z)

and

(G−) X−i,r ((i, r) ∈ I0 × Z)

with relations respectively (ZX+) and (ZX−).

Remark 6.12. F+
q (X

(k)
ñ ) and F−q (X

(k)
ñ ) are the free C(q)-algebras generated

respectively by

(G′+) X+
i,r ((i, r) ∈ IZ)

and

(G′−) X−i,r ((i, r) ∈ IZ).

Notation 6.13. F+
q and F−q naturally embed in ŪDr

q , hence they map in ŨDr
q

and in UDr
q ; their images in ŨDr

q are denoted respectively by ŨDr,+
q and ŨDr,−

q , and

their images in UDr
q by UDr,+

q and UDr,−
q .

Remark 6.14. (i) As subalgebras of ŪDr
q , F+

q inherits a (Q0,+ ⊕ Zδ)-gradation

and F−q inherits a (−Q0,+ ⊕ Zδ)-gradation;

(ii) more precisely,

F±q ⊆ C(q)⊕
⊕

α∈Q0,+,α 6=0
m∈Z

ŪDr
q,±α+mδ

and similarly

ŨDr,±
q ⊆ C(q)⊕

⊕
α∈Q0,+,α6=0

m∈Z

ŨDr
q,±α+mδ,

UDr,±
q ⊆ C(q)⊕

⊕
α∈Q0,+,α6=0

m∈Z

UDr
q,±α+mδ.
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The last part of this section is devoted to the definition of automorphisms

and antiautomorphisms of the algebras just introduced, which make evident some

symmetries in the generators and relations of UDr
q . Thanks to these structures the

study of the apparently very complicated relations defining UDr
q will be strongly

simplified in §7, §9 and the following sections.

The next definitions depend on the choice of an automorphism η of C. A short

discussion about the choice of η is in Remark 6.17.

Definition 6.15. Let us introduce the following homomorphisms and antihomo-

morphisms:

(i) Ω̄ : ŪDr
q → ŪDr

q is the antihomomorphism defined on the generators by

Ω̄
∣∣
C = η, q 7→ q−1, C±1 7→ C∓1, k±1

i 7→ k∓1
i , X±i,r 7→ X∓i,−r.

(ii) Θ+
F : F+

q → F+
q and Θ−F : F−q → F−q are the homomorphisms defined on the

generators by

Θ+
F : Θ+

F
∣∣
C = η, q 7→ q−1, X+

i,r 7→ X+
i,−r,

Θ−F : Θ−F
∣∣
C = η, q 7→ q−1, X−i,r 7→ X−i,−r.

(iii) Θ̄ : ŪDr
q → ŪDr

q is the homomorphism defined on the generators by

Θ̄
∣∣
C = η, q 7→ q−1, C±1 7→ C±1, k±1

i 7→ k∓1
i ,

X+
i,r 7→ −X

+
i,−rkiC

−r, X−i,r 7→ −k
−1
i C−rX−i,−r.

(iv) For all i ∈ I0, t̄i : ŪDr
q → ŪDr

q is the C(q)-homomorphism defined on the

generators by

C±1 7→ C±1, k±1
j 7→ (kjC

−δij d̃i)±1, X±j,r 7→ X±
j,r∓δij d̃i

.

(v) For i ∈ I0 let

φ̄i :

{
ŪDr
q (A

(1)
1 )→ ŪDr

q (X
(k)
ñ ) if (X

(k)
ñ , i) 6= (A

(2)
2n , 1),

ŪDr
q (A

(2)
2 )→ ŪDr

q (X
(k)
ñ ) if (X

(k)
ñ , i) = (A

(2)
2n , 1),

be the C-homomorphisms defined on the generators as follows:

q 7→ qi, C±1 7→ C±d̃i , k±1 7→ k±1
i , X±r 7→ X±

i,d̃ir
.

Remark 6.16. It is immediate to notice that:

(i) Ω̄, Θ±F , Θ̄, t̄i and φ̄i are all well-defined;

(ii) Ω̄(F±q ) = F∓q ;

(iii) Ω̄ and Θ̄ are involutions of ŪDr
q if η is an involution of C;
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(iv) the t̄i’s are automorphisms of ŪDr
q (of infinite order) for all i ∈ I0; more

precisely 〈t̄i | i ∈ I0〉 ∼= ZI0 ;

(v) the following commutation properties hold:

Θ̄Ω̄ = Ω̄Θ̄, t̄iΩ̄ = Ω̄t̄i, t̄iΘ̄ = Θ̄t̄−1
i , t̄it̄j = t̄j t̄i ∀i, j ∈ I0

as maps of ŪDr
q (X

(k)
ñ ) into itself; moreover, for all i ∈ I0,

Ω̄φ̄i = φ̄iΩ̄, Θ̄φ̄i = φ̄iΘ̄, t̄iφ̄i = φ̄it̄1, t̄j φ̄i = φ̄i ∀j ∈ I0 \ {i}

as maps from ŪDr
q (A

(1)
1 ) to ŪDr

q (X
(k)
ñ ) if (X

(k)
ñ , i) 6= (A

(2)
2n , 1), and from

ŪDr
q (A

(2)
2 ) to ŪDr

q (X
(k)
ñ ) if (X

(k)
ñ , i) = (A

(2)
2n , 1);

(vi) for all α = β +mδ ∈ Q with β ∈ Q0, m ∈ Z we have

Ω̄(kα) = k−α, Θ̄(kβ+mδ) = k−β+mδ, t̄i(kα) = kλi(α),

Ω̄(ŪDr
q,α) = ŪDr

q,−α, Θ̄(ŪDr
q,β+mδ) = ŪDr

q,β−mδ, t̄i(ŪDr
q,α) = ŪDr

q,λi(α);

moreover for all m1,m ∈ Z and i ∈ I0,

φ̄i(km1α1+mδ) = km1αi+d̃imδ
and φ̄i(UDr

q,m1α1+mδ(A
(∗)
∗ )) ⊆ UDr

q,m1αi+d̃imδ
(X

(k)
ñ );

(vii) on the elements Hi,r and H̃±i,r we have

Ω̄(H̃±i,r) = H̃∓i,−r, Ω̄(Hi,r) = Hi,−r

φ̄i(H̃
±
1,r) = H̃±

i,d̃ir
, φ̄i(H1,r) = Hi,d̃ir

∀i ∈ I0.

Remark 6.17. For the purpose of the present paper, the definition of Ω̄, Θ±F , Θ̄

given in Definition 6.15 could be simplified by requiring these maps to be C-

linear (that is, η = idC). But the choice of a nontrivial automorphism η of C
becomes sometimes necessary, as when specializing q at a complex value ε 6= ±1:

indeed a homomorphism defined over C(q) (and mapping q to q−1) induces a

homomorphism on the specialization at ε if and only if the ideal (q − ε) is stable;

if, for example, ε is a root of 1, this could be obtained by choosing η(z) = z̄ for all

z ∈ C, that is, by requiring the homomorphism to be C-antilinear. For this reason,

from now on we suppose η to be the conjugation on C, that is Ω̄, Θ±F , Θ̄ to be

C-antilinear (see Definitions 8.2 and 8.4, and compare also with Definition 3.3).

Of course one needs to pay more attention and eventually choose a different η

when one is interested in specializing at complex values ε such that |ε| 6= 1.

Our goal is of course to show that Ω̄, Θ̄, t̄i and φ̄i induce Ω, Θ, ti and φi
on UDr

q . This is indeed very easy to show, but we take this opportunity to sim-

plify the relations that we have to deal with, passing through ŨDr
q for two reasons:
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underlining the first redundancies of the relations (see Corollary 7.17); and dis-

cussing separately the relations (XD+)–(S3+) whose first simplification can be

made simultaneously, as examples of a general case (see §9).

§7. The algebra ŨDr
q

The algebra ŨDr
q and its structures, to which this section is devoted, play a fun-

damental role in the study and simplification of the relations (XD±)–(S3±). In

particular the relations are analyzed by underlining their consequences on the

(anti)automorphisms Ω̃, Θ̃ and t̃i (i ∈ I0); the relations (HX±) and (HH) are

proved to be redundant; and much smaller sets of generators are provided.

Remark 7.1. Remarks 6.10(i) and 6.16(vi) imply immediately that Ω̄, Θ̄, t̄i and

φ̄i preserve the relations (KX±).

Remark 7.2. For all i ∈ I0, φ̄i obviously induces

φ̃i :

{
ŨDr
q (A

(1)
1 )→ ŨDr

q (X
(k)
ñ ) if (X

(k)
ñ , i) 6= (A

(2)
2n , 1),

ŨDr
q (A

(2)
2 )→ ŨDr

q (X
(k)
ñ ) if (X

(k)
ñ , i) = (A

(2)
2n , 1),

and

φi :

{
UDr
q (A

(1)
1 )→ UDr

q (X
(k)
ñ ) if (X

(k)
ñ , i) 6= (A

(2)
2n , 1),

UDr
q (A

(2)
2 )→ UDr

q (X
(k)
ñ ) if (X

(k)
ñ , i) = (A

(2)
2n , 1).

Remark 7.3. (i) Ω̄(I+(HXL)) = I−(HXL) and Ω̄(I+(HX)) = I−(HX);

(ii) Ω̄ preserves the relations (HXL±) and (HX±).

Notation 7.4. Define relations (XXD), (XXE), (XXH+) and (XXH−) by:

[X+
i,r, X

−
j,s] = 0 ((i, r), (j, s) ∈ IZ, i 6= j),(XXD)

[X+
i,r, X

−
i,−r] =

Crki − C−rk−1
i

qi − q−1
i

((i, r) ∈ IZ),(XXE)

[X+
i,r, X

−
i,s] =

C−skiH̃
+
i,r+s

qi − q−1
i

((i, r), (i, s) ∈ IZ, r + s > 0),(XXH+)

[X+
i,r, X

−
i,s] = −

C−rH̃−i,r+sk
−1
i

qi − q−1
i

((i, r), (i, s) ∈ IZ, r + s < 0),(XXH−)

Remark 7.5. (i) I(XX) = I(XXD,XXE,XXH);

(ii) Ω̄(I(XXD)) = I(XXD) and Ω̄(I(XXE)) = I(XXE);

(iii) Ω̄(I+(XXH)) = I−(XXH);

(iv) Ω̄ preserves the relations (XX).

Corollary 7.6. Ω̄ induces Ω̃ : ŨDr
q → ŨDr

q .
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Remark 7.7. (i) t̄i(I(XXD)) = I(XXD) and t̄i(I(XXE)) = I(XXE) for all

i ∈ I0;

(ii) I(XXD,XXE) is the t̄±1
i -stable ideal (for all i ∈ I0) generated by{

[X+
i,0, X

−
j,0]− δij

ki − k−1
i

qi − q−1
i

∣∣∣∣ i, j ∈ I0}.
We want to show now that for all i ∈ I0, t̄i induces t̃i : ŨDr

q → ŨDr
q . Since

t̄i commutes with Ω̄, Remarks 7.1, 7.3(i), 7.5(i)&(iii) and 7.7(i) imply that it is

enough to concentrate on I+(HXL), I+(XXH).

Remark 7.8. (i) Note that if r + s > 0,

(qi − q−1
i )Csk−1

i [X+
i,r, X

−
i,s] = t̄

s/d̃i
i ((qi − q−1

i )k−1
i [X+

i,r+s, X
−
i,0]) = t̄

s/d̃i
i (H̃+

i,r+s),

so that the relations (XXH+) are equivalent to

t̄si (H̃
+
i,r) = H̃+

i,r ∀i ∈ I0, r > 0, s ∈ Z;

(ii) t̄±1
i (I+(XXH)) = I+(XXH) for all i ∈ I0;

(iii) I+(XXH) is the t̄±1
i -stable ideal (for all i ∈ I0) generated by

{t̄i(H̃+
i,r)− H̃

+
i,r | i ∈ I0, r > 0}.

Remark 7.9. Note that for all (i, r) ∈ IZ \ (I0 × {0}), (j, s) ∈ IZ and h ∈ I0,

t̄±1
h ([Hi,r, X

+
j,s]− bijrC

r−|r|
2 X+

j,r+s)

= [t̄±1
h (Hi,r), X

+

j,s∓δjhd̃j
]− bijrC

r−|r|
2 X+

j,r+s∓δjhd̃j
.

Then, thanks to Remark 7.8 and to the definition of t̄i (see Definition 6.15), we

have:

(i) t̄±1
i (I+(HX)) ⊆ I+(XXH,HX);

(ii) t̄±1
i (I+(HXL)) ⊆ I+(XXH,HXL);

(iii) I+(XXH,HXL) is the t̄±1
i -stable ideal (for all i ∈ I0) generated by

{t̄i(H̃+
i,r)− H̃

+
i,r, [Hi,s, X

+
j,0]− bijsC

s−|s|
2 X+

j,s | i ∈ I0, r > 0, d̃i ≤ |s| ≤ d̃ij}.

Corollary 7.10. (i) For all i ∈ I0, t̄i induces t̃i : ŨDr
q → ŨDr

q ;

(ii) for all i, j ∈ I0, t̃i(H̃
+
j,r) = H̃+

j,r for each r ∈ Z and t̃i(Hj,r) = Hj,r for each

r ∈ Z \ {0}.

We come now to Θ̄ recalling that Θ̄Ω̄ = Ω̄Θ̄ and Θ̄t̄±1
i = t̄∓1

i Θ̄ for all i ∈ I0.
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Remark 7.11. Notice that [X+
i,0, X

−
j,0] − δij

ki−k−1
i

qi−q−1
i

is fixed by Θ̄; hence, thanks

to Remark 7.7(ii), I(XXD,XXE) is Θ̄-stable.

Remark 7.12. (i) For all i ∈ I0 and r > 0,

Θ̄(H̃+
i,r) = t̄

r/d̃i
i (H̃−i,−r) + (qi − q−1

i )[X+
i,−rX

−
i,0, ki]C

−r;

(ii) for all i ∈ I0 and r > 0, Θ̄(H̃±i,±r) − H̃∓i,∓r and Θ̄(Hi,±r) − Hi,∓r lie in

I(KX,XXH∓);

(iii) for all i ∈ I0 and r > 0,

Θ̄(t̄i(H̃
+
i,r)− H̃

+
i,r) = t̄−1

i (Θ̄(H̃+
i,r))− Θ̄(H̃+

i,r) ∈ I(KX,XXH−);

(iv) for all i, j ∈ I0, d̃i ≤ |r| ≤ d̃ij , s ∈ Z,

Θ̄([Hi,r, X
+
j,s]− bijrC

r−|r|
2 X+

j,r+s)

= −[Θ̄(Hi,r), X
+
j,−skjC

−s] + bijrC
r−|r|

2 X+
j,−(r+s)kjC

−(r+s)

= −([Θ̄(Hi,r), X
+
j,−skj ]k

−1
j − bijrC

−r−|r|
2 X+

j,−(r+s))kjC
−s

belongs to I(KX,XXH,HXL+).

Then:

(v) Θ̄(I+(XXH)) ⊆ I(KX,XXH−);

(vi) Θ̄(I+(HXL)) ⊆ I(KX,XXH,HXL+);

(vii) I(KX,XXH) and I(KX,XXH,HXL±) are Θ̄-stable.

Corollary 7.13. (i) Θ̄ induces Θ̃ : ŨDr
q → ŨDr

q ;

(ii) for all i ∈ I0, Θ̃(H̃+
i,r) = H̃−i,−r for each r ∈ Z and Θ̃(Hi,r) = Hi,−r for each

r ∈ Z \ {0}.

