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Existence and Uniqueness Theorem for a Class of
Singular Nonlinear Partial Differential Equations

by

Dennis B. BACANI and Hidetoshi TAHARA

Abstract

This paper deals with singular nonlinear partial differential equations of the form tdu/0t
= F (t,x,u,0u/dx), with independent variables (t,z) € R x C, and where F(t,z,u,v)
is a function continuous in ¢ and holomorphic in the other variables. Using the Banach
fixed point theorem, we show that a unique solution u(t,z) exists under the condition
that F(0,z,0,0) =0, F(0,2,0,0) = 0 and F,(0,z,0,0) = xy(z) with Rey(0) < 0.
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81. Introduction

Consider the first order singular nonlinear partial differential equation

ou ou
(1.1) tE = F(mx,u, 5‘x>

Suppose F(t, z, u,v) is a function holomorphic in a neighborhood of the origin
(0,0,0,0) € C* and F(0,7,0,0) = 0 near = = 0. Then we can write F as
0 0 o (Ou\”
F(t,x,u, 3:2) =a(z)t + AMz)u + b(az)a—z + a; jo(x)t' v’ <u> .

T
i+ita>2 0

In this situation, solving (1.1) can be divided into three cases:
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(C1) b(x) =

(C2) b(0) #
(C3) b(x) = xPy(x) where v(0) # 0 and p € N* :={1,2,...}.

0;
0;

In the case (C7), the equation (1.1) is called a Briot-Bouquet type partial
differential equation with respect to ¢t. Gérard—Tahara [5] proved the existence and
uniqueness of holomorphic solution of this equation when A\(0) ¢ N*; Yamazawa
[12] then solved the case A\(0) € N*. For the second case (C2), by the implicit
function theorem we can rewrite (1.1) in the form

Ju ou
e G<t, T, u, tat)

and so we can apply the Cauchy—Kowalewski theorem to this equation with data
on z = 0. The equation (1.1) is said to be a totally characteristic type partial
differential equation if it satisfies (C3). In this case we have the following results:
for p = 1, Chen-Tahara [2] and Tahara [10] established the solvability of the
equation when v(0) € C\ [0, 00), whereas for p > 2, Chen-Luo-Tahara [3] studied
Gevrey type estimates of formal solutions, and Luo—Chen—Zhang [8] showed the
solvability in a sectorial domain by using summability theory.

On the other hand, assuming F' (¢, x,u,v) is holomorphic with respect to the
variables (z,u,v) but only continuous in ¢, Baouendi-Goulaouic [1] formulated
existence and uniqueness theorems for some nonlinear partial differential equa-
tions. Their results were then extended by Lope-Roque-Tahara [7] for a wider
class of equations using the concept of weight functions. The equations in [1] and
[7] correspond to the case (Cy) (the case of Briot-Bouquet type partial differential
equations).

This paper aims to answer the following problem:

Problem 1.1. Solve the equation (1.1) in the case (C3) (the case of totally charac-
teristic type), where p = 1, under the assumption that F'(t,z,u,v) is holomorphic
with respect to the variables (x,u,v) but only continuous in ¢.

§2. Main result

Let (t,z) e Rx C, Ty > 0, Ry > 0 and py > 0. For any s > 0, we denote by D

the open disk {z € C: |z| < s}. We study (1.1) under the following assumptions:

(A1) F(t,x,u,v) is continuous on Ag = [0, To] X Dg, x D,, x D, and holomorphic
in the variables (z,u,v) for any fixed ¢;

(A2) F(0,2,0,0) =0 on Dpgg;

(A3) F,(0,2,0,0) = xy(z) with (0) # 0.
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Set a(t,x) = F(t,x,0,0), \(t,z) = F,(t,2,0,0), b(t) = F,(t,0,0,0), and c(¢t,z) =
(Fy(t,x,0,0) — F,(t,0,0,0))/x. Then, using the Taylor expansion of F(t,x,u,v)
with respect to the variables (u,v), (1.1) can be rewritten as
(2.1) t% =a(t,x) + At, z)u + (b(t) + zc(t, x))% + Ry (t, z,u, ?;),
where Ra(t,z,u,v) is the sum of all the terms in the Taylor expansion whose
degrees with respect to (u,v) are at least 2. Our assumptions imply that a(t, x),
A(t,z) and c(t,z) are continuous functions on [0,7p] x Dg, and holomorphic in
z for any fixed ¢, and b(t) is a continuous function on [0, Tp]. Moreover, we have
a(0,z) =0, b(0) =0, and ¢(0,z) = y(x), and hence ¢(0,0) # 0.

