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Principal Series of GL(4,R)
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Abstract

For degenerate principal series representations of GL(n,R), we show that the spaces of
corresponding class one generalized Whittaker functions are characterized by explicit
systems of differential operators. By using this characterization, we give detailed calcu-
lations on GL(4,R). We examine the dimensions of the spaces of generalized Whittaker
functions and give their generators in terms of hypergeometric functions of one and two
variables. We show that generalized Whittaker functions have multiplicity one by using
the theory of hypergeometric functions.
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§1. Introduction

In this paper we shall investigate generalized Whittaker functions of degenerate

principal series representations of GL(n,R) and give a detailed computation for

the GL(4,R) case.

It is known that real analytic Eisenstein series are constructed from these

representations (see [18]). Then generalized Whittaker functions appear as Fourier

coefficients of the Eisenstein series and play important roles in establishing cer-

tain analytic properties. For example, in [29] A. Terras gives a Fourier expansion

of Epstein zeta functions which are Eisenstein series associated with degenerate

principal series induced from characters of the maximal parabolic subgroup P1,n

fixing the unit vector en = (0, . . . , 0, 1) (cf. [12]). Here the generalized Whittaker

functions appearing as Fourier coefficients are given by modified Bessel functions.
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However it seems that there has not been much study of generalized Whittaker

functions of degenerate series induced from other parabolic subgroups. Thus in

this paper we study generalized Whittaker functions of degenerate principal series

of GL(4,R) induced from characters of P1,4 and P2,4; the latter case will give a

generalization of Terras’s case. We note that for GL(n,R) (n ≤ 3), all maximal

parabolic subgroups are reduced to P1,n by conjugations.

In contrast to the method of Terras, our method relies on the representation

theory of degenerate principal series of GL(n,R). Let us explain this precisely.

Let G = GL(n,R) and consider an Iwasawa decomposition G = KAN . Take

an increasing sequence of positive integers stopped at n, i.e., Θ = {n1, . . . , nL}
with 0 < n1 < · · · < nL = n. Then let PΘ be the parabolic subgroup cor-

responding to Θ and take the Langlands decomposition PΘ = MΘAΘNΘ. For a

linear mapping λ ∈ HomR(Lie(AΘ),C), we can consider the induced representation

πΘ,λ = C∞-IndGPΘ
(1MΘ

⊗eλ⊗1NΘ
), called a degenerate principal series representa-

tion. Then we consider the annihilator ideal AnnU(g)(πΘ,λ) of this representation in

U(g), the universal enveloping algebra of gC = gl(n,C). Also we consider IΘ(λ) =

ι(AnnU(g)(πΘ,λ)) where ι is the antiautomorphism of U(g) such that ι(XY ) =

(−Y )(−X) for X,Y ∈ g. For a closed subgroup U of N , let (η, Vη) be an irreducible

unitary representation of U and consider the space C∞η (U\G) = {f : G → V∞η
smooth | f(ug) = η(u)f(g), u ∈ U, g ∈ G}. Let XΘ,λ be the Harish-Chandra

module of πΘ,λ and X∗Θ,λ its dual Harish-Chandra module. Generalized Whittaker

models are images of XΘ,λ under elements of HomgC,K(XΘ,λ, C
∞
η (U\G)). We will

prove the following characterization theorem for generalized Whittaker models.

Theorem 1.1 (see Theorem 3.5). Suppose that λ ∈ a∗C is regular and dominant.

Take a nonzero K-fixed vector f0 in X∗Θ,λ. Then the mapping

Φ̃ : HomgC,K(X∗Θ,λ, C
∞
η (U\G))

∼−→ C∞η (U\G/K, IΘ(λ)), W 7→W (f0)(g),

is a linear isomorphism. Here

C∞η (U\G/K, IΘ(λ))

= {f : G→ V∞η smooth | f(ngk) = η(n)f(g), g ∈ G, n ∈ U, k ∈ K
and RXf(g) = 0, X ∈ IΘ(λ)}

and RX is right translation by X ∈ U(g).

The elements in C∞η (U\G/K, IΘ(λ)) are called class one generalized Whit-

taker functions. Here we note that this theorem can be obtained as a corollary

of Yamashita’s result (Corollary 1.8 in [36]) where the irreducibility of X∗Θ,λ is

assumed. We give a new proof without using this assumption.
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After the general theory for GL(n,R), we study the particular case of

GL(4,R). We consider degenerate principal series representations induced from

characters of the maximal parabolic subgroups P1,4 and P2,4. Then we exam-

ine the dimensions and find generators of C∞η (U\G/K, IΘ(λ)). Here for the closed

subgroup U ⊂ N and its unitary character χ, we assume that L2 -IndNU χ is an irre-

ducible unitary representation of N . Under this assumption, we shall give elements

in C∞η (U\G/K, IΘ(λ)) explicitly by using hypergeometric functions of several vari-

ables, namely Horn’s hypergeometric functions H10 and modified Bessel functions.

Using the theory of hypergeometric functions we shall examine the dimension of

C∞η (U\G/K, IΘ(λ)) ∼= HomgC,K(X∗Θ,λ, C
∞
η (U\G)). Also in the Appendix, we give

some facts about Horn’s hypergeometric functions.

Our results lead to the following observation. For degenerate principal series

representations induced from characters of P1,4, the multiplicity one theorem for

generalized Whittaker models is true. On the other hand, for representations induced

from characters ofP2,4, the multiplicity one theorem is no longer true. This fact seems

to correspond to the result of Terras [30] who could determine only the nonsingular

terms in the Fourier expansion of Eisenstein series corresponding to the degenerate

principal series representations induced from characters of P2,4 (Theorem 1 in [30]).

Here the multiplicity one theorem is valid from our result. However degenerate terms

are not computed because the corresponding generalized Whittaker models have

multiplicities. Since our result gives a base of the space of generalized Whittaker

functions explicitly, it makes it possible to overcome this difficulty.

Finally we mention some previous related work. Ishii and Oda [14] give an ex-

plicit calculation of generalized Whittaker functions of degenerate principal series

of SL(3,R). For general studies of generalized Whittaker models of representations

of general reductive Lie groups, see for example [7], [19], [32]–[34]. These general-

ized Whittaker models are associated with nondegenerate (admissible) characters

of subgroups U ⊂ N . Thus they do not cover our results completely. The recent

work of Oshima and Shimeno [25] gives Whittaker functions associated with a non-

degenerate character of a maximal unipotent subgroup N as confluent hypergeo-

metric functions obtained from Heckman–Opdam hypergeometric functions. Also

there are various explicit presentations of Whittaker functions as hypergeometric

functions of several variables given by Hirano, Ishii, Oda and other researchers

(see [11] for the references).

§2. Spherical degenerate principal series representations of GL(n,R)

In this section we review the results of T. Oshima on degenerate principal series

representations of GL(n,R) and their annihilators. T. Oshima shows that the
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image of a degenerate principal series representation under the Poisson transform

is characterized by the kernel of the annihilator [21] and moreover gives explicit

generators of this annihilator [22], [24].

§2.1. Spherical degenerate principal series representations of GL(n,R)

Let G = GL(n,R) with Lie algebra g = gl(n,R) = M(n,R), the space of n × n
matrices with real entries. The Iwasawa decomposition of G is G = KAN , where

K = O(n), A is the group of n × n diagonal matrices with positive real entries

and N is the group of lower triangular matrices with 1s on the diagonal. Let Eij
be the matrix with 1 in the (i, j)-entry and 0 elsewhere. A nondegenerate bilinear

form on gC = gl(n,C) = M(n,C) is defined by 〈X,Y 〉 = tr(XY ) for X,Y ∈ gC.

Via this bilinear form, we identify gC with its dual space g∗C. The dual basis {E∗ij}
of {Eij} is given by E∗ij = Eji. For simplicity we write ei = E∗ii.

Consider the Lie algebra

a =
{ n∑
i=1

aiEii

∣∣∣ ai ∈ R, i = 1, . . . , n
}

of A. Then the root system of (g, a) is 4(g, a) = {ei − ej | 1 ≤ i 6= j ≤ n}.
Put αi = ei+1 − ei for i = 1, . . . , n − 1 and fix a simple system of 4(g, a) to

be Π(g, a) = {α1, . . . , αn−1}. Then the positive system of 4(g, a) associated with

Π(g, a) is 4+(g, a) = {ei − ej | 1 ≤ j < i ≤ n}. The Lie algebra n of N is

n =
∑

α∈4+(g,a)

gα =
∑
i>j

REij

where gα = {X ∈ g | ad(H)X = α(H)X for H ∈ a}. Similarly, let N be the group

of upper triangular matrices with 1s on the diagonal. Then the Lie algebra n of N is

n =
∑

α∈4+(g,a)

g−α =
∑
i<j

REij .

Let Θ = {n1, . . . , nL} be a sequence of strictly increasing positive integers stopped

at n, i.e., (n0 =)0 < n1 < · · · < nL(= n). For this Θ, the associated standard

parabolic subgroup PΘ is defined as follows. Let

aΘ =
{ L∑
k=1

ak

nk∑
i=nk−1+1

Eii

∣∣∣ ak ∈ R, k = 1, . . . , L
}
.

Let LΘ be the centralizer of aΘ in G, i.e.,

LΘ =

l =

l1 . . .
lL


∣∣∣∣∣∣∣ li ∈ GL(ni − ni−1,R)
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and lΘ its Lie algebra, which is the centralizer of aΘ in g. We put

nΘ =
∑

ιΘ(i)>ιΘ(j)

REij

where ιΘ(ν) = i if ni−1 < ν ≤ ni for i = 1, . . . , L. The corresponding analytic

subgroup of G is NΘ = exp nΘ, i.e.,

NΘ =


n =


In′1
N21 In′2
N31 N32 In′3

...
...

...
. . .

NL1 NL2 NL3 · · · In′L



∣∣∣∣∣∣∣∣∣∣∣∣
Nij ∈M(n′i, n

′
j ;R), n′i = ni − ni−1


.

Here Im denotes the identity matrix of size m and M(k, l;R) denotes the space

of k × l matrices with entries in R. We also define nΘ =
∑
ιΘ(i)<ιΘ(j) REij and

NΘ = exp nΘ.

Then we define the parabolic subgroup PΘ to be LΘNΘ, i.e.,

PΘ =

p =


g1

∗
...

...

∗ · · · gL

 ∈ GL(n,R)

∣∣∣∣∣∣∣∣∣ gi ∈ GL(ni − ni−1,R)

 .

Its Lie algebra is pΘ = lΘ ⊕ nΘ.

For (λ1, . . . , λL) ∈ CL, define a 1-dimensional representation of PΘ,

λ : PΘ → C×, by

λ(p) = |det(g1)|λ1 · · · |det(gL)|λL for p ∈ PΘ.

Then the spherical degenerate principal series representation of G, denoted by

πΘ,λ = C∞-indGPΘ
(λ), is defined as follows. The underlying representation space is

C∞(G/PΘ;λ) = {φ ∈ C∞(G) | φ(gp) = λ(p)φ(g), g ∈ G, p ∈ PΘ}

where C∞(G) is the space of C∞-functions on G. The action of G on this space

is by left translation, πΘ,λ(g)φ(x) = φ(g−1x) for g ∈ G and φ ∈ C∞(G/PΘ;λ).

We consider the annihilator of C∞(G/PΘ;λ) in U(g), the universal enveloping

algebra of gC. Recall that U(g) can be seen as the ring of leftG-invariant differential

operators on C∞(G) by the natural extension of the differential of right translation,

RX(f)(g) =
d

dt
f(g exp(tX))

∣∣∣∣
t=0
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for X ∈ g, f ∈ C∞(G). The representation of U(g) on C∞(G/PΘ;λ) is defined

by the differential of πΘ,λ, i.e., for X ∈ g, φ ∈ C∞(G/PΘ;λ), πΘ,λ(X)φ(x) =
d
dtφ(exp (−tX)x)|t=0.

Let Lg and Rg be left and right translations by g ∈ G respectively, i.e.,

Lgf(x) = f(g−1x) and Rgf(x) = f(xg) for f ∈ C∞(G).

Definition 2.1. The annihilator of C∞(G/PΘ;λ) in U(g) is

AnnU(g)(πΘ,λ) = {X ∈ U(g) | πΘ,λ(X)φ(x) = 0 for all φ ∈ C∞(G/PΘ;λ)}.

We define an antiautomorphism ι of U(g) by ι(XY ) = (−Y )(−X) for X,Y

∈ gC. Let us denote the differential of λ by dλ : pΘ → C.

Proposition 2.2. We have

ι(AnnU(g)(πΘ,λ)) =
⋂
g∈G

Ad(g)JΘ(dλ).

Here

JΘ(dλ) =
∑
X∈pΘ

U(g)(X − dλ(X))

is a left ideal of U(g).

Proof. For X ∈ pΘ and f ∈ C∞(G/PΘ;λ), we have

(2.1) RXf(g) =
d

dt
f(g · exp tX)

∣∣∣∣
t=0

=
d

dt
λ(exp tX)

∣∣∣∣
t=0

f(g).

This implies RXf = 0 for X ∈ JΘ(dλ).

Recall the equation LXf(g) = RAd(g−1)ι(X)f(g) for X ∈ U(g). Since X ∈⋂
g∈G Ad(g)JΘ(dλ) implies Ad(g)X ∈ JΘ(dλ), we have

Lι(X)f(g) = RAd(g−1)Xf(g) = 0

for X ∈
⋂
g∈G Ad(g)JΘ(dλ). Hence

⋂
g∈G Ad(g)JΘ(dλ) ⊂ ι(AnnU(g)(πΘ,λ)).

Conversely, take X ∈ AnnU(g)(πΘ,λ) and put Xg0 = Ad(g−1
0 )ι(X) for g0 ∈ G.

Then

(2.2) RXg0 f(g) = Lg0g−1(RXg0 f)(g0) = RXg0 (Lg0g−1f)(g0)

= LX(Lg0g−1f)(g0) = LX(πΘ,λ(g0g
−1)f)(g0) = 0

for f ∈ C∞(G/PΘ;λ). By the decomposition g = nΘ ⊕ pΘ and the Poincaré–

Birkhoff–Witt theorem, we have

U(g) = U(nΘ)⊕ JΘ(dλ)
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where U(nΘ) is the universal enveloping algebra of nΘ⊗R C. Take Y ∈ U(nΘ) and

Z ∈ JΘ(dλ) such that Xg0
= Y + Z. By (2.1), we have RZf(g) = 0 for g ∈ G and

f ∈ C∞(G/PΘ;λ). Therefore (2.2) tells us that 0 = RXg0 f(g) = RY f(g).

We shall show Y = 0, which yields Xg0
∈ JΘ(dλ), so ι(AnnU(g)(πΘ,λ)) ⊂⋂

g∈G Ad(g)JΘ(dλ).

Consider the space C∞0 (NΘ) of compactly supported C∞-functions on NΘ.

For g ∈ NΘPΘ, we take n̄(g) ∈ NΘ and p(g) ∈ PΘ so that g = n̄(g)p(g). Then we

have an injection

C∞0 (NΘ)→ C∞(G/PΘ;λ), f 7→

{
λ(p(g))f(n̄(g)) if g ∈ NΘPΘ,

0 otherwise.