Remark 7.14. (i) Let f : Q0,+ → Z be defined by

f(0) = 0, f(α+ αi) = f(α) + (α|αi) ∀α ∈ Q0,+, i ∈ I0;

notice that f is well defined, because (α|αi) + (α + αi | αj) = (α|αj) +

(α+ αj | αi).
(ii) For all X+ ∈ F+

q,α+mδ and X− ∈ F−q,−α+mδ (where α ∈ Q0,+, m ∈ Z) we find

that in ŨDr
q ,

Θ̃π+(X+) = (−1)hqf(α)π+Θ+
F (X+)kαC

−m,

Θ̃π−(X−) = (−1)hq−f(α)C−mk−απ
−Θ−F (X−),

where π± : F±q → ŨDr
q is the restriction to F±q of the natural projection

ŪDr
q →ŨDr

q , and h =
∑
i∈I0 mi if α =

∑
i∈I0 miαi.
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(iii) In particular Θ̃π±(X±) and π±Θ±F (X±) are equal up to invertible elements

of ŨDr
q .

We now present some more remarks about generators and relations of ŨDr
q .

For the next proposition see the analogous results for UDJ
q in [Be] and [Da].

Proposition 7.15. In ŨDr
q we have I±(HX) ⊆ I±(XD,X1, X2).

Proof. In order to avoid repetitive computations we use the behaviour of the rela-

tions (XD±), (X1±) and (X2±) under the action of Ω̃, Θ̃ and t̃i (i ∈ I0), which is

an independent result proved in Remarks 9.8 and 9.20; here it allows us to reduce

to the study of [Hi,r, X
+
j,0] with r > 0. Indeed:

t̃sj([Hi,r, X
+
j,0]) = [Hi,r, X

+

j,−d̃js
] and t̃sj(X

+
j,r) = X+

j,r−d̃js
,

[Hi,r, X
+
j,s] = 0 and bijrX

+
j,r+s = 0 if d̃j - s,

Θ̃([Hi,r, X
+
j,s]) = −[Hi,−r, X

+
j,−s]kjC

−s and Θ̃(X+
j,r+s) = −X+

j,−r−skjC
−r−s,

Ω̃([Hi,r, X
+
j,s]) = −[Hi,−r, X

−
j,−s] and Ω̃(C

r−|r|
2 X+

j,r+s) = C
−r+|r|

2 X−j,−r−s,

and of course bijr = t̃j(bijr) = Θ̃(bijr) = Ω̃(bijr) = bij−r.

Given an element x ∈ ŨDr
q define the operators lx and rx on ŨDr

q respectively

as left and right multiplication by x; if we have elements xs ∈ ŨDr
q (s ∈ N) set

lx(u) =
∑
s∈N lxsu

s and rx(u) =
∑
s∈N rxsu

s; notice that if f : ŨDr
q → ŨDr

q is such

that f(xs) = xs for all s ∈ N then lx(u) and rx(u) commute with f .

Let i, j ∈ I0: we want to study (lH̃
+
i (u)− rH̃

+
i (u))(X+

j,s) and deduce from it

(lHi(u)− rHi(u))(X+
j,s) (setting Hi,0 = 0). To this end, note that

lH̃
+
i (u) = exp((qi − q−1

i )lHi(u)), rH̃
+
i (u) = exp((qi − q−1

i )rHi(u))

and both commute with t̃j .

The next computations are performed in ŨDr
q /I+(XD,X1, X2).

Remarking that (r > d̃ij)

[H̃+
i,r, X

+
j,0] = (qi − q−1

i )k−1
i [[X+

i,r, X
−
i,0], X+

j,0]
q
aij
i

= (qi − q−1
i )k−1

i

(
[X+

i,r, [X
−
i,0, X

+
j,0]]

q
aij
i
− [X−i,0, [X

+
i,r, X

+
j,0]

q
aij
i

]
)

= (qi − q−1
i )k−1

i

(
q
aij
i

[
δij
ki − k−1

i

qi − q−1
i

, X+
i,r

]
q
−aij
i

+ [[X+
i,r, X

+
j,0]

q
aij
i
, X−i,0]

)
= (qi − q−1

i )k−1
i (δij [2]qikiX

+
i,r + [[X+

i,r, X
+
j,0]

q
aij
i
, X−i,0]),

let us distinguish two cases:
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(i) (X
(k)
ñ , i, j) 6= (A

(2)
2n , 1, 1): then, thanks to (XD+), (X1+) and (HXL+),

[H̃+
i,r, X

+
j,0] = (qi − q−1

i )k−1
i (δij [2]qikiX

+
i,r − [[X+

j,d̃ij
, X+

i,r−d̃ij
]
q
aij
i
, X−i,0])

= (qi − q−1
i )k−1

i (δij [2]qikiX
+
i,r − [X+

j,d̃ij
, [X+

i,r−d̃ij
, X−i,0]]

q
aij
i

+ q
aij
i [X+

i,r−d̃ij
, [X+

j,d̃ij
, X−i,0]]

q
−aij
i

)

= (qi − q−1
i )δij

(
[2]qiX

+
i,r −

1

qi − q−1
i

[H̃+

i,d̃i
, X+

i,r−d̃i
]

)
+ (qi − q−1

i )q
aij
i k−1

i [[X+

i,r−d̃ij
, X−i,0], X+

j,d̃ij
]
q
−aij
i

= (qi − q−1
i )δij([2]qiX

+
i,r − [Hi,d̃i

, X+

i,r−d̃i
]) + q

aij
i [H̃+

i,r−d̃ij
, X+

j,d̃ij
]
q
−2aij
i

= q
aij
i H̃+

i,r−d̃ij
X+

j,d̃ij
− q−aiji X+

j,d̃ij
H̃+

i,r−d̃ij
;

hence, using again (HXL+),

(lH̃
+
i (u)− rH̃

+
i (u))(X+

j,0) = (q
aij
i lH̃

+
i (u)− q−aiji rH̃

+
i (u))t̃

−d̃ij/d̃j
j ud̃ij (X+

j,0),

or equivalently

lH̃
+
i (u)(1− qaiji t̃

−d̃ij/d̃j
j ud̃ij )(X+

j,0) = rH̃
+
i (u)(1− q−aiji t̃

−d̃ij/d̃j
j ud̃ij )(X+

j,0);

from this we get

(qi − q−1
i )(lHi(u)− rHi(u))(X+

j,0)

= (log(1− q−aiji t̃
−d̃ij/d̃j
j ud̃ij )− log(1− qaiji t̃

−d̃ij/d̃j
j ud̃ij ))(X+

j,0),

that is,

[Hi,r, X
+
j,0] =


0 if d̃ij - r,

q
raij/d̃ij
i − q−raij/d̃iji

(r/d̃ij)(qi − q−1
i )

X+
j,r = bijrX

+
j,r otherwise.

(ii) (X
(k)
ñ , i, j) = (A

(2)
2n , 1, 1): the computations are a little more complicated

than in case (i), but substantially similar; we separate the cases r = 2 and r > 2

and, thanks to (X2+) and (HXL+), we get

[H̃+
1,2, X

+
1,0] = (q − q−1)k−1

1 ([2]qk1X
+
1,2 + [[X+

1,2, X
+
1,0]q2 , X−1,0])

= (q − q−1)k−1
1 ([2]qk1X

+
1,2 + (q4 − q−2)[(X+

1,1)2, X−1,0])

= (q − q−1)k−1
1

(
[2]qk1X

+
1,2 + (q4 − q−2)(X+

1,1[X+
1,1, X

−
1,0] + [X+

1,1, X
−
1,0]X+

1,1)
)

= (q − q−1)[2]qX
+
1,2 + (q4 − q−2)(q−2X+

1,1H̃
+
1,1 + H̃+

1,1X
+
1,1)

= (q2 − q−2)X+
1,2 + (q4 − q−2)H̃+

1,1X
+
1,1 + (q2 − q−4)X+

1,1H̃
+
1,1,
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hence, for all s ∈ Z,

[H̃+
1,2, X

+
1,s] = (q2 − q−2)X+

1,s+2 + (q4 − q−2)[H̃+
1,1, X

+
1,s+1]−q−2 ;

for r > 2:

[H̃+
1,r, X

+
1,0] = (q − q−1)k−1

1 ([2]qk1X
+
1,r + [[X+

1,r, X
+
1,0]q2 , X−1,0])

= (q − q−1)k−1
1

(
[2]qk1X

+
1,r + [(q4 − q−2)[X+

1,r−1, X
+
1,1]−1 − [X+

1,2, X
+
1,r−2]q2 , X−1,0]

)
= (q − q−1)k−1

1

(
[2]qk1X

+
1,r

+ (q4 − q−2)[X+
1,r−1, [X

+
1,1, X

−
1,0]]−1 + (q4 − q−2)[X+

1,1, [X
+
1,r−1, X

−
1,0]]−1

− [X+
1,2, [X

+
1,r−2, X

−
1,0]]q2 + q2[X+

1,r−2, [X
+
1,2, X

−
1,0]]q−2

)
= (q2 − q−2)X+

1,r

+ (q4 − q−2)[H̃+
1,1, X

+
1,r−1]−q−2 + (q4 − q−2)[H̃+

1,r−1, X
+
1,1]−q−2

+ q2[H̃+
1,r−2, X

+
1,2]q−4 − [H̃+

1,2, X
+
1,r−2]

= (q4 − q−2)H̃+
1,r−1X

+
1,1 + (q2 − q−4)X+

1,1H̃
+
1,r−1

+ q2H̃+
1,r−2X

+
1,2 − q−2X+

1,2H̃
+
1,r−2;

this implies, using again (HXL+), that

(lH̃
+
1 (u)− rH̃

+
1 (u))(X+

1,0) =
(
(q4 − q−2) lH̃

+
1 (u)t̃−1

1 u+ (q2 − q−4) rH̃
+
1 (u)t̃−1

1 u

+ q2
lH̃

+
1 (u)(t̃−1

1 u)2 − q−2
rH̃

+
1 (u)(t̃−1

1 u)2
)
(X+

1,0),

or equivalently

lH̃
+
1 (u)(1−q4t̃−1

1 u)(1+q−2t̃−1
1 u)(X+

1,0) = rH̃
+
1 (u)(1−q−4t̃−1

1 u)(1+q2t̃−1
1 u)(X+

1,0);

from this we get

(q − q−1)(lH1(u)− rH1(u))(X+
1,0) = (log(1− q−4(t̃−1

1 u)) + log(1 + q2(t̃−1
1 u))

− log(1− q4(t̃−1
1 u))− log(1 + q−2(t̃−1

1 u)))(X+
1,0),

that is,

[H1,r, X
+
1,0] =

−q−4r + (−1)r−1q2r + q4r − (−1)r−1q−2r

r(q − q−1)
X+

1,r = b11rX
+
1,r.

Proposition 7.16. In ŨDr
q we have I(HH) ⊆ I(HX).

Proof. Thanks to Remark 6.3, to the fact that

[Hi,r, Hj,s] = −[Hj,s, Hi,r] = Ω̃[Hj,−s, Hi,−r],

and to the definition of bijr, it is enough to prove that in ŨDr
q /I(HX),

[Hi,r, H̃
+
j,s] = δr+s,0bijr(C

r − C−r) if |r| ≥ s > 0.
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This is an easy computation:

[Hi,r, H̃
+
j,s] = (qj − q−1

j )k−1
j [Hi,r, [X

+
j,s, X

−
j,0]]

= (qj − q−1
j )k−1

j ([[Hi,r, X
+
j,s], X

−
j,0]− [[Hi,r, X

−
j,0], X+

j,s])

= (qj − q−1
j )bijrk

−1
j (C

r−|r|
2 [X+

j,r+s, X
−
j,0]− C

r+|r|
2 [X+

j,s, X
−
j,r])

= bijrk
−1
j

(
C
r−|r|

2 kjH̃
+
j,r+s − C

−r−|r|
2 −sk−1

j H̃−j,r+s

− C
−r+|r|

2 kjH̃
+
j,r+s + C

r+|r|
2 −sk−1

j H̃−j,r+s
)

= bijrk
−1
j

(
(C

r−|r|
2 − C

−r+|r|
2 )kjH̃

+
j,r+s + (C

r+|r|
2 − C

−r−|r|
2 )C−sk−1

j H̃−j,r+s
)

= bijrk
−1
j (C

r−|r|
2 − C

−r+|r|
2 )kjH̃

+
j,r+s = δr+s,0bijr(C

r − C−r).

Corollary 7.17. (i) The relations (ZH) and (KH) are redundant.

(ii) In ŨDr
q the relations (HX±) depend on (XD±), (X1±) and (X2±), and the

relations (HH) depend on (XD), (X1) and (X2).

(iii) UDr
q (X

(k)
ñ ) is the quotient of ŨDr

q (X
(k)
ñ ) by the ideal generated by the relations

(XD±)–(S3±).

Remark 7.18. It is worth remarking that Corollary 7.17(ii) allows us to reduce

the relations (HX±) and (HH) to relations involving just the X±i,r’s, without using

the Hi,r’s whose connection with the H̃±i,r’s (these last can be expressed in terms

of commutators between the X+
i,r’s and the X−i,r’s, see Remark 6.4) is complicated

to handle. Indeed the relations (HXL±) can be translated as follows:

(i) if d̃i ≤ |r| < d̃ij then [Hi,r, X
±
j,s] = 0, that is, X±j,s commutes with the subalge-

bra generated by {Hi,r | d̃i ≤ |r| < d̃ij}, which is the subalgebra generated by

{H̃±i,r | d̃i ≤ |r| < d̃ij} (see Remark 6.3); hence these relations can be rewritten

as

[H̃±i,r, X
+
j,s] = 0 and [H̃±i,r, X

−
j,s] = 0 if |r| < d̃ij ;

(ii) if |r| = d̃ij and ±r > 0 then H̃±i,r ∓ (qi − q−1
i )Hi,r commutes with X±j,s, by (i)

and Remark 6.3, hence in the relations [Hi,r, X
±
j,s] = ±bijd̃ijC

r∓|r|
2 X±j,r+s we

can replace Hi,r with ±H̃±i,r/(qi − q
−1
i ).

Thus the relations (HXL±) are equivalent to

[[X±i,±r, X
∓
i,0], X±j,s]qaiji

= bijrk
±1
i X±j,s±r,

[[X±i,±r, X
∓
i,0], X∓j,s]q−aiji

= −bijrC±rk±1
i X∓j,s±r

with 0 < r ≤ d̃ij .
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Note also that among the relations defining UDr
q there are no other relations

involving the Hi,r’s.

Remark 7.19. Note that for each i ∈ I0, {C±d̃i , k±1
i , X±i,r, Hi,s | d̃i | r, s; s 6= 0}

generates Im(φ̃i) ⊆ ŨDr
q over C(qi). Therefore the following sets generate Im(φ̃i)

(hence Im(φi) ⊆ UDr
q ) over C(qi):

(i) {C±d̃i , k±1
i , X±i,r | d̃i | r};

(ii) {C±d̃i , k±1
i , X±i,0, Hi,±d̃i};

(iii) {C±d̃i , k±1
i , X±i,0, X

±
i,∓d̃i
}.

Moreover

(iv) {C±1, k±1
i , X±i,0, X

±
i0,∓1 | i ∈ I0} (where i0 is any fixed element of I0 with

d̃i0 = 1) generates ŨDr
q (hence UDr

q ) over C(q).

Proof. (i) See Remarks 6.3 and 6.4.

(ii) follows from (i) by induction on |r|, using that

∀r ∈ Z [Hi,±d̃i , X
+
i,r] = biid̃iC

±1−1
2 d̃iX+

i,r±d̃i

and applying Ω̃ (the set {C±d̃i , k±1
i , X±i,0, Hi,±d̃i} is Ω̃-stable).

(iii) is an immediate consequence of (ii) and of the fact that [X+

i,d̃i
, X−i,0] =

kiHi,d̃i
, again applying Ω̃.

(iv) For each i ∈ I0 there exists a sequence of different indices i0, i1, . . . , il = i

in I0 such that aih−1ih < 0 and d̃ih−1
| d̃ih for all h = 1, . . . , l.