In order to describe the decreasing order of a(t,z) = o(1) (as ¢ — 0) and
b(t) = o(1) (as t — 0), we introduce a concept of a weight function. We say that a
real-valued function pu(t) is a weight function on (0, Tp) if it satisfies the following
conditions:

(i) w(t) is continuous on (0, Tpl;
(ii) p(t) > 0 and increasing on (0, Ty];
(i) f;*(u(s)/s) ds < +oo.

The first two conditions imply that lim;_,q p(¢) = 0, while condition (iii) allows us
to define the function

(2.2) o(t) = /Ot nls) ds, 0<t<Ty.

Examples of such weight functions are t7 and 1/(—1log#)"*! for any n > 0 .
We suppose that there is a weight function () such that

(2.3) a(t,x
b(t) =

~

= O(u(t)) uniformly on Dpg, (as t — 0), and
(u(t))  (ast—0).

o)

For any r > 0, T'> 0 and R > 0, we define the region W, r by
Wy r={({z):0<t<Tand|z|+¢(t)/r <R}
We also define two function spaces on W = W, g or [0,T] x Dp:

Xo(W) = {w(t,x) € CO(W): w is holomorphic in z for any fixed ¢},
X (W) = Xo(W)nCH(Wn {t > 0}).

The following is our main result.
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Theorem 2.1 (Main Theorem). Suppose (A1)—(As), (2.3) and (2.4) hold, and
(2.5) ReA(0,0) <0 and Rec(0,0) <O.

Then there exist R > 0, r > 0, M > 0 and T > 0 with Mu(T) < po such that
(2.1) has a unique solution u(t,z) in X1 (W, gr) that satisfies

(2.6) lu(t,z)] < Mu(t) and ?(t,x)

T

< Mu(t) on W, k.
For simplicity, we set
0 0

and

) )
®u] = b(%% + Ry (twu aZ)

So the equation (2.1) may be written as
Pu = a(t,x) + ®lu].

The remaining part of this paper is organized as follows. In Section 3, we
investigate the equation Pw = g(t,x) on [0,T] x Dg. Next, we examine the same
equation Pw = g(¢,x) on W, g. Then, in the last section, we solve (2.1) by using
the Banach fixed point theorem as in Walter [11].

§3. On the equation Pw =g on [0,7] X Dg
Let 0<T < Ty <Tyand 0 < R < Ry < Ry. Consider the equation

ow ow
(3.1) ta = At x)w — zc(t, x)a—x = g(t, )

on [0,7T] x Dg. Since we know that A(¢,z) and c(¢, z) belong to Xo([0,To] X Dg,),
we can choose 77 > 0 and R; > 0 sufficiently small so that

(B1) ReA(t,z) < —L on [0,T1] x Dpg, for some L > 0;
(B2) Rec(t,z) < —6 on [0,T1] x Dg, for some 6 > 0.

We admit the case § = 0 in this section, and so (Bg) is weaker than the condition
posed in (2.5). Since 0 < R < Ry, it also follows that |A,(¢,2)] < A on [0,71] x Dg
for some A > 0.

The purpose of this section is to show the following:
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Proposition 3.1. Suppose (By) and (Bsz) hold. For any given g(t,x) € Xo([0, T]x
Dg), the equation (3.1) has a unique solution w(t,x) in X1([0,T])x Dg). Moreover,
if lg(t,z)| < K and |g,(t,z)| < K1 on [0,T] x Dg, then

K Ow K1 | AK
(3.2)  Jw(t,x)| < T and ‘ax(t’x) < (L + I

>H on [O,T] XDR,

where H > 0 is a constant independent of g(t,x).

Before proving the above proposition, let us first investigate the integral curves
of the vector field

*tgfxc(t x)ﬁ
T " oa

The integral curve of 7 passing through the point (¢, zo) € (0,71] x Dg, is given
by the solution of the initial value problem

td—x = —zc(t, x)
(3.3) dt T

x(to) = wo.

Lemma 3.2. For any (to,xo) € (0,T1] X Dg,, the initial value problem (3.3) has
a unique solution x(t) on (0,ty] satisfying |x(t)| < |zo|(t/to)? on (0,t].

