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Generalized Whittaker Functions for Degenerate
Principal Series of GL(4,R)

by
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Abstract

For degenerate principal series representations of GL(n,R), we show that the spaces of
corresponding class one generalized Whittaker functions are characterized by explicit
systems of differential operators. By using this characterization, we give detailed calcu-
lations on GL(4,R). We examine the dimensions of the spaces of generalized Whittaker
functions and give their generators in terms of hypergeometric functions of one and two
variables. We show that generalized Whittaker functions have multiplicity one by using
the theory of hypergeometric functions.
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§1. Introduction

In this paper we shall investigate generalized Whittaker functions of degenerate
principal series representations of GL(n,R) and give a detailed computation for
the GL(4,R) case.

It is known that real analytic Eisenstein series are constructed from these
representations (see [18]). Then generalized Whittaker functions appear as Fourier
coefficients of the Eisenstein series and play important roles in establishing cer-
tain analytic properties. For example, in [29] A. Terras gives a Fourier expansion
of Epstein zeta functions which are Eisenstein series associated with degenerate
principal series induced from characters of the maximal parabolic subgroup P; ,
fixing the unit vector e, = (0,...,0,1) (cf. [12]). Here the generalized Whittaker
functions appearing as Fourier coefficients are given by modified Bessel functions.
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However it seems that there has not been much study of generalized Whittaker
functions of degenerate series induced from other parabolic subgroups. Thus in
this paper we study generalized Whittaker functions of degenerate principal series
of GL(4,R) induced from characters of P; 4 and P» 4; the latter case will give a
generalization of Terras’s case. We note that for GL(n,R) (n < 3), all maximal
parabolic subgroups are reduced to P; ;, by conjugations.

In contrast to the method of Terras, our method relies on the representation
theory of degenerate principal series of GL(n,R). Let us explain this precisely.
Let G = GL(n,R) and consider an Iwasawa decomposition G = KAN. Take
an increasing sequence of positive integers stopped at n, i.e., © = {ny,...,np}
with 0 < ny < --- < nyp = n. Then let Pg be the parabolic subgroup cor-
responding to © and take the Langlands decomposition Pg = MgAeNg. For a
linear mapping A € Homg (Lie(Ag), C), we can consider the induced representation
To,N = C‘X’—Indge (1p6 ®e* @1y, ), called a degenerate principal series representa-
tion. Then we consider the annihilator ideal Anng(g)(7e,x) of this representation in
U(g), the universal enveloping algebra of gc = gl(n, C). Also we consider Ig(\) =
t(Anny () (me,x)) where ¢ is the antiautomorphism of U(g) such that ((XY) =
(=Y)(—X) for X,Y € g. For a closed subgroup U of N, let (n, V) be an irreducible
unitary representation of U and consider the space Cp°(U\G) = {f: G — V®
smooth | f(ug) = n(u)f(g),w € U, g € G}. Let Xg » be the Harish-Chandra
module of g » and X§ , its dual Harish-Chandra module. Generalized Whittaker
models are images of Xg \ under elements of Homg, 1 (Xe x, Cp°(U\G)). We will
prove the following characterization theorem for generalized Whittaker models.

Theorem 1.1 (see Theorem 3.5). Suppose that A € af. is reqular and dominant.
Take a nonzero K-fixed vector fo in X§ 1 Then the mapping

®: Homg, i (X5 5, O (U\G)) = CF(UN\G/K, Te(N)), W = W(fo)(9).
is a linear isomorphism. Here
Cr(U\G/K, Io(N))
={f: G = V.® smooth| f(ngk) =n(n)f(9),9 € G,ne U, ke K
and Rx f(g) =0, X € Ie(\)}
and Rx is right translation by X € Ul(g).

The elements in Cp°(U\G/K, Ig())) are called class one generalized Whit-
taker functions. Here we note that this theorem can be obtained as a corollary
of Yamashita’s result (Corollary 1.8 in [36]) where the irreducibility of X§ , is
assumed. We give a new proof without using this assumption.
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After the general theory for GL(n,R), we study the particular case of
GL(4,R). We consider degenerate principal series representations induced from
characters of the maximal parabolic subgroups P; 4 and P, 4. Then we exam-
ine the dimensions and find generators of C°(U\G/K, Io(A)). Here for the closed
subgroup U C N and its unitary character y, we assume that L? —Indg X is an irre-
ducible unitary representation of N. Under this assumption, we shall give elements
in Cp°(U\G/K, Ie())) explicitly by using hypergeometric functions of several vari-
ables, namely Horn’s hypergeometric functions H;g and modified Bessel functions.
Using the theory of hypergeometric functions we shall examine the dimension of
C(U\G/K, Ie()\)) = Homg. k (X§ 5, Cp°(U\G)). Also in the Appendix, we give
some facts about Horn’s hypergeometric functions.

Our results lead to the following observation. For degenerate principal series
representations induced from characters of P; 4, the multiplicity one theorem for
generalized Whittaker models is true. On the other hand, for representations induced
from characters of P, 4, the multiplicity one theorem is no longer true. This fact seems
to correspond to the result of Terras [30] who could determine only the nonsingular
terms in the Fourier expansion of Eisenstein series corresponding to the degenerate
principal series representations induced from characters of P 4 (Theorem 1 in [30]).
Here the multiplicity one theorem is valid from our result. However degenerate terms
are not computed because the corresponding generalized Whittaker models have
multiplicities. Since our result gives a base of the space of generalized Whittaker
functions explicitly, it makes it possible to overcome this difficulty.

Finally we mention some previous related work. Ishii and Oda [14] give an ex-
plicit calculation of generalized Whittaker functions of degenerate principal series
of SL(3,R). For general studies of generalized Whittaker models of representations
of general reductive Lie groups, see for example [7], [19], [32]-[34]. These general-
ized Whittaker models are associated with nondegenerate (admissible) characters
of subgroups U C N. Thus they do not cover our results completely. The recent
work of Oshima and Shimeno [25] gives Whittaker functions associated with a non-
degenerate character of a maximal unipotent subgroup N as confluent hypergeo-
metric functions obtained from Heckman—Opdam hypergeometric functions. Also
there are various explicit presentations of Whittaker functions as hypergeometric
functions of several variables given by Hirano, Ishii, Oda and other researchers
(see [11] for the references).

§2. Spherical degenerate principal series representations of GL(n,R)

In this section we review the results of T. Oshima on degenerate principal series
representations of GL(n,R) and their annihilators. T. Oshima shows that the
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image of a degenerate principal series representation under the Poisson transform
is characterized by the kernel of the annihilator [21] and moreover gives explicit
generators of this annihilator [22], [24].

§2.1. Spherical degenerate principal series representations of GL(n,R)

Let G = GL(n,R) with Lie algebra g = gl(n,R) = M(n,R), the space of n x n
matrices with real entries. The Iwasawa decomposition of G is G = K AN, where
K = O(n), A is the group of n x n diagonal matrices with positive real entries
and N is the group of lower triangular matrices with 1s on the diagonal. Let E;;
be the matrix with 1 in the (7, j)-entry and 0 elsewhere. A nondegenerate bilinear
form on g¢ = gl(n,C) = M(n,C) is defined by (X,Y) = tr(XY) for X,Y € gc.
Via this bilinear form, we identify gc with its dual space g¢. The dual basis {E:‘]}
of {E;;} is given by E}; = Ej;. For simplicity we write e; = E;.

Consider the Lie algebra

a = {i azE“
i=1

of A. Then the root system of (g,a) is A(g,a) = {e; —e; | 1 < i # j < n}.
Put a; = ej41 —e; for i = 1,...,n — 1 and fix a simple system of A(g,a) to

a; €R, izl,...,n}

be II(g,a) = {a1,...,a,—1}. Then the positive system of A(g, a) associated with
II(g,a) is AT (g,a) = {e; —¢; | 1 <j <1i < n}. The Lie algebra n of N is
n= >, .= RE;
acAt(g,a) >

where g, = {X € g| ad(H)X = a(H)X for H € a}. Similarly, let N be the group
of upper triangular matrices with 1s on the diagonal. Then the Lie algebra n of N is
= Y e.-YEE,
acAT(g,a) 1<j

Let © = {ny,...,nr} be a sequence of strictly increasing positive integers stopped
at m, i.e., (np =)0 < n; < --- < nr(= n). For this O, the associated standard
parabolic subgroup Pg is defined as follows. Let

L ngk
a@:{Zak Y Es akeR,k:I,...,L}.
k=1 i=nr_1+1
Let Lg be the centralizer of ag in G, i.e.,
h
Leg=<1= l; EGL(ni—ni,l,R)

Ir
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and lg its Lie algebra, which is the centralizer of ag in g. We put
Ng = Z RE”
e (i)>re(4)

where tg(v) =i if n;_1 < v <mn; fori = 1,..., L. The corresponding analytic
subgroup of G is Ng = expng, i.e.,

I,
N21 In'2
No = {n= | Ns1 Naz I Nij € M(nj,n;R), nj =n; —n;_y

Npi Npa Nps -+ Ly,

Here I, denotes the identity matrix of size m and M (k,[;R) denotes the space

of k x | matrices with entries in R. We also define g = >_,_ )<, ;) REij and
N@ = expng.
Then we define the parabolic subgroup Pg to be LgNg, i.e.,
9
Po=<p= * . S GL(TL,R) gi € GL(TLZ — ni_l,]R)
* DY gL
Its Lie algebra is po = lg ® ne.
For (A1,...,Ar) € CI, define a 1-dimensional representation of Peg,

A Pg — C*, by
A(p) = |det(gy)|™ - - |det(g)|*  for p € Po.

Then the spherical degenerate principal series representation of G, denoted by
Te,\ = Cm—indge (M), is defined as follows. The underlying representation space is

C*(G/Pe; \) = {p € C=(G) | (9p) = M(p)o(9), 9 € G, p € Po}

where C°°(G) is the space of C*°-functions on G. The action of G on this space
is by left translation, mg x(g)¢(z) = ¢(g7'x) for g € G and ¢ € C>*(G/Pg; N).
We consider the annihilator of C*°(G/Pg; \) in U(g), the universal enveloping
algebra of gc. Recall that U(g) can be seen as the ring of left G-invariant differential
operators on C*°(G) by the natural extension of the differential of right translation,

Rx()(g) = 5 flgexp(tX)

t=0
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for X € g,f € C*®°(G). The representation of U(g) on C*°(G/Po; ) is defined
by the differential of g », ie., for X € g, ¢ € C®(G/Pa; ), mo(X)p(z) =

gro(exp (—tX)z)|=o-
Let L, and R, be left and right translations by g € G respectively, i.e.,

Lef(x) = f(g~'x) and Ryf(x) = f(zg) for f € C(G).
Definition 2.1. The annihilator of C*°(G/Peo; A) in U(g) is
Anng (g (mo.n) = {X € U(g) | To(X)é(z) = 0 for all ¢ € C™(G/Po; \)}.

We define an antiautomorphism ¢ of U(g) by «(XY) = (=Y )(—X) for X,V
€ gc. Let us denote the differential of A by dA: pg — C.

Proposition 2.2. We have

UAnny (g (Te2)) = [] Ad(g)Je(dN).
geG

Here

Jo(d\) = Y U(g)(X — dA(X))
Xepo

is a left ideal of U(g).

Proof. For X € po and f € C*(G/Pg; ), we have

d d
@) Rxflo)= Sig-eoix)| = Iaeptx)| f).

t=0 t=0
This implies Rx f = 0 for X € Jg(dA).
Recall the equation Lx f(g9) = Raa(g—1).(x)f(g) for X € U(g). Since X €

Nyec Ad(g9)Je(dN) implies Ad(g)X € Jo(dA), we have

Lyx)f(g) = Raag-1yxf(g) =0

for X € (N, Ad(g)Je(dN). Hence e Ad(g)Je(dA) C t(Anny (g (me,n))-
Conversely, take X € Anny(y) (me,») and put Xy, = Ad(gy ")e(X) for go € G.
Then
(2.2) Rx, f(9) = Lgyg—1 (Rx,, [)(g90) = Rx,, (Lgyg-11)(g0)
= Lx(Lgyg-1 f)(90) = Lx(te.(909~")f)(90) = 0

for f € C°(G/Po; ). By the decomposition g = ng @ pe and the Poincaré—
Birkhoff-Witt theorem, we have

U(g) =U(ng) & Jo(dN)
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where U (fig) is the universal enveloping algebra of g ®g C. Take Y € U(Tig) and
Z € Jo(dX) such that X, =Y + Z. By (2.1), we have Rz f(g) =0 for g € G and
f € C*(G/Pe; A). Therefore (2.2) tells us that 0 = Rx, f(g9) = Ry f(g).

