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Partial Cauchy Data for General Second Order
Elliptic Operators in Two Dimensions

by

Oleg Yu. IMaNUvVILOV, Gunther UHLMANN and Masahiro YAMAMOTO

Abstract

We consider the inverse problem of determining the coefficients of a general second order
elliptic operator in two dimensions by measuring the corresponding Cauchy data on an
arbitrary open subset of the boundary. We show that one can determine the coefficients
of the operator up to natural limitations such as conformal invariance, gauge transfor-
mations and diffeomorphism invariance. We use the main result to prove that the curl of
the magnetic field and the electric potential are uniquely determined by measuring par-
tial Cauchy data associated to the magnetic Schrodinger equation on an arbitrary open
subset of the boundary. We also show that any two of the three coefficients of a second
order elliptic operator whose principal part is the Laplacian, are uniquely determined by
their partial Cauchy data.
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81. Introduction

Let 2 C R? be a bounded domain with smooth boundary 0Q = Uﬁle Yk, where vy,
1 <k <N, are smooth closed contours, and y is the external contour.

Let I' C 99 be a fixed nonempty relatively open subset of 02, that is, there
exist 7 € R2 and & > 0 such that § # {z € R | |z — 2| < 6} NdQ C L. Let
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Ty = O\ T. Let v = (11, v2) be the unit outward normal vector to 9 and let
%‘ =Vu-v.
Henceforth we set i = —1, x1,22 € R, 2z = 1 + izs, Z denotes the complex
conjugate of z € C, and we identify x = (z1,22) € R? with z = 21 +izy € C. We
. o _1(.0 ) o _1(.0 )
albo denote 9 5(87521 + ZT@) and & (W — 27)

Oxo
Let u € H'(Q) be a solution to the boundary value problem
(1.1) L(z,D)u = Ag u—|—2Ag +2B2r+qU—O ulp, =0, ulg = f.

Here Ag denotes the Laplace-Beltrami operator associated to the Riemannian
metric g = {g,x}. We assume that g is a positive definite symmetric matrix in Q

and
1 &0 )
1.2 Ay = —( /detg ¢"* — |,
(1.2) g Jdetgj;l axk< etgg &Ej)
where {g/*} denotes the inverse of g = {g;x}. From now on we assume that

g.8, € C7(Q) and that (A, B,q), (A}, By, q;) € C7F(Q) x O+ (@) x 40 (Q),
j =1,2, for some « € (0,1) are complex-valued functions. Henceforth « denotes a
constant such that 0 < o < 1.
We set
0 0 .
Li(z,D) = Agj—i—2Aa +2B& +q5, j=1,2.
We define the partial Cauchy data by

ou
(1.3) Ce A.Bg = {(Uf, g

>‘<A +2Aa —|—2B8—|—q>u—01nﬂ
& 0z 0

ue HYQ), ulr, = O},

where au =y/detg Z k=1 ¢F v 2 8 . Henceforth Id denotes the identity mapping
from R? to R2.

The goal of this paper is to determine the coefficients of the operator L from
the partial Cauchy data. In the general case this is impossible. The Cauchy data
present invariance of the following three types.

(i) The partial Cauchy data for the operators e™"L(z, D)e" and L(z, D) are
the same provided that n € C®t%(Q) is a complex-valued function and Ny =
ole =

(i) Let 8 € C™ () be a positive function on 2. The partial Cauchy data
for the operators L(x, D) and %L(m, D) = Agg + %(214% +2BZ +q) are exactly
the same.
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(iii) Let F = (Fy, Fp) € C¥(Q), F : Q — Q be a diffeomorphism such that
F|s = Id. For any metric g and complex-valued functions A, B, ¢, we introduce a
metric F*g and functions Ap, Bp, qr by

F*g = ((DF)ogo(DF)")oF !,

Ap = det D (4 m) (P12 282) gy (95082 |,
(1 4) 81'1 Bxl 81’2 8x2
’ 8F1 8F2 8F1 aFQ

Br = DF YW (A+B)| =—+i—=2 |+i(B—A)| —+i—= F1
F |det |{( + )(6x1+28x1>+2( )<8I2+28I2)}o ’
gr = |det DF~!|(qgoF 1),

where DF denotes the Jacobian matrix of F, (DF)7 its transpose, and o denotes
matrix multiplication. Then the operator
K(z,D) = Ap«g + 2AF2 + 2BF2, +qr
0z 0z
and the operator L(x, D) have the same partial Cauchy data.

We show the converse and state our main result below.
Assume that for some « € (0,1) and & > 0,

2
gik €CTYQ), gin =gk VhGE{1,2}, D gin&r& > o6, VEER®
jk=1

Consider the following set of functions:

= On
L. 6teQ), | = = 0.
(1.5) neCc T (Q), o 0, 7z
We have

Theorem 1.1. Suppose that for some o € (0,1), there exists a positive function
B e C™(Q) such that (g1 — Bg2)|z = %’f = 0. Then Cg, a,.Brqr =
Cas. Az, B2, if and only if there exist a diffeomorphism F € C3T*(Q),F : Q@ — Q
satisfying F|z = 1d, a positive function 3 € C"™*(Q) and a complez-valued func-
tion n satisfying (1.5) such that

Lo(z,D) = e "K(z,D)e",

where 5 9 ) 9 .
A p—+-=-Bi1p—+—
3 LE 5 + 3 LF 52 + ﬁQLF

and the functions F*g1, A1, p, B1,r,q1,r are defined for g1, A1, B1,q1 by (1.4).

