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Some Inequalities of Kato Type for Sequences of
Operators in Hilbert Spaces

by

S. S. DRAGOMIR

Abstract

By the use of the celebrated Kato inequality we obtain some new inequalities for n-
tuples of bounded linear operators on a complex Hilbert space H. Natural applications
for functions defined by power series of normal operators as well as different inequalities
concerning the Kuclidean norm, the Euclidean radius, the s-1-norms and the s-1-radius
of an n-tuple of operators are given as well.
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§1. Introduction

We denote by B(H) the Banach algebra of all bounded linear operators on a
complex Hilbert space (H; (-, ).

If P is a positive selfadjoint operator on H, i.e. (Pz,z) > 0 for any x € H,
then the following inequality is a generalization of the Schwarz inequality in H:

(L.1) (P, y)|* < (Px,z)(Py,y)

for any z,y € H.
The following inequality is of interest as well (see [12, p. 221]).
Let P be a positive selfadjoint operator on H. Then

(1.2) 1Pz|* < ||PI|(P, z)

for any z € H.
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The “square root” of a positive bounded selfadjoint operator on H can be
defined as follows (see for instance [12, p. 240]): If the operator A € B(H) is
selfadjoint and positive, then there exists a unique positive selfadjoint operator
B:=+/A € B(H) such that B> = A. If A is invertible, then so is B.

If A € B(H), then the operator A*A is selfadjoint and positive. Define the
“absolute value” operator by |A| := v A*A.

In 1952, Kato [13] proved the following celebrated generalization of the
Schwarz inequality for any bounded linear operator T on H:

(1.3) (T, y)[* < ((T*T)x, 2)(TT*)' "y, y)

for any z,y € H and « € [0, 1]. Utilizing the modulus notation introduced above,
we can write (1.3) as follows:

(1.4) (T, y) P < (TP, 2) (| TPy, y)

for any z,y € H and « € [0,1].
It is useful to observe that, if T'= N, a normal operator, i.e., NN* = N*N|
then the inequality (1.4) can be written as

(1.5) (N, )| <INz, 2)(|N]P0 Dy, y),
and in particular, for selfadjoint operators A we can state it as
(1.6) [(Az,y)| < [[JA[*2| [|[|A]'~y]]

for any z,y € H and « € [0,1].
If T = U, a unitary operator, i.e., UU* = U*U = 1p, then (1.4) becomes

Uz, y)| < [l]llyl

for any x,y € H, which provides a natural generalization for the Schwarz inequality
in H.

It is natural to consider symmetric powers in the inequalities above: if we
choose & = 1/2 in (1.4)—(1.6) then we get, for any =,y € H,

(1.7) (T, y)|* < (|T|w, 2){|T" ]y, ),
(1.8) [Nz, ) < (IN|z, 2)(|Nly,y),
(1.9) [(Az, )| < [|IA] 22| |[|A]*y]]
respectively.

It is also worth observing that, if we take the supremum over y € H with
lyll =1 in (1.4) then we get

(1.10) |Tz|® < | T|PC=(|T P, z)
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for any x € H, or equivalently
(1.11) | Tl < ||| 7]~

for any z € H.
If we take o = 1/2 in (1.10), then we get

(1.12) IT|* < | TI(|T ), )

for any x € H, which in the particular case of T = P, a positive operator, yields
(1.2).

For various interesting generalizations, extensions and related results, see [2]—
[11], [14]-][20] and [23].

In this paper we pursue a different path. By the use of Kato’s inequality (1.4)
and by utilizing only elementary techniques and tools such as the discrete Holder
and Cauchy—Bunyakovsky—Schwarz inequalities we provide some new inequalities
for n-tuples of bounded linear operators on a complex Hilbert space H. Natural
applications for functions defined by power series of normal operators as well as
various inequalities concerning the Euclidean norm, the Euclidean radius, the s-
1-norms and the s-1-radius of an n-tuple of operators are given as well.