We shall show Y = 0, which yields Xy, € Jg(d)), so t(Anny g (me,n)) C
Mo Adlglody). -

Consider the space C§°(Ng) of compactly supported C'*°-functions on Ng.
For g € NoPo, we take fi(g) € No and p(g) € Pe so that g = 7(g)p(g). Then we
have an injection

C(No) = C®(G/Po: ), fH{g@(g))f(ﬁ(g)) if g € NoPo,

otherwise.

Via this injection, we can regard C$°(Ng) as a subset of C*°(G/Pe; \). Therefore
recalling that Ry f(g) =0 for g € G and f € C*°(G/Po; \), we have

Ryf(n)=0 forne N@, fe CSO(N@)

For any 1) € C*°(Ng) and n € Ng, there exists f € C$°(Ng) such that ¢ = f on
some neighbourhood of 72 in Ng. This implies

Ryy(n) =0 forne€ Ng, € C®(Neg).

Therefore Y € U(ng) must be 0, because U(ng) is identified with the ring of all
left invariant differential operators on Ng. Hence X,, € Jo(dX) for any go € G,
as desired. ]

§2.2. Poisson transform of degenerate principal series representations

For simplicity we denote g (A\) = [1,c5 Ad(g)Jo(dA). We shall see that Ig(A) char-
acterizes the image of the Poisson transform of the degenerate principal series. To
explain this fact, we extend the representation space to the space of hyperfunctions
on G. The space B(G) of hyperfunctions on G is a left G-module under left trans-
lation G x B(G) > (g, f(z)) — f(g~'x). Take a parabolic subgroup Pg of G and a
character A: Pg — C* for (Ay,...,Ar) € CL. Then we can define a G-submodule

B(G/Pe;A) ={f € B(G) | f(zp) = Mp)[(x) for p € Po}

asin §2.1. Let M = {k € K | kak™' = a, a € A} and define the minimal parabolic
subgroup Py = Py, n) = MAN. A character of P is defined by

L Ni41
do: Py — C*, manHH H ai‘l,
i=1j=n;+1

forme M, a€ A, n € N. Now we introduce the Poisson transform of B(G/Py; \o).
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Definition 2.3. The Poisson transform is the G-homomorphism
P B(G/Py; Ne) — B(G/K), fs F(x) :/ f(zk)dk, = €G.
K

Here dk is the normalized Haar measure on K so that f K dk = 1.

Let us recall a character of the centre Z(g) of U(g), the so-called infinitesimal
character of mg x. Let dAg: Lie(Py) — C be the differential of Ag. By restriction
to a C Lie(P), we can regard dAg € af. Let w be the projection map from
U(g) to the symmetric algebra S(a) of ac = a ®g C along the decomposition
U(g) =S(a)® mU(g) + U(g)n). It is known that w is an algebra homomorphism
from Z(g) into S(a). We can identify the symmetric algebra S(a) with the algebra
of polynomials on af. Hence if we consider the evaluation of w(-) € S(a) at dXe,
we obtain a character of Z(g),

Xx: Z(g) 2 X = w(X)(dXe) € C.
Define a subspace of C*°(G/K) by
CH(G/K M) ={f € CF(G/K) | Rx [ = xa(X)f for X € Z(g)}
and put
B 1 206, a)\\ './1 206, )\~
o) = aeﬂg,af(zx(“ ) TGOE)

The following theorem is known as Helgason’s conjecture [9].

Theorem 2.4 ([16]). The Poisson transform P> is a G-isomorphism
B(G/Py; Ae) = CF(G/K; M)

if and only if e(Ae) # 0.

We can also define the Poisson transform on the subspace B(G/Pg;A) of
B(G/Py; Ae). Thus next we shall discuss a characterization of the image of
B(G/Po;A). Consider the subspace C*(G/K;Io(N)) = {f € C>*(G/K) |
Rxf=0for X € Ig(\)} of C®°(G/K; M,).

Remark 2.5. We can easily show that
Ie(N) D Y U@)(D—xa(D))
DeZ(g)

(see Remark 4.3 in [24]). Hence C*°(G/K; Io())) is a subspace of C*(G/K; M}).
Moreover C*°(G/K;Ig(N)) C C®(G/K; M)) C C¥(G). Here C*¥(Q) is the space
of real analytic functions on G.
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Assume that A\g + p € a. is regular and dominant where p = 1tr(ad|,) € af,
e, p=321cicicnles —ei) = Y1 (i — "5 )e;. This is equivalent to

2<)\® + P»Oé>

(o, )

¢{0,—-1,-2,...} forae AT(g,a).

We keep this assumption throughout the remainder of this paper.

Theorem 2.6 (T. Oshima, Theorem 5.1 in [24]). Under the above assumption,
the Poisson transform

Py : B(G/Po;\) = C®(G/K;Ie()\)), [+ F(z)= /Kf(xk) dk, = € G,

is a G-isomorphism.

In [21], [22] and [24], T. Oshima obtained several good generator systems of
Io(N). We introduce one of them here.

Denote the space of n x n matrices with entries in U(g) by M (n,U(g)). For
E = (Eij)i; € M(n,U(g)), we define elements in Z(g) by

Ap =tr(E¥)  fork=1,...,n.
Then it is known that Z(g) = C[A4,...,A,] as C-algebras.

Theorem 2.7 (T. Oshima, Corollary 4.6 in [24]). Assume that A\e + p € af is
regular and dominant. Then

n o n L L—1
To) =323 U@ (TTE- A~ mi) + D U@ Ak~ xa(A0).
i=1j=1 k=1 k=1

83. Generalized Whittaker functions

Generalized Whittaker functions are the main object of study in this paper. We
shall give a characterization of the space of generalized Whittaker functions of
a degenerate principal series mg ) as a function space whose elements are killed
by Ie(A). This is an analogy of Yamashita’s method in the case of irreducible
highest weight modules [36]. The substantial part of his method is that the maximal
globalization (in the sense of W. Schmid [28]) of highest weight modules is given
by the kernel of a certain differential operator. The corresponding theorem for
degenerate principal series is Theorem 2.6 in §2.2. Moreover thanks to Theorem
2.7, we know explicit structures of these differential operators. Hence we can carry
out explicit calculations on the space of generalized Whittaker functions.
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For a complete Hausdorff locally convex space V' with a continuous G-action,
the space of K-finite vectors of V' is denoted by Vi. Let Xg » be C*(G/Po; M)k,
which is a (g¢, K)-module where the gc-action is the differential of mg » and the
K-action is the restriction of mg x; furthermore the actions of gc and K are com-
patible. Also Xg » is a Harish-Chandra module, i.e., finitely generated as a U(g)-
module and with finite K-multiplicities.

§3.1. Maximal globalization

For the Harish-Chandara module Xg ), consider its dual Harish-Chandra mod-
ule Xg »-. Here the character \* of Pg is

AN=-A=2pg=(n—ng—n1—Ai,...,n—np_1 —np —Ar),
where pg = itr(ad|s,) € af, ie.,
L it ni—n &
- _
Pe :Z : 2774 Z €;.
1=1 Jj=ni—1

In fact the pairing (, )xa»: C®(G/Po; ) x C°(G/Pg; \*) — C defined by

(fs @) an- :/Kf(k)@dk

for (f,g9) € C°°(G/Po;\) x C°(G/Pg;\*) is a G-equivariant nondegenerate
sesquilinear pairing. Via this pairing, Xe x» = C°°(G/Po; \*)k can be identified
with the dual Harish-Chandra module (Xg x)*.

We can consider the natural (gc x gc, K x K)-bimodule structures on
Xo.x® Xo - and C(G). For X1, X, € gc and ky, ke € K, put

(X1, X2)(f @ f7) = mox-(X1)f @ [* + [ @ o+ (X2) [,
(k1. k2)(f @ ) = To (k1) f @ Te (k) f*
for f € Xo » and f* € Xg . Also define
(X1, X2)h = Lx, f+ Rx,h,  (ki,ka)h = Ly, Ry, h

for h € C*°(G). Let us introduce the matrix coefficient map ¢: Xo » ® Xo 1 —
C>™(G) (cf. [4]) satisfying

1. cisa (gc X g¢, K x K)-bimodule homomorphism,
2. for any f € Xo » and f* € Xg -, the evaluation ¢(f ® f*)(e) at the origin
e € G equals (f, f*)ax=-
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It is known that this matrix coefficient map is uniquely determined (see Theorem
8.7 in [4]).

Theorem 2.6 tells us that the restriction of the Poisson transform Pg to Xg
gives us a (g¢, K)-isomorphism Pg: X — C®(G/K;Io(\)) k.

Take a K-fixed vector fy € X x+ such that fy|x = 1. Then the restriction
of the Poisson transform to Xg ) is the matrix coefficient of an element of Xg
with fo € Xe x-, ie.,

(3.1) P(f) = c(f ® fo).

Lemma 3.1. The dual Harish-Chandra module Xg x» is a cyclic U(g)-module
with a cyclic vector fo € Xo x such that folx = 1.

Proof. Put W = {me x«(X)fo | X € U(g)}. This is a (gc, K)-module. We restrict
the pairing (, )i x+ to X, x W. Take an element f € Xg » so that (f,w)y + =0
for any w € W. Since Py (f) is K-finite and Z(g)-finite, it is a real analytic function
on G. Let C be a sufficiently small open neighbourhood of 0 in g. Then we have
the Taylor expansion at the origin e € G,

PAA(exp X) = 3 Re (PAR) () = 3 R elf @ fo))(©)
v=0 "

v=0 "

I
[M]8
t‘)_\

i (fimox(X")fo)ar- =0

Il
o

v

for X € C. Here we have used the equation (3.1). We can extend this equality
to the identity component G° of G' because both functions are real analytic. Also
we can extend it to G by the equation G = KG°. The injectivity of the Poisson
transform Py implies f = 0. Hence the bilinear form on Xg  x W is nondegenerate.
Therefore W = Xg »~ by Lemma 2 in Section 5.2 of [31]. O

Now we consider Homg. x(Xe 1+, C*(G)) and recall that this space inherits
a Fréchet topology and a continuous G-action. This continuous G-module is called
the maxzimal globalization of the Harish-Chandra module Xg 5 (cf. [28] and [17]).
The space C*°(G) is a Fréchet space with the topology of uniform convergence on
compact sets for functions on G and their derivatives. Let {|-]| }aeca be a countable
family of seminorms on C°°(G) which defines the Fréchet topology on C*°(G),
where A is an index set. Take some o € A and v € Xg »~. Then we define the real-
valued function | - |4, Homg. x(Xex+,C®(G)) = Rxg by [I|an = [I(v)]s for
I € Homg. g (Xe,x,,C®(G)). Let {v,} be a countable vector space basis of the
Harish-Chandra module Xg x-. Then the family of seminorms {|-|a,v, }aca, viefom}
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defines a Fréchet topology on Homg, x(Xe 1., C>(G)), and a continuous G-action
on this space is defined by left translation on C*(G).

Lemma 3.2. Take a K-fized vector fy € Xeo x+ such that folx = 1. Then
®: Homg, g (Xoa-, CF(G)) = CF(G),  I+—1(fo)(g) (9€G),

is a continuous mapping. Moreover for any seminorm | - |a., on the space
Homg. x(Xe .+, C®(G)), there exists a continuous seminorm [q.,v,, on C*(G)
such that

v, (R(1)) = a0,
for I € Homg, g (Xe a+, C™(G)). Thus @ is injective.

Proof. The first and the second assertions are well-known. The final one immedi-
ately follows from them. O

The maximal globalization of Xg y is isomorphic to a subspace of C*°(G/K),
as shown by the following proposition (see [28], [17]). We give a proof for com-
pleteness.

Proposition 3.3. Take a K-fized vector fy € Xo x« such that folx = 1. Then
we have a topological G-isomorphism

®: Homgy, x(Xe -, C®(G)) = C(G/K;Io(N), I~ I(fo).
Here C*(G/K;1o()\)) has Fréchet topology as a closed subspace of C®(G).