K(va) :AﬁF*gl +

Next we discuss the anisotropic conductivity problem. In this case the con-
ductivity depends on direction and is represented by a positive definite symmetric
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matrix 0~ = {07%}. The conductivity equation with voltage potential f on 9 is

given by )

Z 3<0j,€6u> =0 inQ, wulpa="f
= O0x; Oxy,
We define the partial Cauchy data by

2 ou 2.0 ou
_ _ e, Ou O 0w _
(1.6) V, {<f|F, E a’"v; B f) ‘ jkg_l oz, (0 3xk> 0in Q,

Jk=1
u€ HY(Q), ulpn = f, supp f C f}

It is known (see [3]) that even in the case of I' = 9, the full Cauchy data V,
does not determine ¢ uniquely in the anisotropic case. Let F : Q@ — Q be a
diffeomorphism such that F(z) = x for € . Then

Videt DF-1|F*¢ = Vo-

In the case of full Cauchy data (i.e., I = 0Q) the question whether one
can determine the conductivity up to the above limitation, has been solved in two
dimensions for C? conductivities in [21], Lipschitz conductivities in [27] and merely
L*> conductivities in [2], [3]. The method of proof in all these papers is reduction
to the isotropic case using isothermal coordinates [1]. See also [20]. We have

Theorem 1.2. Let 01,00 € C"T%(Q) with some o € (0,1) be positive definite
symmetric matrices on Q. If V,, = V,,, then there exists a diffeomorphism F :
Q — Q satisfying F|z =1d and F € C¥7*(Q) such that

|det DF~'|F*o; = 0.

For the isotropic case, the corresponding result is proved in [15].

Next we consider the case where g = I, the 2 x 2 identity matrix. We remark
that general second order elliptic operators can be reduced to this form by using
isothermal coordinates (see, e.g., [1]). In this case, our first result is the following:

Theorem 1.3. Let Ay, Ay, By, By € C5T%(Q) and q1,q2 € C*¥(Q) with some
€ (0,1). Assume that Cr a,.By,qx = CI,45,Bs,q5- Then

(17) A1 = A27 Bl = B2 on f7
0 .
(1.8) *2&(/11 —A) — (B — B2)A1 — (A1 — A2)Ba+ (@1 —q2) =0 in Q,
0

(19) 72£(B1 — Bg) — (Al — AQ)Bl — (Bl — BQ)AQ + (Q1 - QQ) =0 1inQ.
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Remark. In the case where A1 = Ay = 0 and By = By = 0 in 2, Theorem 1.3
yields ¢; = g2, which is the main result in [15]. The latter result was extended
to Riemann surfaces in [13]. The case of full data in two dimensions was settled
in [7]. This case is closely related to the inverse conductivity problem or Calderén’s
problem (see [9]).

For global uniqueness results in the two-dimensional case for the conductivity
equation with full data measurements under different regularity assumptions, see
[2], [6], [16] and [21].

Theorem 1.3 yields

Corollary 1.1. Let Ay, Ay, By, By € C37%(Q) and q1,q2 € C*(Q) with some
a € (0,1). The relation Cr.a,,Bi,qi = Cr,45,B,,q» holds true if and only if there
exists a function n € CT*(Q) with 9z = %h: = 0 such that

(1.10) Li(xz,D) = e "La(z, D)e".

Proof. We only prove the necessity since the sufficiency is easy to check. By (1.8)
and (1.9), we have Z(A; — Ay) = Z(B; — By). This equality is equivalent to
(B + A)

dA-B) .
8$1 =1 8x2 where (A, B) = (A1 — AQ, Bl — BQ)

Applying Lemmata 1.1 and 1.2 (pp. 460-462) of [28], we deduce that there exists
a function 77 with domain Q° which satisfies

n=mn0+h,VieCT*Q), Ah=0 inQ°,

1.11 oh oh
(1-11) [h]|s, are constants, [] =—| =0 Vke{l,...,N},
al/k b ov N
and
(i(B + A),A— B) = Vi.
Here QY = Q\ ¥ is simply connected where ¥ = 2\;1 Yp, B NE, = 0 for

j # k, and X are smooth curves which do not self-intersect and are orthogonal
to O at the intersection points. In other words, a simply connected domain Q° is
produced by a finite number of smooth cuts. We choose a normal vector vy, = v (),
1<k <N -1, toX at  contained in the interior E% of the closed curve ¥j,.
Then, for z € X9, we set [h](z) = limy_, (45,0050 P(Y) — imy_s (7,00 <0 1Y)
where (-,-) denotes the scalar product in R2. Setting 21 = —i7), we have

~

(B + A,i(B — A)) =2V
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Therefore by (1.8),

_ o ., on n
(1.12) (h_QQ+AU+48z82+28zA2+28232'

The operator L;(z, D) given by (1.10) has the Laplace operator as the principal
part, the coefficient of a% is Ay + Bg + 2(%72, the coefficient of 3%2 isi(By— Aa)+

on
2 8331 ?

(1.12). By (1.7) we have %h: = 0 and 7z = C where the function C(z) is constant
on each connected component of T'.

and the coefficient of the zero order term is given by the right-hand side of

Let us show that the function 7 is continuous. Suppose that it is discontinuous,
say, along the curve ¥;. Let us € H*(Q) be a solution to the boundary value
problem

(1.13) Ly(z,D)uz =0 inQ, uglr, =0.

Assume in addition that uo is not identically zero on ;. Let fl be one connected
component of the set [ and let C \1:1 = C. Without loss of generality we may assume
that C' = 0. Indeed if C # 0, then we replace 1 by the function n — C. Since the
partial Cauchy data of the operators Li(z, D) and La(z, D) are the same, there
exists a solution u; to the boundary value problem

. ou ou ~
(1.14) Li(z,D)uy =0 inQ, wu; =wug ond, 871/1 = 371/2 on I

Then the function v = e "Tuy satisfies
Li(z,D)v=0 inQ° o, =0.

Since n = % =0on fl, we have v = uy. However u; € Hl(Q) and v is discontin-
uous along one part of 3;. Thus we arrive at a contradiction.

Let us show that C = 0. Suppose that there exists another connected compo-
nent I'y of the set I' such that C |1:2 # 0. Suppose that the functions wuq,us satisfy
(1.13) and (1.14) and us |, is not identically zero.

Then the function v = e~ "uq satisfies

Li(z,D)v=0 inQ, wv|p, =0.

