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Zariski Decompositions on Arithmetic Surfaces

by

Atsushi MORIWAKI

Abstract

In this paper, we establish the Zariski decompositions of arithmetic R-Cartier divisors of
continuous type on arithmetic surfaces and investigate their properties. We also develop
a general theory of arithmetic R-Cartier divisors on arithmetic varieties.
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§0. Introduction

Let S be a non-singular projective surface over an algebraically closed field and let
Div(S) be the group of Cartier divisors on S. An element of Div(S)®zR is called an
R-Cartier divisoron S. It is said to be effective if it is a linear combination of curves
with non-negative real coefficients. The problem of the Zariski decomposition for
an effective R-Cartier divisor D is to find a decomposition D = P + N with the
following properties:
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1) P,N € Div(S) @z R.
2) P is nef, that is, (P - C') > 0 for all reduced and irreducible curves C on S.
3) N is effective.

)

4) Assuming N # 0, let N = ¢;C1 + - -+ 4+ ¢;C; be the decomposition such that
c1,...,¢ € Ryg and C4,...,C; are distinct reduced and irreducible curves
on S. Then the following hold:

(4.1) (P-C;) =0 for all 1.

(4.2) The I x I matrix given by ((C; - CJ))EZ% is negative definite.
<<

In 1962, Zariski [24] established the decomposition in the case where D € Div(S).
By the recent work due to Bauer [1] (see also Section 1), P is characterized by the

(
(
(
(

greatest element in
{M € Div(S)®@z R | D — M is effective and M is nef}.

In this paper, we would like to consider an arithmetic analogue of the above prob-
lem on an arithmetic surface. In order to make the main theorem clear, we need
to introduce some terminology.

80.1. Green functions for R-Cartier divisors

Let V be an equidimensional smooth projective variety over C. An element of
Div(V)r := Div(V) ®z R is called an R-Cartier divisor on V. For an R-Cartier
divisor D on V', we will introduce several types of Green functions for D. We set
D=a,Dy+ - -+ aDyj, where ay,...,a; € R and D,’s are reduced and irreducible
divisors on V. Let g : V' — R U {£o0} be a locally integrable function on V. We
say g is a D-Green function of C*-type (resp. a D-Green function of C°-type)
on V if, for each point x € V, there are a small open neighborhood U, of x, local
equations fi,..., f; of Di,...,D; over U, respectively and a C*°-function (resp.
continuous function) u, over U, such that

1
9=+ > (—a)log|fi?  (ac)
i=1
on U,. These definitions correspond C'°°-metrics and continuous metrics. More-
over, it is necessary to introduce a degenerate version of semipositive metrics. We
say g is a D-Green function of PSHg-type on V if the above u, is a real valued
plurisubharmonic function on U, (i.e., u, is a plurisubharmonic function on U,
and u,(y) € R for all y € U,). More generally, let £ = be the sheaf of locally

loc
integrable functions, that is,

Li(U)={g:U — RU{+o0} | g is locally integrable}
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for an open set U of V, and let us fix a subsheaf .7 of £} _ satisfying the following

loc
conditions (in (1)—(3), U is an arbitrary open set of V):
(1) fu,v e T(U) and a € Rxg, then u+v € 7 (U) and au € F(U).
(2) If u,v € 7(U) and u < v almost everywhere, then u < v.

(3) If ¢ € O3 (U) (i.e., ¢ is a nowhere vanishing holomorphic function on U), then
log(|¢[*) € 7(U).

Any such subsheaf .7 is called a type for Green functions on V. Moreover, .7 is
said to be real valued if u(z) € R for any open set U, u € J(U) and = € U.
Using .7, we say ¢ is a D-Green function of 7 -type on V if the above u, is an
element of 7 (U,) for each x € V. The set of all D-Green functions of Z-type
on V is denoted by G #(V; D). If z & Supp(D), then, by using (2) and (3), we can
see that the value
l
up(@) + Y (—a;) log | f;(x)|”
i=1
does not depend on the choice of the local expression

1
g=1us+ Y (—a)log|fil* (ae);
i=1
this value is called the canonical value of g at x and denoted by gean(z). Note that
Jean € 7 (V \ Supp(D)) and g = gean (a.e.) on V' \ Supp(D). Further, if 7 is real
valued, then gean(z) € R.

e H(V, D) for an R-Cartier divisor D and its norm arising from a Green
function. Let D be an R-Cartier divisor. If V is connected, then H°(V, D) is
defined by

0 —
BV, D) = {¢ on V with (¢)+D >0

is a non-zero rational function
¢ } U {0}.

In general, let V=V, U--- UV, be the decomposition of V into connected com-
ponents. Then

H(V, D) := @ H°(V;, Dlv,).
=1

Let g be a D-Green function of C%-type on V. For ¢ € H(V, D), it is easy to see
that |¢|g := exp(—g/2)|¢| coincides with a continuous function almost everywhere
on V, so that the supremum norm ||¢||, of ¢ with respect to g is defined by

19llg := esssup{[g]y(z) | x € V}.



802 A. MORIWAKI

80.2. Arithmetic R-Cartier divisors

Let X be a d-dimensional generically smooth normal projective arithmetic variety,
that is, X is a flat and projective integral scheme over Z such that X is normal, X
is smooth over Q and the Krull dimension of X is d. Let Div(X) be the group of
Cartier divisors on X. As before, an element of Div(X)g := Div(X) ®z R is called
an R-Cartier divisor on X. It is said to be effective if it is a linear combination of
prime divisors with non-negative real coeflicients. In addition, for D, E' € Div(X)g,
if D — F is effective, then we write D > F or E < D.

Let D be an R-Cartier divisor on X and let g be a locally integrable function
on X(C). A pair D = (D, g) is called an arithmetic R-Cartier divisor on X if
F* (g9) = g (a.e.), where F, is the complex conjugation map on X (C). Moreover,
D is said to be of C®-type (resp. of C°-type, of PSHg-type) if g is a D-Green
function of C>-type (resp. of C-type, of PSHg-type). More generally, for a fixed
type 7 for Green functions, D is said to be of 7 -type if g is a D-Green function
of T -type. For arithmetic R-Cartier divisors Dy = (D1, g1) and Dy = (Do, go), we
define

D,=Dy &L D, = Dy and g1 = g2 (a.e.),

bl S EQ g D1 S DQ and a1 S g2 (a.e.).

If D > (0,0), then D is said to be effective. Further, the set
{M | M is an arithmetic R-Cartier divisor on X and M < D}

is denoted by (—o0, D].

e Volume of arithmetic R-Cartier divisors of C°-type. Let ﬁR’CO (X)r be

we define

g

=

5
i

the group of arithmetic R-Cartier divisors of C%-type on X. For D € Diveo(X)g,
1) is a non-zero rational function
u{o0
{¢ on X with (¢) + D >0 {0},
A°(X,D) = {$ € H'(X, D) | [y < 1},
X,

W(X, D) = log #£(11°(X, D)),

— hO(X,nD)

1(D) :=1i —_—
vol(D) im sup i/l
Note that
P— 1 is a non-zero rational function
(X, D) = { v on-zero xafl u{o}.
on X with (¢¥)+ D > (0,0)
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The continuity of

vol : Pic(X)g — R
is proved in [14], where lsi\c(X)Q = ﬁl\c(X) ®z Q. Moreover, in [15], we introduce
Picco(X)r as a natural extension of Pic(X)g (for details, see [15] or Subsection 5.1)
and prove that vol : Pic(X)g — R has a continuous extension

vol : Picco(X)g — R.
Theorem 5.2.2 shows that there is a natural surjective homomorphism
Og : Diveo (X)r — Pieco(X)z

such that \a(ﬁ) = @(ER(ﬁ)) for all D € Diveo (X)r. In particular, by using

results in [5], [6], [14], [15], [16] and [23], we have the following properties of

vol : Diveo (X)r = R (cf. Theorems 5.2.2 and 6.6.1):

(1) vol : Diveo (X)r — R is positively homogeneous of degree d, that is, \a(aﬁ) =
avol(D) for all a € Rsg and D € Diveo (X)g (cf. [14], [15]).

(2) vol : Diveo(X)r — R is continuous in the following sense: Let Dy, ..., Dy,
Ay, ..., A be arithmetic R-Cartier divisors of C°-type. For a compact set
B in R" and a positive number ¢, there are positive numbers § and ¢’ such
that, for all ay,...,a,,01,...,6 € R and ¢ € C°(X) with (ay,...,a,) € B,
S 1851 < 6 and [|]|aup < O, we have

(S 0B+ 0+ 0.0) - (S oD)
i=1 3=1 =l

Moreover, if D1,...,D,, Ai,..., A are C*, then there is a positive constant

C depending only on X and Dy,...,D,, A;,..., A, such that
‘xfo\l(z a;D; + Z §;A; + (0, (b)) - vAol(Z aiﬁi)
i=1 j=1 i=1
T T/ d— T/
<O(Xlad +050) " (6l + 31651)
i=1 j=1 j=1

for all ay,...,a,,01,...,0 € R and ¢ € C°(X) (cf. [14], [15]).
(3) vol(D) is given by “lim”, that is,

<e

—~ — . h'(tD)
VOI(D) = tlil{.lo W,

where D € Diveo(X)r and ¢ € Rog (cf. [5], [15]).
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(4) vol(—)Y/ is concave, that is, for arithmetic R-Cartier divisors Dy, Dy of C°-
type, if D1 and D5 are pseudo-effective (for the definition of pseudo-effectivity,
see Subsection 6.1), then

vol(Dy + D)4 > vol(Dy ) + vol (D) /4

(cf. [16], [23]).

(5) (Fujita’s approximation theorem for R-Cartier divisors) If D is an arithmetic
R-Cartier divisor of C°-type and @(E) > 0, then, for any positive number e,
there are a birational morphism p : Y — X of generically smooth and normal
projective arithmetic varieties and an ample arithmetic Q-Cartier divisor A of
C>-type on Y (cf. Section 6) such that A < p*(D) and \751(2) > \751(5) —€
(cf. [6], [23]).

(6) (The generalized Hodge index theorem for R-Cartier divisors) If D is an arith-
metic R-Cartier divisor of (C° N PSH)-type and D is nef on every fiber of
X — Spec(Z), then \751(5) > d/eTg(Ed) (see descriptions in “Positivity of
arithmetic R-Cartier divisors” below or Proposition 6.4.2 for the definition of
deg(D")) (cf. [14)).

e Intersection number of an arithmetic R-Cartier divisor with a 1-dimen-
sional subscheme. Let 7 be a real valued type for Green functions such that
C° C 7 and —u € J whenever u € 7. Let D = (D, g) be an arithmetic R-Cartier
divisor of Z-type. Let C be a 1-dimensional closed integral subscheme of X. Let
D =a;D;+ -4 a;D; be a decomposition such that ai,...,a; € R and D;’s are
Cartier divisors. For simplicity, we assume that D,’s are effective, C' Z Supp(D;)
for all 4 and that C is flat over Z. In this case, we define

deg D|C Za1 IOg# ﬁC( l)/ﬁC) +% Z gcan(x)'

= zeC(C)

For the general case, see Section 5.3. Let Z be a 1-cycle on X with coefficients
in R, that is, there are a1, ...,a; € R and 1-dimensional closed integral subschemes
Cy,...,C;on X such that Z = a,Cy + - - - + a;C;. Then we define

deg (D | Z) Zaldeg

e Positivity of arithmetic R-Cartier divisors. An arithmetic R-Cartier divi-
sor D is said to be nef if D is of PSHg-type and d/e\g(D|C) > 0 for all 1-dimensional
closed integral subschemes C' of X. The cone of all nef arithmetic R-Cartier di-
visors on X is denoted by Ne\f(X )r. Moreover, the cone of all nef arithmetic
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R-Cartier divisors of C*°-type (resp. C-type) on X is denoted by Ne\fcw (X)r
(resp. Nefco(X)g). Further, we say D is big if vol(D) > 0.
—Nef — —
Let Divo (X)r be the vector subspace of Diveo (X ) generated by Nef co (X )g.
Then, by Proposition 6.4.2,
— — ——Nef
DiVCoo (X)R + DiVCOﬁPSH (X)]R Q DiVCo (X)]R
and the symmetric multi-linear map

ﬁco@(X)R X oo X ﬁcm(X)R —-R

given by (Dy,...,Dg) — d/e\g(ﬁl --+Dy) (cf. Proposition-Definition 6.4.1) extends
to a unique symmetric multi-linear map

—Nef —Nef

DiVCo (X)R X oo X Dcho (X)]R — R
such that (D, ..., D) + \a(ﬁ) for D € Nefco (X)r.
80.3. Zariski decompositions on arithmetic surfaces

Let X be a regular projective arithmetic surface. The main theorem of this paper
is the following:

Theorem A (cf. Theorems 9.2.1 and 9.3.5). Let D be an arithmetic R-Cartier
divisor of C°-type on X such that the set

(=00, D] N Nef (X)z
={M | M is a nef arithmetic R-Cartier divisor on X and M < D}

is not empty. Then there is a nef arithmetic R-Cartier divisor P of C°-type which
is the greatest element of (—oo, D] N @(X)R, that is, P € (—oo, D] N ﬁe\f(X)R
and M < P for all M € (—o0, D] N Ne\f(X)R. Moreover, if we set N = D — P,
then the following properties hold:

(1) vol(D) = vol(P) = deg(P").

(2) ae\g(ﬁb) = 0 for all 1-dimensional closed integral subschemes C with C' C

Supp (V).
(3) If L is an arithmetic R-Cartier divisor of PSHg-type on X such that 0 < L <

N and deg(L|c) > 0 for all 1-dimensional closed integral subschemes C with
C C Supp(N), then L = 0.

Note that the condition (—oo, D] ﬂNe\f(X)R 0 is guaranteed if h°(X, aD)#0
for some a € Rsq (cf. Proposition 9.3.2). The above decomposition D = P + N is
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called the Zariski decomposition of D and we say P (resp. N) is the positive part
(resp. the negative part) of the decomposition. For example, let P = Proj(Z[z, y]),
Co={x =0}, z==x/y and «, 8 € Ry with a > 1 and 8 < 1. Then the positive
part of the arithmetic Cartier divisor

(Co, —log|z[* + log max{a®|z[*, 5%})
of (C° N PSH)-type on P} is
(0Co, —0log |z|*> + log max{a?|z|*,1}),

where 0 = log a/(log o — log 8) (cf. Subsection 9.4). This example shows that an
R-Cartier divisor is necessary for the arithmetic Zariski decomposition. In addi-
tion, an example in Remark 9.4.3 shows that the Arakelov Chow group consisting
of admissible metrics due to Arakelov-Faltings is insufficient to get the Zariski

decomposition.
Assume that N # 0. Let N = ¢;C1+- - -+¢;C; be the decomposition of N such
that ¢q,...,¢ € Ryg and C;’s are distinct 1-dimensional closed integral subschemes

on X. Let (C1,91),--.,(Ci, qi) be effective arithmetic Cartier divisors of PSHg-
type such that

61(01791) +- 4+ Cl(cl;gl) S N7

which is possible by Proposition 2.4.2 and Lemma 9.1.3. Then, by Lemma 1.2.3,
item (3) above yields the inequality

(—1)" det(deg((C5, gi)lc;)) > 0.

This is a counterpart of the property (4.2) of the Zariski decomposition on an
algebraic surface. On the other hand, our Zariski decomposition is a refinement of
Fujita’s approximation theorem due to Chen [6] and Yuan [23] on an arithmetic
surface. Actually Fujita’s approximation theorem on an arithmetic surface is a
consequence of the above theorem (cf. Proposition 9.3.7).

Let D be an effective arithmetic R-Cartier divisor of C°-type. For each n > 1,
we define

Fu(D) = =3 minfmltc((6) + nD) | 6 € H(X,nD)\ {01},
C

M,(D) =D - F,(D).

Let V(nD) be the complex vector space generated by HO(X,nD). It is easy to see
that

1 =
9a1,(0) = 9+ 3 log dist(V(nD); ng)
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is an M,,(D)-Green function of C*-type (for the definition of distorsion functions,
see Subsection 3.2). Then we have the following:

Theorem B (Asymptotic orthogonality). If D is big, then

lim deg((Mo(D), gy, 1)) | Fu(D)) = 0.

n—o0

80.4. Technical results for the proof of the arithmetic Zariski
decomposition

In order to get the greatest element of (—oo, D] ﬂl@(X)R, we need to consider the
nefness of the limit of a convergent sequence of nef arithmetic R-Cartier divisors.
The following theorem is our solution for this problem:

Theorem C (cf. Theorem 7.1). Let X be a regular projective arithmetic surface.
Let {M,, = (M, h,)}>, be a sequence of nef arithmetic R-Cartier divisors on X
with the following properties:

(a) There is an arithmetic Cartier divisor D = (D, g) of C°-type such that M,, <
D for allm > 1.

(b) There is a proper closed subset E of X such that Supp(D) C E and Supp(M,,)
CFE foralln > 1.

(¢) limy oo multe(M,) exists for all 1-dimensional closed integral subschemes C
on X.

(d) limsup,,_, . (hn)can(z) ezists in R for all x € X(C) \ E(C).

Then there is a nef arithmetic R-Cartier divisor M = (M,h) on X such that
M <D,
M = Z( lim multc(Mn))C
c

n—oo

and hean|x )\ E(C) 15 the upper semicontinuous reqularization of the function given
by x — limsup,,, oo (hn)can(z) over X(C)\ E(C).

Moreover, for the first property \751(?) = \a(ﬁ) of the arithmetic Zariski
decomposition, it is necessary to observe the following behavior of distorsion func-
tions (cf. Remark 9.3.9), which is a consequence of Gromov’s inequality for an
R-Cartier divisor (cf. Proposition 3.1.1).

Theorem D (cf. Theorem 3.2.3). Let V be an equidimensional smooth projective
variety over C and let D be an R-Cartier divisor on V. Let R = @,,~, Rn be a
graded subring of @, >, H*(V,nD). If g is a D-Green function of C™>-type, then
there is a positive constant C' with the following properties:
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(1) dist(Rp;ng) < C(n+ 139V for alln > 0.
@) dist(Ry,; ng) dist(R,,;myg) < dist(Ry4m; (n +m)g)
C(TL+ 1)3dimV C(m+1)3dimV - C(n+m+1)3dimV

for alln,m > 0.

The most difficult point for the proof of the arithmetic Zariski decomposition
is to check the continuity of the positive part. For this purpose, the following
theorem is needed:

Theorem E (cf. Theorem 4.6). Let V be an equidimensional smooth projective
variety over C. Let A and B be R-Cartier divisors on V with A < B. If there
is an A-Green function h of C*®-type such that dd°([h]) + da is represented by
either a positive C*°-form or the zero form, then, for a B-Green function gg of
CO-type, there is an A-Green function g of (C° N PSH)-type such that g is the
greatest element of the set

Gpsu(V; A)<gy :={u € Gpsu(V; A) | u < gp (a.e.)}

modulo null functions, that is, g € Gpsu(V; A)<g, and u < g (a.e.) for all u €
Gpsu(V;A)<gp -

For the proof, we actually use a recent regularity result due to Berman—
Demailly [3]. Even starting from an arithmetic Cartier divisor D of C*°-type, it is
not expected that the positive part P is of C*°-type again (cf. [17]). It could be
that P is of C!-type.

81. Zariski decompositions in vector spaces

Logically the material of this section is not necessary except Lemma 1.2.3. How-
ever, it gives an elementary case for our considerations and provides a good
overview of our paper.

§1.1

In [1], Bauer presents a simple proof of the existence of Zariski decompositions on
an algebraic surface. Unfortunately, he uses linear series on the algebraic surface to
show the negative definiteness of the negative part of the Zariski decomposition. In
this section, we give a linear algebraic proof without using any material of algebraic
geometry. The main technical result for our purpose is Lemma 1.2.3. After the first
draft of this paper was completed, Bauer, Caibar and Kennedy kindly informed
me that, in [2], they independently obtained several results similar to those of this
section. Their paper is written for a general reader.
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Let V be a vector space over R. Let e = {ex}rea be a basis of V' and let
¢ = {¢r}rea be a family of elements of Homg(V,R) such that ¢x(e,) > 0 for
A # u. The pair (e, @) is called a system of Zariski decompositions in V.

Let us fix several notations which are used only in this section. For A\ € A,
the coefficient of ey in the expansion of x with respect to the basis e is denoted by
z(Ae), that is, x = 3, x(\;e)en. Let <. be order relation on V' given by

r<cy £ z(A;e) <y(Ase) for all X € A.
We often use y >, « instead of z <. y. Supp(z;e), [z,yle, (—00,Z]e, [x,00)e,
Nef(¢) and Num(¢) are defined as follows:
Supp(z;e) :={A € A | z(Aje) # 0},
[z, yle ={v eV |z <ev <ey}
(—o00,z]e i ={v eV |v<x}
[£,00)e :={v €V | v >¢ z},
Nef(¢) :={v e V| ¢a(v) >0 for all A € A},
Num(e) := {v € V | ¢a(v) =0 for all X € A}.
For an element x of V', a decomposition x = y + z is called a Zariski decom-
position of x with respect to (e, @) if the following conditions are satisfied:
(1) y € Nef(¢) and z >, 0.
(2) ¢a(y) =0 for all X € Supp(z;e).
3) {zx € ZAGSUPP(Z;C) Rx>pex | éa(x) > 0 for all A € Supp(z;e)} = {0}.
We call y (resp. z) the positive part of x (resp. negative part of x).
The purpose of this section is to give the proof of the following proposition.

Proposition 1.1.1. For an element x of V', we have the following:
(1) The following are equivalent:
(1.1) A Zariski decomposition of x with respect to (e, @) exists.
(1.2) (—o0,xz]e N Nef(¢p) # 0.
(2) If a Zariski decomposition exists, then it is uniquely determined.

(3) If a Zariski decomposition of x with respect to (e, @) exists and the negative
part z of x is non-zero, then z has the following properties:

(3.1) Let Q be the matriz (¢x(en))a uesupp(ze)- Then
(_1)#(Supp(Z;e)) det Q > 0.
Moreover, if Q is symmetric, then @Q is negative definite.

(3.2) {ex}resupp(ze) 18 linearly independent on V/ Num(@).
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§1.2. Proofs

Here we prove Proposition 1.1.1.
For z1,...,z, € V, maxe{z1,...,z.} € V is given by

maxe{ry,..., T} = Z max{zi(A\;e), ...,z (A;e)}ex.

AEA

Let us begin with the following lemma.
Lemma 1.2.1. Ifz1,...,2, € Nef(¢), then max{x1,...,z,} € Nef(9).

Proof. Tt is sufficient to see that if ¢ (z;) > 0 for all ¢, then ¢y (maxe{z1,...,2,})

> 0. We set 2 = maxe{z1,...,2,}. Note that Supp(z —z1;e)N---NSupp(z —z,;€)

= (). Thus there is ¢ with A\ & Supp(z — x;;€). Then ¢x(z — x;) > 0, and hence
PA(2) = Pa(z — @i) + da(wi) = 0. O

Lemma 1.2.2. Let x be an element of V such that (—oo, x]e N Nef(¢) # 0. Then
there is the greatest element y in (—oo, x]e NNef(@), that is, y € Nef(¢) N (—o0, x]e
and y >¢ v for all v € Nef(@) N (—o0, xle. This greatest element y is denoted by

max(Nef(¢) N (—o0, x]e).
Further, y and z := x — y have the following properties:

(a) y € Nef(¢), 2> 0 and x =y + z.
(b) ¢a(y) =0 for all X € Supp(z;e).
(c) {v e Z)\E&lpp(z;e) R>pex | dx(v) > 0 for all A € Supp(z;e)} = {0}.

Proof. We choose z’ € (—o0, z]e N Nef(¢). Let us prove the following claim.
Claim 1.2.2.1. There is a greatest element y of Nef(¢) N [z, x]e.

Proof. Note that [2/,z]e = 2’ + [0,z — 2']e. Moreover, it is easy to see that

Nef(¢) N [2', x]e
=2 +{ve0,z -2 | pr(v) > —¢xr(a') for all X € Supp(x — 2';e)}.

Therefore, Nef(¢) N [2/, x]e is a translation of a bounded convex polyhedral set in
a finite-dimensional vector space €D cgupp(z—ue) REr- Hence Nef(¢) N[z, z]e is a
convex polytope, that is, there are v1,...,7 € Nef(¢) N[z, z]e such that Nef(¢)N
[/, z]e = Conv{y1,..., v} (cf. [22, Theorem 3.2.5 or Finite basis theorem]). If we
set y = max{vy1,...,v}, then, by Lemma 1.2.1, y € Nef(¢) N [2/, x]e. Moreover,
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for v=a1m +---+ary € Nef(¢p)N[2', z]e (a1,...,a1 € Rygand a1 +---+a; = 1),
we have

y=ay+- - tayzean+-+ay =0 0

This y is actually the greatest element of (—oco,z]e N Nef(@). Indeed, if v €

(—00, z]e N Nef (@), then max{v,y} € [a', z]e N Nef(¢) by Lemma 1.2.1, and hence

v < max{v,y} < y.

Let us check the properties (a), (b) and (c). First of all, (a) is obvious. In
order to see (b) and (c), we may assume that z # 0.