We prove by induction on h that Im(φih) is contained in the C(q)-subalgebra of

ŨDr
q generated by {C±1, k±1

i , X±i,0, X
±
i0,∓1 | i ∈ I0}, the claim for h = 0 being (iii).

For h > 0 it is again enough to use (iii), noting that

[Hih−1,−d̃ih
, X+

ih,0
] = bih−1ihd̃ih

C−d̃ihX+

ih,−d̃ih
6= 0

and applying Ω̃.

§8. Uq: (anti)automorphisms and relations

The main point of this section is to describe in some detail how the (anti)automor-

phisms Ω̃, Θ̃ and t̃i (i ∈ I0) act on the generators of the ideal of Ũq defining Uq.
As a corollary, Ω̃, Θ̃ and t̃i (i ∈ I0) induce analogous Ω, Θ and ti (i ∈ I0) on Uq.
But the important consequence of this analysis (together with the study of the

commutation with the elements Hi,r’s) is the reduction of the huge amount of
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the relations (XD±)–(S3±) to relations involving only the positive X+
i,r (which

is obvious and well known) and, what is new, to the analogous relations with

“constant parameters” (see §9). Lemmas 9.12 and 9.14 are the fundamental tool

of this paper, which makes possible and easy the computations of the following

sections, leading to Theorems 10.8 and 11.18.

Notation 8.1. Let l ∈ N; then:

(i) 1 = 1l = (1, . . . , 1) ∈ Zl;
(ii) {e1, . . . , el} is the canonical basis of Zl;
(iii) for all r = (r1, . . . , rl) ∈ Zl, r̄ ∈ Zl denotes r̄ = (rl, . . . , r1).

Definition 8.2. Ω : UDr
q → UDr

q is the C-antilinear antihomomorphism induced

by Ω̃ (and by Ω̄, see Definition 6.15 and Remark 6.16(vii)), that is, the C-antilinear

antihomomorphism defined on the generators by

q 7→ q−1, C±1 7→ C∓1, k±1
i 7→ k∓1

i , X±i,r 7→ X∓i,−r, Hi,r 7→ Hi,−r.

Remark 8.3. Ω is a well-defined involution of UDr
q . Indeed

Ω̃(M±(2)((i, r), (j, s))) = −q−aiji M∓(2)((i,−r), (j,−s)),

Ω̃(M±i (r)) = −q−2
i M∓i (−r),

Ω̃(M±(2,2)(r)) = −q−2M∓(2,2)(−r),

Ω̃(Mε,±
(3) (r)) = q−6εMε,∓

(3) (−r),

Ω̃(M±i,j;l;a(r; s)) = (−1)lq
l(aij+a(l−1))
i M∓i,j;l;a(−r;−s),

Ω̃(X±i,j;l;a(r; s)) = (−1)lX∓i,j;l;a(−r̄;−s),

Ω̃(X±[k](r; s)) = X∓[k](−r̄;−s),

Ω̃(M±[2](r; s)) = q−2M∓[2](−r;−s),

Ω̃(M±[3](r; s)) = q−4M∓[3](−r;−s).

Definition 8.4. Θ : UDr
q → UDr

q is the C-antilinear homomorphism induced by

Θ̃ (and by Θ̄, see Definition 6.15 and Corollary 7.13(ii)), that is, the C-antilinear

homomorphism defined on the generators by

q 7→ q−1, C±1 7→ C±1, k±1
i 7→ k∓1

i ,

X+
i,r 7→ −X

+
i,−rkiC

−r, X−i,r 7→ −k
−1
i C−rX−i,−r, Hi,r 7→ Hi,−r.

Remark 8.5. Θ is a well-defined involution of UDr
q . Indeed

Θ±F (M±(2)((i, r), (j, s))) = −q−aiji M±(2)((i,−r ∓ d̃ij), (j,−s∓ d̃ij)),
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Θ±F (M±i (r)) = −q−2
i M±i (−r̄ ∓ d̃ij1),

Θ±F (M±(2,2)(r)) = −q−2M±(2,2)(−r̄ ∓ 21),

Θ±F (Mε,±
(3) (r)) = M−ε,±(3) (−r),

Θ±F (X±i,j;l;a(r; s)) = X±i,j;l;a(−r;−s),

Θ±F (X±[k](r; s)) = X±[k](−r ∓ (k − 1)1;−s).

Definition 8.6. For all i ∈ I0, ti : UDr
q → UDr

q is the C(q)-homomorphism induced

by t̃i (and by t̄i, see Definition 6.15 and Corollary 7.10(ii)), that is, the C(q)-

homomorphism defined on the generators by

C±1 7→ C±1, k±1
j 7→ (kjC

−δij d̃i)±1, X±j,r 7→ X±
j,r∓δij d̃i

, Hj,r 7→ Hj,r.

Remark 8.7. It is immediate to check that the ti’s are well-defined automor-

phisms of UDr
q . Indeed

t̃i(M
±
(2)((j, r), (h, s))) = M±(2)((j, r ∓ δij d̃i), (h, s∓ δihd̃i)),

t̃i(M
±
j (r)) = M±j (r ∓ δij d̃i1),

t̃i(M
±
(2,2)(r)) = M±(2,2)(r ∓ δi11),

t̃i(M
ε,±
(3) (r)) = Mε,±

(3) (r ∓ δi11),

t̃i(M
±
j,h;l;a(r; s)) = M±j,h;l;a(r ∓ δij d̃i1; s∓ δihd̃i),

t̃i(X
±
j,h;l;a(r; s)) = X±j,h;l;a(r ∓ δij d̃i1; s∓ δihd̃i),

t̃i(X
±
[k](r; s)) = X±[k](r ∓ δij1; s∓ δihd̃),

t̃i(M
±
[k](r; s)) = M±[k](r ∓ δij1; s∓ δihk);

in the last two identities, j, h ∈ I0 are such that ajh = −k.

Remark 8.8. Of course (see Remark 6.16(v)&(vi))

ΘΩ = ΩΘ, tiΩ = Ωti, tiΘ = Θt−1
i , titj = tjti ∀i, j ∈ I0

as maps of UDr
q (X

(k)
ñ ) into itself, and, for all i ∈ I0,

Ωφi = φiΩ, Θφi = φiΘ, tiφi = φit1, tjφi = φi ∀j ∈ I0 \ {i}

as maps from UDr
q (A

(1)
1 ) to UDr

q (X
(k)
ñ ) if (X

(k)
ñ , i) 6= (A

(2)
2n , 1), and from UDr

q (A
(2)
2 )

to UDr
q (X

(k)
ñ ) if (X

(k)
ñ , i) = (A

(2)
2n , 1).

Moreover, for all α ∈ Q, β ∈ Q0, m ∈ Z, i ∈ I0 we have

Ω(UDr
q,α) = UDr

q,−α, Θ(UDr
q,β+mδ) = UDr

q,β−mδ, ti(UDr
q,α) = UDr

q,λi(α).
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§9. Reduction to relations with constant parameter

We shall now apply the structures introduced until now to the analysis of the

relations defining UDr
q .

Notation 9.1. Let (R) be relations as in Notation 5.1 and define the following

ideals of U :

Iconst(R) = (Sζ(r1l, s) | ζ ∈ Z, r ∈ Z, s ∈ Zl̃), I0(R) = (Sζ(0) | ζ ∈ Z),

where 0 ∈ Zl+l̃; more precisely, if #Z = 1 and Z = {ζ}, then given r ∈ Z and

s ∈ Zl̃, let

I(r,s)(R) (= I(r,s)(Rζ)) = (Sζ(r1l, s)).

If ((h)R) (h = 1, . . . ,m) are as in Notation 5.1(iii), define

Iconst(
(1)R, . . . , (m)R) = (Iconst(

(1)R), . . . , Iconst(
(m)R)),

I0((1)R, . . . , (m)R) = (I0((1)R), . . . , I0((m)R)).

Finally, if moreover each ((h)R) is ((h)R+)∪((h)R−) where ((h)R±) is as in Notation

5.1(iv), we shall also use the notation

I±∗ ((1)R, . . . , (m)R) = (I∗((1)R±), . . . , I∗((m)R±))

where ∗ ∈ {∅, const, 0}.

Remark 9.2. With the notation fixed in Notations 5.1 and 9.1 we have:

(i) I0(R) ⊆ Iconst(R) ⊆ I(R);

(ii) I∗(R) = (I∗(Rζ) | ζ ∈ Z) for each ∗ ∈ {∅, const, 0};
(iii) for all ζ ∈ Z, Iconst(Rζ) = (I(r,s)(Rζ) | (r, s) ∈ Z1+l̃);

(iv) l = 1⇒ Iconst(R) = I(R).

Remark 9.3. Let (R±) be relations in ŨDr
q as in Notation 5.1(iv) and suppose

that for all ζ ∈ Z, r ∈ Zl, s ∈ Zl̃ there exists an invertible element uζ,r,s of ŨDr
q

such that Ω̃(S+
ζ (r, s)) = uζ,r,sS

−
ζ (−r,−s) (notice that if (R±) has this property

then so does (R±ζ )). With the notation fixed in Notations 5.1 and 9.1 we have:

(i) Ω̃(I+
r,s(Rζ)) = I−−r,−s(Rζ) for all ζ ∈ Z, (r, s) ∈ Z1+l̃;

(ii) Ω̃(I+(R)) = I−(R), Ω̃(I+
const(R)) = I−const(R) and Ω̃(I+

0 (R)) = I−0 (R);

(iii) I(R), Iconst(R) and I0(R) are the Ω̃-stable ideals generated respectively by

I+(R), I+
const(R) and I+

0 (R).
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Remark 9.4. Let (R) be relations in ŨDr
q as in Notation 5.1 and suppose that

for all ζ ∈ Z there exist i, j ∈ I0 such that for all r ∈ Zl, s ∈ Zl̃ we have:

t̃i(Sζ(r, s)) = Sζ(r − 1l, s),
t̃j(Sζ(r, s)) = Sζ(r, s− 1l̃)
t̃h(Sζ(r, s)) = Sζ(r, s) ∀h 6= i, j.

Then:

(i) I(Rζ) and Iconst(Rζ) are t̃±1
i -stable for all ζ ∈ Z and i ∈ I0;

(ii) for all ζ ∈ Z and (r, s), (r̃, s̃) ∈ Z1+l̃ there exists t̃ ∈ 〈t̃i | i ∈ I0〉 such that

I(r̃,s̃)(Rζ) = t̃(I(r,s)(Rζ));

(iii) for all ζ ∈ Z and (r, s) ∈ Z1+l̃, Iconst(Rζ) is the t̃±1
i -stable (for all i ∈ I0)

ideal generated by I(r,s)(Rζ);

(iv) Iconst(R) is the t̃±1
i -stable ideal (for all i ∈ I0) generated by I0(R).

Corollary 9.5. (i) If (R) satisfies the conditions of Remarks 9.3 and 9.4 then

Iconst(R) is the Ω̃-stable and t̃i-stable (for all i ∈ I0) ideal generated by I+
0 (R).

More precisely for each ζ ∈ Z, Iconst(Rζ) is the Ω̃-stable and t̃i-stable (for all

i ∈ I0) ideal generated by I+
0 (Rζ).

(ii) Let ((1)R±) and ((2)R±) be as in Remarks 9.3 and 9.4, and suppose that

I+
0 ((1)R) ⊆ I+

const(
(2)R); then Iconst(

(1)R) ⊆ Iconst(
(2)R).

More precisely I+
const(

(1)R) ⊆ I+
const(

(2)R) if and only if for all ζ ∈ (1)Z there exists

(r, s) ∈ Z × Zl̃h such that I+
(r,s)(

(1)Rζ) ⊆ I+
const(

(2)R), and if this is the case we

have also I−const(
(1)R) ⊆ I−const(

(2)R).

Remark 9.6. With the notation fixed in Notation 5.1 suppose that

σ.Sζ(r, s) = Sζ(r, s) ∀ζ ∈ Z, r ∈ Zl, s ∈ Zl̃, σ ∈ Sl,

where σ.Sζ(r, s) = Sζ(σ.r, s) (see Notation 4.1(iv).

This condition is equivalent to the existence of elements Nζ(r, s) ∈ ŨDr
q such

that

Sζ(r, s) =
∑
σ∈Sl

σ.Nζ(r, s).

Notice that in general the elements Nζ(r, s) (r ∈ Zl, s ∈ Zl̃) are not uniquely

determined by the Sζ(r, s)’s.

But Nζ(r1l, s) = 1
l!Sζ(r1l, s) for all (r, s) ∈ Z× Zl̃.
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Remark 9.7. In the hypotheses of Remark 9.6 suppose that:

(i) Z ⊆

{
I0 if l̃ = 0,

{(i, j) ∈ I0 × I0 | i 6= j} if l̃ = 1;

(ii) if l̃ = 0 and i ∈ Z ⊆ I0 there exists cp,σ ∈ C(q) (p ∈ Zl, σ ∈ Sl) such that for

all r ∈ Zl,

Ni(r) =
∑
p∈Zl
σ∈Sl

cp,σX
+

i,d̃i(rσ(1)+p1)
· . . . ·X+

i,d̃i(rσ(l)+pl)
;

(iii) if l̃ = 1 and (i, j) ∈ Z ⊆ I0 × I0 there exists c̃p,σ,u ∈ C(q) (p ∈ Zl, σ ∈ Sl,
u ∈ {0, . . . , l}) such that for all (r, s) ∈ Zl × Zl̃,

N(i,j)(r, s) =
∑

p∈Zl,σ∈Sl
u=0,...,l

c̃p,σ,uX
+

i,d̃i(rσ(1)+p1)
. . . X+

i,d̃i(rσ(u)+pu)
X+

j,d̃js

·X+

i,d̃i(rσ(u+1)+pu+1)
. . . X+

i,d̃i(rσ(l)+pl)
.

Then the conditions of Remark 9.4 are satisfied.

Remark 9.8. The relations (XD±)–(S3±), as well as (Tk±) and (S±), are of

the form described in Remark 9.7 and satisfy the hypotheses of Remark 9.3, so

that they all satisfy the conditions of Remarks 9.3 and 9.4 and in particular the

properties stated in Corollary 9.5(i).

Remark 9.9. If the relations (R) are of the form described in Remarks 9.6 and

9.7 we find that for all h ∈ I0 and p ∈ Z+:

[Hh,p, Si(r)] = bhip

l∑
u=1

Si

(
r +

p

d̃i
eu

)
if l̃ = 0,

[Hh,p, S(i,j)(r, s)] = bhjpS(i,j)

(
r, s+

p

d̃j

)
+ bhip

l∑
u=1

S(i,j)

(
r +

p

d̃i
eu, s

)
if l̃ = 1,

where Sζ(r, s) = 0 if (r, s) 6∈ Zl+l̃.
Our next goal is studying the ideals I±(R) and I(R) (see Notations 5.1 and

9.1), providing a set of generators smaller and simpler than all of {S±ζ (r, s) | ζ ∈ Z,
r ∈ Zl, s ∈ Zl̃}. More precisely we shall show that under suitable hypotheses

(fulfilled by the relations defining UDr
q over ŨDr

q ) we have I±(R) = I±const(R).

Remark 9.10. The relations (XD+) satisfy the conditions of Remark 9.2(iv),

hence in particular I+(XD) = I+
const(XD) and I(XD) = Iconst(XD) (see Re-

marks 9.3 and 9.8).
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We shall generalize in two steps this result for (XD±) to relations (R) satis-

fying the properties described in Remarks 9.3 and 9.7: the cases l = 2, l̃ = 0 (in

particular (X1±) and (X2±)) will follow from Lemma 9.12, while the general case

will be an application of Lemma 9.14.

Note that if we considered ŨDr
q /I(HX) instead of ŨDr

q we would not need to

deal with the two cases separately, but the result would follow in both cases from

Lemma 9.14.

For the next remark recall Notation 8.1.