Via this injection, we can regard C∞0 (NΘ) as a subset of C∞(G/PΘ;λ). Therefore

recalling that RY f(g) = 0 for g ∈ G and f ∈ C∞(G/PΘ;λ), we have

RY f(n̄) = 0 for n̄ ∈ NΘ, f ∈ C∞0 (NΘ).

For any ψ ∈ C∞(NΘ) and n̄ ∈ NΘ, there exists f ∈ C∞0 (NΘ) such that ψ = f on

some neighbourhood of n̄ in NΘ. This implies

RY ψ(n̄) = 0 for n̄ ∈ NΘ, ψ ∈ C∞(NΘ).

Therefore Y ∈ U(nΘ) must be 0, because U(nΘ) is identified with the ring of all

left invariant differential operators on NΘ. Hence Xg0 ∈ JΘ(dλ) for any g0 ∈ G,

as desired.

§2.2. Poisson transform of degenerate principal series representations

For simplicity we denote IΘ(λ) =
⋂
g∈G Ad(g)JΘ(dλ). We shall see that IΘ(λ) char-

acterizes the image of the Poisson transform of the degenerate principal series. To

explain this fact, we extend the representation space to the space of hyperfunctions

on G. The space B(G) of hyperfunctions on G is a left G-module under left trans-

lation G×B(G) 3 (g, f(x)) 7→ f(g−1x). Take a parabolic subgroup PΘ of G and a

character λ : PΘ → C× for (λ1, . . . , λL) ∈ CL. Then we can define a G-submodule

B(G/PΘ;λ) = {f ∈ B(G) | f(xp) = λ(p)f(x) for p ∈ PΘ}

as in §2.1. Let M = {k ∈ K | kak−1 = a, a ∈ A} and define the minimal parabolic

subgroup P0 = P{1,...,n} = MAN . A character of P0 is defined by

λΘ : P0 → C×, man 7→
L∏
i=1

ni+1∏
j=ni+1

aλij ,

for m∈M , a∈A, n ∈ N . Now we introduce the Poisson transform of B(G/P0;λΘ).
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Definition 2.3. The Poisson transform is the G-homomorphism

Pλ : B(G/P0;λΘ)→ B(G/K), f 7→ F (x) =

∫
K

f(xk) dk, x ∈ G.

Here dk is the normalized Haar measure on K so that
∫
K
dk = 1.

Let us recall a character of the centre Z(g) of U(g), the so-called infinitesimal

character of πΘ,λ. Let dλΘ : Lie(P0) → C be the differential of λΘ. By restriction

to a ⊂ Lie(P0), we can regard dλΘ ∈ a∗C. Let ω be the projection map from

U(g) to the symmetric algebra S(a) of aC = a ⊗R C along the decomposition

U(g) = S(a)⊕ (nU(g) + U(g)n). It is known that ω is an algebra homomorphism

from Z(g) into S(a). We can identify the symmetric algebra S(a) with the algebra

of polynomials on a∗C. Hence if we consider the evaluation of ω(·) ∈ S(a) at dλΘ,

we obtain a character of Z(g),

χλ : Z(g) 3 X 7→ ω(X)(dλΘ) ∈ C.

Define a subspace of C∞(G/K) by

C∞(G/K;Mλ) = {f ∈ C∞(G/K) | RXf = χλ(X)f for X ∈ Z(g)}

and put

e(λΘ) =
∏

α∈4+(g,a)

Γ

(
1

4

(
3 +

2〈λΘ, α〉
〈α, α〉

))−1

Γ

(
1

4

(
1 +

2〈λΘ, α〉
〈α, α〉

))−1

.

The following theorem is known as Helgason’s conjecture [9].

Theorem 2.4 ([16]). The Poisson transform Pλ is a G-isomorphism

B(G/P0;λΘ) ∼= C∞(G/K;Mλ)

if and only if e(λΘ) 6= 0.

We can also define the Poisson transform on the subspace B(G/PΘ;λ) of

B(G/P0;λΘ). Thus next we shall discuss a characterization of the image of

B(G/PΘ;λ). Consider the subspace C∞(G/K; IΘ(λ)) = {f ∈ C∞(G/K) |
RXf = 0 for X ∈ IΘ(λ)} of C∞(G/K;Mλ).

Remark 2.5. We can easily show that

IΘ(λ) ⊃
∑

D∈Z(g)

U(g)(D − χλ(D))

(see Remark 4.3 in [24]). Hence C∞(G/K; IΘ(λ)) is a subspace of C∞(G/K;Mλ).

Moreover C∞(G/K; IΘ(λ)) ⊂ C∞(G/K;Mλ) ⊂ Cω(G). Here Cω(G) is the space

of real analytic functions on G.
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Assume that λΘ + ρ ∈ a∗C is regular and dominant where ρ = 1
2 tr(ad|n) ∈ a∗C,

i.e., ρ = 1
2

∑
1≤i<j≤n(ej − ei) =

∑n
i=1(i− n+1

2 )ei. This is equivalent to

2〈λΘ + ρ, α〉
〈α, α〉

/∈ {0,−1,−2, . . . } for α ∈ 4+(g, a).

We keep this assumption throughout the remainder of this paper.

Theorem 2.6 (T. Oshima, Theorem 5.1 in [24]). Under the above assumption,

the Poisson transform

PλΘ : B(G/PΘ;λ)→ C∞(G/K; IΘ(λ)), f 7→ F (x) =

∫
K

f(xk) dk, x ∈ G,

is a G-isomorphism.

In [21], [22] and [24], T. Oshima obtained several good generator systems of

IΘ(λ). We introduce one of them here.

Denote the space of n × n matrices with entries in U(g) by M(n,U(g)). For

E = (Eij)ij ∈M(n,U(g)), we define elements in Z(g) by

∆k = tr(Ek) for k = 1, . . . , n.

Then it is known that Z(g) ∼= C[∆1, . . . ,∆n] as C-algebras.

Theorem 2.7 (T. Oshima, Corollary 4.6 in [24]). Assume that λΘ + ρ ∈ a∗C is

regular and dominant. Then

IΘ(λ) =

n∑
i=1

n∑
j=1

U(g)
( L∏
k=1

(E− λk − nk−1)
)
ij

+

L−1∑
k=1

U(g)(∆k − χλ(∆k)).

§3. Generalized Whittaker functions

Generalized Whittaker functions are the main object of study in this paper. We

shall give a characterization of the space of generalized Whittaker functions of

a degenerate principal series πΘ,λ as a function space whose elements are killed

by IΘ(λ). This is an analogy of Yamashita’s method in the case of irreducible

highest weight modules [36]. The substantial part of his method is that the maximal

globalization (in the sense of W. Schmid [28]) of highest weight modules is given

by the kernel of a certain differential operator. The corresponding theorem for

degenerate principal series is Theorem 2.6 in §2.2. Moreover thanks to Theorem

2.7, we know explicit structures of these differential operators. Hence we can carry

out explicit calculations on the space of generalized Whittaker functions.
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For a complete Hausdorff locally convex space V with a continuous G-action,

the space of K-finite vectors of V is denoted by VK . Let XΘ,λ be C∞(G/PΘ;λ)K ,

which is a (gC,K)-module where the gC-action is the differential of πΘ,λ and the

K-action is the restriction of πΘ,λ; furthermore the actions of gC and K are com-

patible. Also XΘ,λ is a Harish-Chandra module, i.e., finitely generated as a U(g)-

module and with finite K-multiplicities.

§3.1. Maximal globalization

For the Harish-Chandara module XΘ,λ, consider its dual Harish-Chandra mod-

ule XΘ,λ∗ . Here the character λ∗ of PΘ is

λ∗ = −λ̄− 2ρΘ = (n− n0 − n1 − λ̄1, . . . , n− nL−1 − nL − λ̄L),

where ρΘ = 1
2 tr(ad|nΘ) ∈ a∗C, i.e.,

ρΘ =

L∑
i=1

ni−1 + ni − n
2

ni∑
j=ni−1

ej .

In fact the pairing 〈 , 〉λ,λ∗ : C∞(G/PΘ;λ)× C∞(G/PΘ;λ∗)→ C defined by

〈f, g〉λ,λ∗ =

∫
K

f(k)g(k) dk

for (f, g) ∈ C∞(G/PΘ;λ) × C∞(G/PΘ;λ∗) is a G-equivariant nondegenerate

sesquilinear pairing. Via this pairing, XΘ,λ∗ = C∞(G/PΘ;λ∗)K can be identified

with the dual Harish-Chandra module (XΘ,λ)∗.

We can consider the natural (gC × gC,K × K)-bimodule structures on

XΘ,λ ⊗XΘ,λ∗ and C∞(G). For X1, X2 ∈ gC and k1, k2 ∈ K, put

(X1, X2)(f ⊗ f∗) = πΘ,λ∗(X1)f ⊗ f∗ + f ⊗ πΘ,λ∗(X2)f∗,

(k1, k2)(f ⊗ f∗) = πΘ,λ(k1)f ⊗ πΘ,λ∗(k2)f∗

for f ∈ XΘ,λ and f∗ ∈ XΘ,λ∗ . Also define

(X1, X2)h = LX1
f +RX2

h, (k1, k2)h = Lk1
Rk2

h

for h ∈ C∞(G). Let us introduce the matrix coefficient map c : XΘ,λ ⊗XΘ,λ∗ →
C∞(G) (cf. [4]) satisfying

1. c is a (gC × gC,K ×K)-bimodule homomorphism,

2. for any f ∈ XΘ,λ and f∗ ∈ XΘ,λ∗ , the evaluation c(f ⊗ f∗)(e) at the origin

e ∈ G equals 〈f, f∗〉λ,λ∗ .
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It is known that this matrix coefficient map is uniquely determined (see Theorem

8.7 in [4]).

Theorem 2.6 tells us that the restriction of the Poisson transform PλΘ to XΘ,λ

gives us a (gC,K)-isomorphism PλΘ : XΘ,λ
∼−→ C∞(G/K; IΘ(λ))K .

Take a K-fixed vector f0 ∈ XΘ,λ∗ such that f0|K ≡ 1. Then the restriction

of the Poisson transform to XΘ,λ is the matrix coefficient of an element of XΘ,λ

with f0 ∈ XΘ,λ∗ , i.e.,

(3.1) PλΘ(f) = c(f ⊗ f0).

Lemma 3.1. The dual Harish-Chandra module XΘ,λ∗ is a cyclic U(g)-module

with a cyclic vector f0 ∈ XΘ,λ∗ such that f0|K ≡ 1.

Proof. Put W = {πΘ,λ∗(X)f0 | X ∈ U(g)}. This is a (gC,K)-module. We restrict

the pairing 〈 , 〉λ,λ∗ to XΘ,λ×W . Take an element f ∈ XΘ,λ so that 〈f, w〉λ,λ∗ = 0

for any w ∈W . Since Pλ(f) is K-finite and Z(g)-finite, it is a real analytic function

on G. Let C be a sufficiently small open neighbourhood of 0 in g. Then we have

the Taylor expansion at the origin e ∈ G,

Pλ(f)(expX) =

∞∑
ν=0

1

ν!
RXν (Pλ(f))(e) =

∞∑
ν=0

1

n!
RXν (c(f ⊗ f0))(e)

=

∞∑
ν=0

1

ν!
〈f, πΘ,λ∗(X

ν)f0〉λ,λ∗ = 0

for X ∈ C. Here we have used the equation (3.1). We can extend this equality

to the identity component G0 of G because both functions are real analytic. Also

we can extend it to G by the equation G = KG0. The injectivity of the Poisson

transform Pλ implies f = 0. Hence the bilinear form on XΘ,λ×W is nondegenerate.

Therefore W = XΘ,λ∗ by Lemma 2 in Section 5.2 of [31].

Now we consider HomgC,K(XΘ,λ∗ , C
∞(G)) and recall that this space inherits

a Fréchet topology and a continuous G-action. This continuous G-module is called

the maximal globalization of the Harish-Chandra module XΘ,λ (cf. [28] and [17]).

The space C∞(G) is a Fréchet space with the topology of uniform convergence on

compact sets for functions on G and their derivatives. Let {|·|α}α∈Λ be a countable

family of seminorms on C∞(G) which defines the Fréchet topology on C∞(G),

where Λ is an index set. Take some α ∈ Λ and v ∈ XΘ,λ∗ . Then we define the real-

valued function | · |α,v : HomgC,K(XΘ,λ∗ , C
∞(G)) → R≥0 by |I|α,v = |I(v)|α for

I ∈ HomgC,K(XΘ,λ∗ , C
∞(G)). Let {vm} be a countable vector space basis of the

Harish-Chandra module XΘ,λ∗ . Then the family of seminorms {|·|α,vk}α∈Λ, vk∈{vm}
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defines a Fréchet topology on HomgC,K(XΘ,λ∗ , C
∞(G)), and a continuous G-action

on this space is defined by left translation on C∞(G).

Lemma 3.2. Take a K-fixed vector f0 ∈ XΘ,λ∗ such that f0|K ≡ 1. Then

Φ: HomgC,K(XΘ,λ∗ , C
∞(G))→ C∞(G), I 7→ I(f0)(g) (g ∈ G),

is a continuous mapping. Moreover for any seminorm | · |α,vm on the space

HomgC,K(XΘ,λ∗ , C
∞(G)), there exists a continuous seminorm µα,vm on C∞(G)

such that

µα,vm(Φ(I)) = |I|α,vm
for I ∈ HomgC,K(XΘ,λ∗ , C

∞(G)). Thus Φ is injective.

Proof. The first and the second assertions are well-known. The final one immedi-

ately follows from them.

The maximal globalization of XΘ,λ is isomorphic to a subspace of C∞(G/K),

as shown by the following proposition (see [28], [17]). We give a proof for com-

pleteness.

Proposition 3.3. Take a K-fixed vector f0 ∈ XΘ,λ∗ such that f0|K ≡ 1. Then

we have a topological G-isomorphism

Φ: HomgC,K(XΘ,λ∗ , C
∞(G))

∼−→ C∞(G/K; IΘ(λ)), I 7→ I(f0).

Here C∞(G/K; IΘ(λ)) has Fréchet topology as a closed subspace of C∞(G).

Proof. We can immediately see that Φ preserves the action of G. First we show

that Φ is well-defined. Take I ∈ HomgC,K(XΘ,λ∗ , C
∞(G))K . Then by evaluation at

the origin e ∈ G, we can regard I(·)(e) as an element of XΘ,λ
∼= (XΘ,λ∗)

∗. As we

see in Remark 2.5, I(f0) ∈ C∞(G/K; IΘ(λ)) ⊂ Cω(G). Thus the same argument

as in the proof of Lemma 3.1 shows that we have the Taylor expansion at e ∈ G,

I(f0)(expX) =
∞∑
ν=0

1

ν!
RXν (I(f0))(e) =

∞∑
ν=0

1

ν!
〈I(·)(e), πΘ,λ∗(X

ν)f0〉λ,λ∗

=

∞∑
ν=0

1

ν!
c(I(·)(e)⊗ πΘ,λ∗(X

ν)f0)(e) =

∞∑
ν=0

1

ν!
RXν c(I(·)(e)⊗ f0)(e)

= c(I(·)(e)⊗ f0)(expX)

for X ∈ C where C is a sufficiently small neighbourhood of 0 in g. We can extend

this equality to all g ∈ G as in Lemma 3.1. Hence by Theorem 2.6 and (3.1), we

have

Φ(HomgC,K(XΘ,λ∗ , C
∞(G))K) ⊂ C∞(G/K; IΘ(λ)).
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We recall that for a continuous representation of G on a locally convex complete

space V , the space VK of K-finite vectors is dense in V (see, for example, Lemma

1.9 in Ch. IV of [10]). Moreover we know that Φ is a continuous mapping by Lemma

3.2. Hence Φ(HomgC,K(XΘ,λ∗ , C
∞(G))) ⊂ C∞(G/K; IΘ(λ)), which proves that Φ

is well-defined.

