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Existence and Uniqueness Theorem for a Class of
Singular Nonlinear Partial Differential Equations

by

Dennis B. Bacani and Hidetoshi Tahara

Abstract

This paper deals with singular nonlinear partial differential equations of the form t∂u/∂t
= F (t, x, u, ∂u/∂x), with independent variables (t, x) ∈ R × C, and where F (t, x, u, v)
is a function continuous in t and holomorphic in the other variables. Using the Banach
fixed point theorem, we show that a unique solution u(t, x) exists under the condition
that F (0, x, 0, 0) = 0, Fu(0, x, 0, 0) = 0 and Fv(0, x, 0, 0) = x γ(x) with Re γ(0) < 0.
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§1. Introduction

Consider the first order singular nonlinear partial differential equation

(1.1) t
∂u

∂t
= F

(
t, x, u,

∂u

∂x

)
.

Suppose F (t, x, u, v) is a function holomorphic in a neighborhood of the origin

(0, 0, 0, 0) ∈ C4 and F (0, x, 0, 0) ≡ 0 near x = 0. Then we can write F as

F

(
t, x, u,

∂u

∂x

)
= a(x)t+ λ(x)u+ b(x)

∂u

∂x
+

∑
i+j+α≥2

ai,j,α(x)tiuj
(
∂u

∂x

)α
.

In this situation, solving (1.1) can be divided into three cases:
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(C1) b(x) ≡ 0;

(C2) b(0) 6= 0;

(C3) b(x) = xpγ(x) where γ(0) 6= 0 and p ∈ N∗ := {1, 2, . . .}.

In the case (C1), the equation (1.1) is called a Briot-Bouquet type partial

differential equation with respect to t. Gérard–Tahara [5] proved the existence and

uniqueness of holomorphic solution of this equation when λ(0) 6∈ N∗; Yamazawa

[12] then solved the case λ(0) ∈ N∗. For the second case (C2), by the implicit

function theorem we can rewrite (1.1) in the form

∂u

∂x
= G

(
t, x, u, t

∂u

∂t

)
and so we can apply the Cauchy–Kowalewski theorem to this equation with data

on x = 0. The equation (1.1) is said to be a totally characteristic type partial

differential equation if it satisfies (C3). In this case we have the following results:

for p = 1, Chen–Tahara [2] and Tahara [10] established the solvability of the

equation when γ(0) ∈ C \ [0,∞), whereas for p ≥ 2, Chen–Luo–Tahara [3] studied

Gevrey type estimates of formal solutions, and Luo–Chen–Zhang [8] showed the

solvability in a sectorial domain by using summability theory.

On the other hand, assuming F (t, x, u, v) is holomorphic with respect to the

variables (x, u, v) but only continuous in t, Baouendi–Goulaouic [1] formulated

existence and uniqueness theorems for some nonlinear partial differential equa-

tions. Their results were then extended by Lope–Roque–Tahara [7] for a wider

class of equations using the concept of weight functions. The equations in [1] and

[7] correspond to the case (C1) (the case of Briot–Bouquet type partial differential

equations).

This paper aims to answer the following problem:

Problem 1.1. Solve the equation (1.1) in the case (C3) (the case of totally charac-

teristic type), where p = 1, under the assumption that F (t, x, u, v) is holomorphic

with respect to the variables (x, u, v) but only continuous in t.

§2. Main result

Let (t, x) ∈ R × C, T0 > 0, R0 > 0 and ρ0 > 0. For any s > 0, we denote by Ds

the open disk {x ∈ C : |x| < s}. We study (1.1) under the following assumptions:

(A1) F (t, x, u, v) is continuous on ∆0 = [0, T0]×DR0
×Dρ0×Dρ0 and holomorphic

in the variables (x, u, v) for any fixed t;

(A2) F (0, x, 0, 0) = 0 on DR0 ;

(A3) Fv(0, x, 0, 0) = xγ(x) with γ(0) 6= 0.
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Set a(t, x) = F (t, x, 0, 0), λ(t, x) = Fu(t, x, 0, 0), b(t) = Fv(t, 0, 0, 0), and c(t, x) =

(Fv(t, x, 0, 0) − Fv(t, 0, 0, 0))/x. Then, using the Taylor expansion of F (t, x, u, v)

with respect to the variables (u, v), (1.1) can be rewritten as

(2.1) t
∂u

∂t
= a(t, x) + λ(t, x)u+ (b(t) + xc(t, x))

∂u

∂x
+R2

(
t, x, u,

∂u

∂x

)
,

where R2(t, x, u, v) is the sum of all the terms in the Taylor expansion whose

degrees with respect to (u, v) are at least 2. Our assumptions imply that a(t, x),

λ(t, x) and c(t, x) are continuous functions on [0, T0] × DR0 and holomorphic in

x for any fixed t, and b(t) is a continuous function on [0, T0]. Moreover, we have

a(0, x) ≡ 0, b(0) = 0, and c(0, x) = γ(x), and hence c(0, 0) 6= 0.

In order to describe the decreasing order of a(t, x) = o(1) (as t → 0) and

b(t) = o(1) (as t→ 0), we introduce a concept of a weight function. We say that a

real-valued function µ(t) is a weight function on (0, T0] if it satisfies the following

conditions:

(i) µ(t) is continuous on (0, T0];

(ii) µ(t) > 0 and increasing on (0, T0];

(iii)
∫ T0

0
(µ(s)/s) ds < +∞.

The first two conditions imply that limt→0 µ(t) = 0, while condition (iii) allows us

to define the function

(2.2) ϕ(t) =

∫ t

0

µ(s)

s
ds, 0 ≤ t ≤ T0.

Examples of such weight functions are tη and 1/(− log t)η+1 for any η > 0 .