Proof. Since c¢(t,x) satisfies the Lipschitz condition on Dg,, (3.3) has a unique
local solution x(t) on (¢1,to] for some 0 < ¢; < tg. Moreover, the solution satisfies

x(t) = o exp {/tto c(s, z(s)) ds] on (t1, tol,

S

and thus we have

()] = |0 exp [/tt Rec(s, 2(s)) ds}

S
to 76 s
< |@o| exp ?ds = [zol(t/t0)”  on (t1, o).
t

We show that the solution can be continued to (0, tp]. Suppose it can only be
extended to (e, to] for some € > 0. By the above estimate, z(t) € Ko = {x € Dpg, :
|z| < |zo|} for any € < ¢ < ty. As a consequence, since K is a compact subset
of Dg,, the solution may be continued to the left of € (by Theorem 4.1 in [4]), a
contradiction to our original supposition. Therefore, ¢ = 0 and we have a unique
solution on (0, to], which is the continuation of the local solution z(t) to (0,%]. O

Denote by x(¢; to, o) the unique solution of (3.3); x(; o, o) is regarded as a
function on

O = {(t,to,l‘o) :0<t<tgand (to,Io) S (O,Tl] X DR1}~
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The fact that x(¢;to,z0) belongs to C*(£2;) follows from a result concerning the

dependence on initial data of solutions of ordinary differential equations (see The-

orem 7.2 in [4]). Since c(t, ) is holomorphic in x € Dg,, it is easy to see that

x(t; to, xo) is holomorphic in zy € Dg,. Moreover, |x(t;to, zo)| < |zo|(t/to)’ on ;.
Set

(34) ¢(S,t,$) = X(S, t,.’E) on Qla

where Q = {(s,t,z) : 0 < s < t and (¢t,z) € (0,71] x Dg,}. Then ¢(s,t,x)
is a C! function on €2; that is holomorphic in # € Dg, for any fixed (s,t), and
|p(s,t, )| < |z|(s/t)° on Q. Furthermore, we have the following lemma:

Lemma 3.3. The above ¢(s,t,x) is the unique solution of

d9
(3.5) ta - xc(t,w)% =0 on )y,

o(t,t,x) =z on (0,T1] X Dg,
that is differentiable in s and t, holomorphic in x, and |¢(s,t,z)| < |z|(s/t)? on Q.

Proof. Take any (s,tg,z9) € 1 and set £ = x(s;to,x0). Consider the solution
x(t;8,&0) of (3.3) with initial point (s,&p). Since x(¢;to, zo) is defined on (0, to],
x(t; s,&p) can be continued to (0, to], and we have x(t; s,&0) = x(¢; to, o) on (0, to].
In particular, ¢(to; s,&0) = xo-

Let t € (0,t0] and set = x(¢;to,xo). Then we also have x = x(t; s,&p). This
means that & = x(s;t,z) = ¢(s,t,z) and so

60 = ¢(S7 t, X(t7 S, gO))

Applying t9/0t on both sides of this equation and using the fact that x(¢;s,£)
satisfies (3.3) gives

_,9¢ . 9¢ : X .
0=t ot (S,t,X(t, 3,50)) + ox (Svta X(t7 8750)) -t dt (t7 S7§0)
0 0
= 192 (5,0, x(055,€0)) = X6 3, €0)elt, X(1 5, €0) 22 (5., (15, 60))
_,9¢ 9¢
=t ot (s, t,x) — xclt, x)ax (s,t,x).
In particular, the last equation is true for (t,z) = (to,xo). Since (s,tq,zq) is

arbitrarily chosen from €y, we conclude that ¢(s,t,x) is a solution to (3.5).

We now proceed to the uniqueness proof. Let 9 (s,¢, ) be another solu-
tion of (3.5) defined on 4. Our claim is that (s, tg, o) = ¢(s,t0, zo) for any
(s,to, o) € Q1. Let us prove this claim.
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Similar to the arguments above, we set x = x(t; to, zo) and & = x(s;tg, xg) =
(s, to, xo). Then again we have x = x(¢; s,&p). By setting f(t) = (s, t, x(¢;8,&0))
on (0,tg] we have f(tg) = ¥(s,to,x0) and f(s) = ¥(s,s,&) = &. Taking the
derivative of f(t) with respect to ¢t and again using the fact that x(¢; s, &o) satisfies
(3.3) yields

d
(6) = o (s x(055,60)) + (5, x(055,60)) X (5 5,0)
o, et v

- ot (S,t,l’) - t o (S7tax) =0.

Thus, f(t) is constant, and consequently we have (s, tg,zo) = f(to) = f(s)
o = &(s, to, zo).

O

Let us now prove Proposition 3.1.

