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Ideals of Homogeneous Polynomials

by

Richard M. Aron and Pilar Rueda

Abstract

Given a surjective ideal of operators, we undertake a new general procedure to construct
an ideal of polynomials. The relation with the ideal of polynomials obtained by the
well-known method of composition is established.
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§1. Introduction

Ever since Pietsch [16] initiated a research program on ideals of nonlinear oper-

ators, many authors have turned their attention to studying ideals of multilinear

mappings. The transition from the multilinear setting to homogeneous polynomials

occurred naturally.

Several strategies have been developed when trying to generalize ideals of op-

erators to polynomials. A standard procedure is to mimic the property that char-

acterizes the operators belonging to some operator ideal. For instance, (weakly)

compact m-homogeneous polynomials are defined as those that map bounded sets

to relatively (weakly) compact sets, copying the definition of a (weakly) compact

operator. This technique, although useful in order to get the first basic examples,

lacks the generality required in order to treat polynomial ideals in a systematic

way. In this paper we undertake a study of a general method to generate an ideal

of polynomials from an operator ideal I. To accomplish this task, we introduce the

concept of local I-boundedness. We prove that the set of homogeneous polynomi-

als that are locally I-bounded form a Banach ideal of polynomials when endowed
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with a naturally defined norm. We consider only a particular case of the well-

known method called composition ideal to generate polynomial ideals from a given

operator ideal I. This method consists in composing continuous m-homogeneous

polynomials with operators belonging to I. The composition ideal is formed by all

polynomials P that factor as P = T ◦Q, where Q is a polynomial and T belongs

to the ideal I (see Section 2 for a formal description). From [19] it follows that

compact and weakly compact polynomials form a composition ideal of polynomi-

als. In [3] the present authors proved that p-compact homogeneous polynomials

(mapping bounded sets to relatively p-compact sets) also form a composition ideal

of polynomials.

By [19] any continuousm-homogeneous polynomial P is associated to a unique

linear operator PL called the linearization of P . This linearization yields another

way to generate ideals of polynomials, by simply considering those continuous m-

homogeneous polynomials whose linearization belongs to a given operator ideal I.

The polynomial ideal generated in this way turns out to be the same as the com-

position ideal of polynomials (see [6]).

After reviewing some preliminaries in Section 2, given a Banach operator

ideal I, in Section 3 we introduce the concept of local I-boundedness and we

construct the ideal PI of I-bounded polynomials. We prove that whenever I is

stable under the formation of symmetric tensor products then any continuous

m-homogeneous polynomial maps I-bounded sets to I-bounded sets. As a conse-

quence, we get a stronger ideal condition for PI : the composition of an I-bounded

m-homogeneous polynomial with any continuous homogeneous polynomial is I-

bounded. In Section 4 we compare the ideal of I-bounded polynomials with the

composition ideal of polynomials. We show that the two ideals coincide whenever

I is surjective and satisfies Condition Γ that is introduced in [3].

§2. Preliminaries and notation

In the following, E, F and Z denote arbitrary (complex or real) Banach spaces.

Let BE denote the closed unit ball of E. If x ∈ E and ε > 0 then Bε(x) is the

open ball of center x and radius ε.

We denote by L(mE;F ) the space of all continuous m-linear mappings from

E×· · ·×E into F . Whenever m = 1, L(1E;F ) = L(E;F ) coincides with the usual

space of continuous linear operators, and for m = 0 we agree that L(0E;F ) is the

space of constant mappings from E to F which is identified with F . A mapping

P : E → F is a continuous m-homogeneous polynomial if there is A ∈ L(mE;F )

such that P (x) = A(x, . . . , x) for all x ∈ E. Let P(mE;F ) denote the space of
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all continuous m-homogeneous polynomials from E to F , endowed with the usual

sup norm. When F is the scalar field we simply write P(mE).