Moreover, since n = % =0 on I'y, we have
311 3u1 f
v =up — =—onlj.
T ov Ov

By the uniqueness for the Cauchy problem for second order elliptic equations, we
have v = uq. In particular v = u; on I's. Since u; = uo on 052, this implies that
e |, = 1. We have arrived at a contradiction. O
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There are two specifically interesting cases of g = I: the magnetic Schrodinger
operator and the Laplacian with convection terms. We first apply our result to the
case of the magnetic Schrédinger operator. Denote A = (A1, A2), where A; are

real-valued, A= A1 —zAg, rot A = 6’;‘12 — %;‘21, Dy, = 1 5. Consider the magnetic

Schrédinger operator

2
(1.15) =3 (De+ Ay
k=1

Let us define the following set of partial Cauchy data:

~ ou
i~ {<uf g

For the case of full data in two dimensions, it is known that there is a gauge

) ‘ Lizz,D)u=0inQ, ulr, =0, u € Hl(Q)}

invariance in this problem and we can recover at best the curl of the magnetic
field [26]. The same is valid for the three-dimensional case with partial Cauchy
data [12]. We prove here that the converse holds in two dimensions.

Corollary 1.2. Let real-valued vector fields g(l),g@) € C***(Q) and complea-
valued potentials ¢V, q? € C**+(Q) with some a € (0,1) satisfy Cxq, o =
CA(2> 7@ - Then ¢V = g, rot A = ot A® in Q and AD) = A® on T.

Proof. Straightforward calculations give

B 2- 9 2~ 0  ~, 10A 104, _
(1.16) Lz (z,D) = A+Z.Alax +Z.A28$ +1AP+ - 90y 77 9z, Y
2=0 2 9A ORI
= A+ A4 2 ,4— f—A—rotA+\A|2+Q-
i 0z i 0z

+
Then the operator £z -(z, D) is a particular case of (1.1) with the metric g = I,

A= —%.Z, B= —%.Z, q= (2 04 —rot A+ |A|2+A> Suppose that the Schrodinger
operators with the vector fields A(l), A® and the potentials g1, g2 have the same
partial Cauchy data. Then (1.8) gives

rot AN — rot A®) 4 i@ -qgV =0

and (1.9) gives

2040 294 2940 2 §A® ~
2 2 2 2 )
M7 e T e i e tias T4

—rot A® + 6{2) - c}(l) =0.
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Using the identity = EM - 3% = —2rot A, we transform (1.17) to
—(rot AN —rot A®) 4+ ¢ — G =,
completing the proof. O

There is another way to define partial Cauchy data for the Schrédinger oper-
ator:

~ ou o~
Ciz= {(ul:, <6V + Z(A,V)u)

Corollary 1.3. Let real-valued vector fields A(l),ﬁ@) € C%(Q) and complex-
valued potentials ¢V, ¢ € CH(Q) with some a € (0,1) satisfy Cza) Gu =
Cio - Then q M =G®, and rot AM = rot A® in Q.

r

) ’E;Zi(x,D)uOin Q,

ulp, =0, u € Hl(Q)}.

Pmof Suppose that there exist two vector fields and potentials (A(] , @) such
that CA(1> = C’A(Q) 5»- Consider a complex-valued function 7 € Cot(Q) with

n|s = 0 such that i [z v (A — A@) g7 = —la—” on I'. Here Jg - d7 is a line inte-
gral and we set 7(x) = (v2(x), —v1(x)). Then CA<1> = CA(2>+N»7 - Applying
Corollary 1.2, we finish the proof. O

Even with data on the whole boundary, no uniqueness result has been pub-
lished before and Corollaries 1.2 and 1.3 are new. In two dimensions, Sun [26]
proved that by measurements on the whole boundary, uniqueness modulo rotations
holds, assuming that both the magnetic potential and the electric potential are
small. Kang and Uhlmann [17] proved such global uniqueness for the case of mea-
surements on the whole boundary for a special case of the magnetic Schrodinger
equation, with the Pauli Hamiltonian. In dimensions > 3, such global uniqueness
was shown in [22] for the case of full data. The regularity assumptions in these
results were improved in [23] and [24]. The case of partial data was considered
n [12], based on the methods of [18] and [8], and the regularity condition on the
coefficients in [19] was improved.

Our main theorem implies that the partial Cauchy data can uniquely deter-
mine any two of (A, B, q). First we can prove that A and B are uniquely determined
if ¢ is known. Consider the operator

Ju

(1.18) L(z, D)u = Au+ a(x )g—xl + b(x )8502 + q(x)u.
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Here a, b, g are complex-valued functions. Let us define the following set of partial
Cauchy data:

. 9 9 9 .
Cog = {(mf, ;‘f) ‘Au +ale)g - +b(@)g - +a@u =00,

ulp, =0,u € Hl(Q)}
Corollary 1.4. Let a € (0,1) and fir ¢ € C**(Q). Suppose that two pairs of

complez-valued coefficients (aV),b(V)) € C¥F*(Q) x C**(Q) and (a?,b?) €
CoT(Q) x CPF(Q) satisfy Co) p1) g = Ca p 4. Then (e, pM) = (a@, b)),

. . e} el 6] 1o} (0 1o}
Proof. Taking into account that 3o = 3: T 53 and Py = Z(E — 5), we can
rewrite the operator (1.18) in the form
L(z, D)u = Au + (a(z) + zb(:c))@ + (a(z) — zb(x))@ +q(z)u
= 0z oz I

For the pairs (a(M), (1)) and (a(®, b)), suppose that the corresponding operators
defined by (1.18) have the same partial Cauchy data. Denote 24 (z) = a® (z) +
ib®) (x) and 2By (x) = a®(2) — ib*) (x). By (1.8), we have

0

(119) —2&(141 - Ag) - (Bl - Bg)Al - (Al - AQ)BQ =0 in Q,

0

(1.20) ~2

(Bl — Bg) - (Al - AQ)B] - (Bl - BQ)AQ =0 in Q.