(b) Assume that ¢5(y) > 0 for A € Supp(z;e). Let ¢ be a sufficiently small
positive number. Then y + ee) <e x and

Su(y + eex) = du(y) + edplexn) >0

for all 4 € A because 0 < € < 1. Thus y + eey € Nef(¢), which contradicts the
maximality of y. Therefore, ¢ (y) = 0 for A € Supp(z;e).

(c) Assume that there is v € (3 csupp(ze) R>0€x) \ {0} such that ¢x(v) =0
for all A € Supp(z;e). Then there is a sufficiently small positive number € such
that y + €'v <. x. Note that ¢, (y+ €'v) > 0 for all x, which yields a contradiction
as before. O

Lemma 1.2.3. Let W be a vector space over R. Letey,...,e, € W and ¢1,..., ¢,
€ Homg (W, R) with the following properties:

(a) {(a1,...,a,) € RY, [arer + -+ +ane, =0} = {(0,...,0)}.
(b) ¢i(ej) >0 for alli # j.

(c) {x € Rxpe1 + -+ Rxpey, | ¢i(x) >0 for all i} = {0}.
Then we have the following:

(1) Let Q be the (n x n)-matriz (¢;(e;)). Then there are (n x n)-matrices A and
B with the following properties:

(1.1) A (resp. B) is a lower (resp. upper) triangular matriz consisting of non-
negative numbers.

(1.2) det A >0, det B> 0 and
AQB =

(1.3) If Q is symmetric, then B ='A.
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(2) The vectors ey, ..., e, are linearly independent in

Wiz e W ¢i(x) = - = dn(x) = 0}
Proof. (1) Let us begin with the following claim.
Claim 1.2.3.1. ¢;(e;) <0 for all i.

Proof. If ¢;(e;) > 0, then e; € {x € Rxgpe1 + --- + Rxpey, | ¢j(z) > 0 for all j}.
This is a contradiction because e; # 0. O

The above claim proves (1) in the case where n = 1. Now we set
¢; = —di(e1)gi + diler)r (1 >2), e = —di(er)e; + di(ej)er (> 2).
We claim the following:

Claim 1.2.3.2. (i) ¢i(e1) = 0 and ¢1(e;) =0 for all i > 2 and j > 2.

ii) e5,...,e an e satisfy all assumptions (a)—(c) of the lemma.
2 n and ¢ o, fy all f the 1
(iii) Let Q" be the matriz (¢;(e}))2<i,j<n- Then
p1(e1) 0O
A1QBy =
lQ 1 ( 0 Q/ )
where A1 and By are the matrices
0 0 0 1 d1(e2) oi(es) - di(en)
d)z 61) 7d)1(61) 0 0 0 *(;51(61) 0 0
b3 (e1) 0 —p1(e1) 0 o 0 —¢1(e1) - 0
dnler) O 0 - —gale)) \0 0 0 —di(er)

respectively. Note that if Q is symmetric, then By = 'A; and Q' is also
symmetric.

Proof. (i) is obvious.
(ii) Tt is easy to see (a) for €}, ..., e, by using Claim 1.2.3.1. For 4, j > 2 with
i # j, by Claim 1.2.3.1,

#i(€}) = o1(e1)dile;) + (—duler))di(er)du(e;) = 0.

Finally let z € 7,5, R>oe} be such that ¢;(z) > 0 for all i > 2. Note that
dh(x) = (—p1(e1))di(x) for ¢ > 2. Therefore, ¢;(x) > 0 for all ¢ > 1, and hence
z =0 because >, R>o0€; C 37,5 Rxoe;.

(iil) is a straightforward calculation. O
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We prove (1) by induction on n. By induction hypothesis, there are matrices
A’ and B’ satisfying (1.1)—(1.3) for @’, that is,

1 - 0
A/Q/Bl — :
0 -1
Therefore,
) ) 1 - 0
— 0 —— 0
vV —¢1(er) A1QB; | V—diler) = :
0 A 0 B’ :
0 -1
Thus (1) follows.
(2) Let are; + -+ + ape, = 0 be a linear relation on
Wiz e W[ ¢1(z) =+ = ¢n(z) = 0}
Then there is # € W such that © = aje; +- - -+ ape, and ¢1(z) = -+ = ¢p(z) = 0.
Thus 0 = ¢;(z) = >_ ¢i(ej)a;. Hence (1) yields (2). O

Proof of Proposition 1.1.1. (1) Clearly (1.1) implies (1.2). If we assume (1.2), then
(1.1) follows from Lemma 1.2.2.

(2) Let = y + 2z be a Zariski decomposition of & with respect to (e, @) and
y" = max(Nefy N(—00,z]e). Then y <c 3. As ¢x(y) = 0 for all A € Supp(z;e),

/ .
y —y € {x € Z)\ESupp(z;e) Rxpex | oa(z) >0 for all X € Supp(z,e)},

and hence y' = y.
(3) follows from Lemma 1.2.3. O

Remark 1.2.4. We assume that ¢,(e,) € Q for all \, u € A. Let € @, Qe be
such that (—oo, z]eNNefy # 0. Let = y+2 be the Zariski decomposition of « with
respect to (e,¢). Then y, z € @, Qe,. Indeed, if we set Supp(z;e) = {A1,..., A}
and z = ) a;ey,, then

qu)\i (€>\j)a’j = QS)VL (.73) € Q

On the other hand, by our assumption and (3.1) in Proposition 1.1.1, we have
(¢>\1, (eAj))1§¢7an c GLn(Q) Thus (al, R an) e Q.
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82. Green functions for R-Cartier divisors
§2.1. Plurisubharmonic functions

Here we recall plurisubharmonic functions and the upper semicontinuous regular-
ization of a function locally bounded above.

Let T be a metric space with a metric d. A function f : T — {—c0} UR is
said to be upper semicontinuous if {x € T'| f(x) < ¢} is open for any ¢ € R. In
other words,

f(a) = limsup f(z) (:= inf(sup{f(y) | d(a,y) < €}))

r—a

foralla € T. Let u : T — {—o00} UR be a function such that w is locally bounded
above. The upper semicontinuous regularization u* of u is given by
u*(z) = limsup u(y).
y—x
Note that u* is upper semicontinuous and u < u*.

Let D be an open set in C. A function v : D — {—oc0} UR is said to be
subharmonic if u is upper semicontinuous and

1 27

u(a) < —/ w(a +reV=10)do
2 Jo

for any @ € D and r € Ry with {z € C| |z —a| <r} C D.

Let X be a d-equidimensional complex manifold. A function v : X — {—oco}UR
is said to be plurisubharmonic if u is upper semicontinuous and uo¢ is subharmonic
for any analytic map ¢ : {z € C | |z2| < 1} — X. We say u is a real valued
plurisubharmonic function if u(z) # —oo for all z € X. If X is an open set in C%,
then an upper semicontinuous function v : X — RU {—o0} is plurisubharmonic if

and only if
1 27
u(a) < o / u(a+ Eexp(v/—10))db
T Jo
for any a € X and ¢ € C? with {a + £exp(v/—16) | 0 < 0 < 27} C X. As an
example, if f1,..., f, are holomorphic functions on X, then

log(|f1]* + -+ + [ f+*)

is a plurisubharmonic function on X. In particular, if

vg{ze X[fi(z) == fr(2) =0},

then dd¢(log(|f1|* + - -+ + | f-|?)) is semipositive around z.
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Let {ux}aea be a family of plurisubharmonic functions on X, locally uni-
formly bounded above. If we set u(z) := supycp ua(z) for x € X, then the upper
semicontinuous regularization u* of u is plurisubharmonic and u = u* (a.e.) (cf.
[9, Theorem 2.9.14 and Proposition 2.6.2]). Moreover, let {v,}52; be a sequence
of plurisubharmonic functions on X, locally uniformly bounded above. If we set
v(x) := limsup,,_, ., vn(x) for x € X, then the upper semicontinuous regulariza-
tion v* of v is plurisubharmonic and v = v* (a.e.) (cf. [9, Proposition 2.9.17 and
Theorem 2.6.3]).

§2.2. R-Cartier divisors

Let X be either a d-equidimensional smooth algebraic variety over C, or a d-equi-
dimensional complex manifold. Let Div(X) be the group of Cartier divisors on X.
An element D of Div(X)g := Div(X) ®z R is called an R-Cartier divisor on X.
Let D = Z?zl a; D; be the irreducible decomposition of D, that is, ai,...,a, € R
and D;’s are reduced and irreducible divisors on X. For a prime divisor I' on X
(i.e., a reduced and irreducible divisor on X), the coefficient of I" in the above
irreducible decomposition is denoted by multr (D), that is,

a; if I' = D; for some 1,

multr (D) =
0 ifI'# D, for all i,

and D = 3 multp (D)I'. The support Supp(D) of D is defined by U,y ()0 I
If a; > 0 for all ¢, then D is said to be effective, written D > 0. More generally,
for D+,Dy € DiV(X)R,

D1§D2 (OI‘DQZDQ) g Dngle

The round-up [D] of D and the round-down |D| of D are defined by

n n

[D] =) [a;|D; and [D] =" |a;]D;,

i=1 i=1
where [z] =min{a € Z |z < a} and || = max{a € Z | a < z} for x € R.

We assume that X is algebraic. Let Rat(X) be the ring of rational functions
on X. Note that X is not necessarily connected, so that Rat(X) is not necessarily
a field. In the case where X is connected, we define

H°(X,D) :={¢ € Rat(X)* | (¢) + D > 0} U{0}.

In general, let X =[] X, be the decomposition into connected components, and
let D, = D|x, . Then we define

H°(X,D) := @ H(X4, Da).
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Note that if D is effective, then H(X, D) is generated by
{¢ € Rat(X)" | (¢) + D = 0}.
Indeed, for ¢, € H°(X4, Dy ), if we choose ¢ € C* with ¢, + ¢ # 0, then
0,...,0,00,0,...,0) = (1,..., L,da+c,1,....1)—(1,....,1,¢,1,...,1),
which shows the assertion. Since
(6a) + Do 20 & (fa) + [Da] 20,

we have H*(X, D) = H(X, | D)).

In the case where X is not necessarily algebraic, the ring of meromorphic
functions on X is denoted by M(X). By using M(X) instead of Rat(X), we can
define H?Vl (X, D) in the same way as above, that is, if X is connected, then

HY (X, D) == {6 € M(X)* | (¢) + D > 0} U{0}.

If X is a proper smooth algebraic scheme over C, then Rat(X) = M(X) by GAGA,
and hence H°(X, D) = HY,(X, D).

82.3. Definition of Green functions for R-Cartier divisors

Let X be a d-equidimensional complex manifold. Let £ be the sheaf of locally

loc
integrable functions, that is,

L. (U):={g:U = RU {40} | g is locally integrable}

for an open set U of X. Let .7 be a subsheaf of £} _and let S be a subset of

loc

R U {+o00}. Then J5, 7 and —7 are defined as follows:

Is(U):={g9ge€ TU)|g(x)e Sforal zeU},
TPU) :={g € T(U)]| g is locally bounded on U},
~T(U) = {~g € Lio(U) | g€ T (U)}.

Let 7’ be another subsheaf of L’lloc. We assume that v 4 u’ is well-defined as a
function for any open set U, u € 7 (U) and v’ € '(U). Then  + 7’ is defined

by

For any x € U, we can find an open
(7 + 7" U):= 1 g€ L. (U) | neighborhood V,, u € .7 (V) and
u' € T'(V,) such that gly, = u+u
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Similarly, if u — v’ is well-defined as a function for any open set U, u € Z(U) and
u € T'(U), then J — 7" is defined by

For any x € U, we can find an open
(7 — T U):=< g€ L, .(U) | neighborhood V., u € 7 (V,) and
u’ € T'(Vy) such that gy, =u — o/

Note that 7 — 7' = 7 + (—7'). A subsheaf .7 of L. _is called a type for Green

loc
functions on X if the following conditions are satisfied (here U is an arbitrary open

set of X):

(1) fu,v e F(U) and a € R>g, then u+v € 7 (U) and au € 7 (U).

(2) Ifu,v e 7(U) and u < v (a.e.), then u < v.

(3) If p € O%(U) (ie., ¢ is a nowhere vanishing holomorphic function on U), then
log |¢|? € 7 (U).

Note that, for u,v € F(U), u =v if u = v (a.e.). If T = Fg, that is, u(z) € R

for any open set U, uw € J(U) and x € U, then 7 is called a real valued type. As

examples of types for Green functions on X, we have

CP: the sheaf of continuous functions,
C*: the sheaf of C'"*°-functions,

PSH: the sheaf of plurisubharmonic functions.

Note that
PSHg(U) = {g € PSH(U) | g(x) # —oc for all x € U}

for an open set U of X. Let .7 and .7’ be types for Green functions on X. We
say 7' is a subjacent type of 7 if the following property holds for any open set U
of X:

v <u(ae)onUforu' € 7'(U)andue T (U) = o <wuonU.

Lemma 2.3.1. Let F be either C° + PSH or C° + PSHgr — PSHr. Then 7 is a
type for Green functions on X. Moreover, PSH is a subjacent type of 7.

Proof. The conditions (1) and (3) are obvious for 7. Let us see (2). For 2z =
(21,...,24) € C4 we set ||z = \/]z1]2 + - + |24]2. Moreover, for a € C? and
r > 0, the ball {z € C?| ||z — al| < r} is denoted by B%(a;r).

The assertion of (2) is local, so that we may assume that X = B%((0,...,0);1).
It is sufficient to see that, for uj,us € J(X), if u1 < uy (a.e.), then vy < us.
Let us fix a € B4((0,...,0);1). There are a sufficiently small r > 0 and v;; €
Li (B%a;7)) (i=1,2 and j = 1,2,3) with the following properties:

loc
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) w1 = v11 + v12 — v13 and ug = Va1 + Vag — Va3.
b) vi1,v91 € C°(B4(a;7)).
V12, Va2 € PSH(B%(a;7)) in the case 7 = C° + PSH.

(a

(

(c)

(c)’ v12,v22 € PSHR(B%(a;7)) in the case 7 = C° + PSHg — PSHg.
(

(

C

d) w13 = ve3 = 0 in the case 7 = CY + PSH.
d)' v13,v23 € PSHg(B%(a;7)) in the case 7 = C° + PSHg — PSHg.

Let x. (¢ > 0) be the standard smoothing kernels on C¢ (cf. [9, Section 2.5]).
It is well known that v;;(a) = limco(vij * xc)(a) for ¢ = 1,2 and j = 1,2,3
(cf. [9, Proposition 2.5.2 and Theorem 2.9.2]). In the case 7 = C° + PSH, since
vi1(a),va1(a) € R, vi2(a),vea(a) € RU{—oo} and v13 = veg = 0,

Lim (u; * xe)(a) = lim((vir * xe)(a) + (viz * xe)(a) — (viz * xc)(a))
= lim (vi1 * xe)(a) + lim (viz * xe) (@) — lim(viz * xc)(a)
= v;1(a) + viz(a) — viz(a) = u;(a).

If 7 = CY 4+ PSHg — PSHg, then, in the same way as above, we can also see
u;(a) = lime_yo(ui*Xe)(a) for i = 1,2 because v;5(a) € Rfori=1,2and j =1,2,3.
Therefore, (2) follows from the inequalities (u1*x¢)(a) < (uz*xc)(a) (for all € > 0).
The last assertion can be checked similarly. O

Let 7 be a type for Green functions on X. Let g be a locally integrable
function on X and let D = 22:1 a;D; be an R-Cartier divisor on X, where D;’s
are reduced and irreducible divisors on X. We say g is a D-Green function of
T -type (or a Green function of T -type for D) if, for each point x € X, g has a

local expression
1

g=u+Yy (—a)log|fi* (ae)
i=1

over an open neighborhood U, of x such that v € 7 (U,), where fi,..., f; are
local equations of Dy, ..., D; on U, respectively. Note that this definition does not
depend on the choice of local equations f1, ..., f; on U, by the properties (1) and
(3) of 7. The set of all D-Green functions of J-type is denoted by G & (X; D).

Let g be a D-Green function of Z-type. We say ¢ is of upper bounded type
(resp. of lower bounded type) if, in the above local expression around each point
of X, u is locally bounded above (resp. locally bounded below). If g is of upper and
lower bounded type, then g is said to be of bounded type. These definitions also
do not depend on the choice of local equations. Note that the set of all D-Green
functions of .7-type and of bounded type is nothing other than G &+ (X; D).
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We assume z ¢ Supp(D). Let g be a D-Green function of Z-type. Let
fi,..., fiand f1,..., f] be two sets of local equations of D1,...,D; on an open
neighborhood U, of z. Let

!

l
g=u-+ Z(—ai) log|fi|* (a.e.) and g=u'+ Z(—ai) log | f/|? (a.e.)
i=1 i=1

be two local expressions of g over U,, where u,u" € 7 (U,). Since = ¢ Supp(D),
there is an open neighborhood V;, of x such that V, C U, and fi,..., fi, fi,..., f] €
0% (Vy). Thus, by the properties (1) and (3) of .7,

1 l

U+Z<_ai)10g|fi|27 Ul‘*’Z(—ai)lOgUﬂQ € T (Va),
i=1 i=1
and hence
1 1

ut Yy (—ai)log|fif® =u' + ) (~ai)log|fi|* € T (V)

i=1 i=1

over V, by the second property of 7. This observation shows that

!
u(z) + Z(*ai) log | fi(x)[?

does not depend on the choice of the local expression of g. In this sense, the value

l
u(z) + Y (—a;) log| fi(z)[?
i=1
is called the canonical value of g at x and it is denoted by gecan(z). Note that
gean € 7 (X \ Supp(D)) and g = gean (a-.e.) on X \ Supp(D). Moreover, if .7 is

real valued, then ge.n(z) € R. It is easy to prove the following propositions.

Proposition 2.3.2. Let g be a D-Green function of C*°-type. Then the current
dd®([g]) + 0p is represented by a unique C*°-form «, that is, dd°([g]) + 0p = [a].
We often identify the current dd°([g]) + 0p with «, and denote it by c1(D, g).

Proposition 2.3.3. Let .F’ and " be two types for Green functions on X such
that 7', 7" C 7. Then Ggngn(X;D)=G7/(X;D)NGzn(X;D).

Proposition 2.3.4. (1) If g is a D-Green function of 7 -type and a € Rx, then
ag is an (aD)-Green function of T -type. Moreover, if x ¢ Supp(D), then
(ag)can(x) = agean ().

(2) If ¢1 (resp. g2) is a Dy-Green function of T -type (resp. Da-Green function of
T -type), then g1 + g2 is a (D1 + D2)-Green function of 7 -type. Moreover, if
z & Supp(D1) USupp(D2), then (g1 + g2)can(®) = (91)can(®) + (g2)can(2)-
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(3) Assume that — C . If g is a D-Green function of T -type, then —g is a
(—=D)-Green function of T -type. Moreover, if x ¢ Supp(D), then (—g)can(x) =
_gcan(x)'

(4) Let g be a D-Green function of T -type. If g > 0 (a.e.) and x & Supp(D), then
gean(7) = 0.

Finally, we prove three propositions.

Proposition 2.3.5. Let D = byE; + --- + b.E,. be an R-Cartier divisor on X
such that by,...,b. € R and E;’s are Cartier divisors on X. Let g be a D-Green
function of T -type on X. Let U be an open set of X and let ¢1, ..., ¢, be local
equations of E1, ..., E,. over U respectively. Then there is a unique expression

9= u+z Dogloi® (ae)  (ue T(U))
on U modulo null functions. This expression is called the local expression of g
over U with respect to ¢1,..., ..

Proof. Let us choose reduced and irreducible divisors Dy, ..., D; and a;; € Z such
that E; = 22:1 a;;D; for each i. If we set a; = Y _._, bja;;, then D = 23:1 a;D;.
For each point = € U, there are an open neighborhood U, of z, local equations
fiaws-- fiw of Dy,...,Dyon Uy and u, € 7 (Uy) such that U, C U and

l
= Z —a;)log|f.l”  (ae.)

on U,. Note that

r l 2
g=ug + Z(_bi) log ‘H fiv (a.e.)
i=1 j=1

and H = f a” is a local equation of E; over U,, so that we can find nowhere

vanishing holomorphic functions ej 4, ..., e, on Uy such that H Ja;j =€ aPi
on U, foralli=1,...,r. Then
g=1u;+ Z i) loglei . |* + Z ) log o> (ae.)

on U,. Thus, for z,2’ € U,

ux+z ) 1og e o|* = g +Z loglei|*  (ae.)
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on U, NU,:, and hence

g + Y _(=bi)logleio]® = uar + Y _(—b;)loge; .|
i=1 i=1

on U, N U, . This means that there is u € 7 (U) such that u is locally given
by uz + >, (—b;) log|e; »|*. Therefore, g = u+ >.._,(—b;)log|p;|* (a.e.) on U.
The uniqueness of the expression modulo null functions is obvious by the second
property of 7. O

Proposition 2.3.6. Let g be a D-Green function of 7 -type. Then we have the

following:

(1) If g is of lower bounded type, then locally |p| exp(—g/2) is essentially bounded
above for ¢ € HY, (X, D).

(2) If g is of upper bounded type, then there is a D-Green function g’ of C*°-type
such that g < ¢’ (a.e.).

Proof. We set D = 22:1 a; D; such that aq,...,a; € R and D;’s are reduced and
irreducible divisors on X.
(1) Clearly we may assume that X is connected. For x € X, let

!
g=u-+ Z(*ai) log|fi]* (a.e.)
i—1

be a local expression of g around x, where f1,..., f; are local equations of Dy, ...,
Dy. For ¢ € HY, (X, D), we set ¢ = ffl lbl -v around x where v has no factors
of f1,..., fi. Then, as (¢) + D > 0, we can see that a; + b; > 0 for all 4, and that
v is a holomorphic function around z. On the other hand,

exp(—g/2)|g] = exp(—u/2)| fi] T [ ful O fo] - (ae),

as required.
(2) By our assumption, there is a locally finite open covering {Uy}rcp with
the following properties:

(a) There are local equations fx1,..., fan of D1,..., D, on U,.
(b) There is a constant Cy such that g < Cy — " a;log|fx:]? (a.e.) on U,.
Let {pa}rca be a partition of unity subordinate to the covering {Uy}rca. We set
g/ = Z p/\ (C)\ — Z a; IOg |f)\77;|2> .
AEA

Clearly g < ¢’ (a.e.). Moreover, by Lemma 2.4.1 below, ¢’ is a D-Green function
of C*°-type. O
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Proposition 2.3.7. Let g be a D-Green function of (PSH+C)-type. Let A be
an R-Cartier divisor on X, and let h be an A-Green function of C*°-type. Let
a = c1(A,h), that is, a is a C* (1,1)-form on X such that dd°([h]) + 64 = [a]
(¢f. Proposition 2.3.2). If X is compact and « is positive, then there is a positive
number to such that g + th is a (D + tA)-Green function of PSH-type for all
te RZto .

Proof. For each x € X, let

g=u+ Y (-alogl P (e, h=v,+ Y (-b)loglfil®  (ae)

be local expressions of g and h respectively over an open neighborhood U, of z.
By our assumption, after shrinking U, if necessary, there are a plurisubharmonic
function p, and a C*°-function ¢, such that u, = p, + q.. Moreover, since « is
positive, shrinking U, if necessary, we can find a positive number ¢, such that
dd®(q,) + ta is positive for all t > t,. By the compactness of X, we can choose
finitely many z1,...,2, € X such that X = Uy, U---UU,, . If we set t; =
max{ty,,...,ts, }, then, for t > to,

g th=po, + (g, +to,,) + 3 —(a; +th) log| fi>  (ae)

over Uy, . Note that dd®(q., + tvy;) = dd®(qs;) + to is positive, which means that
qe; + tvg; is a C°°-plurisubharmonic function. Thus g + th is of PSH-type. O

§2.4. Partitions of Green functions

Let X be a d-equidimensional complex manifold. Let .7 be a type for Green
functions. Besides the properties (1)—(3) of Subsection 2.3, we assume the following
additional property:

(4) For an open set U, if u € J(U) and v € C*°(U), then vu € J(U).

As examples, C” and C* have the property (4).

Lemma 2.4.1. Let D be an R-Cartier divisor on X. Let {Ux} be a locally finite
covering of X and let {px}rca be a partition of unity subordinate to the covering
{Ux}rea- Let gx be a (D|y,)-Green function of T -type on Uy for each A. Then
g =Y, Prgx is a D-Green function of T -type on X.

Proof. We set D = a1 D1 + -+ + a,D,. Let f; » be a local equation of D; on an
open neighborhood U, of x. As g is a (D|y, )-Green function of .7-type on Uy,
for A with z € Uy,

o =vae— Y ailoglfial*  (ae)
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around x, where vy ; € 7 (Ux NU,). Thus

9= mre—Y ailog|fio[) (ae)
X
= (Z pAUA,x) — > ailog|fi|®
A

around z, as required. O

The main result of this subsection is the following proposition.
Proposition 2.4.2. Let g be a D-Green function of 7 -type on X and let
D=bE1+---+b.E,

be a decomposition such that E, ..., E, € Div(X) and by,...,b. € R. Note that
FE; is not necessarily a prime divisor. Then we have the following:

(1) There are locally integrable functions gi,...,g, such that g; is an FE;-Green
function of T -type for each i and g = big1 + -+ + brg. (a.e.).

