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The Kernel of the Reciprocity Map of Simple
Normal Crossing Varieties over Finite Fields

by

Patrick Forré

Abstract

For a smooth and proper variety Y over a finite field k the reciprocity map ρY : CH0(Y ) →
πab
1 (Y ) is injective with dense image. For a proper simple normal crossing variety this is

no longer true in general. In this paper we give a description of the kernel and cokernel
of the reciprocity map in terms of homology groups of a complex filled with descent data
using an algebraic Seifert–van Kampen theorem. Furthermore, we give a new criterion
for the injectivity of the reciprocity map for proper simple normal crossing varieties over
finite fields.
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§1. Introduction

The class field theory of smooth, proper varieties Y over finite fields k was devel-
oped by S. Lang, S. Bloch, K. Kato and S. Saito. To determine the structure of
the abelianized étale fundamental group πab

1 (Y ) classifying the finite abelian étale
coverings of Y , the following reciprocity map was considered.

Definition 1.1 (The reciprocity map). Let Y be a scheme of finite type over Z
and πab

1 (Y ) =
⊕

Y ′∈π0(Y ) π
ab
1 (Y ′) the abelianized étale fundamental group of Y .

Let y ∈ Y be a closed point. Then the residue field κ(y) is a finite field. There-
fore we can consider the image of the Frobenius automorphism ϕy ∈ Gκ(y) =

πab
1 (Spec(κ(y))) in πab

1 (Y ) via the push-forward of the natural map

iy : Spec(κ(y))→ Y.
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This mapping extends linearly to the group of zero-cycles of Y :

ρ′ : Z0(Y ) =
⊕
y∈Y(0)

Z · y → πab
1 (Y ),

∑
y

ny · y 7→
∑
y

ny · (iy)∗(ϕy).

ρ′ is called the reciprocity map of Y .

Theorem 1.2. 1. Let Y be a proper scheme over a finite field k. The reciprocity
map ρ′ factors through rational equivalence to give a map from the Chow group
of zero-cycles (cf. [Ful98, §1.3]):

ρ : CH0(Y )→ πab
1 (Y ),

which is also called the reciprocity map of Y .
2. Let Y be a smooth and proper variety over a finite field k. Then the reciprocity

map ρ : CH0(Y ) → πab
1 (Y ) is injective and the cokernel of ρ is isomorphic to

(Ẑ/Z)π0(Y ), which is a uniquely divisible group. Moreover, we have a commu-
tative diagram of exact sequences

0 // A0(Y ) //
� _

∼ ρ0
����

CH0(Y )
deg //

� _

ρ

��

Zπ0(Y )
� _

incl

��
0 // πgeo

1 (Y ) // πab
1 (Y )

deg // Ẑπ0(Y )

where the restriction ρ0 of the reciprocity map induces an isomorphism of finite
groups between the kernels A0(Y ) and πgeo

1 (Y ) of the degree maps.

Note that the degree maps for connected schemes Y are defined as follows:
deg : πab

1 (Y )→ Ẑ is just the push-forward map πab
1 (Y )→ πab

1 (Spec(k)) composed
with the isomorphism πab

1 (Spec(k)) ∼= Ẑ, sending the Frobenius automorphism
of k to 1. The map deg : CH0(Y ) → Z is given by sending a cycle

∑
i ai · [xi] to∑

i ai · [κ(x) : k], which is well-defined for proper schemes Y over k and coincides in
this case with the proper push-forward map CH0(Y )→ CH0(Spec(k)) (cf. [Ful98,
§1.4]).

Proof. See [Lan56], [Blo81], [KS83], and [Ras95, §5] for a summary. We also men-
tion [Wie06], [Wie07], [JS03], [KS09], [KS10].

In the study of varieties over local fields (cf. e.g. [Sat05], [JS03]) one is con-
fronted with the reciprocity map of simple normal crossing varieties over finite
fields.

Definition 1.3 (Simple normal crossing varieties). Let k be a field and Y an
equidimensional and separated scheme of finite type over k. Then Y is called
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a normal crossing variety over k if Y is everywhere étale locally isomorphic to

Spec(k[T0, . . . , Td]/(T0T1 · · ·Tr)),

with d = dimY and some 0 ≤ r ≤ d.
A normal crossing variety Y is called simple if any irreducible component of

Y is smooth over k.

The main results in this paper concerning the reciprocity map of simple normal
crossing varieties over finite fields are summarized in the following theorem. In the
proof, an algebraic Seifert–van Kampen theorem [Sti06] is used, leading to a more
explicit understanding of the kernel of the reciprocity map, in contrast to [JS03]
using étale homology theory and cohomological Hasse principles. Also here the
characteristic of k poses no problem.