Next we prove Φ is a bijective map. By Lemma 3.2, Φ is injective. We

need to prove that it is surjective. For any F ∈ C∞(G/K; IΘ(λ))K , there ex-

ists h ∈ XΘ,λ such that F = c(h ⊗ f0) by Theorem 2.6 and (3.1). We choose

Ih ∈ HomgC,K(XΘ,λ, C
∞(G)) so that Ih(v) = c(h ⊗ v) for v ∈ XΘ,λ∗ . Then

Φ(Ih) = Ih(f0) = c(h⊗f0) = F. Hence we have the inclusion C∞(G/K; IΘ(λ))K ⊂
Φ(HomgC,K(XΘ,λ, C

∞(G))). Because C∞(G/K; IΘ(λ))K is a dense subspace of

C∞(G/K; IΘ(λ)), for any f ∈ C∞(G/K; IΘ(λ)) we can choose a convergent

sequence fν → f (ν → ∞) where fν ∈ C∞(G/K; IΘ(λ))K for ν ∈ N. The

above inclusion shows that there exist Iν ∈ HomgC,K(XΘ,λ, C
∞(G)) such that

Φ(Iν) = fν . From the second assertion in Lemma 3.2, {Iν} is a Cauchy se-

quence in HomgC,K(XΘ,λ, C
∞(G)). Since HomgC,K(XΘ,λ, C

∞(G)) is a Fréchet

space, i.e., complete space, there exists I ∈ HomgC,K(XΘ,λ, C
∞(G)) such that

Iν → I (ν → ∞). Thus Φ(I) = f by the continuity of Φ. This shows that

Φ is surjective. The open mapping theorem implies that Φ is a homeo-

morphism.

§3.2. Generalized Whittaker functions

We shall define generalized Whittaker models and functions for XΘ,λ. Fix a closed

subgroup U of N and its irreducible unitary representation η on a Hilbert space Vη.

Let V∞η be the space of C∞-vectors in Vη. Define

C∞η (U\G) = {f : G→ V∞η smooth | f(ng) = η(n)f(g), g ∈ G, n ∈ U},

which is a G-module with respect to right translation.

Definition 3.4. The image W (XΘ,λ∗) of W ∈ HomgC,K(XΘ,λ∗ , C
∞
η (U\G)) is

called a generalized Whittaker model of XΘ,λ∗ . Elements in W (XΘ,λ∗) ⊂ C∞η (U\G)

are called generalized Whittaker functions. In particular, the image W (fK) of a

K-fixed vector fK ∈ XΘ,λ∗ is called a class one generalized Whittaker function.

The following theorem gives a characterization of the space of class one gener-

alized Whittaker functions as a function space whose elements are killed by IΘ(λ).

Also this shows that the space of class one generalized Whittaker functions is

isomorphic to HomgC,K(XΘ,λ∗ , C
∞
η (U\G)) as a linear space.
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Theorem 3.5. Take a K-fixed vector f0 in XΘ,λ∗ such that f0|K ≡ 1. Then

Φ̃ : HomgC,K(XΘ,λ∗ , C
∞
η (U\G))

∼−→ C∞η (U\G/K; IΘ(λ)), W 7→W (f0)(g),

is a linear isomorphism. Here

C∞η (U\G/K; IΘ(λ))

= {f : G→ V∞η smooth | f(ngk) = η(n)f(g), g ∈ G, n ∈ U, k ∈ K
and RXf(g) = 0, X ∈ IΘ(λ)}.

Proof. Fix a nonzero element ξ ∈ Vη and define a linear mapping

T : C∞η (U\G) 3 f 7→ 〈ξ, f(g)〉η ∈ C∞(G),

which commutes with G and gC actions from the right; here 〈 , 〉η is the inner

product on the Hilbert space Vη. Since (η, Vη) is an irreducible unitary represen-

tation of U , the mapping T is injective (see Theorem 2.4 in [35]). It also yields an

injective map

T̃ : Hom(gC,K)(XΘ,λ∗ , C
∞
η (U\G))→ Hom(gC,K)(XΘ,λ∗ , C

∞(G)), W 7→ T ◦W.

For any W ∈ Hom(gC,K)(XΘ,λ∗ , C
∞
η (U\G)), we have T (Φ̃(W )) = T (W (f0)) =

T ◦W (f0) = T̃ (W )(f0) = Φ(T̃ (W )). Hence we have the commutative diagram

Hom(gC,K)(XΘ,λ∗ , C
∞
η (U\G))

Φ̃−−−−→ C∞η (U\G/K)

T̃

y yT
Hom(gC,K)(XΘ,λ∗ , C

∞(G))
Φ−−−−→ C∞(G/K)

Since Φ, T and T̃ are injective, Φ̃ is also injective.

Next we show that Im Φ̃ ⊂ C∞η (U\G/K; IΘ(λ)). Take an element W ∈
Hom(gC,K)(XΘ,λ∗ , C

∞
η (U\G)). Then T (Φ̃(W )) = 〈ξ,W (f0)〉 ∈ C∞(G/K; IΘ(λ)).

Hence 0 ≡ RXT (Φ̃(W )) = T (RXΦ̃(W )) for X ∈ IΘ(λ). Since T is injective, we

have RXW (f0) ≡ 0 for X ∈ IΘ(λ), i.e., Im Φ̃ ⊂ C∞η (U\G/K; IΘ(λ)).

Finally, we show that Φ̃ is surjective. Let f ∈ C∞η (U\G/K; IΘ(λ)). For

v ∈ XΘ,λ∗ there exists Xv ∈ U(g) such that v = πΘ,λ∗(Xv)f0 by Lemma 3.1. Then

we define a mapping Wf : XΘ,λ∗ 3 v = πΘ,λ∗(Xv)f0 7→ RXvf(g) ∈ C∞η (U\G). We

need to check that it is well-defined. If for Xv, X
′
v ∈ g we have v = πΘ,λ∗(Xv)f0 =

πΘ,λ∗(X
′
v)f0, then πΘ,λ∗(Xv − X ′v)f0 = 0. Since T (f) ∈ C∞(G/K; IΘ(λ)), there

exists If ∈ HomgC,K(XΘ,λ∗ , C
∞(G)) such that T (f) = Φ(If ) by Proposition 3.3.

Put Z = Xv − X ′v. Then T (RZf) = RZT (f) = Φ(RZIf ) = RZIf (f0)(g) =

If (πΘ,λ∗(Z)f0)(g) = 0. Hence by the injectivity of T , we have RZf(g) = 0, i.e.,

RXvf = RX′vf . This implies that Wf is well-defined.
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Also we can check that Wf is compatible with the gC and K actions. Hence

Wf ∈ Hom(gC,K)(XΘ,λ∗ , C
∞
η (U\G)) and Φ̃(Wf ) = Wf (f0) = f . Thus Φ̃ is surjec-

tive.

§4. Calculus in the case of GL(4,R)

In the previous section, we gave a characterization of the space of class one gener-

alized Whittaker functions as the kernel of an explicit differential operator. Now

by using this characterization, we study the particular case of GL(4,R). In the

cases of SL(2,R) or GL(2,R), Whittaker functions are well understood. Also for

SL(3,R) Ishii and Oda computed generalized Whittaker functions of degenerate

principal series [14]. We shall consider the spherical degenerate principal series

representations induced from the maximal parabolic subgroups P1,4, P2,4, exam-

ine the dimensions of the spaces of class one generalized Whittaker functions, and

find their bases.

Now G = GL(4,R), K = O(4), A is the group of 4× 4 diagonal matrices with

positive real entries and N is the group of 4× 4 strictly lower triangular matrices

with 1s on the diagonal. We put Pk = Pk,4, k = 1, 2. For (λ1, λ2) ∈ C2, we define

the character λ : Pk → C× and degenerate principal series representations induced

from λ as before. Let Xk,λ be the Harish-Chandra modules of these degenerate

principal series representations. Then by Theorem 2.7, their annihilator ideals

in U(g) are

(4.1) Ik(λ) = I{k,4}(λ)

=

4∑
i=1

4∑
j=1

U(g)((E− λ1)(E− λ2 − k))ij + U(g)
( 4∑
i=1

Eii − kλ1 − (4− k)λ2

)
for k = 1, 2. Throughout this section, we assume λ1 − λ2 /∈ Z.

§4.1. Equivalence classes of C∞η (U\G)

Generalized Whittaker models are images of embeddings of XΘ,λ∗ into C∞η (U\G)

where U is a closed subgroup of N and η is its irreducible unitary representation.

In this paper, we only consider the space C∞η (U\G) where the closed subgroup

U ⊂ N and its unitary character η are chosen to satisfy that

L2 -IndNU η is an irreducible unitary representation of N .

Therefore we first review the classification of irreducible unitary representations

of N .
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4.1.1. Classification of the unitary dual of N . First we give the classification

of the unitary dual of the maximal unipotent subgroup N of G using Kirillov’s

method of coadjoint orbits. The material of this subsection is standard; the details

can be found in [3] for example.

We denote the dual R-vector space of n by n∗ = HomR(n,R) and identify it

with the subspace of M(4,R) consisting of the matrices

α21E
∗
21 + α31E

∗
31 + α32E

∗
32 + α41E

∗
41 + α42E

∗
42 + α43E

∗
43 =


0 α21 α31 α41

0 α32 α42

0 α43

0


for any αij ∈ R; here E∗ij(Ei′j′) = tr(E∗ijEi′j′). Let us put

n(x21, x31, x32, x41, x42, x43)

= x21E21 + x31E31 + x32E32 + x41E41 + x42E42 + x43E43 ∈ n,

l(α21, α31, α32, α41, α42, α43)

= α21E
∗
21 + α31E

∗
31 + α32E

∗
32 + α41E

∗
41 + α42E

∗
42 + α43E

∗
43 ∈ n∗.

Then the coadjoint action of N on n∗ is

(4.2) (Ad∗ exp(n(x21, . . . , x43)))(l(α21, . . . , α43))

= α41E
∗
41 + (α31 + x43α41)E∗31 + (α42 − x21α41)E∗42

+ (α21 + x32α31 + α41(x42 + x32x43/2))E∗21

+ (α32 + x43α42 − x21α31 − x21x43α41)E∗32

+ (α43 − x32α42 − α41(x31 − x21x32/2))E∗43.

Proposition 4.1. The coadjoint orbits of n∗ under the action of N are classified

as follows:

(1) For α41 ∈ R \ {0} and α32 ∈ R,

Ad∗N(α41E
∗
41 + α32E

∗
32)

= {α41E
∗
41 + t1E

∗
31 + t2E

∗
42 + s1E

∗
21 + (α32 + t1t2/α41)E∗32 + s2E

∗
43 |

t1, t2, s1, s2 ∈ R}

=
{ ∑

1≤j<i≤4

βijE
∗
ij ∈ n∗

∣∣∣ β41 = α41, α41β32 = α32α41 + β31β42

}
.

Here dim Ad∗N(α41E
∗
41 + α32E

∗
32) = 4.
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(2) For α21, α31, α42, α43 ∈ R such that α31α42 6= 0,

Ad∗N(α21E
∗
21 + α31E

∗
31 + α42E

∗
42 + α43E

∗
43)

= {α31E
∗
31 + α42E

∗
42 + (α31t1 + α21)E∗21 + t2E

∗
32 + (α43 − α42t1)E∗43 |

t1, t2 ∈ R}

=
{ ∑

1≤j<i≤4

βijE
∗
ij ∈ n∗

∣∣∣ β41 = 0, β31 = α31, β42 = α42,

α31β43 + α42β41 = α42α21 + α31α43

}
.

Here dim Ad∗N(α21E
∗
21 + α31E

∗
31 + α42E

∗
42 + α43E

∗
43) = 2.

(3) For α21, α32, α43 ∈ R,

Ad∗N(α21E
∗
21 + α32E

∗
32 + α43E

∗
43) = α21E

∗
21 + α32E

∗
32 + α43E

∗
43.

Here dim Ad∗N(α21E
∗
21 + α32E

∗
32 + α43E

∗
43) = 0.

Proof. This follows by direct computation using (4.2).

To construct irreducible unitary representations of N from the coadjoint orbit

of l ∈ n∗, we should determine its radical rl and choose a maximal subordinate

subalgebra sl. We define the coadjoint action of the Lie algebra n on l ∈ n∗ by

((ad∗X)l)(Y ) = l([Y,X]) for X,Y ∈ n.

Definition 4.2. For l ∈ n∗, the radical of l is the subalgebra of n defined by

rl = {X ∈ n | (ad∗X)l = 0}.

Here we note that exp rl = {x ∈ N | (Ad∗ x)l = l} (see Lemma 1.3.1 in [3]).

Definition 4.3. For l ∈ n∗, we can regard l([X,Y ]) as a bilinear form for (X,Y ) ∈
n × n. By the antisymmetry of the Lie bracket [X,Y ] = −[Y,X] (X,Y ∈ n), this

is an alternating form on n×n. Any subalgebra sl ⊂ n which is isotropic for l, i.e.,

l([X,Y ]) = 0 for X,Y ∈ sl, and has codimension 1
2 dimR(n/rl) is called a maximal

subordinate subalgebra of n for l.

Let us construct radicals and choose maximal subordinate subalgebras for

coadjoint orbits (1), (2), (3) which are classified in Proposition 4.1.

Case (1). Equation (4.2) implies

(Ad∗ exp(n(x21, . . . , x43)))(α41E
∗
41 + α32E

∗
32)

= α41E
∗
41 + x31E

∗
31 + x42E

∗
42 + x21E

∗
21 + (α32 + x31x42/α41)E∗32 + x43E

∗
43.

Thus rα41E∗41+α32E∗32
= RE41 + RE32.
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Although the radical is uniquely determined from l ∈ n∗, there are several

maximal subordinate subalgebras to choose. Among these, we choose

sα41E∗41+α32E∗32
= RE32 + RE31 + RE42 + RE43 = n2,4.

Here n2,4 = nΘ with Θ = {2, 4}.

Case (2). As in case (1), we can see that the radical for α21E
∗
21+α31E

∗
31+α42E

∗
42+

α43E
∗
43 is given by

rα21E∗21+α31E∗31+α42E∗42+α43E∗43
= R(α31E43 + α42E21) + RE31 + RE42 + RE41.

Also we can choose a maximal subordinate subalgebra

sα21E∗21+α31E∗31+α42E∗42+α43E∗43
= RE21 + RE43 + RE31 + RE42 + RE41 = n1,3,4.

Here n1,3,4 = nΘ with Θ = {1, 3, 4}.