(2) If En,...,E, are effective, by,...,b, € R>p, g > 0 (a.e.) and g is of lower
bounded type, then there are locally integrable functions gi,. .., g. such that g;
is a non-negative E;-Green function of 7 -type for each i and g =bygr +- -+
br-g. (a.e.).

Proof. (1) Clearly we may assume that b; # 0 for all i. Let ¢ be an E;-Green
function of C*°-type. Then there is f € J(X) such that f = g — (big) +- - +
brg..) (a.e.). Thus

g=bi(gy + f/b1) +bagh + -+ +brgl  (ae.).
(2) Clearly we may assume that b; > 0 for all 7. First let us prove

Claim 2.4.2.1. For each x € X, there are locally integrable functions g1z, ..., gra
and an open neighborhood U, of x such that g; » is a non-negative E;-Green func-
tion of T -type on Uy for every i, and g =bi1g14 + -+ + brgr o (a.e.) on U,.

Proof. Let U, be a sufficiently small open neighborhood of z and let f; ,, be a local
equation of E; on U, for every i. Let g = v+ ;_,(—b;) log | fi »|? (a.e.) be the local
expression of g on U, with respect to fi z,..., frz- Weset I = {i | f;»(x) = 0}
and J = {i | fiz(z) # 0}.

First we assume I = (). Then, shrinking U, if necessary, we may assume that

Vg + Z(_bz) IOg |fi,x‘2 € y(Uaﬁ)
=1
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and E; = 0 on U, for all ¢. Thus if we set
giw = (1/r0) (vs + Y (=) log | fil?)
i=1

for each 7, then we have our assertion.

Next we consider the case where I # (. We put f = v+, ;(—b;) log |fjzl?
Then, shrinking U, if necessary, we may assume that f € 7 (U,) and is bounded
below. We set

0 :{f/(bi#(f))—log|fi7x|2 ifiel,

0 ifieJ.
Note that g = >"\_; b;gi,» (a.e.) and g; , > 0 around z for i € I. Thus, shrinking
U, if necessary, we obtain our assertion. O

By using the above claim, we can construct an open covering {Uy}xea and
locally integrable functions g y, ..., grx on Uy with the following properties:

(i) {Ux}xea is locally finite and the closure of Uy is compact for every A.
(ii) g;,» is a non-negative F;-Green function of .7-type on Uy for every i.
(iii) g =b1gix+ -+ brgrx (ae.) on Uy.

Let {pr}rea be a partition of unity subordinate to the covering {Ux}aca. We set
9i = ZA prgix- Clearly g; > 0 and

T T
9=">_mglu, o) > oD bigia=Y_ bigi
>\ N il i=1

Moreover, by Lemma 2.4.1, g; is an E;-Green function of 7 -type. O
§2.5. Norms arising from Green functions

Let X be a d-equidimensional complex manifold. Let g be a locally integral function
on X. For ¢ € M(X), we define

|0lg := exp(—9g/2)|0].

Moreover, the essential supremum of |¢|, is denoted by ||¢||4, that is,

[@llg == esssup{[[y(z) | v € X}.
Lemma 2.5.1. (1) || - || has the following properties:

(11) [Ally = NIll¢lly for all A € C and ¢ € M(X).

(1.2) llo+¢llg < llollg + [[¥llg for all ¢, € M(X).
(1.3) For ¢ € M(X), ||¢]lg =0 if and only if ¢ = 0.
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(2) Let V be a vector subspace of M(X) over C. If ||¢|lg < oo for all ¢ € V,
then || - ||y yields a norm on V. In particular, if D is an R-Cartier divisor,
g is a D-Green function of 7 -type and g is of lower bounded type, then | - ||,
is a norm of HY,(X, D) (cf. Proposition 2.3.6), where 7 is a type for Green
functions.

Proof. (1) (1.1) and (1.2) are obvious. If ||¢||; = 0, then |¢|, = 0 (a.e.). Moreover,
as g is integrable, the measure of {z € X | g(x) = oo} is zero. Thus |¢| = 0 (a.e.),
and hence ¢ = 0.

(2) follows from (1). O

Let ® be a continuous volume form on X. For ¢,¢ € M(X), if ¢ exp(—g)
is integrable, then we denote its integral

/X b exp(—g)@

by <¢a 11[})9
We assume that g is a D-Green function of C%-type. We set

D=a1D;+--+aDy,
where D;’s are reduced and irreducible divisors on X and aq,...,a, € R. Let us

fix x € X. Let fi1,..., fi be local equations of Dy,...,D; around z, and let

l

g=u-+ Z(*ai) log|fi|* (ae.)

i=1

be the local expression of g around z with respect to f1,..., f;. For ¢ € H?vt (X, D),
we set ¢ = ffl lblv around z, where v has no factors of f1,..., f;. Note that
b1,...,b; do not depend on the choice of f1,..., f;. Since (¢) + D > 0, we have
a; + b; > 0 for all ¢ and v is holomorphic around z. Then

|plg = [ 1|0 | ] TPt o] exp(—u/2)  (ae.).

Let us choose another set of local equations f1,..., f/ of Dy, ..., D; around z, and
let

1
g=u + > (~a)log|fiP (ac)

i=1
be the local expression of g around x with respect to f,..., f/. Moreover, we set
o= f{bl l’b’v’ around z as before. Then

|blg = 1190 L [ exp(—u//2)  (ace).
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Note that
[fr] @0 fi P o] exp(—u/2) and || f 0| exp(—u'/2)

are continuous, so they are equal around z. This observation shows that there is a
unique continuous function h on X such that |¢|; = h (a.e.). Therefore, in the case
where g is of C%-type, we always assume that |¢|, means the above continuous
function h. Then we have the following proposition.

Proposition 2.5.2. Let g be a D-Green function of C°-type.

(1) For ¢ € HY(X, D), ||, is locally bounded above.

(2) If X is compact, then (¢,1)), ezists for ¢,v» € H, (X, D). Moreover, { , )q
yields a hermitian inner product on HY, (X, D).

§3. Gromov’s inequality and distorsion functions for R-Cartier divisors

Let X be a d-equidimensional compact complex manifold. Let D be an R-Cartier
divisor on X and let g be a D-Green function of C-type. Let us fix a continuous

volume form ® on X. Recall that |¢|,, ||¢]ly and (¢, ), for ¢, € HY, (X, D) are
given by

0]y = |9l exp(=g/2), |9l := esssup{|¢ly(2) [ = € X},

(6.0 == /X o exp(—g).

As described in Subsection 2.5, we can view |¢|, as a continuous function, so that
|¢|4 is always assumed to be continuous.

In this section, we consider Gromov’s inequality and distorsion functions for
R-Cartier divisors.

83.1. Gromov’s inequality for R-Cartier divisors

Proposition 3.1.1 (Gromov’s inequality for R-Cartier divisors). Let D1,...,D;
be R-Cartier divisors on X and let g1, ..., q; be locally integrable functions on X
such that g; is a D;-Green function of C°°-type for each i. Then there is a positive
constant C' such that

1012, 605t < CA+lar] + -+ |ar])* ¢, Bar gy -+ ara
forallp € HY(X,a1D1 + -+ a;D;) and ay,...,a; € R.

Proof. We can find distinct prime divisors I'y,...,[, on X, locally integrable
functions v1,...,7 on X, C*°-functions fi,..., f; and real numbers a;; such that
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v; is a I'j-Green function of C*°-type for each j =1,...,r,

T T
Di=Y oyl and g, =fi+ Y aijy (ac).
=1

j=1
Then
r l l
a Dy + -+ aDp = Z(Z aiaij)f‘j + Z a;  (the zero divisor),

j=1 i=1
a191 + -+ agr = Z(Z ala”>% + Zazf, (a.e.).
j=1 =1
Moreover, if we set A = max{|e;;|}, then

1+Z|az| +Z‘ZQZQW

Jj=1 1=1

<1+ (Ar+1 Z|a1|< (Ar +1) (1+Z\az|>

Thus we may assume that Dy, ..., D, are distinct prime divisors and
Dyy1=---=D;=0.

Let U be an open set of X over which there are local equations fi,..., f. of
Dy, ..., D, respectively.

Claim 3.1.1.1. For dll ¢ € HR,t(X,alDl + -+ aqD;) and ay,...,a; € R, the
product

ofim - pler)
18 holomorphic over U, that is, there are by,...,b. € Z and a holomorphic func-
tion f on U such thatqb:ffl o forfand by + a1 >0,...,b. +a, >0.

Proof. Fix x € U. Let f; =e;fi1--- fic; be the prime decomposition of f; in Ox 5,
where e; € 0%, and f;;’s are distinct prime elements of Ox .. Let D;; be the
prime divisor given by f;; around z. Since ¢ € HY,(X,a1D1+---+a;D;), we have

(¢)+Q1D1+"'+(11Dl
:(¢)+alDll+"'+alch1+"'+arDrl+"'+arDrc,. >0

around x. Note that Dii,...,Di¢ys...,Dr1,..., Dy, are distinct prime divisors
around x. Thus ¢f}] Lax] fngllj < fa Lerd . TLg;-J is holomorphic around x. There-
fore, as

fll_alj C. fTLaTJ = ell.alj - e?LarJ fl\-illj Ce fll-gllj Ce fi—f” f7LarJ

Cp

1) flLalJ ... £t} is holomorphic around z. O
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By the above observation, the assertion of the proposition follows from the
local version below. O

Lemma 3.1.2. Let a,b, c be real numbers with a > b > ¢ > 0. Set
U={2cC%|z|<a}, V={zcC|z|<b}, W={zeC? |z <c}

Let ® be a continuous volume form on U, f1,...,fi € Oy(U), v1,...,v € C=(U)
and

gi = v; — log | fi?
fori=1,...,1. Foray,...,a; € R, set

Y
L(a1,.--7al){1 lf b1+a120,...,bl+al20

feOyU) andby,....b €L with}

(Note that L(aq,...,a;) is a complex vector space.) Then there is a positive con-
stant C such that

max{|¢|? exp(—a1g1 — -+ — aigi)(2)}
zeW

< C(lay| 4 -+ |ag| + 1)”/ |6 exp(—aigr — -+ — a1g1)®
1%

forall € L(aq,...,a;) and all ay,...,a; € R.

Proof. We set

wp = exp(—v1), oo, w = exp(—v), g1 = exp(vy), ..., Uz = exp(v)).

Then in the same way as in [14, Lemma 1.1.1], we can find a positive constant D
with the following properties:

(a) For zo,x € V, ui(z) > ui(z0)(1 — D]z — x0|') for all i = 1,...,2l, where

|z|" = |z1| + - 4 |zal for z = (21,...,24) € CL
(b) If g € W, then B(zo,1/D) C V, where

B(xo,1/D) = {zx € C?| |z — 0| < 1/D}.

We set

2

Then we can choose a positive constant e with ® > e®,,. For

p=frflfeLlay,. .. a),

e (5

d
) dzi ANdzZy N -+ Ndzg N dzZy.
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we assume that the continuous function

|<l5|2 exp(—aigr — - — algl)
= [P £ PO | £12 exp(—ay vy — -+ — aor)

on W takes the maximal value at zop € W. Let us choose ¢; € {£1} such that
a; = €;|a;|. Note that

l
exp(—ayvi(z) — -+ — aqu(x)) = Hexp(—eivi(az))‘“i‘

!
Z (H eXp(—ﬁwi(xo))la”)(l — Dlz — ao|/)lerl+-Flail

i=1
= exp(—a1v1(x0) — - -+ — ayvy(w0)) (1 — Dl — ao|)laa -+l

on B(zg,1/D). Therefore,
/ |<25|2 exp(—aig1 — - — a1g1)® > eexp(—arvi(wo) — -+ — avi(zo))
v

x / ‘f1|2(b1+a1) e |fl|2(bl+al)|f|2(1 - D|SC - z0|/)|a1|+m+‘a”q)can-
B(zo,1/D)

If we set © — x9g = (riexp(v/—161),...,74exp(v/—1864)), then, by using [8, Theo-
rem 4.1.3] and the pluriharmonicity of | f;[2(01Fa1) ... | f;|2(ita)| £)2)

/ |fuPErFe) L PO FR(L = Dla — ao|)ler el g,
B(z0,1/D)

27 2
- 2(bitar) | 12(0Fan)) £12
oo ([ [ O g0 1 o)

1 1
r1>0,...,7q >0

X7rye-. .Td(l — D(T']_ + . + rd))|a1|++‘al‘ drl .. drd
> (2m)" fu (ao) PO | fulao) PO f (o) 2

X / SRR 'Td(]- — D(T‘l + . +']"d))‘a1‘+»--+|al| drl .. .drd.
[0,1/(dD)]¢

Therefore,
[ 1o exp-ags — -+ - g
v
e(2m)?
> (d(D))M max{|¢f exp(~agy =+ = a91)(2)}

x/ b ta(l— (L)t + - + ta)) @ Hlotl gy gy,
[0,1]¢

Hence our assertion follows from [14, Claim 1.1.1.1 in Lemma 1.1.1]. O
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§3.2. Distorsion functions for R-Cartier divisors

Let D be an R-Cartier divisor on X and let g be a D-Green function of C%-type. Let
V be a complex vector subspace of HY,(X, D). Let ¢1,...,¢; be an orthonormal
basis of V' with respect to ( ,),. It is easy to see that

12+ + |oul?

does not depend on the choice of the orthonormal basis ¢4, . .., ¢; of V; it is denoted

by dist(V; ¢g) and called the distorsion function of V' with respect to g.

Proposition 3.2.1. Let V be a complex vector subspace of H°(X, D). Then
|s[5(x) < (s,8)4dist(V;g)(x) (Vo € X)

for all s € V. In particular,

1/2
|s|g<x>s(/x @) sl VASVig) (@) (Ve € X).

Proof. Let e1,...,en be an orthonormal basis of V' with respect to (, )4. If we
set s =aie; +---+aney for s € V, then

(s,8)g = laa|® + -+ lan|*.
Therefore, by the Cauchy—Schwarz inequality,
|slg(z) < laalex]g(x) + - - + |an|[en]q(z)

< VIaP+ lanPyflafe) + -+ lenf3 @)

=1/(s,8)g\/dist(V; g)(z). O
Lemma 3.2.2. Let ¢’ be another D-Green function of C°-type such that g <
g (a.e.). Let V be a complex vector subspace of H°(X, D). Then dist(V;g) <

exp(g’ — g)dist(V;¢’).

Proof. We can find a continuous function v on X such that v« > 0 on X and
9 = g+ u (ae.). Let ¢1,...,¢; be an orthonormal basis of V' with respect to
(', )g such that ¢1,...,¢; are orthogonal with respect to (, ),. This is possible
because any hermitian matrix is diagonalizable by a unitary matrix. Then

o1 o
\/<¢1a¢1>g, 7 \/<¢l7¢l>g

form an orthonormal basis of V' with respect to ( , )4. Thus

o1 2 ]2

Onon, T ne,

dist(V;g) =
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On the other hand, as ¢; 7 = [¢4]2 exp(u),

0,00 = [l expwe = [ o1
X X
Hence the lemma follows. O
Let us consider the following fundamental estimate.

Theorem 3.2.3. Let R =D, Ry be a graded subring of @,,> HY,(X,nD). If
g is a D-Green function of C™-type, then there is a positive constant C with the
following properties:

(1) dist(Rn;ng) < C(n+1)3 for all n > 0.
@) dist(R,;ng) dist(R,;mg) < dist(Rp4m; (n+m)g)
Cn+1)34  Cim+1)3¢ —  Cn+m+1)3d

for alln,m > 0.

Proof. Let us begin with the following claim:

Claim 3.2.3.1. There is a positive constant Ci such that dist(R,;ng) <
Ci(n+1)3¢ for allm > 0.

Proof. First of all, by Gromov’s inequality for an R-Cartier divisor (cf. Proposi-
tion 3.1.1), there is a positive constant C’ such that

||¢||3Lg S Cl(n + 1)2d<¢7 ¢>TL9

for all ¢ € HY,(X,nD) and n > 0. Let ¢1,..., ¢, be an orthonormal basis of R,,.
Then

dist(Rn;ng) < [l61]5g + - + 61,7
< C'(n+ 1) ({f1, G1)ng + -+ (D1, 81, )ng) < C'(n+1)* dim Ry,
as required. O
Claim 3.2.3.2. There is a positive constant Coy such that
dist(Ry; ng) - dist(Ry,; mg) < Co(m 4 1)3? dist(Ryym; (n 4+ m)g)
forn >m > 0.

Proof. Let t1,...,t; be an orthonormal basis of R,,. For each 7 = 1,...,], we
choose an orthonormal basis s1, ..., s, of R, such that s,¢;,...,s,t; are orthogonal
in Ry,+m. Note that the above sq,...,s, depend on j. We set I = {1 < i < r |
sit; # 0}. As

{ Sitj }
\/<Sitj, Sitj>(n+m)g icl
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can be extended to an orthonormal basis of R,,,,, we have

|8:t517m)g
< dist(Ryqm; (n 4+ m)g).
ZI (sitj, 8itj) (ntm)g

By using Gromov’s inequality as in the previous claim, we obtain
(sitj, 8it5) (nrm)g < (Sir Sidnglltillmg < C'(m+ 124 tj,t5)mg = C'(m + 1),

Hence

r
diSt(Rn; ng)‘tj‘grzg = Z |sitj|(n+m)g = Z |8itj|(n+m)g
=1 el
C/(m + 1)2d
icl <Sitj7 Sitj>(n+m)g

< C'(m +1)2? dist (R 1m; (n 4+ m)g),

= |5itj|(2n+m)g
which implies
dist(R,; ng) - dist(Rp; mg) < dim(R,,)C’(m + 1)%? dist( Ry, 1m; (n +m)g),
as required. O

We set C' = max{Cy,8?Cy}. Then, for n > m >0,

C(n+1)*C(m +1)* saga( n+1 "
> 1 _
C(n+m+1)3 = Calm+ 78N O
13 3
> 3dgd ( M T
> Co(m+1)°%8 <2n—|—1

3d
> Co(m + 1)3d8d(;) = Co(m + 1)3%

Thus the proposition follows from the above claims. O

84. Plurisubharmonic upper envelopes

The main result of this section is the continuity of the upper envelope of a family
of Green functions of PSHg-type bounded above by a Green function of C%-type.
This will give the continuity of the positive part of the Zariski decomposition.

Throughout this section, let X be a d-equidimensional complex manifold. Let
us begin with the following fundamental estimate.
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Lemma 4.1. Let f1,...,f be holomorphic functions on X such that fi1,..., fr
are not zero on each connected component of X. Let ay,...,a, € R>q and M € R.
Denote by PSH(X; f1,..., fr,a1,...,a., M) the set of all plurisubharmonic func-
tions u on X such that

i
u< M- Zai log|fil* (a.e.)
i=1
over X. Then, for each point x € X, there are an open neighborhood U, of x and
a constant M., depending only on fi,..., f. and x such that

u< M+ M(ar+--- +ay)
on Uy for any v € PSH(X; f1,..., fr,a1,...,ar, M).
Proof. Let us begin with the following claim:
Claim 4.1.1. For any u € PSH(X; f1,..., fr,a1,... 6., M),
u< M= a;log|f;]”

i=1

over X.

Proof. Clearly we may assume that a; > 0 for all 4. Let us fix z € X. If fi(z) =0
for some ¢, then the right hand side is oo, so that the assertion is obvious. Now
assume that f;(x) # 0 for all 4. Then the right hand side is continuous around z.
Thus the assertion follows from Lemma 2.3.1. O

Claim 4.1.2. Let € € Ry, a1,...,aq € R>g, and M € R. Then
u< M —2log(e/4)(ar + -+ + aq)

on Af/4 for any u € PSH(AY; 21, ..., 24,01, ...,aq, M), where (z1,...,2q) are the
coordinates of C% and

AV ={(z1,...,24) €Cl| || < t,...,|za] <t}
fort e Ryg.
Proof. Note that if (21,...,2q4) € Af/4, then
{(21 4 (€/2)e¥™ 01 | zq+ (e/2)e®™ ) | 6y,...,04 € [0,1]} C AL
Moreover, as
/2 = (623 | = |25 + (€/2)e™ — 2]
< g+ (/20| + 125] < |25 + (€/2)e*™% | + /4,
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we have |z; + (e/2)e?™%| > ¢/4 for j = 1,...,d. Thus, by [8, Theorem 4.1.3],
u(z1,. .., 2 / / u(z + (/2)e*™ 00 . zq + (€/2)e*™ %) db; - - - dby
S/o / (M Zaglogm (6/2)e2™ % [2) doy -+ - b
d
=M — Zaj/o log |zj + (e/2)e*™ |2 df;

d
<M - Zaj/ log(e/4)*df; = M — 2log(e/4) Z O

Next we observe the following:

Claim 4.1.3. If Supp{z € X | fi(x) - fr(x) = 0} is a normal crossing divisor
on X, then the assertion of the lemma holds.

Proof. We choose an open neighborhood V;, such that V, = A{ and

Supp{z € X | fi(z) - fr(x) = 0}

is given by {z1---z; = 0}. Then there are bij € Z>o and nowhere vanishing
holomorphic functions vy, ..., v, on A{ such that
b b by by
fi=a" M, e, =2
Thus

T r l T
M - Zai log |fi|> = M — Zai log |v]* — Z(Z aibij) log |2;]?.

i=1 i=1 Jj=1 =1

We choose My, My € R such that M; = max{b;; |i=1,...,r,j =1,...,l} and
My > maxzeAf/2{_ log |v;(2)|?} for all i. Then

r l
M =Y a;log|fil> < M+ My(ay + -+ +a,) = Y Mi(ar + - + a,) log |z

i=1 j=1
on A‘f/2. Thus, by the previous claim, for any u€ PSH(X; f1,..., fr, a1,...,ar, M),
u< M+ (M = 2log(1/8)IM)(ar + -+ + ar)

on A‘f/s O
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Let us start considering the general case. Let m : X’ — X be a proper bimero-
morphic map such that Supp({7*(f1)---7*(f-) = 0}) is a normal crossing divisor
on X’. Note that if u is a plurisubharmonic function on X, then 7*(u) is also
plurisubharmonic on X’ (cf. [9, Corollary 2.9.5]). By the above claim, for each
y € 7~ (z), there is an open neighborhood U, of y and a constant M, depending
only on fi,..., fr and y such that, for any v € PSH(X; f1,..., fr,a1,...,a., M),

[*(u) < M+M;(a1 +--+a)

onU,. As m~!(z) C Uyewfl(x) U, and 7~ !(z) is compact, there are yi, . .., ys such
that 7= (z) C U,, U---UU,,. We can choose an open neighborhood U, of z such
that 7~ 1(U,) € Uy, U---UU,,. Thus, if we set M, = max{M,,..., M, }, then

frw) < M+ Mg(ar + - +ay)
on 71 (U,), and hence the lemma follows. O
Let o be a continuous (1, 1)-form on X. We set

(i) ¢: X — {—c0} UR
PSH(X:a) :={ ¢ | (i) ¢ € (C® + PSH)(X)
(iii) [a] + dd*([¢]) =0

First we observe the following lemma.

Lemma 4.2. Assume that X is compact and that « + dd°(vy) is either positive
or zero for some C™®-function vy on X. If $ € PSH(X;a)NC°(X), then there are
sequences {pn 52, and {n}o2, in PSH(X; o) N C*(X) such that ¢, < ¢ < oy
on X for allm > 1 and

nh_{IéO ¢ — Pnllsup = nh_{go llon — Bllsup = 0.
Proof. First we assume that a = dd®(—1y) for some C*°-function 19 on X. Then
PSH(X;a) ={¢po+c|ce RU{—o0}}

because X is compact. Thus the assertion of the lemma is obvious.
Next we assume that « is positive. By [4, Theorem 1], there is a sequence of
{pn}52; in PSH(X; o) N C*°(X) such that

p1(z) > pa(x) > - > o)

and ¢(x) = limy, o0 on(2) for all z € X. Since X is compact and ¢ is continuous,
it is easy to see that lim, o [|©n — @|lsup = 0. We set ¢, = @1, — || 0n, — @||sup for
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all n > 1. Then ¢,, € PSH(X;a) N C*®°(X) and ¢, < ¢. Note that ||¢ — &nllsup <

2||90n - (b”sup- Thus lim, H(b - d)n”sup =0.
Finally we assume that o’ = «a+ dd®(vy) is positive for some C*°-function g

on X. Then
¢' = ¢ —1hy € PSH(X; /) N C°(X).

Thus, by the previous observation, there are sequences {¢, }52; and {¢},}5°; in
PSH(X; o) N C*°(X) such that ¢, < ¢’ < ¢!, on X for all n > 1 and

Jim |67 = ¢ llsup = Tim (@7, = ¢'llsup = 0.
We set ¢, 1= ¢, + 1y and @, := ¢!, + 1y for every n > 1. Then
Py € PSH(X;0) NC(X)  and  ¢n < ¢ < o
for all n > 1. Moreover, lim, o0 ||¢rn — @|lsup = limp 00 ||on — @llsup = 0. O

Let A be an R-Cartier divisor and let g4 be an A-Green function of C*°-type
on X. Let a = ¢1(A,ga), that is, a is a C*°-form such that

[a] = dd“([ga]) + 64

(cf. Proposition 2.3.2). Let us now consider the natural correspondence between
Gpsu(X; A) and PSH(X; o) in terms of g4.