Theorem 1.4. Let Y =
⋃m
i=1 Yi be a proper simple normal crossing variety over

a finite field k with irreducible components Yi ↪→ Y . Let

Y [k] :=
∐

i0<i1<···<ik

Yi0 ×Y Yi1 ×Y · · · ×Y Yik

be the disjoint union of the k-fold intersections, k ≥ 0, and ΓY be the corresponding
dual complex. Consider the complex

πab
1 (Y [•]) : · · · d2−→ πab

1 (Y [1])
d1−→ πab

1 (Y [0])
d0−→ πab

1 (Y )

with dk :=
∑k
j=0(−1)j(δkj )∗.

1. The cokernel and kernel of the reciprocity map

ρY : CH0(Y )→ πab
1 (Y )

are given by

coker(ρY ) ∼= H−1(πab
1 (Y [•]))⊕ (Ẑ/Z)π0(Y ), ker(ρY ) ∼= H0(πab

1 (Y [•])),

where the last group is finite.
2. There is also an exact sequence

H2(ΓY , Ẑ)→ CH0(Y )
ρY−−→ πab

1 (Y )→ (Ẑ/Z)π0(Y ) ⊕H1(ΓY , Ẑ)→ 0.

3. If, furthermore, every component of Y [0] and of Y [1] is geometrically connected
over k and CH0(Y [0]) is torsion-free, then ρY is injective.
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The last point gives a new criterion for the injectivity of the reciprocity map
for simple normal crossing varieties which does not use the vanishing of the second
homology group H2(ΓY , Ẑ) of the dual complex.

The next sections will lead to the proof of the theorem above.

§2. An algebraic Seifert–van Kampen theorem

In this section we will introduce the dual complex of a variety carrying informa-
tion about how the components intersect. Furthermore, we will cite an algebraic
Seifert–van Kampen theorem and compute the abelianized version. The missing
information is then controlled by the first and second homology groups of the dual
complex.

Definition 2.1 (The dual complex). Let (I,<) be a totally ordered set. Let Y =⋃
i∈I Yi be a locally noetherian scheme with closed subschemes Yi ↪→ Y . For k ≥ 0

we let
Y [k] :=

∐
i0<i1<···<ik

Yi0,i1,...,ik

be the disjoint union of

Yi0,i1,...,ik := Yi0 ×Y Yi1 ×Y . . .×Y Yik ,

the k-fold scheme-theoretic intersection of the Yi, and Y [−1] := Y . For instance we
have

Y [0] =
∐
i0∈I

Yi0 and Y [1] =
∐

i0<i1∈I
Yi0 ∩ Yi1 .

For every integer k ≥ 1 there are k + 1 morphisms

δkj : Y [k] → Y [k−1] for j = 0, . . . , k

given by the closed immersions

δkj : Yi0,...,ik ↪→ Yi0,...,îj ,...,ik ,

where the index ij ∈ I is omitted on the right side. For j = 0, . . . , k we get induced
maps

∂kj : π0(Y [k])→ π0(Y [k−1])

on the connected components. Notice that we also have a canonical map h = δ0
0 :

Y [0] → Y = Y [−1] and the corresponding induced maps.
Therefore Γ := (π0(Y [•]), (∂•j )j) is a semi-simplicial complex, called the dual

complex to (Y, (Yi)i∈I , (I,<)). The elements of π0(Y [k]) are called k-simplices.
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The homology groups of the complex

C(Γ, A) : · · · d3−→ A(π0(Y [k])) d2−→ A(π0(Y [1])) d1−→ A(π0(Y [0]))

with dk :=
∑k
j=0(−1)j∂kj will be denoted by Hk(Γ, A) := ker(dk)/im(dk+1). Notice

that A(π0(Y [k])) is placed in degree k.

Theorem 2.2 (Algebraic Seifert–van Kampen Theorem). Let (I,<) be a finite
and totally ordered set and Y =

⋃
v∈I Yv be a locally noetherian and connected

scheme with closed and connected subschemes Yv ↪→ Y . Let h : Y [0] =
∐
v∈I Yv → Y

be the canonical map.
Let s be a geometric point of Y and for every k = 0, 1, 2 and every t ∈ π0(Y [k])

let s(t) be a geometric point of t. Let Γ be the dual complex to (Y, (Yi)i∈I , (I,<)).
Fix a maximal subtree T of Γ and for every boundary map ∂ : t → t′ in Γ≤2 let
γt,t′ : s(t′) Γ(∂)s(t) be a fixed path in the sense of algebraic paths between base
points, i.e. a fixed isomorphism between the corresponding fibre functors. Then
canonically with respect to all these choices we have an isomorphism