We suppose that there is a weight function µ(t) such that

a(t, x) = O(µ(t)) uniformly on DR0 (as t→ 0), and(2.3)

b(t) = O(µ(t)) (as t→ 0).(2.4)

For any r > 0, T > 0 and R > 0, we define the region Wr,R by

Wr,R = {(t, x) : 0 ≤ t ≤ T and |x|+ ϕ(t)/r < R}.

We also define two function spaces on W = Wr,R or [0, T ]×DR:

X0(W ) = {w(t, x) ∈ C0(W ): w is holomorphic in x for any fixed t},
X1(W ) = X0(W ) ∩ C1(W ∩ {t > 0}).

The following is our main result.
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Theorem 2.1 (Main Theorem). Suppose (A1)–(A3), (2.3) and (2.4) hold, and

(2.5) Reλ(0, 0) < 0 and Re c(0, 0) < 0.

Then there exist R > 0, r > 0, M > 0 and T > 0 with Mµ(T ) < ρ0 such that

(2.1) has a unique solution u(t, x) in X1(Wr,R) that satisfies

(2.6) |u(t, x)| ≤Mµ(t) and

∣∣∣∣∂u∂x (t, x)

∣∣∣∣ ≤Mµ(t) on Wr,R.

For simplicity, we set

P = t
∂

∂t
− λ(t, x)− xc(t, x)

∂

∂x

and

Φ[u] = b(t)
∂u

∂x
+R2

(
t, x, u,

∂u

∂x

)
.

So the equation (2.1) may be written as

Pu = a(t, x) + Φ[u].

The remaining part of this paper is organized as follows. In Section 3, we

investigate the equation Pw = g(t, x) on [0, T ]×DR. Next, we examine the same

equation Pw = g(t, x) on Wr,R. Then, in the last section, we solve (2.1) by using

the Banach fixed point theorem as in Walter [11].

§3. On the equation Pw = g on [0, T ]×DR

Let 0 < T < T1 < T0 and 0 < R < R1 < R0. Consider the equation

(3.1) t
∂w

∂t
− λ(t, x)w − xc(t, x)

∂w

∂x
= g(t, x)

on [0, T ]×DR. Since we know that λ(t, x) and c(t, x) belong to X0([0, T0]×DR0
),

we can choose T1 > 0 and R1 > 0 sufficiently small so that

(B1) Reλ(t, x) ≤ −L on [0, T1]×DR1 for some L > 0;

(B2) Re c(t, x) ≤ −δ on [0, T1]×DR1 for some δ ≥ 0.

We admit the case δ = 0 in this section, and so (B2) is weaker than the condition

posed in (2.5). Since 0 < R < R1, it also follows that |λx(t, x)| ≤ Λ on [0, T1]×DR

for some Λ > 0.

The purpose of this section is to show the following:
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Proposition 3.1. Suppose (B1) and (B2) hold. For any given g(t, x) ∈ X0([0, T ]×
DR), the equation (3.1) has a unique solution w(t, x) in X1([0, T ]×DR). Moreover,

if |g(t, x)| ≤ K and |gx(t, x)| ≤ K1 on [0, T ]×DR, then

(3.2) |w(t, x)| ≤ K

L
and

∣∣∣∣∂w∂x (t, x)

∣∣∣∣ ≤ (K1

L
+

ΛK

L2

)
H on [0, T ]×DR,

where H > 0 is a constant independent of g(t, x).

Before proving the above proposition, let us first investigate the integral curves

of the vector field

τ = t
∂

∂t
− xc(t, x)

∂

∂x
.

The integral curve of τ passing through the point (t0, x0) ∈ (0, T1]×DR1
is given

by the solution of the initial value problem

(3.3)

t
dx

dt
= −xc(t, x),

x(t0) = x0.

Lemma 3.2. For any (t0, x0) ∈ (0, T1]×DR1 , the initial value problem (3.3) has

a unique solution x(t) on (0, t0] satisfying |x(t)| ≤ |x0|(t/t0)δ on (0, t0].

Proof. Since c(t, x) satisfies the Lipschitz condition on DR1
, (3.3) has a unique

local solution x(t) on (t1, t0] for some 0 < t1 < t0. Moreover, the solution satisfies

x(t) = x0 exp

[∫ t0

t

c(s, x(s))
ds

s

]
on (t1, t0],

and thus we have

|x(t)| = |x0| exp

[∫ t0

t

Re c(s, x(s))

s
ds

]
≤ |x0| exp

[∫ t0

t

−δ
s
ds

]
= |x0|(t/t0)δ on (t1, t0].

We show that the solution can be continued to (0, t0]. Suppose it can only be

extended to (ε, t0] for some ε > 0. By the above estimate, x(t) ∈ K0 = {x ∈ DR1
:

|x| ≤ |x0|} for any ε < t ≤ t0. As a consequence, since K0 is a compact subset

of DR1
, the solution may be continued to the left of ε (by Theorem 4.1 in [4]), a

contradiction to our original supposition. Therefore, ε = 0 and we have a unique

solution on (0, t0], which is the continuation of the local solution x(t) to (0, t0].

Denote by χ(t; t0, x0) the unique solution of (3.3); χ(t; t0, x0) is regarded as a

function on

Ω1 = {(t, t0, x0) : 0 < t ≤ t0 and (t0, x0) ∈ (0, T1]×DR1}.
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The fact that χ(t; t0, x0) belongs to C1(Ω1) follows from a result concerning the

dependence on initial data of solutions of ordinary differential equations (see The-

orem 7.2 in [4]). Since c(t, x) is holomorphic in x ∈ DR1 , it is easy to see that

χ(t; t0, x0) is holomorphic in x0 ∈ DR1
. Moreover, |χ(t; t0, x0)| ≤ |x0|(t/t0)δ on Ω1.