By ⊗̂m,sπ E and ⊗̂m,sπs E we denote the m-fold completed symmetric tensor

product of E endowed with the projective norm π and the projective s-tensor

norm πs, respectively. The projective norm π is well-known (see e.g. [20]) and the

projective s-tensor norm πs is defined by

πs(z) = inf
{ k∑
j=1

|λj | ‖xj‖m : k ∈ N, z =

k∑
j=1

λjxj ⊗ · · · ⊗ xj
}

for z ∈ ⊗m,sE (see [12]). It is worth pointing out that the projective norm π induces

a norm equivalent to the projective s-tensor norm πs on the m-fold symmetric

tensor product.

Given P ∈ P(mE;F ), we denote by P̌ the unique symmetric continuous m-

linear map P̌ ∈ L(mE;F ) such that P̌ (x, . . . , x) = P (x) for all x ∈ E. The n-th

polarization constant of the Banach space E, denoted by c(n,E), is

c(n,E) = inf{C > 0 : ‖P̌‖ ≤ C‖P‖ for all P ∈ P(nE)}.

It is well known that

1 ≤ c(n,E) ≤ mm

m!
for every Banach space E.

Also,

PL : ⊗̂n,sπ E → F, PL(x⊗ · · · ⊗ x) = P (x),

PL,s : ⊗̂n,sπs E → F, PL,s(x⊗ · · · ⊗ x) = P (x)

denote the linearization of P . If we consider the map δEm : E → ⊗m,sE given

by δEm(x) = x ⊗ · · · ⊗ x it is clear that P = PL ◦ δEm = PL,s ◦ δEm. The map

δEm is continuous when ⊗m,sE is endowed with either π or πs. It is well-known

that ‖PL,s‖ = ‖P‖ and ‖PL‖ = ‖P̌‖. For the general theory of homogeneous

polynomials and symmetric tensor products we refer to [11] and [12].

An ideal of homogeneous polynomials (or polynomial ideal) Q is a subclass

of the class of all continuous homogeneous polynomials between Banach spaces

such that for all n ∈ N and Banach spaces E and F , the components Q(nE,F ) =

P(nE,F ) ∩Q satisfy:

(i) Q(nE,F ) is a linear subspace of P(nE,F ) which contains the n-homogeneous

polynomials of finite type.

(ii) The ideal property: if u ∈ L(G,E), P ∈ Q(nE,F ) and t ∈ L(F,H), then the

composition t ◦ P ◦ u is in Q(nG,H).
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If ‖ · ‖Q : Q → R+ satisfies

(i′) (Q(nE;F ), ‖ · ‖Q) is a normed (Banach) space for all E, F and n,

(ii′) ‖Pn : K→ K : Pn(x) = xn‖Q = 1 for all n, and

(iii′) if u ∈ L(G,E), P ∈ Q(nE,F ) and t ∈ L(F,H), then ‖t ◦ P ◦ u‖Q ≤
‖t‖ ‖P‖Q‖u‖n,

then [Q, ‖ · ‖Q] is called a normed (Banach) polynomial ideal.

The case n = 1 recovers the classical theory of (normed, Banach) operator

ideals, for which the reader is referred to [7] and [9]. In particular we will use the

notation [I, ι] for an arbitrary normed operator ideal, that is, ι : I → R+ satisfies

(i′), (ii′) and (iii′) above.

The polynomial ideal Q is said to be closed if each component Q(nE;F ) is a

closed subspace of P(nE;F ).

An operator ideal I is surjective if T belongs to I(E;F ) whenever T ◦ S ∈
I(Z;F ) for every surjection S ∈ L(Z;E). Here, E, F and Z are arbitrary Banach

spaces. Equivalently, I is surjective if T belongs to I(E;F ) whenever T (BE) ⊂
U(BZ) for some U ∈ I(Z;F ) (see [22]).