Remark 9.11. Consider an algebra U over a field of characteristic 0, an auto-

morphism t of U , and elements z,N(r) ∈ U (r ∈ Z2) such that:

(i) t(N(r)) = N(r + 1) for all r ∈ Z2;

(ii) [z,N(r)] = N(r + e1) + N(r + e2) = N(r1 + 1, r2) + N(r1, r2 + 1) for all

r = (r1, r2) ∈ Z2.

If we put S(r) =
∑
σ∈S2

N(σ(r)) then of course:

(a) S(r) = S(r̄) for all r ∈ Z2;

(b) S(r) satisfies (i) and (ii);

(c) S(0) = 2N(0).

Lemma 9.12. Let U , t, z, N(r), S(r) be as in Remark 9.11. If N(0) = 0 then

S(r) = 0 for all r ∈ Zl.

Proof. First of all Remark 9.11 implies that it is enough to prove that S(0, r) = 0

for all r ∈ N: indeed (a) of Remark 9.11 implies that one can suppose r1 ≤ r2;

moreover applying t−r1 one reduces to the case r1 = 0.

Let us proceed by induction on r: if r = 0 the claim is true by hypothesis; let

r > 0; then by the inductive hypothesis S(0, r − 1) = 0 and 0 = [z, S(0, r − 1)] =

S(1, r−1)+S(0, r); if r = 1 then S(1, r−1)+S(0, r) = S(1, 0)+S(0, 1) = 2S(0, 1),

so that S(0, 1) = 0; if r > 1 then S(1, r − 1) = t(S(0, r − 2)) = 0 by the inductive

hypothesis, so that also S(0, r) = 0.

Remark 9.13. Consider an algebra U over a field of characteristic 0, an auto-

morphism t of U , elements zm, Ny(r) ∈ U (m ∈ Z+, y ∈ U , r ∈ Zl with l ∈ Z+

fixed) such that:

(i) t(Ny(r)) = Ny(r + 1) for all y ∈ U , r ∈ Zl;
(ii) [zm, Ny(r)] = N[zm,y](r) +

∑l
u=1Ny(r +meu).

If we put Sy(r) =
∑
σ∈Sl Ny(σ(r)) then of course:

(a) Sy(r) = Sy(σ(r)) for all σ ∈ Sl;
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(b) Sy(r) satisfies (ii) and (iii);

(c) Sy(0) = l!Ny(0).

Lemma 9.14. Let U , t, zm, Ny(r), Sy(r) be as in Remark 9.13 and let Y ⊆ U
be a subset such that [zm, Y ] ⊆ Y for all m ∈ Z+. If Ny(0) = 0 for all y ∈ Y then

Sy(r) = 0 for all y ∈ Y and r ∈ Zl.

Proof. First of all Remark 9.13 implies that it is enough to prove that Sy(r) = 0

for all y ∈ Y and r = (r1, . . . , rl) ∈ Zl such that 0 = r1 ≤ · · · ≤ rl: indeed (a) of

Remark 9.13 implies that one can suppose r1 ≤ · · · ≤ rl; moreover applying t−r1

one reduces to the case r1 = 0.

Let v = max{u = 1, . . . , l | ru = 0} and proceed by induction on v: if v = l

then r = 0 and the claim is true by hypothesis; let v < l and choose m = rv+1;

then

max{u = 1, . . . , l | (r −mev+1)u = 0} = v + 1,

max{u = 1, . . . , l | (r −mev+1 +mew)u = 0} = v + 1 ∀w > v + 1,

hence by the inductive hypothesis Sy(r−mev+1) = 0 and Sy(r−mev+1+mew) = 0

for all y ∈ Y and w > v + 1; it follows that

0 = [zm, Sy(r −mev+1)] = S[zm,y](r −mev+1) +

l∑
w=1

Sy(r −mev+1 +mew)

=

v+1∑
w=1

Sy(r −mev+1 +mew) = (v + 1)Sy(r).

Proposition 9.15. Consider the notation fixed in Notation 5.1 and suppose that

(R+) satisfies the hypotheses of Remark 9.7. Then:

(i) if l = 2 and l̃ = 0 we have I+(R) = I+
const(R) in ŨDr

q (X
(k)
ñ );

(ii) in any case I+(R) = I+
const(R) in ŨDr

q (X
(k)
ñ )/I(HX+);

(iii) if moreover the hypotheses of Remark 9.3 are satisfied then we also have

I−(R) = I−const(R) (in ŨDr
q (X

(k)
ñ ) and in ŨDr

q (X
(k)
ñ )/I(HX−) respectively).

Proof. Let ζ ∈ Z; thanks to Remarks 9.4(iv) and 7.9, for all i ∈ I0, t̃i induces an

automorphism t′i of ŨDr
q (X

(k)
ñ )/I+

const(Rζ) and of ŨDr
q (X

(k)
ñ )/I+

const(HX,Rζ).

(i) Fix i ∈ Z ⊆ I0, and notice that the data

U = ŨDr
q /I+

const(Ri), t = t′−1
i , z =

1

biid̃i
H(i,d̃i)

, N(r) = Ni(r) (r ∈ Z2)

satisfy the conditions of Remark 9.11 and Lemma 9.12.
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Since I+
0 (Ri) = 0 in ŨDr

q /I+
const(Ri), Lemma 9.12 implies that I+(Ri) = 0 in

ŨDr
q /I+

const(Ri), or equivalently that I+(Ri) ⊆ I+
const(Ri) in ŨDr

q , and this for all

i ∈ I0 ⊆ Z, so that I+(R) = I+
const(R) thanks to Remark 9.2(i)&(ii).

(ii) Fix

ζ =

{
i ∈ Z ⊆ I0 if l̃ = 0,

(i, j) ∈ Z ⊆ I0 × I0 if l̃ = 1,

and notice that the data

U = ŨDr
q /I+

const(HX,Rζ), t = t′−1
i , zm =

1

biid̃im
H(i,d̃im) ∀m ∈ Z+,

Y =

{0, 1} if l̃ = 0,

{aX+

j,d̃js
| s ∈ Z, a ∈ C(q)} if l̃ = 1,

and for r ∈ Zl,

Ny(r) =

yN
+
i (r) if l̃ = 0,

aN+
(i,j)(r, s) if l̃ = 1, y = aX+

j,d̃js
,

satisfy the conditions of Remark 9.13 and Lemma 9.14.

Since I+
0 (Ri) = 0 in ŨDr

q /I+
const(HX,Ri) if l̃ = 0, and I+

0,s(R(i,j)) = 0 in

ŨDr
q /I+

const(HX,R(i,j)) for all s ∈ Z if l̃ = 1, Lemma 9.14 implies that I+(Rζ) = 0

in ŨDr
q /I+

const(HX,Rζ), or equivalently I+(Rζ) ⊆ I+
const(Rζ) in ŨDr

q /I+
const(HX),

so that I+(R) = I+
const(R) thanks to Remark 9.2(i)&(ii).

It follows that I+(R) ⊆ (I+(HX), I+
const(R)).

(iii) follows from (i) and (ii) thanks to Remarks 9.3 and 7.3.

Remark 9.16. In Proposition 9.15(i) the hypothesis l̃ = 0 is not necessary: the

claim would hold also in case l̃ = 1. But this case is omitted here because it is

not really needed in this paper and its proof, very similar, would just require a

little more complicated, and repetitive, exposition (see the proof of Proposition

9.15(ii)).

Corollary 9.17. (i) I±(X1) = I±const(X1) and I±(X2) = I±const(X2).

(ii) If (R±) is one of (X3ε,±)–(S3±), (Tk±) and (S±) then

I±(R) ⊆ (I±(HX), I±const(R)).

(iii) If (R±) is one of (X3ε,±)–(S3±) and (S±) then

I±(R,XD,X1, X2) = I±const(R,XD,X1, X2).
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Proof. The claims follow from Proposition 9.15, Remarks 9.8 and 9.10 and Propo-

sition 7.15.

Remark 9.18. Remark 9.16 would imply that furthermore I±(R) = I±const(R)

even in the case when (R±) is one of (Sk±), (Tk±) and, if aij = −1, also

(S(UL)±(i,j)).

Corollary 9.19. Proposition 9.15 implies that

UDr
q = ŨDr

q /Iconst(XD,X1, X2, X3ε, SUL, S2, S3).

The final remark of this section is a straightforward consequence of Re-

mark 8.5.

Remark 9.20. (i) If (R±) is one of (XD±)–(X2±), (SUL±)–(S3±), (Tk±), (S±)

then I+(R) and I+
const(R) are Θ̃-stable.

(ii) I+(X31, X3−1) and I+
const(X31, X3−1) are the Θ̃-stable ideals generated re-

spectively by I+(X31) and I+
const(X31);

(iii) I+
const(X31, X3−1) is the Θ̃-stable and ti-stable ideal (for all i ∈ I0) generated

by I+
0 (X31);

(iv) I(X31, X3−1, X2) = Iconst(X31, X3−1, X2) is the Ω̃-stable, Θ̃-stable and t̃i-

stable ideal (for all i ∈ I0) generated by I+
0 (X31, X2).

§10. More about redundant relations

In this section we prove some dependences among the relations (XD±)–(S3±),

making systematic recourse to the properties of q-commutators (Remark 4.17)

and to Corollary 9.5(ii).

Proposition 10.1. With the notation of Remark 9.1,

I±const(X2), I±const(X3−1) ⊆ I±const(X31).

Proof. To prove I+
0 (X2) ⊆ I+

const(X31), note that

[[[X+
1,1, X

+
1,0]q2 , X+

1,0]q4 , X−1,−1] ∈ I+
const(X31);

but

[[[X+
1,1, X

+
1,0]q2 , X+

1,0]q4 , X−1,−1] =

[[
Ck1 − C−1k−1

1

q − q−1
, X+

1,0

]
q2

, X+
1,0

]
q4

+ [[X+
1,1, k

−1
1 H1,−1]q2 , X+

1,0]q4 + [[X+
1,1, X

+
1,0]q2 , k−1

1 H1,−1]q4

=k−1
1 (q2[2]qC

−1[X+
1,0, X

+
1,0]q6−q2[[H1,−1, X

+
1,1], X+

1,0]q6−q4[H1,−1, [X
+
1,1, X

+
1,0]q2 ])

=−q4[3]q!C
−1k−1

1 ([X+
1,1, X

+
1,−1]q2−(q4−q−2)(X+

1,0)2)=−q4[3]q!C
−1k−1

1 M+
(2,2)(0),

so I+
0 (X2) ⊆ I+

const(X31).
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For the other inclusion, notice that

I+
const(X31) 3 1

biid̃i
t̃1([H1,1,M

1,+
(3) (0)])

= [[X+
1,1, X

+
1,−1]q2 , X+

1,−1]q4 + [[X+
1,0, X

+
1,0]q2 , X+

1,−1]q4 + [[X+
1,0, X

+
1,−1]q2 , X+

1,0]q4

= [[X+
1,1, X

+
1,−1]q2 − (q4 − q−2)(X+

1,0)2, X+
1,−1]q4

+ (q4 − q−2 + 1− q2 − q4)(X+
1,0)2X+

1,−1

+ (1 + q6)X+
1,0X

+
1,−1X

+
1,0 + (−q8 + q2 − q4 + q6 − q2)X+

1,−1(X+
1,0)2,

so that

−(q2 − 1 + q−2)((X+
1,0)2X+

1,−1 − (q4 + q2)X+
1,0X

+
1,−1X

+
1,0 + q6X+

1,−1(X+
1,0)2)

= −q6(q2 − 1 + q−2)[[X+
1,−1, X

+
1,0]q−2 , X+

1,0]q−4 = −q6(q2 − 1 + q−2)M−1,+
(3) (0)

is an element of I+
const(X31). The claim follows again from Corollary 9.5.

Corollary 10.2. (i) I±(X31) = I±const(X31) (see Corollary 9.17(iii));

(ii) I+
const(X31) = I+

const(X3−1) is Θ̃-stable;

(iii) (I+
const(X31), I−const(X3−1)) = Iconst(X31) = Iconst(X3−1) is Ω̃-stable.

Proposition 10.3. (i) UDr
q (A

(1)
1 ) = ŨDr

q (A
(1)
1 )/Iconst(X1);

(ii) UDr
q (A

(2)
2 ) = ŨDr

q (A
(2)
2 )/Iconst(X31) = ŨDr

q (A
(2)
2 )/(I+

const(X31), I−const(X3−1)).

Proposition 10.4. I±const(XD) ⊆ I±const(SUL).

Proof. Let i, j ∈ I0 be such that aij < 0; since −1 ∈ {aij , aji}, in the study of

[X+

i,d̃ij
, X+

j,0]
q
aij
i

+[X+

j,d̃ij
, X+

i,0]
q
aij
i

we can suppose that aij = −1, and in particular

d̃j ≤ d̃i = d̃ij and, if X
(k)
ñ = A

(2)
2n , i 6= 1. Then [[X+

j,0, X
+
i,0]q, X

+
i,0]q−1 is an element

of I+
const(SUL), and so is [[[X+

j,0, X
+
i,0]q, X

+
i,0]q−1 , X−

i,d̃i
]. But

[[[X+
j,0, X

+
i,0]q, X

+
i,0]q−1 , X−

i,d̃i
]

= [[X+
j,0, X

+
i,0]q, C

−d̃ikiHi,d̃i
]q−1 + [[X+

j,0, C
−d̃ikiHi,d̃i

]q, X
+
i,0]q−1

= C−d̃iki(q
−1[[X+

j,0, X
+
i,0]q, Hi,d̃i

] + q[[X+
j,0, Hi,d̃i

], X+
i,0]q−3)

= C−d̃iki(−biid̃iq
−1[X+

j,0, X
+

i,d̃i
]q − bijd̃iq

−1[X+

j,d̃i
, X+

i,0]q − bijd̃iq[X
+

j,d̃i
, X+

i,0]q−3)

= [2]qiC
−d̃iki([X

+

i,d̃i
, X+

j,0]q−1 + [X+

j,d̃i
, X+

i,0]q−1).

Thus I+
0 (XD) ⊆ I+

const(SUL), and the claim follows using Corollary 9.5.

Lemma 10.5. For i ∈ I0, a ∈ N define Yi,a ∈ ŨDr
q (X

(k)
ñ ) as follows:

Yi,0 = X+

i,d̃i
, Yi,a+1 = [Yi,a, X

+
i,0]

q
2(a+1)
i

.
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(Notice that Yi,1 = M+
i (0).) Then:

(i) [Yi,a, X
−
i,0] = (biid̃i − [a]qi [a+ 1]qi)kiYi,a−1 for all a > 0;

(ii) [X+
i,j;1−aij ;1(0; 0), X−

j,d̃ij
] = C−d̃ijkjbjid̃ijYi,−aij .

Proof. (i) We have

[Yi,a, X
−
i,0] = [[. . . [. . . [X+

i,d̃i
, X+

i,0]q2
i
, . . . X+

i,0]q2u
i
, . . . X+

i,0]q2a
i
, X−i,0]

= [. . . [. . . [kiHi,d̃i
, X+

i,0]q2
i
, . . . X+

i,0]q2u
i
, . . . X+

i,0]q2a
i

+

a∑
u=1

[
. . .