Case (3). As in (1) and (2), the radical for α21E
∗
21 + α32E

∗
32 + α43E

∗
43 is

rα21E∗21+α32E∗32+α43E∗43
= n.

Also we can choose a maximal subordinate subalgebra

sα21E∗21+α32E∗32+α43E∗43
= n.

Let us recall Kirillov’s orbit method. Let sl be a maximal subordinate sub-

algebra for l ∈ n∗ and let Sl = exp sl. We can extend l|sl : sl → R to a map

χl : Sl → C1 by

χl(expX) = e2π
√
−1 l(X), X ∈ sl.

This is a group homomorphism, i.e., a unitary character of Sl because sl is an

isotropic subspace for l. Define a Hilbert space by

Hχl =

{
f : N → C measurable

∣∣∣∣ f(sx) = χl(s)f(x) for s ∈ Sl, x ∈ N,

and

∫
Sl\N

|f(x)|2 dẋ <∞
}
,

where dẋ is the right-invariant measure on Sl\N , with the inner product defined

by

〈f, f ′〉 =

∫
Sl\N

f(x)f ′(x) dẋ.

It can be shown that Hχl is complete with this inner product. The action of N

on Hχl is by right translation. From the right-invariance of dẋ this action on Hχl
gives a unitary representation of N , which is said to be induced from χl and

denoted by L2 -IndNSl χl.
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Theorem 4.4 (Kirillov [15]). Take l ∈ n∗ and let sl be a maximal subordinate

subalgebra of n for l.

(1) The induced representation L2 -IndNSl χl is an irreducible representation of N .

(2) Let s′l be another maximal subordinate subalgebra of n for l and S′l = exp s′l.

Then L2 -IndNS′l χl is unitarily equivalent to L2 -IndNSl χl. Hence we may write

πl for L2 -IndNSl χl.

(3) Let l′ ∈ n∗. Then πl′ is unitarily equivalent to πl if and only if l′ ∈ (Ad∗N)l.

(4) Let π be an irreducible unitary representation of N . Then there exists an l ∈ n∗

such that π is unitarily equivalent to πl.

By this theorem, we can obtain all equivalence classes of irreducible unitary

representations of N .

Proposition 4.5. We retain the above notation. Then every irreducible unitary

representation of N is unitarily equivalent to one of the following representations.

(1) For α41E
∗
41 + α32E

∗
32 ∈ n∗ and its maximal subordinate subalgebra n2,4, we

define the representation

L2 -IndNN2,4
χα41E∗41+α32E∗32

.

Here N2,4 = NΘ with Θ = {2, 4} and α41 ∈ R\{0}, α32 ∈ R.

(2) For α21E
∗
21 + α31E

∗
31 + α42E

∗
42 + α43E

∗
43 ∈ n∗ and its maximal subordinate

subalgebra n1,3,4, we define the representation

L2 -IndNN1,3,4
χα21E∗21+α31E∗31+α42E∗42+α43E∗43

.

Here N1,3,4 = NΘ with Θ = {1, 3, 4} and α21, α31, α42, α43 ∈ R (α31α42 6= 0).

(3) For α21E
∗
21 + α32E

∗
32 + α43E

∗
43 ∈ n∗, we define the unitary character of N ,

χα21E∗21+α32E∗32+α43E∗43
.

Here α21, α32, α43 ∈ R.

4.1.2. Conjugacy classes of C∞η (U\G). Next we investigate G-equivalence of

the following spaces:

(1) C∞χα41E
∗
41+α32E

∗
32

(N2,4\G), α41 ∈ R\{0}, α32 ∈ R,

(2) C∞χα21E
∗
21+α31E

∗
31+α42E

∗
42+α43E

∗
43

(N1,3,4\G), α21, α31, α42, α43 ∈ R, α31α42 6= 0,

(3) C∞χα21E
∗
21+α32E

∗
32+α43E

∗
43

(N\G), α21, α32, α43 ∈ R.

Put gx = xgx−1 for g, x ∈ G. Let H be a closed subgroup of G and π a

continuous representation of H on a complete locally convex space E. Then for
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x ∈ NG(H) = {g ∈ G |hg ∈ H for any h ∈ H}, define conjugation of π by

πx(h) = π(hx). Then we have the following fact about the induced representation

C∞π (H\G) = {f : G → E smooth | f(hg) = π(h)f(g), g ∈ G, h ∈ H} on which G

acts by right translation.

Lemma 4.6. We retain the above notation. The map

C∞π (H\G)
∼−→ C∞πx(H\G), f(g) 7→ F (g) = f(xg),

is an isomorphism of G-modules.

Proof. Obvious.

Lemma 4.7. Fix a maximal subordinate subalgebra sl ⊂ n for l ∈ n∗ and put

Sl = exp sl. Define a character χl : Sl → C1 so that χl(expX) = e2π
√
−1 l(X)

for X ∈ sl. Then the character χl is invariant under conjugation by Sl, i.e.,

χxl (s) = χl(s) for s, x ∈ Sl.

Proof. Obvious.

Using these lemmas, we obtain the following.

Proposition 4.8. Case (1). For α41 ∈ R\{0} and α32 ∈ R, we have

C∞χα41E
∗
41+α32E

∗
32

(N2,4\G) ∼=

C
∞
χE∗31+E∗42

(N2,4\G) if α32 6= 0,

C∞χE∗32

(N2,4\G) if α32 = 0.

(1a)

(1b)

Case (2). Choose α21, α31, α42, α43 ∈ R so that α31α42 6= 0. Then

C∞χα21E
∗
21+α31E

∗
31+α42E

∗
42+α43E

∗
43

(N1,3,4\G)

∼=



C∞χE∗21+E∗42

(N1,3,4\G) if (α21, α31) · (α43, α42) 6= 0, (2a)

C∞χE∗21+E∗43

(N1,3,4\G) if (α21, α31) · (α43, α42) = 0

and α31 6= 0, α42 6= 0, (2b)

C∞χE∗21

(N1,3,4\G) if (α21, α31) · (α43, α42) = 0

and α31 6= 0, α42 = 0, (2c)

C∞χE∗43

(N1,3,4\G) if (α21, α31) · (α43, α42) = 0

and α31 = 0, α42 6= 0. (2d)

Here (a, b) · (c, d) = ac+ bd for a, b, c, d ∈ R is a natural inner product in R2 which

is induced from the structure of Heisenberg Lie algebra, namely

(α21α42 + α31α43)E14 = [α21E12 + α31E13, α42E24 + α43E34].
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Case (3). For α21, α32, α43 ∈ R, we have

C∞χα21E
∗
21+α32E

∗
32+α43E

∗
43

(N\G) ∼=

C∞χE∗21+E∗32+E∗43

(N\G) if α21 6= 0, α32 6= 0, α43 6= 0, (3a)

C∞χE∗21+E∗32

(N\G) if α21 6= 0, α32 6= 0, α43 = 0, (3b)

C∞χE∗21+E∗43

(N\G) if α21 6= 0, α32 = 0, α43 6= 0, (3c)

C∞χE∗32+E∗43

(N\G) if α21 = 0, α32 6= 0, α43 6= 0, (3d)

C∞χE∗21

(N\G) if α21 6= 0, α32 = 0, α43 = 0, (3e)

C∞χE∗32

(N\G) if α21 = 0, α32 6= 0, α43 = 0, (3f )

C∞χE∗43

(N\G) if α21 = 0, α32 = 0, α43 6= 0, (3g)

C∞(N\G) if α21 = 0, α32 = 0, α43 = 0. (3h)

Proof. (1) The normalizer NG(N2,4) of N2,4 in G is the semidirect product L2,4 n
N2,4 where

L2,4 =

{(
A 02

02 B

)∣∣∣∣∣A,B ∈ GL(2,R)

}
.

Here 02 =
(

0 0
0 0

)
∈ M(2,R). Define the action of NG(N2,4) on N̂2,4, the set of

unitary characters of N2,4, as follows. For x ∈ NG(N2,4), χ ∈ N̂2,4 and s ∈ N2,4,

we define (x ·χ)(s) = χ(sx
−1

). Then by Lemma 4.6, if χ, χ′ ∈ N̂2,4 are in the same

NG(N2,4)-orbit, the spaces C∞χ (N2,4\G) and C∞χ′ (N2,4\G) are G-equivalent. Also

by Lemma 4.7, it suffices to consider the action of L2,4 on N̂2,4.

Now we see that N̂2,4 has three orbits Ad ∗(NG(N2,4))(χε1E∗31+ε2E∗32+ε3E∗42
)

for (ε1, ε2, ε3) = (1, 0, 1), (0, 1, 0), (0, 0, 0). It is easy to see that

χα41E∗41+α32E∗32
∈ Ad∗(NG(N2,4))(χE∗31+E∗42

) if α32 6= 0,

χα41E∗41+α32E∗32
∈ Ad∗(NG(N2,4))(χE∗32

) if α32 = 0.

(2) The normalizer of N1,3,4 in G is the semidirect product L1,3,4 n N1,3,4

where

L1,3,4 =

n(a,b,A) =

 a 02 0
t02 A

t02

0 02 b

 ∈ G
∣∣∣∣∣∣∣ a, b ∈ R×, A ∈ GL(2,R)

 .

Here 02 = (0, 0) and t02 =
(

0
0

)
. As in (1), let us consider the NG(N1,3,4)-action on

N̂1,3,4, the set of unitary characters of N1,3,4. This action has the following orbits:
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{χv1E∗31+v2E∗42+w1E∗21+w2E∗43
| v1w1 + v2w2 6= 0},

{χv1E∗31+v2E∗42+w1E∗21+w2E∗43
| (v1, v2) 6= (0, 0), (w1, w2) 6= (0, 0)

and v1w1 + v2w2 = 0},
{χv1E∗31+v2E∗42+w1E∗21+w2E∗43

| (v1, v2) 6= (0, 0), (w1, w2) = (0, 0)},
{χv1E∗31+v2E∗42+w1E∗21+w2E∗43

| (v1, v2) = (0, 0), (w1, w2) 6= (0, 0)},
{χv1E∗31+v2E∗42+w1E∗21+w2E∗43

| (v1, v2) = (0, 0), (w1, w2) = (0, 0)}.

(3) The normalizer of N in G is the semidirect product LnN where

L =



a1

a2

a3

a4


∣∣∣∣∣∣∣∣∣ a1, . . . , a4 ∈ R×

 .

Then the lemma easily follows.

Remark 4.9. In the above list, the characters

χE∗31+E∗42
: N2,4 → C1 (1a),

χE∗21+E∗42
: N1,3,4 → C1 (2a),

χE∗21+E∗32+E∗43
: N → C1 (3a)

are nondegenerate (also called admissible) (cf. [19], [33]).

§4.2. Spaces of class one generalized Whittaker functions and

their vanishing

In Proposition 4.8, a list of C∞χ (U\G) with labels (1a), . . . , (3h) is given. The

purpose of this paper is to study the spaces of class one generalized Whit-

taker functions C∞χ (U\G/K; Ik(λ)) for pairs (U, χ) corresponding to these labels

(1a), . . . (3h). In this section we shall find equalities and isomorphisms between

these spaces with different labels and also show their vanishing.

For a closed subgroup U of N , there is a smooth cross section θ : U\N →
N with a smooth splitting of n ∈ N so that n = u(n)s(n) for u(n) ∈ U and

s(n) ∈ θ(U\N) (cf. Theorem 1.2.12 in [3]). Set Ũ = θ(U\N). Then we have a

diffeomorphism N ∼= U × Ũ . Recalling the Iwasawa decomposition G = NAK, we

have the linear isomorphism

(4.3) Ξ: C∞χ (U\G/K)
∼−→ C∞(Ũ ×A), f 7→ Ξ(f)(x, a) = f(xa),

for x ∈ Ũ and a ∈ A. Here C∞χ (U\G/K) = {f ∈ C∞(G) | f(ugk) = χ(u)f(g) for

u ∈ U , g ∈ G, k ∈ K} for a character χ of U .
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Let us denote X · f = Ξ(RXΞ−1(f)) for f ∈ C∞(Ũ × A) and X ∈ g. We

sometimes omit the dot and write simply Xf . Then for an ideal I ⊂ U(g), we

have

C∞χ (U\G/K; I) = {f ∈ C∞χ (U\G/K) | RXf = 0 for all X ∈ I}
∼−→ C∞(Ũ ×A; I) = {f ∈ C∞(Ũ ×A) | X · f = 0 for all X ∈ I}.

The Iwasawa decomposition g = n ⊕ a ⊕ k and the P-B-W theorem induce a

decomposition U(g) = U(g)k⊕ U(a⊕ n). We shall see how elements in U(g)k and

U(a⊕ n) are realized as differential operators on C∞(Ũ ×A) .

We note that Eii ∈ a, i = 1, . . . , 4, can be realized on C∞(Ũ × A) as ϑai =

ai
∂
∂ai

, i = 1, . . . , 4, where we denote the elements of A by a = diag(a1, . . . , a4).

We have the following symmetric relation among the generators of the anni-

hilator ideal Ik(λ).

Lemma 4.10. We have ((E−λ1)(E−λ2−k))ij ≡ ((E−λ1)(E−λ2−k))ji modulo

U(g)k for 1 ≤ i, j ≤ 4, and k = 1, 2.

Proof. Note that Eij − Eji (1 ≤ i < j ≤ 4) generate k. Then we have

((E− λ1)(E− λ2 − k))ij − ((E− λ1)(E− λ2 − k))ji

=
( 4∑
l=1

EilElj − (λ1 + λ2 + k)Eij + λ1(λ2 + k)δij

)
−
( 4∑
l=1

EjlEli − (λ1 + λ2 + k)Eji + λ1(λ2 + k)δji

)
=

4∑
l=1

(Eil(Elj − Ejl) + Ejl(Eil − Eli))− (λ1 + λ2 + k − 1)(Eij − Eji) ∈ U(g)k.

Let us find the projections of ((E− λ1)(E− λ2 − k))ij to U(a⊕ n) along the

decomposition U(g) = U(g)k⊕ U(a⊕ n).

Lemma 4.11. Representatives of ((E− λ1)(E− λ2 − k))ij modulo U(g)k, for

k = 1, 2 and 1 ≤ i < j ≤ 4, are

E2
11 + E2

21 + E2
31 + E2

41−(λ1 + λ2 + k − 3)E11

− (E22 + E33 + E44) + λ1(λ2 + k),

((i, j) = (1, 1))

E21(E11 + E22 − (λ1 + λ2 + k − 3)) + E32E31 + E42E41,((i, j) = (1, 2))

E31(E11 + E33 − (λ1 + λ2 + k − 2)) + E32E21 + E43E41,((i, j) = (1, 3))
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E41(E11 + E44 − (λ1 + λ2 + k − 2)) + E42E21 + E31E43,((i, j) = (1, 4))

E2
22 − (λ1 + λ2 + k − 2)E22+E2

21 + E2
32 + E2

42

− (E33 + E44) + λ1(λ2 + k),

((i, j) = (2, 2))

E32(E22 + E33 − (λ1 + λ2 + k − 2)) + E21E31 + E43E42,((i, j) = (2, 3))

E42(E22 + E44 − (λ1 + λ2 + k − 2)) + E21E41 + E32E43,((i, j) = (2, 4))

E2
33 − (λ1 + λ2 + k − 1)E33 + E2

31+E2
32 + E2

43

− E44 + λ1(λ2 + k),

((i, j) = (3, 3))

E43(E33 + E44 − (λ1 + λ2 + k − 1)) + E31E41 + E32E42,((i, j) = (3, 4))

E2
44 − (λ1 + λ2 + k)E44 + E2

41 + E2
42 + E2

43 + λ1(λ2 + k).((i, j) = (4, 4))

Proof. If we note that Eij − Eji (1 ≤ i < j ≤ 4) are the generators of k, this

lemma can be obtained by direct computations.