Applying the operator 2% to (1.19) and 2% to (1.20), we have

(1.21) — A(A; — Az) — 2%((31 — B2)A1 + (A1 — Ag)B2) =0 in Q,
(122) — A(Bl — B2) — 2%((141 - AQ)Bl + (Bl - BQ)AQ) =0 in Q.
By (1.7),

(A1 — Ay)|g = (B1 — By)|z = 0.
Using these identities and (1.19) and (1.20), we obtain

0(A; — Ag) _ d(B1 — Bs) —0
ov T ov T '

The uniqueness of the Cauchy problem for the system (1.21)—(1.22) can be proved
in the standard way by using a Carleman estimate (see, e.g., [14]). Hence A; = Ao
and By = By in Q. O



980 O. IMANUVILOV, G. UHLMANN AND M. YAMAMOTO

We remark that Corollary 1.4 generalizes the result of [11] where the unique-
ness is obtained assuming that the measurements are made on the whole boundary.
In dimension three or more, the global uniqueness was shown in [10] for the case
of full data.

Similarly to Corollary 1.4, we can prove that the partial Cauchy data can
uniquely determine the potential ¢ and one of the coefficients A and B in (1.1).

Corollary 1.5. For j = 1,2, let (A;, Bj,q;) € C°t2(Q) x C*2(Q) x C*T(Q)
for some a € (0,1) and be complex-valued. Assume either Ay = Ay or By = Bs
in Q. Then Cr.a,,By,q1 = CI,45,B5,q» implies (A1, B1,q1) = (A2, B2,¢2).

Corollaries 1.4 and 1.5 mean that the partial Cauchy data on r uniquely
determine any two of the three coefficients of a second order elliptic operator
whose principal part is the Laplacian.

The proof of Theorem 1.1 uses isothermal coordinates, the Carleman esti-
mate obtained in Section 2, and Theorem 1.3. In this case we need to prove a
new Carleman estimate with degenerate harmonic weights in order to construct
appropriate complex geometrical optics solutions. The new form of these solutions
considerably complicates the arguments, and in particular asymptotic expansions
are needed to analyze the behavior of the solutions. In Section 2 we prove the
Carleman estimate we need. In Section 3 we state the estimates and asymptotics
which are used in the construction of complex geometrical optics solutions. This
construction is performed in Section 4. The proof of Theorem 1.3 is completed in
Section 5. In Section 6 we prove Theorems 1.1 and 1.2. In Sections 7 and 8 we
discuss some technical lemmata needed in the previous sections.

§2. Carleman estimate

Notations. Throughout the paper we use the following notations: ¢ = /—1,
r1,%2,81,& € R, 2 = x1 4+ ixo, ( = & + i€, Z denotes the complex conjugate
of 2 € C, Dy = 3%, 8 = (81, 2) where 8; € Ny = {0,1,2,...}. We identify
r = (21,72) € R? with 2 = 21 +iz9 € C, and ¢ = & + & with &€ = (&,&).
Weset@z:%:%( 0 _ ;0 ),85: 9 — 1( 0 —|—i8%2),and(’)6:{xeﬂ|

EES Ozo 0z — 2\0z1
dist(z, 9Q) < €}. Moreover we use both notations 9, and £ etc., and for example
we denote 02 = 68—;. We say that a function a(z) is antiholomorphic in  if

d,a(x)|q = 0. The tangential derivative on the boundary is given by % = 1/28%1 —
1/18%2, where v = (v1, 1) is the unit outer normal to 99).

The ball of radius J centered at Z is denoted by B(z,d) = {z € R? |
|z — Z| < d}. The corresponding sphere is denoted by S(7,) = {z € R? |
|z —Z|] = §}.
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If f:R? — R!is a function, then f” is the Hessian matrix with entries
2
%. By (u,v) we denote the scalar product of complex-valued functions u, v in
10
L2(Q): (u,v)p20) = [ouvde, and we set (u,v)p2ry = [ uvd7, where I' C 09
is a subboundary and the integral is taken counterclockwise. Let | - ||fq,” @ =
Il - ”%I’””(Q) + |7|%*]| - ||%2(Q) be the norm in the standard Sobolev space with inner
product given by (-,-)gr.r(0) = () mr) + [71** (-, ) L2(q)- For any positive func-
tion d we introduce the space L3(Q2) = {v(") | [vllz20) = ([ dlv|? dz)'/? < oo}
L(X,Y) denotes the Banach space of all bounded linear operators from a
Banach space X to another Banach space Y. By ox(1/7") we denote a function
f(7,-) such that ||f(7,)[|x = o(1/7%) as |7| = +oo. Finally for any ¥ € 9Q we
introduce the left and right tangential derivatives as follows:
o JUs) — f(T)
.7 = tim, LN,
where £(0) = Z, £(s) is a parametrization of O near Z, s is the length of the curve,
and we are moving clockwise as s increases;

R () e [ )

s——0 S ’

where £(0) = Z, {(s) is the parametrization of 9 near Z, s is the length of the
curve, and we are moving counterclockwise as s increases.

For some a € (0,1) we consider a function ®(z) = ¢(z1,x2) + itp(x1,22) €
C1(Q) with real-valued ¢ and 1 such that

P
(2.1) %(z) =0 inQ, Im®
where I'§ is an open set on 0f) such that I'g CC I'§. Denote by # the set of all the
critical points of the function ®:

Hz{zeﬂ ?f(z):o}.

Assume that ® has no critical points on i and that all critical points are nonde-

r; =0

generate:

(2.2) HNIQ C Ty, 227?(2) #0 VzeH.

Then ® has only a finite number of critical points and we can set
(2.3) HA\To=A{Z1,...,Z¢}, HNTo={Zp41,--.,Tote}-

The following proposition was proved in [15].
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Proposition 2.1. Let & € Q. There erists a sequence {®c}cc(o,1) of functions

satisfying (2.1) such that all the critical points of ®. are nondegenerate and there
exists a sequence {Tc}ee(o,1) such that

~ —| 0®

Te € He = {z e ‘ <

0z

Moreover for any j from {1,...,N'} we have
Hem’yj:[b lfPYJHf#@>

HEQ’YJ‘CFO if’)/jﬁf:@,
Im®.(z.) ¢ {ImP(x) |z € He \ {xc}} and Im (T.) #0.