Proof. We can immediately see that ® preserves the action of G. First we show
that ® is well-defined. Take I € Homg, x(Xe x+, C>°(G))k. Then by evaluation at
the origin e € G, we can regard I(-)(e) as an element of Xg = (X x+)*. As we
see in Remark 2.5, I(fy) € C*°(G/K;Io(\)) C C¥(G). Thus the same argument
as in the proof of Lemma 3.1 shows that we have the Taylor expansion at e € G,

I(fo)(exp X) = 3 = R (1(o))(e) = 3 2 (H0)e) o (X Mfobaa,
v=0 """ v=0 "

TelI()(e) ® mox- (X" fo)le) = 3 RxeelI()(e) © fo)(e)
v=0

M

= c(I(-)(e) ® fo)(exp X)

for X € C where C is a sufficiently small neighbourhood of 0 in g. We can extend

v

this equality to all g € G as in Lemma 3.1. Hence by Theorem 2.6 and (3.1), we
have
@(Homg&K(XQ,\*, COO(G))K) C COO(G/K, I@(}\))
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We recall that for a continuous representation of G on a locally convex complete
space V', the space Vi of K-finite vectors is dense in V' (see, for example, Lemma
1.9 in Ch. IV of [10]). Moreover we know that ® is a continuous mapping by Lemma
3.2. Hence ®(Homg. g (Xeo r+, C®(G))) C C*(G/K;Ig())), which proves that @
is well-defined.

Next we prove @ is a bijective map. By Lemma 3.2, & is injective. We
need to prove that it is surjective. For any F' € C*°(G/K;Io()\))k, there ex-
ists h € X, such that F = ¢(h ® fy) by Theorem 2.6 and (3.1). We choose
I € Homgy, x(Xe,x, C®(G)) so that I(v) = c¢(h ®v) for v € Xg r-. Then
O(I1) = In(fo) = c¢(h® fo) = F. Hence we have the inclusion C*°(G/K; Ig(\))k C
®(Homy, x (Xo,x,C®(G))). Because C*(G/K;Io()N))k is a dense subspace of
C*(G/K;Io(N)), for any f € C°(G/K;Io()\)) we can choose a convergent
sequence f, — f (v — oo) where f, € C®(G/K;Io(\))k for v € N. The
above inclusion shows that there exist I, € Homg. x(Xe 1, C*(G)) such that
®(I,) = f,. From the second assertion in Lemma 3.2, {I,} is a Cauchy se-
quence in Homg, x(Xe ,C®(G)). Since Homgy, x(Xe x,C®(G)) is a Fréchet
space, i.e., complete space, there exists I € Homgy. k(X 1, C*>(G)) such that
I, - I (v = o0). Thus ®(I) = f by the continuity of ®. This shows that
® is surjective. The open mapping theorem implies that & is a homeo-
morphism. O

83.2. Generalized Whittaker functions

We shall define generalized Whittaker models and functions for Xg ). Fix a closed
subgroup U of N and its irreducible unitary representation n on a Hilbert space V.
Let V> be the space of C'*°-vectors in V;,. Define

Cr(U\G) ={f: G = V;* smooth | f(ng) =n(n)f(9), g € G,n € U},
which is a G-module with respect to right translation.

Definition 3.4. The image W (Xe x-) of W € Homg. x(Xe -, Cr(U\G)) is
called a generalized Whittaker model of Xe x-. Elements in W(Xe x+) C Cp°(U\G)
are called generalized Whittaker functions. In particular, the image W (fk) of a
K-fixed vector fx € Xg - is called a class one generalized Whittaker function.

The following theorem gives a characterization of the space of class one gener-
alized Whittaker functions as a function space whose elements are killed by Ig(X).
Also this shows that the space of class one generalized Whittaker functions is
isomorphic to Homg, r(Xe -, Cy°(U\G)) as a linear space.
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Theorem 3.5. Take a K-fized vector fy in Xe - such that folx =1. Then
®: Homg, i (Xe -, O (UNG)) = O (UNG/K:Te(N), W = W (fo)(9),

is a linear isomorphism. Here

Cr(U\G/K;1e(N))
={f: G = V.® smooth| f(ngk) =n(n)f(9),9€G,nelU, ke K
and Rx f(g) =0, X € Io(N)}.

Proof. Fix a nonzero element £ € V,, and define a linear mapping
T: CF(UNG) 3 f = (&, f9))y € CT(G),

which commutes with G and gc actions from the right; here ( , ), is the inner
product on the Hilbert space V;,. Since (n,V},) is an irreducible unitary represen-
tation of U, the mapping T is injective (see Theorem 2.4 in [35]). It also yields an
injective map

T: HOHl(gC,K)(X@J\*,C;;O(U\G)) — Hom(gC7K) (X@A*,COO(G)), Wi ToW.

For any W € Hom(g, k)(Xe x+, C;°(U\G)), we have T(®(W)) = T(W(fy)) =
T oW(fo) =T(W)(fo) = ®(T(W)). Hence we have the commutative diagram

Hom g, k) (Xo -, C°(U\G)) —2— C2(U\G/K)

Ti lT
Hom(g. i) (Xoa-, C®(G)) —— C®(G/K)

Since @, T and T are injective, ® is also injective.

Next we show that Im® C C(U\G/K;Ig())). Take an element W €
Homg. i) (X, Cp¢(U\G)). Then T(®(W)) = (£, W (fo)) € C=(G/K;Io(N)).
Hence 0 = RxT(®(W)) = T(Rx®(W)) for X € Ig(N). Since T is injective, we
have RxW (fo) = 0 for X € Ig()), ie., In® C CX(U\G/K;Io(N)).

Finally, we show that ® is surjective. Let f € Cp°(U\G/K;lg())). For
v € Xo - there exists X, € U(g) such that v = mg x+(X,) fo by Lemma 3.1. Then
we define a mapping Wy: Xe x« 3 v = mo\«(Xy)fo = Rx, f(g9) € C°(U\G). We
need to check that it is well-defined. If for X,,, X!, € g we have v = mo x+(Xy) fo =
o+ (X,) fo, then mg z+ (X, — X)) fo = 0. Since T(f) € C*(G/K;Is(X)), there
exists Iy € Homg,. g (Xe -, C®(G)) such that T(f) = ®(I;) by Proposition 3.3.
Put Z = X, — X|. Then T(Rzf) = RzT(f) = ®(Rzlf) = RzI;(fo)(9) =
Ir(mex+(Z)fo)(g) = 0. Hence by the injectivity of T, we have Rz f(g) = 0, i.e.,
Rx,f = Rx; f. This implies that Wy is well-defined.
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Also we can check that Wy is compatible with the gc and K actions. Hence
Wy € Hom(g 10y (Xo,x, C2(U\G)) and &(Wy) = Wy(fo) = f. Thus & is surjec-
tive. 0

§4. Calculus in the case of GL(4,R)

In the previous section, we gave a characterization of the space of class one gener-
alized Whittaker functions as the kernel of an explicit differential operator. Now
by using this characterization, we study the particular case of GL(4,R). In the
cases of SL(2,R) or GL(2,R), Whittaker functions are well understood. Also for
SL(3,R) Ishii and Oda computed generalized Whittaker functions of degenerate
principal series [14]. We shall consider the spherical degenerate principal series
representations induced from the maximal parabolic subgroups P; 4, P> 4, exam-
ine the dimensions of the spaces of class one generalized Whittaker functions, and
find their bases.

Now G = GL(4,R), K = O(4), A is the group of 4 x 4 diagonal matrices with
positive real entries and N is the group of 4 x 4 strictly lower triangular matrices
with 1s on the diagonal. We put Py = Py 4, k = 1,2. For (A1, A2) € C2, we define
the character A: P, — C* and degenerate principal series representations induced
from A as before. Let X y be the Harish-Chandra modules of these degenerate
principal series representations. Then by Theorem 2.7, their annihilator ideals
in U(g) are

(4.1) k(N = Igay (V)

= Z Z U(g)(E = A)(E — X2 = k))ij + Ulg) (Z BEi; — kA — (4 — k/’))\2)

i=1j=1
for k = 1, 2. Throughout this section, we assume Ay — A2 ¢ Z.

§4.1. Equivalence classes of C°(U\G)

Generalized Whittaker models are images of embeddings of Xeg x~ into Cp°(U\G)
where U is a closed subgroup of N and 7 is its irreducible unitary representation.
In this paper, we only consider the space Cp°(U\G) where the closed subgroup
U C N and its unitary character 1 are chosen to satisfy that

L? —Indg 7 is an irreducible unitary representation of N.

Therefore we first review the classification of irreducible unitary representations
of N.
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4.1.1. Classification of the unitary dual of N. First we give the classification
of the unitary dual of the maximal unipotent subgroup N of G using Kirillov’s
method of coadjoint orbits. The material of this subsection is standard; the details
can be found in [3] for example.

We denote the dual R-vector space of n by n* = Homg(n,R) and identify it
with the subspace of M(4,R) consisting of the matrices

0 ao1 a1 agn

0 a3z a2

* * * * * *

a1 B5) + az1 B3 + aso B3y + aun By + s By + ausBjs = 0 a
43

0
for any a;; € R; here EJ;(Ey ;) = tr(E;; Eirjr). Let us put

n(ﬂﬁzh T31,232,L41, T42, 5643)

= wo1Fo1 + w3131 + 132F32 + 141 F41 + T42Fy0 + 143FE43 € 1,
I(a21, 31, 32, a1, a2, (143)

= OéglE;l + 0431E§1 + 0432E§2 + 0141E21 + 0442E22 + 0443E23 €n*.

Then the coadjoint action of N on n* is

(4.2) (Ad* exp(n(z21, ..., %43))) (21, . .., q43))
= ag1 Ejy + (31 + za30u1) B3y + (a2 — 2210041) By
+ (o1 + w3231 + aun (Taz + T32243/2)) Esy
+ (32 + 2430042 — T21031 — T21Ta30u1) B3y
+ (oug — 322 — a1 (T31 — T21232/2)) Exs.

Proposition 4.1. The coadjoint orbits of n* under the action of N are classified
as follows:

(1) For as; € R\ {0} and agze € R,

Ad*N(Oé41Ezl + 0432E§2)
= {0441E11 + tlE;skl + thZQ + 81E§1 + (0632 + tltg/a41)E§2 + SQEZS |
tla t27 51,52 S R}
- { > BuE; €| Bu = a1, a1 B = appam + ﬁ31542}.

1<j<i<4

Here dim Ad*N (a1 B + as2E5y) = 4.
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(2) For asy, sy, aus, a3z € R such that agiays # 0,

Ad*N(aglEi‘l + 0431E;:1 + 0442EZQ + 0443E13)
= {az1 B3 + quaEjy + (azits + ao1) B3y + taBgy + (qus — austy) By |
ti,to € R}

= { > BiyE;ent | Bu =0, Bs1 = az1, Bi2 = au,
1<j<i<4

o31 843 + qaafa1 = oo + 04310443}-

Here dim Ad*N<a21E51 + 0431E§1 + 0442E2{2 + O(43EZ3) =2.

(3) For asy, a2, aus3 € R,
Ad*N(ao1 F3) 4+ asaEly + ausEls) = aa1 B3y + ase By + ausEls.
Here dim Ad* N (ag1 B3y + aza By + ausEjf) = 0.
Proof. This follows by direct computation using (4.2). O

To construct irreducible unitary representations of IV from the coadjoint orbit
of | € n*, we should determine its radical v; and choose a maximal subordinate
subalgebra s;. We define the coadjoint action of the Lie algebra n on [ € n* by
((ad* X)) (Y) = I([Y, X]) for X,Y en.

Definition 4.2. For [ € n*, the radical of [ is the subalgebra of n defined by
vy ={X en|(ad"X)l = 0}.
Here we note that expt; = {z € N | (Ad* z)l =} (see Lemma 1.3.1 in [3]).

Definition 4.3. For!l € n*, we can regard [([X,Y]) as a bilinear form for (X,Y) €
n x n. By the antisymmetry of the Lie bracket [X,Y] = —[Y, X] (X,Y € n), this
is an alternating form on n x n. Any subalgebra s; C n which is isotropic for [, i.e.,
I([X,Y]) =0 for X,Y € s, and has codimension  dimg(n/t;) is called a mazimal
subordinate subalgebra of n for [.

Let us construct radicals and choose maximal subordinate subalgebras for
coadjoint orbits (1), (2), (3) which are classified in Proposition 4.1.

Case (1). Equation (4.2) implies
(Ad* exp(n(mgl, e (E43)))(OZ41EZI + 0432E§2)
= 0641E21 + $31E§1 + $42E22 + I21E;1 + (0432 + $311742/O[41)E§2 + 21743EZ3.

Thus ta41E21+(¥32E§2 = RE41 + REgg.
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Although the radical is uniquely determined from [ € n*, there are several
maximal subordinate subalgebras to choose. Among these, we choose

Sau B +asEy, = RE32 + RE3; + RE; + REy3 =ng 4.