Proposition 4.3. If ¢ € PSH(X;a), then ¢ + ga € Gpsu(X; A). Moreover, we
have the following:

(1) Foru € Gpsu(X; A), there is ¢ € PSH(X; «) such that ¢ + ga = u (a.e.).
(2) For ¢17 ¢2 € PSH(X7 OZ),

01 <2 & d1+9a <2+ ga (a.e.).
(3) For ¢ € PSH(X;a),
p(x) # —o0 (Vo € X) & ¢+ga € Gpsu(X; A).
(4) For ¢ € PSH(X;a),
$eC®(X) & ¢+ga € Goe(X;A).
(5) For ¢ € PSH(X;a),

peC'(X) & ¢+ga€Geo(X;A).
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Proof. We set A = a1D1 + --- + a;D;, where D;’s are reduced and irreducible
divisors on X and aq,...,a; € R. Let U be an open set of X and let fi,..., f; be
local equations of D1, ..., D; on U respectively. Let

!
ga=h— Zai log|fil* (a.e.)
i=1

be the local expression of g4 with respect to f1,..., fi, where h € C*°(U). Then

ga+o=(h+o) — Zailog|fl\2 (a.e.).

Since a = dd®(h) on U, we have
dd*([h + ¢]) = [a] + dd*([¢]) = 0.
Thus g4 + ¢ € Gpsu(X; A) and

ga+¢= h"’(b Zaleg‘sz (a.e.)

is the local expression of g4 + ¢ with respect to f1,..., fi.
(1) For u € Gpsu(X; A), let

!
- Z a;log|fil* (ae.)
i=1

be the local expression of u with respect to f1,..., fi, where p is plurisubharmonic.
It is easy to see that p — h does not depend on the choice of the local equations
f1,..., fi. Thus there is a function ¢ : X — {—o00} UR such that ¢ is locally given
by p — h. Moreover
dd*([p — h]) + [a] = dd*([p]) > 0.
Hence ¢ € PSH(X;a) and ¢ + g4 = u (a.e.).
(2) Clearly

$1 < @2 (ae.) & d1+9ga < P2+ ga (ae.).
On the other hand, by Lemma 2.3.1,
o1 < 2 & 91 < o2 (ae).
(3)—(5) are obvious because

¢+ga=(h+¢)— Zazlogmﬁ (a.e.)

=1

is a local expression of ¢ 4+ g4 and h is C'*°. O
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Let .7 be a type for Green functions on X such that PSH is a subjacent type
of 7, that is, for an arbitrary open set U of X, if u < v (a.e.) on U for u € PSH(U)
and v € I (U), then u < v on U.

Proposition 4.4. Let A and B be R-Cartier divisors on X with A < B, Let
h be a B-Green function of T -type on X such that h is of upper bounded type.
Let {gx}rea be a family of A-Green functions of PSH-type on X. Assume that
gx < h (a.e.) for all X € A. Then there is an A-Green function g of PSH-type
on X with the following properties:

(a) Fiz an A-Green function ga of C®-type. Let « be a unique C°°-form with
[o] = dd°([ga])+da. If we choose ¢ € PSH(X; ) and ¢» € PSH(X; &) for each
A € A such that g = ga+¢ (a.e.) and gy = ga+ o (a.e.) (cf. Proposition 4.3),
then ¢ is the upper semicontinuous reqularization of the function given by

x > sup Py (x).
AEA

In particular, gean s the upper semicontinuous reqularization of the function

T +— sup (gk)can(x)
AEA

over X \ Supp(A).
(b) g < h (a.e).
(c) If there is gx such that gy € Gpsm, (X; A), then g € Gpsm, (X; A).

Proof. Let A=a1D1+---+a;D; and B = by D1+ - -+, D; be the decompositions
of A and B such that D;’s are reduced and irreducible divisors, a1,...,a;,b1,...,0
€ R and Dy U---UD; = Supp(A4) U Supp(B). Let U be an open set of X and let
fi,-.-, fi be local equations of D,..., D; over U respectively. Let

l

h=v+» (=b)log|fil> (ae.)

i=1

be the local expression of h with respect to f1,..., f;. Moreover, let

!
gr =uxt Z(_ai) log|fil*  (a.e)

i=1
be the local expression of gy with respect to f1,..., fi. Then

l

uy <v— Z(bi —a))log|fil* (ae.)

=1
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for every A € A. Note that v is locally bounded above. Thus {u)}xea is uniformly
locally bounded above by Lemma 4.1. Let u be the function on U given by

u(x) = sup{ux(z) | A € A}.

Let u be the upper semicontinuous regularization of u. Then « is plurisubhar-
monic on U (cf. Subsection 2.1). Let f{,..., f/ be another set of local equations
of Dy,...,D;. Then there are ey, ..., e, € O (U) such that f/ = e, f; for all i, so
that

l
gr = (ux+ Y _ailogles*) + Y (—a))log|f|*  (ae)
i=1 i=1

is the local expression of gy with respect to f1,..., f/. Thus, if we denote the
plurisubharmonic function arising from f{,..., f/ by @', then, by Lemma 2.3.1,

U :ﬂ—}—Zallong\

This means that
l

Z —a;)log | fi[®

does not depend on the choice of fl, ..., fi over U \ Supp(A). Thus there is g €
Gpsu(X; A) such that

l

glv =tu+ Z —a;)log |fi]* (a.e.).

Let ga = ua + Zézl(—ai) log |fi|? (a.e.) be the local expression of g4 with
respect to f1,..., fi. Then ¢y = uyx —ua4 and ¢ = @ — ua. Thus (a) follows.

By (a), gcan is the upper semicontinuous regularization of the function ¢’
given by ¢'(z) = supyca{(9x)can(x)} over X \ Supp(A). As PSH is a subjacent
type of .7, we have (gx)can < Pean 00 X \ (Supp(A)USupp(B)) for all A € A. Note
that g = ¢’ (a.e.) (cf. Subsection 2.1). Thus we have g < h (a.e.).

Finally we assume that g\ € Gpsu, (X; A) for some A. Then uy < @ (a.e.), so

that uy < @ by Lemma 2.3.1. Thus @(z) # —oc. Therefore, g € Gpsn, (X;A4). O

Let A be an R-Cartier divisor on X and let g be a locally integrable function
on X. We set

G7(X;A)<yg ={ueGs(X;A) |u<yg(ae)},

where G #(X; A) is the set of all A-Green functions of .7-type on X.
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Lemma 4.5. Let A and B be R-Cartier divisors on X with A < B. Let gg be a
B-Green function of C>=-type (resp. C°-type). There is an A-Green function ga
of C>-type (resp. C°-type) such that

ga S gB (a.e.) and GPSH(X§A)§gA = GPSH(X§A)§QB~

Proof. Weset A=a1D1+---+a,D, and B=0b,D1+---+b,D,, where D;’s are
reduced and irreducible divisors on X and a1,...,a5,b1,...,0, € R. For x € X,
let U, be a small open neighborhood of = and let f1,..., f, be local equations of
Ds,..., D, on U, respectively. Note that if x ¢ D,, then we take f; as the constant
function 1. Let gp = hy — Y, b; log |fiI? (a.e.) be the local expression of gg on U,
with respect to f1,..., fn. Shrinking U, if necessary, we may assume that there is
a constant M, such that |h;| < M, on U,.

Claim 4.5.1. There are an open neighborhood V. of x and a positive constant C,,
such that V, C U,,

hy 4+ Cyp — Zai log|fil> <gp (ae)

on Vg, and
u<hy+Cp— Zai log|fi|*> (a.e.)

on Vg for all v € Gpsu(X; A)<gp - '

Proof. For u € Gpsu(X; A)<gy, let u = py(u) — >, a;log|f;|* (a.e.) be the local
expression of w on U, with respect to fi,..., fn. Then u < gp (a.e.) is nothing

other than

Pa(u) < hg — > (bi—ai)log|fi]>  (ae.).
If either a; = b; or « ¢ D; for all 4, then ), (b; — a;)log|fi|> = 0 on U,. Thus
our assertion is obvious by taking C, = 0, so that we may assume that a; < b;
and z € D; for some i. By Lemma 4.1, there are an open neighborhood U, of z
and a positive constant M, such that U, C U, and p,(u) < M, on U, for all
u € GPSH(X; A)SgB' Note that

M}, = =M, + (M}, + M) < hy + (M, + M,)

on U,. Thus if we set C, = M, + M,, then p,(u) < h, + C, on U, for all
u € Gpsu(X; A)<g,. As limy,, >, (b; — a;)log]|fi|*(y) = —oc, we can find an
open neighborhood V;, of x such that V,, C U, and C, < —3,(b; — a;) log | fi|?
on V,. Therefore,

pw(u) S ha, + Cl S hx - Z(bz - a’i) log |fi|2

on V, for all u € Gpsu(X; A)<g,, as required. O
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By using Claim 4.5.1, we can find an open covering {V)} e of X and a family
{C»} e of constants with the following properties:

(1) {Va}ren is alocally finite covering.
(2) There are local equations fx1,..., fan of D1,...,D, on V) respectively.

(3) Let gg = hy — Y, bilog|fr:|? (a.e.) be the local expression of gg on V) with
respect to f1,..., fan. Then

hx+Cx — Zai log|fril> <gp (ae.)
on Vy, and

u<hy+Cx =Y ailog|fri®>  (ae)
on V) for all u € Gpgu(X; A)<gy-

Let {pr}rca be a partition of unity subordinate to the covering {Vy}reca. We set
ga = ZPA(’ZA +Ch\ — Zai log | fx.i 2)-
A i

By Lemma 2.4.1, g is an A-Green function of C*°-type (resp. C°-type). Moreover,
ga < gp (a.e.) and u < g4 (ae.) for all u € Gpsu(X; A)<g,. Hence the lemma
follows. O

The following theorem is the main result of this section.

Theorem 4.6. Let A be an R-Cartier divisor on X. If X is projective and there
is an A-Green function h of C*®-type such that dd®([h]) + 04 is represented by
either a positive C*°-form or the zero form, then we have the following:

(1) Let B be an R-Cartier divisor on X with A < B. Let gp be a B-Green function
of C°-type. Then there is g € Geonpsu(X; A) such that g < gp (a.e.) and

u<g (ae) (VueGpsu(X;A)<gy).

(2) If u € Geonpsu(X;A), then there are sequences {un s>, and {v,}22, of
continuous functions on X with the following properties:

(2.1) up >0 and v, >0 for alln > 1.
(22) lim,, ||un||sup = lim, 00 HUn”sup = 0.

(2.3) U —Up,u~+ vy € Gooonpsu(X;A) alln > 1.

Proof. (1) Let us begin with the following claim:
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Claim 4.6.1. There is g € Gpsn, (X; A) such that g < gp (a.e.) and
u<g (ae) (YuéeGpsu(X;A)<gs)
We say g is the greatest element of Gpsu(X; A)<g, modulo null functions.

Proof. Note that PSH is a subjacent type of C° by Lemma 2.3.1, and that h —c €
Gpshg (X; A)<g, for some constant c. Thus the assertion follows from Proposi-
tion 4.4. O

Claim 4.6.2. If gp is of C™-type, then the assertion of (1) holds.

Proof. By Lemma 4.5, we may assume that A = B. Let a = ¢1(4,g4), that is, «
is a C*°-form such that [o] = dd°([ga]) + da. We set

PSH(X;a)<o = {¢ € PSH(X;a) | ¥ < 0}.

By our assumption, we can find a C*°-function 1y such that g4 + g = h (a.e.).
Note that [a + dd®(1¢g)] = dd([h]) + da. Thus a + dd®(¢pg) is either positive or
Z€ero.

First we assume that a4 dd(1) is positive. Let g be the greatest element of
Gpsu(X; A)<g, modulo null functions (cf. Claim 4.6.1). We choose ¢ € PSH(X; «)
and 1, € PSH(X; o) for each u € Gpgu(X; A)<g, such that g = ga+ ¢ (a.e.) and
u=ga + 1, (a.e.) (cf. Proposition 4.3). Then

{Ql)u | u e GPSH(X§A)§QA} = PSH(X;OZ)S().

Moreover, by our construction of g (cf. Proposition 4.4 and Claim 4.6.1), ¢ is the
upper semicontinuous regularization of the function ¢’ given by

¢'(x) = sup{tu(z) | u € Gpsu(X; A)<g,} (=sup{e(z) | ¥ € PSH(X;a)<0})

for x € X. On the other hand, by [3, Theorem 1.4], ¢’ is continuous. Thus ¢ = ¢’
and ¢ is continuous. Therefore the claim follows by Proposition 4.3.

Next we assume that o + dd®(10) = 0, that is, @ = dd“(—1)). Then
PSH(X;a) = {0+ c|ce RU{—o0}}.

Let g be the greatest element of Gpsu(X; A)<,4, modulo null functions. Then, by
Proposition 4.3, there is ¢ € R such that g = ga + (¥ + ¢) (a.e.). Thus the claim
follows in this case. O

Finally, let us consider the general case. First of all, we may assume A = B as
before. We can take a continuous function f on X such that g4 = h+ f (a.e.). By
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using the Stone-Weierstrass theorem, there is a sequence {u,}2; of continuous
functions on X such that lim,,_, o ||un||sup = 0 and f+u, is C* for every n. Then,
as ga +u, = h+ (f +uyn) (ae.), ga +uy, is of C*°-type for all n. Let g (resp. gn)
be the greatest element of Gpgu(X; A)<g, (resp. Gpsu(X; A)<ga+u,) modulo null
functions. Note that the greatest element of Gpsu(X; A)<g,+|u, [sa, Modulo null
functions is given by g £ ||y ||sup- By the previous claim, g, € Goonpsu(X; A).
Moreover, since

ga — ||un||sup < gaA + uy < ga + ||un||sup (a~e')7

we have
9= llunllsup < gn < g+ |lunllsup  (ace.)
! !
for all n. Let g = v+ ,_,(—a;)log| fi]* (a.e.) and g, = v+ >, (—a;)|fi|* (a.e.)
be local expressions of ¢ and g,. Note that v, is continuous for every n. By
Lemma 2.3.1, v — ||tun|lsup < vn < v+ ||tp||sup for all n. Thus v, converges to v

uniformly, which implies that v is continuous.

(2) Let o be a C*°-form such that [o/] = dd°([h]) + da. By our assumption,
o/ is either positive or zero. By Proposition 4.3, there is ¢ € PSH(X; o) such that
¢ is continuous and 1 + h = u (a.e.). Thus, by Lemma 4.2, there are sequences
{un 22 and {v, }22; of continuous functions on X with the following properties:

(a) u, >0 and v, >0 for all n > 1.

(b) hmn—)oo ||Un||sup = hmn—>oo an”sup =0.
(¢) Y —up, ¥ + v, € PSH(X; ') N C®(X) for every n > 1.

Note that u—u, = (¥ —u,)+h (a.e.) and u+v, = (¢ +v,)+h (a.e.). Therefore,
by Proposition 4.3, 4 — up, u + v, € Gosnpsu(X; A4). O

85. Arithmetic R-Cartier divisors

Throughout this section, let X be a d-dimensional generically smooth and normal
arithmetic variety, that is, X is a flat and quasi-projective integral scheme over Z
such that X is normal, X is smooth over Q and the Krull dimension of X is d.

85.1. Definition of arithmetic R-Cartier divisors
Let Div(X) be the group of Cartier divisors on X. An element of
Div(X)r :=Div(X) ®z R  (resp. Div(X)g := Div(X) ®z Q)

is called an R-Cartier divisor (resp. Q-Cartier divisor) on X. Let D be an R-
Cartier divisor on X and let D = a1 D1 + - - - + a;D; be the unique decomposition
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of D such that D;’s are prime divisors on X and ay,...,a; € R. Note that D;’s
are not necessarily Cartier divisors on X. The support Supp(D) of D is defined by
Uieilas oy Di- If a; > 0 for all i, then D is said to be effective and it is denoted by
D > 0. More generally, for D, E € Div(X)g, if D — E > 0, then we write D > E
or F < D. We define

H°(X, D) = {¢ € Rat(X)* | (¢) + D > 0} U {0},

where Rat(X) is the field of rational functions on X. Let F, : X(C) — X(C) be
the complex conjugation map on X (C). Let g be a locally integrable function on
X (C). We say g is Foo-tnvariant if F (g) = g (a.e.) on X (C). Note that we do not
require that F% (g) is identically equal to g on X(C). A pair D = (D, g) is called
an arithmetic R-Cartier divisor on X if g is Fy-invariant. If D € Div(X) (resp.
D € Div(X)q), then D is called an arithmetic divisor on X (resp. arithmetic
Q-Cartier divisor on X). For arithmetic R-Cartier divisors D; = (D1, g1) and
Dy = (D3, g2), D1 = Dy and Dy < Dy (or Dy > D) are defined as follows:

D, =D, Lefy Dy = Dy and g1 = g2 (a.e.),

bl S EQ g D1 § DQ and a1 § g2 (a.e.).
If D > (0,0), then D is said to be arithmetically effective (or effective for simplic-
ity). For arithmetic R-Cartier divisors D and E on X, we define
(=00, D] := {M | M is an arithmetic R-Cartier divisor on X and M < D},
[D,00) := {M | M is an arithmetic R-Cartier divisor on X and D < M},
[D, E] ;= {M | M is an arithmetic R-Cartier divisor on X and D < M < E}.
Let 7 be a type for Green functions on X, that is, Z is a type for Green
functions on X (C) together with the following extra F.,-compatibility condition: if
u € J(U) for an open set U of X(C), then F% (u) € 7 (FZH(U)). On arithmetic
varieties, we always assume the above F-compatibility condition for a type for
Green functions. We denote the set

{ue 7(X(C)) |u=F(u)}

by Z(X). Note that 7 (X) is different from 7 (X(C)). Clearly C° and C*
have F,,-compatibility. Moreover, by the following lemma, PSH and PSHy also
have F,.-compatibility. If two types 7 and 7’ for Green functions have Fj.-
compatibility, then so do  + .9’ and 7 — 7.

Lemma 5.1.1. Let fi,...,fr € R[Xy,..., Xn] and

V= Spec((C[Xl,...,XN]/(fl,...,fT)).
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Assume that V' is e-equidimensional and smooth over C. Let Foo : V. — V be the
complex conjugation map. If u is a plurisubharmonic function on an open set U
of V, then F* (u) is a plurisubharmonic function on F'(U).

Proof. Fix x € U and choose i1 < --- < i, such that the projection p : V. — C¢
given by (z1,...,2n) — (Ziy,...,z;, ) is étale at z. Note that the following diagram
is commutative:

v I,y

]
Ce Foo Ce

Let U, be an open neighborhood of z such that p|y, : U, — W, = p(U,) is an
isomorphism of complex manifolds. Then p|F;1(Um) : FNU,) — FZYH(W,) is also
an isomorphism as complex manifolds. This observation indicates that we may
assume V = C*.

Let y € F'(U) C C° and € € C° be such that y + Eexp(v/—10) € F (V)
for all 0 < 0 < 27. Then

1 [2 _
F (u)(y) = u(g) < — / (i + Eexp(v/=T16)) df

- 27

1 2m B 1 27

= u(y + Eexp(—v—10))df = —/ u(y + Eexp(v—186))db
2 0 21 0
1 2

=5- [ FLu)(y+Eexp(vV—10))do,
2 0

which shows that F% (u) is plurisubharmonic on EZ(U). O

Let D be an R-Cartier divisor on X and let g be a D-Green function on X (C).
By the following lemma, 3(g+ F (g)) is an Fa-invariant D-Green function of .7-
type on X (C).

Lemma 5.1.2. If g is a D-Green function of 7 -type, then so is FX (g).

Proof. Let D = ayD1+---+a;D; be a decomposition of D such that a1,...,a; € R
and D;’s are Cartier divisors on X. Let U be a Zariski open set of X over which
D; can be written by a local equation ¢; for each i. Let g = u—|—Z§:1(—ai) log | ¢;|?
(a.e.) be the local expression of g with respect to ¢1,...,¢; over U(C). Note that
F* (¢:) = ¢; as a function over U(C). Thus F* (g) = F% (u) —l—Zé:l(—ai) log | ¢;|?
(a.e.) is a local expression of F% (g), as required. O
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We define
— D € Div(X) and g is an Fuo-invariant
D X):=<(D
v (X) {( 9) D-Green function of Z-type on X(C) J’
S D € Div(X)g and g is an F-invariant
D X))o :=4(D
vz (Xe {( +9) D-Green function of Z-type on X(C) [’

— D € Div(X)r and g is an F-invariant
By (X)a = { (D9 (%)n and g }

D-Green function of Z-type on X(C)

An element of ﬁiT/y(X)R (resp. ﬁy(X)@, ﬁ/g(X)) is called an arithmetic
R-Cartier divisor of T -type on X (resp. arithmetic Q-Cartier divisor of T -type
on X, arithmetic Cartier divisor of 7 -type on X). Let D = (D, g) be an arith-
metic R-Cartier divisor of 7-type. Then, as F%(g) = g (a.e.), we can see that
Fi(gean) = gean o0 X(©)\ Supp(D)(C).

Now we recall Picco(X), Picco(X)g and Picco(X)r (for details, see [15]).
First of all, let Picco (X) be the group of isomorphism classes of F,.-invariant
continuous hermitian invertible sheaves on X and let Picco (X)g := Picco (X)®zQ.
For an F,.-invariant continuous function f on X (C), &(f) is (Ox,exp(—f)||can)-
Then we define

lgi\CCw (X) ®Z R

Lot fr € CO(X) and ’
ai,...,a, € R with Ziaifi:O

Picco(X)g =
{Zz E(fz) & a;

where C%(X) = {f € C%X(C)) | FL(f) = f} as before. Note that there is a

L

natural surjective homomorphism & : Diveo (X) — ﬁi\cco (X) given by

0(D,g) = (0x(D),|- |g)7
where |1|, = exp(—g/2).
85.2. Volume function for arithmetic R-Cartier divisors

We assume that X is projective. Let D = (D, g) be an arithmetic R-Cartier divisor
on X. We set
H(X,D) ={¢ € H(X,D) | |¢], <1}

and

W0(X,D) = {log #H(X, D) if H(X, D) is finite,

o0 otherwise,
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where ||¢||4 is the essential supremum of |¢|, = |@| exp(—g/2). Note that
HY(X,D) = {¢ € Rat(X)* | (¢) + D > 0} U {0}
The volume ;(;1(5) of D is defined to be

—~ — hO(X,nD)
(D) =1 —
vol(D) im sup i/l

For arithmetic R-Cartier divisors D and D on X, if D < D, then H°(X,D) C
(X, D) and vol(D) < vol(D).

Proposition 5.2.1. Let .7 be a type for Green functions on X and let D = (D, g)
be an arithmetic R-Cartier divisor of 7 -type on X. If g is either of upper bounded
type or of lower bounded type, then ﬁO(X, D) is finite. Moreover, if g is of upper
bounded type, then \T(i(ﬁ) < 00.

Proof. First we assume that ¢ is of lower bounded type. Then, by Lemma 2.5.1,
| |l yields a norm on H°(X, D), and hence the assertion follows.

Next we assume that g is of upper bounded type. Then, by Proposition 2.3.6,
there is an F..-invariant D-Green function g’ of C*°-type such that g < ¢’ (a.e.).
By Proposition 2.4.2, we can choose ay,...,a; € R and Dy,...,D; € mcm (X)
such that (D, ¢') = a1 Dy +---+a;D;. For each i, by using Lemmas 5.2.3 and 5.2.4

below, we can find effective arithmetic Cartier divisors A; and B; of C*-type such
that EZ = Zi — El As

(D,¢')=a1A1 + -+ ajA + (—a1)B1 + - + (—a;) By,

if weset D' = [a] Ay +-- -+ [@] A+ [(=a1)] By +- -+ [(=a))|By, then (D, g') <
myese, = 1u
D" and D" € Divee (X). Note that

H°(X,nD) C H(X,n(D,¢')) C H*(X,nD") = H(X,6(D")®")
for all n > 1. Thus our assertion follows from [14, Lemma 3.3]. O
Now we consider the fundamental properties of vol on ]SECO (X)r.
Theorem 5.2.2. There is a natural surjective homomorphism
Ox : Diveo (X)r — Picoo (X)r
such that the following diagram is commutative:

]S-RICO(X) ®z R @) ].:/)i\Cco(X) ®z R

l l

Divoo(X)g —2  Picco(X)r
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Moreover, we have the following:

(1) For all D € Diveo(X)g,
vol(D) = lim ——2

where t € Rsg and @(ER(E)) is the volume defined in [15, Section 4].