Recall that, given a normed operator ideal [I, ι], there is a smallest surjective

operator ideal Isur which contains I. Moreover, a continuous linear operator T ∈
L(E;F ) belongs to Isur(E;F ) if and only if T ◦QE ∈ I, where QE : `1(BE)→ E

is the canonical surjection. If we define ιsur(T ) := ι(T ◦ QE) then [Isur, ιsur] is a

normed operator ideal, which is Banach whenever [I, ι] is (cf. [7, Section 9.8]). The

ideal [Isur, ιsur] is called the surjective hull of [I, ι].
Given an operator ideal [I, ι], the composition ideal of polynomials, I ◦ P,

consists of all homogeneous polynomials P between Banach spaces that can be

factored as P = T ◦ Q where Q is a homogeneous polynomial and T is a linear

operator belonging to I. For m ∈ N and Banach spaces E and F , the usual

composition norm ‖ · ‖I◦P of an m-homogeneous polynomial P ∈ I ◦ P(mE;F ) is

given by

(2.1) ‖P‖I◦P := inf{ι(T )‖Q‖ : P = T ◦Q, Q ∈ P(mE;G), T ∈ I(G;F )},

With this norm, I ◦ P becomes a Banach polynomial ideal whenever [I, ι] is a

Banach operator ideal (see [6]).

Let E be a Banach space, and 1 ≤ p, p′ ≤ ∞ be conjugate exponents. We

recall that a subset K of E is said to be relatively p-compact if for some sequence

(xn) ∈ `p(E), K ⊂ {
∑
n anxn | (an) ∈ B`′p}, where `p(E) denotes the space of

p-summable sequences in E endowed with its natural norm and B`′p denotes the

closed unit ball of `′p. An operator T ∈ L(E;F ) is p-compact if T (BE) is relatively
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p-compact. In this case the norm kp is defined as

kp(T ) = inf{‖(xn)n‖p},

where the infimum is taken over all sequences (xn)n ∈ `p(F ) fulfilling the above

condition. The norm kp was introduced by Sinha and Karn [21] and character-

ized by Delgado, Piñeiro and Serrano [8, Proposition 3.15]. We shall use [Kp, kp]
to denote the Banach ideal formed by all p-compact operators. Pietsch [17] has

recently revisited the theory of p-compact operators by using the general theory

of operator ideals as developed in his monograph [15].

§3. The I-ideal of homogeneous polynomials

Let [I, ι] be a normed operator ideal, and let F be a Banach space. Let CI(F )

stand for the collection of subsets A ⊂ F such that A ⊂ T (BZ) for some Banach

space Z and some T ∈ I(Z;F ). We will call any A ∈ CI(F ) an I-bounded set.

Notice that I-bounded sets are bounded. The family CI(F ) was first consid-

ered in [22] (see also [13]). The central role that it plays in our work justifies our

coining the term ‘I-bounded set’ to name its elements.

Example 3.1. Let E be a Banach space and A be a subset of E. Then A ∈
CKp(E) if and only if A is relatively p-compact.

Proof. The necessity follows from the definition of CKp(E).

Conversely, if A is relatively p-compact then it is bounded. Hence, the operator

T : `1(A) → E given by T ((tx)x∈A) :=
∑
x∈A txx is well-defined. As the closed

absolutely convex hull of a relatively p-compact set is relatively p-compact, Γ(A)

is relatively p-compact. Since Γ(A) = T (B`1(A)), T belongs to Kp(`1(A);E). From

the inclusion

A ⊂ Γ(A) = T (B`1(A))

we conclude that A ∈ CKp(E).

The following well-known property of CI will allow us to define the I-ideal of

homogeneous polynomials: If A1, . . . , An ∈ CI(F ) and t1, . . . , tn are scalars, then⋃n
i=1Ai and

∑n
i=1 tiAi belong to CI(F ) (see [13, Proposition 3]).

If T ∈ L(E;F ) is such that T (BE) belongs to CI(F ) then it cannot be con-

cluded that T ∈ I(E;F ) in general. This condition actually characterizes surjective

operator ideals. We omit the easy proof.

Proposition 3.2. Let I be an operator ideal. The following assertions are equiv-

alent:
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(i) I is surjective.

(ii) For any Banach spaces E and F and any T ∈ L(E;F ), T ∈ I(E;F ) if and

only if T (BE) ∈ CI(F ).