82. Vector inequalities
The following vector inequality holds:

Theorem 1. Let (Ty,...,T,) € B(H) x --- x B(H) =: B™(H) be an n-tuple of
bounded linear operators on the Hilbert space (H;(-,-)) and (p1,...,pn) € RY"
n-tuple of nonnegative weights, not all zero. Then

(2.1) ij (Tyz,y)|* < <ZPJIT| x w> <Zn:plef|2y,y>1ﬂ
j=1

for any x,y € H with ||z|| = ||y]| =1 and a € [0,1].

Proof. We must prove the inequalities only in the cases « € (0, 1), since the cases

a =0 or a =1 follow directly from the corresponding cases of Kato’s inequality.
Utilizing Kato’s inequality for the operator T}, j € {1,...,n}, we have

(2.2) ij (T, )] '<|Tj|2“x,év><|Tf|2(1_“)y,y>

M: i M:

<|T]|2$7 x>a<|Tf |2y7 y>1—oz

<.
Il
—
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for any z,y € H with ||z|| = ||y|| = 1, where for the last inequality we have used
the Holder-McCarthy inequality (P"z,z) < (Px,z)" that holds for any positive
operator P and any power 7 € (0,1).

Now, making use of the weighted discrete Holder inequality

ijajbj < (ij ) (ZPJ J) ;o Dpg>1, 1—1)4— é =1,
j =1

where (ai,...,an), (b1,...,by,) € R%, and choosing a; = (|T}|*z,z)*, b; =
(T3 Py, )12, p = 1/ and g = 1/(1 — a), we get

(23) Y pi{ITy P, @) (T Py, )

n ar -«
< {3 mlm e,y LY il Py gt e}
=1 =1
n @ n 1—
=Y pmlea ) {3 w017 2.0}
j=1 j=1
n a -«
= (O mimiPaa) (3 pilTy Py.y)
j=1 j=1
for any x,y € H with ||z| = ||y|| = 1.
From (2.2) and (2.3) we deduce the desired inequality (2.1). O

Remark 1. For y = x the inequality (2.1) becomes the following simpler result
that is useful for deriving numerical radius inequalities:

(2.4) ij [Tz, z)|* < <z_:pj|T| x 33> <ij|T*\2x x> B
<Z [T ]2 + 1—a)|T;|2}x,x>

for any x € H with ||z| = 1.

Let (Ny,...,N,) € B™(H) be an n-tuple of normal operators on the Hilbert
space (H;(-,-)). Then Theorem 1 yields the following result that can be utilized
to obtain various inequalities for functions of normal operators defined by power
series:

(25) pr (N2, )2 < <ij|N| x x> <ipj|le2y,y>1

for any x,y € H with ||z|| = [|y|| = 1, a € [0,1] and (p1,...,p,) € RY".
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In particular, (2.5) implies the following inequality for normal operators:

(2.6) Zp] (Njz,z)|* < <ZpJ|N| xm>

for any « € H with ||z| = 1.

The following result provides upper bounds for the sum 2?21 p;|(Tjx,y)| and
has important consequences in refining the fundamental triangle inequality for the
operator norm.

Theorem 2. Under the assumptions of Theorem 1 we have

n n 12 1 2 .21 1/2
@D YplGewl < (Y pinPea) (Y pIT P yy)
j=1 j=1 j=1

for any x,y € H.

Proof. From Kato’s inequality for T}, j € {1,...,n}, we have

(2.8) Y pil eyl < p (TP, ) V(|7 Py, )2
j=1 j=1

for any z,y € H.
Now, making use of the weighted discrete Cauchy—Bunyakovsky—Schwarz in-

equality
n 1/2 1/2
> pjazb; < (ZPJ a) (Zp] J)
j=1 j=1
where (a1,...,an), (b1,...,b,) € R, and choosing a; = (|T;|**z, z)'/? and b; =

(T [20=2y, )12, we get

(2.9) D pilIT P, ) AT POy, )t

< {ij |T |2ax x) 1/2 } {ij |T*|2(1 a) >1/2} } 1/2
(St} (S

n 1/2 ;. (1 1/2
= <ij|Tj|2°‘fU7x> <ij\Tj 20 a)y7y>
j=1 j=1

for any z,y € H. O
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Remark 2. One of possible vector-valued extensions of (2.7) is as follows:

@10)  YplTea < (N pinw) (3 p 10 e )
j=1 j=1 i=1

j=

<Z [IT|2°‘+IT*2“ " }H>

for any = € H.