Set

(3.4) φ(s, t, x) = χ(s; t, x) on Ω1,

where Ω1 = {(s, t, x) : 0 < s ≤ t and (t, x) ∈ (0, T1] × DR1
}. Then φ(s, t, x)

is a C1 function on Ω1 that is holomorphic in x ∈ DR1
for any fixed (s, t), and

|φ(s, t, x)| ≤ |x|(s/t)δ on Ω1. Furthermore, we have the following lemma:

Lemma 3.3. The above φ(s, t, x) is the unique solution of

(3.5)

t
∂φ

∂t
− xc(t, x)

∂φ

∂x
= 0 on Ω1,

φ(t, t, x) = x on (0, T1]×DR1

that is differentiable in s and t, holomorphic in x, and |φ(s, t, x)| ≤ |x|(s/t)δ on Ω1.

Proof. Take any (s, t0, x0) ∈ Ω1 and set ξ0 = χ(s; t0, x0). Consider the solution

χ(t; s, ξ0) of (3.3) with initial point (s, ξ0). Since χ(t; t0, x0) is defined on (0, t0],

χ(t; s, ξ0) can be continued to (0, t0], and we have χ(t; s, ξ0) = χ(t; t0, x0) on (0, t0].

In particular, φ(t0; s, ξ0) = x0.

Let t ∈ (0, t0] and set x = χ(t; t0, x0). Then we also have x = χ(t; s, ξ0). This

means that ξ0 = χ(s; t, x) = φ(s, t, x) and so

ξ0 = φ(s, t, χ(t; s, ξ0)).

Applying t∂/∂t on both sides of this equation and using the fact that χ(t; s, ξ)

satisfies (3.3) gives

0 = t
∂φ

∂t
(s, t, χ(t; s, ξ0)) +

∂φ

∂x
(s, t, χ(t; s, ξ0)) · tdχ

dt
(t; s, ξ0)

= t
∂φ

∂t
(s, t, χ(t; s, ξ0))− χ(t; s, ξ0)c(t, χ(t; s, ξ0))

∂φ

∂x
(s, t, χ(t; s, ξ0))

= t
∂φ

∂t
(s, t, x)− xc(t, x)

∂φ

∂x
(s, t, x).

In particular, the last equation is true for (t, x) = (t0, x0). Since (s, t0, x0) is

arbitrarily chosen from Ω1, we conclude that φ(s, t, x) is a solution to (3.5).

We now proceed to the uniqueness proof. Let ψ(s, t, x) be another solu-

tion of (3.5) defined on Ω1. Our claim is that ψ(s, t0, x0) = φ(s, t0, x0) for any

(s, t0, x0) ∈ Ω1. Let us prove this claim.
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Similar to the arguments above, we set x = χ(t; t0, x0) and ξ0 = χ(s; t0, x0) =

φ(s, t0, x0). Then again we have x = χ(t; s, ξ0). By setting f(t) = ψ(s, t, χ(t; s, ξ0))

on (0, t0] we have f(t0) = ψ(s, t0, x0) and f(s) = ψ(s, s, ξ0) = ξ0. Taking the

derivative of f(t) with respect to t and again using the fact that χ(t; s, ξ0) satisfies

(3.3) yields

f ′(t) =
∂ψ

∂t
(s, t, χ(t; s, ξ0)) +

∂ψ

∂x
(s, t, χ(t; s, ξ0))

dχ

dt
(t; s, ξ0)

=
∂ψ

∂t
(s, t, x)− xc(t, x)

t

∂ψ

∂x
(s, t, x) = 0.

Thus, f(t) is constant, and consequently we have ψ(s, t0, x0) = f(t0) = f(s) =

ξ0 = φ(s, t0, x0).

Let us now prove Proposition 3.1.

Proof of Proposition 3.1. We set

(3.6) w(t, x) =

∫ t

0

exp

[∫ t

s

λ(τ, φ(τ, t, x))
dτ

τ

]
g(s, φ(s, t, x))

ds

s

where φ(s, t, x) is the unique solution of (3.5). Since we are considering the equation

(3.1) where 0 < T < T1 and 0 < R < R1, we may suppose that |(∂φ/∂x)(s, t, x)|
≤ H on Ω = {(s, t, x) : 0 < s ≤ t and (t, x) ∈ (0, T ] ×DR} for some H > 0. We

recall that |λx(t, x)| ≤ Λ on [0, T ]×DR. Then, if |g(t, x)| ≤ K on [0, T ]×DR, we

have

|w(t, x)| ≤
∫ t

0

exp

[∫ t

s

Reλ(τ, φ(τ, t, x))
dτ

τ

]
|g(s, φ(s, t, x))| ds

s

≤
∫ t

0

exp

[∫ t

s

−L dτ
τ

]
K
ds

s
=

∫ t

0

(
s

t

)L
K
ds

s
=
K

L
on [0, T ]×DR.

From (3.6), we get

∂w

∂x
(t, x) =

∫ t

0

exp

[∫ t

s

λ(τ, φ(τ, t, x))
dτ

τ

]
∂g

∂x
(s, φ(s, t, x))

∂φ

∂x
(s, t, x)

ds

s

+

∫ t

0

exp

[∫ t

s

λ(τ, φ(τ, t, x))
dτ

τ

](∫ t

s

∂λ

∂x
(τ, φ(τ, t, x))

∂φ

∂x
(τ, t, x)

dτ

τ

)
× g(s, φ(s, t, x))

ds

s
.
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Therefore, if |gx(t, x)| ≤ K1 on [0, T ]×DR, we have∣∣∣∣∂w∂x (t, x)

∣∣∣∣ ≤ ∫ t

0

(
s

t

)L
K1H

ds

s
+

∫ t

0

(
s

t

)L(∫ t

s

ΛH
dτ

τ

)
K
ds

s
(3.7)

≤ K1H

L
+ ΛHK

∫ t

0

(
s

t

)L
log

(
t

s

)
ds

s

=

(
K1

L
+

ΛK

L2

)
H on [0, T ]×DR.