(2)20}7 Ze— T ase— +0.

In order to prove (1.7) we need the following proposition, where “card” stands
for cardinality.

Proposition 2.2. Let [, cc T be an arc with left endpoint x_ and right endpoint
x4, and be oriented clockwise. For any T € Int T, there exists a function ®(z) which
satisfies (2.1), (2.2), Im @[55, 5 =0,

(2.4) Eeg:{xef* al(;:__l,q)(x):o}, card G < oo,
and

5\ 2
(2.5) <8F> Im®(z) #0 VexeG\{z_,z4}.
Moreover
(2.6) Im®(Z) #Im®(z) VeeG\{Z} and ImP(T)#0
and

2\° 9\°

(2.7) Dy(x_) <a7__,> Im®#0, D_(zy) <5F> Im ® # 0.

Proof. Denote I'y = 09\ T,. Let Z_,74 € 09 be such that the arc [F_,Z,] is
contained in (z_,z) and T € (Z_,Z4 ). Let ¢ be another fixed point from (Z,Z ).
We claim that there exists a pair (pg, o) € COT*(Q) x C5T%(Q) which solves the
system of the Cauchy—Riemann equations in 2 such that

o

B) ~ N oN?
¥o >Oif'yjﬂl“* £ () ?(l‘) =0, ((9?> ’L/Jo(I) # 0,

(A) ¢O|f3 =0, ?

i \Fs
d\° d\°
D4 ()52 ) w0 #0.D- ()52 ) w0 £0,

(B) the restriction of the function g to the arc (Z_,Z) is a Morse function,
(C) % >0on (x_,7_], % <0on [Zi,zy),
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(D) (@) ¢ {vole) |« € 001 (@), G2 ) =0},

(E) if v, N T, = (0, then the restriction of the function ¢y to 7; has only two

nondegenerate critical points.

Such a pair of functions may be constructed in the following way. Let v1 N T,
# 0 and ~; N T, =0forallje {2,...,N'}. First, by Corollary 7.1 in Appendix I,
for some a € (0,1) there exists a solution (3,1) € C6T*(Q) x C6+*(Q) to the
Cauchy—Riemann equations satisfying

V|oo\ [z0,54] = Vs % <p<0
Y1\ [0, 2]

and such that the function ¢ has only two nondegenerate critical points on «; if
7. =0, F% > 0on
(2,7 ], % < 0on [71,21), Dy(w )(2)%%. # 0, D_(24)(2)%%, # 0. The
function . on [Z_, o] has only one critical point z and . (Z) # 0. On (zo, Z4),

v; N T, = 0. The function 1, has the following properties: ¥,

the Cauchy data are not fixed. The restriction of ¢ to [xg, Z4] can be approximated
in C%F*([z0,Z4]) by a sequence {g}ee(o,1) of Morse functions such that

(2) 5= (&) 0. welomd ke .0,

o7
and
0@ ¢ {ao)| 25 —ol.
Let J CC (z—,Z_) be an arc. We have
W o
(2.8) 5 >f3">0 on J for some positive 3.
T

Let (¢c, 1) € C%2(Q) x C5T%(Q) be a solution to the Cauchy-Riemann equations
with boundary data ¥, = 0 on 90\ (J U [z9,Z+]) and ¥ = ge — ¢ on [z, T4],
and on J the Cauchy data are chosen in such a way that

(2.9) [ellco+a(an) + [leellcoraaay = 0 as  [lge = Ylloo+a(ia,z,)) — O

By (2.8) and (2.9), for all small positive €, the restriction of zZ—I— e to OS) satisfies

f(’g =0, M <0, M>OOH (.’17_,%_],

71\ [z0,T+]

(Y + 1. R B N
% <O0on [Ty, 24), (¥ +Y)wezs) =96 @+ V)5 20) = Vs

D+<x_>(;)6<& ) 40, D_<x+>(§>6<iﬂ ) £ 0.

7
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If j > 2, then the restriction of ¢ + @ to y; has only two critical points on
v C fé These critical points are nondegenerate if € is sufficiently small.

Therefore the restriction of 7:/; + . to T, has a finite number of critical points.
Some of them may be critical points of zz + 1. considered as a function on Q.
We change 1Z + 1. slightly so that all of its critical points are in QU fS. Suppose
that 1; + 1 has critical points on T,. Then they should be critical points of g,
otherwise it is the point . We denote these points by Z1,...,ZT;,. Let (&, 12)\) €
C5T(Q) x C%F2(Q) be a solution to the Cauchy—Riemann problem (7.1) with the
following boundary data:

o

n =0 0.
Y0aa\g =0, 5 >

Yi\TI

For all small positive €; the function 1Z + e + 61’[,//}\ has no critical points on T and
its restriction to f* has a finite number of nondegenerate critical points. Therefore
the pairs (3 + @ + €15, 9 + 1he + 19) satisfy (A)—(E).

For a pair (po, %) satisfying (A)—(E) the function ¢ + i)o satisfies all the
hypotheses of Proposition 2.2 except that some of its critical points may possibly
be degenerate. In order to fix this problem we consider the following perturbation
of o +1i1g. By Proposition 4.2 in [15], there exists a holomorphic function w in €
such that

0*w
922

ow

(2.10) Imwlry =0, wly, = e

7&05

Ho

Ho

where H is the set of all critical points of g 4 it)y. Denote ®5 = g + i)y + dw.
For all sufficiently small positive §, we have

0
Ho C Hs = {SL‘EQ ’ 82@5(1‘)20}.

We now show that for all sufficiently small positive 4, all critical points of ®g
are nondegenerate. Let T be a critical point of ¢¢ + it)g. If T is nondegenerate,
then by the implicit function theorem, there exists a ball B(Z, d1) in which ®5 has
only one nondegenerate critical point for all small §. Let  be a degenerate critical
point of g 4 i1hg. Without loss of generality we may assume that £ = 0. In some
neighborhood of 0, we have s =30, cpZ R — 83 e, biz" for some natural
number k and some ¢; # 0. Moreover (2.10) implies by # 0. Let (21,5, 22,5) € Hs
and z5 = 1,5 +ix2,6 — 0. Then either

(2.11) zs=0 or z§ =0b1/c1 +0(6) asd— 0.