Remark 3. The case of symmetric powers in (2.7), when o = 1/2, is of interest
since it yields the simpler result

n n 1/2 , 1/2
@11) Y pilTanl < O piTle ) (3wt ly)
j=1 j=1 j=1

for any z,y € H.
In particular, from (2.10) we derive

(2.12) Zp]KT]x,xH < <ij\Tj|x,x> <ij|Tj*|x,x>1/2
j=1 j=1 j=1
S<Z LT, )

for any = € H.

Let (Ny,...,N,) € B™(H) be an n-tuple of normal operators. Then from

Theorem 2 we have
n

n n 1/2 1/2
(2.13) > pil{Nz,y)| < <ij\Nj|2%’$> <ij|Nj|2(1_a)y7y>
j=1 j=1

j=1
for any z,y € H. In particular,

(2.14) ij (N2, z)| < <ij\zv| x a;> /2<Zn:pj|Nj|2(1—a>x7x>1/2
j=1 j=1
<Z [|Nj|2a +|2Nj2(1—“)}x7x>

for any = € H.

83. Functional inequalities

For any power series f(z) = > ", an2™ the power series fa(z) := >~ |a,|z™ has
the same radius of convergence. Obviously if all coefficients a,, > 0, then f4 = f.
For more information on this transform, see also [22, p. 246].
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For example, if

- T *€D01)
n=1
0o _1)»
g(z) = Z ((273' 2" =cosz, z€C;
(3.1) o 1y
h(z) = Z — 22" —sinz,  2€C;
— (2n+1)!
- 1
= —1)"" = D(0,1
1) = SV = =€ DO,
then
— 1
fA(z):Zﬁz”—lnl_ ,  2€D(0,1);
n=1
= 1 2n
ga(z) = Z (2n)'z =coshz, z¢€C;
(3.2) Y )
ha(z) = Z m?ﬂ"“ =sinhz, 2z¢€C;

n=0
lA(Z):iZnZL, z € D(0,1).
= 1—-=2
The following result is a functional generalization of Kato’s inequality (1.5) for
normal operators.

Theorem 3. Let f(z) =) " anz" be a function defined by a power series with
real coefficients and convergent on the open disk D(0,R) := {z € C : |z| < R},
R > 0. If N is a normal operator on the Hilbert space H and for some « € (0,1)
we have | N||?*,||N|>?1=®) < R, then

(3-3) [N, )| < (Fa(NPYa,2) 2 (Fa(INPO )y, )2

for any x,y € H.
In particular, if |N|| < R, then

(34) [Nz, y)| < (fa(NDz,2) 2 (fa(| Ny, )2
for any x,y € H.
Proof. If N is a normal operator, then for any j € N we have

INY|* = (N*N)? = |[N|*.
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Now, utilizing the inequality (2.13) we can write

(35)  [(XaNizy)| <3 lasl (N2, )]
j=0 j=0
< <§n:|a ||V Pz, x> <zn:|a | |NT PO y7y>1/2

7=0 7=0

n 1/2 ;. ™ 1/2
= (D lasl NV ) (3 la NPy y)

§=0 §=0

for any z,y € H and n € N.