π1(Y, s) ∼=
((∗

v∈I
π1(Yv, s(v))

)
∗ π̂1(Γ, T )

)
/H,

where H is the closed normal subgroup generated by the edge and cocycle relations:

edg(e, ge) :=−→e · π1(δ1
0)(ge) · (−→e )−1 · π1(δ1

1)(ge)
−1,

coc(f) := (
−−→
∂2

2f) · α(f)
102(α

(f)
120)−1 · (

−−→
∂2

0f) · α(f)
210(α

(f)
201)−1 · (

−−→
∂2

1f)−1 · α(f)
021(α

(f)
012)−1,

for all parameter values e ∈ Γ1, ge ∈ π1(e, s(e)) and f ∈ Γ2. Here −→e is defined to
be the corresponding topological generators of the profinite group

π̂1(Γ, T ) :=
(∗
e∈Γ1

Ẑ
)
/(
−→
e′ | e′ ∈ T1) ∼= ∗

e∈Γ1\T1

Ẑ.

The map π1(δ1
i ) uses the fixed path γδ1i (e),e. Finally α

(f)
ijk is defined using the

i-th vertex v = vi(f) ∈ Γ0 of f and the edge e = eij(f) ∈ Γ1 with vertices
{vi(f), vj(f)} = {∂1

0(e), ∂1
1(e)}, as

α
(f)
ijk := γvi(f), eij(f) ◦ γeij(f), f ◦ (γvi(f), f )−1 ∈ π1(Yvi , s(vi)).

Proof. This is a special case of [Sti06, Corollary 5.4] noting that closed immersions
are monomorphisms ([Sti06, Definition 4.2]) and using [Sti06, Theorem 5.2(1)] to
see that h—a proper, surjective morphism of finite presentation—is a universal
effective descent morphism for finite étale covers ([Sti06, Definition 5.1]).
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Corollary 2.3 (The abelianized fundamental group). Let the notation be as in
2.2. The abelianized fundamental group of Y is then given by

πab
1 (Y ) =

(
πab

1 (Y [0])⊕ π̂ab
1 (Γ, T )

)
/H,

where

πab
1 (Y [k]) :=

⊕
Z∈π0(Y [k])

πab
1 (Z),

π̂ab
1 (Γ, T ) :=

(⊕
e∈Γ1

Ẑ
)
/(
−→
e′ | e′ ∈ T1) ∼=

⊕
e∈Γ1\T1

Ẑ,

and H is topologically generated by the relations

d1(g) and coc(f) = β(f) + d2(f),

where

d1 : πab
1 (Y [1])→ πab

1 (Y [0]), g 7→ πab
1 (δ1

0)(g)− πab
1 (δ1

1)(g),

d2 :
⊕
f∈Γ2

Ẑ→ π̂ab
1 (Γ, T ),

∑
f

nf · f 7→
∑
f

nf · (
−−→
∂2

0f −
−−→
∂2

1f +
−−→
∂2

2f),

β :
⊕
f∈Γ2

Ẑ→ πab
1 (Y [0]),

∑
f

nf · f 7→
∑
f

nf · (α(f)
102 − α

(f)
120 + α

(f)
210 − α

(f)
201 + α

(f)
021 − α

(f)
012),

coc :
⊕
f∈Γ2

Ẑ→ πab
1 (Y [0])⊕ π̂ab

1 (Γ, T ),
∑
f

nf · f 7→
∑
f

nf ·
(
β(f) + d2(f)

)
,

with all the abelian groups written additively. Furthermore, for an abelian group A
consider the complex

πab
1 (Y [•])⊗Z A : πab

1 (Y [1])⊗Z A
d1−→ πab

1 (Y [0])⊗Z A
d0−→ πab

1 (Y )⊗Z A

with homology groups Hi(π
ab
1 (Y [•]), A). We then have an isomorphism

H1(Γ, A) ∼= H−1(πab
1 (Y [•]), A) := coker(d0),

and a surjection

H2(Γ, A)
β|
� H0(πab

1 (Y [•]), A) := ker(d0)/im(d1).

Proof. The first statement immediately follows from 2.2 by abelianization. For
clarity in the description of the homology groups we suppress the terms ⊗ZA in
every line. Now d0 is the canonical map

d0 : πab
1 (Y [0])→ πab

1 (Y ) =
(
πab

1 (Y [0]) ⊕ π̂ab
1 (Γ, T )

)
/H.
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So we get

H−1(πab
1 (Y [•]), A) = coker(d0)

=
(
πab

1 (Y [0])⊕ π̂ab
1 (Γ, T )

)
/
(
πab

1 (Y [0]) +H
)

=
(
πab

1 (Y [0])⊕ π̂ab
1 (Γ, T )

)
/
(
πab

1 (Y [0])⊕ im(d2)
)

∼= π̂ab
1 (Γ, T ))/im(d2)

= H1(Γ, T ;A) ∼= H1(Γ, A).