Let us define an automorphism of G by j : G 3 g 7→ J tg−1J−1 ∈ G where

J ∈ G has 1s in all the antidiagonal entries and 0s in the other entries. Also define

j : U(g) → U(g) as the extension of the Lie algebra automorphism j : g 3 X 7→
Ad (J)(− tX) ∈ g. Here we notice that j ◦ j = id.

Lemma 4.12. We have j(Ik(λ)) ≡ Ik(λ′) modulo U(g)k where λ′ = (λ′1, λ
′
2) =

(−λ1 + 4− k,−λ2 − k).

Proof. It follows from Lemma 4.11 and a little computation that a set of generators

of Ik(λ) modulo U(g)k consists of

E2
11 + E2

21 + E2
31 + E2

41 − (λ1 + λ2 + k − 4)E11 + λ2(λ1 − 4 + k),

E21(E11 + E22 − (λ1 + λ2 + k − 3)) + E32E31 + E42E41,

E31(E11 + E33 − (λ1 + λ2 + k − 2)) + E32E21 + E43E41,

E41(E11 + E44 − (λ1 + λ2 + k − 2)) + E42E21 + E31E43,

E2
22 − (λ1 + λ2 + k − 3)E22 + E2

21 + E2
32 + E2

42 + E11 + λ2(λ1 − 4 + k),

E32(E22 + E33 − (λ1 + λ2 + k − 2)) + E21E31 + E43E42,

E42(E22 + E44 − (λ1 + λ2 + k − 2)) + E21E41 + E32E43,

E2
33 − (λ1 + λ2 + k − 1)E33 + E2

31 + E2
32 + E2

43 − E44 + λ1(λ2 + k),

E43(E33 + E44 − (λ1 + λ2 + k − 1)) + E31E41 + E32E42,

E2
44 − (λ1 + λ2 + k)E44 + E2

41 + E2
42 + E2

43 + λ1(λ2 + k),

4∑
i=1

Eii − kλ1 − (4− k)λ2.
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Direct computation shows that j : U(g) → U(g) carries this set to the set whose

elements are obtained by changing (λ1, λ2) to (λ′1, λ
′
2) except the final element

which is −
∑4
i=1Eii + kλ′1 + (4− k)λ′2.

Notice that U(g)k is invariant under the map j. This shows the lemma.

From this lemma we have the following isomorphism between spaces of class

one generalized Whittaker functions.

Proposition 4.13. Fix a closed subgroup U ⊂ N and its character χ. Define

U† = {j(u) | u ∈ U} ⊂ N and its character χ†(u′) = χ(j(u′)) (u′ ∈ U†). Then

C∞χ (U\G/K; Ik(λ))→ C∞χ†(U
†\G/K; Ik(λ′)), f 7→ f ◦ j,

is a linear isomorphism. Here λ′ = (−λ1 + 4− k,−λ2 − k).

Proof. Let us note that K is invariant under j. Thus the proposition follows from

Lemma 4.12.

For each C∞χ (U\G) listed in Proposition 4.8, we shall give realizations of

elements in n as differential and scalar operators on C∞(Ũ ×A) ∼= C∞χ (U\G/K).

Case (1). We consider the space C∞χε1E∗31+ε2E
∗
32+ε3E

∗
42

(N2,4\G/K), where

(4.4) (ε1, ε2, ε3) =

{
(1, 0, 1) for case (1a),

(0, 1, 0) for case (1b),

as in Proposition 4.8. If we notice that n2,4 = RE31 +RE32 +RE41 +RE43 is not

only a subalgebra of n but also an ideal of n, then

n2,4\n ∼= ñ2,4 = RE21 + RE43

is a subalgebra of n. Hence N2,4\N is isomorphic to the subgroup

Ñ2,4 = exp(ñ2,4) = {exp(uE21 + vE43) | u, v ∈ R}

of N . Then we have a diffeomorphism

N ∼= N2,4 o Ñ2,4

and a linear isomorphism

Ξ(1) : C∞χε1E∗31+ε2E32+ε3E43
(N2,4\G/K)

∼−→ C∞(Ñ2,4 ×A)

as in (4.3). We introduce a coordinate system on Ñ2,4 ×A,

R2 × (R>0)4 ∼−→ Ñ2,4 ×A,
((u, v), (a1, a2, a3, a4)) 7→ (exp(uE21 + vE43),diag(a1, a2, a3, a4)).
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Proposition 4.14. We regard the space C∞(Ñ2,4 ×A) as the image of the space

C∞χε1E∗31+ε2E
∗
32+ε3E

∗
42

(N2,4\G/K) under the mapping Ξ(1). Then for elements in n,

we have

E21F =
a2

a1

∂

∂u
F, E31F = 2π

√
−1

a3

a1
ε1F,

E41F = 0, E32F = 2π
√
−1

a3

a2
(−uε1 + ε2 + vε3)F,

E42F = 2π
√
−1

a4

a2
ε3F, E43F =

a4

a3

∂

∂v
F.

Here F ∈ C∞(Ñ2,4 ×A) and (ε1, ε2, ε3) are chosen as in (4.4).

Proof. For F ∈ C∞(Ñ2,4 × A), there exists f ∈ C∞χε1E∗31+ε2E
∗
32+ε3E

∗
42

(N2,4\G/K)

such that F (u, v; a) = Ξ(1)(f) = f(exp(uE21 + vE43)a) for u, v ∈ R and a ∈ A.

Hence for Eij (1 ≤ j < i ≤ 4) we have EijF = Ξ(1)(REijf) and

(4.5) EijF (u, v; a) = Ξ(1)(REijf) =
d

dt
f(exp(uE21 + vE43)a exp(tEij))

∣∣∣∣
t=0

=
d

dt
f(exp(uE21 + vE43) exp(tAd(a)Eij)a)

∣∣∣∣
t=0

=
ai
aj

d

dt
f(exp(uE21 + vE43) exp(tEij)a)

∣∣∣∣
t=0

.

Direct computation shows

exp(uE21 + vE43) · expn(z, . . . , x3)

= expn(z′, y′1, y
′
2, 0, x2, 0) · exp((u+ x1)E21 + (v + x3)E43),

where

z′ = z + vy1 − uy2 + 1
2x3y1 − 1

2x1y2 − uvx2 − 1
2vx1x2 − 1

2ux2x3 − 1
3x1x2x3,

y′1 = y1 − ux2 − x1x2/2,

y′2 = y2 + vx2 + x2x3/2.

Here we put n(z, . . . , x3) = zE41 + y1E31 + y2E32 + x1E21 + x2E32 + x3E43.

Hence we have

(4.6) f(exp(uE21 + vE43) expn(z, . . . , x3)a)

= f(expn(z′, y′1, y
′
2, 0, x2, 0) exp((u+x1)E21 + (v+x3)E43)a)

= χε1E∗31+ε2E∗32+ε3E∗42
(expn(z′, y′1, y

′
2, 0, x2, 0))f(exp((u+x1)E21 + (v+x3)E43)a)

= e2π
√
−1 (ε1y

′
1+ε2x2+ε3y

′
2)f(exp((u+x1)E21 + (v+x3)E43)a)

= e2π
√
−1 (ε1y

′
1+ε2x2+ε3y

′
2)F (u+x1, v+x3; a).

Combining formulas (4.5) and (4.6), we obtain the proposition.
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Case (2). We consider the space C∞χε1E∗21+ε2E
∗
42+ε3E

∗
43

(N1,3,4\G/K). Here each

(ε1, ε2, ε3) corresponds to cases (2i) (i = a, b, c, d) in Proposition 4.8 as follows:

(4.7) (ε1, ε2, ε3) =


(1, 1, 0) for case (2a),

(1, 0, 1) for case (2b),

(1, 0, 0) for case (2c),

(0, 0, 1) for case (2d).

From the same argument as in case (1), the homogeneous space N1,3,4\N is iso-

morphic to the subgroup Ñ1,3,4 = {exp(uE32) | u ∈ R} of N . This isomorphism

gives a smooth section θ(2) : N1,3,4\N → N and we have a linear bijection

Ξ(2) : C∞χε1E∗21+ε2E
∗
42+ε3E

∗
43

(N1,3,4\G/K)
∼−→ C∞(Ñ1,3,4 ×A).

Let us introduce a coordinate system on Ñ1,3,4 ×A,

R× (R>0)4 ∼−→ Ñ1,3,4 ×A,
(u, (a1, a2, a3, a4)) 7→ (exp(uE32), diag(a1, a2, a3, a4)).

Then we can write down the action of n on C∞(Ñ1,3,4 ×A).

Proposition 4.15. We regard the space C∞(Ñ1,3,4×A) as the image of the space

C∞χε1E∗21+ε2E
∗
42+ε3E

∗
43

(N1,3,4\G/K) under the mapping Ξ(2). Then elements in n can

be realized as follows:

E21F = 2π
√
−1

a2

a1
ε1F, E31F = 0,

E41F = 0, E32F =
a3

a2

∂

∂u
F,

E42F = 2π
√
−1

a4

a2
ε2F, E43F = 2π

√
−1

a4

a3
(ε3 − ε2u)F.

Here F ∈ C∞(Ñ1,3,4 ×A) and (ε1, ε2, ε3) are chosen as in (4.7).

Proof. The proposition can be obtained in the same way as in case (1) via

exp(uE32) · expn(z, . . . , x3) = exp(n(z′, y′1, y
′
2, x1, 0, x3)) · exp((u+ x2)E32),

where
z′ = z + 1

6x1x2x3,

y′1 = y1 + x1u+ 1
2x1x2,

y′2 = y2 − x3u− 1
2x2x3.
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Case (3). We consider the space C∞χε1E∗21+ε2E
∗
32+ε3E

∗
43

(N\G/K) where

(4.8) (ε1, ε2, ε3) =



(1, 1, 1) for case (3a),

(1, 1, 0) for case (3b),

(1, 0, 1) for case (3c),

(0, 1, 1) for case (3d),

(1, 0, 0) for case (3e),

(0, 1, 0) for case (3f ),

(0, 0, 1) for case (3g),

(0, 0, 0) for case (3h).

By the Iwasawa decomposition, we have the linear bijection

Ξ(3) : C∞χε1E∗21+ε2E
∗
32+ε3E

∗
43

(N\G/K) 3 f 7→ f |A ∈ C∞(A).

Proposition 4.16. Let us consider the space C∞(A) as the image of the space

C∞χε1E∗21+ε2E
∗
32+ε3E

∗
43

(N\G/K) under the mapping Ξ(3). Then

E21F = 2π
√
−1

a2

a1
ε1F, E31F = 0,

E41F = 0, E32F = 2π
√
−1

a3

a2
ε2F,

E42F = 0, E43F = 2π
√
−1

a4

a3
ε3F.

Here F ∈ C∞(A) and (ε1, ε2, ε3) are chosen as in (4.8).

Proof. This is obvious from the formula

(EijF )(a) =
d

dt
f(a exp(tEij))

∣∣∣∣
t=0

=
d

dt
f(exp(tAd(a)Eij)a)

∣∣∣∣
t=0

for 1 ≤ i 6= j ≤ 4. Here f = Ξ−1
(3)(F ).

Before studying in detail the spaces C∞χ (U\G/K; Ik(λ)) corresponding to

(1a), . . . , (3h) respectively, we record the following relations among them.

Proposition 4.17. (1) We have

C∞χµ1E
∗
21+µ2E

∗
42+µ3E

∗
43

(N1,3,4\G/K; Ik(λ)) = C∞χν1E∗21+ν2E
∗
32+ν3E

∗
43

(N\G/K; Ik(λ))

for k = 1, 2 if one of the following is satisfied:

(i) (µ1, µ2, µ3) = (1, 0, 1) and (ν1, ν2, ν3) = (1, 0, 1),

(ii) (µ1, µ2, µ3) = (1, 0, 0) and (ν1, ν2, ν3) = (1, 0, 0),

(iii) (µ1, µ2, µ3) = (0, 0, 1) and (ν1, ν2, ν3) = (0, 0, 1).
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(2) We have

C∞χµ1E
∗
31+µ2E

∗
32+µ3E

∗
42

(N2,4\G/K; Ik(λ)) = C∞χν1E∗21+ν2E
∗
32+ν3E

∗
43

(N\G/K; Ik(λ))

for k = 1, 2 if (µ1, µ2, µ3) = (0, 1, 0) and (ν1, ν2, ν3) = (0, 1, 0).

Remark 4.18. Each of the three conditions in (1) above implies

µ1E
∗
21 + µ2E

∗
42 + µ3E

∗
43 = ν1E

∗
21 + ν2E

∗
32 + ν3E

∗
43.

Hence

C∞χµ1E
∗
21+µ2E

∗
42+µ3E

∗
43

(N1,3,4\G) ⊃ C∞χν1E∗21+ν2E
∗
32+ν3E

∗
43

(N\G)

under these conditions. Also in (2), we can see that

µ1E
∗
31 + µ2E

∗
32 + µ3E

∗
42 = ν1E

∗
21 + ν2E

∗
32 + ν3E

∗
43

and

C∞χµ1E
∗
31+µ2E

∗
32+µ3E

∗
42

(N2,4\G) ⊃ C∞χν1E∗21+ν2E
∗
32+ν3E

∗
43

(N\G)

under the given condition.

To show the proposition, we prepare the following lemma.

Lemma 4.19. Suppose the assumption in Proposition 4.17 is satisfied and

F ∈ C∞χµ1E
∗
31+µ2E

∗
32+µ3E

∗
42

(N2,4\G/K; Ik(λ))

(resp. F ∈ C∞χµ1E
∗
21+µ2E

∗
42+µ3E

∗
43

(N1,3,4\G/K; Ik(λ))).

Then RXF = 0 for X ∈ n1,3,4 (resp. X ∈ n2,4).

Proof. Put X = E31(E11 + E33 − (λ1 + λ2 + k − 2)) + E32E21 + E43E41 and

X ′ = E42(E22 + E44 − (λ1 + λ2 + k − 2)) + E21E41 + E32E43. By the proof of

Lemma 4.12 we see that RXF = RX′F = 0 for F ∈ C∞(G/K; Ik(λ)).

First we take F ∈ C∞χµ1E
∗
31+µ2E

∗
32+µ3E

∗
42

(N2,4\G/K; Ik(λ)). Then Lemma 4.14

shows that 0 = RXF = RE32
◦RE21

F and RE21
is a scalar operator and commutes

with RE32
. Thus RE32

F = 0. Similarly we have 0 = RX′F = RE32
◦RE43

F , which

implies RE43
F = 0.

Also for F ∈ C∞χµ1E
∗
21+µ2E

∗
42+µ3E

∗
43

(N1,3,4\G/K; Ik(λ)), we can show RE32F = 0

similarly. Then the lemma easily follows from Lemmas 4.14 and 4.15.