Proof of Proposition 3.1. We set

86)  wita)= [ e [ Amotr o) Tots.so o 2

where ¢(s, t, x) is the unique solution of (3.5). Since we are considering the equation
(3.1) where 0 < T' < T7 and 0 < R < Ry, we may suppose that |(0¢/0x)(s,t, )|
< HonQ={(s,t,x): 0<s<tand (t,z) € (0,T] x Dr} for some H > 0. We
recall that [A;(¢,z)] < A on [0,T] x Dg. Then, if |g(¢t,z)| < K on [0,T] x Dg, we
have

lw(t, )| < /Ot exp [/t Re \(r, ¢(r, 1, z)) ‘ﬂ lg(s, é(s,t,2))] %

¢ todr) d Lrs\Y ds K
g/ exp[/ —LT}KS:/ <S> K& =2 on|0,7] x Dg.
0 s T s o \t s L

From (3.6), we get

0 ! ! dr] o 0 d
D)= [ o] [ Amotrtio) T] s otsitan Pt

+ /Ot exp U;MT, o(7,t,2)) d:] (/t %(T, (1,t, 7)) %(T, t,x) d:)
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Therefore, if |g.(¢,z)] < K1 on [0,T] X Dg, we have

LYt [G) (L)
KEHJFAHK/( ) 10g< )dSS

Ki  AK
= <L+L2>H on [O,T]XDR.

CE

Here, we have used the fact that fol rllog(1/x)dx/x = 1/L? if L > 0.

In a similar way, we can verify that w(t, z) given by the integral in (3.6) is a
well-defined function belonging to X;([0,7] x Dg). A straightforward calculation
also shows that it is a solution to the equation (3.1).

To show the uniqueness of solution, we prove that

(3.8) (t[?t — At,x) — xc(t, m)<f9ax>w(t’ z)=0

only when w =0 in X;([0,7T] x Dg).

Suppose w(t, z) € X1([0,T] x Dg) satisfies (3.8). It suffices to show that w =0
on (0,T] x Dg. Let (to,z9) € (0,T] x Dr and set wo(t) = w(t, x(t;to, zo)) and
Xo(t) = A(t, x(t;to, 20)) on (0,t0]. Then we have wq(t) € C1((0,t0]), wo(t) = O(1)
(as t — 0), Ao(t) € C°((0,t0]), Re Ag(t) < —L and

d
E2 (1) = do(t)wot)
0 0 d
= 15 (t x(tto,20)) + 5 (8 x(Ei o, 20)) -t (Eto,0)
— At, x(t; to, mo) )w(t, x (£ to, To))

ow ow
= (tat(t x) — xc(t,x)%(t,x) - )\(t,w)w(t,x)) = 0.

z=x(t;to,>0)

This implies that

Z(exp Utt Ao(7) Cﬂmn) —0,

and integrating this from ¢ to tg yields

w(ty) — exp [/j Ao(7) d:]wo(t) = 0.
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Since wo(tg) = w(to, o), we have

it z0) < exp [ Rero(r) 2 |jwnto) < exp [ 2 L jn()
= (t/to) [wo(®)] 0 ast—0,

which shows that w(tg, zo) = 0. Since (to, zo) is taken arbitrarily from (0, T] x Dg,
we then have w =0 on (0,7] X Dg. O

§4. On the equation Pw =g on W, r

Let A, HH0O < T < Ty <Tpand 0 < R < Ry < Ry be as in Section 3. For
simplicity, we assume that 0 < R < 1. In this section, we consider the following

equation, which is the same as (3.1), on W, g:

ow ow
4.1 — = - — = .
(4.1) t 5 At, 2)w — zc(t, ) 5 g(t,x)
Let Ay and Hj be constants satisfying |(9/0x)2A(t,z)| < Ay on [0,T] x Dr and
[(0/0x)%¢(s,t,x)| < Hy on Q. Then we have a result which is analogous to Propo-
sition 3.1.