Since ||N||?, |IN|>~*) < R, it follows that the series > 5= lasl(IN[>*)7 and
Yo la;|(|N|2(1=))J are absolutely convergent in B(H), and by taking the limit
as n — oo in (3.5) we deduce the desired result (3.3). O

Remark 4. Assume that f, R, N and « are as in Theorem 3. If we take the
supremum in (3.3) over y € H with ||y|| = 1, then we get

(3.6) LF (V)| < (Fa(INPP*)z, )2 fa(IN P12

for any z € H, which yields the operator norm inequality

(3.7) LF V< FAUN PN fa(INPE=) |12,
If we take y = x in (3.3), then we get

(3-8) [(F(N)z, )] < (Fa(INPO)z,2) 2 Fa(INPO ), )12

< ([t §A<N|2<l-a>>]m,m>

for any € H. This implies the following inequalities for the numerical radius:

IFA(NPM2] Fa (N[O |25
(3.9) w(f(N)) < ‘ FA(NZ) 4 fa(IN[PO-) H

2

Making use of the examples in (3.1) and (3.2) we get the following vector
inequalities, for any z,y € H:
[{In(ly +N) 'z, y)l
< (In(lg = NPz, 2) 2 (In(la — NP "y, )2 IN] < 1
(L +N) 2, y)| < (L = INPO) T a, 2) 2 (L = INP) T hyo) 2, N < 15
sin < (sinh(|N[?*)z, )2 (sinh(|N |21~ 12 for any N:
[(sin(N)z,y)| < ( ; Y,y y N;
|(cos(N)z, y)| < (cosh(|N|>*)z, z)*/?(cosh(|N|*1 =)y, )}/ for any N.
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We also have, for instance, the following norm inequalities:

Isin(AV)]| < [lsinh(|N2*)[1/2]jsinh(|N]2C=0) [/,
Jeos(N)]| < fleosh(IN)]|*/2 cosh (|2 /2

for any normal operator N, and
(L + N) 7 < (L — [N V2(In(ly — [N 712

for N with | N < 1.
If we utilize the following power series representations with nonnegative coef-

ficients:
1 14z e
=1 = " D(0,1);
2 n(l—z) ;271—12 » 2€D0.1);
- S T(n+1/2)
1 _ 2n+1 .
sin” " (z) = Z — 2 ,  2z€D(0,1);
— Vm(2n+ 1)n!
(3.10) ~
tanh ™' (z) = Z 221 2 e D(0,1);
ot 2n—1
o0

ACHEEIEDY F(n+a)l(n+ /M)

« Il (a)T(B)0(n + ) 2", a,B,7 >0, z€ D(0,1),

n=

where I' is the Gamma function, then we get the following vector inequalities:

[{exp(N)z,y)| < (exp(IN|**)z, )"/ (exp(|N[217))y, y) /2,

1 g+ N
n
;- N T,y
</ 1H+|N|2a 1/2 | 1H+|N‘2(1704) 1/2
n{ ————+- |7 N\ —————-—
> lH _ |N|2a y 1H — |N‘2(1_Q) Y,y ’

3.11) s (N)z, )]
< (sin N (IN )z, )2 sin T (IN POy, )2,
|(tanh ™! (N), )|
< (tanh™ ! (|N[**)a, 2)'/? (tanh ™! (| NP7y, )12,
[(2F1 (. B, 7, Nz, )|
< Fi(a, 8,7, INP*)z, 2) 2 (o Fy (o, 8,7, [N POy, )12,

for any x,y € H. The first inequality in (3.11) holds for any normal operator N
while the others require the assumption ||N|| < 1.
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We also have the norm inequalities

lexp(N)|| < flexp(IN]**) [/ [lexcp(IN 2 =)/,
lleosh(N) | < [[cosh(| N [**)[|'/? [cosh(| N> =))|[1/2,
Isinh(N) || < [lsinh(|N[2*)|[/2[|sinh(|N 20— | 1/2,

for any normal operator N, and

g+ N 1H+|N|2a
g — N lH—|N|20’

for N with | V]| < 1.
A similar result is the following:

/2 1/2

1y + |N|2(1_a)
Inf ——M————
1y — [N

Theorem 4. Let f(z) =3 .7 janz" be a function defined by a power series with
real coefficients and convergent on the open disk D(0,R) C C, R > 0. If N is a
normal operator on the Hilbert space H, and z € C with |z |*,|z||N||, | N||* < R,
then