The last isomorphism holds because T is a maximal subtree of Γ. Moreover,

H0(πab
1 (Y [•]), A) = ker(d0)/im(d1) =

(
πab

1 (Y [0]) ∩H
)
/im(d1).

Now consider the exact sequence

0→
(
πab

1 (Y [0]) ∩H
)
/im(d1)→ H/im(d1)

ω→
(
πab

1 (Y [0]) +H
)
/πab

1 (Y [0])→ 0.

Because H = 〈im(d1), im(coc)〉 we have a surjection

coc :
⊕
f∈Γ2

Ẑ� H/im(d1).

Further d2 :
⊕

f∈Γ2
Ẑ→ π̂ab

1 (Γ, T ) factors through ω:

d2 :
⊕
f∈Γ2

Ẑ
coc
−� H/im(d1)

ω
�
(
πab

1 (Y [0]) +H
)
/πab

1 (Y [0])
pr2−−→ π̂ab

1 (Γ, T ).

Therefore the restriction of coc to ker(d2), which by definition coincides with the
restriction of β to ker(d2), induces a well-defined and surjective map

β| = coc| : ker(d2)�
(
πab

1 (Y [0]) ∩H
)
/im(d1).

Because T is a maximal subtree of Γ, we have ker(d2) = ker(d2). Moreover

β :
⊕
f∈Γ2

Ẑ→ πab
1 (Y [0]),

∑
f

nf · f 7→
∑
f

nf · (α(f)
102 − α

(f)
120 + α

(f)
210 − α

(f)
201 + α

(f)
021 − α

(f)
012),

vanishes on the image of
d3 :

⊕
Z∈Γ3

Ẑ→
⊕
f∈Γ2

Ẑ

by definition of the α(f)
ijk and alternating signs. Therefore we also get a surjection

H2(Γ, A) = ker(d2)/im(d3)
β|
� H0(πab

1 (Y [•]), A),

which finishes the proof.
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§3. The reciprocity map for simple normal crossing varieties

In this section we will determine the kernel and cokernel of the reciprocity map of
simple normal crossing varieties in terms of homology groups of a complex filled
with descent data. From this description we will deduce a criterion for the injec-
tivity of the reciprocity map without using the vanishing of the second homology
group H2(Γ).

Lemma 3.1. 1. Let f : Y → Spec(k) be a normal scheme which is separated, of
finite type and geometrically connected over a finite field k. The degree map

deg : Z0(Y )→ Z,
∑
y∈Y0

ay · y 7→
∑
y∈Y0

ay · [κ(y) : k],

is then surjective.
2. Let Y =

⋃
v∈I Yv be a connected scheme which is proper over a finite field k

such that Yv are closed normal connected subschemes of Y . Let kv := OYv
(Yv).

The image of the degree map CH0(Y )→ CH0(k) ∼= Z is then given by

im deg = gcd
v∈I

([kv : k]) · Z.

Proof. 1. Consider the commutative diagram

Z0(Y )

deg

��

ρ′ // πab
1 (Y )

f∗
����

Z �
� // Galk

where Galk ∼= Ẑ and f∗ is surjective by [Sza09, Prop. 5.5.4] because Y is geo-
metrically connected. Now let n be the natural number given by nZ = im deg.
By Lang’s theorem (see [Sza09, Thm. 5.8.16], [Mil80, Section VI.12]) ρ′ has dense
image and therefore so does f∗ ◦ ρ′. But nZ is only dense in Ẑ if and only if n = 1.

2. By the Stein factorisation every Yv is geometrically connected over the finite
field kv. Now consider the commutative diagram⊕

v∈I CH0(Yv) // //

⊕v degv
����

CH0(Y )

deg

��⊕
v∈I CH0(kv) // CH0(k)

where⊕v degv is surjective by the first point and the bottom map is componentwise
on Z given by multiplying with the degrees [kv : k] and summing up. So the image
of deg equals the image of the bottom map, which is gcdv∈I([kv : k]) · Z.
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Proposition 3.2. Let Y =
⋃
v∈I Yv be a proper scheme over a finite field k with

closed and connected subschemes Yv ↪→ Y which are smooth over k such that
Yv0 ×Y Yv1 are also smooth over k for all v0, v1 ∈ I. Let n be an arbitrary integer
and consider the complex

πab
1 (Y [•])/n : · · · → πab

1 (Y [1])/n
d1−→ πab

1 (Y [0])/n
d0−→ πab

1 (Y )/n

with dk :=
∑k
j=0(−1)j(δkj )∗. Then the kernel and the cokernel of the reciprocity

map modulo n
ρn : CH0(Y )/n→ πab

1 (Y )/n

are given by the homology groups of πab
1 (Y [•])/n:

ker(ρn) ∼= H0(πab
1 (Y [•])/n), coker(ρn) ∼= H−1(πab

1 (Y [•])/n).