We shall say that an m-homogeneous polynomial P ∈ P(mE;F ) is locally

I-bounded (or I-bounded for short) if for every x ∈ E there exists a neighbor-

hood Vx of x such that P (Vx) ∈ CI(F ). The set of all locally I-bounded m-

homogeneous polynomials from E to F is denoted by PI(mE;F ). When m = 1 we

write LI(E;F ) = PI(1E;F ). It is easy to prove that P ∈ P(mE;F ) is I-bounded

if and only if P (BE) ∈ CI(F ).

It is clear that PI(mE;F ) is a vector space. Let us endow it with a norm.

Given P ∈ PI(mE;F ), we have P (BE) ⊂ T (BZ) for some Banach space Z and

some T ∈ I(Z;F ). Define

‖P‖I := inf ι(T )

where T varies among those operators in I fulfilling the above condition.

Notice that

I(E;F ) ⊂ LI(E;F ) ⊂ L(E;F )

and

‖T‖ ≤ ‖T‖I ≤ ι(T )

for all T ∈ I(E;F ).

By Proposition 3.2, it follows that I(E;F ) = LI(E;F ) if and only if I is

surjective.

Proposition 3.3. [PI , ‖ · ‖I ] is a normed ideal of polynomials.

Proof. The only condition that needs some attention is the ideal property. Let

P ∈ PI(mE;F ), u ∈ L(G;E) and v ∈ L(F ;Z). Clearly v ◦ P ∈ PI(mE;Z) and

‖v ◦ P‖I ≤ ‖v‖ ‖P‖I .

On the other hand,

P (u(BG)) ⊂ P (‖u‖BE) = ‖u‖mP (BE) ⊂ ‖u‖mT (BH)

for some Banach space H and some T ∈ I(H;F ). Then

‖P ◦ u‖I ≤ ι(‖u‖mT ) = ‖u‖mι(T ).

Taking the infimum we get

‖P ◦ u‖I ≤ ‖u‖m‖P‖I .

Theorem 3.4. [PI , ‖ · ‖I ] is a Banach ideal of polynomials whenever [I, ι] is a

Banach ideal of operators.
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Proof. It suffices to prove that any absolutely convergent series in PI(mE;F )

is convergent. Let (Pn)n be a sequence of polynomials in PI(mE;F ) such that

M :=
∑∞
n=0 ‖Pn‖I <∞. As the induced usual norm ‖ · ‖ in PI(mE;F ) is weaker

than ‖ · ‖I and (P(mE;F ), ‖ · ‖) is complete it follows that
∑∞
n=0 Pn converges to

some P ∈ P(mE;F ). Let us prove that P ∈ PI(mE;F ).

Let ε > 0. By the definition of ‖ · ‖I , for each n there is a Banach space Znε
and an operator Tnε ∈ I(Znε ;F ) such that

(3.1) ‖Pn‖I + ε/2n > ι(Tnε )

and

(3.2) Pn(BE) ⊂ Tnε (Bnε )

where Bnε denotes the closed unit ball of Znε . Let

Λ1((Znε )n) :=
{

(zn)n ∈ ΠnZ
n
ε : pr((zn)n) =

∞∑
n=0

rn‖zn‖ <∞ for all 0 < r < 1
}

endowed with the topology generated by the family of seminorms {pr : 0 < r < 1}.
Let

D := {(zn)n ∈ Λ1((Znε )n) : zn ∈ Bnε }.
Denote by Z the linear span of D endowed with its Minkowski functional. Then Z

is a Banach space and Z =
⋃
λ>0 λD. Define the map T : Z → F by T (λ(zn)n) :=

λ
∑∞
n=0 T

n
ε (zn) for any λ > 0 and any (zn)n ∈ D. From the linearity of each Tnε it

follows that T (λ(zn)n) = T (λ′(z′n)n) whenever λ(zn)n = λ′(z′n)n. By (3.1),

∞∑
n=0

‖Tnε (zn)‖ ≤
∞∑
n=0

‖Tnε ‖ ≤
∞∑
n=0

ι(Tnε ) ≤
∞∑
n=0

‖Pn‖I + ε = M + ε <∞.