Here, we have used the fact that
∫ 1

0
xL log(1/x) dx/x = 1/L2 if L > 0.

In a similar way, we can verify that w(t, x) given by the integral in (3.6) is a

well-defined function belonging to X1([0, T ]×DR). A straightforward calculation

also shows that it is a solution to the equation (3.1).

To show the uniqueness of solution, we prove that

(3.8)

(
t
∂

∂t
− λ(t, x)− xc(t, x)

∂

∂x

)
w(t, x) = 0

only when w ≡ 0 in X1([0, T ]×DR).

Suppose w(t, x) ∈ X1([0, T ]×DR) satisfies (3.8). It suffices to show that w ≡ 0

on (0, T ] × DR. Let (t0, x0) ∈ (0, T ] × DR and set w0(t) = w(t, χ(t; t0, x0)) and

λ0(t) = λ(t, χ(t; t0, x0)) on (0, t0]. Then we have w0(t) ∈ C1((0, t0]), w0(t) = O(1)

(as t→ 0), λ0(t) ∈ C0((0, t0]), Reλ0(t) ≤ −L and

t
dw0

dt
(t)− λ0(t)w0(t)

= t
∂w

∂t
(t, χ(t; t0, x0)) +

∂w

∂x
(t, χ(t; t0, x0)) · tdχ

dt
(t; t0, x0)

− λ(t, χ(t; t0, x0))w(t, χ(t; t0, x0))

=

(
t
∂w

∂t
(t, x)− xc(t, x)

∂w

∂x
(t, x)− λ(t, x)w(t, x)

)∣∣∣∣
x=χ(t;t0,x0)

= 0.

This implies that

d

dt

(
exp

[∫ t0

t

λ0(τ)
dτ

τ

]
w0(t)

)
= 0,

and integrating this from t to t0 yields

w(t0)− exp

[∫ t0

t

λ0(τ)
dτ

τ

]
w0(t) = 0.
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Since w0(t0) = w(t0, x0), we have

|w(t0, x0)| ≤ exp

[∫ t0

t

Reλ0(τ)
dτ

τ

]
|w0(t)| ≤ exp

[∫ t0

t

−L dτ
τ

]
|w0(t)|

= (t/t0)L|w0(t)| → 0 as t→ 0,

which shows that w(t0, x0) = 0. Since (t0, x0) is taken arbitrarily from (0, T ]×DR,

we then have w ≡ 0 on (0, T ]×DR.

§4. On the equation Pw = g on Wr,R

Let Λ, H, 0 < T < T1 < T0 and 0 < R < R1 < R0 be as in Section 3. For

simplicity, we assume that 0 < R ≤ 1. In this section, we consider the following

equation, which is the same as (3.1), on Wr,R:

(4.1) t
∂w

∂t
− λ(t, x)w − xc(t, x)

∂w

∂x
= g(t, x).

Let Λ2 and H2 be constants satisfying |(∂/∂x)2λ(t, x)| ≤ Λ2 on [0, T ] × DR and

|(∂/∂x)2φ(s, t, x)| ≤ H2 on Ω. Then we have a result which is analogous to Propo-

sition 3.1.

Proposition 4.1. Suppose (B1) and (B2) hold. For any given g(t, x) ∈ X0(Wr,R),

the equation (4.1) has a unique solution w(t, x) in X1(Wr,R), and it is given by

(4.2) w(t, x) =

∫ t

0

exp

[∫ t

s

λ(τ, φ(τ, t, x))
dτ

τ

]
g(s, φ(s, t, x))

ds

s
,

where φ(s, t, x) is the unique solution of (3.5). Moreover, the following are true on

Wr,R given any nondecreasing, nonnegative functions ψ(t) and ψ1(t):

(a) If |g(t, x)| ≤ Kψ(t), then |w(t, x)| ≤ (K/L)ψ(t).

(b) In addition, if |gx(t, x)| ≤ A1ψ(t) and |gxx(t, x)| ≤ A2ψ(t), then∣∣∣∣∂w∂x (t, x)

∣∣∣∣ ≤ ΛH

L2
Kψ(t) +

H

L
A1ψ(t),(4.3) ∣∣∣∣∂2w∂x2 (t, x)

∣∣∣∣ ≤ (2(ΛH)2

L3
+

Λ2H
2 + ΛH2

L2

)
Kψ(t)(4.4)

+

(
2ΛH2

L2
+
H2

L

)
A1ψ(t) +

H2

L
A2ψ(t).

(c) If |g(t, x)| ≤ Kψ(t) and |gx(t, x)| ≤ K1ψ1(t)µ(t)

(R− |x| − ϕ(t)/r)1/2
, then∣∣∣∣∂w∂x (t, x)

∣∣∣∣ ≤ ΛH

L2
Kψ(t) + 2

√
RHrK1 ψ1(t),(4.5)
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∣∣∣∣ ≤ (2(ΛH)2

L3
+

Λ2H
2 + ΛH2

L2

)
Kψ(t)(4.6)

+

(
4
√
RΛH2

Le
+ 2
√
RH2

)
rK1ψ1(t) +

(3
√

3)H2rK1ψ1(t)

(R− |x| − ϕ(t)/r)1/2
.