Furthermore, we have an exact sequence of finite abelian groups

H2(Γ,Z/n)→ CH0(Y )/n→ πab
1 (Y )/n→ H1(Γ,Z/n)→ 0,

where Γ is the dual complex to (Y, (Yi)i∈I , (I,<)).

Proof. We have a commutative diagram of complexes

CH0(Y [1])/n
d′1 //

ρ1no
��

CH0(Y [0])/n
d′0 //

ρ0no
��

CH0(Y )/n //

ρn

��

0

πab
1 (Y [1])/n

d1 // πab
1 (Y [0])/n

d0 // πab
1 (Y )/n

where the first row is exact in analogy to [Ful98, Ex. 1.3.1, 1.8.1] and the first two
vertical maps are isomorphisms by 1.2, since Y [0] and Y [1] are smooth and proper
by assumption and (Ẑ/Z)π0(Y [k]) is uniquely divisible. By the isomorphisms ρ0

n

and ρ1
n we have coker(d1) ∼= CH0(Y )/n, and

d0 : coker(d1)→ πab
1 (Y )/n

coincides with ρn. Therefore we get

ker(ρn) ∼= ker(d0) = H0(πab
1 (Y [•])/n),

coker(ρn) = coker(d0) = H−1(πab
1 (Y [•])/n).

The statement now follows from the abelianized Seifert–van Kampen theorem 2.3
with A = Z/n:

H0(πab
1 (Y [•])/n) ∼= H1(Γ,Z/n), H−1(πab

1 (Y [•])/n)� H2(Γ,Z/n).
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Remark 3.3. The proofs of 3.2 and 2.3 show that

ker(ρn) ∼= im
(
β| : ker(d2)→ (πab

1 (Y [0])/n)/im(d1)
)
.

Therefore non-vanishing of β| results in a non-trivial kernel of the reciprocity map
modulo n.

If we could choose the geometric points of 2.2 such that the paths γt,t′ generate
trivial α(f)

ijk for all parameters, then we get a vanishing β| and therefore a trivial
kernel of the reciprocity map modulo n for every integer n.

Notation 3.4. For an abelian group A and a set L of primes let N(L) be the
monoid of all natural numbers which have prime divisors only in L. We define AL
to be the L-completion

AL := lim←−
n∈N(L)

A/n,

and Â to be the Ẑ-completion

Â := lim←−
n∈N

A/n.

Theorem 3.5 (The reciprocity map and its L-completion). Let L be a set of
prime numbers and let Y =

⋃
v∈I Yv be a proper scheme over a finite field k with a

finite number of closed and connected subschemes Yv ↪→ Y which are smooth over
k such that Yv0 ×Y Yv1 are also smooth over k for all v0, v1 ∈ I. Let Γ be the dual
complex to (Y, (Yi)i∈I , (I,<)). Consider the complex

πab
1 (Y [•])L : · · · d2−→ πab

1 (Y [1])L
d1−→ πab

1 (Y [0])L
d0−→ πab

1 (Y )L

with dk :=
∑k
j=0(−1)j(δkj )∗ and the reciprocity maps

ρ : CH0(Y )→ πab
1 (Y ), ρ0 : A0(Y )→ πgeo

1 (Y ),

ρL : CH0(Y )L → πab
1 (Y )L, ρ̂ : ˆCH0(Y )→ ˆπab

1 (Y ) = πab
1 (Y ),

where A0(Y ) and πgeo
1 (Y ) are the kernels of the corresponding degree maps.

1. Then the kernel of ρL is a finite abelian group and a factor group of H2(Γ,ZL),
and satisfies

ker(ρL)∼= H0(πab
1 (Y [•])L).

The cokernel of ρL satisfies

coker(ρL) ∼= H−1(πab
1 (Y [•])L) ∼= H1(Γ,ZL).

Therefore, we have an exact sequence of finitely generated ZL-modules:

H2(Γ,ZL)→ CH0(Y )L
ρL−→ πab

1 (Y )L → H1(Γ,ZL)→ 0.
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2. For every set L of primes with #A0(Y ) ∈ N(L) we have

ker(ρL) = ker(ρ0) = ker(ρ) = ker(ρ̂) ∼= H0(πab
1 (Y [•])).