(2) \a(aﬁ) = ad;c;l(ﬁ) for alla € Rsg and D € Diveo (X)r-

(3) (Continuity of vol) Let Dy, ...,D,,Ay,..., Ay € Diveo(X)r. For a compact
set B in R™ and a positive number €, there are positive numbers § and &' such
that, for all ai,...,a,,61,...,6 € R and ¢ € C°(X) with (ay,...,a,) € B,
Z;;l 16;] <6 and ||@|lsup < &', we have

’@(i a;D; + TZ 3;4; + (0, ¢)> - VAOl(i aiﬂ')
i=1 j=1 =1

Moreover, if D1,...,D,, A1,..., A are C™, then there is a positive constant

C depending only on X and D+,...,D,, A;,..., A such that
’\751(2 CL,’EZ‘ + Z 5ij + (O, ¢)> - \781(2 aiﬁi)
i=1 j=1 i=1
T r d— r
< (X tail + 150) " (Nl + X21551)
1 j=1 j=1

i=

<e.

for all ay,...,a,,61,...,6» €R and ¢ € C°(X).
(4) Let Dy and D be arithmetic R-Cartier divisors of CO-type. If D1 and Do are
pseudo-effective (for the definition, see Subsection 6.1), then

vol(Dy + D)4 > vol(Dy ) + vol(Dy) /4.

(5) (Fujita’s approximation theorem for arithmetic R-Cartier divisors) If D is
an arithmetic R-Cartier divisor of C°-type and \70\1(5) > 0, then, for any
positive number €, there are a birational morphism p Y — X of generically
smooth and normal projective arithmetic varieties and an ample arithmetic
Q-Cartier divisor A of C*-type on Y (cf. Section 6) such that A < u*(D)
and vol(A) > vol(D) — e.

Let us begin with the following lemmas.

Lemma 5.2.3. Let Y be a normal projective arithmetic variety. Then we have
the following:
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(1) Let Z be a Weil divisor on'Y . Then there is an effective Cartier divisor A on
Y such that Z < A.

(2) Let D be a Cartier divisor on' Y. Then there are effective Cartier divisors A
and B on'Y such that D = A — B.

(3) Let x1,...,x; be points of Y and let D be a Cartier divisor on'Y . Then there
are effective Cartier divisors A and B, and a non-zero rational function ¢ on
Y such that D+ (¢) = A — B and 1, ..., x; & Supp(A) U Supp(B).

Proof. (1) Let Z = a1y +- - -+ a;T'; be the decomposition such that I';’s are prime
divisors on Y and aq,...,a; € Z. Let L be an ample invertible sheaf on Y. Then
we can choose a positive integer n and a non-zero section s € H°(Y, L®") such
that multr, (s) > a; for all i. Thus, if we set A = div(s), then A is a Cartier divisor
and Z < A.

(2) First of all, we can find effective Weil divisors A’ and B’ on Y such that
D = A" — B'. By (1), there is an effective Cartier divisor A such that A" < A.
We set B =B’ + (A — A’). Then B is effective and D = A — B. Moreover, since
B =A— D, B is a Cartier divisor.

(3) Let L be an ample invertible sheaf on Y as before. Then there are a
positive integer n; and a non-zero s; € H°(Y, L®™) such that s;(z;) # 0 for all i.
We set A’ = div(sy). Similarly we can find a positive integer ny and a non-zero
sy € HO(Y, Oy (naA’ — D)) such that sy(w;) # 0 for all i. Therefore, if we set
A =ns A’ and B = div(ssy), then there is a non-zero rational function ¢ on Y such
that A — D = B + (¢), as required. O

Lemma 5.2.4. Let J be either C° or C=. Let A’ and A" be effective R-Cartier
divisors on X and A= A’ — A". Let g4 be an Fy-invariant A-Green function of
T -type on X (C). Then there are effective arithmetic R-Cartier divisors (A’, gar)
and (A", gar) of T -type such that (A,ga) = (A",9a/) — (A", gar).

Proof. Let gar be an Fy.-invariant A”-Green function of Z-type such that gan
>0 (a.e.). We put g4’ = ga+9gar. Then ga is an Fy-invariant A’-Green function
of J-type. Replacing g4~ with ga» + (positive constant) if necessary, we have
gar >0 (a.e.). O

Lemma 5.2.5. Let .7 be a type for Green functions such that — C 7 and
C>® C . Then the kernel of the natural homomorphism Diva(X) @z R —
Diva(X)g coincides with

1
0, ¢ i
{;(,(b)@a and arpy + -+ aipp =0

alv"'7al€R7 ¢17a¢l€‘7(X)}
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Proof. Tt is sufficient to show that, for Z 1(Di, ) ®a; € Divs (X) @z R, if

l

l
Z%‘Dz‘ =0 and Zaigi =0 (a.e.),
i=1

=1

then there are ¢1,...,¢; € 7(X) such that Eizl(Di,gi) R a; = 2221(0, i) ® a;
and a1¢1 + -+ a;¢p; = 0. Let Eq,..., E,. be a free basis of the Z-submodule of
Div(X) generated by D1, ..., D;. We set D; = Zr-zl b;; E;. Since

O—ZazD Z(Z% ”)

j=1 1i=1

we have 22:1 aibj; = 0 for all j =1,...,r. Let h; be an F-invariant F;-Green
function of C*°-type. Note that 22:1 bijh; is an Fo-invariant D;-Green function
of F-type. Thus we can find ¢1,...,¢; € 7 (X) such that

gi =Y bijhj+¢i (ae)
j=1

for each 7. Then

D MVAE) 30 ATHTIES ST Pt

j=1 i=1

Note that >, a;¢; € 7 (X), so that >, a;¢; = 0 over X(C). On the other hand,

l

Z( ugz ®a; = ZZE77h ®azbz]+z ¢z ® a;

i=1 =1 j=1
l l l

= .Z(Ej’ hj) (Z aibij) + Z(Oa b)) ®a; = Z(O, $i) ® ai,

i=1 i=1 i=1

as required. O

Proof of Theorem 5.2.2. By Proposition 2.4.2, the natural homomorphism
Diveo(X) @z R — Diveo (X)r

is surjective. Thus the first assertion follows from Lemma 5.2.5.

(1) We set D = a1 Dy + --- + a;D;, where ay,...,a; € R and Dy,...,D; €
Diveo (X). For each D;, by using Lemmas 5.2.3 and 5.2.4, we can find effective
arithmetic Cartier divisors D, and D, of C%-type such that D; = Dy — D, . Then

D=aDy+-+aD,+ (—a1)D} + -+ (—a)) D} .
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Thus we may assume that D; is effective for every i. We set I = {i | a; > 0} and
J = {i| a; < 0}. Moreover, we set

Zn = ZLTLGJEZ + ZL(TL + 1)ajjbj,

el jeJ
B, =Y [na;|D;+ Y [(n—1)a;]D;
i€l jEJT

for n € Z>1. Then, as lim, o0 A, /n = lim, oo Bn/n = D, by [15, Theorem 5.1]
we have o N
i S = Jim Sl = @)
Note that
[[t]a] <ta < [[t]a] ifa>0,
{L(Lt] +Da] <ta<[([t] —1)a] ifa<0

for a € R and ¢t € R>;, which yields ZM <tD < Efﬂ for t € R>;. Therefore,

(Lt)* hO(XAL) _ KO(X,tD)
td([thd/d = td/dl

([t)* h°(X, Bpy)
td ([thd/ar -

<

and hence (1) follows.

(2) follows from (1).

(3) The first assertion follows from [15, (4) in Proposition 4.6]. Let us prove
the second assertion. We choose E1, ..., Ep, Bi,..., By € Divee (X) such that
EZ‘ = 221:1 aikEk and Zj = Z;il legl for some ik ﬁjl € R. Then

’
T

iaiﬁi = i(i aiaik>Ek and ET,:(S]-ZJ- = i(Z §jﬁjl)§l.
i=1 Jj=1 =1

k=1 i=1 j=1

Moreover, if we set C' = max({ar} U {B;1}), then

T T T’l T’/
> awau] <> lail and [Sa8u <] 161
i=1 i=1 j=1 j=1

Thus we may assume that Ds,..., Dy, A;,..., A € Diveee(X). Therefore, the
second assertion of (3) follows from [15, Lemma 3.1, Theorem 4.4 and Proposi-
tion 4.6].

(4) If vol(D;) > 0 and vol(Ds) > 0, then (4) follows from (3) and [23, The-
orem B] (or [16, Theorem 6.2]). Let us fix an ample arithmetic Cartier divisor A
(for the definition of ampleness, see Subsection 6.1). Then \781(51 +¢€A) > 0 and
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\;81(52 +€A) > 0 for all € > 0 by Proposition 6.3.2. Thus, by using (3) and the
previous observation, we obtain (4).

(5) By using the continuity of vol and the Stone-Weierstrass theorem, we can
find an arithmetic Q-Cartier divisor D' of C™-type such that D' < D and

vol(D') > max{vol(D) — /2, 0}.

Then, by virtue of [6], [23] or [16], there are a birational morphism p : Y — X
of generically smooth and normal projective arithmetic varieties and an ample
arithmetic Q-Cartier divisor A of C®-type on Y such that A < p*(D') and
vol(4) > vol(D') — €/2. Thus (5) follows. O

§5.3. Intersection number of arithmetic R-Cartier divisors with a
1-dimensional subscheme

We assume that X is projective. Let C' be a 1-dimensional closed integral sub-
scheme of X. Let £ = (£, h) be an F,-invariant continuous hermitian invertible
sheaf on X. Then it is well-known that d/ég(ﬂc) is defined and it has the following
property: if s is a non-zero element of H%(X, £) with s|¢ # 0, then

Fea(Cle) = o #( 51% ) =5 X loxlh(s.s)(o)

zeC(C)

In addition, the map

Picco(X) =R (L deg(Lc))
is a homomorphism of abelian groups, so that it extends to a homomorphism

deg(~c) : Picon(X) @z R + R
given by
deg((L1 @ a1 + -+ Ly ® ay)| o) = ardeg(Li]e) + - - - + apdeg(L, o).
If f1,...,fr € C%X), a1,...,a, € Rand ay f1 + - -+ + a,f, = 0, then
deg((O(f1) @ a1+ -+ O(f;) ® ar)lc) = ardeg(G(f1)le) + -+ ardeg(@(f,)c)
= Zai( Z fi(@) =0.
i=1  zeC(C)

Therefore, d/eTg(— le): Picco (X)®zR — R descends to a homomorphism Picco (X)r
— R, denoted also by deg(—|¢). Using this homomorphism, we define

deg(—|c) : Diveo (X )z — R
to be deg(D|c) := deg(@r(D)|c) for D € Diveo (X)g. If there are effective Cartier
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divisors D1,...,D; and ai,...,a; € R such that D = a1Dy + --- 4+ a;D; and
C & Supp(D;) for all 4, then we can see that

1
deg (D a;log #(0 )/ Oc)+ = an(T).
g(Dlc) = ZZ; ilog#(0c(D;)/Oc) 2$§C)gc (z)
Let 7 be a type for Green functions on X such that C° C .7, 7 is real valued
and —7 C 7. Let D = (D, g) be an arithmetic R-Cartier divisor of 7 -type on X.
There is h € 7 (X) such that g—h is an F-invariant D-Green function of C°-type.
We would like to define d/e\g(ﬁ|c) to be the following quantity:

dea(D,g ~le) +5 Y hix)
zeC(C)
Indeed, it does not depend on the choice of h. Let h’' be another element of .7 (X)
such that g — b/ is an F..-invariant D-Green function of C°-type. We can find
u € C%X) such that g —h = g — b/ + u (a.e.), so that b’ = h + u over X(C).
Therefore,

1
deg((D,g = 1)le) + Z W (@) = deg((D, (g =) —w)le) +5 Y (h+u)(z)
xeC((C) zeC(C)
— 1 1
=deg((D.(g—Mle) =5 3 ul)+5 3 (h+u))
z€C(C) 2€C(C)
= deg((D,g — h)|c) + Z h(x
rGC((C)
Note that if there are effective Cartier divisors Dy,...,D; and aq,...,a; € R such

that D =a1Dy + -+ alDl and C' Z Supp(D;) for all 4, then

FiDle) - Y arlog #0cD)00) + 1 T o)

i=1 2€C(C)

Moreover, d/e%(—|c) : mg(X)R — R is a homomorphism.

Let Z1(X) be the group of 1-cycles on X and Z;(X)r = Z1(X) ®z R. Let
Z be an element of Z;(X)g. There is a unique expression Z = a;C1 + -+ - + a;C}
such that ay,...,a; € R and C1,...,C; are 1-dimensional closed integral schemes
on X. For D € Divg(X)gr, we define

!
deg(D | Z) Zaldeg Dlc,).
i=1

Note that d/é\g(ﬁ | C) = d/é\g(ﬁ|c) for a 1-dimensional closed integral scheme C
on X.
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§6. Positivity of arithmetic R-Cartier divisors

In this section, we will introduce several kinds of positivity for arithmetic R-
Cartier divisors and investigate their properties. Throughout this section, X will
be a generically smooth projective and normal arithmetic variety.

§6.1. Definitions

Let D = (D, g) be an arithmetic R-Cartier divisor on X, that is, D € Div(X)g
and ¢ is an Fio-invariant locally integrable function on X (C). The ampleness,
adequateness, nefness, bigness and pseudo-effectivity of D are defined as follows:

e Ample: First we recall the ampleness of a C'°°-hermitian invertible sheaf. Ac-
cording to [13], an F,.-invariant C°°-hermitian invertible sheaf £ = (£, h) on X
is said to be ample if £ is ample, ¢;(£) is a positive form and H°(X,L®") is
generated by elements of

{s€ HO(X, L") | [|slsup < 1}

as a Z-module for n > 1. Note that our definition is slightly stronger than Zhang’s
[25], where the semipositivity of ¢;(£) is assumed instead of positivity.

We say D is ample if there are ay,...,a, € Rso and ample arithmetic Q-
Cartier divisors Ay, ..., A, of C®-type (i.e., O(n;A;) is an ample C*°-hermitian
invertible sheaf for some n; € Z<g in the above sense) such that

E:a121+---+arzr.

Note that an ample arithmetic R-Cartier divisor is of C*°-type. The set of all ample
arithmetic R-Cartier divisors on X is denoted by A/m\p(X )r- By applying [16,
Lemma 1.1.3] to the case where P = Divese (X)g, m=1,b =0, A="10,...,0)
and z1 = A1,...,x, = A,, we can see that

Amp(X)g N Dives (X)g = {D

O(nD) is an ample C*-hermitian
invertible sheaf on X for some n € Z~q [ °

e Adequate: D is said to be adequate if there are an ample arithmetic R-Cartier
divisor A and a non-negative F,-invariant continuous function f on X(C) such
that D = A + (0, f). Note that an adequate arithmetic R-Cartier divisor is of
CO-type.

e Nef: We say D is nef if the following properties holds:

(a) D is of PSHg-type.
(b) (Te\g(ﬁb) > 0 for all 1-dimensional closed integral subschemes C' of X.
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The cone of all nef arithmetic R-Cartier divisors on X is denoted by Ne\f(X )R-
Moreover, the cone of all nef arithmetic R-Cartier divisors of C*°-type (resp. C°-
type) on X is denoted by Nefcoo (X)g (resp. Nefco(X)gr).

e Big: Let us fix a type .7 for Green functions. We say D is a big arithmetic
R-Cartier divisor of 7 -type if D € Divgs(X)g (i.e. D € Divg(X)r and g is of
bounded type) and vol(D) > 0.

o Pseudo-effective: D is said to be pseudo-effective if D is of C%-type and

there are arithmetic R-Cartier divisors Di,...,D, of C%type and sequences
{an1}32 4, s {an,}22; in R such that lim, ye an; = 0 for all ¢ = 1,...,r and

vol(D + an1Dy + -+ + an,D,) > 0 for all n > 1.

86.2. Properties of ample arithmetic R-Cartier divisors

In this subsection, we consider several properties of ample arithmetic R-Cartier
divisors. Let us begin with the following proposition.

Proposition 6.2.1. (1) If A and B are ample (resp. adequate) arithmetic R-
Cartier divisors and a € Rsq, then A+ B and aA are also ample (resp.
adequate).

(2) If A is an ample arithmetic R-Cartier divisor, then there are an ample arith-
metic Q-Cartier divisor A and an ample arithmetic R-Cartier divisor A" such
that A=A +A".

(3) Let A be an ample (resp. adequate) arithmetic R-Cartier divisor and let Ly,
..., Ly be arithmetic R-Cartier divisors of C>-type (resp. of C°-type). Then
there is § € Rsq such that A + 61 Ly + --- + 0, L, is ample (resp. adequate)
for 01,...,6, € R with |61] 4+ -+ |0,] < 4.

(4) If A is an adequate arithmetic R-Cartier divisor, then \7(;1(2) > 0.

Proof. (1) and (2) are obvious.

(3) First we assume that A is ample and that Ly, ..., L, are of C*°-type. We
set L; = 22:1 bijﬂj such that M,..., M; are arithmetic Q-Cartier divisors of
C*>°-type and b;; € R. Then, as

n

n l
A3 6Ti=A+ 3 (3 i),
i=1 j=1 i=1

we may assume that Li,...,L, are arithmetic Q-Cartier divisors of C'*-type.
Moreover, by (1) and (2), we may further assume that A is an ample arithmetic
Q-Cartier divisor.
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Let us choose § € Q¢ such that A+ §L; is ample for every i = 1,...,n. Note

that
Z” 0] = — Z" 10:] \ = Z" 7
2 6 (A —+ 81gn(5z)5L1) = 5 A —+ 2 52L17

=1

where sign(a) for a € R is given by

, 1 ifa>0,
sign(a) = -1 ifa<0

Hence, if >°,_, [6;| <6, then A+ > | §;L; is ample.

Next we assume that A is adequate and that Ly, ..., L, are of C%-type. Then
there are an ample arithmetic R-Cartier divisor A and u € C°(X) such that
w>0and A= A+ (0,u). As A - (0,¢€) is ample for 0 < € < 1 by the previous
observation, we may assume that u > € for some positive number €. By virtue of the
Stone-Weierstrass theorem, we can find vy, ..., v, € C°(X) such that v; > 0 (Vi),
e>vi+---+v, and fg := L; +(0,v;) is of C>™-type for all i. By the previous case,
we can find 0 < § < 1 such that A’ + 6,1 +---+5nfln is ample for 81,...,0, € R
with |d1] + - -+ 4 |[0n] < J. Note that

A+6 L1+ +0,Ln=A + 6L+ +6,L, + (0,u— 5101 — -+ — S,0)

and
U—0101 — = OpUp ZU— V1~ — vy 20,
as required.

(4) Clearly we may assume that A is ample, so that the assertion follows from
(2) and (4) of Theorem 5.2.2. O

Next we prove the following.

Proposition 6.2.2. (1) If A is an ample arithmetic R-Cartier divisor and B is
a nef arithmetic R-Cartier divisor of C*®-type, then A + B is ample.

(2) If A is an adequate arithmetic R-Cartier divisor and B is a nef arithmetic
R-Cartier divisor of C°-type, then A+ B is adequate.

Proof. (1) We set B = b1By + - -+ + b, B,, where by,...,b, € R and By,...,B,
are arithmetic Q-Cartier divisors of C*°-type. We choose an ample arithmetic
Q-Cartier divisor A; and an ample arithmetic R-Cartier divisor As such that
A = A; + As. Then, by Proposition 6.2.1(3), there are 61, ...,6, € Rsg such that

21 + zn: 51§1 and Zg — zn: 51§L
i=1

i=1
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are ample and b; + §; € Q for all i. Moreover, we can take an ample arithmetic
Q-Cartier divisor A3 and an ample arithmetic R-Cartier divisor A4 such that

ZQ — Zdzﬁz = Zg —|—Z4
i=1

Then, since
A+ 6B +B=4 Zb +6)B

1
is a nef arithmetic Q-Cartier divisor of Coo—type, A3 + A1+ ,0,B;+ Bisan
ample arithmetic Q-Cartier divisor by [14, Lemma 5.6]. Therefore,

n

A+B=A4+ A3+ 4, +Z5i§i +B
i=1

is an ample arithmetic R-Cartier divisor.

(2) Clearly we may assume that A is ample. By Proposition 6.2.1(3), there
is a positive real number ¢ such that %Z — (0,0) is ample. Note that %A + B
is ample, that is, %A + B is a linear combination of ample Cartier divisors with
positive coefficients, which can be checked in the same way as above. Thus, by
Theorem 4.6(2), there is u € C(X) (i.e., u is an F,-invariant continuous function
in X(C)) such that 0 < v < 6 on X(C) and 34 + B + (0,u) is a nef R-Cartier
divisor of C'*°-type. Then, by (1),

%Z— (0,0) + %Z+§+ (0,u)
is ample. Thus
A+B=_-A-(0,6)+ %Z+§+ (0,u) + (0,6 — u)
is adequate. O

Finally let us record the following lemma.

Lemma 6.2.3. Let Dy = (Dy,g1) and Dy = (D3, g2) be arithmetic R-Cartier
divisors of PSHg-type on X. If Dy = Dy, g1 < go (a.e.) and Dy is nef, then Do
1s also nef.

Proof. Since Dy = Do, there is a ¢ € (PSHr —PSHg)(X(C)) such that g =
g1+ ¢ (ae.) and ¢ > 0 (a.e.). Note that ¢ > 0 by Lemma 2.3.1. Let C be a
1-dimensional closed integral subscheme of X. Then

deg(D2|c) = deg(Dilc) + Z #(y) > deg(Di|c) > 0. O
yGC(C)
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86.3. Criteria of bigness and pseudo-effectivity

The purpose of this subsection is to prove the following propositions.

Proposition 6.3.1. For D = (D, g) € ﬁrco (X)r, the following are equivalent:
(1) D is big, that is, \7(;1(3) > 0.

(2) Forany A € ﬁi;co (X)R, there are a positive integer n and a non-zero rational
function ¢ such that A < nD + (¢).

Proof. “(2)=-(1)" is obvious.

Let us consider “(1)=-(2)”. By using Lemmas 5.2.3 and 5.2.4, we can find
effective arithmetic R-Cartier divisors A and A" of CO-type such that A = A-A".
Note that A < A. Thus we may assume A is effective. By the continuity of vol
(cf. Theorem 5.2.2), there is a positive integer m such that

vol(D — (1/m)A) > 0,

that is, \ﬁ(mﬁ — A) > 0, so that there is a positive integer n and a non-zero
rational function ¢ such that

n(mD — A) + (¢) > 0.

—

Thus mnD + (¢) > nA > A. O

Proposition 6.3.2. For D = (D, g) € ]SR/Co (X)r, the following are equivalent:

(1) D is pseudo-effective.

(2) For any big arithmetic R-Cartier divisor A of C°-type, \751(5 + A) > 0.

(3) There is a big arithmetic R-Cartier divisor A of C°-type such that \70\1(b +
(1/n)A) > 0 for alln > 1.

Proof. Tt is sufficient to see that (1) implies (2). As D is pseudo-effective, there are
arithmetic R-Cartier divisors D1, ..., D, of C%-type and sequences {a,,1}%°_;,. ..,
{@mr }5_1 in R such that lim,, o0 @i = 0 foralli = 1,...,7 and vol(D+a,,; D1+

oo+ ampDy) > 0 for all m > 1. By the continuity of vol, there is a sufficiently
large positive integer m such that A — (@,,1 D1 + - - - + @y D,) is big. Thus

vol(D + A) > vol(D + a1 D1 + -+ - + aymp Dy) > 0. O

Proposition 6.3.3. If D = (D, g) is a pseudo-effective arithmetic R-Cartier di-
visor of CY-type such that D is big on the generic fiber Xq (i.e., vol(Dg) > 0
on Xg), then D + (0,€) is big for all e € Rsy.
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Proof. Let A be an ample arithmetic Cartier divisor on X. Since D is big on Xg, by
using the continuity of the volume function over Xg (cf. [10, I, Corollary 2.2.45]),
we can see that there are a positive integer m and a non-zero rational function ¢
such that

mD — A+ (¢) > 0.

o~

If we set (L,h) =mD — A+ (¢), then h is an L-Green function of C%-type and L
is effective. Thus there is a positive number A such that

mD — A+ (¢) > (0, -\),

that is, mD + (0,\) > A — (¢). We choose a sufficiently large positive integer n
such that

Then

D L= @) <D+ LD = (1+ 7)) (P (0.575)

n+m

o~ —~

Note that A — (¢) is ample, so that D+ (1/n)(A — (¢)) is big by Proposition 6.3.2,
and hence D + (0, €) is also big. O

Remark 6.3.4. It is very natural to ask whether H°(X,n(D + (0,¢€))) # {0} for
some n € Zsgo in the case where D is not necessarily big on Xg. This does not
hold in general. For example, let P, = Proj(Z[To,T1]) be the projective line over

Zand D = a(]ﬁ) for a € R\ Q. It is easy to see that D is pseudo-effective and
HO(PL,nD) = {0} for all n € Zsq. Thus H(PL, n(D + (0,€))) = {0} for € € Rog
and n € Zso.