Here ny 4 = ng with © = {2,4}.
Case (2). Asin case (1), we can see that the radical for agy F3; +ag1 B3+ B+
oz B4 is given by

Cogy B3y +ost By +oun By tass Bl = R(31E43 + auaE21) + RE3; + REy; + RE;.
Also we can choose a maximal subordinate subalgebra

Souny gy +s1 By +aun By tass B, = RE21 +REy3 +RE3 +REj; +REy; =0y 34.
Here ny,34 = ng with © = {1, 3,4}.
Case (3). Asin (1) and (2), the radical for a1 E§y + asaF3y + ausEfs is

VYas1 Bf +assEfytousEf, — N

Also we can choose a maximal subordinate subalgebra

Sagi Ef ‘oz By tass By, — M

Let us recall Kirillov’s orbit method. Let s; be a maximal subordinate sub-
algebra for | € n* and let S; = exps;. We can extend l|s,: 5 — R to a map
xi: S; = C! by

xi(exp X) = VX)X e
This is a group homomorphism, i.e., a unitary character of S; because s; is an
isotropic subspace for [. Define a Hilbert space by

f(sz) = xi(s)f(x) for s € S;, x € N,

n 2 di
and /SZ\N|f(x)| dﬂ[:<oo}7

where dg is the right-invariant measure on S;\ N, with the inner product defined
by

Hy, = {f: N — C measurable

(. 1) = /S ST

It can be shown that #H,, is complete with this inner product. The action of N
on H,, is by right translation. From the right-invariance of d# this action on #,,
gives a unitary representation of N, which is said to be induced from x; and
denoted by L? -Indgl Xi-
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Theorem 4.4 (Kirillov [15]). Take | € n* and let 5; be a mazimal subordinate
subalgebra of n for [.
(1) The induced representation L> —Indgl X1 48 an irreducible representation of N.

2) Let s) be another mazrimal subordinate subalgebra of n for I and S| = exp s).
! 1 1
Then L? —Indg{ X1 is unitarily equivalent to L? —Indgl xi- Hence we may write

m for L? —Indgl Xi-
(3) Letl' € n*. Then mp is unitarily equivalent to m if and only if I’ € (Ad*N)I.
(4) Let w be an irreducible unitary representation of N. Then there exists anl € n*
such that 7 is unitarily equivalent to my.

By this theorem, we can obtain all equivalence classes of irreducible unitary
representations of N.

Proposition 4.5. We retain the above notation. Then every irreducible unitary
representation of N is unitarily equivalent to one of the following representations.

(1) For asn E} + aszaE3y € n* and its mazimal subordinate subalgebra na 4, we
define the representation

2 N
L _IndN2,4 Xour Efy +aga B3, -

Here Ny 4 = No with © = {2,4} and as1 € R\{0}, a2 € R.
(2) For as1E3; + as1 B3 + ausEly + cusEfs € n* and its mazimal subordinate
subalgebra ny 3 4, we define the representation

2 N
L 'Inle,gA Xaz1 E} +os1 B +oss Efytass Efy

Here N1,374 = N@ with © = {1,3,4} and 21, (031, 042, (i43 € R (04310542 7’5 0)
(3) For as1 B3| + ase B3y + causEls € n*, we define the unitary character of N,

Xao1 B3y +ass Ejy+aasEjg-
Here as1, aizo, a3 € R.

4.1.2. Conjugacy classes of Cp°(U\G). Next we investigate G-equivalence of
the following spaces:

(1) C° (NQA\G), Q41 € R\{O}, Q3o € R,

Xay1 Ef+azaES,

2) C N G), g1, 31, 02, o R, asi« 0
(2) XazlE§1+a31E§1+a42Ez2+a43E23( 1,3,4\G), a21, 031, Quz, auz € R, azrous # 0,

(3) O (N\G), az1, 32,43 € R.

Xagy B} +azgEfy+ays Bl
Put ¢* = xgz~! for g,z € G. Let H be a closed subgroup of G and 7 a
continuous representation of H on a complete locally convex space E. Then for



768 K. HIROE

z € Ng(H) = {g € G|hW € H for any h € H}, define conjugation of 7 by
7% (h) = w(h*). Then we have the following fact about the induced representation
C*(H\G) = {f: G — Esmooth | f(hg) = n(h)f(g9), g € G, h € H} on which G
acts by right translation.

Lemma 4.6. We retain the above notation. The map
CE(H\G) & C2(H\G),  f(g) ~ Flg) = f(zg),
is an isomorphism of G-modules.
Proof. Obvious. O

Lemma 4.7. Fiz a mazimal subordinate subalgebra s; C n for I € n* and put
S; = exps;. Define a character x;: S; — C! so that x;(exp X) = e2mV=1I(X)
for X € s;. Then the character x; is invariant under conjugation by Sj, i.e.,
X7 (s) = xu(s) for s,z € 5.

Proof. Obvious. O

Using these lemmas, we obtain the following.

Proposition 4.8. Case (1). For ay; € R\{0} and azs € R, we have

o> « (N2,4\G) if age 7& 0, (la)
C;i E* +agqEX (N2,4\G) = XES) +E], '
41 B +a32E3, C;(;ékz (N274\G) @f sy = 0. (1b)

Case (2). Choose aa1, 31, (42, 43 € R so that asiaqs # 0. Then

cr (N1,3,4\G)

Xag1 B3 +ag1 B +asoEfy+ayzBly
Clre e (N1.34\G) if (021, 0031) - (o, au2) # 0, (2a)
21 42

C)?C})E‘ElJrEZS (N173,4\G) Zf (0421, aBl) : (OL43, 0442) =0
and az # 0, auz # 0, (2p)

= C’;‘;él (N1,34\G) if (a21,031) - (43, 042) =0
and azy # 0, ay2 =0, (2c)
Oy, (N134\G) if (o21,031) - (a3, 02) =0
B3

and 31 = O7 492 75 0. (2d)

Here (a,b) - (c,d) = ac+bd for a,b,c,d € R is a natural inner product in R? which
is induced from the structure of Heisenberg Lie algebra, namely

(ao10u2 + agrous) By = (a1 B2 + a1 B3, s Eay + a3 Esyl.
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Case (3). For aa1, 32, aus € R, we have

C;ZQIE&MM%MM% (N\G) =
C’Cz?fé‘ﬁEé“ﬁEZs (N\G) if ag1 #0, age #0, ayz #0, (34)
C;OE51+E§2 (N\G) if as1 #0, ags # 0, asg =0, (35)
C;OE;1+E13 (N\G) if ag1 #0, asea =0, asz #0, (3¢)
C;?;;zwzs (N\G) if as1 =0, azs #0, auz # 0, (3a)
0;251 (N\G) if as1 #0, ags =0, ayg =0, (3¢)
C>‘z‘;§2 (N\G) if asy =0, ags #0, azg =0, (3¢)
C;?EZS (N\G) if ag1 =0, aga =0, ayz # 0, (34)
C*(N\G) if as; =0, ags =0, ayz3 =0. (31n)

Proof. (1) The normalizer Ng(N24) of Na 4 in G is the semidirect product Lo 4 X

N274 where
A |0y
L =

Here 02 = ($9) € M(2,R). Define the action of Ng(Nz,4) on ]@, the set of
unitary characters of Ny 4, as follows. For € Ng(Na4), x € Ny and s € N4,

A,Be GL(Q,R)}.

we define (z-x)(s) = x(s* ). Then by Lemma 4.6, if x, " € Ny 4 are in the same
Ng(N2,4)-orbit, the spaces C3°(N2,4\G) and CFF (N2,4\G) are G-equivalent. Also
by Lemma 4.7, it suffices to consider the action of Ly 4 on ]@.

Now we see that Z@ has three orbits Ad*(NG(N274))(X51E§1+52E§2+53E12)
for (e1,e9,e3) = (1,0,1),(0,1,0),(0,0,0). It is easy to see that

Xaui Bj +ass By, € A (Ng(Na))(xeg +85,)  if as2 #0,
Xon By +os: B3, € Ad" (NG (N24))(XEg, ) if gy = 0.

(2) The normalizer of Ni 34 in G is the semidirect product Li 34 X N1 3.4
where

a 02 0
L173’4 = n(a,b,A) = tOg A tOg cd a, be RX, A€ GL(Z,R)
0 02 b

Here 02 = (0,0) and 10y = (8). As in (1), let us consider the Ng (N7 3,4)-action on

@, the set of unitary characters of IV; 3 4. This action has the following orbits:
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X1 B3y +os By twn BS, +wa By, | V1W1 + vawa # 0},
{X01 By 40 Byt By +ws B, | (V1,02) # (0,0), (w1, wz2) # (0,0)

and viw; + vewg = 0},
X1 B3 402 By twn B3y 4w By, | (V1,02) # (0,0), (w1, we) = (0,0)},
X1 By +os By twn B3y +wa By, | (V1,02) = (0,0), (wr,w2) # (0,0)},
|

X1 B2, toa By twn By 4we B, | (V1,02) = (0,0), (w1, w2) = (0,0)}.
(3) The normalizer of N in G is the semidirect product L x N where

ay
ag
ai,...,as € R*
as

Qa4
Then the lemma easily follows. O

Remark 4.9. In the above list, the characters

XE3+E;, Nag — ct (1a),
XEg 485 Niga— Ch o (24),
XB3,+B3,+E5, N = Ch (34)

are nondegenerate (also called admissible) (cf. [19], [33]).

84.2. Spaces of class one generalized Whittaker functions and
their vanishing

In Proposition 4.8, a list of C°(U\G) with labels (14),...,(3n) is given. The
purpose of this paper is to study the spaces of class one generalized Whit-
taker functions C3°(U\G/K; I(\)) for pairs (U, x) corresponding to these labels
(14),...(3n). In this section we shall find equalities and isomorphisms between
these spaces with different labels and also show their vanishing.

For a closed subgroup U of N, there is a smooth cross section §: U\N —
N with a smooth splitting of n € N so that n = u(n)s(n) for u(n) € U and
s(n) € (U\N) (cf. Theorem 1.2.12 in [3]). Set U = A(U\N). Then we have a
diffeomorphism N 2 U x U. Recalling the Iwasawa decomposition G = NAK, we
have the linear isomorphism

(4.3) 2: CX(U\G/K) = C=(U x A), fr E(f)(x,a) = f(za),

for z € U and a € A. Here CP(UN\G/K) = {f € C(G) | f(ugk) = x(u)f(g) for
ueU, geG, ke K} for a character x of U.
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Let us denote X - f = Z(RxE"!(f)) for f € C°(U x A) and X € g. We
sometimes omit the dot and write simply X f. Then for an ideal I C U(g), we
have

CX(UN\G/K;I) ={f e CY(U\G/K) | Rxf =0 for all X € I'}
S0°Ux AN ={fecC®UxA) | X -f=0foral X €I}

The Iwasawa decomposition g =n @ a @ ¢ and the P-B-W theorem induce a
decomposition U(g) = U(g)t ® U(a @ n). We shall see how elements in U(g)t and
U(a @ n) are realized as differential operators on C°(U x A) .

We note that E;; € a, i = 1,...,4, can be realized on C=(U x A) as Vo, =
aia%i’ i=1,...,4, where we denote the elements of A by a = diag(aq,...,a4).

We have the following symmetric relation among the generators of the anni-

hilator ideal Ij(X).

Lemma 4.10. We have (E—X)(E—X2—k));; = (E—X1)(E—X2—k));; modulo
U(g)t for 1 <i,j <4, and k=1,2.

Proof. Note that E;; — Ej; (1 <1i < j <4) generate £. Then we have

(E=XM)E =X —Fk))ij — (E=M)(E— X2 —k))ji

4
- (Z EjE; — M+ X+ E)E; + (A + k)5ji)
=1

4
ZEilElj —MFAF+E)E; + MM+ k‘)%’)
=1

(Ba(Eiy — Ej) + Ej(Eg — E)) — (A + X+ k= 1)(Ei; — Eji) € U(g)t.

4
=1

1
O

Let us find the projections of ((E — A1)(E — A2 — k));; to U(a @& n) along the
decomposition U(g) = U(g)t® U(a @ n).