3. The cokernels of ρ and ρ̂ satisfy

coker(ρ̂) ∼= H−1(πab
1 (Y [•])) ∼= H1(Γ, Ẑ), coker(ρ) ∼= (Ẑ/Z)π0(Y ) ⊕H1(Γ, Ẑ).

Therefore, we have an exact sequence of abelian groups

H2(Γ, Ẑ)→ CH0(Y )
ρ−→ πab

1 (Y )→ (Ẑ/Z)π0(Y ) ⊕H1(Γ, Ẑ)→ 0.

Proof. For the L-completion we have the analogous results from 3.2 by taking the
inverse limit with the additional information that for a finitely generated abelian
group A we have AL = A⊗Z ZL, so that the universal coefficient theorem

0→ Hi(Γ,Z)⊗Z ZL → Hi(Γ,ZL)→ TorZ1 (Hi−1(Γ,Z),ZL)→ 0

gives that Hi(Γ,ZL) = Hi(Γ,Z)L, because ZL is torsion-free and therefore we get
TorZ1 (Hi−1(Γ,Z),ZL) = 0. ker(ρL) is finite because it lies in the kernel of the degree
map (see diagram below), which is finite (cf. [Blo81, Thm. 4.2] and [KS86, Thm.
6.1]). With 3.1 we have the commutative and exact diagram

0 // ker(ρ0)
� _

��

∼ // ker(ρ)
� _

��

// 0

��

Zπ0(Y )
� _

incl

��
0 // A0(Y ) //

ρ0

��

CH0(Y )
deg //

ρ

��

im deg� _

��

//
' �

55

0 Ẑπ0(Y )

0 // πgeo
1 (Y )

����

// πab
1 (Y )

����

deg′ // im deg′ //
' �

44

����

0

0 // coker(ρ0) // coker(ρ) //⊕
W∈π0(Y ) Ẑ/mWZ // 0

where mW := gcdYv⊆W ([kv : kW ]) and kv := OYv
(Yv) and kW := OW (W ).

Taking the Ẑ-completion of this diagram, we see that the two middle hori-
zontal lines stay exact and that ker(ρ0) ∼= ker(ρ̂). Note that A0(Y ) and πgeo

1 (Y )

are profinite groups and do not change under Ẑ-completion, i.e. we have ρ̂0 = ρ0.
Comparing with the original bottom line sequence we get a commutative diagram
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of exact sequences

0

��

// ker(f)
� _

��

// ker(g)
� _

��

//
� _

��

0

0 // coker(ρ0) // coker(ρ)

f

��

//⊕
W∈π0(Y ) Ẑ/mWZ //

g
����

0

0 // coker(ρ0) // coker(ρ̂) //⊕
W∈π0(Y ) Ẑ/mW Ẑ // 0

from which it follows that f is surjective, and ker(f) ∼= ker(g) ∼= (Ẑ/Z)π0(Y ), which
is a divisible group. We therefore get an isomorphism

coker(ρ) ∼= (Ẑ/Z)π0(Y ) ⊕ coker(ρ̂).

Now let m ∈ N(L) be an integer with m ·A0(Y ) = 0 and m ·πgeo
1 (Y )L-tors = 0,

which exists by assumption and since πgeo
1 (Y ) is a finitely generated abelian pro-

finite group. Then ρ0 factors as

ρ0 : A0(Y )→ πgeo
1 (Y )L-tors ↪→ πgeo

1 (Y ).

Since πgeo
1 (Y )/πgeo

1 (Y )L-tors is L-torsion-free and m ∈ N(L) we get an injection

πgeo
1 (Y )L-tors/m ↪→ πgeo

1 (Y )/m,

and therefore a factorisation modulo m:

ρ0,m : A0(Y )/m→ πgeo
1 (Y )L-tors/m ↪→ πgeo

1 (Y )/m.

Because A0(Y )/m = A0(Y ) and πgeo
1 (Y )L-tors/m = πgeo

1 (Y )L-tors we have

ker(ρ0,m) = ker(ρ0) = ker(ρ).

Now taking the limit over N(L) shows

ker(ρL) = ker(ρ0) = ker(ρ)

for such sets L and also for the set of all prime numbers, which gives the results
for ρ̂.

Corollary 3.6. Let the setting be as in 3.5. Furthermore, assume that all compo-
nents of Y , Y [1] and Y [0] are geometrically connected over k and Y [0] consists of
“geometrically simply connected” components, i.e.

πgeo
1 (Y [0]) := ker

(
πab

1 (Y [0])
deg−−→ Gal

π0(Y [0])
k

∼= Ẑπ0(Y [0])
)
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vanishes. (Note that by 1.2 this assumption is equivalent to saying that CH0(Y [0])

is torsion-free.) The kernel of the reciprocity map then vanishes and also modulo
n for every integer n.