[[
[. . . [X+

i,d̃i
, X+

i,0]q2
i
, . . . X+

i,0]
q
2(u−1)
i

,
ki − k−1

i

qi − q−1
i

]
q2u
i

, X+
i,0

]
q
2(u+1)
i

, . . . X+
i,0

]
q2a
i

= ki[. . . [. . . [Hi,d̃i
, X+

i,0], . . . X+
i,0]

q
2(u−1)
i

, . . . X+
i,0]

q
2(a−1)
i

+

a∑
u=1

q−2u
i − q2u

i

qi − q−1
i

ki[. . . [[. . . [X
+

i,d̃i
, X+

i,0]q2
i
, . . . X+

i,0]
q
2(u−1)
i

, X+
i,0]q2u

i
, . . . X+

i,0]
q
2(a−1)
i

= biid̃iki[. . . [. . . [X
+

i,d̃i
, X+

i,0]q2
i
, . . . X+

i,0]
q
2(u−1)
i

, . . . X+
i,0]

q
2(a−1)
i

−
a∑
u=1

[2u]qiki[. . . [[. . . [X
+

i,d̃i
, X+

i,0]q2
i
, . . . X+

i,0]
q
2(u−1)
i

, X+
i,0]q2u

i
, . . . X+

i,0]
q
2(a−1)
i

= (biid̃i − [a]qi [a+ 1]qi)kiYi,a−1.

(ii) We have

[X+
i,j;1−aij ;1(0; 0), X−

j,d̃ij
]

= [[. . . [. . . [X+
j,0, X

+
i,0]

q
aij
i
, . . . X+

i,0]
q
aij+2(u−1)

i

, . . . X+
i,0]

q
−aij
i

, X−
j,d̃ij

]

=
1

qj − q−1
j

[. . . [. . . [C−d̃ijkjH̃
+

j,d̃ij
, X+

i,0]
q
aij
i
, . . . X+

i,0]
q
aij+2(u−1)

i

, . . . X+
i,0]

q
−aij
i

=
C−d̃ijkj

qj − q−1
j

[. . . [. . . [H̃+

j,d̃ij
, X+

i,0], . . . X+
i,0]

q
2(u−1)
i

, . . . X+
i,0]

q
−2aij
i

.

Recalling Remark 7.18 we get

[X+
i,j;1−aij ;1(0; 0), X−

j,d̃ij
]

= C−d̃ijkjbjid̃ij [. . . [. . . [X
+

i,d̃ij
, X+

i,0]q2
i
, . . . X+

i,0]
q
2(u−1)
i

, . . . X+
i,0]

q
−2aij
i

= C−d̃ijkjbjid̃ijYi,−aij .

Corollary 10.6. Let i, j ∈ I0 be such that aij < 0 with the condition that aij = −1

if k > 1; then M+
i (0) ∈ I+

const(SUL). In particular:
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(i) in the cases of rank greater than 1 (that is, X
(k)
ñ 6= A

(1)
1 , A

(2)
2 ) and different

from D
(2)
n+1 and D

(3)
4 we have I±const(X1) ⊆ I±const(SUL);

(ii) in cases D
(2)
n+1 and D

(3)
4 we have I±const(X1) ⊆ (I±const(SUL), I±const(X11)).

Proof. This is an immediate consequence of Lemma 10.5 (and of Corollary 9.5)

once one notices that the hypotheses imply that X+
i,j;1−aij ;1(0; 0) ∈ I+

const(SUL),

bjid̃ij 6= 0 and biid̃i = [2]qi .

Remark 10.7. If k = 2, X
(k)
ñ 6= A

(2)
2n and i, j ∈ I0 are such that aij = −2 then

I±const(X1i) ⊆ I±const(T2).

In particular I±const(T2) = I±const(X1i, S2).

Proof. [[X+
j,0, X

+
i,1]q2 , X+

i,0] lies in I+
const(T2) and so does

[[[X+
j,0, X

+
i,1]q2 , X+

i,0], X−j,0] =

[[
kj − k−1

j

q2 − q−2
, X+

i,1

]
q2

, X+
i,0

]
= −q2kj [X

+
i,1, X

+
i,0]q2 .

Theorem 10.8.

(i) UDr
q (X

(1)
ñ ) =

{
ŨDr
q (A

(1)
1 )/Iconst(X1) if Xñ = A1,

ŨDr
q (X

(1)
ñ )/Iconst(SUL) otherwise;

(ii) UDr
q (X

(2)
ñ ) =

{
ŨDr
q (A

(2)
2n )/Iconst(X31, SUL, S2) if Xñ = A2n,

ŨDr
q (X

(2)
ñ )/Iconst(SUL, T2) otherwise;

(iii) UDr
q (D

(3)
4 ) = ŨDr

q (D
(3)
4 )/Iconst(X11,SUL,S3)

= ŨDr
q (D

(3)
4 )/Iconst(X11,SUL,T3).

Corollary 10.9. Let U be a C(q)-algebra, t
(U)
i (i ∈ I0) be C(q)-automorphisms

of U , Ω(U) be a C-antilinear antiautomorphism of U , and f̃ : ŨDr
q (X

(k)
ñ ) → U

be a homomorphism of C(q)-algebras such that f̃ ◦ t̃i = t
(U)
i ◦ f̃ for all i ∈ I0 and

f̃ ◦ Ω̃ = Ω(U) ◦ f̃ . If:

(i) f̃(I+
0 (X1)) = 0 in case X

(k)
ñ = A

(1)
1 ;

(ii) f̃(I+
0 (SUL)) = 0 in case k = 1, X

(k)
ñ 6= A

(1)
1 ;

(iii) f̃(I+
0 (X31, SUL, S2)) = 0 in case X

(k)
ñ = A

(2)
2n ;

(iv) f̃(I+
0 (SUL, T2)) = 0 in case k = 2, X

(k)
ñ 6= A

(2)
2n ;

(v) f̃(I+
0 (X11, SUL, T3)) = 0 in case D

(3)
4 ,

then f̃ induces f : UDr
q (X

(k)
ñ )→ U and we have f ◦ ti = t

(U)
i ◦ f for all i ∈ I0, and

f ◦Ω = Ω(U) ◦ f .
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Proof. Since the hypotheses imply that ker(f̃) is a ti-stable (for all i ∈ I0) and

Ω̃-stable ideal of UDr
q (X

(k)
ñ ), the claim is an immediate consequence of Theorem

10.9 and of Corollary 9.5(i).

§11. The Serre relations

This section is devoted to the study of the Serre relations (see Definition 5.9). In

particular we prove that the Serre relations hold in UDr
q , and that in the case of rank

greater than 1 the Serre relations alone are indeed equivalent to (XD±)–(S3±) (in

ŨDr
q ), that is, UDr

q = ŨDr
q /Iconst(S

±). We use the notation fixed in Notations 5.1

and 9.1.

Remark 11.1. (i) If k = 1 (S±) = (SUL±);

(ii) if k > 1 and i, j ∈ I0 are such that aij < −1 then (S±) = (SUL±) ∪ (S±(i,j)).

Before passing to the proof that the Serre relations hold in UDr
q , we state the

following remark on q-commutators, which simplifies many computations in the

next propositions.

Lemma 11.2. Let a ∈ ŨDr
q and i ∈ I0 be such that (X

(k)
ñ , i) 6= (A

(2)
2n , 1), and let

u, v ∈ C(q). Then in ŨDr
q /I+

const(X1i) we have, for all r ∈ Z:

(i) [[a,X+
i,r]u, X

+

i,r+d̃i
]v = q−2

i [[a,X+

i,r+d̃i
]q2
i v
, X+

i,r]q2
i u

;

(ii) [[a,X+

i,r+2d̃i
]u,X

+
i,r]v=q2

i [[a,X+
i,r]q−2

i v,X
+

i,r+2d̃i
]q−2
i u+ (q2− 1)[a,(X+

i,r+d̃i
)2]q−2

i uv.

Proof. It is a simple computation using Remark 4.17(iii).

Proposition 11.3. If k = 2, X
(2)
ñ 6= A

(2)
2n and i, j ∈ I0 are such that aij = −2,

then

I±const(S(i,j)) ⊆ I±const(T2).

Proof. In this proof we use that I±const(X1i) ⊆ I±const(T2) (see Proposition 10.7)

and make computations in ŨDr
q /I+

const(T2).

Since [Hi,1, [[X
+
j,0, X

+
i,0]q2 , X+

i,−1]] lies in I+
const(T2) (see Definition 5.7) we see

that

[[X+
j,0, X

+
i,1]q2 , X+

i,−1] + [[X+
j,0, X

+
i,0]q2 , X+

i,0] = 0

in ŨDr
q /I+

const(T2); but, thanks to Lemma 11.2(ii), we have

[[X+
j,0, X

+
i,1]q2 , X+

i,−1] = q2[[X+
j,0, X

+
i,−1]q−2 , X+

i,1] + (q2 − 1)[X+
j,0, (X

+
i,0)2],
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so that

0 = q2[[X+
j,0, X

+
i,−1]q−2 , X+

i,1] + [X+
j,0, (q

2 − 1)(X+
i,0)2] + [[X+

j,0, X
+
i,0]q2 , X+

i,0]

= q2[[X+
j,0, X

+
i,−1]q−2 , X+

i,1] + q2[[X+
j,0, X

+
i,0]q−2 , X+

i,0]

and also

[[[X+
j,0, X

+
i,−1]q−2 , X+

i,1] + [[X+
j,0, X

+
i,0]q−2 , X+

i,0], X+
i,0]q2 = 0.

Now, thanks to Lemma 11.2(i) and to the relations (T2+),

[[[X+
j,0, X

+
i,−1]q−2 , X+

i,1], X+
i,0]q2 = [[[X+

j,0, X
+
i,0]q2 , X+

i,−1], X+
i,1]q−2 = 0,

so that

[[[X+
j,0, X

+
i,0]q−2 , X+

i,0], X+
i,0]q2 = 0,

which implies I±const(S(i,j)) ⊆ I±const(T2), thanks to Corollary 9.5.

Let us concentrate now on case A
(2)
2n .

Lemma 11.4. Let X
(k)
ñ = A

(2)
2n ; then

[[X+
1,2, X

+
1,1]q2 , X+

1,0]q4 − (q2 − 1)(q4 − 1)(q2 + q−2)(X+
1,1)3 ∈ I+

const(X31).

Proof. By Corollary 10.2,

[[X+
1,2, X

+
1,1]q2 , X+

1,0]q4 + [[X+
1,2, X

+
1,0]q2 , X+

1,1]q4 + [X+
1,1, X

+
1,1]q2 , X+

1,1]q4

belongs to I+(X31) = I+
const(X31).

But [X+
1,2, X

+
1,0]q2 − (q4 − q−2)(X+

1,1)2 ∈ I+
const(X31) (see Proposition 10.1),

so that

[[X+
1,2, X

+
1,1]q2 , X+

1,0]q4 + (1− q4)(q4 − q−2 + 1− q2)(X+
1,1)3

lies in I+
const(X31).

Proposition 11.5. If X
(2)
ñ = A

(2)
2n and i, j ∈ I0 are such that aij = −2 (i = 1,

j = 2), then I±const(S(i,j)) ⊆ I±const(XD,X31, S2).

Proof. Recall that by the very definition of I+
const(S2) we have (see Remark 5.6)

(q2 + q−2)[[X+
j,0, X

+
i,1]q2 , X+

i,0] + q2[[X+
i,1, X

+
i,0]q2 , X+

j,0]q−4 ∈ I+
const(S2),

so that also

(q2 + q−2)[X+
i,−1, [[X

+
j,0, X

+
i,1]q2 , X+

i,0]]q−2 + q2[X+
i,−1, [[X

+
i,1, X

+
i,0]q2 , X+

j,0]q−4 ]q−2

belongs to I+
const(S2), and let us compute the two summands separately in the

algebra ŨDr
q /I+

const(XD,X31, S2):



Drinfeld Realization: the Relations 717

[X+
i,−1, [[X

+
j,0, X

+
i,1]q2 , X+

i,0]]q−2

= −q2[X+
i,−1, [[X

+
i,1, X

+
j,0]q−2 , X+

i,0]]q−2
XD
= q2[X+

i,−1, [[X
+
j,1, X

+
i,0]q−2 , X+

i,0]]q−2

= q2[[X+
i,−1, [X

+
j,1, X

+
i,0]q−2 ], X+

i,0]q−2 + q2[[X+
j,1, X

+
i,0]q−2 , [X+

i,−1, X
+
i,0]q−2 ]

S2
= −q4[[X+

i,0, [X
+
j,1, X

+
i,−1]q−2 ]q−4 , X+

i,0]q−2 − [[X+
j,1, X

+
i,0]q−2 , [X+

i,0, X
+
i,−1]q2 ]

= −q4[[X+
i,0, [X

+
j,1, X

+
i,−1]q−2 ]q−4 , X+

i,0]q−2

− [X+
j,1, [X

+
i,0, [X

+
i,0, X

+
i,−1]q2 ]q4 ]q−6 + q−2[X+

i,0, [X
+
j,1, [X

+
i,0, X

+
i,−1]q2 ]q−4 ]q6

XD,X3−1

= q4[[X+
i,0, [X

+
i,0, X

+
j,0]q−2 ]q−4 , X+

i,0]q−2

+ q−2[X+
i,0, [X

+
j,1, [X

+
i,0, X

+
i,−1]q2 ]q−4 ]q6

S2
= q−2[[[X+

j,0, X
+
i,0]q2 , X+

i,0]q4 , X+
i,0]q−2

− (1 + q−4)[X+
i,0, [[X

+
j,1, X

+
i,−1]q−2 , X+

i,0]]q6

XD
= q−2[[[X+

j,0, X
+
i,0]q2 , X+

i,0]q4 , X+
i,0]q−2 + (q4 + 1)[[[X+

j,0, X
+
i,0]q2 , X+

i,0], X+
i,0]q−6

and

[X+
i,−1, [[X

+
i,1, X

+
i,0]q2 , X+

j,0]q−4 ]q−2

= [[X+
i,−1, [X

+
i,1, X

+
i,0]q2 ]q−4 , X+

j,0]q−2 + q−4[[X+
i,1, X

+
i,0]q2 , [X+

i,−1, X
+
j,0]q2 ]

XD
= q−6[X+

j,0, [[X
+
i,1, X

+
i,0]q2 , X+

i,−1]q4 ]q2 + q−2[[X+
i,1, X

+
i,0]q2 , [X+

i,0, X
+
j,−1]q−2 ]

X31

= (1− q−2)(1− q−4)(q2 + q−2)[X+
j,0, (X

+
i,0)3]q2

− q−2[[X+
i,0, X

+
j,−1]q−2 , [X+

i,1, X
+
i,0]q2 ]

= (1− q−2)(1− q−4)(q2 + q−2)[X+
j,0, (X

+
i,0)3]q2

− q−2[X+
i,0, [X

+
j,−1, [X

+
i,1, X

+
i,0]q2 ]q4 ]q−6 + q−4[X+

j,−1, [X
+
i,0, [X

+
i,1, X

+
i,0]q2 ]q−4 ]q6

X31

= (1− q−2)(1− q−4)(q2 + q−2)[X+
j,0,(X

+
i,0)3]q2

+ q2[X+
i,0, [[X

+
i,1, X

+
i,0]q2 ,X+

j,−1]q−4 ]q−6

S2
= (q2 + q−2)((1− q−2)(1− q−4)[X+

j,0, (X
+
i,0)3]q2

− [X+
i,0, [[X

+
j,−1, X

+
i,1]q2 , X+

i,0]]q−6)

XD
= (q2 + q−2)((1− q−2)(1− q−4)[X+

j,0, (X
+
i,0)3]q2

+ q−4[[[X+
j,0, X

+
i,0]q−2 , X+

i,0], X+
i,0]q6).

It follows that

q−2[[[X+
j,0, X

+
i,0]q2 , X+

i,0]q4 , X+
i,0]q−2 + (q4 + 1)[[[X+

j,0, X
+
i,0]q2 , X+

i,0], X+
i,0]q−6

+ (q2 − 1)(1− q−4)[X+
j,0, (X

+
i,0)3]q2 + q−2[[[X+

j,0, X
+
i,0]q−2 , X+

i,0], X+
i,0]q6

= (q + q−1)(q3 + q−3)
(
X+
j,0(X+

i,0)3 − (q2 + 1 + q−2)X+
i,0X

+
j,0(X+

i,0)2

+ (q2 + 1 + q−2)(X+
i,0)2X+

j,0X
+
i,0 − (X+

i,0)3X+
j,0

)
is an element of I+

const(XD,X31, S2), hence I+
0 (S(i,j)) ⊆ I+

const(XD,X31, S2).
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Thanks to Corollary 9.5 we obtain I±const(S(i,j)) ⊆ I±const(XD,X31, S2).