Thus T is well-defined, and clearly it is linear and continuous.

We now prove that T ∈ I(Z;F ). For each n define Sn : Z → F by Sn(λ(zj)j)

= λTnε (zn) for λ > 0 and (zn)n ∈ D. If πn : Z → Zn denotes the projection on the

nth coordinate, Sn = Tnε ◦ πn. Then Sn ∈ I(Z;F ) by the ideal property. Since

T ((zj)j) =

∞∑
n=0

Tnε (zn) =

∞∑
n=0

Sn((zj)j)

and
∞∑
n=0

ι(Sn) ≤
∞∑
n=0

ι(Tnε ) <

∞∑
n=0

(‖Pn‖I + ε/2n) = M + ε <∞,

it follows from the hypothesis of [I, ι] being Banach that T =
∑∞
n=0 Sn belongs to

I(Z;F ).
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Let us see that P (BE) ⊂ T (D). Given x ∈ BE , by (3.2) for each n there is

zn ∈ Bnε such that Pn(x) = Tnε (zn). Then

P (x) =

∞∑
n=0

Pn(x) =

∞∑
n=0

Tnε (zn) = T ((zn)n).

As (zn)n ∈ D, it follows that P (BE) ⊂ T (D).

We have proved that P =
∑∞
n=0 Pn belongs to PI(mE;F ).

Given T ∈ L(E;F ), let ⊗mT : ⊗̂m,sπs E → ⊗̂
m,s
π F be defined by

⊗mT
( n∑
i=1

αixi ⊗ · · · ⊗ xi
)

=

n∑
i=1

αiT (xi)⊗ · · · ⊗ T (xi)

and extended by continuity to the completions. An operator ideal [I, ι] is stable

under the formation of symmetric tensor products if ⊗mT : ⊗̂m,sπs E → ⊗̂
m,s
π F

belongs to I(⊗̂m,sπs E; ⊗̂m,sπ F ) whenever T ∈ I(E;F ) and, in this case, ι(⊗mT ) ≤
Cι(T )m for some positive constant C.

In [3, Theorem 3.4] the authors prove that the ideal of p-compact operators

is stable under the formation of symmetric tensor products.

Theorem 3.5. If an operator ideal [I, ι] is stable under the formation of sym-

metric tensor products then any continuous m-homogeneous polynomial maps

I-bounded sets to I-bounded sets.

Proof. Let P ∈ P(mE;F ) and A ∈ CI(E). Then A ⊂ T (BZ) for some Banach

space Z and some T ∈ I(Z;E). Using the commutativity of the diagram

Z
T //

δZm

��

E
P //

δEm

��

F

⊗̂m,sπs Z
⊗mT // ⊗̂m,sπ E

PL

<<

we get

P (A)⊂ P ◦ T (BZ) = PL ◦ δEm ◦ T (BZ) = PL ◦ (⊗mT ) ◦ δZm(BZ)

⊂ PL ◦ (⊗mT )(B⊗̂m,sπs
Z).

By the stability assumption and the ideal property, PL ◦ (⊗mT ) ∈ I(⊗̂m,sπs Z;F ).

Hence P (A) ∈ CI(F ).

As a consequence we get a stronger ideal condition for PI .
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Theorem 3.6. Let I be an operator ideal and let E, F , G and Z be Banach

spaces.

(i) If P ∈ PI(mE;F ) and Q ∈ P(lZ;E) then P ◦Q ∈ PI(mlZ;F ). In this case,

‖P ◦Q‖I ≤ ‖P‖I‖Q‖m.

(ii) If I is stable under the formation of symmetric tensor products then R ◦ P ∈
PI(mkE;G) for any P ∈ PI(mE;F ) and any R ∈ P(kF ;G). In this case,

there exists K > 0 such that

‖R ◦ P‖I ≤ Kc(k, F )‖R‖ ‖P‖mI ,

where c(k, F ) is the k-th polarization constant of F .