§6.4. Intersection number of arithmetic R-Cartier divisors of C’-type

Let
Diveoo (X) X -+ X Diveee (X) = R
be a symmetric multi-linear map over Z given by
(D1, Da) v deg(Dy -+ Da) = deg(@(0(D1)) ---&1(6(Da))),
which extends to a symmetric multi-linear map

(Dive (X) ®zR) x -+ x (Dives (X) ®zR) —» R

over R.
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Proposition-Definition 6.4.1. The above multi-linear map
(Divee (X) @z R) x -+ x (Dives (X) ®2R) > R
descends to a symmetric multi-linear map
Dives (X)g %« x Divee (X)g — R

over R, whose value at (Dy,...,Dq) € Diveee (X)r x -+ X Diveee (X)r is also
denoted by deg(Dy --- Dg) by abuse of notation.

Proof. Let ay,...,a; € R and ¢1,...,¢; € C°(X) be such that a1¢1 + -+ + a;¢;
= 0. By Lemma 5.2.5, it is sufficient to show that

deg(((0,¢1) @ ar + -+ (0,) @ ay) - Dy ---Dyg) = 0

for all Do,...,Dy4 € ]SRICOC (X). First, note that there are 1-dimensional closed
integral subschemes C1,...,C,, c1,...,¢. € Z and a current T of (d — 2,d — 2)-
type such that

EQ A 'Ed ~ (Clcl JF A +CT‘C’I"7T)'

Then
des(((0 Do) St 0 ) @a) Dy D)

= Z aldeg ) (a1C1+ -+ ¢.Cp,T))

—Z%(ch > e+ [ arie)ar)

j=1 yGC (©)
!
- Z € Z Zangz +(1/2) / dd* (Z aidn) AT =0,
j=1  yeC;(C) i=1 X(©) i=1
as required. O
——Nef — —

Let Divao (X)gr be the subspace of Diveo (X )g generated by Nefco(X)g. The
purpose of this subsection is to show the following proposition, which gives another
construction of the intersection number due to [25, Lemma 6.5], [26, Section 1] and
[11, Section 5] (cf. Remark 6.4.3).

Proposition 6.4.2. (1)

- /_\Nef .
Diveonpsatce (X)r € Diveo (X)r € Diveonpsa—conpsa (X)r.
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(2) The symmetric multi-linear map Divese (X)rx---X% Divese (X)r — R given in
Proposition-Definition 6.4.1 extends to a unique symmetric multi-linear map

——Nef ——Nef
0

DIVCO (X)R X e X DiVC (X)]R —R

such that (D, ..., D) @(E) for D € Nefco (X)r. By abuse of notation, for

— . ——Nef ——Nef

(Dl, . ,Dd) S Dcho (X)R X ooee X DiVCo (X)R7
the image of (D1, ..., Dg) under the above extension is also denoted by
deg(D; - -~ Dy).

Proof. (1) It is obvious that

——Nef —

Diveo (X)r € Diveonpsi—conpsu (X )r-
Let D € ]SR/COQPSH Lo (X)r. By Proposition 2.3.7, there is an ample arithmetic
Cartier divisor A with D + A € Divoonpgu(X)g. Thus it is sufficient to show the
following claim:

Claim 6.4.2.1. For D € ]SRICOQPSH(X)R, there is an ample arithmetic Cartier
divisor B such that D + B € Nefco(X)g and D + B is ample.

Proof. By the Stone—Weierstrass theorem, there is an F-invariant non-negative
continuous function u on X(C) such that D — (0,u) € Diveee (X)r. Thus, by
Proposition 6.2.1, we can find an ample arithmetic Cartier divisor B such that
D —(0,u)+ B is ample. In particular, D+ B € ﬁe\fco (X)gr and D+ B is ample. O

(2) Let us begin with the following claim.

Claim 6.4.2.2. (a) For D € Nefcw (X)z, deg(D”) = vol(D).

d
(b) diXi---Xg= > (~1)#D (ZX) in ZIX1, ..., Xa).
PAIC(L,...,d} i€l
(C) Forﬁl, - ,ﬁd S @Cx(X)Ry
dog(D;---Dy) = — (—1)# Dl (S B,
g1 d) = dl Vi il-
0£IC{1,...,d} il

Proof. (a) First we assume that D is ample. We set D = a; Ay + -+ + a;4; such
that ai,...,a; € Ry and A;’s are ample arithmetic Cartier divisors. Let us choose
sufficiently small positive numbers 6y, ..., d; such that a; + d; € Q for all 7. Then,



862 A. MORIWAKI

by [14, Corollary 5.5],
deg(((a1 + 61) Ay + - + (a1 + 6)A)) = vol((ay + 61) A1 + -+ + (a; + ) Ay),

and using the continuity of \70\1, the assertion follows.

Next we consider the general case. Let A be an ample arithmetic Cartier
divisor of C*°-type. Then, by Proposition 6.2.2, D + €A is ample for all € > 0.
Thus the assertion follows from the previous observation and the continuity of vol.

(b) In general, let us show that

S (- (ZXi)l _ {0 if 1 < d,

OAICTT ) o (-D4dIX,--- Xy ifl=d

for integers d and [ with 1 < [ < d; call this assertion A(d,l). Then A(1,1) is
obvious. Moreover, it is easy to see A(d,1). Note that

[ 2 coro(sx) )

0ATC{1,....d}

1 1 -1

Ly o(Ex)vn Y ()
P£IC{1,...,d} il P£JC{1,....d—1} jeJ

which shows that A(d—1,1—1) and A(d,l— 1) imply A(d,!). Thus (b) follows by
double induction on d and I.
(c) follows from (a) and (b). O

The uniqueness of the symmetric multi-linear map follows from (b) of the
previous claim. We set

P={De Nef co (X)r | D is ample}.

Note that D+ A € P for all D € Nef o (X)gr and A € A/m\p(X)]R. In particular,

——Nef -y — ~
Diveo (X)z ={D—-D | D,D € P}.

For (ﬁl,...,Dd)er--~xﬁ,wedeﬁne

(6.4.2.3) a(ﬁl,...,ﬁd)::$ 3 (—1)d—#(I>VAo1(ZE).

T 0#£IC{1,...,d} iel

Claim 6.4.2.4. « is symmetric and
a(aDy + bﬁlhﬁg, ..., Dq) = aa(D1, D, ...,Dy) + ba(ﬁ;,ﬁg, ..., Dyg)

forﬁl,ﬁg,ﬁg,...,ﬁd € P anda,be R>o with a+b > 0.
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Proof. Clearly « is symmetric. By Theorem 4.6, for any ¢ > 0, there are non-
negative Fyo-invariant continuous functions uy, u}, us, ..., uq such that

lutllwp < € lurllsup <€ Jluzllsup <€ -, Juallsup <€

Thus, using the continuity of \7(;1, we obtain the assertion of the claim. O

By the above claim together with Lemma 6.4.4 below, we obtain the existence
of the symmetric multi-linear map. Finally we need to check

vol(D) = deg(D")

for D € Ne\fco (X)g. Let A be an ample arithmetic R-Cartier divisor of C*°-type.
As D + €A € P for € > 0, we have

d

— A\ o i
vol(D + €A) = deg((D + eA)!) =) ( .>eldeg(Dd AY,
i
i=0
and hence the assertion follows from the continuity of vol. O

Remark 6.4.3. (1) By our construction, \751(5) = d/cw\g(ﬁd) for D € Nef o (X)r.
In particular, D is big if and only if d/e%(ﬁd) > 0. This is however a non-trivial
fact for D € Nef e (X)r (cf. [14, Corollary 5.5] and Claim 6.4.2.2).

(2) In [25, Lemma 6.5], [26, Section 1] and [11, Section 5], a symmetric multi-
linear map

——Nef ——Nef

DlVCo (X) X e X DIVCO (X) — R
is constructed as an extension of
Divee (X) x -+ x Divees (X) — R.

Of course, it extends by multi-linearity to a symmetric multi-linear map

——Nef —Nef

DIVCo (X)]R X oo X Dcho (X)]R — R.

Our intersection number in Proposition 6.4.2 coincides with the number given by
the above multi-linear map. For details, see [18, Subsections 1.2 and 2.2].
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Lemma 6.4.4. Let V and W be vector spaces over R and let P be a cone in
V', that is, ax + by € P whenever x,y € P and a,b € R>g with a +b > 0. Let
f:P%— W be a map such that

flze, .. yaz; + by, ..y xs) = af(T1, . Tiye oy @s) F0F (@1, 00y Yiy e ey Ts)

foralli=1,...,s and all z,...,2;,Y;,...,s € P and a,b € R>¢ witha+b > 0.
IfV ={x —a' | x,2' € P}, then there is a unique multi-linear map f : V¥ — W
such that f|ps = f. Moreover, if f is symmetric, then f s also symmetric.
Proof. For xy,...,xs € V, weset ©; =x;1 —x; —1 (Ti1, 21 € P) for each 4, and
define

fzy,... xz5) = Z €1 € f(T1,ers - Tsyes)-

€1,...,es€{£1}
Claim 6.4.4.1. The above is well-defined, that is, if we choose other y;1,vy; 1
€ P with x; = y;1 — yi,—1 for each i, then
Z €1 €sf(T1,ery e s Tse,) = Z €1 €sf(WYters oy Ysyes)-
€1,..,es€{E1} €106 €{F1}

Proof. For simplicity, we denote

Z €1 €sf(T1,e,y--1Tse,) and Z €1 €sf(Yr,ers- s Us,ey)
€1,..,es €{E1} €1,n€s €{E1}

by I, and I, respectively. We use induction on s. If s = 1, then the assertion is
obvious, so that we assume s > 1. By the induction hypothesis, for all x € P,

Z 62'"Esf($a$2,ega---7xs,es): Z 62"'65f(337y2,627---ays,es)~

€2,...,es€{E1} €a,...,es€{£1}

As 11 +y1,—1 = %1,—1 + Y1,1, we have

f(xl,lax2,€27 ... 7xs,65) + f(yl,—la x2,€23 s 7xs,63)

= f(xl,flv mQ,Ega .. 7x5,65) + f(y1,17 x2,627 .. 7x8765)‘
Therefore,
I$ = Z 62"'es(f(zlylvxlsm'"7':65,65) 7f(x17—1ax2,€27"'7173755))
€2,...,es€{E1}
= Z 62'"€S(f(y171"r21527"'7x3,65)_f(yl,—laxQ,eza"'7IS,63))
€2,...,es€{£1}
= Z €2 €s(f(Y11: Y2ie0r - s Usie.) = FW1,—1, Y200, -, Ysie, ) = Iy,
€2,...,es€{£1}

as required. O
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Clearly, if f is symmetric, then f is also symmetric. The uniqueness and
multi-linearity of f are straightforward consequences. O

§6.5. Asymptotic multiplicity

First we recall the multiplicity of Cartier divisors. Let (R, m) be a d-dimensional
noetherian local domain with d > 1. For a non-zero element a of R, we denote the
multiplicity of the local ring (R/aR, m(R/aR)) by multy(a), that is,

 length((R/aR) /m™ (R/aR))

multy, (a) := { n—oo nd=1/(d - 1)!
0 ifa € R*.

ifa g R*,

Note that the above limit always exists and multy(a) € Z>g. Moreover, if R is
regular, then
multy, (a) = max{i € Z>o | a € m'}.
Let a and b be non-zero elements of R. By applying [12, Theorem 14.6] to the
exact sequence
0— R/aR =% R/abR — R/bR — 0,

we can see that
multy, (ab) = multy, (a) + multy, (b).

Let K be the quotient field of R. For o € K*, we set a« = a/b (a,b € R\ {0}).
Then multy (a) — multy, (b) does not depend on the expression oo = a/b. Indeed, if
a=a/b=d'/V, then, by the previous formula,

multy, (@) + multy (') = multy (ad’) = multy (a’d) = multy, (a’) + multy, (b).
Thus we define
multy, () := multy (@) — multy (b).

Note that the map
multy : K* = Z

is a homomorphism, that is, multy (@f) = multy () + multy, (8) for a, 5 € K*.
For x € X, we define a homomorphism

mult, : Div(X) — Z

by mult, (D) := multy, (fz), where m, is the maximal ideal of Ox , and f, is a
local equation of D at x. Note that this definition does not depend on the choice
of the local equation f,. By abuse of notation, the natural extension

mult, ® idg : Div(X)g = R

is also denoted by mult,.
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Let D be an arithmetic R-Cartier divisor of C°-type. For x € X, we define

v (D) = | PEHmlte(D +(9)) [ 6 € A°(X, D)\ {0}} if A°(X,D) # {0},
R € if H°(X,D) = {0}.

We call v, (D) the multiplicity at x of the complete arithmetic linear series of D.
First let us prove the following lemma.

Lemma 6.5.1. Let D and E be arithmetic R-Cartier divisors of CO-type. Then
we have the following:

(1) If D is effective, then v,(D) < mult,(D).

(2) vo(D+E) < vx(D) + v, (E).

(3) If D<E, then v,(E) < z/m( ) + mult, (E — D).

(4) For ¢ € Rat(X)*, vx(D + (¢)) = va(D).

Proof. (1) is obvious.

(2) If either H°(X, D) = {0} or H°(X, E) = {0}, then the assertion is obvious,
so that we may assume that H°(X,D) # {0} and H(X,E) # {0}. Let ¢ €
HO(X,D)\ {0} and v € H°(X,E)\ {0}. Then, as

@)+ E+D=(¢)+D+ () +E >0,
we have ¢p € HO(X, D+ E) \ {0}. Thus
ve(D + E) < multy((¢¢) + D + E) = mult,((¢) + D) + mult((¢) + E),

which implies (2).
(3) If we set F' = E — D, then, by (1) and (2),

Ve(E) = vy(D+ F) < vy(D) + v3(F) < v,(D) + mult, (F).

(4) Let o : HY(X, D+ (¢) = HO/()\(, D) be the natural isomorphism given by
a(y) = (). Note that (D + (¢)) + (¢) = D + (a(t)). Thus we have (4). O

We set A
N(D) = {n € Zso | H*(X,nD) # {0}}.

Note that N(D) is a subsemigroup of Z~q, that is, if n,m € N(D), then n+m €
N (D). We assume that N(D) # (). For z € X, we define

pie(D) := inf{mult, (D + (1/n)(¢)) | n € N(D), ¢ € H*(X,nD)\ {0}},

which is called the asymptotic multiplicity at x of the complete arithmetic Q-linear
series of D.
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We can see that

vz (nD)

um(D)inf{ ‘nGN(D)}.

n
Indeed, the inequality y,(D) < v,(nD)/n for n € N(D) is obvious, so that p, (D)
< inf{v,(nD)/n | n € N(D)}. Moreover, for n € N(D) and ¢ € H°(X,nD) \ {0},

inf{%(n”m ‘ n e N(D)} < ”g”(ZD) < mult, (D + (1/n)(¢)),

and hence we have the converse inequality.
By the above lemma,

ve((n +m)D) < vy (nD) + v, (mD)

for all n,m € N(D). Thus, if h°(D) # {0} (i.e., N(D) = Zsg), then
D D
lim M — inf{”’”(n) ‘ n > 0}_
n

n—00 n

Proposition 6.5.2. Let D and E be arithmetic R-Cartier divisors of C°-type

such that N(D) # 0 and N(E) # 0. Then we have the following:
(1) p2(D + E) < p12(D) + o (E).

(2) If D < E, then uy(E) < pz(D) + mult,(E — D).

(3) ha(D + (¢)) = pu(D) for ¢ € Rat(X)*.

(4) pz(aD) = apiy (D) for a € Qso.

Proof. First let us see (4). We first assume that a € Zsg. Let n € N(D) and
¢ € H(nD)\ {0}. Then ¢* € H(n(aD)) \ {0}. Thus

pta(aD) < multy(aD + (1/n)(¢7)) = amult, (D + (1/n)(¢)),

which yields j,(aD) < ajiz (D). Conversely, let ne N(aD) and ¢ € H°(n(aD))\{0}.
Then

piz(D) < multy (D + (1/na)(4)) = (1/a) mult, (aD + (1/n)(1)),

and hence j1,(D) < (1/a)uz(aD). Thus (4) follows in the case where a € Z~y.
In general, we choose a positive integer m such that ma € Z~. Then, by the
previous observation,

mpz(aD) = pi,(maD) = may, (D),

as required.
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By (4), to prove (1)-(3) we may assume that h%(D) # 0 and h(E) # 0; then
the three items follow from (2)—(4) of Lemma 6.5.1 respectively. O

Finally, we prove the vanishing of the asymptotic multiplicity for a nef and
big arithmetic R-Cartier divisor.

Proposition 6.5.3. If D is a nef and big arithmetic R-Cartier divisor of C°-type,

then py(D) =0 for all x € X.

Proof. Case 1: D is an ample arithmetic R-Cartier divisor. Note that if D is an
ample arithmetic Q-Cartier divisor, then the assertion is obvious. By Lemmas 5.2.3
and 5.2.4, there are ay,...,q; € R and effective arithmetic Q-Cartier divisors

Ay,...,A;,By,...,B
of C'*°-type such that
b:alzl+”~+alzl7&1?17“~7al§l.

Let us choose sufficiently small positive numbers d1,...,d;,07,...,0; such that
a; — 0;,a; + 6, € Q for all 7. We set

E, = (a1 — 51)21 + -+ (al — 51)21 — (a1 + 51)?1 — = (al +6l/)§l~

Then D' < D and D'isan ample arithmetic Q-Cartier divisor by Proposition 6.2.1.
By Proposition 6.5.2(2),

0 < 15(D) < pta(D') + muilty (D — D) = > (6; multy, (A;) + &} mult, (B;))
because p,, (ﬁ/) = 0. Therefore,

0 < po(D) < (6 mult, (A;) + &) multy (B;)),

and hence p, (D) = 0.

Case 2: D is an adequate arithmetic R-Cartier divisor. In this case, there is an
ample arithmetic R-Cartier divisor A and a non-negative Fi-invariant continuous
function ¢ on X (C) such that D = A + (0, ¢). By Proposition 6.5.2(2),

0 < pto(D) < pa(A) =0,
as required.

Case 3: General case. Let A be an ample arithmetic Q-Cartier divisor. Since D
is big, by Proposition 6.3.1 there are a positive integer m and ¢ € Rat(X)* such
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o~ o~

that A < mD+(¢). We set E = mD + (¢). Then E is nef. Moreover, for 6 € (0,1],
by Proposition 6.2.2, §A + (1 — §)E is adequate and dA + (1 — §)E < E. Hence

pe(E) < pzp(A+ (1 = 6)E) + dmult, (E — A) < dmult, (E — A),

which implies that p,(E) = 0. Therefore, using (3) and (4) of Proposition 6.5.2,

pe (D) = %,Uw(mﬁ) = %Nm(ﬁ) = 0. O

86.6. Generalized Hodge index theorem for
an arithmetic R-Cartier divisor

In this subsection, we prove the following R-Cartier divisor version of [14, Corol-
lary 6.4]:

Theorem 6.6.1. Let D be an arithmetic R-Cartier divisor of (C° N PSH)-type

on X. If D is nef on every fiber of X — Spec(Z) (i.e., deg(Dl|c) > 0 for all
1-dimensional closed vertical integral subschemes C on X), then vol(D) Zdeg(ﬁd)

Proof. Let us begin with the following claim:

Claim 6.6.1.1. Set D = (D,g). If D is of C>®-type and D is ample (that is,
there are ay,...,a; € Ryg and ample Cartier divisors Ay,...,A; such that D =
a1 A1+ -+aiAy), and if dd°([g])+Ip is positive, then the assertion of the theorem
holds.

Proof. By Proposition 2.4.2, we can find F-invariant locally integrable functions
hi,...,h; such that h; is an A;-Green function h; of C*°-type for each i and
g =airhi+---+ah (a.e.). Let dq, ..., 8 be sufficiently small positive real numbers
such that ay + d1,...,a; + 9; € Q. We set

(D',g’) = (a1 + (51)(A1,h1) + -+ (al + 51)(Al,hl).

Then D’ is an ample Q-Cartier divisor, and

1
dd*([g']) + p = dd*([g]) + 0p + Y 6;(dd([hi]) + b.a,)
i=1
is positive because dy, . . ., §; are sufficiently small. Therefore, by [14, Corollary 6.4],
— — B
we have vol(D/) > deg(D/ ), which implies the claim by the continuity of vol (cf.
Theorem 5.2.2). O

First we assume that D is of C*-type. Let A = (A, h) be an arithmetic Cartier
divisor of C*-type such that A is ample and dd®([h]) + 4 is positive. Then, by
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using the same idea as in the proofs of Propositions 6.2.1 and 6.2.2, we can see
that D + €A is ample for all € > 0, Thus, by the above claim, \781(54— e(A, h)) >
d/e\g((ﬁ +¢€(A, h))%), and hence the assertion follows by letting ¢ — 0.

Finally we consider the general case. By Claim 6.4.2.1, there is an ample
arithmetic Cartier divisor B such that A := D + B € Nefco(X)g and A is ample.
Let € be an arbitrary positive number. Then, by Theorem 4.6, we can find an F,-
invariant continuous function u on X (C) such that 0 < u(z) < ¢ for all x € X(C)
and A = A4 + (0,u) € ER/CNQPSH(X)R, which means that A € 1@(;00 (X)r.
Note that

—— —d d (A —i —=d—i
G0 = > (-1 () dewa B,
i=0
d , ,
doa(D'") = 3o () e 5
i=0 !
where D' := D+ (0,u). By (6.4.2.3), d/ce\g(Zi~§d_i) and d/e\g(Z”-Ed_i) are given by

—

alternating sums of volumes, so that, by the continuity of vol, there is a constant
C not depending on € such that

deg(A" - B"") — deg(A- B )| < Ce
for alli=0,...,d, and hence
—d,  — 4 J
|deg(D ) — deg(D")| < 2°Ce.

On the other hand, by the continuity of vol again, there is a constant C’ not
depending on € such that

[vol(D) — vol(D)| < C'e.
Therefore, by the previous case,

wl(D) - deg(D") > (vol(D) — C'e) — (deg(D'") + 2°Ce)

— (vol(D) - deg(D'")) — (C" + 29C)e = —(C" + 2%C)e.

Thus the theorem follows because € is an arbitrary positive number. O

87. Limit of nef arithmetic R-Cartier divisors on arithmetic surfaces

Let X be a regular projective arithmetic surface and let .7 be a type for Green
functions on X such that PSH is a subjacent type of 7. The purpose of this
section is to prove the following theorem.
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Theorem 7.1. Let {M, = (M,,h,)}, be a sequence of nef arithmetic R-
Cartier divisors on X with the following properties:

(a) There is an arithmetic Cartier divisor D = (D, g) of .7 -type such that g is of
upper bounded type and M, < D for all n > 1.

(b) There is a proper closed subset E of X such that Supp(D) C E and Supp(M,,)
C E foralln > 1.

(¢) limy oo multe(M,) exists for all 1-dimensional closed integral subschemes C
on X.

(d) lmsup,,_, oo (hn)can () exists in R for all z € X(C) \ E(C).

Then there is a nef arithmetic R-Cartier divisor M = (M,h) on X such that
M < D,
M = Z( lim multc(Mn)>C
c

n—o0

and hean|x (©)\E(C) 15 the upper semicontinuous reqularization of the function given
by x — limsup,,_, oo (hn)can () over X(C) \ E(C). Moreover,
limsup deg(M ,|¢) < deg(M]c)
n—oo

for all 1-dimensional closed integral subschemes C on X.

Proof. Let Cq,...,C; be 1-dimensional irreducible components of E. Then there
are ai,...,a;,ani, .., 0y € R such that

D=a1Ci+---+qC;, and M, =a,1C1+ -+ ayC.

We set p; = lim, .o ay; fori=1,...,l and M = p1Cy + --- + p;C}.
Let U be a Zariski open set of X over which we can find local equations
¢1,...,¢; of Cq,...,C; respectively. Let
1 1

hn =Un + Y _(—an;)log|ei® (ae) and g=v+ Y (—a;)log|el* (ae)
i=1 i=1
be the local expressions of h,, and g with respect to ¢1,..., ¢;, where u,, € PSHg
and v is locally bounded above.

Claim 7.1.1. {u,}52, is locally uniformly bounded above, that is, for each point
x € U(C), there are an open neighborhood V,, of x and a constant M, such that
un(y) < M, for ally € V, andn > 0.

Proof. Since h,, < g (a.e.), we have

n

Uy <V — Z(ai —api)log|oi®  (ae)

i=1
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over U(C). If x ¢ C1(C)U--- U Cy(C), then ¢;(z) # 0 for all i. Thus, as

n

v — Z(ai — an;) log |(;bi|2

i=1
is locally bounded above, the assertion follows from Lemma 2.3.1.

Next we assume that z € C1(C) U ---U Cj(C). Clearly we may assume that
x € C1(C). Note that C;(C) N C;(C) = 0 for ¢ # j. Thus ¢1(z) = 0 and ¢;(x) # 0
for all 4 > 2. Therefore, we can find an open neighborhood V,, of  and a constant
M such that |¢1] < 1 on V,, and

Un, < M; - (al - anl) 10g |¢1|2 (a"e')

over V,, for all n > 1. Moreover, we can also find a positive constant M’ such that
a1 — an1 < M" for all n > 1, so that

up < M, — M"log|o1]?  (a.e.)
over V.. Thus the claim follows from Lemma 4.1. O

We set u(x) := limsup,,_, ., un(x) for z € U(C). Note that u(x) € {—oo} UR.
Let u be the upper semicontinuous regularization of u. Then, as u,, is plurisubhar-
monic for all n > 1, by the above claim, @ is also plurisubharmonic on U(C) (cf.
Subsection 2.1).