Proposition 11.6. If k=3 and i, j ∈ I0 are such that aij=−3, then I±const(S(i,j))

⊆ I±const(X1i, T3).

Proof. Let us start from

(q2 + 1)[[X+
j,0, X

+
i,2]q3 , X+

i,0]q−1 + [[X+
j,0, X

+
i,1]q3 , X+

i,1]q,

which is an element of I+
const(T3), and remark that

[[X+
j,0, X

+
i,2]q3 , X+

i,0]q−1 − q2[[X+
j,0, X

+
i,0]q−3 , X+

i,2]q − (q2 − 1)[X+
j,0, (X

+
i,1)2]

belongs to I+
const(X1i); but

(q2 + 1)(q2 − 1)[X+
j,0, (X

+
i,1)2] + [[X+

j,0, X
+
i,1]q3 , X+

i,1]q = q4[[X+
j,0, X

+
i,1]q−3 , X+

i,1]q−1 ,

so that

[[X+
j,0, X

+
i,1]q−3 , X+

i,1]q−1 + (1 + q−2)[[X+
j,0, X

+
i,0]q−3 , X+

i,2]q

lies in I+
const(X1i, T3), hence

[[X+
j,−3, X

+
i,4]q3 , X+

i,1]q−1 + (1 + q−2)[[X+
j,−3, X

+
i,3]q3 , X+

i,2]q

and (applying t̃−1
j t̃2i and q-commuting by X+

i,0)

[[[X+
j,0, X

+
i,2]q3 , X+

i,−1]q−1 + (1 + q−2)[[X+
j,0, X

+
i,1]q3 , X+

i,0]q, X
+
i,0]q−3

lie in I+
const(XD,X1i, T3); but

[[[X+
j,0, X

+
i,2]q3 , X+

i,−1]q−1 , X+
i,0]q−3 − q−2[[[X+

j,0, X
+
i,2]q3 , X+

i,0]q−1 , X+
i,−1]q

belongs to I+
const(X1i) by Lemma 11.2,

q−2[[[X+
j,0, X

+
i,2]q3 , X+

i,0]q−1 , X+
i,−1]q +

q−2

q2 + 1
[[[X+

j,0, X
+
i,1]q3 , X+

i,1]q, X
+
i,−1]q

belongs to I+
const(T3),

[[[X+
j,0, X

+
i,1]q3 , X+

i,1]q, X
+
i,−1]q

− q2[[[X+
j,0, X

+
i,1]q3 , X+

i,−1]q−1 , X+
i,1]q−1 − (q2 − 1)[[X+

j,0, X
+
i,1]q3 , (X+

i,0)2]

belongs to I+
const(X1i) again by Lemma 11.2,

q2[[[X+
j,0, X

+
i,1]q3 , X+

i,−1]q−1 , X+
i,1]q−1 +

q2

q2 + 1
[[[X+

j,0, X
+
i,0]q3 , X+

i,0]q, X
+
i,1]q−1

belongs to I+
const(T3) and

[[[X+
j,0, X

+
i,0]q3 , X+

i,0]q, X
+
i,1]q−1 − q−4[[[X+

j,0, X
+
i,1]q3 , X+

i,0]q5 , X+
i,0]q3

belongs to I+
const(X1i) (by Lemma 11.2). So we can conclude that
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q−4

(q2 + 1)2
[[[X+

j,0, X
+
i,1]q3 , X+

i,0]q5 , X+
i,0]q3 − 1− q−2

q2 + 1
[[X+

j,0, X
+
i,1]q3 , (X+

i,0)2]

+ (1 + q−2)[[[X+
j,0, X

+
i,1]q3 , X+

i,0]q, X
+
i,0]q−3

=
(q2 + 1 + q−2)2

(q2 + 1)2
[[[X+

j,0, X
+
i,1]q3 , X+

i,0]q, X
+
i,0]q−1

lies in I+
const(XD,X1i, T3).

Thus [[[[X+
j,0, X

+
i,1]q3 , X+

i,0]q, X
+
i,0]q−1 , X+

i,−1]q3 ∈ I+
const(X1i, T3); but

[[[[X+
j,0, X

+
i,1]q3 , X+

i,0]q, X
+
i,0]q−1 , X+

i,−1]q3

− q4[[[[X+
j,0, X

+
i,1]q3 , X+

i,−1]q−1 , X+
i,0]q−1 , X+

i,0]q−3

belongs to I±const(X1i) and since

(q2 + 1)[[X+
j,0, X

+
i,1]q3 , X+

i,−1]q−1 + [[X+
j,0, X

+
i,0]q3 , X+

i,0]q ∈ I+
const(T3)

it follows that

[[[[X+
j,0, X

+
i,0]q3 , X+

i,0]q, X
+
i,0]q−1 , X+

i,0]q−3 ∈ I+
const(X1, T3),

so that I+
0 (S(i,j)) ⊆ I+

const(X1, T3). Hence I±const(S(i,j)) ⊆ I±const(X1, T3).

Corollary 11.7. Iconst(S) = 0 in UDr
q .

Proof. The claim is a straightforward consequence of Remark 11.1 and Proposi-

tions 11.3, 11.5, 11.6.

We are now able to prove that the quantum algebra Ufin
q of finite type is

mapped in UDr
q , which was not otherwise clear.

Definition 11.8. Let φ : Ufin
q → UDr

q be the C(q)-homomorphism given by

K±1
i 7→ k±1

i , Ei 7→ X+
i,0, Fi 7→ X−i,0 (i ∈ I0).

Remark 11.9. φ is well defined.

Proof. This is a straightforward consequence of Corollary 11.7 (and of (CUK),

(CK), (KX±), (XXE)).

We shall now complete the study of the ideal generated by the Serre relations.

Remark 11.10. I±const(XD) ⊆ I±const(S). If n > 1 then

I±const(X1), I±const(X2), I±const(X31), I±const(X3−1) ⊆ I±const(S).

Proof. That I±const(XD) ⊆ I±const(S) follows from Proposition 10.4 and from Re-

mark 11.1.
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That I±const(X1) ⊆ I±const(S) is a consequence of Lemma 10.5 and of Corol-

lary 9.5 (see also Corollary 10.6).

Finally that I±const(X31) ⊆ I±const(S) follows again from Lemma 10.5 and from

Corollary 9.5, once one notices that (X
(k)
ñ , i, j) = (A

(2)
2n , 1, 2) implies qi = q, bjid̃ij

6= 0 and biid̃i = [2]q[3]q.

From this it follows that I±const(X2), I±const(X3−1) ⊆ I±const(S) (see Proposi-

tion 10.1).

Corollary 11.11. (i) I±(S) = I±const(S) (see Corollary 9.17(iii) and Remark

11.10);

(ii) I(S) = 0 in UDr
q (see Corollary 11.7).

Remark 11.12. If k > 1 and Xñ 6= A2n then I±const(Sk) ⊆ I±const(S)⇔ I±const(Tk)

⊆ I±const(S).

Proof. Of course we can suppose n > 1; then the claim depends on the fact

that (I±const(X1), I±const(Sk)) = (I±const(X1), I±const(Tk)) (see Remark 5.8) and that

I±const(X1) ⊆ I±const(S) (see Remark 11.10).

Proposition 11.13. I±const(S2) ⊆ I±const(S).

Proof. Suppose that k = 2 and let i, j ∈ I0 be such that aij = −2. Then

[[[X+
j,0, X

+
i,0]q2 , X+

i,0], X+
i,0]q−2 is an element of I+

const(S), so that

I+
const(S) 3 [[[[X+

j,0, X
+
i,0]q2 , X+

i,0], X+
i,0]q−2 , X−i,1]

= [[[X+
j,0, C

−1kiHi,1]q2 , X+
i,0], X+

i,0]q−2 + [[[X+
j,0, X

+
i,0]q2 , C−1kiHi,1], X+

i,0]q−2

+ [[[X+
j,0, X

+
i,0]q2 , X+

i,0], C−1kiHi,1]q−2

= −C−1ki(q
2[[[Hi,1, X

+
j,0], X+

i,0]q−2 , X+
i,0]q−4 + [[[Hi,1, X

+
j,0], X+

i,0]q2 , X+
i,0]q−4

+ [[X+
j,0, [Hi,1, X

+
i,0]]q2 , X+

i,0]q−4 + q−2[[[Hi,1, X
+
j,0], X+

i,0]q2 , X+
i,0]

+ q−2[[X+
j,0, [Hi,1, X

+
i,0]]q2 , X+

i,0] + q−2[[X+
j,0, X

+
i,0]q2 , [Hi,1, X

+
i,0]])

= −C−1ki(bij1(q2[[X+
j,1, X

+
i,0]q−2 , X+

i,0]q−4 + [[X+
j,1, X

+
i,0]q2 , X+

i,0]q−4

+ q−2[[X+
j,1, X

+
i,0]q2 , X+

i,0]) + bii1([[X+
j,0, X

+
i,1]q2 , X+

i,0]q−4

+ q−2[[X+
j,0, X

+
i,1]q2 , X+

i,0] + q−2[[X+
j,0, X

+
i,0]q2 , X+

i,1]))

= −C−1ki([3]qbij1(X+
j,1(X+

i,0)2 − (q−2 + 1)X+
i,0X

+
j,1X

+
i,0 + q−2(X+

i,0)2X+
j,1)

+ [3]qbii1(q−2X+
j,0X

+
i,1X

+
i,0 −X

+
i,1X

+
j,0X

+
i,0 − q

−2X+
i,0X

+
j,0X

+
i,1 +X+

i,0X
+
i,1X

+
j,0)

+ bii1(−q−4X+
j,0[X+

i,1, X
+
i,0]q2 + [X+

i,1, X
+
i,0]q2X+

j,0))

= −C−1ki([3]qbij1[[X+
j,1, X

+
i,0]q−2 , X+

i,0]

+ q−2[3]qbii1[[X+
j,0, X

+
i,1]q2 , X+

i,0] + bii1[[X+
i,1, X

+
i,0]q2 , X+

j,0]q−4).
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Now notice that if Xñ 6= A2n we have bii1 6= 0, [X+
i,1, X

+
i,0]q2 ∈ I+

const(S) (see

Remark 11.10) and d̃j=2, hence bij1 =0; we can conclude that [[X+
j,0, X

+
i,1]q2 , X+

i,0]

is an element of I+
const(S), so that I+

const(T2) ⊆ I+
const(S) (see Corollary 9.5), which,

thanks to Remark 11.12, is equivalent to I+
const(S2) ⊆ I+

const(S).

On the other hand, if Xñ = A2n we have bii1 = [2]q[3]q, d̃j = 1, bij1 = −[2]q
and [X+

j,1, X
+
i,0]q−2 + [X+

i,1, X
+
j,0]q−2 ∈ I+

const(S) (see Remark 11.10); then

(q2 + q−2)[[X+
j,0, X

+
i,1]q2 , X+

i,0] + q2[[X+
i,1, X

+
i,0]q2 , X+

j,0]q−4

is an element of I+
const(S), that is, I+

const(S2) ⊆ I+
const(S).

In both cases using Corollary 9.5 we get I±const(S2) ⊆ I±const(S).

Proposition 11.14. I±const(T3) ⊆ I±const(S).

Proof. Let k = 3 (X
(k)
ñ = D

(3)
4 ) and i, j ∈ I0 be such that aij = −3 (i = 1, j = 2).

Then [[[[X+
j,0, X

+
i,0]q3 , X+

i,0]q, X
+
i,0]q−1 , X+

i,0]q−3 is an element of I+
const(S), so that,

recalling that bij1 = 0 and bii1 = [2]q,

I+
const(S) 3 [[[[[X+

j,0, X
+
i,0]q3 , X+

i,0]q, X
+
i,0]q−1 , X+

i,0]q−3 , X−i,1]

= [[[[X+
j,0, C

−1kiHi,1]q3 , X+
i,0]q, X

+
i,0]q−1 , X+

i,0]q−3

+ [[[[X+
j,0, X

+
i,0]q3 , C−1kiHi,1]q, X

+
i,0]q−1 , X+

i,0]q−3

+ [[[[X+
j,0, X

+
i,0]q3 , X+

i,0]q, C
−1kiHi,1]q−1 , X+

i,0]q−3

+ [[[[X+
j,0, X

+
i,0]q3 , X+

i,0]q, X
+
i,0]q−1 , C−1kiHi,1]q−3

= −C−1ki(q
3[[[[Hi,1, X

+
j,0], X+

i,0]q−1 , X+
i,0]q−3 , X+

i,0]q−5

+ q[[[Hi,1, [X
+
j,0, X

+
i,0]q3 ], X+

i,0]q−3 , X+
i,0]q−5

+ q−1[[Hi,1, [[X
+
j,0, X

+
i,0]q3 , X+

i,0]q], X
+
i,0]q−5

+ q−3[Hi,1, [[[X
+
j,0, X

+
i,0]q3 , X+

i,0]q, X
+
i,0]q−1 ])

= −[2]qC
−1ki(q[[[X

+
j,0, X

+
i,1]q3 ,X+

i,0]q−3 ,X+
i,0]q−5

+ q−1[[[X+
j,0, X

+
i,1]q3 , X+

i,0]q, X
+
i,0]q−5

+ q−1[[[X+
j,0, X

+
i,0]q3 , X+

i,1]q, X
+
i,0]q−5 + q−3[[[X+

j,0, X
+
i,1]q3 , X+

i,0]q, X
+
i,0]q−1)

+ q−3[[[X+
j,0, X

+
i,0]q3 , X+

i,1]q, X
+
i,0]q−1) + q−3[[[X+

j,0, X
+
i,0]q3 , X+

i,0]q, X
+
i,1]q−1);

then, thanks to Remarks 11.10 and 11.2, we infer that

q[[[X+
j,0, X

+
i,1]q3 , X+

i,0]q−3 , X+
i,0]q−5 + q−1[[[X+

j,0, X
+
i,1]q3 , X+

i,0]q, X
+
i,0]q−5

+ q−3[[[X+
j,0, X

+
i,1]q3 , X+

i,0]q5 , X+
i,0]q−5 + q−3[[[X+

j,0, X
+
i,1]q3 , X+

i,0]q, X
+
i,0]q−1)

+ q−5[[[X+
j,0, X

+
i,1]q3 , X+

i,0]q5 , X+
i,0]q−1) + q−7[[[X+

j,0, X
+
i,0]q3 , X+

i,0]q5 , X+
i,1]q3

= q−3(q2 + q−2)[3]q[[[X
+
j,0, X

+
i,1]q3 , X+

i,0]q, X
+
i,0]q−1
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belongs to I+
const(S); then so does

[[[[X+
j,0, X

+
i,1]q3 , X+

i,0]q−1 , X+
i,0]q, X

−
i,−1]

=

[[[
X+
j,0,

Cki − C−1k−1
i

q − q−1

]
q3

, X+
i,0

]
q−1

, X+
i,0

]
q

+ [[[X+
j,0, X

+
i,1]q3 , k−1

i Hi,−1]q−1 , X+
i,0]q + [[[X+

j,0, X
+
i,1]q3 , X+

i,0]q−1 , k−1
i Hi,−1]q

= k−1
i ([3]qC

−1[[X+
j,0, X

+
i,0]q, X

+
i,0]q3

− q−1[[[Hi,−1, [X
+
j,0, X

+
i,1]q3 ], X+

i,0]q3 − q[Hi,−1, [[X
+
j,0, X

+
i,1]q3 , X+

i,0]q−1 ])

= C−1k−1
i ([3]q[[X

+
j,0, X

+
i,0]q3 , X+

i,0]q − q−1[2]q[[X
+
j,0, X

+
i,0]q3 , X+

i,0]q3

− q[2]q[[X
+
j,0, X

+
i,0]q3 , X+

i,0]q−1 − q[2]q[[X
+
j,0, X

+
i,1]q3 , X+

i,−1]q−1)

= −C−1k−1
i ([[X+

j,0, X
+
i,0]q3 , X+

i,0]q + q[2]q[[X
+
j,0, X

+
i,1]q3 , X+

i,−1]q−1);

hence I+
0 (T3) ⊆ I+

const(S) and, using Corollary 9.5, I±const(T3) ⊆ I±const(S).