Proof. (i) Let T ∈ I(H;F ) be so that P (BE) ⊂ T (BH). Since Q(BZ) ⊂ ‖Q‖BE ,

P ◦Q(BZ) ⊂ P (‖Q‖BE) = ‖Q‖mP (BE) ⊂ ‖Q‖mT (BH).

Then P ◦Q ∈ PI(mlZ;F ) and ‖P ◦Q‖I ≤ ‖Q‖mι(T ). Taking the infimum over T

we conclude that ‖P ◦Q‖I ≤ ‖P‖I‖Q‖m.

(ii) As P ∈ PI(mE;F ), we have P (BE) ∈ CI(F ). By Theorem 3.5, R(P (BE))

∈ CI(G). Then R ◦ P ∈ PI(mkE;G). However, in order to get the inequality for

the norms, the above argument needs to be more precise: Let T ∈ I(H;F ) be so

that P (BE) ⊂ T (BH). Taking A = P (BE) in the proof of Theorem 3.5, we get

R ◦ P (BE) ⊂ RL ◦ (⊗mT )(B⊗̂m,sπs
H).

Since ⊗mT ∈ I(⊗̂m,sπs H; ⊗̂m,sπ F ) then

‖R ◦ P‖I ≤ ι(RL ◦ (⊗mT )) ≤ ‖RL‖ι(⊗mT ) ≤ c(k, F )‖R‖Kι(T )m,

for a suitable K > 0. As T is arbitrary,

‖R ◦ P‖I ≤ Kc(k, F )‖R‖ ‖P‖mI .

§4. Comparing with the composition ideal of polynomials

An operator ideal I is said to satisfy Condition Γ if the closed absolutely convex

hull of any I-bounded set is I-bounded. Given a subset A of a Banach space E,

the closed absolutely convex hull of A is denoted by Γ(A).

Example 4.1. By [13, Proposition 3] any operator ideal which is surjective and

closed satisfies Condition Γ. The most usual examples are the ideals of compact

operators and weakly compact operators.
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Example 4.2. For 1 < p < ∞, the ideal [Kp, kp] of all p-compact operators is

surjective and satisfies Condition Γ, although Kp is not closed (see [2, 3]).

Let us consider the surjective hull N sur of the ideal N of nuclear operators. By

[7, Ex. 9.14], T ∈ L(E;F ) belongs to N sur(E;F ) if and only if there is a sequence

(yn)n ∈ `1(F ) such that

T (BE) ⊂
{ ∞∑
n=1

λnyn : |λn| ≤ 1
}
.

This description shows that N sur coincides with K1, the ideal of 1-compact linear

operators.

Example 4.3. The ideal N sur satisfies Condition Γ.

Proof. Let A ∈ CN sur(F ). Then there is a Banach space E and an operator T ∈
N sur(E;F ) such that A ⊂ T (BE). Choose a sequence (yn)n ∈ `1(F ) such that

T (BE) ⊂
{ ∞∑
n=1

λnyn : |λn| ≤ 1
}
.

Consider the nuclear map φ(yn)n : `∞ → F defined by φ(yn)n((λn)n) =
∑∞
n=1 λnyn.

Notice that

φ(yn)n(B`∞) =
{ ∞∑
n=1

λnyn : |λn| ≤ 1
}
.

As φ(yn)n is linear, φ(yn)n(B`∞) is absolutely convex. Let us see that φ(yn)n is

weak∗-norm continuous. Let ε > 0. The set

V :=
{

(λn)n ∈ `∞ :

∞∑
n=1

|λn| ‖yn‖ < ε
}

is a weak∗ neighbourhood of 0. Since φ(yn)n(V ) ⊂ εBF , φ(yn)n is weak∗-norm

continuous.

Since B`∞ is weak∗ compact, we see that φ(yn)n(B`∞) is norm compact in F .

Hence,

Γ(A) ⊂ Γ(φ(yn)n(B`∞)) = φ(yn)n(B`∞).