Proof. We have a commutative diagram of complexes

πgeo
1 (Y [1]) //
� _

��

πgeo
1 (Y [0]) //
� _

��

πgeo
1 (Y )
� _

��
πab

1 (Y [1]) //

deg

��

πab
1 (Y [0]) //

deg

��

πab
1 (Y )

deg

��
Gal

π0(Y [1])
k

α // Gal
π0(Y [0])
k

// Gal
π0(Y )
k

By geometrical connectedness the degree maps are surjective. Therefore we have
a short exact sequence of complexes

0→ πgeo
1 (Y [•])→ πab

1 (Y [•])→ Gal
π0(Y [•])
k → 0.

And because Galk ∼= Ẑ is torsion-free, we get short exact sequences of complexes
for every integer n:

0→ πgeo
1 (Y [•])/n→ πab

1 (Y [•])/n→ (Z/n)π0(Y [•]) → 0.

From the long exact sequence follows the exact sequence

H0(πgeo
1 (Y [•])/n)→ H0(πab

1 (Y [•])/n)→ H0((Z/n)π0(Y [•])),

where the first term vanishes by assumption. For the last term we mention that
(cf. [Liu02, §2.4, Ex. 4.4])

coker(α) ∼= H0(Γ, Ẑ) ∼= Ẑπ0(Γ) ∼→ Ẑπ0(Y ).

The isomorphism above also holds with Z/n-coefficients. Hence H0((Z/n)π0(Y [•]))

= 0. So H0(πab
1 (Y [•])/n) vanishes. By 3.2 the last term is isomorphic to ker(ρn).

So the claim follows. The same way one shows that ker(ρ) = 0.

§4. Examples

Here we will give some examples of commonly used varieties and make some essen-
tial observations about the interaction of H2(ΓY ) with the kernel of the reciprocity
map and their torsion parts with CH0(Y ).
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Example 4.1. Let k be a finite field and Y = V+(T0 · T1 · T2 · T3) ⊆ P3
k =

Proj(k[T0, . . . , T3]) be the surface of the projective tetrahedron. Then the reciprocity
map

ρ : CH0(Y )→ πab
1 (Y )

has trivial kernel and so also do the reciprocity maps modulo n for every integer n.
But

H2(ΓY ,Z/n) ∼= Z/n.

So H2(ΓY ,Z/n) surjects onto ker(ρn), but e.g. does not inject into CH0(Y )/n.

Proof. The calculation of H2(ΓY ,Z/n) is clear. The rest follows from 3.6 and the
fact that π1(Pmk , xi) ∼= Galk, i.e. Pmk is “geometrically simply connected”. Note that
every intersection of irreducible components is isomorphic to a Pmk .

This example can be generalized to the following:

Lemma 4.2. Let k be a field and let i : W ↪→ Z be a closed immersion between
proper smooth geometrically connected k-varieties such that d := dimZ ≥ 3, and
the complement U = Z \W is affine. Further assume one of the following proper-
ties:

• The natural map π1(Z, z) → Galk has a section for a geometric point z on Z

(which is the case if Z has a k-rational point).
• The cohomology group H2(Galk,Q/Z) vanishes.

Then the push-forward map i∗ : πab
1 (W )→ πab

1 (Z) is an isomorphism.

Proof. For a separably closed field k this is due to [Sat05]. The proof there uses
Poincaré duality [Mil80, VI.11.1], the affine Lefschetz theorem [Mil80, VI.7.2] and
the assumption dim ≥ 3 to show that Hi

c(U,Q/Z)[`] vanishes for i = 1, 2 and
` 6= p = char(k). For ` = p one needs duality results from [JSS09, Thm. 1.6, 1.7]
(cf. [Mos99], [Mil86, §1]), and the corresponding vanishing results from [Suw95, 2.1]
for the cohomology of the logarithmic part of de Rham–Witt sheaves (cf. [Ill79]).
For an arbitrary field k, one base changes with a separable closure k of k and uses
the homotopy exact sequence from [Gro71, IX, Thm. 6.1] to get a commutative
diagram of exact sequences

0 // π1(W ) //

��

π1(W ) //

��

Galk // 0

0 // π1(Z) // π1(Z) // Galk //rr
0
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suppressing the geometric points. This induces a commutative diagram of exact
sequences

πab
1 (W )Galk

//

o
��

πab
1 (W ) //

��

Galab
k

// 0

0 // πab
1 (Z)Galk

// πab
1 (Z) // Galab

k
//rr
0

where the injectivity on the left at the bottom is induced by the section given by
assumption or via the Pontryagin dual of the Hochschild–Serre 4-term sequence
(with G = Galk for brevity)

0→ H1(G,Q/Z)→ H1(Z,Q/Z)→ H1(Z,Q/Z)G → H2(G,Q/Z) = 0.