Corollary 11.15. I±const(S3) ⊆ I±const(S).

Proof. This follows from Remark 11.12 and from Proposition 11.14.

Corollary 11.16. If n > 1 then I±const(XD,X1, X2, X3±1, SUL, S2, S3) =

I±const(S).

Proof. This follows from Corollary 11.7, Remarks 11.1 and 11.10, Proposition

11.13 and Corollary 11.15.

Remark 11.17. In UDr
q (D

(3)
4 ) we have [[[X+

j,0, X
+
i,1]q3 , X+

i,0]q, X
+
i,0]q−1 = 0.

Proof. See the proof of Proposition 11.14.

Theorem 11.18. (i) UDr
q (A

(1)
1 ) = ŨDr

q (A
(1)
1 )/Iconst(X1);

(ii) UDr
q (A

(2)
2 ) = ŨDr

q (A
(2)
2 )/Iconst(X31);

(iii) UDr
q (X

(k)
ñ ) = ŨDr

q (X
(k)
ñ )/Iconst(S) if n > 1 (that is, X

(k)
ñ 6= A

(1)
1 , A

(2)
2 ).

Proof. The claims follow from Theorem 10.8 and Corollary 11.16.

Corollary 11.19. Let U be a C(q)-algebra, t
(U)
i (i ∈ I0) be C(q)-automorphisms

of U , Ω(U) be a C-antilinear antiautomorphism of U , and f̃ : ŨDr
q (X

(k)
ñ ) → U

be a homomorphism of C(q)-algebras such that f̃ ◦ t̃i = t
(U)
i ◦ f̃ for all i ∈ I0 and

f̃ ◦ Ω̃ = Ω(U) ◦ f̃ . If:

(i) f̃(I+
0 (X1)) = 0 in case X

(k)
ñ = A

(1)
1 ;

(ii) f̃(I+
0 (X31)) = 0 in case X

(k)
ñ = A

(2)
2 ;

(iii) f̃(I+
0 (S)) = 0 in case X

(k)
ñ 6= A

(1)
1 , A

(2)
2 ,
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then f̃ induces f : UDr
q (X

(k)
ñ )→ U and we have f ◦ ti = t

(U)
i ◦ f for all i ∈ I0, and

f ◦Ω = Ω(U) ◦ f .

Proof. Since the hypotheses imply that ker(f̃) is a ti-stable (for all i ∈ I0), Ω̃-stable

ideal of UDr
q (X

(k)
ñ ), the claim is an immediate consequence of Theorem 11.18 and

of Corollary 9.5.

Remark 11.20. It is useful to compare the results of this section with those of §10.

The simplification of the relations given in §10 (Theorem 10.8 and Corollary 10.9)

provides a minimal set of relations of lowest “degree” (where the degree of Xi1,r1 ·
. . . ·Xih,rh is meant to be h); this minimality can be often useful, in spite of the

more complicated appearance of relations like (S2±) compared with the simple and

familiar Serre relations. On the other hand the advantage of the Serre relations

is evident in all those cases, like the application of Theorem 11.18 and Corollary

11.19 given in §12, when the Serre relations play a central role; in this connection

recall that the Serre relations are the minimal degree relations defining the positive

part of Ufin
q (see Definition 11.8 and Remark 11.9, and recall [L]).

§12. The homomorphism ψ from UDr
q onto UDJ

q

This section is devoted to exhibiting a homomorphism ψ : UDr
q → UDJ

q and proving

that it is surjective.

Notation 12.1. In the following, o : I0 → {±1} will be a map such that:

(a) aij 6= 0⇒ o(i)o(j) = −1 (see [Be] for the untwisted case);

(b) in the twisted case different from A
(2)
2n , aij = −2⇒ o(i) = 1.

Remark 12.2. A map o as in Notation 12.1 exists and is:

(i) determined up to sign in the untwisted case and in cases A
(2)
2n and D

(3)
4 ;

(ii) uniquely determined in cases A
(2)
2n−1 and E

(2)
6 .

Definition 12.3. Let ψ̃ = ψ̃
X

(k)
ñ

: ŨDr
q (X

(k)
ñ ) → UDJ

q (X
(k)
ñ ) be the C(q)-algebra

homomorphism defined on the generators as follows:

C±1 7→ K±1
δ , k±1

i 7→ K±1
i (i ∈ I0),

X+

i,d̃ir
7→ o(i)rT−rλi (Ei), X−

i,d̃ir
7→ o(i)rT rλi(Fi) (i ∈ I0, r ∈ Z),

Hi,d̃ir
7→

{
o(i)rE(d̃irδ,i)

if r > 0

o(i)rF(−d̃irδ,i) if r < 0
(i ∈ I0, r ∈ Z \ {0}).
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Proposition 12.4. (i) ψ̃ is well defined;

(ii) ψ̃ ◦ Ω̃ = Ω ◦ ψ̃;

(iii) ψ̃ ◦ t̃i = Tλi ◦ ψ̃ for all i ∈ I0;

(iv) ψ̃ ◦ φ̃i = ϕi ◦ ψ̃ for all i ∈ I0;

(v) ψ̃ ◦ Θ̃ = (ΩΞT1) ◦ ψ̃ in cases A
(1)
1 and A

(2)
2 .

Proof. (i) The relations (ZX±), (CUK), (CK) and (KX±) are obviously pre-

served by ψ̃; also (XX) (see [Be] and [Da]) and (HXL±) hold in Uq: it is enough

to notice that for all i, j ∈ I0 and r ∈ Z such that max{d̃i, d̃j} | r we have

bijr = (o(i)o(j))r̃xijr where r̃ = r/max{d̃i, d̃j} and

xijr =


(o(i)o(j))r

[raij ]qi
r

if k = 1, or X
(k)
ñ = A

(2)
2n and (i, j) 6= (1, 1),

[2r]q
r

(q2r + (−1)r−1 + q−2r) if (X
(k)
ñ , i, j) = (A

(2)
2n , 1, 1),

(o(i)o(j))r̃
[rasij ]q

r̃[di]q
otherwise,

with asij = max{aij , aji} (see [Da]).

(ii)–(v) are trivial.

Theorem 12.5. Let X
(k)
ñ be different from A

(1)
1 and A

(2)
2 . Then ψ̃ induces

ψ = ψ
X

(k)
ñ

: UDr
q (X

(k)
ñ )→ UDJ

q (X
(k)
ñ ).

Proof. Thanks to Corollary 11.19(iii) and Proposition 12.4(i)–(iii) it is enough to

prove that ψ̃(I+
0 (S)) = 0; but this is obvious since ψ̃(I+

0 (S)) is the ideal generated

by the (“positive”) Serre relations.

In order to prove that ψ is well defined also in the remaining cases we propose

two different arguments: a direct one, requiring just some simple commutation

relations in Uq(A(1)
1 ) and Uq(A(2)

2 ) (see Lemma 12.6); and an argument using the

injections ϕi (see 3.7).

Lemma 12.6. In Uq(A(1)
1 ) we have

(i) Eδ+α1
E1 = q2E1Eδ+α1

.

In Uq(A(2)
2 ) we have:

(ii) Eδ+α1E1 − q2E1Eδ+α1 = −[4]qEδ+2α1 ;

(iii) Eδ+2α1E1 = q4E1Eδ+2α1 ;

(iv) q−3Eδ+α−1E
2
1 − (q + q−1)E1Eδ+α−1E1 + q3E2

1Eδ+α−1 = 0.
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Proof. (i) is an immediate application of the Levendorskii–Soibelman formula

(see [LS] and [Da]); for (ii) see [Da]; (iii) is an immediate application of the

Levendorskii–Soibelman formula (see [LS] and [Da]); and (iv) follows from (ii)

and (iii).

Theorem 12.7. ψ̃ induces ψ = ψ
X

(k)
ñ

: UDr
q (X

(k)
ñ )→ UDJ

q (X
(k)
ñ ).

Proof. Thanks to Corollary 11.19(i)&(ii), Proposition 12.4 and Theorem 12.5 it is

enough to notice that ψ̃(I+
0 (X1)) = 0 in case A

(1)
1 and ψ̃(I+

0 (X31)) = 0 in case

A
(2)
2 , which are immediate consequences of Lemma 12.6(i)&(iv).

Another proof:

Let h = 1, 2, X
(k)
ñ = A

(2)
4 , i =

{
2 if h = 1

1 if h = 2
and consider the following well-

defined diagram:

ŨDr
q (A

(h)
h )

ψ̃
A

(h)
h //

��

UDJ
q (A

(h)
h )

ϕi

��
UDr
q (A

(h)
h )

φi // UDr
q (X

(k)
ñ )

ψ
X

(k)
ñ // UDJ

q (X
(k)
ñ )

Without loss of generality we can suppose this diagram is commutative, by choos-

ing o
A

(h)
h

: 1 7→ o
X

(k)
ñ

(i).

Then ψ̃
A

(h)
h

factors through UDr
q (A

(h)
h ) (that is, ψ

A
(h)
h

is well defined) because

ϕi is injective (see Remark 3.7).

Remark 12.8. (i) ψ ◦Ω = Ω ◦ψ;

(ii) ψ ◦ ti = Tλi ◦ψ for all i ∈ I0;

(iii) ψ ◦φi = ϕi ◦ψ for all i ∈ I0;

(iv) ψ ◦Θ = (ΩΞT1) ◦ψ in cases A
(1)
1 and A

(2)
2 ;

(v) ψ ◦φ = ϕ.

Proof. (i)–(iv) follow from Proposition 12.4 and Theorem 12.7, while (v) follows

from Remark 11.9 and Theorem 12.7.

Corollary 12.9. φ is injective.

Proof. This follows from Remark 12.8(v), since ϕ is injective (see Remark 3.7).

We now turn to the surjectivity of ψ.

Remark 12.10. By the definition of ψ it is obvious that Ei, Fi,K
±1
i are in the

image of ψ for all i ∈ I0. Moreover, since K±1
δ is in the image of ψ, also K±1

0 is. But
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by Remark 12.8, Im(ψ) is Ω-stable, so it contains E0 if and only if it contains F0.

Thus it is enough to prove that E0 ∈ Im(ψ).

In the next theorem it will be used that for i ∈ I0, Im(ψ) is a Tλi-stable

subalgebra of UDJ
q containing Ej , Fj ,K

±1

j̃
(j ∈ I0, j̃ ∈ I) (see Remark 12.8); in

particular UDJ,±
q,±α ⊆ Im(ψ) for all α =

∑
i∈I0 miαi.

Theorem 12.11. ψ : UDr
q → UDJ

q is surjective.

Proof. Let θ = δ− α0 =
∑
i∈I0 riαi. Note that there exists i ∈ I0 such that either

d̃i = ri = 1 (recall that θ is a root) or d̃i = 1, ri = 2, ai0 6= 0 (so that in particular

α0 + αi and θ − αi are roots). Choose such an i ∈ I0 and let θ̃ = θ − (ri − 1)αi;

notice that θ̃ is a root.

Let λi = τisi1 · . . . · siN (with (l(λi) = N , τi ∈ T ); then λi(θ̃) = θ̃ − δ < 0,

so that there exists h such that siN · . . . · sih+1
(αih) = θ̃, and we deduce that

f = T−1
iN
· . . . · T−1

ir+1
(Fir ) ∈ U

DJ,−
q,−θ̃ ⊆ Im(ψ).

Since Im(ψ) is Tλi-stable we infer that Tλi(f) = −τiTi1 · . . . ·Tir−1
(K−1

ir
Eir ) =

−K−1

δ−θ̃e belongs to Im(ψ), hence so does e with e ∈ UDJ,+

q,δ−θ̃.

If ri = 1 then δ − θ̃ = α0 and the claim follows (e = E0 ∈ Im(ψ)).

If ri = 2 then e ∈ UDJ,+
q,α0+αi ; note that if we are not in case A

(2)
2n , since l(siλi) =

l(λi) + 1 and ai0 = −1, Ti(e) ∈ UDJ,+
q,α0

, so that e = T−1
i (E0); on the other hand

in case A
(2)
2n , since l(s0λi) = l(λi) − 1 and a0i = −1, we have T−1

0 (e) ∈ UDJ,+
q,αi , so

that e = T0(Ei). In both cases e = −[E0, Ei]qai0i
. Commuting e with Fi (∈ Im(ψ))

we get Im(ψ) 3 [−[E0, Ei]qai0i
, Fi] = qai0i [[Ei, Fi], E0]

q
−ai0
i

= [ai0]qiKiE0, which

concludes the proof.

Proving that ψ is injective requires further analysis.

§13. Appendix: notation

In this appendix, in order to make it easier for the reader to follow the exposition,

most of the notation defined in the paper is collected, with the indication where

it is introduced and possibly characterized.

The present list includes neither the notation related to the definition and the

structure of the Drinfeld–Jimbo presentation of the quantum algebras, since they

are all given synthetically in §3 where they can be easily consulted, nor the notation

introduced in Definition 4.2, because there is no reference to them outside §4.