Lemma 4.11. Representatives of ((E—A1)(E— A2 —k));; modulo U(g)t, for
k=12and1<i<j <4, are
((i,4) = (1,1)) B} + E3 + E5 + Ej—(M + A + k= 3)En

— (B2 + E33 + Ea) + A (A2 + k),
((4,7) = (1,2))  Ear(Ei + Eaz — (M + A2+ k —3)) + EzF31 + Ega B,
((1,5) = (1,3))  Esi(E11+ E33 — (A + A2+ k —2)) + EzpFo1 + EyzEan,
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((4,7) = (1,4))  Eu(Ei+ B — (M + A2+ k —2)) + EgoFoy + E31 By,
((1,) = (2,2))  E3y— (M +Xo+k —2)Exn+Ej5 + E3y + Ep
— (E33 + E44) + )\1()\2 + k),

2,3))  Esa(Eaa+ Ezz3— (A + A2+ k —2)) + Ez E3 + EgzEyo,
((4,7) = (2,4))  Ea(Boz + Egq — (M + A2+ k —2)) + Ex gy + EsaEys,
3,3)) B33 — (M +Xo+k—1)Es3+ E5+E3, + Ei

— By +M(A2+ k),
((i,5) = (3,4)) Ey3(Ess+ Egqs — (M + Ao+ k —1)) + E31Eqq + Es2Ey9,
((1,5) = (4,4))  Ei,— M+ X+ k)Eu+E} +Ej+Ej+ (A + k).

Proof. If we note that E;; — E;; (1 < i < j < 4) are the generators of ¢, this
lemma can be obtained by direct computations. O

Let us define an automorphism of G by j: G 3 g — J% 'J~! € G where
J € G has 1s in all the antidiagonal entries and Os in the other entries. Also define
j: U(g) = U(g) as the extension of the Lie algebra automorphism j: g 3 X —
Ad (J)(—'X) € g. Here we notice that j o j = id.

Lemma 4.12. We have j(Ix(\)) = Ix(N') modulo U(g)t where N = (M, \,) =
(A1 +4—k, —s — k).

Proof. Tt follows from Lemma 4.11 and a little computation that a set of generators
of I.(A) modulo U(g)t consists of

E} +E3 + E5 +Ef — (M + X+ k—4)E; + A (A —4+k),

Ey1 (B + Eaa — (M + Ao+ k —3)) + B B3 + EjoEy,

E31(Evi 4+ Ess — (M + Ao+ k —2)) + EsoEoy + Ey3Ey,

Ey(Enn+ Eyg — (M + Xo + k= 2)) + EgpEo + E31Ey3,

E% — (M + X+ k—3)Exn + E3 + E3y + Ejy + Ei1 + Xa(M — 4+ k),
E33(E2 + E33 — (M + Ao+ k — 2)) + Ea1 B3y + Ej3Ey,

Eso(Eoz 4+ Ezg — (M + Ao+ k —2)) + Eo1 Ey1 + E32Ey3,

Efs— (M + X+ k—1)Es3 + E5 + E3y + Efs — Eqa + M (A2 + k),
Eu3(Es3 4+ Egg — (M + Ao+ k — 1)) + E31 Ey1 + EsoFyo,

Eli— M+ X+k)Eu+EL +EL+EL+ MO +k),

4
> Ei— kA — (4= k)X
i=1
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Direct computation shows that j: U(g) — U(g) carries this set to the set whose
elements are obtained by changing (A1, A2) to (A}, A}) except the final element
which is — 37| By + kN, + (4 — k)X

Notice that U(g)t is invariant under the map j. This shows the lemma. [

From this lemma we have the following isomorphism between spaces of class
one generalized Whittaker functions.

Proposition 4.13. Fiz a closed subgroup U C N and its character x. Define
Ut = {j(u) |u € U} C N and its character x'(u') = x(j(v")) (u' € UT). Then

CF(UNG/K; 1k (V) = CRUNG/K (V) [ foj,
is a linear isomorphism. Here N = (=X +4 —k, =Xy — k).

Proof. Let us note that K is invariant under j. Thus the proposition follows from
Lemma 4.12. O

For each C7°(U\G) listed in Proposition 4.8, we shall give realizations of
elements in n as differential and scalar operators on C®(U x A) = CE(U\G/K).

Case (1). We consider the space C}° Ny 4\G/K), where

c1B3 +ea By +e3 B, (

1,0,1) for case (1,),
(44) (61782,83) = ( ) ( )
(0,1,0) for case (1p),

as in Proposition 4.8. If we notice that ng 4 = RE3; + RFE35 + REy; + REy3 is not
only a subalgebra of n but also an ideal of n, then
no4\n =gy = REs + REy3

is a subalgebra of n. Hence Ny 4\V is isomorphic to the subgroup

N2’4 = exp(fiz4) = {exp(uFo1 + vEy3) | u,v € R}
of N. Then we have a diffeomorphism

N 2 Ny y x Noy

and a linear isomorphism

Eqy: CF (No 4 \G/K) = C®(Nyy x A)

Xeq B} +e2E3p+e3Ey3
as in (4.3). We introduce a coordinate system on Ny 4 x A,
2 4~
R“ x (R>0) — N274 X A,

((u7 /U)u (a17 asz, as, 0,4)) = (eXP(UEZI + UE43)7 diag(ah az,as, a/4))~
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Proposition 4.14. We regard the space C’OO(NQA x A) as the image of the space

oo

(N2,4\G/K) under the mapping Z1y. Then for elements in n,

Xey1 B}, +egEjy+e3E],
we have 5
EnF=2%F Eq F =2mv—1 %8¢ F,
a1 Ou a1
EnF =0, EsoF = 20v/—1 22 (—uey + 5 + vey)F,
as
)
EpF =2nv—1 ek, EpF="%F
az as Ov

Here F € C®(Nyy x A) and (¢1,€9,€3) are chosen as in (4.4).
Proof. For F € C®°(Na4 x A), there exists f € O (N2, 4\G/K)

Xey BEf +e2Ejy+e3Ef,

such that F(u,v;a) = Eq)(f) = f(exp(ula1 + vEy3)a) for u,v € R and a € A.
Hence for E;; (1 <j <i<4) we have E;j;F = Zy(Rg,, f) and

_ d
(4.5) EijF(u,v;a) = Eq)(RE,, f) = %f(exp(uEgl + vEy3)aexp(tE;j))

t=0

= %f(exp(uEm + vEy3) exp(tAd(a)Eij)a)

t=0
a; d

= — —f(exp(uEgl + ’UE43) exp(tEij)a)
aj dt

Direct computation shows

t=0

exp(uFa1 +vEy3) - expn(z,...,x3)
=expn(Z, Yy, s, 0,22,0) - exp((u + x1)E21 + (v + x3)E43),
where
2 =z+ VY1 — Uy + %xgyl — %xlyg — UVT — %’lel'g — %U$2$3 — %$1CE2ZL’3,
Yy = Y1 — uTy — T172/2,
Yo = Yo + VT2 + 23 /2.
Here we put n(z,...,x3) = 2E4 + y1E31 + y2F32 + 1 F21 + 29F30 + x3F43.
Hence we have
(4.6) f(exp(uFE21 + vE43) expn(z, ..., x3)a)
= flexpn(2',y},95,0,22,0) exp((u+ 1) E21 + (v+x3)F43)a)
= Xe1 B3y tes By tes B (€XD (2, 41, 45, 0, 22,0)) f(exp((u+ x1) Eay 4 (v + 23) Eaz)a)
= eVl Ewntearatead) f(exp((u+21) a1 + (v+23) Ess)a)
=2Vl (51y1+52m2+53y5)F(u +x1,v+23; Q).

Combining formulas (4.5) and (4.6), we obtain the proposition. O
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Case (2). We consider the space C° (N134\G/K). Here each

Xe1 B} +e2E}y+e3Efg
(€1,€9,€3) corresponds to cases (2;) (i = a,b,c,d) in Proposition 4.8 as follows:

(1,1,0) for case (2,),
1,0,1) for case (2),
(4.7) (eremeg) = O 2
(1,0,0) for case (2.),
(0,0,1) for case (2q4).

From the same argument as in case (1), the homogeneous space Ny 34\N is iso-
morphic to the subgroup Ny 34 = {exp(uE32) | u € R} of N. This isomorphism
gives a smooth section 6(2): N1 34\IN — N and we have a linear bijection

E(Q)I o> (N17374\G/K) l} COO(N17374 X A)

Xe1 B} +e2E}y+e3E)q
Let us introduce a coordinate system on N 34 x A,
R x (Rso)* = Nig4 x A,
(u, (a1,a2,as,a4)) — (exp(uFss2), diag(ar,as, as, as)).
Then we can write down the action of n on C®(Ny 34 x A).

Proposition 4.15. We regard the space C* (1\7173,4 x A) as the image of the space
C (N1,3,4\G/K) under the mapping Z ). Then elements in n can

Xe1 B3 +eaBlo+e3Efq
be realized as follows:

EoF =20v/—12eF, EqaF =0,
a

0
E41F:O, E32F: %7 ’
as Ou

E42F = 27‘[’\/—1 %SQF, E43F = 27‘(’\/—1%(63 —EQU)F.
a2 asg
Here F € C®(Ny 34 x A) and (e1,e2,¢3) are chosen as in (4.7).
Proof. The proposition can be obtained in the same way as in case (1) via
eXp(’U/Egg) - €Xp Tl(Z, s 73"3) = exp(n(zl7 yiv yé) T, 0) 333)) ' eXp((u + .TQ)E32),

where
2 =z + fawomsy,
/ 1
Y1 = Y1+ T1u+ 52122,

/ 1
Yo = Y2 — T3U — 5T2T3. O
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Case (3). We consider the space C}° (N\G/K) where

e1B3 tea By tes By
(1,1,1) for case (3,),
(1,1,0) for case (3p),
(1,0,1) for case (3.),
0,1,1) for case (34),
(48) (51762753) = ( ) ( d)
(1,0,0) for case (3.),
(0,1,0) for case (3f),
(0,0,1) for case (3,),
(0,0,0) for case (3y).

By the Iwasawa decomposition, we have the linear bijection
@) OF (N\G/K) > f— fla € C>*(A).

Xe1Ef +eaBSy+e3Efq

Proposition 4.16. Let us consider the space C*°(A) as the image of the space
c® (N\G/K) under the mapping (3. Then

Xey Ef +eo Blgtes By
Eo F = 27y/—1 Z—ile, Ey F =0,
EnF =0, EsoF = 2my/—1 %zEQF,
EspF =0, EuF = 27v/—1 Zi;egF.

Here F € C*(A) and (e1,€2,€3) are chosen as in (4.8).

Proof. This is obvious from the formula

d d
(EijF)(a) = — flaexp(tEi;)) T 5/ (exp(tAd(a)Eij)a) .
for 1 <i#j <4 Heref:E(Sﬁ(F). O

Before studying in detail the spaces C7°(U\G/K;Ij()\)) corresponding to
(1a),- .., (3n) respectively, we record the following relations among them.

Proposition 4.17. (1) We have
cy (N1,3.4\G/K; I(\) = C° (N\G/K; I(\))

Xu1EZ) +ro By +rs By Xv1 B3  +va By +v3 By
for k =1,2 if one of the following is satisfied:

(1) (/1‘17/~L27/~L3) = (170’1) and (V17V27V3) = (17071)7

(11) (u17u27:u‘3) = (1,0,0) and (V17V2ay3) = (17()’0)7
(111) (Nla/’c27/’(‘3) = (anal) and (V17V2a1/3) = (0’071)
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(2) We have
ey, (N2 \G/ K5 1k (N) = CFF (N\G/EK; 1i(N))

Xpuy B3 +ha Bg 13 By Xuy B3, +va By tvs Bl
for k=1,2if (u1, po, pus) = (0,1,0) and (v1,ve,v3) = (0,1,0).
Remark 4.18. Each of the three conditions in (1) above implies
p B3y + peEfy 4+ psEls = v1Ey) + v B3y + v3Egs.

Hence

ce (N1’3,4\G) DO (N\G)

Xu1E3y +uoEfy+us B, Xv1 B3 +vaBfy+vsEjg
under these conditions. Also in (2), we can see that
* * * * * *
P B3y + poBsy + psEyy = 1By + v2E3y + v3Ejs
and
cr N2 4\G) D C® N\G
XM1E§1+H2E§2+/,L3EZQ( 274\ ) XV1E§1+1/2E§2+V3E23( \ )
under the given condition.

To show the proposition, we prepare the following lemma.

Lemma 4.19. Suppose the assumption in Proposition 4.17 is satisfied and

Fe CZ1E§1+M25§2+H3E22 (N2 a\G/K: 1)
(resp. F e C° (N1,34\G/ K3 Ik (N))).-

Xu1 B3y +poEfy+u3 By
Then RxF =0 for X € ny 3.4 (resp. X € ng4).