Proof. By the same arguments as in Section 3, we can easily verify that the func-

tion w(t, x) defined by (4.2) is the unique solution of (4.1) belonging to X1(Wr,R).

Let us show the estimates in (a)–(c).

Statement (a) follows immediately from (4.2):

|w(t, x)| ≤
∫ t

0

(
s

t

)L
Kψ(s)

ds

s
≤ Kψ(t)

∫ t

0

(
s

t

)L
ds

s
=
K

L
ψ(t) on Wr,R.

Computations similar to those in (3.2) give the first estimate (4.3) in (b).

Similarly, we can obtain (4.4) using the fact that
∫ 1

0
xL(log x)2 dx/x = 2/L3.

The next lemma is essential to estimating some integral expressions that we

encounter in proving (c).

Lemma 4.2. For a weight function µ(t) and ϕ(t) given by (2.2), we have:∫ t

0

µ(s)

(R− |x| − ϕ(s)/r)1/2
ds

s
≤ 2r

√
R,(i) ∫ t

0

µ(s)

(R− |x| − ϕ(s)/r)3/2
ds

s
≤ 2r

(R− |x| − ϕ(t)/r)1/2
.(ii)

Proof. The first inequality is verified as follows:∫ t

0

µ(s)

(R− |x| − ϕ(s)/r)1/2
ds

s
=

∫ t

0

ϕ′(s)

(R− |x| − ϕ(s)/r)1/2
ds

=
[
−2r(R− |x| − ϕ(s)/r)1/2

]t
0

= −2r(R− |x| − ϕ(t)/r)1/2 + 2r(R− |x|)1/2

≤ 2r(R− |x|)1/2 ≤ 2r
√
R.

Similarly, we have∫ t

0

µ(s)

(R− |x| − ϕ(s)/r)3/2
ds

s
=

∫ t

0

ϕ′(s)

(R− |x| − ϕ(s)/r)3/2
ds

=

[
2r

(R− |x| − ϕ(s)/r)1/2

]t
0

=
2r

(R− |x| − ϕ(t)/r)1/2
− 2r

(R− |x|)1/2

≤ 2r

(R− |x| − ϕ(t)/r)1/2
.
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By the preceding lemma and similar arguments to those in (3.2), we establish

the first estimate (4.5) in (c):∣∣∣∣∂w∂x (t, x)

∣∣∣∣ ≤ ∫ t

0

(
s

t

)L
K1ψ1(s)µ(s)

(R− |φ(s, t, x)| − ϕ(s)/r)1/2
·H ds

s

+

∫ t

0

(
s

t

)L(∫ t

s

ΛH
dτ

τ

)
·Kψ(s)

ds

s

≤ K1Hψ1(t)

∫ t

0

µ(s)

(R− |x| − ϕ(s)/r)1/2
ds

s

+ ΛHKψ(t)

∫ t

0

(
s

t

)L
log

(
t

s

)
ds

s

≤ K1Hψ1(t) · 2r
√
R+ (ΛHK/L2)ψ(t).

Finally, to prove (4.6), we recall Nagumo’s lemma which provides a bound for

the derivative of a holomorphic function.

Lemma 4.3. Let f(x) be a holomorphic function on DR. If

|f(x)| ≤ C

(R− |x|)a
on DR

for some C ≥ 0 and a ≥ 0, then∣∣∣∣∂f∂x (x)

∣∣∣∣ ≤ γaC

(R− |x|)a+1
on DR,

where γ0 = 1 and γa = (1 + a)(1 + 1/a)a for a > 0.

For the proof, see [6, Lemma 5.1.3] or [9]. The above lemma gives the following

estimate for the second derivative of g(t, x):∣∣∣∣∂2g∂x2
(t, x)

∣∣∣∣ ≤ (3
√

3/2)K1ψ1(t)µ(t)

(R− |x| − ϕ(t)/r)3/2
on Wr,R.

By using this estimate, Lemma 4.2, and the fact that
∫ 1

0
xL(log x)2 dx/x = 2/L3,

we can verify (4.6) in a way similar to our previous calculations.

§5. Proof of Main Theorem

Consider the equation

(5.1) t
∂u

∂t
− λ(t, x)u− xc(t, x)

∂u

∂x
= a(t, x) + b(t, x)

∂u

∂x
+R2

(
t, x, u,

∂u

∂x

)
.
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Let T1 > 0, R1 > 0, ρ1 > 0 and ∆1 = [0, T1] × DR1
× Dρ1 × Dρ1 . Suppose that

λ(t, x), c(t, x), a(t, x) and b(t, x) are functions belonging to X0([0, T1]×DR1
), and

R2(t, x, u, v) is a continuous function on ∆1 that is holomorphic in (x, u, v) with

Taylor expansion in (u, v) of the form

R2(t, x, u, v) =
∑
i+j≥2

ai,j(t, x)uivj .

In addition to (B1) and (B2), we suppose:

(B3) |a(t, x)| ≤ Aµ(t) on [0, T1]×DR1
for some A ≥ 0;

(B4) |b(t, x)| ≤ Bµ(t) on [0, T1]×DR1
for some B ≥ 0.

For simplicity, we assume again that 0 < R1 ≤ 1.

In this section, we prove the following theorem, stronger than Theorem 2.1.

Theorem 5.1. Suppose (B1)–(B4) hold. Then, for any 0 < R < R1 and 0 <

ρ < ρ1, there exist T > 0, r > 0 and M > 0 with Mµ(T ) ≤ ρ such that the

equation (5.1) has a unique solution u(t, x) in X1(Wr,R) that satisfies

(5.2) |u(t, x)| ≤Mµ(t) and

∣∣∣∣∂u∂x (t, x)

∣∣∣∣ ≤Mµ(t) on Wr,R.