Also the relations listed in Proposition 4.25 are not redefined in this appendix,

but for some of them other descriptions proposed and used throughout the paper

are here recalled.
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Dynkin diagrams, root and weight lattices:

Γ̃ = (indecomposable) Dynkin diagram of finite type §1
Ĩ = set of vertices of Γ̃ §1
ñ = #Ĩ §1
Ã = Cartan matrix of Γ̃ §1
χ = automorphism of Γ̃ §1
k = o(χ) §1
I0 = Ĩ/χ §1
n = #I0 §1
¯: Ĩ → I0 natural projection §1
˜: I0 → Ĩ section (aij 6= 0⇒ ãĩ,j̃ 6= 0) 4.4 (4.10)

I = I0 ∪ {0} §1
Γ = Dynkin diagram of affine type with set of vertices I §1

Γ0 = Dynkin subdiagram of Γ with set of vertices I0 §1
A = (aij)i,j∈I Cartan matrix of Γ §1
A0 = (aij)i,j∈I0 Cartan matrix of Γ0 §1
di : min{di | i ∈ I} = 1, diag(di | i ∈ I)A symmetric §2

d̃i =

{
1 if k = 1 or X

(k)
ñ = A

(2)
2n

di otherwise
§2

d̃i,j = max{d̃i, d̃j} 4.8

d̃ = max{d̃i | i ∈ I0} 4.1

Q̃ = ZĨ =
⊕
i′∈Ĩ

Zα̃i′ §1

(α̃i′ |α̃j′) : W -invariant, (α̃i′ |α̃i′) = 2k/d̃ if α̃i′ is short 4.1

Q = ZI =
⊕
i∈I

Zαi §1

Q0 =
⊕
i∈I0

Zαi §1

(αi|αj) = diaij §2
δ : δ ∈ Q, δ − α0 ∈ Q0, (δ|Q) = 0 §2

ri : δ =
∑
i∈I

riαi §1, §2

θ = δ − α0 §1
λi : (λi|αj) = d̃iδij (i, j ∈ I0) §2
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Other notation:

ω = primitive kth root of 1 4.1

qi = qdi 3.1

IZ = {(i, r) ∈ I0 × Z | d̃i | r} 4.5

ε = ± 1 4.2, 4.25

bijr =


0 if d̃i,j - r
[2r]q(q

2r + (−1)r−1 + q−2r)/r if (X
(k)
ñ , i, j) = (A

(2)
2n , 1, 1)

[r̃aij ]qi/r̃ otherwise, with r̃ = r/d̃i,j

4.14

[a, b]u = ab− uba 4.16

1 = 1l = (1, . . . , 1) ∈ Zl 8.1

{e1, . . . , el} = canonical basis of Zl 8.1

(r1, . . . , rl) = (rl, . . . , r1) 8.1

o : I0 → {±1}, aij 6= 0⇒ o(i)o(j) = −1, 12.1

if k 6= 1 and X
(k)
ñ 6= A

(2)
2n , aij = −2⇒ o(i) = 1

Generators of C(q)-algebras:

G = {C±1,K±1
i′ ,X

±
i′,r,Hi′,s | i

′ ∈ Ĩ , r, s ∈ Z, s 6= 0} 4.2

G = {C±1,K±1
i , X±i,r, Hi,s | i ∈ I0, r, s ∈ Z, s 6= 0} 4.6, 4.25

G′ = {C±1,K±1
i , X±i,r, Hi,s | i ∈ I0, r, s ∈ d̃iZ, s 6= 0} 4.6, 4.26

Ḡ = {C±1,K±1
i , X±i,r | i ∈ I0, r ∈ d̃iZ} 6.1

G+ = {X+
i,r | (i, r) ∈ I0 × Z} 6.11

G− = {X−i,r | (i, r) ∈ I0 × Z} 6.11

G′,+ = {X+
i,r | (i, r) ∈ IZ} 6.12

G′,− = {X−i,r | (i, r) ∈ IZ} 6.12

Relations in C(q)-algebras:

(DR) = (Z,ZX , C,KK,KX ,KH,XX ,HX ,HH, 4.2

XFG,X3ε,S,XP)

(DR) = (ZX,ZH,CUK,CK,KX,KH,XX,HX,HH, 4.25

XD,X1, X2, X3ε, SUL, S2, S3)

(ZX±), (ZH) 4.6
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(HX±) : [Hi,r, X
±
j,s] =

{
0 if d̃j - r
±bijrC

r∓|r|
2 X±j,r+s if d̃j | r

4.26

(XD±) : M±(2)((i, d̃ir), (j, d̃js)) = 0 5.14

(X1±) :
∑
σ∈S2

σ.M±i (d̃ir) = 0 5.14

(X2±) :
∑
σ∈S2

σ.M±(2,2)(r) = 0 5.14

(X3ε,±) :
∑
σ∈S3

σ.Mε,±
(3) (r) = 0 5.14

(S(UL)±) :
∑

σ∈S1−aij

σ.X±i,j;1−aij ;1(r; s) = 0 5.3, 5.9

∑
σ∈S1−aij

σ.M±i,j;1−aij ;1(r; s) = 0 5.5, 5.10

∑
σ∈S1−aij

σ.M±i,j;1−aij ;1(d̃ir; d̃js) = 0 5.14

∑
σ∈S1−aij

σ.X±i,j;1−aij ;1(d̃ir; d̃js) = 0 5.14

(S2+) :
∑
σ∈S2

σ.
(
(q2 + q−2)[[X+

j,s, X
+
i,r1+1]q2 , X+

i,r2
] 5.6

+ q2[[X+
i,r1+1, X

+
i,r2

]q2 , X+
j,s]q−4

)
= 0∑

σ∈S2

σ.
(
(q2 + q−2)[[X+

j,s, X
+
i,r1

]q−2 , X+
i,r2+1] 5.6

+ [X+
j,s, [X

+
i,r2+1, X

+
i,r1

]q2 ]q−4

)
= 0∑

σ∈S2

σ.
(
[[X+

j,s, X
+
i,r1+1]q−2 , X+

i,r2
] 5.6

− q2[X+
i,r1+1, [X

+
j,s, X

+
i,r2

]q−2 ]q−4

)
= 0

(S3±) :
∑
σ∈S2

σ.
(
(q2 + q−4)[[X±j,s,X

±
i,r1±2]q3 ,X±i,r2 ]q−1 5.6

+ (1− q−2 + q−4)[[X±j,s,X
±
i,r1±1]q3 ,X±i,r2±1]q

+ q2[[X±i,r1±2, X
±
i,r2

]q2 + [X±i,r2±1, X
±
i,r1±1]q2 , X±j,s]q−6

)
= 0

(Sk±) :
∑
σ∈S2

σ.
∑
u,v≥0

u+v=−1−aij

qv−uX±i,j;2;−aij (r1 ± v, r2 ± u; s) = 0 5.3

∑
σ∈S2

σ.X±[k](r; d̃s) = 0 5.14
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(T2±) :
∑
σ∈S2

σ.[[X±j,s, X
±
i,r1±1]q2 , X±i,r2 ] = 0 5.7

∑
σ∈S2

σ.M±[2](r; 2s) = 0 5.14

(T3±) :
∑
σ∈S2

σ.((q2 + 1)[[X±j,s, X
±
i,r1±2]q3 , X±i,r2 ]q−1 5.7

+ [[X±j,s, X
±
i,r1±1]q3 , X±i,r2±1]q) = 0∑

σ∈S2

σ.M±[3](r; 3s) = 0 5.14

(HXL±) : [Hi,r, X
±
j,s] = ±bijrC

r∓|r|
2 X±j,r+s (d̃i ≤ |r| ≤ d̃ij) 6.1

(XXD) : [X+
i,r, X

−
j,s] = 0 (i 6= j) 7.4

(XXE) : [X+
i,r, X

−
i,−r] =

Crki − C−rk−1
i

qi − q−1
i

7.4

(XXH+) : [X+
i,r, X

−
i,s] =

C−skiH̃
+
i,r+s

qi − q−1
i

(r + s > 0) 7.4

(XXH−) : [X+
i,r, X

−
i,s] = −

C−rH̃−i,r+sk
−1
i

qi − q−1
i

(r + s < 0) 7.4

C(q)-algebras:

Uq = Drinfeld and Jimbo quantum algebra 3.2

UDJ
q = Uq(Γ) 3.2

Ufin
q = Uq(Γ0) 3.2

UDr
q = (G | DR) 4.2

UDr
q = (G | DR) 4.25, 4.26

ŨDr
q = (G | ZX±, CUK,CK,KX±, XX,HXL±) 6.1

ŪDr
q = (Ḡ | ZX±, CUK,CK) 6.1

F±q = (G± | ZX±) = (G′,±) 6.11, 6.12

Elements in C(q)-algebras:

H̃±i,±r (Hi,r) :
∑
r∈Z

H̃±i,±ru
r = exp

(
±(qi − q−1

i )
∑
r>0

Hi,±ru
r
)

4.25 (6.6)

H̃±i,±r =


(qi − q−1

i )k−1
i [X+

i,r, X
−
i,0] if r,±r > 0

(qi − q−1
i )[X−i,−r, X

+
i,0]ki if r > 0,±r < 0

1 if r = 0

0 if r < 0,

6.6
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Xi,j;l;a(r; s) =

l∑
u=0

(−1)u
[
l

u

]
qai

X±i,r1 · . . . ·X
±
i,ru

X±j,sX
±
i,ru+1

· . . . ·X±i,rl 5.2

Mi,j;l;a(r; s) =

X
±
j,s if l = 0

[M±i,j;l−1;a(r1, . . . , rl−1; s),X±i,rl ]q−aij−2a(l−1)

i

if l > 0
5.4

M±2 ((i, r), (j, s)) = [X±
i,r±d̃ij

, X±j,s]qaiji
+ [X±

j,s±d̃ij
, X±i,r]qajij

5.12

M±i (r) = [X±
i,r1±d̃i

, X±i,r2 ]q2
i

5.12

M±(2,2)(r) = [X±1,r1±2, X
±
1,r2

]q2 − q4[X±1,r1±1, X
±
1,r2±1]q−6 5.12

Mε,±
(3) (r) = [[X±1,r1±ε, X

±
1,r2

]q2ε , X±1,r3 ]q4ε 5.12

X±[k](r; s) =
∑
u,v≥0

u+v=k−1

qv−uX±i,j;2;k(r1 ± v, r2 ± u; s) 5.12

M±[2](r; s) = M±i,j;2;1(r1 ± 1, r2; s) 5.12

M±[3](r; s) = (q2+1)M±i,j;2;2(r1±2, r2; s)+M±i,j;2;1(r1±1, r2±1; s) 5.12

kα : kmδ+
∑
i∈I0

miαi = Cm
∏
i∈I0

kmii 6.9

Relations and ideals:

(a) given the relations

(R) Sζ(r, s) = 0 (ζ ∈ Z, r ∈ Zl, s ∈ Zl̃)

denote by (Rζ) (ζ ∈ Z) the relations

(Rζ) Sζ(r, s) = 0 (r ∈ Zl, s ∈ Zl̃); 5.1

(b) given the relations

(R±) S±ζ (r, s) = 0 (ζ ∈ Z, r ∈ Zl, s ∈ Zl̃)

denote by (R) the relations

(R) Sζ′(r, s) = 0 (ζ ′ ∈ Z × {±}, r ∈ Zl, s ∈ Zl̃) 5.1

where S(ζ,±) = S±ζ ;

(c) given relations (R) as in (a), denote by I(R) the ideal

I(R) = (Sζ(r, s) | ζ ∈ Z, r ∈ Zl, s ∈ Zl̃), 5.1

by Iconst(R) the ideal

Iconst(R) = (Sζ(r1l, s) | ζ ∈ Z, r ∈ Z, s ∈ Zl̃), 9.1
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by I0(R) the ideal

I0(R) = (Sζ(0) | ζ ∈ Z) 9.1

and, if ζ ∈ Z, r ∈ Zl, s ∈ Zl̃, by I(r,s)(Rζ) the ideal

I(r,s)(Rζ) = (Sζ(r1l, s)); 9.1

(d) given relations (R±) as in (a), denote by I±∗ (R) the ideals

I+
∗ (R) = I∗(R+), I−∗ (R) = I∗(R−) (∗ ∈ {∅, const, 0}); 5.1, 9.1

(e) given a family of relations ((h)R) as in (a) denote by I∗((1)R, . . . , (m)R) the

ideals

I∗((1)R, . . . , (m)R) = (I∗((1)R), . . . , I∗((m)R)) (∗ ∈ {∅, const, 0}). 5.1, 9.1

(Anti)homomorphisms:

Ω̄, Ω̃,Ω : q 7→ q−1, C±1 7→ C∓1, k±1
i 7→ k∓1

i , X±i,r 7→ X∓i,−r 6.15, 7.6, 8.2

Θ+
F : q 7→ q−1, X+

i,r 7→ X+
i,−r 6.15

Θ−F : q 7→ q−1, X−i,r 7→ X−i,−r 6.15

Θ̄, Θ̃,Θ : q 7→ q−1, C±1 7→ C±1, k±1
i 7→ k∓1

i , 6.15, 7.13, 8.4

X+
i,r 7→ −X

+
i,−rkiC

−r, X−i,r 7→ −k
−1
i C−rX−i,−r

t̄i, t̃i, ti : C±1 7→ C±1, k±1
j 7→ (kjC

−δij d̃i)±1, X±j,r 7→ X±
j,r∓δij d̃i

6.15, 7.10, 8.6

φ̄i, φ̃i, φi : q 7→ qi, C
±1 7→ C±d̃i , k±1 7→ k±1

i , X±r 7→ X±
i,d̃ir

6.15, 7.2

φ : K±1
i 7→ k±1

i , Ei 7→ X+
i,0, Fi 7→ X−i,0 (i ∈ I0) 11.8

ψ̃, ψ : C±1 7→ K±1
δ , k±1

i 7→ K±1
i , 12.3, 12.5, 12.7

X+

d̃ir
7→ o(i)rT−rλi (Ei), X

−
d̃ir
7→ o(i)rT rλi(Fi)
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[Bo] N. Bourbaki, Groupes et algèbres de Lie 4, 5, 6, Hermann, Paris, 1968. Zbl 0186.33001
MR 0240238

[CP1] V. Chari and A. Pressley, Quantum affine algebras, Comm. Math. Phys. 142 (1991),
261–283. Zbl 0739.17004 MR 1137064

[CP2] , Quantum affine algebras and their representations, in Representations of groups
(Banff, AB, 1994), CMS Conf. Proc. 16, Amer. Math. Soc., Providence, RI, 1995, 59–78.
Zbl 0855.17009 MR 1357195

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1038.17005&format=complete
http://www.ams.org/mathscinet-getitem?mr=1917164
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0807.17013&format=complete
http://www.ams.org/mathscinet-getitem?mr=1301623
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0186.33001&format=complete
http://www.ams.org/mathscinet-getitem?mr=0240238
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0739.17004&format=complete
http://www.ams.org/mathscinet-getitem?mr=1137064
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0855.17009&format=complete
http://www.ams.org/mathscinet-getitem?mr=1357195


Drinfeld Realization: the Relations 733

[CP3] , Twisted quantum affine algebras, Comm. Math. Phys. 196 (1998), 461–476.
Zbl 0915.17013 MR 1645027

[CP4] , Yangians, integrable quantum systems and Dorey’s rule, Comm. Math. Phys.
181 (1996), 265–302. Zbl 0869.17015 MR 1414834

[Da] I. Damiani, The R-matrix for (twisted) affine quantum algebras, in Representations
and quantizations (Shanghai, 1998), China High. Educ. Press, Beijing, 2000, 89–144.
Zbl 1007.17012 MR 1802170

[Dr1] V. G. Drinfel’d, A new realization of Yangians and of quantum affine algebras, Dokl.
Akad. Nauk SSSR 296 (1987), 13–17 (in Russian). Zbl 0667.16004 MR 0914215

[Dr2] , Hopf algebras and the quantum Yang–Baxter equation, Dokl. Akad. Nauk SSSR
283 (1985), 1060–1064 (in Russian). Zbl 0588.17015 MR 0802128

[FH] E. Frenkel and D. Hernandez, Langlands duality for finite-dimensional representations
of quantum affine algebras, Lett. Math. Phys. 96 (2011), 217–261. Zbl 1222.17014
MR 2788912

[GK] O. Gabber and V. G. Kac, On defining relations of certain infinite-dimensional Lie alge-
bras, Bull. Amer. Math. Soc. (N.S.) 5 (1981), 185–189. Zbl 0474.17007 MR 0621889

[H] D. Hernandez, Kirillov–Reshetikhin conjecture: the general case, Int. Math. Res. Notices
2010, 149–193. Zbl pre05665748 MR 2576287

[IM] N. Iwahori and H. Matsumoto, On some Bruhat decomposition and the structure of the

Hecke rings of p-adic Chevalley groups, Inst. Hautes Études Sci. Publ. Math. 25 (1965),
5–48. Zbl 0228.20015 MR 0185016

[Jm] M. Jimbo, A q-difference analogue of U(g) and the Yang–Baxter equation, Lett. Math.
Phys. 10 (1985), 63–69. Zbl 0587.17004 MR 0797001

[Jn] N. H. Jing, On Drinfeld realization of quantum affine algebras, in The Monster and Lie
algebras (Columbus, OH, 1996), Ohio State Univ. Math. Res. Inst. Publ. 7, de Gruyter,
Berlin, 1998, 195–206. Zbl 0983.17013 MR 1650669

[JZ1] N. H. Jing and H. L. Zhang, Addendum to ‘Drinfeld realization of twisted quantum affine
algebras’ , Comm. Algebra 38 (2010), 3484–3488. Zbl 1219.17009 MR 2724232

[JZ2] , Drinfeld realization of twisted quantum affine algebras, Comm. Algebra 35
(2007), 3683–3698. Zbl 1168.17012 MR 2362678

[K] V. G. Kac, Infinite dimensional Lie algebras, Birkhäuser, Boston, 1983. Zbl 0537.17001
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