Therefore %(25) # 0 for all sufficiently small é. O
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Let a € (0,1) and let A, B € C5t%(Q) be two complex-valued solutions to the
boundary value problem

(2.12) 2%—? =—A inQ, ImAlp, =0, 22—[; =—-B inQQ, ImBr, =0.
Consider the boundary value problem

0 od
(2.13) a% =0 Q=0 nQ (et +de)lp, = .

The existence of such functions a(z) and d(Z) is given by the following proposition.

Proposition 2.3. Let a€(0,1), and let A and B be as in (2.12). If € C5T*(Ty),
then (2.13) has at least one solution (a,d) € C5T*(Q) x C5T*(Q) such that

(2.14) [ (a, d)||c5+a(§)x05+a(ﬁ) <G ||ﬁ||05+a(f0)'

If B € HY?(Ty), then (2.13) has at least one solution (a,d) € H'(2) x H*(Q) such
that

(2.15) [(a; )| @yxmr) < C2llBllarr2ry)-

Proof. Let Q be a domain in R? with smooth boundary such that Q C Q and
there exists an open subdomain fo C o0 satisfying Ty C fo. Denote I'* = aﬁ\fo.
We extend A, B to Ty keeping the regularity and we extend [ to I in such a
way that 18] 172 5y < CallBllansay) o 18l iy < CollBllgssars) where the
constant Cj3 is independent of 8. By the trace theorem there exist a constant Cy,
independent of 3, and a pair (r,7) such that (re+7ef)| = fandif 5 € HY2(Ty)
then (r,7) € HY(Q) x H*(Q2) and

(s ) [ @) <1 (2) < Call Bl a2y
Similarly if 8 € C57*(T'y) then (r,7) € C5t*(Q) x C>F*(Q) and

[ (r, 7A"/)||cf>+a(§)><cs+a(ﬁ) < Cs||Blles+a(ro)-

Let f = % and f: g—g . For any € from (0, 1), consider the extremal problem
7 B 9 1| 9dp 2 1l|op 2 nf K
e(PAB) - H(paﬁ)”Lz(ﬁ)—'_g E_f L2(g~2) E 5_ LZ(Q) — 1nf, (pJAj) en,

where K = {(h1, hs) € L2(Q) x L%(Q) | (h1€A+h266)|f0 = 0}. Denote the solution
to this extremal problem by (pe, De). Then

T (pesPe)(6,6) =0 Y(4,8) € K.
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Hence

N _ 1 ape 00
(216) ((peyp€)7 (6’ 5))L2(Q) + g (82; N f’ 82) Lz(ﬁ)

1/0p. 6 ~
- —f, = =0 V(0 ek
+ € ( 0z f7 6‘2)L2(§) ( ' )e

Denote P, = —%(% —f),P. = —%(%% — f). From (2.16) we obtain

oP. oP.  _ ~
= Pe, — Pe, Pe * = Pe
(2.17) oz Pe 5y TP e

((h + iyg)PeeB — (1 — iug)ﬁge/\)

T* :07

7, = 0.

We claim that there exists a constant Cy independent of e such that

(2-18) ||(P€a ﬁe)”]—[l(ﬁ) < Oﬁ(”(paﬁe)HLz(ﬁ) + H(Pe, ﬁe)”p(ﬁ))-

It clearly suffices to prove (2.18) locally assuming that supp(pe, pe) is in a small
neighborhood of zero and the vector (0, 1) is orthogonal to 9 on the intersection
of this neighborhood with the boundary. Using a conformal transformation we may
assume that 9Q N supp P.,9Q N supp P, C {z1 = 0}. In order to prove (2.18) we
consider the system of equations

du 5 0u
. —_— — > .
(2.19) . + B(‘)xl F, suppu C B(0,5)N{z|z2 >0}

Here

u = (up,us,us, ug) = (RePE,ImP€7Reﬁ€,ImﬁE),

0 1 0 O
~ _ = -1 0 0 O
F:2R 67I E)R E?I €/ B:
(Repe, Impe, Repe, Tmpe) 0 00 -1
0 01 O

The matrix B has two eigenvalues +7 and four linearly independent eigenvectors:
as = (0,0,1,7), q4 = (1,—4,0,0) corresponding to the eigenvalue —i,
a1 = (1,4,0,0), g2 = (0,0,1,—i)  corresponding to the eigenvalue i.
We set 11 = (1168, —1meB, —viet, —1net), ro = (1268, 1168, 1pet, —viet)
sider the matrix D = {d;;} where djy =r; -qs, 1 < j, £ < 2. We have

D— ((1/1 —iv)e? (v — iV2)6A> .

. Con-

(o +iv1)eB  (vy +ivy)et

Since the Lopatinski determinant det D is not zero we obtain (2.18) (see e.g. [30]).
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Next we need to get rid of the second term on the right-hand side of (2.18).
Suppose that for any C one can find € such that the estimate

(P, Pe)“Hl(ﬁ) < C”(paﬁe)”m(ﬁ)

fails. That is, there exist a sequence €, — 0 and a sequence {C¢,} such that
lim, 10 Ce, =400 and

H pek,pek
| (Pe

k; ”Hl ) LQ(Q) ka'

Then we deﬁne (Qekvéek) = ( €k )/”( €k Ck)”Hl(ﬁ) and (qélmzjék) =

(Pers Per) /1 (Peys 6k)||H1(§). Consequently, ||(q6k,q6k)||L2(§) — 0 as ¢ — 0. Pass-
ing to the limit in (2.17) we have

0 o= 0

ch =0 in Q, 863
By the uniqueness for the Cauchy problem for the operator 9, we conclude
Q = Q = 0. On the other hand, since ||(Q5k,Q6k)HH1(Q) = 1, we can extract a
subsequence (not relabeled) which is convergent in L2(Q). Therefore the sequence
{(Qe,., Qc,)} converges to zero in L*(Q) x L?(2). By (2.18), we have 1/C7 <

1 Ge )l 2 () + II(Qek,@ek)lle@- Therefore liminf,, g II(Qek,@ek)lle@) #0,
and this is a contradiction. Hence

0 inQ, Q| =Q|r =0.