(3.12) [(fEN)z,y) [ < fall2?) (Fa(INI)a, ) (Fa(INP)y )"

for any xz,y € H and o € [0,1].
In particular,

(3.13) [(F Nz )P < a2 FaON Pz, )2 (fa (N Py, 902,
Proof. By the Cauchy-Bunyakovsky—Schwarz inequality we have
(3.14) (O asz N,y <D lasl 12123 lag KV, ) 2

j=0 §=0 j=0

for any n € N and z,y € H.
Utilizing (2.5) we also have

n

(815) Y gl (N I < (

n

. «@ . l—o
jasl N7 2, (D las| IV 2y, )

<

§=0 §=0 §=0
n 9 a 9 l—o
= (D lasl NPz (3 lasl INPy,y)
§=0 j=0

for any n € Nand =,y € H.
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By making use of (3.14) and (3.15) we get
. o 2
(3.16) ‘<Z aszij,y>‘
j=0
n . n . « n X 11—«
<> lasl 1 (3 lagl NPT,y (3 ol Ny, )
7=0 3=0

=0

for any n € Nand z,y € H.
Since the series > |a;||N|* is absolutely convergent, letting n — oo in
(3.16) yields the desired result (3.12). O

Remark 5. Assume that f, R, z, N and « are as in Theorem 4. If we take the
supremum in (3.12) over y € H with ||y|| = 1, then we get

(3.17) 1f =N)al* < fa(lel) {(fa(INT)a, 2) | Fa(IN )P~

for any « € H, which implies the operator norm inequality

(3.18) 1 NI < falz)IFa(INTP).

If we take y = x in (3.12), then we get
(3.19) [(fN)z, ) < fall2l){fa(IN]*)z, z)
for any z € H.

From (3.12) we get the vector inequalities

[{exp(2N)z, y)[* < exp(|2*) {exp(IN[*)z, 2)* {exp(IN ")y, y)' =,
[(sin(2N)z, y)[* < sinh(||*)(sinh(IN]*)z, ) (sinh(| N |*)y, )~

|{cos(2N)z, y)|* < cosh(|z|*){cosh(IN|*)x, )* (cosh(|N|*)y, y) '~

W

for any normal operator N, any complex number z and any x,y € H.
We also have, for instance, from (3.18) the following norm inequalities:

lexp(zN)[I* < exp(|z[*) [exp(INT*)]],
Isin(=N)|[* < sinh(|2]*) [sinh(IN]?)]];

for any normal operator N and any complex number z.
Similar results can be stated for other functions.
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84. Applications for the Euclidean norm

In [21], the author has introduced the following norm on B™ (H):

(4.1) Ty, Th)lle :== sup ATy + - 4 XN To,
(ALseAn)EBy,
where (Ty,...,T,) € B (H) and By, := {(A1,...,An) € C" [ Y7 (A2 < 1} is
the Euclidean closed ball in C”.
It is clear that || - || is a norm on B (H) and for any (T, ...,Ty) € B™ (H)
we have

[Ty, To)lle = IICTY, - T e
where T7 is the adjoint operator of T}, j € {1,...,n}. We call this the Euclidean

norm of the n-tuple (T1,...,T,) € B (H).
It has been shown in [21] that the following basic inequality holds:

1 1< Lio||1/2 n L ol|1/2
(42) = me T <im mole <[
j=1 j=1

for any (Ty,...,T,) € B™(H), and the constants 1/,/n and 1 are best possible.
In the same paper [21] the author has introduced the Euclidean operator radius
of (Th,...,T,) by

n

(13 Wil T = sup (30 (T )

lzll=1"=

and proved that w,(-) is a norm on B™ (H) and satisfies the double inequality
1

(4.4) ST Tolle < wel(Ths - To) < (T Tl

for each (T1,...,T,) € B™ (H).