Proof of Proposition 4.17. First we show (1). Suppose the assumption is satisfied.

Then we have

C∞χµ1E
∗
21+µ2E

∗
42+µ3E

∗
43

(N1,3,4\G/K; Ik(λ)) ⊃ C∞χν1E∗21+ν2E
∗
32+ν3E

∗
43

(N\G/K; Ik(λ)).

We shall show the converse inclusion.
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Since N ∼= N1,3,4 o Ñ1,3,4 and χν1E∗21+ν2E∗32+ν3E∗43
(n) = 1 for n ∈ Ñ1,3,4, it

suffices to see that

f(ng) = χν1E∗21+ν2E∗32+ν3E∗43
(n)f(g) = f(g)

for all n ∈ Ñ1,3,4 and f ∈ C∞χµ1E
∗
21+µ2E

∗
42+µ3E

∗
43

(N1,3,4\G/K; Ik(λ)). This is equiva-

lent to showing that LXf = 0 for all X ∈ ñ1,3,4 since Ñ1,3,4 = exp ñ1,3,4.

Since Ñ1,3,4 is a commutative group and normalized by N1,3,4 and A, for

any ñ ∈ Ñ1,3,4 there exists ñ′ ∈ Ñ1,3,4 such that f(ñnak) = f(ñna) = f(nañ′)

where f ∈ C∞(G/K), (n, a, k) ∈ N × A × K. Then Lemma 4.19 shows that for

f ∈ C∞χµ1E
∗
21+µ2E

∗
42+µ3E

∗
43

(N1,3,4\G/K; Ik(λ)) and X ∈ ñ1,3,4 we have RXf = 0.

This yields LXf = 0.

The second assertion follows from the same argument as the first one.

By this proposition it suffices to consider C∞χ (U\G/K; Ik(λ)) for the pairs

(U, χ) with the labels

(1a), (1b) = (3f ), (2a), (2b) = (3c), (2c) = (3e), (2d) = (3g), (3a), (3b), (3d), (3h).

Moreover by Proposition 4.13 we have an isomorphism

C∞χ (U\G/K; Ik(λ)) ∼= C∞χ′ (U
′\G/K; Ik(λ′))

when (U, χ) corresponds to either (3b), (2c) or (3e) and (U ′, χ′) to (3d), (2d) or

(3g) respectively. Here λ′ = (−λ1 − 4 + k,−λ2 − k).

Now let us see that some spaces of class one generalized Whittaker functions

vanish.

Proposition 4.20. (1) If k = 1, then

C∞χE∗31+E∗42

(N2,4\G/K; I1(λ)) = {0}. (1a)

(2) For k = 1, 2,

C∞χE∗21+E∗42

(N1,3,4\G/K; Ik(λ)) = {0}. (2a)

(3) If k = 1, then

C∞χE∗21+E∗43

(N1,3,4\G/K; Ik(λ)) = C∞χE∗21+E∗43

(N\G/K; Ik(λ)) = {0}. (2b) = (3c)

(4) For k = 1, 2,

C∞χE∗21+E∗32+E∗43

(N\G/K; Ik(λ)) = {0}, (3a)

C∞χE∗21+E∗32

(N\G/K; Ik(λ)) = {0}, (3b)

C∞χE∗32+E∗43

(N\G/K; Ik(λ)) = {0}. (3d)
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Proof. First we show (1). All F ∈ C∞χE∗31+E∗42

(N2,4\G/K; I1(λ)) are killed by Ik(λ)

and U(g)k. Let us consider representatives of ((E−λ1)(E−λ2−k))ij modulo U(g)k

given in Lemma 4.11 and in particular focus on elements labelled by ((i, j) = (1, 3))

and ((i, j) = (2, 4)). Then recalling Proposition 4.14, we see that F is killed by

right translation by E31E42(
∑4
i=1Eii− 2λ1− 2λ2 + 2) +E32E42E21 +E32E31E43.

Here we notice that by Proposition 4.14 right translations by E31, E32 and E42 on

C∞χE∗31+E∗42

(N2,4\G/K; I1(λ)) are nonzero scalar operators, thus they are mutually

commutative. Also let us consider the representative labelled by ((i, j) = (1, 4))

in Lemma 4.11. Then it follows that F is killed by right translation by E42E21 +

E31E43. Thus we see that F is killed by
∑4
i=1Eii − 2λ1 − 2λ2 + 2 since right

translation by E31E42 is a scalar operator on C∞χE∗31+E∗42

(N2,4\G/K; I1(λ)). On the

other hand, F is killed by
∑4
i=1Eii − λ1 − 3λ2 as well. Thus F = 0.

Let us show (3). Consider the elements in Lemma 4.11 labelled by ((i, j) =

(1, 2)) and ((i, j) = (3, 4)). Then from Propositions 4.15 and 4.16, it follows that all

elements in C∞χE∗21+E∗43

(N1,3,4\G/K; Ik(λ)) = C∞χE∗21+E∗43

(N\G/K; Ik(λ)) are killed

by
∑4
i=1Eii − 2λ1 − 2λ2 + 2. Since they are also killed by

∑4
i=1Eii − λ1 − 3λ2,

they must be 0.

To show (2), consider the element in Lemma 4.11 labelled by ((i, j) = (1, 4)).

Then from Proposition 4.15, all elements in C∞χE∗21+E∗42

(N1,3,4\G/K; Ik(λ)) are

killed by E42E21 which induces a nonzero scalar operator. Thus they are all 0.

We can show (4) in the same way as (2) by using the elements in Lemma

4.11 labelled by ((i, j) = (1, 3)) and ((i, j) = (2, 4)). Indeed at least one of these

induces a nonzero scalar operator by Proposition 4.16.

§4.3. Spaces of class one generalized Whittaker functions

We shall examine the dimensions and find generators of spaces of class one gen-

eralized Whittaker functions. From the results in §4.2, it suffices to consider

C∞χ (U\G/K; Ik(λ)) where pairs (U, χ) correspond to the labels (1a), (1b) = (3f ),

(2b) = (3c), (2c) = (3e), (2d) = (3g), (3h).

First we consider differential equations satisfied by class one generalized Whit-

taker functions.

Proposition 4.21. The space C∞χE∗31+E∗42

(N2,4\G/K; Ik(λ)) corresponding to (1a)

can be identified via the isomorphism Ξ(1) with the solution space of the following

system of differential equations on C∞(Ñ2,4 ×A):

(4.9)

[
ϑ2
a1
− (λ1 + λ2 + k − 3)ϑa1 +

(
a2

a1

)2
∂2

∂u2
+

(
a3

a1

)2

(2π
√
−1)2

− (ϑa2 + ϑa3 + ϑa4) + λ1(λ2 + k)

]
φ = 0,
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(4.10)

[
∂

∂u
(ϑa1 + ϑa2 − (λ1 + λ2 + k − 3)) +

(
a3

a2

)2

(2π
√
−1 )2(v − u)

]
φ = 0,

(4.11)

[
(ϑa1

+ ϑa3
− (λ1 + λ2 + k − 2)) + (v − u)

∂

∂u

]
φ = 0,

(4.12)

[
∂

∂u
+

∂

∂v

]
φ = 0,

(4.13)

[
ϑ2
a2
− (λ1 + λ2 + k − 2)ϑa2 +

(
a2

a1

)2
∂2

∂u2
+

(
a3

a2

)2

(2π
√
−1 )2(v − u)2

+

(
a4

a2

)2

(2π
√
−1 )2 − (ϑa3 + ϑa4) + λ1(λ2 + k)

]
φ = 0,

(4.14)

[
(v− u)(ϑa2 + ϑa3 − (λ1 + λ2 + k− 2)) +

(
a2

a1

)2
∂

∂u
+

(
a4

a3

)2
∂

∂v

]
φ = 0,

(4.15)

[
(ϑa2

+ ϑa4
− (λ1 + λ2 + k − 2)) + (v − u)

∂

∂v

]
φ = 0,

(4.16)

[
ϑ2
a3
− (λ1 + λ2 + k − 1)ϑa3

+

(
a3

a1

)2

(2π
√
−1 )2

+

(
a3

a2

)2

(2π
√
−1 )2(v − u)2 +

(
a4

a3

)2
∂2

∂v2
− ϑa4

+ λ1(λ2 + k)

]
φ = 0,

(4.17)

[
∂

∂v
(ϑa3

+ ϑa4
− (λ1 + λ2 + k − 1)) +

(
a3

a2

)2

(2π
√
−1 )2(v − u)

]
φ = 0,

(4.18)

[
ϑ2
a4
−(λ1+λ2+k)ϑa4+

(
a4

a2

)2

(2π
√
−1 )2+

(
a4

a3

)2
∂2

∂v2
+λ1(λ2+k)

]
φ = 0,

(4.19) [(ϑa1
+ ϑa2

+ ϑa3
+ ϑa4

− kλ1 − (4− k)λ2)]φ = 0.

Here φ ∈ C∞(Ñ2,4 ×A).

Proof. Recall that Ik(λ) is written as in the proof of Lemma 4.12 modulo U(g)k.

Then these differential equations immediately follow from Proposition 4.14.

Proposition 4.22. Each space C∞χε1E∗21+ε2E
∗
32+ε3E

∗
43

(N\G/K; Ik(λ)) for k = 1, 2

and (ε1, ε2, ε3) chosen as in (4.8) can be identified via the isomorphism Ξ(3) with

the solution space of the following system of differential equations on C∞(A):

(4.20)

[
ϑ2
a1
− (λ1 + λ2 + k − 3)ϑa1

+

(
2π
√
−1

a2

a1

)2

ε1

− (ϑa2
+ ϑa3

+ ϑa4
) + λ1(λ2 + k)

]
φ = 0,

(4.21) ε12π
√
−1

a2

a1
(ϑa1

+ ϑa2
− (λ1 + λ2 + k − 3))φ = 0,
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(4.22) ε1ε2φ = 0,

(4.23)

[
ϑ2
a2
− (λ1 + λ2 + k − 2)ϑa2

+

(
2π
√
−1

a2

a1

)2

ε1 +

(
2π
√
−1

a3

a2

)2

ε2

− (ϑa3
+ ϑa4

) + λ1(λ2 + k)

]
φ = 0,

(4.24) ε22π
√
−1

a3

a2
(ϑa2

+ ϑa3
− (λ1 + λ2 + k − 2))φ = 0,

(4.25) ε2ε3φ = 0,

(4.26)

[
ϑ2
a3
− (λ1 + λ2 + k − 1)ϑa3

+

(
2π
√
−1

a3

a2

)2

ε2

+

(
2π
√
−1

a4

a3

)2

ε3 − ϑa4
+ λ1(λ2 + k)

]
φ = 0,

(4.27) ε32π
√
−1

a4

a3
(ϑa3

+ ϑa4
− (λ1 + λ2 + k − 1))φ = 0,

(4.28)

[
ϑ2
a4
− (λ1 + λ2 + k)ϑa4 +

(
2π
√
−1

a4

a3

)2

ε3 + λ1(λ2 + k)

]
φ = 0,

(4.29) [ϑa1
+ ϑa2

+ ϑa3
+ ϑa4

− kλ1 − (4− k)λ2]φ = 0.

Here φ ∈ C∞(A).

Proof. Just as in Proposition 4.21, this system of differential equations is obtained

by direct computation from Lemma 4.10 and Propositions 4.11 and 4.16.

Cases (1a) and (1b). Let us study the spaces C∞χE∗31+E∗42

(N2,4\G/K; Ik(λ)) and

C∞χE∗32

(N2,4\G/K; Ik(λ)) corresponding to (1a) and (1b) respectively.

Case (1a). First we investigate the space C∞χE∗31+E∗42

(N2,4\G/K; Ik(λ)). We have

already handled the case k = 1 in Proposition 4.20. Thus we consider the case

k = 2. We introduce a new coordinate system:

(4.30)

x1 = a1a2a3a4,

x2 = (π
√
−1 )2

((
a3

a2

)2

(v − u)2 +

(
a4

a2

)2

+

(
a3

a1

)2)
,

x3 =

(
a1a3

a2a4
(v − u)2 +

a2a3

a1a4
+
a1a4

a2a3

)−2

,

x4 =
a1a3

a2a4
, x5 =

a1a4

a2a3
, x6 = u.

Proposition 4.23. Consider the system of differential equations in Proposition

4.21. By addition, substitution and multiplying by some rational functions, the
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system of differential equations in the new coordinate system x1, . . . , x6 can be

written as follows:(
ϑx1
− λ1 + λ2

2

)
φ = 0,(4.31)

[x2 − (ϑx2 − 1
2 )(2ϑx3 − ϑx2)]φ = 0,(4.32)

[x3(ϑx2
− 2ϑx3

)(ϑx2
− 2ϑx3

− 1)(4.33)

− (ϑx3
− 1

4 (λ2 − λ1)− 1)(ϑx3
+ 1

4 (λ2 − λ1))]φ = 0,

∂

∂x4
φ = 0,(4.34)

∂

∂x5
φ = 0,(4.35)

∂

∂x6
φ = 0.(4.36)

Proof. First, we put

α1 = a1a2, α2 = a1a
−1
2 , α3 = a3a4,

α4 = a3a
−1
4 , u′ = u, v′ = v − u.

Then the differential equation (4.12) becomes

(4.37)
∂

∂u′
φ = 0.

Furthermore we change the variables α2, α4, v
′ to

w = α2α4v
′2 + α2α

−1
4 + α−1

2 α4, β2 = α2α4, β4 = α2α
−1
4 .

Then equations (4.14) and (4.15) become

ϑβ4φ = 0,(4.38)

ϑβ2
φ = 0,(4.39)

respectively. On setting

β1 = α1α3, β3 = α1α
−1
3 ,

equation (4.19) becomes

(4.40) (2ϑβ1
− (λ1 + λ2))φ = 0.

Also we can see that equation (4.10) can be written as

(4.41)

[
2w

∂

∂w
(2(ϑβ1 + ϑβ3)− (λ1 + λ2 − 1))− (2π

√
−1 )2β−1

3 w

]
φ = 0.
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If we eliminate ϑβ1
from (4.41) by using (4.40), we can write (4.41) as

(4.42)

[
2w

∂

∂w
(2ϑβ3 + 1)− (2π

√
−1 )2β−1

3 w

]
φ = 0.

We note that (4.17) can be reduced to the same equation. Taking into account

(4.40) and (4.42), equation (4.9) can be reduced to

(4.43)

[
(ϑβ3 + ϑw − 1

2 (λ1 − λ2 − 4))(ϑβ3 + ϑw + 1
2 (λ1 − λ2))− 4

∂2

∂w2

]
φ = 0.

We can also see that (4.13), (4.16) and (4.18) can be written as the same equation

(4.43). Finally, we put

γ1 = (π
√
−1 )2β−1

3 w, γ2 = w−2.

Then (4.42) is equivalent to

(4.44) [(ϑγ1
− 2ϑγ2

)
(

1
2 − ϑγ1

)
− γ1]φ = 0.

Also (4.43) can be written as

(4.45)

[(ϑγ2
− 1

4 (λ2 − λ1)− 1)(ϑγ2
+ 1

4 (λ2 − λ1))− γ2(ϑγ1
− 2ϑγ2

)(ϑγ1
− 2ϑγ2

− 1)]φ = 0.