1(Pors Po)ll s g3y < Csll (b Pl oy Ve > 0.

Let us plug in (2.16) the function (p,,pe,) instead of (8,0). Then, by the
above inequality, in view of the definitions of P, and ng, we have

H(pekuﬁek)”iz(ﬁ) < C9((f7 f) (P€k7P ))LZ’(ﬁ) < ClO||(f7 )HL2(Q ”( €k €k>||L2(§)
< Coal(F, Fl o e o) o

This inequality implies that the sequence (pe,,Pe, ) is bounded in L? ((NZ) and

(% B ) o (1) in 2@ x 12
Then we construct a solution to (2.13) such that
(2-20) H(R@”m(ﬁ) < Cl?”(fv f)||L2(§)-
Observe that we can write the boundary value problem
0 op ~ _
—p =f inQ, p =f inQ, (pet —|—peB)|fo =0
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in the form of (2.19) with u = (Rep,Im p, Rep,Im ), F = 2(Re f,Im f, Re f,Im f).
We set 11 = (e, —e?, —€B, —€B) and ry = (e, A, €8, —

D = {d;e} where djy =r; - q, 1 < j, £ <2. We have

eB). Consider the matrix

B _pA
D= .
(eB eA
Since det D # 0, estimate (2.20) implies (2.14) and (2.15) (see, e.g., [30, Theo-
rem 4.1.2]). O

The following proposition was proved in [15] in the case where the partial
differential equations have no zeroth order terms, but in our case the proof is
similar:

Proposition 2.4. Let ® satisfy (2.1), (2.2), 7 € R, and let C = Cy + iCs belong
to CY(Q)) where Cy,Cy are real-valued. Let f € L?(Q), and let v € H'(Q) be a

solution to

d ~
(2.21) 225— T—a v+Co=f in Q
0z z
or to
0 - o _ o~
(2.22) 2£v T 0 +Cv=f in Q.

In the case (2.21) we have

2

o Oy ~2
(2.23) Haﬂh — zIm<7'aZ — C’) o) - /BQ (7'81/ — (1 C1 + V2O2)> [0|° do
oC;  0Cy 9 /
/Q<8a:1 8@) v]°dz + Re aﬂzaTvda
1 v o ? P
o\t am (75 0)| = e

In the case (2.22) we have

H —zIm(T?;f —C’)ﬁ

(2.24)

L2(Q)

_/ L2 _
o0 al/

(1/101 — VQCQ)) |5|2 do

0C, 002\ o / 0V =
— (- 2 ) o2 de 2 3d
/<6x1 8$2>|v| x — Re émzaFU o
1 v 0% ? ~
- ——-R oAb = 1f 220
117 g e( 5 )U o 1£11720)
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Consider the boundary value problem

o 0 0 0 .
K(z,D)u = (4&2&+2A&2’+2B%)u2‘f in Q,

ulag = 0.
For this problem we have the following Carleman estimate with boundary terms.

Proposition 2.5. Suppose that ® satisfies (2.1), (2.2), ue€ Hg(Q) and || A|| )+
| BllL<(q) < K. Then there exist o = 10(K, ®) and C13 = C13(K, @) independent
of u and T such that for all |T| > 70,

2 2

) B} u oe| .
(2.25) 7] [[ue™ |20y + llue™ |13 ) + Haye : +r 221" ’
12(ry) (@)
TP |12 Ou ’ 279
< Cus 1K@, Dyw)e™ Nz + 17| [ 1571 79 do ).

where T* = 00\ T,

Proof. Denote ¥ = ue™ and K(z, D)u = f. Observe that ¢(z1,22) = $(®(2) +
®(z)). Therefore

(2.26)  €"PA(eTT¢D) = (26 - Taq)) (28 - Taq)>5

0z 0z 0z 0z
0 0P 0 o ~ ou ou
_ (oY _ Y 9\ F_ _opY% oY% 1o
_(282 Taz>(25'z Taz>v I (f 2332 2Aaz)e .
Assume now that u is a real-valued function. Denote w = (2% — T%)E.

Thanks to the zero Dirichlet boundary condition for u, we have

9

0z

o
= (1/1 + il/g)l

Won =2
50 ov

o0
Let C be some smooth, real-valued vector function in 2 such that

ac

26— =C(z)=Ci(z) +iCe(z) inQ, ImC=0 onTy,
2

where C' = (Cy,Cy) is a smooth function in  such that

(2.27) div€=1 inQ, (C)=-1 onT,.
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Let N > 0 be a parameter. By Proposition 2.4 we have the following integral
equality:

I(weN®)

oL

. 0% - Ne
zIm<Taz +NC’> (we™")

L2(Q)

do

14

—/ aﬁﬂw C1 +1,Cy) o8 e
897_8 144951 VoUo 8V€

+N/ \@eNC|2dx+Re/ z‘i(ibe]\’c)wemda
Q oa OT

~ NC 2
+ Hl dwe ™) _ Re<78@ + NC) (weN©)

_ 7 To+NC |2
—— - oo e,

L2 ()

(DN

We now simplify the integral Rei [, %(@eNc)@leNc do. We recall that 7 =
ue™ in Q and w = (g —i—il/Q)g—E =(n —&—ivz)g—gew on 9. Denote (v +ivy)eNtImC
= R+ iP where R, P are real-valued. Therefore