Proposition 4.1. Suppose (B1) and (Bsz) hold. For any given g(t, z) € Xo(W; r),

the equation (4.1) has a unique solution w(t,z) in X1(Wy r), and it is given by

42 = [ o] [ Aot oo L,

where ¢(s,t,x) is the unique solution of (3.5). Moreover, the following are true on
Wy r given any nondecreasing, nonnegative functions 1 (t) and 11 (t):

(a) IF lg(t,2)| < Koh(t), then [w(t,z)| < (K/L)p(t).
(b) In addition, if g, (t,2)| < Arob(t) and |ges (t,2)| < Asth(t), then

0 AH H
(1) 2| < S0 + Fawo,
0? 2(AH)? AH? + AH.
(4.4) 8;5@7@] < ( (L3) + = 2>Kw(t)

2AH? H H?
+ (L2 + L2>A1w(t> + - A (t),

Ky () p(t)
(R — |z — p(t)/r)1/2
ow A

—(t, x)' < L—Iij(t) + 2V RHTEK, ¢ (t),

(¢) Iflglt, )] < Ke(t) and |ga (t, )] < then

(4.5)
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52 2(AH)?  AH? + AH.
ow 1;‘<<(L3)+ 2 L;r 2)K¢(t)

4v/RAH? (3v/3)H?r K1 (t)
——— + 2V RH; |rK 91 (t .
(PR VR it + T
Proof. By the same arguments as in Section 3, we can easily verify that the func-
tion w(t, z) defined by (4.2) is the unique solution of (4.1) belonging to X; (W, r).
Let us show the estimates in (a)—(c).

Statement (a) follows immediately from (4.2):

uit.o)l < [ t(j)Lm@ L < kv | () Ky on Wi

t

Computations similar to those in (3.2) give the first estimate (4.3) in (b).
Similarly, we can obtain (4.4) using the fact that fol xt(logz)? da/x = 2/L3.

The next lemma is essential to estimating some integral expressions that we
encounter in proving (c).

Lemma 4.2. For a weight function u(t) and ¢(t) given by (2.2), we have:

: ! p(s) ds

® / Rl - @7 s VR

" ¢ wu(s) ds 2r

(i) / @ Jal — o)/ P2 5 = (R[] — o)) /2

Proof. The first inequality is verified as follows:

‘ 1i(s) ds ‘ ¢'(s)
/o (R— [z~ o(s)/r)12 s — / B2 — ()72 ™
= [~2r(R — |z| - o(s)/1)"/?],
= —2r(R — |z| — o(t)/r)"/? + 2r(R — |a])*/?
< 2r(R - |z))"/? < 2rVR.

Similarly, we have

! 1(s) ds [ ¢'(s) )
/0 (R— || — o(s)/r)3/2 s /0 (R — |z — p(s)/r)3/? I

o [ 2r t

= (R — |z| — ¢(s)/r)/2 o

= 2r B 2r

C (R |z —(®)/r)1? (R —|x])}/?
2r

< .
T (R x| = (t)/r)1/?
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By the preceding lemma and similar arguments to those in (3.2), we establish
the first estimate (4.5) in (c):

<[() w —|¢<K ””138””(53 2k S
[ G) ([ aa) e

g s ds
< Kt |G e

+ AHK(t) /Ot (j) ’ log(i) %

< K1 Hiy (t) - 2rVR + (AHK/L*)(t).

ow

Finally, to prove (4.6), we recall Nagumo’s lemma which provides a bound for
the derivative of a holomorphic function.

Lemma 4.3. Let f(x) be a holomorphic function on Dg. If

C
f@)<—=——— onD
Tl < Rqape on P
for some C >0 and a > 0, then
of YaC
’az(x)‘ =@ fope P

where o =1 and v, = (1 + a)(1 + 1/a)® for a > 0.

For the proof, see [6, Lemma 5.1.3] or [9]. The above lemma gives the following
estimate for the second derivative of g(t, x):

(3v/3/2) K11 (t)p(t)
(R — || — p(t)/r)3/?

By using this estimate, Lemma 4.2, and the fact that fo (logz)?dz/xz = 2/L3,
we can verify (4.6) in a way similar to our previous calculations. O

8%g
722 (b

x)‘ < on W, g.

85. Proof of Main Theorem
Consider the equation

(5.1) t% S 2)u — et 2) 2

ou ou
o = a(t,z) + b(t, m)% + Ry <t, x, U, )

ox
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Let Ty > 0, Ry > 0, p1 > 0 and Ay = [0,T1] x Dg, x D,, x D,,. Suppose that
A(t, ), c(t,x), a(t, z) and b(t, z) are functions belonging to X ([0, T1] X Dg, ), and
Rs(t, z,u,v) is a continuous function on A; that is holomorphic in (x,u,v) with
Taylor expansion in (u, v) of the form
Ry(t,z,u,v) = Z ai j(t, x)uv?.
i+j>2
In addition to (B;) and (Bs), we suppose:
(B3) la(t,x)| < Au(t) on [0,T1] x Dg, for some A > 0;
(Byg) |b(t,x)| < Bu(t) on [0,T1] x Dg, for some B > 0.
For simplicity, we assume again that 0 < Ry < 1.
In this section, we prove the following theorem, stronger than Theorem 2.1.