As pointed out in [21], the Euclidean numerical radius also satisfies the double
inequality

1 CL L2 L a2
(4.5) mHZm 2 <wem, o m) < [
j=1 Jj=1

for any (Ty,...,T,) € B™ (H), and the constants 1/(2,/n) and 1 are best possible.
In [1], by utilizing the concept of hypo-Euclidean norm on H" := H x -+ x H
we obtained the following representation for the Euclidean norm:
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Proposition 1. For any (T4, ...,T,) € B™(H), we have

n

(1.6) (T Tl = (S 1mwar) "

HyH HEH 1=

The following different lower bound for the Euclidean operator norm || - ||e
was also obtained in [1]:

Proposition 2. For any (T, ...,T,) € B™(H), we have

(4.7) I(Ty,...,Ty) -+ T,

lle > fllTl +-

Utilizing some techniques based on the Boas—Bellman and Bombieri type
inequalities we obtained in [1] the following upper bounds:

Proposition 3. For any (T, ...,T,) € B™ (H), we have

1/2
1Iga<xn{||TjH2}+[ S oW
1<j#k<n
1I£la<X{||T H }+(n—1) m;gi(gn{w(TkTJ)}’
(4.8)  (Th,.... T2 < , -
max {[|75] }Hz_:lle I
) L11/2
+ Jnax {1751 1T} S w(nTy) ]

1<j#k<n

and

1glja<xn{i: w(TETj)};
- k=1
{Z WQ(TJT-)]W;

k=1
(4.9) (To, . T2 < S 7 1/2
g [ wen]

o[> max Loty
j=1 ="

Now we can provide one more upper bound for the Euclidean norm:

Proposition 4. For any (Th,...,T,) € B™(H), we have

l-«
"

(4.10) 1T Tl < [ S me [ e
=1 =1

and
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n [eY n -«
(4.11) WA(Ty, ..., Ty) < sup [<Z |Tj|2x,x> <Z|T;|2x,x> ]
j=1 =1

lzll=1 p

{Hzm ¥ {Hzm I
HZM 2+ (1= o)z

for any o € [0, 1].

Proof. Utilizing the vector inequality (2.1) and taking the supremum over ||y|| =
|z]| = 1 we have

@12)  |(Th,..., T)|2 < [bup <Z|T| ro)]” [bup <ZIT*|2:U yﬂlf

llzll=1 lvll=1 "=

for any « € [0, 1], and since

sup <Z|T 2z, x> = H;EJJH and  sup <Z|T*‘ - >: H;|Tf|2

llzll=1 llyll=

;,

we get from (4.12) the desired result (4.10).
Now from the first inequality in (2.4) we have

n

4.13)  w(Th,..., T, <H21H1p1[<2 TP, )” <J:1 T, a:> ]
< o] [an o]

- S5l [ el

and from the second inequality in (2.4) we also have

n

(4.14) w?(Ty,...,T,) < sup <Z a|T;* + (1 — a)|T;‘|2]m, x>

lzll=1 "=

- Hg[aw + (- )T

for any « € [0, 1].
Utilizing (4.13) and (4.14) we get (4.11). O
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Remark 6. The case when o = 1/2 provides the inequalities

n 1723 " 1/2
(4.15) N T2 < [ S| [ 1T
j=1 j=1
and
(4.16) w(Ty,...,T,) < sup [<Z|T| x x>1/2<§:|T;\2x7x>1/2]
lzll=1%";= j=1

1= mel] s ]
s [e]

j=1

85. Applications for s-1-norm and s-1-numerical radius

,T,) € B™(H) by

sup (Z [Ty, x )

lyl=l=l=1

We can introduce the s-p-norm of the n-tuple (771, ...

(5.1) 1T T

This is indeed a norm, since by the Minkowski inequality we have

6:2) T T) + (Ve Vi)l

(1) + )

IIyH le\ 1Y

< s [(Simenr)” (s )]
lyll=llzl=1" "7
n 1/10 n 1/p
< s (Y Tyar) T+ (> 1viw.a))
lyll=llzll=1 "= HyH HGCH L
:||(T17~-~> n)||s7p+||(‘/17"'7VTL)||S7P?

which proves the triangle inequality. The other properties of the norm are obvious.
For p = 2 we get