Since φ(yn)n trivially belongs to N sur(`∞;F ), we conclude that Γ(A) ∈ CN sur(F ).

Other examples of surjective (not necessarily closed) operator ideals fulfilling

Condition Γ can be easily constructed by considering the surjective hull of an

operator ideal that enjoys Condition Γ, as is shown in the following result.
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Proposition 4.4. If an operator ideal I satisfies Condition Γ then Isur also sat-

isfies Condition Γ.

Proof. Let I be an operator ideal satisfying Condition Γ, and let F be a Banach

space. Consider a set A ⊂ F such that A ∈ CIsur(F ). We have to prove that Γ(A) ∈
CIsur(F ). Choose a Banach space Z and T ∈ Isur(Z;F ) such that A ⊂ T (BZ).

By the characterization of the surjective hull, T ◦QZ ∈ I(`1(BZ);F ). Since BZ ⊂
QZ(B`1(BZ)), it follows that A ⊂ T (QZ(B`1(BZ))). Thus we see that A belongs

to CI(F ). Since I satisfies Condition Γ, Γ(A) ∈ CI(F ). The inclusion CI(F ) ⊂
CIsur(F ) yields the result.

Condition Γ has been used strongly in [4], where it is essential when work-

ing with non-closed ideals of operators. Let us see that PI turns out to be the

composition ideal of polynomials I ◦ P whenever I is a surjective ideal fulfilling

Condition Γ.

Theorem 4.5. Let P ∈ P(mE;F ).

(i) If PL,s ∈ LI(⊗̂m,sπs E;F ) then P ∈ PI(mE;F ).

(ii) If I satisfies Condition Γ then the converse to (i) holds: if P ∈ PI(mE;F )

then PL,s ∈ LI(⊗̂m,sπs E;F ).

Proof. (i) If PL,s ∈ LI(⊗̂m,sπs E;F ) then PL,s(B⊗̂m,sπs
E) ∈ CI(F ). As P (BE) ⊂

PL,s(B⊗̂m,sπs
E) it follows that P (BE) is I-bounded.

(ii) Since P (BE) is I-bounded, Condition Γ ensures that Γ(P (BE)) also is.

The chain

PL,s(B⊗̂m,sπs
E) = PL,s(Γ(δm(BE))) ⊂ Γ(PL,s(δ

m(BE))) = Γ(P (BE))

proves now that PL,s(B⊗̂m,sπs
E) is I-bounded too.

The next result partially recovers [3, Theorem 3.1] in the case of p-compact

homogeneous polynomials.

Corollary 4.6. If I is surjective and satisfies Condition Γ then PI(mE;F ) =

I ◦ P(mE;F ) for all Banach spaces E and F , and ‖ · ‖I ≤ ‖ · ‖I◦P .

Proof. By Theorem 4.5, P ∈ PI(mE;F ) if and only if PL,s ∈ LI(⊗̂m,sπs E;F ).

By Proposition 3.2, LI(⊗̂m,sπs E;F ) = I(⊗̂m,sπs E;F ). The equality PI(mE;F ) =

I ◦P(mE;F ) follows now from [6, Proposition 3.2]. Let P ∈ PI(mE;F ). Then, by

[6, Proposition 3.7],

‖P‖I ≤ ‖PL,s‖I ≤ ι(PL,s) = ‖P‖I◦P .
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Corollary 4.7. If I is closed and surjective then ‖P‖I = ‖P‖ for all P ∈
PI(mE;F ).

Proof. The inequality ‖P‖ ≤ ‖P‖I always holds. If I is closed and surjective then

by [13, Proposition 3], I satisfies Condition Γ. If P ∈ PI(mE;F ), then by Theorem

4.5 and Proposition 3.2, PL,s ∈ LI(⊗̂m,sπs E;F ) = I(⊗̂m,sπs E;F ). Consequently,

‖P‖I ≤ ι(PL,s) = ‖PL,s‖ = ‖P‖

for all P ∈ PI(mE;F ).
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