Proof. Put X = E3i(Eqy + Bz — (A + Ao + k — 2)) + EsoBoy + EgzEgr and
X' = Eya(Fa2 + Egqa — (M1 + Ao+ k — 2)) + E21 Eq1 + E32E43. By the proof of
Lemma 4.12 we see that RxF = Rx.F =0 for F € C*(G/K; I()\)).

First we take F' € C° (N2 4\G/K; I;;(N\)). Then Lemma 4.14

Xu1 B3y +uo By +u3 By
shows that 0 = RxF' = Rp,, o Rg,, ' and Rg,, is a scalar operator and commutes

with Rg,,. Thus Rg,, ' = 0. Similarly we have 0 = Rx/F = Rg,, o Rg,,F', which
implies Rg,, F' = 0.

Also for F' € CF° | . . (N134\G/K; I;(\)), we can show Rg,, F =0
H1E3 troEjy+u3Elg =
similarly. Then the lemma easily follows from Lemmas 4.14 and 4.15. O

Proof of Proposition 4.17. First we show (1). Suppose the assumption is satisfied.
Then we have

cr (N134\G/K;I;(N) D CZ (N\G/K; I(N)).

Xp1 B3y +npBly+u3 By Xv1 B3y +va By +vs By

We shall show the converse inclusion.
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Since N = N17374 X N17374 and Xu1E51+u2E§2+u3EZ3 (n) =1forn € ]\7173747 it
suffices to see that

f(ng) = Xu1 B3, +v2 B3, +vsE5, (1) f(9) = f(9)
for all n € Ny 34 and f € C® (N1,34\G/K; I;;(\)). This is equiva-

Xp1 B3 +noBfy+u3Els !
lent to showing that Lx f =0 for all X € ny 34 since N1 34 = expny 34.

Since ]\7173,4 is a commutative group and normalized by N; 34 and A, for
any 2 € Nj 34 there exists 7/ € Ny 34 such that f(Anak) = f(Ana) = f(nai)
where f € C*(G/K), (n,a,k) € N x A x K. Then Lemma 4.19 shows that for
f S 0921E§1+1L2E22+M3E23 (N173,4\G/K;Ik(/\)) and X € ﬁ17374 we have Rxf = 0.

This yields Lx f = 0.
The second assertion follows from the same argument as the first one. O

By this proposition it suffices to consider C3°(U\G/K; I ()\)) for the pairs
(U, x) with the labels
(1), (16) = (31): (2a); (26) = (3e), (2¢) = (3e), (24) = (34); (3a), (3b), (3a), (3n)-
Moreover by Proposition 4.13 we have an isomorphism
CY(U\G/K; I (X)) = CF (UNG/K; Ik (X))

when (U, x) corresponds to either (3p), (2.) or (3.) and (U’,x’) to (34), (24) or
(34) respectively. Here X = (=X —4+k, =2 — k).

Now let us see that some spaces of class one generalized Whittaker functions
vanish.

Proposition 4.20. (1) If k=1, then
cs, (N2,A\G/K; 11 (A)) = {0}, (1a)

XEZ +E],
(2) Fork=1,2,
C)i?a&-*-p:@ (N1,374\G/K; Ik()\)) = {0} (211)

(3) If k=1, then
Cy, (N13.4\G/K; Ik (X)) = CF} (N\G/K; I(A) = {0} (2) = (3c)

XE3 +B]y XE3) + By
(4) Fork=1,2,
O s nn, (NG LX) = (0}, (32)
O o, (VNG L) = 0}, (3)

Cy, (N\G/K; I(A) = {0} (34)

XEfy+Efy
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Proof. First we show (1). All F € C;z“é‘ﬁEZQ (N2 \G/K; I (X)) are killed by I (\)
and U(g)¢. Let us consider representatives of ((E—X\;)(E— A2 —k));; modulo U(g)t
given in Lemma 4.11 and in particular focus on elements labelled by ((¢,7) = (1,3))
and ((4,5) = (2,4)). Then recalling Proposition 4.14, we see that F' is killed by
right translation by E31E42(Z?:1 E;i — 2\ —2X\a+2) + E32Eq9FEo1 + E39E31 Ey3.

Here we notice that by Proposition 4.14 right translations by E31, E32 and F4o on

XB3 +E],
commutative. Also let us consider the representative labelled by ((7,7) = (1,4))
in Lemma 4.11. Then it follows that F' is killed by right translation by E4oFo1 +
Fs1FE43. Thus we see that F' is killed by 2?21 E;i — 2X\1 — 2)9 + 2 since right

translation by E31Fy4s is a scalar operator on C° (N2 4,\G/K;I;()\)). On the

XE3 +EB},
other hand, F' is killed by Z?Zl FE;; — A\ — 3)\g as well. Thus F = 0.
Let us show (3). Consider the elements in Lemma 4.11 labelled by ((4, ) =
(1,2)) and ((¢,7) = (3,4)). Then from Propositions 4.15 and 4.16, it follows that all
elements in C3° (N1,34\G/K; I (N) = C (N\G/K; I (X)) are killed

XB3 +Bj, XE3 +Bfy
by i, Eii — 21 — 2o + 2. Since they are also killed by Y7+, Ei — A — 3)a,
they must be 0.
To show (2), consider the element in Lemma 4.11 labelled by ((4,7) = (1,4)).
Then from Proposition 4.15, all elements in Cﬁ;ﬁEb(N173v4\G/K5Ik()‘)) are
killed by F42F>; which induces a nonzero scalar operator. Thus they are all 0.

(N2,4\G/K; I;()\)) are nonzero scalar operators, thus they are mutually

We can show (4) in the same way as (2) by using the elements in Lemma
4.11 labelled by ((i,7) = (1,3)) and ((¢,7) = (2,4)). Indeed at least one of these
induces a nonzero scalar operator by Proposition 4.16. O

84.3. Spaces of class one generalized Whittaker functions

We shall examine the dimensions and find generators of spaces of class one gen-
eralized Whittaker functions. From the results in §4.2, it suffices to consider
CY(U\G/K; I (X)) where pairs (U, x) correspond to the labels (1,), (15) = (3y),
(2) = (32, (2) = (32, (24) = (3), (31):

First we consider differential equations satisfied by class one generalized Whit-
taker functions.

Proposition 4.21. The space CY,, . (N2 4\G/K; I;;,(N)) corresponding to (1,)
31 42

can be identified via the isomorphism Z(1y with the solution space of the following

system of differential equations on C*°(Ng4 X A):

(4.9) |92, — (M + Ao+ k —3)da, + (“2)2 + (”’)2(%&)2

a1 ) Ou? ay

- (19(12 + 19!13 +19(l4) + >‘1(>‘2 + k):|¢ =0,
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(410) [ 50 + 0oy = a2t k= 3) 4 (2 ) eV TP - w|o =0,

A1) [y + 00y = a4 De +E=2) + (0= w5 o =0

(1.12) (fu +ae|o=o

w1 | <A1+A2+kzwa2+(al) 8i+() (2 T (0 — )’
- (Z;‘)Q(%\/—T )2 = Way +Vay) + Mo + k)]¢> =0,

(419 (0= 00y + 0y~ -+ da 4k =2) + ();u " ()§]¢ ~0,

(4.15) -(19&2 + 00, — M+ +k—2)+ (v— u)gv} ¢ =0,

(4.16) |92, — (A1 + Ao+ k — 1)U, + <a3> (2my/=

+<a3> 2V —1)%(v — u)? +

— Yo, F A (A2 + k)] ¢ =0,
az

81}2
a

a

(4.17) [aav(ﬂag + 00y — (A + A2+ k—1)) + (2) (2mv—1)%(v — u)] ¢ =0,
(4.18) [1934—(A1+A2+k)19a4+(z;‘> (%ﬁ)%(@)) ;22+)\1()\2+k)]¢
(4.19)  [(Vay + Yay + Vay + Yoy — kX1 — (4 — k)A2)]0

Here ¢ € C°°(Ngy x A).

Proof. Recall that I (\) is written as in the proof of Lemma 4.12 modulo U(g)t.
Then these differential equations immediately follow from Proposition 4.14. O

Proposition 4.22. Fach space C;°1E* et bey B (N\G/K;Ir(\)) for k = 1,2
F1821TE2 5327353

and (e1,€2,€3) chosen as in (4.8) can be identified via the isomorphism =3y with
the solution space of the following system of differential equations on C*°(A):

2
(420) |02 — (M 4 Ao+ k — 3)da, + (277\/—1 Zz) e
1

- (190«2 +19<13 +19a4) +/\1()‘2 +I€) ¢ =0,

(4.21)  e2m/—1 (19@1 + oy — (A1 + A2 +k—=3))p =0,
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(422) €1€2¢ = 0,

2 2
(4.23) {1932 — M+ Aot k= 2)d,, + (27r\/—1 ;”) e+ (2m/—1 Z‘°’> &
1 2
- (19!13 + 19(14) + >‘1(>‘2 + k):| ¢ =0,

(4.24)  ex2my/—1 %(19@ 00y — (M + Ao+ k—2))p =0,
2
(4.25) €2€3¢ = 07

2
(4.26) {1933 — (M ANk — 1), + <2m/1 Z?’) €2
2

2
+ (27r\/—1 Z‘*) g3 — Va, + M (A2 + k)] ¢ =0,
3
(4.27)  es2my/—1 %(19% + 00, — (M + Ao+ k= 1)) =0,
3
2
(4.28) [1934 — (M + A2+ k)o, + (%ﬁ 24) g3+ Ai(A2 + k)} ¢ =0,
3
(4.29)  [Yay +Yay + Vay +Vay — kX — (4 — k)X2]p = 0.
Here ¢ € C*(A).

Proof. Just as in Proposition 4.21, this system of differential equations is obtained

by direct computation from Lemma 4.10 and Propositions 4.11 and 4.16. O
Cases (1,) and (1,). Let us study the spaces CF; . . (N2,4\G/K;Ix(})) and
31 42

O (N24\G/K; I (X)) corresponding to (1,) and (1) respectively.

XE3,
Case (1,). First we investigate the space C77, . (N24\G/K;Ik(A)). We have
31 42
already handled the case £ = 1 in Proposition 4.20. Thus we consider the case
k = 2. We introduce a new coordinate system:

1 = aijaza3a4,

e () oot () ()

(4.30) aLa asa arag\ >
1043 2 203 104
x3 = (v—u)"+—+
204 a1G4 aza3
a1a3 104
T4 = ’ Ty = ’ Te = U.
204 a2a3

Proposition 4.23. Consider the system of differential equations in Proposition
4.21. By addition, substitution and multiplying by some rational functions, the
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system of differential equations in the new coordinate system x1,...,xs can be
written as follows:

(4.31) <1911 _ M JQF A2>¢ =0,

(4.32) (22 — (Yo, — 2) (204, — Va,)]0 = 0,
(4.33) [25(00, — 200,)(Vay — 204, — 1)
— (P — 102 = A1) = 1) (P + (A2 — M1))]6 = 0,
0
4.34 —¢ =
@) =0,
0
4.35 —¢ =0
@) =0,
0
4.36 — =
(4.36) o
Proof. First, we put
a1 = ajag, ar =aray’, a3 = asas,
ay =asayt, U =u, v =v—u.

Then the differential equation (4.12) becomes

4.37 —¢=0.
(437) el
Furthermore we change the variables am, ay, v’ to
12 -1 —1 —1
W= Qoo + asay oy oy,  Po=ooay,  L4= oy .
Then equations (4.14) and (4.15) become

(4.38) U, ¢ =0,
(4.39) Up,¢ =0,

respectively. On setting

Bi=aras, Pz =0y,
equation (4.19) becomes
(4.40) (298, — (M + A2))p = 0.

Also we can see that equation (4.10) can be written as

(4.41) 2w%(2(19ﬁ1 +98,) — (A1 + A — 1)) — (27vV—1)2B5 w| ¢ = 0.
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If we eliminate ¥g, from (4.41) by using (4.40), we can write (4.41) as

0
(4.42) [211)8(21933 +1) — (27v-1 )233110} ¢ =0.

w

We note that (4.17) can be reduced to the same equation. Taking into account
(4.40) and (4.42), equation (4.9) can be reduced to

2
(4.43) [(19/33 + 0 — 2 — A —4) (W, + T + (M1 — A2)) — 48‘12} ¢ =0.