If we put

x1 = β1, x2 = γ1, x3 = γ2,

x4 = β2, x5 = β4, x6 = u′,

then the theorem follows from (4.37), (4.38), (4.39), (4.40), (4.44) and (4.45).

Let us look at the differential equations (4.32) and (4.33). If f(x2, x3) is a

solution of them, we consider the function F (x2, x3) such that

f = x
1/2
2 x

(λ1−λ2)/4
3 F.

Then F (x2, x3) satisfies

[x2 − ϑx2
(2ϑx3

− ϑx2
+ 1

2 (λ1 − λ2 − 1))]F (x2, x3) = 0,(4.46)

[x3(2ϑx3
− ϑx2

+ 1
2 (λ1 − λ2 − 1))(2ϑx3

− ϑx2
+ 1

2 (λ1 − λ2 − 1) + 1)(4.47)

− ϑx3(ϑx3 + 1
2 (λ1 − λ2)− 1)]F (x2, x3) = 0.

These are the differential equations for Horn’s hypergeometric function

H10( 1
2 (λ1 − λ2 − 1), 1

2 (λ1 − λ2);x2, x3) (cf. [13]). Let H10(a, d;x, y) be the solu-

tion space of the system of partial differential equations for Horn’s hypergeometric
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function H10(a, d;x, y), i.e.,

[x(2ϑx − ϑy + a)(2ϑx − ϑy + a+ 1)− ϑx(ϑx + d− 1)]f(x, y) = 0,

[y − ϑy(2ϑx − ϑy + a)]f(x, y) = 0.

It is known that the dimension of the solution space is 4 on a nonsingular domain

(cf. [5]). We can find more detailed properties of H10(a, d;x, y) in the Appendix.

Theorem 4.24. Set

x1 = a1a2a3a4,

x2 = (π
√
−1 )2

((
a3

a2

)2

(v − u)2 +

(
a4

a2

)2

+

(
a3

a1

)2)
,

x3 =

(
a1a3

a2a4
(v − u)2 +

a2a3

a1a4
+
a1a4

a2a3

)−2

,

x4 =
a1a3

a2a4
, x5 =

a1a4

a2a3
, x6 = u.

Then:

1. For any F ∈ Ξ(1)(C
∞
χE∗21+E∗42

(N2,4\G/K; I2(λ))) ⊂ C∞(Ñ2,4 × A), there exists

f(x, y) ∈ H10( 1
2 (λ1 − λ2 − 1), 1

2 (λ1 − λ2);x, y) such that

F (x1, . . . , x6) = x
(λ1+λ2)/2
1 x

1/2
2 x

(λ1−λ2)/4
3 f(x2, x3).

2. dimC∞χE∗21+E∗42

(N2,4\G/K; I2(λ)) ≤ 4.

3. Suppose that there exists F ∈ Ξ(1)(C
∞
χE∗21+E∗42

(N2,4\G/K; I2(λ))) such that

sup
(a,(u,v))∈A×Ñ2,4

|x−(λ1+λ2)/2
1 xα1

2 xα2
3 F (x1, . . . , x6)| <∞

for all sufficiently large positive integers α1 and α2. Then there exists a constant

C such that

x
−(λ1+λ2)/2
1 x

−1/2
2 x

−(λ1−λ2)/4
3 F = C×∫ σ1+

√
−1∞

σ1−
√
−1∞

∫ σ2+
√
−1∞

σ2−
√
−1∞

Γ(s1)Γ(s1−2s2−a)Γ(s2)Γ(s2−d+1)x−s12 x−s23 ds1 ds2.

Here σ1 and σ2 are sufficiently large positive integers and a = 1
2 (λ1 − λ2 − 1)

and b = 1
2 (λ1 − λ2).
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Proof. The first statement is already shown. Let us note that for a domain

O ⊂ G, the restriction map Res: Cω(G) → Cω(O) is injective. We also recall

that C∞χE∗21+E∗42

(N2,4\G/K; I2(λ)) ⊂ Cω(G) as we have seen in Remark 2.5. Then

the second statement follows from the first one.

Regarding x1, . . . , x6 as functions on Ñ2,4 × A, we can see that {(−x2, x3) |
((u, v), a) ∈ Ñ2,4 × A} = (R>0)2. Thus the third statement follows from Theo-

rem C.1.

Case (1b) = (3f ). Let us now investigate the spaces C∞χE∗32

(N2,4\G/K; Ik(λ)) =

C∞χE∗32

(N\G/K; I2(λ)).

If we put x1 = a1, x2 = a3/a2, x3 = a2a3, x4 = a4, the differential equations

for the case (ε1, ε2, ε3) = (0, 1, 0) in Proposition 4.22 can be written as follows:

(ϑx1 − (λ1 + (k − 4)))(ϑx1 − λ2)φ = 0,

[ϑ2
x2
− ϑx2

− 1/4(λ1 + λ2 + k − 2)(λ1 + λ2 + k)

+ (2π
√
−1x2)2 − ϑx4 + λ1(λ2 + k)]φ = 0,

(2ϑx3
− (λ1 + λ2 + k − 2))φ = 0,

(ϑx4
− λ1)(ϑx4

− (λ2 + k))φ = 0,

[ϑx1 + 2ϑx3 + ϑx4 − kλ1 − (4− k)λ2]φ = 0.

To solve this system of differential equations, let us recall the differential

equation of modified Bessel functions. Let MB(ν;x) (ν ∈ C) be the solution space

of the differential equation[
d2

dx2
+

1

x

d

dx
−
(

1 +
ν2

x2

)]
f(x) = 0,

the modified Bessel equation. This differential equation has x = 0 as the unique

singular point in C. We have dimMB(ν;x) = 2. In MB(ν;x), there is a series

solution

Iν(x) =

∞∑
m=0

(x/2)ν+m

m!Γ(ν +m+ 1)
.

Also there is a solution which is a slowly increasing function on R>0 defined by

Kν(x) =
π

2

I−ν(x)− Iν(x)

sin νπ
,

and any slowly increasing function in MB(ν;x) is a constant multiple of Kν(x).

Here slowly increasing functions are defined as follows.
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Definition 4.25. Let U ⊂ Rn be a domain. A function f(x) on U is called slowly

increasing on U if there exists N ∈ N such that

sup
x∈U

(1 + |x|)−N |f(x)| <∞

where |x| =
√
x2

1 + · · ·+ x2
n for x ∈ U .

In terms of modified Bessel functions, we can solve the above differential

equations as shown below.

Theorem 4.26. Set x1 = a1, x2 = a3/a2, x3 = a2a3, x4 = a4. Then the space

Ξ(1)(C
∞
χE∗32

(N2,4\G/K; Ik(λ))) is spanned by

xλ2
1 x

1/2
2 x

(λ1+λ2−1)/2
3 xλ2+1

4 f(2πx2) if k = 1

for f(x) ∈MB((λ1 − λ2 − 2)/2;x) and

Cxλ1−2
1 x

1/2
2 x

(λ1+λ2+k−2)/2
3 xλ2+2

4 g1(2πx2) + C ′xλ2
1 x

1/2
2 x

(λ1+λ2)/2
3 xλ1

4 g2(2πx2)

if k = 2

for C,C ′ ∈ C, g1 ∈MB((λ1 − λ2 − 3)/2;x) and g2 ∈MB((λ1 − λ2)/2;x). Thus

dimC∞χE∗32

(N2,4\G/K; Ik(λ)) =

{
2 if k = 1,

4 if k = 2.

Moreover Ξ(1)(C
∞
χE∗32

(N2,4\G/K; Ik(λ))) for k = 1 (resp. k = 2) contains a

1-dimensional (resp. 2-dimensional) subspace of slowly increasing functions on

{(x1, . . . , x4) | xi ∈ R>0, i = 1, . . . , 4}.

Proof. Consider the system of differential equations

(ϑx1
− (λ1 + (k − 4)))(ϑx1

− λ2)φ = 0,

(ϑx4 − λ1)(ϑx4 − (λ2 + k))φ = 0,

(ϑx1
+ 2ϑx3

+ ϑ4 − kλ1 − (4− k)λ2)φ = 0.

The general solution of the system is Cxλ2
1 x

(λ1+λ2−1)/2
3 xλ2+1

4 if k = 1 and

C1x
λ1−2
1 x

(λ1+λ2)/2
3 xλ2+2

4 + C2x
λ2
1 x

(λ1+λ2)/2
3 xλ1

4 if k = 2, for constants C, C1 and

C2. The remaining differential equations can be reduced to the equation of modi-

fied Bessel functions, proving the theorem.
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Cases (2b), (2c) and (2d)

Case (2b) = (3c) and k = 2

Theorem 4.27. If k = 2, the space Ξ(2)(C
∞
χE∗21+E∗43

(N1,3,4\G/K; I2(λ))) consists

of

x
(λ1+λ2−1)/2
1 x

1/2
2 x

(λ1+λ2+1)/2
3 x

1/2
4 f(2πx2)g(2πx3)

for f(x), g(x) ∈MB((λ1−λ2−2)/2;x). Here we put x1 = a1a2, x2 = a−1
1 a2, x3 =

a3a4, x4 = a−1
3 a4. Thus dimC∞χE∗21+E∗43

(N1,3,4\G/K; I2(λ)) = 4.

Moreover, Ξ(2)(C
∞
χE∗21+E∗43

(N1,3,4\G/K; I2(λ))) contains a slowly increasing

function on {(x1, . . . , x4, u) | xi ∈ R>0, u ∈ R} and it is unique up to a constant.

Proof. Since C∞χE∗21+E∗43

(N1,3,4\G/K; I2(λ)) = C∞χE∗21+E∗43

(N\G/K; I2(λ)), it suf-

fices to solve the system of differential equations in the case (ε1, ε2, ε3) = (1, 0, 1)

in Proposition 4.22. Set x1 = a1a2, x2 = a−1
1 a2, x3 = a3a4, x4 = a−1

3 a4. Then we

can rewrite the differential equations as follows:

[2ϑx1
− (λ1 + λ2 − 1)]φ = 0,

[2ϑx3 − (λ1 + λ2 + 1)]φ = 0,[
ϑ2
x2
− ϑx2 + (2π

√
−1x2)2 −

(
λ1 − λ2 − 2

2

)2

− 1

4

]
φ = 0,[

ϑ2
x4
− ϑx4

+ (2π
√
−1x4)2 −

(
λ1 − λ2 − 2

2

)2

− 1

4

]
φ = 0.

We take φ′ such that φ = x
1/2
2 x

1/2
4 φ′. Then φ′ satisfies the equations

[2ϑx1 − (λ1 + λ2 − 1)]φ′ = 0,

[2ϑx3
− (λ1 + λ2 + 1)]φ′ = 0,[

ϑ2
x2
−
(

(2π
√
−1x2)2 +

(
λ1 − λ2 − 2

2

)2)]
φ′ = 0,[

ϑ2
x4
−
(

(2π
√
−1x4)2 +

(
λ1 − λ2 − 2

2

)2)]
φ = 0.

We can conclude that

φ(x1, x2, x3, x4) = x
(λ1+λ2−1)/2
1 x

1/2
2 x

(λ1+λ2+1)/2
3 x

1/2
4 f(2πx2)g(2πx3),

where f, g ∈MB((λ1 − λ2 − 2)/2;x). Hence the conclusion follows.
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Case (2c) = (3e)

Theorem 4.28. Set x1 = a1a2, x2 = a−1
1 a2, x3 = a3, x4 = a4. Then the space

Ξ(2)(C
∞
χE∗21

(N1,3,4\G/K; Ik(λ))) (k = 1, 2) is spanned by

x
(λ1+λ2−2)/2
1 x

1/2
2 (x3x4)λ2+1f(2πx2) if k = 1

for some f(x) ∈MB((λ1 − λ2 − 3)/2;x) and

(C1x
λ2
3 xλ1

4 + C2x
λ1−1
3 xλ2+2

4 )× x(λ1+λ2−1)/2
1 x

1/2
2 f(2πx2) if k = 2

for some f(x) ∈MB((λ1 − λ2 − 2)/2;x) and C1, C2 ∈ C. Thus

dimC∞χE∗21

(N1,3,4\G/K; I1(λ)) =

{
2 if k = 1,

4 if k = 2.

Moreover, Ξ(2)(C
∞
χE∗21

(N1,3,4\G/K; Ik(λ))) for k = 1 (resp. k = 2) contains

a 1-dimensional (resp. 2-dimensional) subspace of slowly increasing functions on

{(x1, . . . , x4, u) | xi ∈ R>0, u ∈ R}.

Proof. Since C∞χE∗21

(N1,3,4\G/K; Ik(λ))=C∞χE∗21

(N\G/K; Ik(λ)), it suffices to solve

the system of differential equations in the case of (ε1, ε2, ε3) = (1, 0, 0) in Proposi-

tion 4.22. Set x1 = a1a2, x2 = a−1
1 a2. For a solution φ of the system in Proposition

4.22, we take φ′ with φ = x
1/2
2 φ′. Then[

ϑx1
− λ1 + λ2 − 3 + k

2

]
φ′ = 0,(4.48) [

ϑ2
x2
−
(

(2πx2)2 +

(
λ1 − λ2 − (4− k)

2

)2)]
φ′ = 0,(4.49)

[ϑ2
a3
− (λ1 + λ2 − 1 + k)ϑa3

− ϑa4
+ λ1(λ2 + k)]φ′ = 0,(4.50)

(ϑa4 − λ1)(ϑa4 − (λ2 + k))φ′ = 0.(4.51)

The solution of (4.48) and (4.49) is

φ′(x1, x2, a3, a4) = c(a3, a4)x
(λ1+λ2−3+k)/2
1 f(2πx2)

for an arbitrary function c(a3, a4) and f(x) ∈ MB((λ1 − λ2 − (4 − k))/2;x). We

solve the equations (4.50) and (4.51) to determine c(a3, c4). We find

c(a3, a4) =

{
(a3a4)λ2+1 for k = 1,

C1a
λ2+1
3 aλ1

4 + C2a
λ1−1
3 aλ2+2

4 for k = 2,

for some constants C1, C2 ∈ C. This concludes the proof.
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Case (2d) = (3g)

Theorem 4.29. Set x1 = a1, x2 = a2, x3 = a−1
3 a4, x4 = a3a4. Then the space

Ξ(2)(C
∞
χE∗43

(N1,3,4\G/K; Ik(λ))) (k = 1, 2) is spanned by

x
(λ1+λ2)/2
4 x

1/2
3 (x3x4)λ2f(2πx2) if k = 1

for some f(x) ∈MB((λ2 − λ1 − 1)/2;x) and

(C1x
λ1−2
1 xλ2−2

2 + C2x
λ2−4
1 xλ1−1

2 )× x(λ1+λ2+1)/2
4 x

1/2
3 f(2πx3) if k = 2

for some f(x) ∈MB((λ2 − λ1 + 2)/2;x) and C1, C2 ∈ C. Thus

dimC C
∞
χE∗43

(N1,3,4\G/K; Ik(λ)) =

{
2 if k = 1,

4 if k = 2.