Remark 5.2. Comparing (2.1) with (5.1), we see that the coefficient b(t) in (2.1)

is generalized to b(t, x) in (5.1). Since the case δ = 0 is admitted in (B2), we can

also apply Theorem 5.1 to the case c(t, x) ≡ 0, which is just the equation discussed

in [7].

To prove Theorem 5.1, we use the Banach fixed point theorem as in Wal-

ter [11]. Set

a = a(t, x) and Φ[u] = b(t, x)
∂u

∂x
+R2

(
t, x, u,

∂u

∂x

)
.

Proposition 4.1 tells us that equation (5.1) is equivalent to the integral equation

(5.3) u(t, x) =

∫ t

0

exp

[∫ t

s

λ(τ, φ(τ, t, x))
dτ

τ

]
(a+ Φ[u])(s, φ(s, t, x))

ds

s
.

Therefore, if the operator R defined by

R[u](t, x) =

∫ t

0

exp

[∫ t

s

λ(τ, φ(τ, t, x))
dτ

τ

]
(a+ Φ[u])(s, φ(s, t, x))

ds

s

is a contraction mapping from a suitable function space E (which is a complete

metric space) into itself, we have a unique solution of

(5.4) u = R[u] in E.
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To define E, fix any 0 < R < R1 and 0 < ρ < ρ1. For r > 0 and T > 0,

we denote by X (Wr,R) the set of all functions u(t, x) ∈ X0(Wr,R) satisfying the

following estimates on Wr,R for some C > 0:

|u(t, x)| ≤ Cµ(t),

∣∣∣∣∂u∂x (t, x)

∣∣∣∣ ≤ Cµ(t),∣∣∣∣∂2u∂x2
(t, x)

∣∣∣∣ ≤ Cµ(t)

(R− |x| − ϕ(t)/r)1/2
.

We define a norm ‖u‖X of u ∈X (Wr,R) by

‖u‖X = max{‖u‖0, ‖u‖1, ‖u‖2},

where

‖u‖0 = sup
(t,x)∈Wr,R,t>0

|u(t, x)|
µ(t)

, ‖u‖1 = sup
(t,x)∈Wr,R, t>0

|(∂u/∂x)(t, x)|
µ(t)

,

‖u‖2 = sup
(t,x)∈Wr,R, t>0

(R− |x| − ϕ(t)/r)1/2|(∂2u/∂x2)(t, x)|
µ(t)

.

It is clear that (X (Wr,R), ‖ · ‖X ) is a Banach space.

For M > 0, we set EM = {u ∈ X (Wr,R) : ‖u‖X ≤ M}. This is a closed

subset of X (Wr,R) and so it is a complete metric space.

Proposition 5.3. For any sufficiently large M, we can choose r > 0 and T > 0

so small that Mµ(T ) ≤ ρ and the mapping R : EM → EM is a contraction map.

Let us prove this proposition. The following lemma implies that the mapping

R : EM → EM is well-defined.

Lemma 5.4. Suppose Mµ(T ) ≤ ρ. If u ∈ EM , then the following hold on Wr,R:

|R[u](t, x)| ≤ K0,0µ(t) +K0,1Mµ(t)2 +K0,2M
2µ(t)2,(i) ∣∣∣∣∂R[u]

∂x
(t, x)

∣∣∣∣ ≤ (K1,0µ(t) +K1,1Mµ(t)2 +K1,2M
2µ(t)2)(ii)

+ (K1,3Mµ(t) +K1,4M
2)rµ(t),∣∣∣∣∂2R[u]

∂x2
(t, x)

∣∣∣∣ ≤ (K2,0µ(t) +K2,1Mµ(t)2 +K2,2M
2µ(t)2)(iii)

+ (K2,3M +K2,4M
2)rµ(t) +

(K2,5M +K2,6M
2)rµ(t)

(R− |x| − ϕ(t)/r)1/2
,

where Ki,j > 0 are constants depending only on R, ρ and the estimates of a(t, x),

b(t, x) and R2(t, x, u, v) on ∆ = [0, T1] × DR × Dρ × Dρ. Moreover, the Ki,j are

independent of T > 0, r > 0 and M > 0.
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Proof. Take any u ∈ EM . Then on Wr,R we have

|u(t, x)| ≤Mµ(t),

∣∣∣∣∂u∂x (t, x)

∣∣∣∣ ≤Mµ(t),∣∣∣∣∂2u∂x2
(t, x)

∣∣∣∣ ≤ Mµ(t)

(R− |x| − ϕ(t)/r)1/2
,

and Φ[u] ∈ X0(Wr,R). Set w(t, x) = R[u]. Then w(t, x) ∈ X1(Wr,R) and

t
∂w

∂t
− λ(t, x)w − xc(t, x)

∂w

∂x
= a(t, x) + Φ[u] on Wr,R.

Let w1(t, x), w2(t, x) ∈ X1(Wr,R) be the unique solutions of the equations

t
∂w1

∂t
− λ(t, x)w1 − xc(t, x)

∂w1

∂x
= a(t, x),(5.5)

t
∂w2

∂t
− λ(t, x)w2 − xc(t, x)

∂w2

∂x
= Φ[u],(5.6)

respectively. Then we have w(t, x) = w1(t, x)+w2(t, x), and hence R[u] = w1(t, x)

+ w2(t, x). To estimate the function R[u], we estimate w1(t, x) and w2(t, x) by

applying Proposition 4.1 to the equations (5.5) and (5.6).