Claim 7.1.2. i(x) # —oo for all x € U(C).

Proof. It x ¢ C1(C) U --- U C4(C) = E(C), then ¢;(x) # 0 for all i. Note that
limsup,,_, o ("p)can(x) exists in R and that

l

(hn)can(2) = up(z) + Z(*ani) log |¢1(x)|2

i=1

Thus lim sup,,_, ., un(z) exists in R and

l
lim sup u,, () = imsup (hy, )can () + Zpi log | ()%
Hence the assertion follows in this case.
Next we assume that z € C1(C) U --- U C;(C). We may assume z € C1(C).
As before, ¢1(z) = 0 and ¢;(x) # 0 for i > 2. By using Lemma 5.2.3, let us
choose a rational function ¢ and effective Cartier divisors A and B such that
C1+ (¢) = A— B and C; € Supp(A) U Supp(B). We set

M = M, + an1 (), B, =hy —ap log||> and M, = (M., 1.).

n? n
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== anl(log #(ﬁCH (A)/ﬁCH) - IOg #(601 (B)/ﬁCﬁ))

l
+ 3 0o #(06,(C/06) + 5 S (Weanlv).

=2 y€Ci1(C)

Thus we can find a constant T' such that

S (W)ean(y) = T

y€C1(C)

for all n > 1, which yields

S° timsup (W )ean(y) > limsup( 37 (i )ean(y)) > T-

yec.(c) "7 n0 e (C)
In particular, limsup,,_, .o (h},)can(z) # —o00. On the other hand,
!
hyy, =ty — ap1 log |o1* = Y anilog|ei®  (ae.).
i=2

Note that (¢19)(x) € C*. Thus

l
limsup u, () = limsup (7], )ean (%) + p1 log [($19)(@)* + Y pslog|ey(x)[*.

Therefore we have the assertion of the claim in this case. O
Claim 7.1.3. ﬁ+Z§:1(fpi) log |¢;|? does not depend on the choice of ¢1,...,¢;.

Proof. Let ¢, ...,¢] be another set of local equations of C,...,C). Then there
areer,...,e € O (U) such that ¢ = e;¢; for all i. Let g, = “%*22:1 i log |#;]?
(a.e.) be the local expression of g, with respect to ¢/,...,¢;. Then u/, = u, +
22:1 anilog |e;|? by Lemma 2.3.1. Thus

1
W =a+ Zpi log |e;|?,
i=1
which implies that

l l
i+ Y (—pi)loglel® =@+ (—pi) log|}]*- D
=1 =1
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By the above claim, there is an M-Green function h of PSHg-type on X (C)
such that

l
hlU((C) Z —pi) log\qSZ\Q

By our construction, Acan|x(c)\£(c) is the upper semicontinuous regularization of
the function given by h¥(z) = limsup,,_, . (hn)ecan(x) over X(C) \ E(C).

Claim 7.1.4. h is Fso-invariant and h < g (a.e.).

Proof. As PSH is a subjacent type of .7, we have (hyp)can < gean over X (C)\ E(C),
so that hf < gean over X(C) \ E(C). Note that h* = h (a.e.) (cf. Subsection 2.1).
Thus the claim follows because h is Foo-invariant. O

Finally let us check that

deg(M|¢) > limsup deg(M,|¢) > 0

n—roo

for all 1-dimensional closed integral subschemes C' on X.

By Lemma 5.2.3 again, we can choose non-zero rational functions v, ...,
on X and effective Cartier divisors Ay, ..., A;, By,...,B; such that C; + (¢;) =
A; — B; for all i and C € Supp(A4;) U Supp(B;) for all i. We set

l
Mr/L/ =M, + Zam(%), hH =hp + Z —Qnj IOg le > M (Mr/plv hﬁ)
=1

i=1

l
=M+ piwy), B =h+> (-p)loglwil?, M =(M",1").
3 =1
First we assume that C' is not flat over Z. Then

l
deg(M|c) = deg(M,|c) = Y ain(log #(0c(A:)/ Oc) — log #(0c(B;)/ Oc))

=1

and
l
deg(M|c) = deg(M"|c) = > pillog#(0c(Ai)/0c) ~ log #(0c(By)/0c)).

Thus
deg(M|c) = lim deg(M,|c) >

n—oo
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Next we assume that C' is flat over Z. Then
_ —
deg(Mp|c) = deg(M ,|c)

l
= 3" ainllog #(0c(41)/60) ~log #(0(B)/0C) + 5 3 (H)ean(y)

i=1 yeC(C)

and
deg(M|c) = deg(M"|c)

l
= 3" nillog#(00(40)/0c) ~1og#(O0(B/6) + 5 3 (H)ean(y).
i=1 yeC(C)
Let us consider a Zariski open set U of X with C N U # (. Let
hp = up + Z(—am-) log |ps|* (a.e.) and h =+ Z(—pi) log |p* (a.e.)

be the local expressions of h,, and h as before. Then
hy = tn + Z(*am‘) log|piil* (ace.) and " =a+ Z(*pz‘) log |pitil* (ae.).
Moreover, (¢;1;)(y) € C* for all y € C(C) and 4. Thus

lim sup (7)) can(¥) < (B can(y)-

n—oo
Therefore,
lim sup Z (W) ean(y) < Z lim sup (A)can(y) < Z (") can (y),
n—oo n—ro0
yeC(C) yeC(C) yeC(©)
which yields
0 < limsupdeg(M,|c) < deg(M|c). -
n—oo

88. o-decompositions on arithmetic surfaces

In this section, we consider o-decompositions of effective arithmetic R-Cartier
divisors of C°-type. This is necessary to prove the property (1) of Theorem 9.3.5.

Let X be a regular projective arithmetic surface. We fix an Fi-invariant
continuous volume form ® on X (C) with fX(C) ® = 1. Let D = (D,g) be an
effective arithmetic R-Cartier divisor of C%-type on X. For a 1-dimensional closed
integral subscheme C on X, we set

ve(D) == min{multc(D + (¢)) | ¢ € I:IO(X, D)\ {0}}
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as in Subsection 6.5. Moreover, we set
F(D) ZW )C and M (D) =Mv(D) = D — Fx(D).
Let V(D) be the complex vector space generated by H°(X, D) in H*(X, D) ®7C,
that is, V(D) := (H°(X, D))c.
Lemma 8.1. dist(V(D);g) is Fu-invariant.

Proof. First of all, note that, for ¢ € Rat(X), FX (¢) = ¢ as a function on X (C).
Let us check that (¢,1), € R for all ¢, ¢ € (H(X,D))g. Indeed,

(6.10)g = /X o, PPepg) = - /X o, Flieni-0)®)

= - FL () FL () FZ (exp(—9)) F5 ()

X(©)

= ¢ exp(—g)® = (¢, $)g = (6,1))g.

X(C)

Thus (¢, )y yields an inner product on (fIO(X, D))r. Let ¢1,...,¢nx be an or-
thonormal basis of (H°(X,D))r over R. It gives rise to an orthonormal basis of
(H°(X,D))c. Therefore,

dist(V(D); g) = |¢1]2 + - + |on 2.

Note that F% (|¢i|g) = |¢ilg = |#4ly, and hence the lemma follows. O

Here we define g5, 9575, M (D) and F(D) as follows:
9),

9py = — logdist(V(D); Iy = 9~ 9p(p) = 9 +logdist(V(D); g),
M(D) = (M(D), 9(5))- F(D) = (F(D). 9p(5))-
Let us check the following proposition:
Proposition 8.2. (1) H°(X,D) C H(X,M(D)).
(2) 9rp(p) is an M (D)-Green function of (C* N PSH)-type on X(C).
(3) 9pm) is an F(D)-Green function of (C° — C> N PSH)-type over X (C).
(4) M(D) is nef.

Proof. (1)If ¢ € H°(X, D)\ {0}, then (¢)+D > F(D), and hence (¢)+M (D) > 0.
Note that [¢|2 = dist(V (D); )|¢|gM 5 for ¢ € HO(X, M(D)). Thus, as ||¢||, < 1,

by Proposition 3.2.1 we have |¢|? = [¢|2/dist(V(D); g) < [|¢]|2 < 1. Therefore,

¢ € HO(X, M (D)).

IMm (D)
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(2), (3) Let us fix x € X(C). We set
v, := min{mult, (D + (¢)) | ¢ € V(D) \ {0}}.

Note that mult, (D + (¢)) = mult, (D) + ord,(¢). First let us prove the following
claim:

Claim 8.2.1. (a) If¢1,...,¢n € V(D)\{0} and V(D) is generated by ¢1, . .., o,
then v, = min{mult, (D + (¢1)), ..., mult,(D + (¢,))}.
(b) v, = mult,(F(D)).

Proof. (a) is obvious. Let us consider the natural homomorphism
(H°(X, D))z @z Ox — Ox(|D)),
which is surjective on X \ Supp(D) because 0 < | D] < D. In particular,
V(D) ®c Ox(c) = Ox(c)(LD])

is surjective on X (C)\Supp(D)(C), so that if x € X (C)\Supp(D)(C), then v, = 0.
On the other hand, if z € X(C) \ Supp(D)(C), then mult,(F (D)) = 0 because
0 < F(D) < D. Therefore, we may assume that z € Supp(D)(C), so that there is
a 1-dimensional closed integral subscheme C of X with « € C(C). Let ¢1,...,1,

be all elements of H°(X, D)\ {0}. Let  be the generic point of C. Then
multe (F (D)) = min{multc (D) + ord, (¢1), . .., multc (D) + ord, (¢y,) }-
Thus, by (a),

mult, (F(D)) = multc(F (D))
= min{multc (D) + ord,(¢1),...,multc(D) + ord, (¢n)}
= min{mult, (D + (¢1)), ..., mult,(D + (¢¥n))} = va. O

Let ¢1,...,¢x be an orthonormal basis of V(D) with respect to ( , ),. Let
g = ug + (—a)log|z|? (a.e.) be a local expression of g around z, where z is a
local chart around z with z(z) = 0. For every 4, we set ¢; = z%wv; around = with
v; € ﬁ)x(((c)J. Then [¢;]7 = |2|2(@iF9) exp(—u,)|vs|?. By the above claim,

vy = min{a; + a,...,ay + a} = mult, (F(D)).

Thus
N

dist(V(D); ) = 2= exp(—ua) D_ o]

i=1
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Therefore,

N

9rD) = Uz — log(Z \Z|2(ai+“_”z)|vz‘\2> — vy log|zf?,
1=1

N
9arp) = o8 (D |2+ 0 f2) — (= ve) log 2.
=1

Note that log(zg\il |z|2(@ita=ve) |y]2) is a subharmonic C*°-function. Thus we get
(2) and (3).

(4) For ¢ € H°(X, D)\ {0} and a 1-dimensional closed integral subscheme C
on X, as

multo (M (D) + (¢)) = multe(D + (¢)) — vo (D),
there is a 1) € H°(X, D)\ {0} such that multc (M (D) + (¥)) = 0. This means that

C ¢ Supp(M (D) + ().
Then, by Proposition 3.2.1, 0 < [¢|g,, , (¥) <1 for all z € C(C) as before. Hence

deg(M(D)|c) = log #0c(() + M(D))/6c — Y log[tly,,p (®) 0. O

zeC(C)
For n > 1, we set
— 1 — 1
Mn(D) = EM(nD% g]v[,,/(ﬁ) = EgM(nEy
— 1 — 1
Fo(D) = EF(”D% 9F, (D) "= [, 9F(nD)

In addition,
M, (D) := (Mn(ﬁ)vg]\/["(ﬁ)) and F,(D) := (Fn(ﬁ)ngn(ﬁ))-
Then we have the following proposition, which guarantees a decomposition
D= Moo (5) + Foc (ﬁ)

as described in the proposition. This is called the o-decomposition of D. More-
over, Mo (D) (resp. Foo(D)) is called the asymptotic movable part (resp. the
asymptotic fized part) of D. The o-decomposition is an arithmetic analog of the
o-decomposition introduced by Nakayama [21].

Proposition 8.3. There exists a nef arithmetic R-Cartier divisor M (D) =

(Moo(D), gpr., (7)) on X with the following properties:

(1) multe (Moo (D)) = lim, s multe (M, (D)) for all 1-dimensional closed inte-
gral subschemes C' on X.
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(2) (91 (B))ean is the upper semicontinuous regularization of the function given
by

x = limsup (9,7, (5 )can (@)
n—oo

over X (C) \ Supp(D)(C). In particular,

(91 (B))ean(@) = liisotip (9rr,(B))ean (@) (a.e.).

Moreover, if D is of C™®-type, then limnﬁoo(gMn(ﬁ))can(:r) exists.

(3) deg(Moo(D)|c) > limsup,,_, .. deg(M,(D)|c) for all 1-dimensional closed in-
tegral subschemes C' on X.

(4) Define

Foo(D):=D — M (D),

Ir.(D) "= 9~ IMm., (D)

Foo(b) = (Foo(ﬁ)a gFoo(ﬁ)) (: D - Moo(ﬁ))
Then uc(D) = multc(Fs (D)) for all 1-dimensional closed integral sub-
schemes C on X, and F (D) is an effective arithmetic R-Cartier divisor
of (C° — PSHg)-type. In addition, if D is of C>-type, then there is a constant
e such that

ngp_®) < Irwp) T3log(n+1)+e  (ae)
for allm > 1.

(5) If D is of C™-type, then there is a constant €’ such that

hO(X,nM s (D)) < h°(X,nD) < h°(X,nM (D)) + e'nlog(n + 1)
for alln > 1.
Proof. It is easy to see that
multc (F((n 4+ m)D)) < multe(F(nD)) + multe(F(mD))

for all n,m > 1 and all 1-dimensional closed integral subschemes C. Thus the limit

lim,, o, multe(F, (D)) exists and

lim multc(F, (D)) = 1I;f1 multc (F,(D)).

n—oo

Therefore lim,, o, multc(M, (D)) exists because M, ( = D — F,(D). Note
o u ndl

that puc(D) = lim, o multe(F, (D)) as multe(F, (D)) = ve(D)/n (cf. Subsec-
tion 6.5).
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Claim 8.3.1. Let h be a D-Green function of C*°-type. Then there is a positive
constant A such that, for x € X(C) \ Supp(D)(C), the limit

lim log(dist(V (nD); nh)(x))

n—00 n

exists in R<g and

log(dist(V (nD); nh)(z)) — log(A(n + 1)3)

lim
— sup log(dist(V (nD);nh)(x)) — log(A(n + 1)3).
n>1 n

Proof. First, note that @, , V(nD) is a graded subring of @, H’(X,nD). By
Theorem 3.2.3, there is a positive constant A such that

dist(V(nD);nh) < A(n +1)3

and

dist(V(nD);nh) dist(V (mD); mh) - dist(V((n +m)D); (n + m)h)
A(n+1)3 A(m+1)3 - Aln+m+1)3

for all n,m > 1. Moreover, dist(V (nD);nh)(z) # 0 for z € X(C) \ Supp(D)(C).
Thus the claim follows. O

By using the Stone-Weierstrass theorem, for any positive number €, we can
find continuous functions v and v with the following properties:

u>0, |ullsup <€, h:=g+uisof C*-type,
v>0, |vllsup <€, h :=g—visof C™-type.

By Lemma 3.2.2,
exp(—ne) dist(V (nD);nh’) < dist(V (nD);ng) < exp(ne) dist(V (nD);nh).

Thus, by the above claim, for z € X(C) \ Supp(D)(C),

lim sup log(dist(V (nD);ng)(x))

n—00 n

exists in {a € R | a < €}. Since € is an arbitrary positive number, we actually have

(8.3.2) Jim sup log(dist(V (nD); ng)(x))

n—00 n

<0.
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This shows that lim sup,, _, . (957, (5))can () exists in R for 2 € X(C)\Supp(D)(C).
Therefore, by Theorem 7.1, there is a nef arithmetic R-Cartier divisor

Moo (D) = (Mo (D), 9p;_ ()

satisfying (1)—(3). Further the last assertion of (2) is a consequence of the above
claim.
Let us show (4). Obviously pc(D) = multe(Fa (D)) because

pc(D) = lim multe(F,(D)).

n— oo

Note that

(05 3 enl) = s log(dist(V(ZD); ng)(x)) (ae.)

on X(C) \ Supp(D)(C). Thus (8.3.2) yields (9p_(p))can(z) = 0 (a.e.). Hence
F (D) is effective. Moreover, it is obvious that 9r. (D) 1s of (C° — PSHg)-type

because g is of C%-type and g, (B) s of PSHg-type.
Now assume that D is of C*-type. By the above claim, there is a positive
constant A’ such that

log(dist(V (nD); ng)(x))

— lim
_ py —log(dist(V(nD); ng)(x)) + log(A'(n + 1)°)
_ ¢ —log(dist(V (nD); ng)(x)) + log(4'(n + 1)*)

on X (C) \ Supp(D)(C). Thus, for n > 1,

—log(dist(V(nD);ng)(z)) + log(A’(n + 1)3)

(a.e.),

which implies the last assertion of (4).
Finally let us check (5). By (4), we have M ,(D) < D, so that

hO(X,nM (D)) < h°(X,nD)
for n > 1. Moreover, by (4) again,
nM (D) + (0.3log(n + 1) +log A’) > M (nD)
for all n > 1. Thus, by Proposition 8.2(1),

hO(X,nD) < h°(X, M(nD)) < h°(X,nM (D) + (0.3log(n + 1) + log A)).



882 A. MORIWAKI

Note that there is a positive constant e’ such that
WO (X, nM (D) + (0.3log(n + 1) +log A')) < h°(X,nM (D)) + €'nlog(n + 1)

for all n > 1 (cf. [14, Proposition 2.1(3)] and [16, Lemma 1.2.2]). Thus (5) follows.
O

89. Zariski decompositions and their properties on arithmetic surfaces

Throughout this section, X is a regular projective arithmetic surface and .7 is a
type for Green functions on X. We always assume that PSH is a subjacent type

of 7.

§9.1. Preliminaries

In this subsection, we prepare several lemmas for the proof of Theorem 9.2.1.

Lemma 9.1.1. Assume that 7 is either C° or PSHg. Let M be a 1-equidimen-
sional compler manifold and let Dq,...,D, be R-Cartier divisors on M. Let
g1, - -, gn be locally integrable functions on M such that g; is a D;-Green function
of T -type for each i. Set

g9(z) = max{gi(z),...,gn(x)} (z €M)

and
D= Z max{mult,(D1),...,mult,(D,)}x.
xeM
Then g is a D-Green function of  -type.

Proof. For x € M, let z be a local chart of an open neighborhood U, of x with
z(z) =0, and let

g1 =u1 —aylog |z (a.e.), ..., gn = up — a,log|z|? (a.e.)
be local expressions of g1, ..., g, respectively over U,, where a; = mult,(D;) and
u; € I(Uy) for i =1,...,n. Clearly we may assume that a; = max{ay,...,a,}.

First of all, we have
g =max{u; + (a1 —a;)log|z|* |i=1,...,n} —ailog|z]* (ae.)
over U,. In addition, the value of
u := max{u; + (ay —a;)log|z|? |i=1,...,n}

at y € U, is finite.
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First we consider the case where .7 = PSHg. Then uy, . . ., u, are subharmonic
over Uy, so that u; + (a1 — a;)log|z|? is also subharmonic over U, for every i.
Therefore, u is subharmonic over U,.

Next let us consider the case where 7 = C°. We set I = {i | a; = a1 }. Then,
shrinking U, if necessary, we may assume that u; > u; + (a1 — a;)log|z|* on U,
for all j & I. Thus v = max{u; | ¢ € I'}, and hence u is continuous. O

Lemma 9.1.2. Assume that .F is either C° or PSHg. Let
ﬁ1 - (Dlagl)a ey En = (Dnagn)
be arithmetic R-Cartier divisors of 7 -type on X. Set

max{Di,...,D,} = Z max{multc(Dy),...,multc(D,)}C,
C

max{D1,..., Dy} = (max{Dy,...,D,}, max{g1,...,gn}).
Then we have the following:

(1) max{D1,...,D,} is an arithmetic R-Cartier divisor of 7 -type for D.
(2) If 7 = PSHg and Dy, ..., D,, are nef, then max{D,...,D,} is nef.

Proof. (1) It is obvious that max{gi,...,gn} is Fs-invariant, so that (1) follows
from Lemma 9.1.1.

(2) For simplicity, we set D = max{D1,...,D,}, ¢ = max{g1,...,g9,} and
D =max{D1,...,D,}. Let C be a 1-dimensional closed integral subscheme of X.
Let v be the generic point of C. Since the codimension of

Supp(D — Dy) N ---N Supp(D — D,,)
is greater than or equal to 2, there is ¢ such that v ¢ Supp(D — D;). By Propo-
sition 2.3.4, g — ¢; is a (D — D;)-Green function of (PSHgr — PSHRg)-type and
g —gi > 0 (a.e.). Moreover, as x ¢ Supp(D — D;) for € C(C), by Proposi-
tion 2.3.4 we have
(9 = gi)ean(x) > 0.
Therefore, (TE%(E — D;|¢) > 0, and hence

deg(D|¢) > deg(Dilc) > 0. O

Lemma 9.1.3. Let (D, g) be an effective arithmetic R-Cartier divisor of C°-type
on X and let E be an R-Cartier divisor on X with 0 < E < D. Then there is an
Fo-invariant E-Green function h of (C° N PSH)-type such that

0<(E,h) <(D,g).
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Proof. Let hy be an F-invariant E-Green function of (C°° N PSH)-type. There
is a constant C; such that hy + C; < g (a.e.). We set h = max{h; + C1,0}. Then,
by Lemma 9.1.1, h is an Fy-invariant E-Green function of (C° N PSH)-type and
0<h<yg (ae). O

89.2. The existence of Zariski decompositions

Let D = (D, g) be an arithmetic R-Cartier divisor of 7-type on X such that g is
of upper bounded type. Let us consider

(=00, D] N ﬁe\f(X)R ={M | M is nef and M < D}.

The following theorem is one of the main theorems of this paper, which guarantees
the existence of the greatest element P of (—o0, E]Fﬁﬁe\f(X )r under the assumption
(=00, D] N N-e\f(X)R # . If we set N = D — P, then we have a decomposition
D =P+ N. It is called the Zariski decomposition of D, and P (resp. N) is called
the positive part (resp. negative part) of D.

Theorem 9.2.1 (Zariski decomposition on an arithmetic surface). If
(=00, D] N Nef(X)r # 0,

then there is P = (P,p) € (—o0, D] ﬂﬁe\f(X)R such that P is greatest in (—oo, D|N
Nef(X)g, that is, M < P for all M € (—oo, D] N Nef(X)g. Moreover, if D is of
CO-type, then P is also of CO-type.

Proof. For a 1-dimensional closed integral subscheme C of X, we put
a(C) = sup{multc (M) | (M, gar) € (=00, D] N Nef(X)g}.

We choose My = (Mo, go) € (—o0, D] Oﬁe\f(X)R. Then multe(My) < a(C) <
multe (D). Let {C1,...,Ci} be the set of all 1-dimensional closed integral sub-
schemes in Supp(D) U Supp(Mp). Note that if C ¢ {C4,...,C;}, then o(C) = 0.
We set P =3~ a(C)C.

Claim 9.2.1.1. There is a sequence {M,, = (M,,, g,)}>> in (—oc, D] ﬂNe\f(X)R
such that M,, < Mn_l,_l for allm >0 and

lim multe, (M) = a(C;)
n—oo
foralli=1,... n.

Proof. For each i, let {M;,,}2°; be a sequence in (—oc, D] N Ne\f(X)R such that

lim multe, (M; ) = a(C}).

n—oo
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We set Mn = max{{ﬁo} U {Mi,j}lgigl,lgjgn} for n > 1. By Lemma 9.1.2,
M,, € (—o0, D] N Nef(X)g. Moreover, M, < M,y and

lim multe, (M,) = a(C})

n—00

for all 7. ]

Since PSH is a subjacent type of .7, by Lemma 2.3.1 we have

(gO)Can S e S (gn)can S (gnJrl)can S e S Gcan

on X(C)\ (Supp(D) U Supp(My))(C), which means that lim, o (gn)can(x) exists
for x € X(C) \ (Supp(D) U Supp(Mp))(C). Therefore, by Theorem 7.1, there is
an F-invariant P-Green function h of PSHg-type on X (C) such that (P,h) < D
and (P, h) is nef. Now we consider

[(P.h), D] N Nef(X)z = {(M,gar) | (M, gar) is nef and (P,h) < (M, gur) < D}
Note that M = P for all (M, grs) € [(P,h), D] N Nef(X)g.

Claim 9.2.1.2. If P = (P,p) is the greatest element of [(P,h), D] N @(X)]R,
then P is also the greatest element of (—oo, D] N Nef(X)g.

Proof. For (N,gn) € (=00, D] N ﬁe\f(X)R, we set
(M7 gM) = (maX{P7N}7maX{h7gN}>‘

Then e
(M, gn) € [(P,h), DN Nef(X)r and (N,gn) < (M, gur).