(T, To)lls,2 = (T - T e

We are interested in this section in the case p = 1, that is,

(T, Ta)llsa = sup ZI Ty,

lyll=ll=ll=1}
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Since for any x,y € H we have 3", [(Tyy, )| > [(3°]_, Tjy,z)], by the properties
of the supremum we get the basic inequality

(53) X ] < i@l < ST
j=1 Jj=1

Similarly, we can also introduce the s-p-numerical radius of (Ty,...,T,) € B™ (H)
by
-~ 1/p
(5.4) waplTis o T = sup (>, ayr)
x||=1
Jj=1

which for p = 2 reduces to the Euclidean operator radius introduced previously.
We observe that the s-p-numerical radius is also a norm on B (H) for p > 1, and
for p = 1 it satisfies the basic inequality

(5.5) w(ZTj) Swi(Th,. . To) < w(Ty).
j=1 j=1

Proposition 5. For any (Ti,...,T,) € B (H), we have

‘Z |Tj*|2(17a)

j=1

for all « € [0,1], and in particular, the following refinement of the triangle in-

1/2‘ 1/2

(5.6) 1T T o < |17
j=1

equality holds for the operator norm:

(5.7) I < i@zl
j=1
n 1/2 n
DL B Mol
j=1 j=1
1 n n . n
SIS ml|+ [ im|] < D2 1w
j=1 j=1 j=1

Proof. Utilizing the vector inequality (2.7) and taking the supremum over ||y|| =

1/2

IN

IN

||lz|| = 1 we have
(5.8) (11, ..., Tn)llsn

< { sup <Z|Tj|2a$,x>}l/2{ sup <i|Tf|2(1_a)y,y>}l/2

lzll=1 5= lyll=1 5=
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and since
n

sup (2 T2 a) = |37 11
j=1

lzll=1 "=

and
n

sup (37T POy, y) = || 1y 0
1 j=1

lyl=1"5=

)

from (5.8) we get the desired inequality (5.6).
The inequality (5.7) follows from (5.6). O

The case of normal operators provides a simpler bound:

Corollary 1. Let (Ny,...,N,) € B™(H) be an n-tuple of normal operators.
Then

1/2

n 1/2 n
(5.9) NN Nl < |2 I8 2 120
j=1 j=1

for any « € [0, 1], and in particular,

(5100 [ M| <l N
j=1

51 < HZWJ\H <IN
j=1 j=1

The above results provide an interesting criterion of convergence of series in
the Banach algebra B(H).

Criterion 1. Let {T}},cn be a sequence of operators in B(H). If there exists an
a € (0,1) such that the series Z;')io |T;]?* and Z;io \Tj’f|2(1*a) are convergent in
the Banach algebra B(H), then Z;io T; is convergent in B(H) and

[Snl= IS e
§=0 §j=0 j=0

In particular, the convergence of 337 |Tj| and 3772 |T;| implies the convergence
of 32520 Ty in B(H), and

|z < I mi]
§j=0 §j=0 §=0

The following result for the s-1-numerical radius may be stated as well:

1/2

1/2
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Proposition 6. For any (T,...,T},) € B™ (H), we have

n 1/2 , 1/2
(5.11) ws’l(Tl,...,Tn)§Sup[<2pj|Tj|2o‘x,x> <ij|T;\2(1*a)x,x> }

HZ|T |2a HZ|T*|2(1 @)

|T |2a+ |T*|2(1 ) ‘
for each o € [0,1], and, in particular,

> 2
j=1
n 12|
. || [
5.12 w( T-)gws_ T,... T, <{ 7=t i=1
(.12 2. T;) S waaTis- oo To) §- 117
2

j=1

)

Remark 7. We observe that due to the inequality

(5.13) HZTH <w ZT HZ

the convergence of the series > oo [|7%|?* + T[>t =) in B(H) for some a € (0,1)
suffices for the convergence of Y -, T}, which is a slight improvement of the result

|T |2a + |T*|2(1 )

from Criterion 1.
The case a = 1/2 produces the simpler inequality of interest for the numerical

radius of a sum:
1< - e .
s S eu(Sn) < S m]
Jj=1 J=1 J=1
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