By (B3), we have |a(t, x)| ≤ Aµ(t), |ax(t, x)| ≤ A1µ(t) and |axx(t, x)| ≤
A2µ(t) on Wr,R for some constants Aj > 0 (j = 1, 2). On the other hand, we have

|Φ[u](t, x)| ≤ Bµ(t)Mµ(t) +B1(Mµ(t))2 for some B1 > 0. Since

∂Φ[u]

∂x
(t, x) =

∂b

∂x
(t, x)

∂u

∂x
+ b(t, x)

∂2u

∂x2
+
∂R2

∂x
(t, x, u, ∂u/∂x)

+
∂R2

∂u
(t, x, u, ∂u/∂x)

∂u

∂x
+
∂R2

∂v
(t, x, u, ∂u/∂x)

∂2u

∂x2
,

we also have∣∣∣∣∂Φ[u]

∂x
(t, x)

∣∣∣∣ ≤ K1µ(t)Mµ(t) +K2µ(t)
Mµ(t)

(R− |x| − ϕ(t)/r)1/2

+K3(Mµ(t))2 +
K4(Mµ(t))2

(R− |x| − ϕ(t)/r)1/2

≤ (K5M +K6M
2)µ(t)2

(R− |x| − ϕ(t)/r)1/2
on Wr,R

for some constants Kj > 0 (1 ≤ j ≤ 6). Lastly, we apply Proposition 4.1 to obtain

the assertions of this lemma.

Note that since we restrict 0 < R < R1 ≤ 1, we have 1/(R−|x|−ϕ(t)/r)1/2 > 1

on Wr,R.
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Now, we choose M > 0, T > 0 and r > 0 satisfying the system

(5.7)



Mµ(T ) ≤ ρ,
K0,0 + (K0,1M +K0,2M

2)µ(T ) ≤M,

K1,0 + (K1,1M +K1,2M
2)µ(T ) + (K1,3M +K1,4M

2)r ≤M,

K2,0 + (K2,1M +K2,2M
2)µ(T ) + (K2,3M +K2,4M

2)r

+ (K2,5cM +K2,6M
2)r ≤M.

This can be done by first taking M > max{K0,0, K1,0,K2,0}, and then choosing T

and r small enough so that (5.7) holds. These values ensure that on Wr,R we have

|R[u](t, x)| ≤Mµ(t),

∣∣∣∣∂R[u]

∂x
(t, x)

∣∣∣∣ ≤Mµ(t),∣∣∣∣∂2R[u]

∂x2
(t, x)

∣∣∣∣ ≤ Mµ(t)

(R− |x| − ϕ(t)/r)1/2
,

and so R[u] ∈ EM , which implies that R : EM → EM is well-defined.

Next, we show that R : EM → EM is a contraction mapping.

Lemma 5.5. Suppose Mµ(T ) ≤ ρ. If u, v ∈ EM and ‖u − v‖X = C, then the

following hold on Wr,R:

(i) |R[u](t, x)−R[v](t, x)| ≤ (K∗0,1µ(t) +K∗0,2Mµ(t))Cµ(t),

(ii)

∣∣∣∣∂R[u]

∂x
(t, x)− ∂R[v]

∂x
(t, x)

∣∣∣∣
≤ (K∗1,1µ(t) +K∗1,2Mµ(t))Cµ(t) + (K∗1,3 +K∗1,4M)rCµ(t),

(iii)

∣∣∣∣∂2R[u]

∂x2
(t, x)− ∂2R[v]

∂x2
(t, x)

∣∣∣∣
≤ (K∗2,1µ(t) +K∗2,2Mµ(t))Cµ(t) + (K∗2,3 +K∗2,4M)rCµ(t)

+
(K∗2,5 +K∗2,6M)rCµ(t)

(R− |x| − ϕ(t)/r)1/2
,

where K∗i,j > 0 are constants depending only on R, ρ and the estimates of a(t, x),

b(t, x) and R2(t, x, u, v) on ∆ = [0, T1] × DR × Dρ × Dρ. Moreover, the K∗i,j are

independent of T > 0, r > 0 and M > 0.

Proof. Set W (t, x) = R[u] − R[v] and G(t, x) = Φ[u] − Φ[v]. Then W (t, x) ∈
X1(Wr,R), G(t, x) ∈ X0(Wr,R) and

(5.8) t
∂W

∂t
− λ(t, x)W − xc(t, x)

∂W

∂x
= G(t, x) on Wr,R.
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Since

G(t, x) = b(t, x)

(
∂u

∂x
− ∂v

∂x

)
+R2

(
t, x, u,

∂u

∂x

)
−R2

(
t, x, v,

∂v

∂x

)
and by hypothesis, ‖u− v‖X = C, which implies that on Wr,R,

|u(t, x)− v(t, x)| ≤ Cµ(t),

∣∣∣∣∂u∂x (t, x)− ∂v

∂x
(t, x)

∣∣∣∣ ≤ Cµ(t),∣∣∣∣∂2u∂x2
(t, x)− ∂2v

∂x2
(t, x)

∣∣∣∣ ≤ Cµ(t)

(R− |x| − ϕ(t)/r)1/2
,

it follows that |G(t, x)| ≤ (Bµ(t) +B2Mµ(t))Cµ(t) and

|Gx(t, x)| ≤ (B3µ(t) +B4Mµ(t))Cµ(t)

(R− |x| − ϕ(t)/r)1/2
on Wr,R

for some constants Bj > 0 (j = 2, 3, 4). Again, we use Proposition 4.1 to (5.8) to

obtain the desired estimates.

Now, we take a 0 < δ0 < 1. Besides (5.7), we require M , T and r to satisfy

(5.9)


(K∗0,1 +K∗0,2M)µ(T ) ≤ δ0,

(K∗1,1 +K∗1,2M)µ(T ) + (K∗1,3 +K∗1,4M)r ≤ δ0,

(K∗2,1 +K∗2,2M)µ(T ) + (K∗2,3 +K∗2,4M)r + (K∗2,5 +K∗2,6M)r ≤ δ0.