Theorem 5.1. Suppose (By1)—(B4) hold. Then, for any 0 < R < Ry and 0 <
p < p1, there exist T > 0, r > 0 and M > 0 with Mu(T) < p such that the
equation (5.1) has a unique solution u(t,z) in X1 (W, r) that satisfies

(5.2) lu(t,z)] < Mu(t) and )gi(t,x) < Mu(t) on W, g.

Remark 5.2. Comparing (2.1) with (5.1), we see that the coefficient b(¢) in (2.1)
is generalized to b(t,z) in (5.1). Since the case § = 0 is admitted in (Bs), we can
also apply Theorem 5.1 to the case ¢(¢, ) = 0, which is just the equation discussed
in [7].

To prove Theorem 5.1, we use the Banach fixed point theorem as in Wal-

ter [11]. Set

a=a(t,r) and Pu]= b(t,m)% + Ry (t, x,u, ?)Z)

Proposition 4.1 tells us that equation (5.1) is equivalent to the integral equation

(5.3) u(t,x) = /075 exp [/: AT, o(7,t,2)) d:] (a + ®lu])(s, P(s,t,x)) %

Therefore, if the operator R defined by

ds

Rl = [ o] [ A otrta) O] (0 o) 005,10 2

is a contraction mapping from a suitable function space E (which is a complete
metric space) into itself, we have a unique solution of

(5.4) u=TRlu] inkE.
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To define F, fix any 0 < R < Ry and 0 < p < p1. For r > 0 and T > 0,
we denote by 2" (W, gr) the set of all functions u(t,z) € Xo(W, gr) satisfying the
following estimates on W, g for some C' > 0:

it o)l < Ot |G

Pu Cu(t)
3] < Gt

We define a norm ||ul| 2 of u € Z (W, r) by

< Cu(t),

[ull 2 = max{{|ullo, [ull1, [ull2},

where
falo=  sup  EDL g 09O
(t,z)eWy R, t>0 M(t) ’ (t,2)EWy g, t>0 ‘u(t) ’
[ull2 = sup (B —|o] - ‘P(t)/r)l/2|(82u/ax2)(t793)‘.
(t.2)EW, R, t>0 ()

It is clear that (2 (W, r), | - ||2) is a Banach space.
For M > 0, we set Epp = {u € Z (W, r) : |lullgz < M}. This is a closed
subset of 2 (W, g) and so it is a complete metric space.

Proposition 5.3. For any sufficiently large M, we can choose r > 0 and T > 0
so small that Mu(T) < p and the mapping R : Epr — Ep is a contraction map.

Let us prove this proposition. The following lemma implies that the mapping
R : Ey — E)yy is well-defined.

Lemma 5.4. Suppose Mu(T) < p. If u € Epy, then the following hold on W, g:

() IR[u](t, z)| < Koopu(t) + Koa Mp(t)? + KoM pu(t)?,
(i) ‘ TR (1,0 < (v onlt) + Kaa Mu(t)? + Ky sMn(t)?)
+ (K1 s Mpu(t) + Ky aM?)ru(t),
0*Ru)]

< (Kaop(t) + Koa Mp(t)? + Ko o M2 p(t)?)

(iii) ’ 92 (t,x)
(KasM + Ko gM?)ru(t)

(R — || = o(t)/r)1/2 7
where K; ; > 0 are constants depending only on R, p and the estimates of a(t, z),

b(t,z) and Ry(t,x,u,v) on A =1[0,T1]| x Dr x D, x D,. Moreover, the K, ; are
independent of T >0, r >0 and M > 0.

+ (Ko 3 M + Ko 4M?)ru(t) +
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Proof. Take any u € Ejps. Then on W, p we have

el < Muto). | 0.0)] < M),

Pu Mu(t)
522 ) ‘ SRV Ty e

and ®[u] € Xo(W, r). Set w(t,z) = Rlu]. Then w(t, x) € X1 (W, g) and

ow ow
ta— — At z)w c(t,x)% =a(t,z) + ®lu] on W, k.

Let wy (¢, x),ws(t, ) € X1(W, r) be the unique solutions of the equations

(5.5) t% A\t 2w — zelt, 7) 88“;1 alt, ),
(5.6) t% — A, 2)wy — zc(t, z) 5;:2 = P[u],

respectively. Then we have w(t, ) = wq (¢, z) + wa(t, x), and hence Rlu] = w (¢, x)
+ wo(t,x). To estimate the function R[u|, we estimate wq(t,x) and ws(t,z) by
applying Proposition 4.1 to the equations (5.5) and (5.6).