We can also see that (4.13), (4.16) and (4.18) can be written as the same equation
(4.43). Finally, we put

n=@V-1)728 1w,y =w
Then (4.42) is equivalent to
(4'44) [(1971 - 219’72) (% - 19’)’1) - ’Ylkb = 0.
Also (4.43) can be written as

(4.45)
[(7‘972 - %(/\2 - )‘1) - 1)(1972 + i(/\2 - )‘1)) - 72(19% - 219’72)(1971 - 219’Y2 - l)kﬁ =0.

If we put
=P, T2=m, T3=12
x4 =P, x5=P1, w6=1,
then the theorem follows from (4.37), (4.38), (4.39), (4.40), (4.44) and (4.45). O

Let us look at the differential equations (4.32) and (4.33). If f(z2,x3) is a
solution of them, we consider the function F'(z9,z3) such that

= z;/ng)‘l_/\z)/4F.
Then F'(zq,x3) satisfies
(4.46) (22 — Uy, (204, — Vo + 3(A1 — A2 — 1))]F (22, 23) = 0,
(447) [JL‘3(2’L93¢3 — 19352 + %(/\1 — Xy — 1))(2193;3 — 19952 + %()\1 — Ay — 1) + 1)
— 1913(7991:3 + %()\1 — )\2) — 1)}F(1‘2,$3) =0.
These are the differential equations for Horn’s hypergeometric function

Hlo(%()\l — X — 1), %()\1 — A2);xa,x3) (cf. [13]). Let $10(a,d;z,y) be the solu-
tion space of the system of partial differential equations for Horn’s hypergeometric
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function Hyg(a,d; x,y), i.e.,

[2(20, — 9y + a)(20e — Oy +a+ 1) — (9o +d — 1)]f(z,y) =0,
[y — 9y(20, — 9y +a)|f(x,y) =0

It is known that the dimension of the solution space is 4 on a nonsingular domain
(cf. [5]). We can find more detailed properties of $1¢(a,d;z,y) in the Appendix.

Theorem 4.24. Set
1 = aijaasay,
— a 2 a 2 a 2
xQ - (Tr _1)2<(3> (U_u)Q + (4> + (3> )’
a9 a9 a1

-2
a1as 2 , Q203 a104
x3 = ( (v—u)"+—=—+ ,

a204 a104 G203
a1a3 104
T4 = ’ Ts = ’ Ze = U.
agay aoa3
Then:
1. For any F € E(l)(C;z‘;;ﬁEb(NQA\G/K;IQ()\))) C C®°(Nay x A), there eists

flz,y) e .610(%()\1 — A2 — 1), %()\1 — A2);x,y) such that
F(zq,...,26) = xg)‘lJr)‘Q)/zxé/Qxé)‘l7>‘2)/4f(x27 x3).

2. dim C*® (N2 \G/K;I2(N)) < 4.

.
XE3 +E],

3. Suppose that there exists F' € =) (CY (N2 4 \G/K; I5(X))) such that

* x
XES +Ej,

—(M+A2)/2
sup \xl( 122/ x5 22 F(21,...,26)] < 00
(a,(u,v))EAX N2 4

for all sufficiently large positive integers a; and as. Then there exists a constant
C such that

x;(A1+A2)/2x;1/2x§(A17)\2)/4F — CX

o1+v/—1oo o2+v—1o0
/ / [(s1)T'(s1—2s2—a)T'(s2)T(sa—d+1)z5 ** x5 % dsy dsa.
oc1—v/—1oo Jog—y/—1oo

Here 01 and oo are sufficiently large positive integers and a = %()\1 — X —1)
and b = %()\1 — )\2)
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Proof. The first statement is already shown. Let us note that for a domain
O C G, the restriction map Res: C¥(G) — C¥(0O) is injective. We also recall

that C;;;lw* (N2, \G/K; I5(X)) C C¥(G) as we have seen in Remark 2.5. Then
the second statement follows from the first one.

Regarding z1,...,x¢ as functions on ]\7274 x A, we can see that {(—x2,23) |
((u,v),a) € Nay x A} = (Rsg)? Thus the third statement follows from Theo-
rem C.1. O

Case (1p) = (37). Let us now investigate the spaces CF° . (N24\G/K; I (A)) =
32
Oz, (N\G/K: I,(V).
If we put 1 = a1, 9 = ag/as, T3 = asas, x4 = a4, the differential equations
for the case (e1,e2,¢3) = (0,1,0) in Proposition 4.22 can be written as follows:

(P — (M1 + (k= 4))) (0, — A2)¢ = 0,
[92, = 00y — 1/4(M + Ao + k= 2) (M + Ao + k)
+ 27V —1122)% =V, + (N2 + k)] =0,
(205, —( M+ A2+ k—2)p =0,
(2, — M) (0, — A2+ k) =0,
[Da, + 200, + U0, — kA1 — (4 — k)Aa]d = 0.

To solve this system of differential equations, let us recall the differential
equation of modified Bessel functions. Let B (v; z) (v € C) be the solution space
of the differential equation

d? 1 d V2
—_—— 1 —_— =
{de t ( + xz)}f(x) 0
the modified Bessel equation. This differential equation has = 0 as the unique

singular point in C. We have dim MB(v;z) = 2. In MB(v; x), there is a series
solution

L=y A

T
= mil (v +m+1)
Also there is a solution which is a slowly increasing function on R~ defined by

7l ,(z) = L,(z)

KIJ - s
(x) 2 sinvw

and any slowly increasing function in 9B (v; ) is a constant multiple of K, (x).
Here slowly increasing functions are defined as follows.
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Definition 4.25. Let U C R™ be a domain. A function f(z) on U is called slowly
increasing on U if there exists N € N such that

sup(1 + |z[) ™| f(2)] < o0
zeU

where |z| = /22 4+ .-+ 22 forz € U.

In terms of modified Bessel functions, we can solve the above differential
equations as shown below.

Theorem 4.26. Set x1 = a1, T3 = as/as, x3 = agas, x4 = ayg. Then the space
Em (O, (N2a\G/K;Ix(N))) is spanned by

XEeS,
zi‘zx;mxg)‘l+’\2_1)/2x22+1f(27rx2) ifk=1
for f(z) € MB((A — A2 — 2)/2;2) and

Cl‘i\l72%‘;/21‘;A1+)\2+k72)/2$22+291(27T.’L‘2) + C'mi‘zx;/zx?ﬁ&)mxi‘l92(2779162)

if k=2
for C,C" € C, g1 € MB((A1 — A2 — 3)/2;z) and go € MB((A1 — A2)/2;2). Thus

2 if k=1,

dimC;OEg'2 (N2 a\G/K; I (X)) = {4 if k=2.

Moreover Z1)(CY°, (N24\G/K;Ix()\))) for k = 1 (resp. k = 2) contains a

XE3,
1-dimensional (resp. 2-dimensional) subspace of slowly increasing functions on
{(l‘l,...,l‘4) | x; € Ryg, 1= 1,...,4}.

Proof. Consider the system of differential equations

(P, = (A1 + (k= 4)))(Va, — A2)¢ =0,
(7‘9:104 - )‘1)(19934 - ()‘2 + k))(b =0,
(0, + 205, + 04 — kA1 — (4— K)Aa)d = 0.

The general solution of the system is Cz}? xg’\lJr)‘rl)/zari‘erl if ¥k = 1 and
C’lxi‘ﬁzmg}““@)ﬂxi‘ﬁz + C’gxi‘zxg\ﬁ)‘ﬂ/zmi‘l if & = 2, for constants C, Cy and
C5. The remaining differential equations can be reduced to the equation of modi-
fied Bessel functions, proving the theorem. O
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Cases (25), (2.) and (24)
Case (2p) = (3;) and k=2

Theorem 4.27. If k = 2, the space Z5)(CS (N1,3,4\G/K;I3(N))) consists

XEB3 +Ef,
of
MR D/2, 172 kXt /2, 1/2 £ 900 ) 0 (9705)

for f(x),g(x) € MB((A\1—A2—2)/2;x). Here we put 1 = ajaz, T2 = al_lag, T3 =

azay, T4 = az‘as. Thus dim C;‘;* 3, (N134\G/K;Ir(N) = 4.
Moreover, =) (C;oE b (N1’374\G/K;12()\))) contains a slowly increasing
function on {(x1,...,x4,u) | z; € Rsg, u € R} and it is unique up to a constant.

Proof. Since C2° (N134\G/K;I(\) = C (N\G/K;I5(N)), it suf-

XEBS +Ej, XES +Ejg
fices to solve the system of differential equations in the case (e1,e2,¢e3) = (1,0,1)
in Proposition 4.22. Set x1 = aias, o = al_lag, T3 = a304, T4 = a§1a4. Then we
can rewrite the differential equations as follows:

20, — (A1 + A2 = 1)]p =0,
[21913 — ()\1 + Ao + 1)]¢ =0,

M= -2\ 1
{193:2 — Vg, + (211 22)% — (122> - 4}5 =0,

2
|:19i4 - 1911?4 + (27TV _11‘4)2 - ()\1—;\2_2) - 411:|¢ =0.

We take ¢’ such that ¢ = xé/zxiﬁcﬁ’. Then ¢’ satisfies the equations

[219 - ()\1 + Ao — 1)}(]5/ =0,
(>\1 + )\2 + 1)} Oa

o (o (3 o
(ot (2272 oo

We can conclude that

(1, T2, T3,T4) = T 27x9)g(2mas),

where f,g € MB((A1 — A2 — 2)/2; x). Hence the conclusion follows. O
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Case (2.) = (3¢)

Theorem 4.28. Set x1 = aias, T9 = aflag, T3 = a3, x4 = ay. Then the space
E) (O, (N1,34\G/K;Ix(N))) (k= 1,2) is spanned by

XE$,
xg-)\1+)\272)/2x§/2(x3x4)kz+1f(2ﬂ_m2) Zf k=1
for some f(x) € MB((A\1 — A2 — 3)/2;z) and

(Craz?x)t + Coxy' ta2 ™) x xg/\ﬁ)‘rl)ﬂx;/zf(%rxg) ifk=2

for some f(x) € MB((A\ — A2 —2)/2;2) and Cy,Cy € C. Thus

o 2 if k=1,
dunC’XE;1 (N134\G/K; 1, (N\)) = {4 if k=2

Moreover, E(2)(CF° ., (N1,34\G/K;1(N))) for k =1 (resp. k = 2) contains
21
a 1-dimensional (resp. 2-dimensional) subspace of slowly increasing functions on

{(‘rlv (RS 71‘47’1,6) ‘ T € IR>Oau € R}

Proof. Since C%° . (N1,34\G/K; I1(N)=C% . (N\G/K;I;())), it suffices to solve
21 21

the system of differential equations in the case of (£1,£2,e35) = (1,0,0) in Proposi-

tion 4.22. Set 1 = ajas, T3 = al_lag. For a solution ¢ of the system in Proposition
4.22, we take ¢’ with ¢ = x;/qu’. Then

A+ —-3+k],
R A =
2
(4.49) |:199262 _ ((2W$2)2 + <>\1 — A 2_ (4 — k)) >:|¢/ =0,
(4.50) 92, — (A1 + A2 — L+ k)qy — Va, + A1(A2 + k)]¢' =0,
(4.51) (Do, — M) (e, — N2+ k))o' = 0.

The solution of (4.48) and (4.49) is

¢/($17 x2,a3,a4) = c(as, a4)$g/\1“273+k)/2f(27m2)

for an arbitrary function c(as,as) and f(z) € MB((A — A2 — (4 — k))/2;2). We
solve the equations (4.50) and (4.51) to determine c(as, c¢4). We find

(agay) 2t for k=1,

clag,aq) =
(0, 04) Cray*™ayt + Coay ta)>™? for k=2
Y

for some constants Cy,Cy € C. This concludes the proof. O
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Case (24) = (3,)
Theorem 4.29. Set x1 = a1, T2 = as, T3 = a§1a4, x4 = agaq. Then the space
E@(C’XE* (N134\G/K; I;;(N)) (k=1,2) is spanned by
xi’\ﬁ”\z)mxé/z(x3x4))‘2f(27ra:2) if k=1
for some f(x) € MB((A\2 — 1 —1)/2;2) and
(Cra 229272 4 Coay? a3 1) x zi)‘1+/\2+1)/23::15/2f(27rx3) if k=2
for some f(x) € MB((A2 — M\ +2)/2;2) and C1,Cy € C. Thus

2 if k=1,

dimg OXE* (N134\G/K; I (N) = {4 if k=2

Moreover, Z(9)(C5° . (N1,34\G/K;1(\))) for k =1 (resp. k = 2) contains
a 1-dimensional (resp. 2-dimensional) subspace of slowly increasing functions on
{(z1,...,24,u) | ; € Rsp,u € R}.