Moreover, Ξ(2)(C
∞
χE∗43

(N1,3,4\G/K; Ik(λ))) for k = 1 (resp. k = 2) contains

a 1-dimensional (resp. 2-dimensional) subspace of slowly increasing functions on

{(x1, . . . , x4, u) | xi ∈ R>0, u ∈ R}.

Proof. This follows from the isomorphism given in Proposition 4.13 and Theo-

rem 4.28.

Case (3h)

Theorem 4.30. For k = 1, 2, the space Ξ(3)(C
∞(N\G/K; Ik(λ))) consists of the

following functions: if k = 1,

C1a
λ2
1 aλ2

2 aλ2
3 aλ1

4 + C2a
λ2
1 aλ1−2

2 aλ2+1
3 aλ2+1

4

+ C3a
λ1−3
1 aλ2+1

2 aλ2+1
3 aλ2+1

4 + C4a
λ2
1 aλ2

2 aλ1−1
3 aλ2+1

4

for Ci ∈ C, i = 1, . . . , 4; and if k = 2,

C1a
λ2
1 aλ2

2 aλ1
3 aλ1

4 + C2a
λ1−2
1 aλ1−1

2 aλ2+1
3 aλ1

4

+ C3a
λ1−2
1 aλ2+1

2 aλ2+1
3 aλ1

4 + C4a
λ2
1 aλ1−1

2 aλ1−1
3 aλ2+2

4

+ C5a
λ1−2
1 aλ2+1

2 aλ1−1
3 aλ2+2

4 + C6a
λ1−2
1 aλ1−2

2 aλ2+2
3 aλ2+2

4

for Ci ∈ C, i = 1, . . . , 6.

Proof. The relevant differential equations are

(ϑa1 − (λ1 − (k − 4)))(ϑa1 − λ2)φ = 0,

[ϑ2
a2
− (λ1 + λ2 + k − 2)ϑa2

− (ϑa3
+ ϑa4

) + λ1(λ2 + k)]φ = 0,
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[ϑ2
a3
− (λ1 + λ2 + k − 1)ϑa3

− ϑa4
+ λ1(λ2 + k)]φ = 0,

(ϑa4 − λ1)(ϑa4 − (λ2 + k))φ = 0,

[ϑa1
+ ϑa2

+ ϑa3
+ ϑa4

− kλ1 − (4− k)λ2]φ = 0.

The result follows by solving this system of differential equations.

Appendix A. The table of dimensions of generalized Whittaker

functions of GL(4,R)

We summarize the dimensions of generalized Whittaker functions of GL(4,R) in

the table below. The notation is as in §4. The first row of the table describes the

basis of the space of generalized Whittaker functions. The second row describes

the dimensions and the third row the dimensions of the spaces of functions which

satisfy the growth conditions. For detailed conditions, see §4.

Generalized Whittaker functions for X1,λ

(1a) (1b) = (3f ) (2a) (2b) = (3c) (2c) = (3e) (2d) = (3g)

basis 0 MB 0 0 MB MB

dim 0 2 0 0 2 2

dimgrowth 0 1 0 0 1 1

(3a) (3b) (3d) (3h)

0 0 0 xα

0 0 0 4

0 0 0 4

Generalized Whittaker functions for X2,λ

(1a) (1b) = (3f ) (2a) (2b) = (3c) (2c) = (3e) (2d) = (3g)

H10 MB + MB 0 MB×MB (xα + xβ)MB (xα + xβ)MB

≤ 4 4 0 4 4 4

≤1 2 0 1 2 2

(3a) (3b) (3d) (3h)

0 0 0 xα

0 0 0 6

0 0 0 6

B. The multiplicity one theorem for Horn’s hypergeometric functions

We consider the asymptotic behaviour at infinity of Horn’s hypergeometric func-

tions, to apply it in the multiplicity theorem for generalized Whittaker functions.



Generalized Whittaker Functions 791

Let Pi(x) and Qi(x) be nonzero polynomials of x = (x1, . . . , xn) for i =

1, . . . , n. Then Horn’s hypergeometric functions are defined as solutions of the

system of linear partial differential equations

(B.1) [xiPi(ϑ)−Qi(ϑ)]f(x) = 0, i = 1, . . . , n.

Here ϑi = xi
∂
∂xi

and ϑ = (ϑ1, . . . , ϑn). We assume that Pi and Qi can be decom-

posed into products of linear factors, i.e.,

Pi(s) =

p∏
k=1

(〈Ak, s〉 − ck), Qi(s) =

q∏
l=1

(〈Bl, s〉 − dl)

for s ∈ Rn, Ak, Bl ∈ Rn, ck, dl ∈ C and 〈 , 〉 denotes the natural inner product

in Rn. We also assume that Pi(s), Qi(s+ ei) are relatively prime for i = 1, . . . , n.

Here ei = (0, . . . , 0, 1, 0, . . . , 0) (1 in the ith position).

We consider the following system of difference equations associated with (B.1):

(B.2) Pi(−(s+ ei))φ(s+ ei) = Qi(−s)φ(s), i = 1, . . . , n.

Remark B.1. Let φ be a solution of (B.2). We consider the integral

f(x) =

∫
C
φ(s)x−s ds.

Then under the assumptions below, f(x) is a solution of (B.1).

1. For any i = 1, . . . , n, the translation of the contour C with respect to the basis

ei is homologically equivalent to C in the complement of the set of singularities

of the integrand φ(s) in Cn.

2. The integral converges absolutely and it can be differentiated with respect to

x sufficiently many times.

We put

Ri(s) =
Qi(−s)

Pi(−(s+ ei))
, i = 1, . . . , n.

Theorem B.2 (Ore [20], Sato [27], Sadykov [26]). 1. The system of difference

equations (B.2) is solvable if and only if

(B.3) Ri(s+ ej)Rj(s) = Rj(s+ ei)Ri(s), i, j = 1, . . . , n.

2. If (B.2) is solvable, then its solution is unique up to an arbitrary periodic func-

tion ψ(s) with respect to ei, i.e.,

ψ(s+ ei) = ψ(s)

for i = 1, . . . , n. Furthermore, there exist p′, q′ ∈ N, A′k, B
′
l ∈ Rn (1 ≤ k ≤ p′,
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1 ≤ l ≤ q′), c′k, d
′
l ∈ C (1 ≤ k ≤ p′, 1 ≤ l ≤ q′) and ti ∈ R (i = 1, . . . , n) such

that the general solution of (B.2) is

φ(s) = t−s
∏q′

l=1 Γ(〈B′l, s〉 − d′l)∏p′

k=1 Γ(〈A′k, s〉 − c′k)
ψ(s),

where t−s = t−s11 · · · t−snn and ψ(s) is an arbitrary periodic function satisfying

ψ(s+ ei) = ψ(s).

We make the following assumption for the multiplicity theorem.

(A) The system of difference equations (B.2) is solvable, i.e., the condition (B.3)

is satisfied, and we can choose a solution

φ(s) = t−s
∏q′

l=1 Γ(〈B′l, s〉 − d′l)∏p′

k=1 Γ(〈A′k, s〉 − c′k)

which satisfies the following conditions:

(i) We have

q′∑
l=1

|〈B′l, s〉| −
p′∑
k=1

|〈A′k, s〉| ≥
n∑
i=1

|si| for s ∈ Rn.

(ii) The function φ(s) has no zero if each Re(si) is sufficiently large for i =

1, . . . , n.

Remark B.3. Consider the integral

f(x) =

∫ σ1+
√
−1∞

σ1−
√
−1∞

· · ·
∫ σn+

√
−1∞

σn−
√
−1∞

φ(s)x−s ds

for appropriate σi ∈ R, i = 1, . . . , n. Under assumption (A)(i), this integral is

absolutely convergent in {x ∈ Rn | (t1x1, . . . , tnxn) ∈ (R≥0)n}.

The following theorem is a generalization of the theorem of Diaconu and

Goldfeld (Theorem 6.1.6 in [6]).

Theorem B.4 (Multiplicity one). Suppose that the system of difference equations

(B.2) associated with the system of differential equations (B.1) satisfies assump-

tion (A). Let f(x) be a solution of (B.1) which satisfies the growth condition

sup
x∈(R≥0)n

|xαf(tx)| <∞

for sufficiently large integers αi ∈ N, i = 1, . . . , n. Then it is unique up to constant

multiples. Here xα = xα1
1 · · ·xαnn and tx = (t1x1, . . . , tnxn).
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Proof. We consider the Mellin transform of f(tx) as a function of x,

M[f, s] =

∫ ∞
0

· · ·
∫ ∞

0

f(tx)xs−1 dx.

This integral converges absolutely and M[f, s] is an analytic function of s if each

Re(si) is sufficiently large by the assumption on f(x). Changing the variable x to

tx = (t1x1, . . . , tnxn), we have

M[f, s] = t−s
∫ t−1

1 ∞

0

· · ·
∫ t−1

n ∞

0

f(x)xs−1 dx.

By the growth condition on f(x), we have∫ t−1
1 ∞

0

· · ·
∫ t−1

n ∞

0

∂k

∂xki
f(x)xs−1 dx = (−1)k

∫ t−1
1 ∞

0

· · ·
∫ t−1

n ∞

0

f(x)
∂k

∂xki
xs−1 dx

by integration by parts for i = 1, . . . , n. Recall that f(x) satisfies the system of

partial differential equations (B.1); then we have the system of difference equations

for M[f, s],

Pi(−(s+ ei))M[f, s+ ei] = Qi(−s)M[f, s], i = 1, . . . , n.

Hence by Theorem B.2, there is a periodic function ψ(s) such that

(B.4)

∏q′

l=1 Γ(〈B′l, s〉 − d′l)∏p′

k=1 Γ(〈A′k, s〉 − c′i)
ψ(s) =

∫ t−1
1 ∞

0

· · ·
∫ t−1

n ∞

0

f(x)xs−1 dx.

By Stirling’s formula and assumption (A)(i), we obtain for Re(si) > 0 (i =

1, . . . , n) the estimate∏q
l=1 Γ(〈Bl, s〉 − dl)∏p
k=1 Γ(〈Ak, s〉 − ci)

= O

(
exp

(
−1

2
π

n∑
i=1

|Im(si)|
))

as

n∑
i=1

|Im(si)| → ∞.

Also by the Riemann–Lebesgue theorem, we have

M[f, s]→ 0 as

n∑
i=1

|Im(si)| → ∞.

Combining these estimates, we obtain the asymptotic behaviour of the periodic

function

(B.5) ψ(s) = O(exp( 1
2π|Im(si)|))

as Im(si)→∞ and the other sj (i 6= j) are fixed. The right hand side of (B.4) is

an analytic function of s when Re(si) (i = 1, . . . , n) are sufficiently large. Thus if

we recall assumption (A)(ii) and the periodicity of ψ(s), we can see that ψ(s) is

an entire function. We put zi = exp 2π
√
−1 si for i = 1, . . . , n. Now consider the
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Laurent expansion of φ(s) with respect to z1,

ψ(s) =

∞∑
k=−∞

c
(1)
k (s2, . . . , sn)zk1 .

Here c
(1)
k (s2, . . . , sn) are periodic and entire functions for (s2, . . . , sn) ∈ Cn−1. We

write si = σi +
√
−1 τi for σi, τi ∈ R, i = 1, . . . , n. We consider the integral∫ 1

0

|ψ(s)|2 dσi =

∞∑
k=−∞

|c(1)
k (s2, . . . , sn)|2 exp(−4πkτi)

≥ |c(1)
t (s2, . . . , sn)|2 exp(−4πtτi)

for every t = 0,±1,±2, . . . . However (B.5) tells us that there exist constants

Mi ∈ R>0 such that

exp(π|τi|) > Mi

∫ 1

0

|ψ(s)|2 dσi

for sufficiently large τi. Thus we have c
(1)
t (s2, . . . , sn) = 0 for t = ±1,±2, . . . .

The remaining coefficient c
(1)
0 (s2, . . . , sn) is also a periodic and entire function for

(s2, . . . , sn) ∈ Cn−1. Hence we can apply the same argument for c
(1)
0 (s2, . . . , sn)

with respect to s2. Also we can proceed inductively for i = 3, . . . , n. Thus we

conclude that ψ(s) must be a constant. This completes the proof of the theorem.

C. Horn’s hypergeometric function H10

We give some facts about Horn’s two-variable hypergeometric function H10. This

function is the hypergeometric series defined by

H10(a, d;x, y) =

∞∑
m=0,n=0

(a)2m−n

(d)mm!n!
xmyn.

Here (a)m means the Pochhammer symbol, i.e., (a)m = a(a+ 1) · · · (a+ (m− 1))

for a ∈ C and m ∈ N. It is not hard to see that this power series satisfies the

system of hypergeometric partial differential equations

(C.1)
{x(2ϑx − ϑy + a)(2ϑx − ϑy + a+ 1)− ϑx(ϑx + d− 1)}φ(x, y) = 0,

{y − ϑy(2ϑx − ϑy + a)}φ(x, y) = 0.

It is known that the dimension of the solution space is 4 (cf. [2]). We define another

convergent series

H̃10(a, d;x, y) =

∞∑
m=0,n=0

(−1)m+2n

(a+ 1)m+2n(d)nm!n!
xmyn.
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Then a basis of the solution space is given by the power series

H10(a, d;x, y), y−d+1H10(a− 2d+ 2,−d+ 2;x, y),

xaH̃10(a, d;x, x2y), xay−d+1H̃10(a− 2d+ 3,−d+ 2;x, x2y).

The system of hypergeometric differential equations (C.1) has a solution which

has the Mellin–Barnes integral representation

φ(x, y) =∫ σ1+
√
−1∞

σ1−
√
−1∞

∫ σ2+
√
−1∞

σ2−
√
−1∞

Γ(s1)Γ(s1−2s2−a)Γ(s2)Γ(s2−d+1)(−x)−s1y−s2 ds1 ds2.

Here σ1 ∈ R and σ2 ∈ R satisfy the conditions σ1 > 0, σ2 > max{0,Re(d−1)} and

σ1 − 2σ2 > Re(a). This integral converges absolutely for x ∈ R≤0 and y ∈ R≥0.

Theorem C.1. If f(x, y) is a solution of the system (C.1) which satisfies

sup
x,y∈R≥0

|xα1yα2f(−x, y)| <∞

for sufficiently large α1, α2 ∈ N, then f(x, y) = Cφ(x, y) for some constant C.

Proof. It is easy to see that φ satisfies the assumptions of Theorem B.4. Hence

we only need to check that φ satisfies the growth condition. If we write a complex

number s = σ +
√
−1 τ , we have

∣∣|x|−s∣∣ = |x|−σ. Thus we obtain the inequality

|φ(x, y)| ≤M |x|−σ1 |y|−σ2 for x ∈ R≤0 and y ∈ R≥0. Here the constant M is

M =

∣∣∣∣∣
∫ σ1+

√
−1∞

σ1−
√
−1∞

∫ σ2+
√
−1∞

σ2−
√
−1∞

Γ(s1)Γ(s1 − 2s2 − a)Γ(s2)Γ(s2 − d+ 1) ds1 ds2

∣∣∣∣∣ .
We can choose σ1 and σ2 with σ1 > 0, σ2 > max{0,Re(d − 1)} and σ1 − 2σ2 >

Re(a). Thus φ(x, y) satisfies the growth condition.
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