By (Bj), we have |a(t,z)] < Aup(t), |az(t,z)| < A1u(t) and |az.(t,z)] <
Aop(t) on Wy g for some constants A; > 0 (j = 1,2). On the other hand, we have
|®[u](t,z)| < Bu(t)Mu(t) + Bi(Mpu(t))? for some By > 0. Since

2
a(;iu] (t,x) = %(t,m)% + b(t, )g Z + ?(t x,u, 0u/0x)
8R2 ou aRQ 82u

+— 5 (twuau/ax)——&— 5 (tmu@u/@x)a 5

we also have

‘ 00[u]

xT

Mpu(t)
(BT~ ol
sy Ka(Mu(t)?

M R R OYE
KM + K M?)u(t)?
= R=Tl— ¢/

for some constants KC; > 0 (1 < j < 6). Lastly, we apply Proposition 4.1 to obtain

(t.2)| < Kap(t)Mpu(t) + Kap(t)

on W, g

the assertions of this lemma. O

Note that since we restrict 0 < R < Ry < 1, we have 1/(R—|x|—¢(t)/r)"/? > 1
on W, g.
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Now, we choose M > 0, T > 0 and r > 0 satisfying the system
Mu(T) < p,
Koo+ (Ko1M + Koo M?)u(T) < M,
(5.7) K10+ (KiaM + K1 oM?)u(T) + (K1 3M + Ky 4M?)r < M,
Koo+ (Kot M + Koo M?)u(T) + (K2 3M + Ko aM?)r

+ (Ka5eM + Ko g M?)r < M.

This can be done by first taking M > max{Ky o, K1,0, K20}, and then choosing T
and r small enough so that (5.7) holds. These values ensure that on W, g we have

OR[u]
ox
‘82R[u] t x)‘ Mp(t)
Oz T (R — x| = o(t) /)12

Riul(t,2)| < Mau(t), \ <t7x>]sm<t>,

and so R[u] € Eys, which implies that R : Epy — Ejy is well-defined.
Next, we show that R : Ej;y — Ejs is a contraction mapping.

Lemma 5.5. Suppose Mu(T) < p. If u,v € Ep and ||lu — v||ar = C, then the
following hold on W, g:

(i) IR[ul(t, ) — R[v|(t,z)| < (Kg1pu(t) + K o Mpu(t))Cult),
W | - )

< (K7 ap(t) + KoM u(t)Cu(t) + (K 3 + Ki 4, M)rCu(t),
(ii) ‘8267;[“] (t,z) — %(w)

< (K pu(t) + K3 oM p(t))Cu(t) + (Kz 3 + K3 ,M)rCu(t)
(K35 + K3 6M)rCu(t)
(R — |z — o(t)/r)1/2
where K[ ; > 0 are constants depending only on R, p and the estimates of a(t, ),
b(t,z) and Ry(t,x,u,v) on A =1[0,T1] x Dr x D, x D,. Moreover, the K} are
independent of T >0, r >0 and M > 0.

Proof. Set W(t,z) = Rlu] — R[v] and G(t,z) = ®[u] — ®[v]. Then W (t,z) €
Xl(Wr,R)v G(tvx) S XO(WT,R) and
ow

ow
(5.8) tﬁ — At 2 )W — zc(t, x)% =G(t,x) on W,p.
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Since

0 0 0 0
G(t,z) = b(t,x) (3Z — 8::) + Ry (t, T, U, 81;:) — Ry (t, z,v, 62)

and by hypothesis, ||u — v|| e = C, which implies that on W, g,

fu(t,2) — oft, ) < Oult), | 94(0,2) — 22 (1,)| < (),
0%u 0% Cu(t)
T T N TN

it follows that |G(t, x)| < (Bu(t) + Ba M p(t))Cu(t) and
Bau(t) + BaMu()Cpt)
(R~ 1] — p(0)/r) /2

for some constants B; > 0 (j = 2,3,4). Again, we use Proposition 4.1 to (5.8) to
obtain the desired estimates. O

Galtyz)| < o Wp

Now, we take a 0 < dg < 1. Besides (5.7), we require M, T and r to satisfy
(Kgq + K52 M)u(T) < do,
(5.9) (K1 + K oM)p(T) + (K7 3 + K{ 4 M)r < bo,
(K31 4+ K3, M)p(T) + (K3 3+ K3, M)r + (K3 5 + K3 ¢ M)r < do.