We can guarantee that (5.9) holds by choosing sufficiently small T and r. Conse-

quently, on Wr,R we have

|R[u](t, x)−R[v](t, x)| ≤ δ0Cµ(t),

∣∣∣∣∂R[u]

∂x
(t, x)− ∂R[v]

∂x
(t, x)

∣∣∣∣ ≤ δ0Cµ(t),∣∣∣∣∂2R[u]

∂x2
(t, x)− ∂2R[v]

∂x2
(t, x)

∣∣∣∣ ≤ δ0Cµ(t)

(R− |x| − ϕ(t)/r)1/2
.

Therefore, ‖R[u]−R[v]‖X ≤ δ0‖u− v‖X , which confirms that R : EM → EM is

indeed a contraction mapping. This completes the proof of Proposition 5.3.

Now, let us complete the proof of Theorem 5.1. We have seen in Proposition

5.3 that the mapping R : EM → EM is a contraction map, which means that the

equation (5.4) has a unique solution u(t, x) ∈ X0(Wr,R) satisfying the estimates

in (5.2). Also, by the expression (5.3), we can see that this u(t, x) is in X1(Wr,R).

Since (5.3) solves the equation (5.1), we have obtained a solution u(t, x) of (5.1).

This concludes the existence part of the proof of Theorem 5.1.

To show the uniqueness of solution, we suppose that there is another solution

u2(t, x) in X1(Wr,R) such that |u2(t, x)| ≤Mµ(t) and |(∂u2/∂x)(t, x)| ≤Mµ(t) on
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the set Wr,R. Set w(t, x) = u2(t, x)− u(t, x). Then w(t, x) ∈ X1(Wr,R), and both

w(t, x) and (∂w/∂x)(t, x) are bounded by 2Mµ(t) on Wr,R. Furthermore, w(t, x)

satisfies the linear partial differential equation

(5.10) t
∂w

∂t
− λ(t, x)w − xc(t, x)

∂w

∂x
= a1(t, x)w + b1(t, x)

∂w

∂x

on Wr,R ∩ {t > 0}, where

a1(t, x) =

∫ 1

0

∂R2

∂u

(
t, x, u(t, x) + θw(t, x),

∂u

∂x
(t, x) + θ

∂w

∂x
(t, x)

)
dθ

and

b1(t, x) = b(t, x) +

∫ 1

0

∂R2

∂v

(
t, x, u(t, x) + θw(t, x),

∂u

∂x
(t, x) + θ

∂w

∂x
(t, x)

)
dθ.

Note that a1(t, x), b1(t, x) ∈ X0(Wr,R), and |a1(t, x)| ≤ K1Mµ(t) and |b1(t, x)| ≤
K2Mµ(t) on Wr,R for some constants Ki > 0 (i = 1, 2) depending only on R, ρ

and the estimates of b(t, x) and R2(t, x, u, v) on ∆ = [0, T1]×DR ×Dρ ×Dρ.

Set

Ψ[w] = a1(t, x)w + b1(t, x)
∂w

∂x
.

Then we have

(5.11) w(t, x) =

∫ t

0

exp

[∫ t

s

λ(τ, φ(τ, t, x))
dτ

τ

]
Ψ[w](s, φ(s, t, x))

ds

s
.

We also set α = (K1 + (3
√

3/2)K2)M × 2r and β = 2(K1 +K2)M2. Observe that

α < 1 for sufficiently small r.

The following lemma completes the proof of uniqueness.

Lemma 5.6. If α < 1 then w ≡ 0 on Wr,R.

Proof. Let us show by induction that the following estimate holds for any k =

0, 1, 2, . . . :

(5.12) |Ψ[w](t, x)| ≤ αkβµ(t)2

(R− |x| − ϕ(t)/r)3/2
on Wr,R.

The case k = 0 is clear due to the fact that R < 1 and

|Ψ[w](t, x)| ≤ K1Mµ(t)(2Mµ(t)) +K2Mµ(t)(2Mµ(t))

= 2(K1 +K2)M2µ(t)2 ≤ 2(K1 +K2)M2µ(t)2

(R− |x| − ϕ(t)/r)3/2
on Wr,R.
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Assume now that (5.12) holds for k = n. Then, by (5.11) and Lemma 4.2,

|w(t, x)| ≤
∫ t

0

(
s

t

)L
αnβµ(s)2

(R− |φ(s, t, x)| − ϕ(s)/r)3/2
ds

s
(5.13)

≤ 2rαnβµ(t)

(R− |x| − ϕ(t)/r)1/2
on Wr,R,

and applying Lemma 4.3 gives

(5.14)

∣∣∣∣∂w∂x (t, x)

∣∣∣∣ ≤ (3
√

3/2)2rαnβµ(t)

(R− |x| − ϕ(t)/r)3/2
on Wr,R.

Using the estimates (5.13) and (5.14), we get

|Ψ[w](t, x)| ≤K1Mµ(t) · 2rαnβµ(t)

(R− |x| − ϕ(t)/r)1/2

+K2Mµ(t) · (3
√

3/2)2rαkβµ(t)

(R− |x| − ϕ(t)/r)3/2

≤ (K1 + (3
√

3/2)K2)M · 2r · αnβµ(t)2

(R− |x| − ϕ(t)/r)3/2

=
αn+1βµ(t)2

(R− |x| − ϕ(t)/r)3/2
on Wr,R,

which is the case k = n+ 1. Therefore, (5.12) is true for all k = 0, 1, 2, . . . .

Finally, we obtain w ≡ 0 on Wr,R by letting k approach +∞, since α < 1.
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