Proof. This follows from the isomorphism given in Proposition 4.13 and Theo-
rem 4.28. 0

Case (33)
Theorem 4.30. For k = 1,2, the space Z3)(C*(N\G/K; Ix()\))) consists of the
following functions: if k =1,

A1—2 _Ao+1 )\2+1

Cra2ay?ay?a)’ + Coay2ay' 2a)

Cgai\l 3a§\2+1a§2+1a22+1_’_0401?2013\20?1 1 >\2+1

forC; eC,i=1,...,4; and if k = 2,

C1a1 ag\2a§\1ai\1 +C2a)\1*2 A1—1 )\2+1 )\1

+03aA1 2 A2+1 >\2+1 )\1 +C al ag\l 1 X—1 )\2+2

a

3
)\2/\ 1/\ 1)\2 )\2)\ 2)\ 2)\2
+C5CL1 2+ 31 2+ +Ca1 21 2+ 2+

forC;eC,i=1,...,6.
Proof. The relevant differential equations are

(Vo — (M1 — (k= 4))) (00, — A2)d =0,
(02, — (M + A2+ k= 2)da, — (Vay +Va,) + M (A2 +F)]d =
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W2, — (A1 + X2+ k — 1)V, — Vo, + Mi(A2 + k)] =0,
(Vay — M) (Pay — (N2 +k))p =0,
[Pay + Vay + Day + Pay, — kA1 — (4 — k)X2]d = 0.

The result follows by solving this system of differential equations. O

Appendix A. The table of dimensions of generalized Whittaker
functions of GL(4,R)

We summarize the dimensions of generalized Whittaker functions of GL(4,R) in
the table below. The notation is as in §4. The first row of the table describes the
basis of the space of generalized Whittaker functions. The second row describes
the dimensions and the third row the dimensions of the spaces of functions which
satisfy the growth conditions. For detailed conditions, see §4.

Generalized Whittaker functions for X »

(1) [ (1) = B) [ 2a) | (20) = 30) [ 20) = 30) [ 2a) = (34)
basis 0 MB 0 0 NMB NMB
dim 0 0 0 2 2
dim®" ™ |0 1 0 0 1
(3a) | (36) | (3a) | (3n)

0 0 0 %
0 0 0 4
0 0 0 4

Generalized Whittaker functions for Xy »

() | (1) = 67) | 2a) | @)= (30) | =060 | (2a)= ()

Hio [ MB+MB | 0 | MB x MB | (2% +27)MB | (2 + 2°)MDB
<4 4 0 4 4 4

<1 2 0 1 2 2

(3a) | (3v) | (3a) | Bn)
0 0 0 <
0 0 0 6
0 0 0 6

B. The multiplicity one theorem for Horn’s hypergeometric functions

We consider the asymptotic behaviour at infinity of Horn’s hypergeometric func-
tions, to apply it in the multiplicity theorem for generalized Whittaker functions.
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Let P;(z) and Q;(x) be nonzero polynomials of z = (x1,...,x,) for i =
1,...,n. Then Horn’s hypergeometric functions are defined as solutions of the
system of linear partial differential equations

(B.1) [2:P(9) — Qi(9)]f(z) =0, i=1,...,n.

Here 9; = xla and ¥ = (¥4,...,9,). We assume that P; and Q; can be decom-
posed into products of linear factors, i.e.,

P

Pt(s) = H((Akvs> - Ck)v H Bla

k=1 =1

~

for s € R™, Ay, B; € R™, ¢;,d; € C and (, ) denotes the natural inner product
in R™. We also assume that P;(s), Q;(s + e;) are relatively prime for i = 1,...,n.
Here e¢; = (0,...,0,1,0,...,0) (1 in the ith position).

We consider the following system of difference equations associated with (B.1):

(B.2) Pi(—(s+ e))dls + e) = Qi(=s)p(s), i=1,...,n.
Remark B.1. Let ¢ be a solution of (B.2). We consider the integral

/¢ x % ds.

Then under the assumptions below, f(z) is a solution of (B.1).

1. For any ¢ = 1,...,n, the translation of the contour C with respect to the basis
e; is homologically equivalent to C in the complement of the set of singularities
of the integrand ¢(s) in C™.

2. The integral converges absolutely and it can be differentiated with respect to
x sufficiently many times.

We put

Q) g

Pi(=(s +e))

Theorem B.2 (Ore [20], Sato [27], Sadykov [26]). 1. The system of difference
equations (B.2) is solvable if and only if

RZ(S) =

L.

(B3) Ri(5+€j)Rj(8) = RJ(S—FBZ)RZ(S), ,7=1,...,n.

2. If (B.2) is solvable, then its solution is unique up to an arbitrary periodic func-
tion (s) with respect to e;, i.e.,

Y(s+€:) =P(s)
fori=1,...,n. Furthermore, there exist p’,q¢' € N, A}, B e R" (1 <k <Y/,



792 K. HIROE

1<1<¢),¢,dieCA<Ek<p,1<I<¢)andt; eR (i=1,...,n) such
that the general solution of (B.2) is
T T~ d)

= T (A ) — )

where % =t °* -t %" and Y (s) is an arbitrary periodic function satisfying

V(s +e;) =(s).

We make the following assumption for the multiplicity theorem.

¢(S)7

(A) The system of difference equations (B.2) is solvable, i.e., the condition (B.3)
is satisfied, and we can choose a solution

T TBYs) — d)
[Ti—1 T((A s) — )
which satisfies the following conditions:

(i) We have

$(s) =

’
q

Pl n
STUBLS =Y [(Aps) =Y |si| - for s € R
1=1 k=1 i=1
(ii) The function ¢(s) has no zero if each Re(s;) is sufficiently large for i =

1,...,n.

Remark B.3. Consider the integral

fa)= [ L / T sy ds

1—v—Too n—v—100
for appropriate o; € R, i = 1,...,n. Under assumption (A)(i), this integral is
absolutely convergent in {z € R" | (t121,...,tn2y) € (R>0)"}.

The following theorem is a generalization of the theorem of Diaconu and
Goldfeld (Theorem 6.1.6 in [6]).

Theorem B.4 (Multiplicity one). Suppose that the system of difference equations
(B.2) associated with the system of differential equations (B.1) satisfies assump-
tion (A). Let f(x) be a solution of (B.1) which satisfies the growth condition
sup |z f(tz)] < o0
z€[R>0)™
for sufficiently large integers a; € N, i =1,...,n. Then it is unique up to constant

multiples. Here x* = 2" - 2% and tx = (1121, ..., tnZn).
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Proof. We consider the Mellin transform of f(tx) as a function of x,

M(f,s] = /000.”/000 f(tz)z* ! dx.

This integral converges absolutely and M[f, s] is an analytic function of s if each
Re(s;) is sufficiently large by the assumption on f(z). Changing the variable z to
te = (t1x1, . .., tn¥y), we have

t7 oo t-too
M(f, ] :t_s/o /0 f(x)z*~t da.

By the growth condition on f(z), we have

ti oo thloo gk - . t; oo to oo ok o
/0 /0 @f(x)x de = (—1) /0 /0 f(x)a—mfx dx

by integration by parts for ¢ = 1,...,n. Recall that f(x) satisfies the system of
partial differential equations (B.1); then we have the system of difference equations

for M[f, 5],
Pi(—(s+e))M([f, s +ei] = Qi(—s)M[f,s], i=1,...,n.

Hence by Theorem B.2, there is a periodic function ¢(s) such that

1

[, T((By,s) —d)) titeo  ptilee
B.4 : s) = . z)x® " dx.
R R A AT

By Stirling’s formula and assumption (A)(i), we obtain for Re(s;) > 0 (i =

1,...,n) the estimate

n

H?:1F(<Bz,8>—dl) = ex —}w Y m(s; as m(s; 00
Hz=1r<<Ak,s>ci>‘0< p( 2 ;‘1 <z>l>) ;u (51)] — o0,

Also by the Riemann-Lebesgue theorem, we have

n

Mf,s] =50 as > [Im(s;)| — oc.
i=1
Combining these estimates, we obtain the asymptotic behaviour of the periodic
function

(B.5) 1(s) = O(exp(57|Tm(s;)])

as Im(s;) — oo and the other s; (i # j) are fixed. The right hand side of (B.4) is
an analytic function of s when Re(s;) (i = 1,...,n) are sufficiently large. Thus if
we recall assumption (A)(ii) and the periodicity of t(s), we can see that t(s) is
an entire function. We put z; = exp2my/—1s; for i = 1,...,n. Now consider the
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Laurent expansion of ¢(s) with respect to 21,

o0

17[}(8) = Z C](gl)(827 sy s’n)’z{C
k=—o00
Here C](Cl)($27 ..., 8,) are periodic and entire functions for (s2,...,s,) € C*~1. We

write s; = 0; +/—17; for o;, 7, € R, i =1,...,n. We consider the integral

1 0o
/ [0 (s)|? dos = Z |cl(€1)(327 ooy 80) |2 exp(—4mkT;)
0 k=—oc0
> |C§1)(82, oy 80| exp(—4rtT;)
for every t = 0,4+1,£2,.... However (B.5) tells us that there exist constants

M; € Ry such that

1
exp(r|m]) >Mi/0 1 (s)[2 dos

for sufficiently large 7;. Thus we have cgl)(SQ,...,sn) =0 fort = +1,42,....

The remaining coefficient c(()l) (s2,...,8n) is also a periodic and entire function for
(s2,...,8,) € C"1. Hence we can apply the same argument for C(()l)(SQ, ceeySn)
with respect to se. Also we can proceed inductively for ¢ = 3,...,n. Thus we
conclude that ¥(s) must be a constant. This completes the proof of the theorem.

O

C. Horn’s hypergeometric function H;,

We give some facts about Horn’s two-variable hypergeometric function Hyg. This
function is the hypergeometric series defined by

oo

a)2m—n m, n
Hio(a,d; z,y) = Z ((d))Qm'n'x Y-

m=0,n=0

Here (a),, means the Pochhammer symbol, i.e., (a)y, =ala+1)---(a + (m — 1))
for a € C and m € N. It is not hard to see that this power series satisfies the
system of hypergeometric partial differential equations

{2(20, — 0y +a)(20, — 9y +a+1) — V(0 +d — 1)}o(z,y) = 0,
{y = 0,202 — 9y + a)}é(z,y) = 0.

It is known that the dimension of the solution space is 4 (cf. [2]). We define another

(C.1)

convergent series

oo (71)m+2n

Hlo (a7 d7 Z, y) = Z (a n 1)m+2n(d)nm'n'xmyn

m=0,n=0
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Then a basis of the solution space is given by the power series
HIO(CL?d;xvy)v y_d+1H10(a_ 2d+2u _d+2;xay)v
2 Hyo(a, d; z, 2%y), %y " Hy(a — 2d + 3, —d + 2; x, z2y).

The system of hypergeometric differential equations (C.1) has a solution which
has the Mellin—Barnes integral representation

o(z,y) =
o1+v/—1o0 poz+v/—1oco
/ / [(s1)T(s1—2s2—a)l(so)T(s2—d+1)(—x) *ty~*2 dsy dso.
o1-v"Too Jos—y/=Too
Here 07 € R and 03 € R satisfy the conditions o7 > 0, o2 > max{0,Re(d—1)} and
o1 — 202 > Re(a). This integral converges absolutely for z € R<g and y € R>¢.

Theorem C.1. If f(z,y) is a solution of the system (C.1) which satisfies

sup |z y*? f(—z,y)| < oo
:E,yERzo

for sufficiently large aq, a0 € N, then f(x,y) = Co(x,y) for some constant C.

Proof. 1t is easy to see that ¢ satisfies the assumptions of Theorem B.4. Hence
we only need to check that ¢ satisfies the growth condition. If we write a complex
number s = ¢ 4+ /=17, we have ||z|=*| = |z|=7. Thus we obtain the inequality
|p(z,y)| < M|z|~7|y|~72 for x € R<p and y € R>g. Here the constant M is

o1+v—1oo pos+v/—1o0
M = / / T(s1)T(s1 — 282 —a)[(s9)T(s2 —d + 1) dsy dsa]| .

17\/7100 27\/7100

We can choose o1 and o9 with o1 > 0, 02 > max{0,Re(d — 1)} and o1 — 202 >
Re(a). Thus ¢(z,y) satisfies the growth condition. O
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