We can guarantee that (5.9) holds by choosing sufficiently small 7" and r. Conse-
quently, on W, r we have

Rlul() - R0 < wCute), | g (t0) -

ORI 1,2 < ot

0*R[ul] PRI . SoCp(t)
e 0 - S| < G

Therefore, ||Rlu] — R[v]||2 < do|lu — v|| 2, which confirms that R : Epy — Ejy is
indeed a contraction mapping. This completes the proof of Proposition 5.3.

Now, let us complete the proof of Theorem 5.1. We have seen in Proposition
5.3 that the mapping R : Eyy — Fj is a contraction map, which means that the
equation (5.4) has a unique solution u(t,z) € Xo(W, r) satisfying the estimates
n (5.2). Also, by the expression (5.3), we can see that this u(¢, z) is in X1 (W, g).
Since (5.3) solves the equation (5.1), we have obtained a solution wu(t, z) of (5.1).
This concludes the existence part of the proof of Theorem 5.1.

To show the uniqueness of solution, we suppose that there is another solution
ug(t, x) in X1 (W, g) such that |ug(t, z)| < Mu(t) and |(Que/0x)(t, )| < Mu(t) on
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the set W, g. Set w(t, x) = ua(t, z) — u(t,x). Then w(t,x) € X1(W, r), and both

w(t,z) and (Qw/0x)(t,x) are bounded by 2M pu(t) on W, g. Furthermore, w(t, x)
satisfies the linear partial differential equation

ow ow ow
(5.10) ta — A(t, 2)w — zc(t, x)% = a1 (t,x)w + b1 (¢, x)%
on W, g N {t > 0}, where

L OR,y ou ow
ar(t,z) = /O o (t, woult, )+ bu(t,2), 50 (6,2) + 05 (1 x))d&
and
' OR, ou ow
bi(t,x) =b(t,x) + /0 By <t,x, u(t,x) + Qw(t, x), %(t, x)+0 o (t, ;U))d@.

Note that a1(t,x), bi(t,z) € Xo(Wy r), and |a1(t,z)| < K1Mp(t) and |by(t, z)| <
KoMu(t) on W, g for some constants K; > 0 (i = 1,2) depending only on R, p
and the estimates of b(t, z) and Ra(t,z,u,v) on A =[0,T1] X Dr x D, x D,,.

Set
ow

Ulw] = a1 (¢, z)w + bl(t,x)%.
Then we have
(511)  w(tz) = /0 exp [/ A 0(r,2) T | wlu)(s, ofs1,2)) 2.

We also set o = (K7 + (3v/3/2)Ko)M x 2r and B = 2(K; + K3)M?. Observe that
a < 1 for sufficiently small 7.
The following lemma completes the proof of uniqueness.

Lemma 5.6. If a <1 then w =0 on W, R.

Proof. Let us show by induction that the following estimate holds for any k =
0,1,2,...:

a"pu(t)?
(R — [z] = p(t)/r)3/?

The case k = 0 is clear due to the fact that R < 1 and

(5.12) | [w](t, z)| < on W, g.

|w](t, z)| < KiMpu(t)(2Mp(t)) + Ko Mp(t)(2M u(t))
2(K1 + Kp) M u(t)?

=2(Ky + Ko)M?p(t)? < (R — |z| — o(t)/r)3/2

on W, g.
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Assume now that (5.12) holds for & = n. Then, by (5.11) and Lemma 4.2,

trs L 04”5#(5)2 ds
(5.13) Iw(tvx)\é/o (t) (R—o(s,t, )| — p(s)/r)3/2 s

2ra” Bu(t)
T (R 2| = p(t)/r)t/?

on W, g,

and applying Lemma 4.3 gives

ow (3V3/2)2r0" Bu(t)
o1 500)] < s W
Using the estimates (5.13) and (5.14), we get
|\P[w](t’ .73)| < KlM,u(t) : (R _ T;ﬁji’[zg)/r)l/Z
(3V3/2)2r0* Bt
M) T T~ o0
< (K1 + (3v/3/2)K,)M - 2r - = |Z| éﬂ;ii)/r)?’”

B a1 Bu(t)?
=R |al—prpr e

which is the case k = n + 1. Therefore, (5.12) is true for all £ =10,1,2,....

Finally, we obtain w = 0 on W, g by letting k approach +o0, since « < 1. [0
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