Thus the claim follows. O

By Proposition 4.4, there is a P-Green function p of PSHg-type such that
p < g (a.e.) and peay is the upper semicontinuous regularization of the function p’
given by e
p'(z) == sup{(gnr)can (@) | M € [(P, 1), D] N Nef(X)r}

over X(C) \ Supp(P)(C). Since (gar)can is Foo-invariant on X (C) \ Supp(P)(C),
p’ is also Fuo-invariant, and hence p is Fuo-invariant because p = p’ (a.e.) on
X(C)\ Supp(P)(C) (cf. Subsection 2.1). We set P = (P, p). Then (P,h) < P < D
and hence P is nef by Lemma 6.2.3. In addition, P is the greatest element of
[(P,h), D] N Nef(X)z.

Finally, assume that D is of C°-type. Let e be the degree of P on the generic
fiber of X — Spec(Z). As P is nef, we have e > 0. Let X(C) = X;U---UX, be the
decomposition of X (C) into connected components. We set P = "' | > ;@i Pij
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on X (C), where P;; € X; for all ¢ and j. Note that e = Zj a;; for all i. Let us
fix a C°°-volume form w; on X; with in w; = 1. Let p;; be a P;;-Green function
of C*-type on X; such that dd*([pi;]) + dp,; = [wi]. We set p' = >77_| = aijpij-
Then p’ is a P-Green function of C*°-type and

() + 00 = Y (3, 0 ) o] = € 3l

Thus, if e > 0, then dd°([p']) + dp is represented by a positive C>®-form ey, w;.
Moreover, if e = 0, then dd®([p’]) + dp = 0. Let us consider the set

{e

By Theorem 4.6, the above set has the greatest element p modulo null functions

on X(C) with ¢ < g (a.e.)

 is a P-Green function of PSH—type}

such that p is a P-Green function of (C° "PSH)-type. Since g is Fy.-invariant, we
have FZ% (p) < FX(g) = g (a.e.). Moreover, by Lemmas 5.1.1 and 5.1.2, FZ (p) is
a P-Green function of PSH-type. Thus FX (p) < p (a.e.), and hence

p=FL(FL(D) < FL() (ae.)

Therefore, p is Fuo-invariant. Note that (P,p) is nef because p < p (a.e.). Hence
p=7p (a.e.). O

89.3. Properties of Zariski decompositions

Let D = (D, g) be an arithmetic R-Cartier divisor of .7-type on X such that g is
of upper bounded type. First of all, let us record the following three properties of
Zariski decompositions:

Proposition 9.3.1. Assume (—oo, D] N Ne\f(X)R £ 0. Let D = P+ N be the
Zariski decomposition of D. Then we have the following:

—

(1) For a mon-zero rational function ¢ on X, D + (?S) = (P+ (¢)) + N is the
Zariski decomposition of D + ().
(2) For a € Rsg, aD = aP + aN is the Zariski decomposition of aD.

—~

Proof. Note that £(¢) is nef and

o~ —

Dy <D; & Di+(¢) <Dy+(9)
and
El SEQ <~ aﬁl < aﬁg
for arithmetic R-Cartier divisors Dy, Do, any non-zero rational function ¢ and
a € R<g. Thus the assertions of this proposition are obvious. O
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Proposition 9.3.2. (1) If h%(X,aD) # 0 for some a € Rsq, then
(—o00, D] N Nef(X)g # 0.
(2) If D is of C°-type and (—oo, D] N @(X)R # 0, then D is pseudo-effective.

Proof. (1) We choose ¢ € H(X,aD)\ {0}. Then aD+ (¢) > 0, which implies D >

2 e~ — —

(=1/a)(¢). Note that (—1/a)(¢) is nef, so that (—1/a)(¢) € (—oo, D] N Nef(X)g,
as required.

(2) Let D = P+ N be the Zariski decomposition of D and let A be an ample
arithmetic R-Cartier divisor. For n € Zq, by Proposition 6.2.2, P + (1/n)A4 is
adequate. In particular, \781(? + (1/n)A) > 0, and hence

vol(D + (1/n)A) > vol(P + (1/n)A) > 0,
which shows that D is pseudo-effective. O

Remark 9.3.3. It is expected that the converse of (2) in Proposition 9.3.2 holds,
that is, if D is of C%-type and D is pseudo-effective, then (—oo, D] N Nef(X)g # 0
(cf. [18]).

Proposition 9.3.4. Assume that D is of C®-type and D is effective. Let P be
the positive part of the Zariski decomposition of D. Then there is a constant e’
such that

hO(X,nP) < h°(X,nD) < h®(X,nP) + ¢'nlog(n + 1)
for all n > 1. In particular, \7(;1(?) = \7(;1(5).

Proof. The assertion is a consequence of Proposition 8.3 because M o, (D) < P. O
The following theorem is also one of the main theorems of this paper.

Theorem 9.3.5. Assume that D is of C°-type and (—oo, D] N Ne\f(X)R # (. Let

P (resp. N) be the positive part (resp. negative part) of the Zariski decomposition

of D. Then we have the following:

(1) vol(P) = vol(D) = deg(P”).

(2) (Te\g(ﬁ|c) = 0 for all 1-dimensional closed integral subschemes C with C' C
Supp(N).

(3) If M is an arithmetic R-Cartier divisor of PSHg-type on X such that 0 <
M < N and deg(M|c) > 0 for all 1-dimensional closed integral subschemes
C with C C Supp(N), then M = 0.

(4) Assume N # 0. Let N = ¢1C1 + -+ + ¢C; be a decomposition such that

c1,-.-,¢ € Rug and Cq,...,C; are distinct 1-dimensional closed integral sub-
schemes on X. Then the following hold:
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(4.1) There are effective arithmetic Cartier diwvisors (Cy,hy),...,(Ci, i) of
(C° N PSH)-type such that c1(Cy,hy) + -+ c(Cr, hy) < N.
(4.2) If (C1,k1),...,(Ci, k) are effective arithmetic Cartier divisors of PSHg-
type such that a1(C1, k1) + -+ + oy(Cr, k) < N for some aq,...,q; €
R<g, then
(—1)" det(deg((Cy, ki)le,)) > 0.

Proof. (1) It follows from Proposition 6.4.2 that ;(;l(ﬁ) = d/e\g‘(?Q). We need to
show \751(?) = @(ﬁ). If \781(5) = 0, then the assertion is obvious, so that we
may assume that \781(3) > 0.

First we consider the case where D is of C*>-type. We. choose a positive integer
n and a non-zero rational function ¢ such that nD + (¢) is effective. By Propo-
sition 9.3.1, the positive part of the Zariski decomposition nD + (¢) is nP + (¢).
Thus, by Proposition 9.3.4,

n2vol(P) = vol(nP) = vol(nP + (¢)) = vol(nD + (¢)) = vol(nD) = nvol(D),
as required.

Let us consider the general case. By the Stone-Weierstrass theorem, there is
a sequence {u,}>2 ; of non-negative F,-invariant continuous functions such that
limy, 00 ||t ||sup = 0 and D, := D —(0,u,) is of C*®-type for every n > 1. By the
continuity of vol (cf. Theorem 5.2.2),

im. vol(D,,) = vol(D).
In particular, D,, is big for n > 1. Let P,, be the positive part of the Zariski
decomposition of D,,. Since P,, < D,, < D and P, is nef, we have P, < P, and
hence
vol(Dy) = vol(P,) < vol(P) < vol(D).
Thus the assertion follows by letting n — oco.

(4.1) Let us check (4.1) before starting the proofs of (2) and (3). By Proposi-
tion 2.4.2, there are effective arithmetic Cartier divisors (C1, h}),. .., (Cy, h}) of C°-
type such that ¢;(C1, b))+ -+ ¢ (Ci, h)) = N. For each i, by using Lemma 9.1.3,
we can find an effective arithmetic Cartier divisor (C;, h;) of (C° NPSH)-type such
that (Ci, h;) < (Cy, hf), as required.

(2) We may assume N # 0. We assume deg(P|¢c,) > 0 for some i. By (4.1),

0 <¢i(Ci,h;) <N.
Note that if C’ is a 1-dimensional closed integral subscheme with C’ # Cj;, then

deg((Cy, hi)lcr) = 0.
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Thus, since deg(P|¢,) > 0, we can find a sufficiently small positive number € such
that P + ¢(C;, h;) is nef and P + ¢(C;, h;) < D. This is a contradiction.

(3) Since 0 < M < N, if C" is a 1-dimensional closed integral subscheme with
C" ¢ Supp(N), then d/e\g(M\c/) > 0. Thus M is nef, and hence P 4+ M is nef and
P + M < D. Therefore, M = 0.

(4.2) By Lemma 1.2.3, it is sufficient to prove the following: if 51,..., 8 € R>q

and

deg((B1(C1, k1) + -+ Bi(Ci, ki)l ;) > 0
for all 4, then 8y = --- = B; = 0. Replacing 1, ..., 5 with tf1,...,t6 (t > 0), we
may assume that 0 < 8; < «; for all 4. Thus the assertion follows from (3). O

Theorem 9.3.6 (Asymptotic orthogonality of o-decomposition). If D is of C°-
type, effective and big, then
lim deg(M,(D) | F(D)) = 0.

n—oo

(For the definition of M,(D) and F, (D), see Section 8.)

Proof. Let us begin with the following claim:

Claim 9.3.6.1. P = M. (D) and N = Foo(D).

Proof. First of all, note that M (D) < P and F (D) > N. Since D is effective,
(0,0) € (=00, D] N Nef(X)g, so that P is effective. Then, by Proposition 6.5.2(2),

pe (D) < pe(P) + multe(N).
Moreover, by Proposition 6.5.3, uc(P) = 0 because P is nef and big. Thus we
have
multe(Fao () = i(D) < multo(N),

which implies Fi,(D) < N. Therefore, N = F(D), and hence P = M (D). O

Claim 9.3.6.2. d/e\g(ﬂoc (D)|c) = 0 for any 1-dimensional closed integral sub-
scheme C with C C Supp(N).

Proof. Since Mo (D) < P and P = My (D), there is ¢ € (C° — PSHg)(X(C))
such that ¢ > 0 and P = M, (D)+(0, ¢). Thus, for a 1-dimensional closed integral
subscheme C with C' C Supp(N), by Theorem 9.3.5(3),

0 < deg(M o (D)|c) < deg(P|c) = 0. O

et Cq,...,C; be 1rreducible components of Supp . e set F, =
Let C C; be irreducibl f S D). Wi F.(D
22:1 a,iC; and Fy(D) = 22:1 a;C;. Then lim,_, o0 an; = a;. Moreover, if we
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set I ={i|a; >0}, then |
Proposition 8.3(3),

ser Ci = Supp(NV). Therefore, by the above claim and

0 < liminf deg(M,,(D) | (D)) < lim sup deg(M,,(D) | F,,(D))
n oo n— o0
l o l o
< Zlimsu}) anideg(Mn(D)|c,;) = Zai lim sup deg(M,,(D)|c;,)
n— o0

= Z a; lim sup d/e\g(in(ﬁﬂc) < Z aid/e\g(ﬂoo(ﬁ)

iel n—eo iel

) = 0. O

Finally let us consider Fujita’s approximation theorem on an arithmetic sur-
face.

Proposition 9.3.7. Assume that D is C°-type and ;(;l(ﬁ) > 0. Then, for any
€ > 0, there is A € Divee (X)g such that

Aisnef, A<D and \70\1(2) > \751(5) — €.

Proof. By using the continuity of \7(;17 we can find a sufficiently small positive
number § such that

vol(D — (0,6)) > max{vol(D) — ¢, 0}.

Let D—(0,6) = Ps+N; be the Zariski decomposition of D—(0, §). Since Pj is a big
arithmetic R-Cartier divisor of C-type, by Theorem 4.6 there is an F,.-invariant
continuous function v on X (C) such that 0 < u < § on X(C) and Ps + (0,u) is
nef and of C>®-type. If we set A = Ps + (0,u), then A < D and

vol(D) — € < vol(D — (0,6)) < vol(A). O

Remark 9.3.8. Assume that D is of C%-type, big and not nef. Let D = P+ N be
the Zariski decomposition of D and let N = ¢;C; +- - - +¢;C; be the decomposition
such that ¢q,...,¢ € Ry and C, ..., C; are distinct 1-dimensional closed integral

subschemes on X. Then C4,...,C; are not necessarily linearly independent in
Pic(X) ®z Q (cf. Remark 9.4.2).

Remark 9.3.9. After this paper was completed, several significant advances have
been made in the study of Zariski decompositions. Here we report on them briefly.
Let D and P be arithmetic R-Cartier divisors of C%-type on X.

(1) A generalization of Proposition 9.3.4 was found: if P is the greatest el-
ement of (—o0, D] N Nefco(X)g, then h°(X,nP) = h%(X,nD) for all n > 0 (cf.
20, Appendix BJ). This can be proved as follows: If ¢ € HO(X, nD) \ {0}, then
(=1/n)(¢) € (=00, D] N Nefco(X)r because nD + (¢) > 0 and —(¢) is nef. Thus
(—=1/n)(¢) < P, and hence ¢ € HO(X,nP).
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(2) A numerical characterization of the greatest element of the set (— ia

CX),
Nefco (X)r was obtained, by proving that the following are equivalent (cf. [20]):

(a) P is the greatest element of (—oo, D] N Nefco (X)r-

(b) P is an element of (—oo, D] N Nef o (X)g with the following property: if B is
an arithmetic R-Cartier divisor of C°-type such that (0,0) S B < D — P and
P + B is of (C° N PSH)-type, then deg(P - B) = 0 and d/e\g(Ez) < 0.

(3) In the case where D is big, the greatest element of (—oo, D] NNefco (X)g is
characterized by \a(ﬁ) = \781(?). Namely, if D is big, P € (—oo, D] N Nefco (X)r
and vol(D) = vol(P), then P is the greatest element of (—oo, D] N Nefco (X)g (cf.
[19, Theorem 4.2.1]).

§9.4. Examples of Zariski decompositions on P},

Let P} = Proj(Z[z,y]), Co = {x = 0}, Coo = {y = 0} and z = x/y. Let @ and 3
be positive real numbers. We set

D=Co, g=-log|s] +logmax{a®z2, 8’} and D = (D,g).
The purpose of this subsection is to show the following fact:

Proposition 9.4.1. The Zariski decomposition of D exists if and only if either
a>1 or B >1. Moreover, we have the following:

(1) Ifa>1 and B > 1, then D is nef.
(2) If a > 1 and B < 1, then the positive part of D is given by

(6Co, —0log|2|* + log max{a®|=[**,1}),

where 8 = log a/ (log a« — log B).
(3) If a« < 1 and B > 1, then the positive part of D is given by

(Co — (1 = 0')Coo, — log |2|? + log max{|2|*?", 82}),
where 8’ =log B/(log f — log ).
Proof. Let us begin with the following claim:
Claim 9.4.1.1. For a,b, A € Ry, set
L=)Cy, h=—\og|z|>+logmax{a®|z|**,b*} and T = (L,h).
Then we have the following:

(a) L is an arithmetic R-Cartier divisor of (C° N PSH)-type. In addition, L is
effective if and only if a > 1.
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(b) H°(Py, L) = Dicz o<i<r Zz~".
(c) Fori€Z with0<i <A, [lz"|n =
(d) Fors =3 gccrciz ' € H(Pg, L),

2
Ci
st = | 3 (s )

0<i<A

1
al—i/Api/X"

(e) HO(PL, L) ={0} ifa <1 andb<1.
(f) L is nef if and only ifa > 1 and b > 1.
(g) L is adequate if a®> > 2* and b* > 2*.

Proof. (a) and (b) are obvious. (c¢) is a straightforward calculation. (e) follows
from (d). We will prove (d), (f) and (g).

(d) Indeed,
1 .
Islln > sup  [s|a(¢Q) == sup | D aC
I¢1=(b/a)1/A @ 1gl=(b/a) /> g G2n
1 ! 2
> — / ’ Z ci((b/a)t/* exp(2nv/—11))~¢| dt
a 0 “o<i<a

- > /0Cicj(b/a)%eXp(%ﬁ(j—z‘)t)dt

0<i,j <A

2
(&5
Z <a1i/,\bi/A> :

0<i<A

(f) Tt is easy to see that d/é\g(f\co) = logb and d/é\g(f\cw) =loga. For v € Q,
let C,, be the 1-dimensional closed integral subscheme of P} given by the Zariski
closure of {(v:1)}. Then

deg(Llc,) > Y (=Aloglo(y)] +logmax{alo(v)[*, b}).
ceC,(C)

Thus (f) follows.
(g) We choose § € R+ such that a? > (2(1+6))* and b > (2(1+6))*. Then,

as

Mog((146)|2)* + (1 +6)) < Mogmax{2(1 + §)|z|%,2(1 + §)}

< log max{a?|z|**, b*},
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we have
A(Co, —log |2|* +log((1 + 8)|2|* + (1 +4))) < L.
Note that (Cp, — log |z|> +1log((1+8)|z|> + (1+4))) is ample. Thus (g) follows. [

Next we claim the following:

Claim 9.4.1.2. If o < 1 and 8 < 1, then the Zariski decomposition of D does
not exist.

Proof. For t > 0, we set
D; = (Co, —log |z|> + log max{t*a?|z|?, t? 3?}).
It is easy to see that

aDi, +bDy, = (a + b)D(t%tZ)#b
for t1,t2 € Rsg and a,b € R~q. Moreover, by Claim 9.4.1.1(g), Dy, is adequate if
to > 1. Assume that the Zariski decomposition of D exists. Let P be the positive
part of D. We choose € > 0 such that t?a < 1 and tFﬁ < 1. Then P+ €Dy, is
adequate by Proposition 6.2.2. Thus, by Proposition 6.2.1,

vol((14 €)D

—

@) vol(D + eDy) _ vol(P + Dy,

(D < )= = > 0,
vollD, iz TEeE 0+ = (+ep
which yields a contradiction by Claim 9.4.1.1(e). O

By the above claim, it is sufficient to prove (1)—(3). (1) follows from (f) in
Claim 9.4.1.1.

(2) In this case, D is effective. Thus the Zariski decomposition of D exists.
First we assume that o > 1, so that 0 < # < 1 and o' ~93% = 1. Let us prove the
following claim:

Claim 9.4.1.3. (H°(P},nD))z = @;cy gcicng L2 "

Proof. By Claim 9.4.1.1(c), ||z ng = B%. Thus 2% € H(P},nD) for 0 < i <
nf. For s = 3" ja;z~" € H*(PY,nD), by Claim 9.4.1.1(d),

n

n
6—i
Isllng > | D (lail 877 )2
i=0

Thus, if [|s[l,g < 1, then a; = 0 for i > nf, which means s € Pgc;cpg 22" O
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Claim 9.4.1.4. D is big and

1-0 if C=Cy,

MC(D):{O FC+Co

for a 1-dimensional closed integral subscheme C' of PL.

Proof. Note that (27%)+nD = (n—14)Cy+iCs. Thus the second assertion follows
from Claim 9.4.1.3. To show that D is big, we set

Sn:{ Z a;z"" |ai|§5%}.

0<i<n6/3

It is easy to see that S, C ﬁO(IP’%,nE) for n > 1. Note that, for M € R>,
#Ha€Z|la| <M}=2M|+1>|M|+1>M.

Therefore
=1 Ln6/3)(Ln6/3)+1)

#(Sa) > [ pro=peo T

0<i<n6/3

which implies

hO(X,nD) > log #(Sn) > _11ng6 L”9/3J(L7;9/3J +1)

for n > 1, and hence \751(5) > 0. O
We set
P' =0Cy, p = —0log|z|> +logmax{a?|z|*’ 1} and P = (P, p).

By Claims 9.4.1.4 and 9.3.6.1, if P = (P,p) is the positive part of the Zariski
decomposition, then P = 6Cy. Let us show that P = P. First of all, bz <D
and P is nef by Claim 9.4.1.1(f). Thus P < P, and hence there is a continuous
function u such that w > 0 and P = P + (0,u). Note that

0 <u < —(1-0)log|z> 4 log max{a?|z|?, 3*} — log max{a?|z|* 1}.

In particular, if |z| > BT, then w(z) = 0. As p = —flog|z|*> + u on {2 | |2| <
1 1
BT=7}, u is subharmonic on {z | |z| < 77 }. Thus, by the maximal principle,

u(z) < sup u(¢) =0,
cl=8 T

which implies that u(z) = 0 on {z | |2| < 877 }. Therefore P = P.
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Finally let us consider the case where o = 1. Let P be the positive part of D.
For ¢t € (1,1/5), we set

Dy = (Co, — log |2[* + log max{t*|=[2, 2 5%})

as in the proof of Claim 9.4.1.2. Then D < D, and, by the previous observation,
the positive part P, of D, is given by

P, = (6,Cy, —0; log |z|2 + log maux{tz|z|2‘9t7 1}),

where 6; = logt/(—log ). Therefore, (0,0) < P < Py, and hence P = (0,0) as
t— 1.

(3) If we set D'=D- (z), then D' = (Coo, — log |w|? +log max{3%|w|?, a?}),
where w = y/x. Thus, as in (2), we can see that the positive part of D" is

(6 Coo, —0' log |w]? + log max{ 8 |w[*>’", 1}),
where 0’ = log 3/(log 3 — log @), so that the positive part of D = D'+ (z/\) is
(Co — (1= 8)Co, — log |22 + log max{ 2", 52})

by Proposition 9.3.1. O

Remark 9.4.2. Let us choose o, o/, 5,8 € Rygsuchthat « > 1,0’ > 1, af’ < 1
and o/ < 1. We set

M =Cy+Cs, ¢=—log|z?+logmax{a?z|?, 5%} + logmax{a’>, B°|2|*}
and M = (M, ), that is,

—log|2[2 +log (@/8)? if |2| < Ba,
o = { log (aa)? if B/ < |2 < '/,
log |22 +log (aB')? it |2] > o'/8".

It is easy to see that M is an effective arithmetic Cartier divisor of (C°NPSH)-type
and that
deg(M|c,) = log(a/B) and deg(M|c..) = log(af).
If we set
_ log o + log o’ 9 - log o + log o’
loga —log B’ log o/ — log 3/
and

¥ = —dlog |z|? + log max{a?|2>?, o/ ">} + log max{a’>, a~2|2|*"'},
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that is,
—dlog|z[* if |2] < B/a,
b ={log(0a')? if BJa < |2 <a'/8
Plogle2 ]| > /8,
then the positive part of M is
(9CH + Y Cso, ).

This can be checked in a similar way to Proposition 9.4.1. The details are left to
the readers. In the case where a = o/ = 1, the negative part of M is M itself,
which means that the support of the negative part contains Cy and C,, despite
Co — Cuso = (2). This example also shows that if the positive parts of D and D' are
Pand P respectively, then the positive part of D + D' is not necessarily P + 7.

Remark 9.4.3. Let ) be a positive real number. We set
or = —log|z[> +-1og(|2]* + A) and My = (Co,$»)-

We denote M by L, that is, L = (Cy, — log |z|>+log(|z|?+1)). It is easy to see that

L

M is an arithmetic Cartier divisor of (C>° NPSH)-type, deg(Mi) = (logA+1)/2
and that My is nef for A > 1. In particular, My is big for A > 1.
From now on, we fix A with 0 < A < 1. By using the inequality

log(1+ Az) > Alog(1 + ) (z € R>g),
we can see that AL < My, which means that My is big. On the other hand,
deg(M|c,) = log A < 0,

so that My is not nef. We set
A
Py = dd°(log(|z|> + \)) = dz A dz,
A= ddQog((=f? + X)) = 5 de A ds

which is an F..-invariant volume form on P!(C) with fpl(c) ®, = 1. Moreover, we

set

Diva, (P})r
(1) A is an R-Cartier divisor on P}

=< (A4,94) | (2) ga is an Fy-invariant A-Green function of C*-type » ,
on P!(C) such that dd°([ga]) + 64 = (deg(A))®



ZARISKI DECOMPOSITIONS ON ARITHMETIC SURFACES 897

which is the Arakelov Chow group consisting of admissible metrics with respect
to @ due to Arakelov—Faltings [7]. Let us check that the set

{(A, ga) € Dive, (Ph)r | (A, g4) is nef and (0,0) < (A, ga) < My}

has only one element (0,0).

Indeed, let A = (A, ga) be an element of the above set. Then there are con-
stants a,b such that 0 < a < 1 and A = aM + (0,b). Since g4 < ¢y, we have
b < (1—a)px. Thus b < 0 because ¢y(c0) = 0. In addition,

deg(A|c,) = alog A+ b > 0.

In particular, b > 0, so that b = 0, and hence alog A > 0. Thus a = 0.

This example shows that the Arakelov Chow group consisting of admissible
metrics is insufficient to get the Zariski decomposition.

Finally note that AL is not necessarily the positive part of M) because
vol(M5) > (log A+ 1)/2 (cf. Theorem 6.6.1), vol(AL) = A2/2 and (log A+ 1)/2 >
AN2for0<1—-A< 1.

Remark 9.4.4. Let n be a positive integer and f € R[T] such that deg(f) = 2n
and f(t) > 0 for all t € R>¢. It seems not to be easy to find the positive part of

(nCo, —nlog ||* +log f(|2]))
on PL.
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