With the previous result over separably closed fields and the snake lemma one gets
the claim.

Example 4.3. Let k be a finite field and Pd+1
k be the projective space. Let

f1, . . . , fn be homogeneous irreducible polynomials defining smooth and geomet-
rically connected hypersurfaces in Pd+1

k such that V+(fi) and V+(fj) intersect
smoothly and every connected component of V+(fi, fj) is geometrically connected
(e.g. contains a k-rational point). Then the reciprocity map ρY is injective for
Y := V+(f1 · · · fn) ↪→ Pd+1

k .

Proof. If d < 2, then Y is a union of points or curves, so that H2(ΓY ) = 0. For
d ≥ 2 we use 4.2 together with πab

1 (Pd+1
k ) = Galab

k and refer to 3.6.

Note that this example can be used to construct a huge H2(ΓY ) and never-
theless a vanishing kernel of the reciprocity map.

Example 4.4 (cf. [MSA99, Example 4.1], [Sug09, Example 3.2]). Let k be a fi-
nite field and n > 1 an integer such that gcd(n, 6 char(k)) = 1 and k contains
a primitive n-th root of unity ζ. Let P3

k = Proj(k[T0, T1, T2, T3]) be the projective
space and

V := V+(Tn0 + Tn1 + Tn2 + Tn3 ) ↪→ P3
k

a Fermat surface and consider the free action on V given by

τ : (T0 : T1 : T2 : T3) 7→ (T0 : ζT1 : ζ2T2 : ζ3T3).

Then X := V/ 〈τ〉 is a smooth and projective surface. Let

L = V+(T0 + T1, T2 + T3) and L′ = V+(T0 + T1, T2 + ζT3)
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be two lines on V and C, C ′ be their images in X. Then D := C ∪C ′ is a simple
normal crossing divisor on X, and C and C ′ meet in two k-rational points. Set

Y := (X ×k O) ∪ (X ×k∞) ∪ (D ×k P1
k) ⊆ X ×k P1

k,

where O = (0 : 1) and ∞ = (1 : 0) are rational points on P1
k. Then Y is a simple

normal crossing surface in X×kP1
k which is projective and geometrically connected

over k, and the reciprocity map

ρY : CH0(Y )→ πab
1 (Y )

has ker(ρY ) ∼= Z/n. Moreover, ker(ρY⊗F ) ∼= Z/n for every finite field exten-
sion F |k.

Now let C ∩ C ′ = {c1, c2} and let ΓY be the dual complex to Y associated to
a numbering of the irreducible components. Then

H0(ΓY ,Z) = Z, H1(ΓY ,Z) = 0, H2(ΓY ,Z)∼= Z,

and therefore for every integer m,

H0(ΓY ,Z/m) = Z/m, H1(ΓY ,Z/m) = 0, H2(ΓY ,Z/m)∼= Z/m.

Proof. For the first statements see [Sug09, Example 3.2]. For the homology groups
we mention the following: Y , Y [0] resp., has four irreducible components:

Y1 = X ×k O, Y2 = C ×k P1
k, Y3 = C ′ ×k P1

k, Y4 = X ×k∞.

There are six connected components in Y [1]:

Y12 = Y1 ∩ Y2 = C ×k O, Y13 = Y1 ∩ Y3 = C ′ ×k O,
Y 1

23 in Y2 ∩ Y3 : c1 ×k P1
k, Y 2

23 in Y2 ∩ Y3 : c2 ×k P1
k,

Y24 = Y2 ∩ Y4 = C ×k∞, Y34 = Y3 ∩ Y4 = C ′ ×k∞.

And there are four connected components in Y [2]:

Y 1
123 in Y1 ∩ Y2 ∩ Y3 : c1 ×k O, Y 1

234 in Y2 ∩ Y3 ∩ Y4 : c1 ×k∞,
Y 2

123 in Y1 ∩ Y2 ∩ Y3 : c2 ×k O, Y 2
234 in Y2 ∩ Y3 ∩ Y4 : c2 ×k∞.

The homology groups Hi(ΓY ,Z) can then be computed combinatorially. And the
homology groups with coefficients in Z/m can be computed from the homology
groups with coefficients in Z by the universal coefficient theorem, observing that
all Hi(ΓY ,Z) are torsion-free.

4.4 shows that the groups H2(ΓY ,Z) and H2(ΓY , Ẑ) are torsion-free, but the
reciprocity map and the reciprocity map modulo n have kernel Z/n. Therefore the
kernel is not given by the torsion part of H2(ΓY ,Z) or H2(ΓY , Ẑ).
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