(2.29) Re / z‘ai(@em)@emcza
o0 OT

0 Ou ou
— - P — 79+N ReC —iP)— Tp+N ReC
Re/mza%((R-i-z )81/6 )(R i )(91/6 do
e o@eNo P
= — P)|—]—— —1P)do.
Re/anaf,(R—l—z )‘ oy (R—iP)do
Using the above formula in (2.28), we obtain
=~ NC )
(2.30) HW - iIm(Ta + NC’) (@eNC)
81‘1 0z L2(Q)
dp W _ne ’
- —— + Nw,C Co) || = d
/39(T3V+ (1C1 + 12 2))‘31/6 o
SoNReCy |2
+N \aeNC|2dx+Re/ L r+ip)| 2% R ipydo
Q oo OT v
1 d(weN¢ o _ ? ~ .
ol e R Ve @) oy~ T Mz

Taking a positive parameter N sufficiently large and taking into account that the
function R + P is independent of N on I'fj, we conclude from (2.30), (2.27) that

(2.31) —/ Ta—go—&—g(vc + 1 Cy) a’681\[CQCZU—|—N/|@eNC2da:
’ o0 81/ 2 e 22 aV [e)

2

~ v
< Te+NC |2 N / Yv _NC do.
< [Fer e gy + V) [| 2] do
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Simple computations give

2 2

~,NReC 7(13
(2.32) 4Ha(ue ) 172 6)—(ﬁeNRCC)
N 1) 0z L2(9)
~oNReC 9P 2
— H28(Ue - ) _T@(ﬁezvaec)
0z 0z L2()

v 9% _ONReC 2
_ N ReC v il ~
= He (282 (T 92 + 2782 )v)

< 2] @™ 72y + C(V)|ue™|[F2(q).-

L2(Q)
Since the function ® has zeros of at most second order by assumption (2.2),

2
L2(Q)> .

Therefore by (2.31)—(2.33) there exists Ny > 0 such that for any N > Ny there
exists 79(N) such that

there exists a constant C74 > 0 independent of 7 such that

(233) T||5€NRGC||%2(Q) § 014 (|5€N ReC”%Il(Q) + 7'2

0P|
‘az UeNReC

dp N 9 el N [ .
(2.34) — /0Q <7'af + E(Vlcl + V202)> ‘aZeNC do + 5 /Q |wel¥€|? dx

2
+TH5€NReC||2L2(Q) + H%NReC”%{l(Q) + 7

D
‘gz‘veNReC

L2 ()

_ 2
ov
v Ne

£ do

< ||f€erNc||%2(Q) + C15(N) /f

for all 7 > 7(N).

In order to remove the assumption that u is the real-valued function, we obtain
(2.34) separately for the real and imaginary parts of v and combine them. This
concludes the proof of the proposition. O

As a corollary we derive a Carleman inequality for the function u which sat-
isfies the integral equality

(235> (U,IC($, D)*w)Lz(Q) + (fa w)Hlv‘f(Q) + (geﬂp7 e_Tgaw)Hl/lT(f) =0
for all w € X = {w € HY(Q) | w|p, = 0, K(z, D)*w € L?(2)}. We have

Corollary 2.1. Suppose that ® satisfies (2.1), (2.2), f € HY(Q), g € HY/*(D),
u € L2(Q) and the coefficients A and B of K(x,D) belong to {C € C1(Q) |
||C||Cl(ﬁ) < K}. Then there exist 1o = 7o (K, ®) and C16 = C16(K, @), independent
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of u and T, such that

(236)  [ue™|lia(q) < CrolTl(Ife 1m0y + I9€™ 3o i) YITIZ 70

for solutions of (2.35).

Proof. Let € be some positive number and d(z) be a smooth positive function on r
which blows up like 1/|z — y|® for any y € OT. Consider the extremal problem

1 —T ]' * T
(2.37) Je(w) = 5 |lwe I + 2 IK(@, D)*w — ue®™? | 2(q)
1
_— —Tel2 3
+ o] ||we HL%(F) — inf
for
(2.38) we X ={weH*Q) | K(z, D)*w € L*(Q), w|p, = 0}.

There exists a unique solution to (2.37), (2.38), which we denote by w.. By Fermat’s
theorem, we have

(2.39) J(@B)[6]=0 VéeX.

Using the notation p. = 1 (K(z, D)*@, — ue?™?), this implies

AN . a € Ae p—
(240) K:(Ia D)pe =+ weei%—w =0 in Q7 pe|3§l =0, b = dwi e,
g 7l

By Proposition 2.5 we have

e | o ?
(241) |7l llpee™ (172 0y + Ipee™ 1 () + Le re + 7| | 5o |pee™

8U 2 aZ 2

L2(To) L?2(Q)

<Cn (Hlﬁee_w%z(gz) + % /f |We|?e2T¢ do) < 2C17J(W,).
Substituting in (2.39) § = w,, we obtain
2J(@.) + Re (ue®™?, pe)r2(q) = 0.
Applying estimate (2.41) to the second term of the above equality, we have
I7|Je(@e) < Chsllue™||72 (-
Using this estimate, we pass to the limit in (2.40) as € goes to zero. We obtain

(2.42) K(z,D)p+@e ™% =0 inQ, plog=0, op = dﬂe*%“’,

ov |5 |7]
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(2.43) K(x,D)*w — we™ =0 inQ, Wlp, =0,

(244) |t |@e™|[L2 () + lTe ¢ < Crollue™ || (q)-

2 ~
L2(T)

Since @ € L%(Q), we have p € H2(Q), and by the trace theorem % € H'/2(090).
The relation (2.42) implies @ € H'/?(T"). Since @ € L2(T") and @|r, = 0, we have
@ € H'Y/2(09). By (2.41)-(2.44), we obtain

(2.45) [@De™ || 12 (a02) < CaolT|"?ue™ | 2.
Taking the scalar product of (2.43) with we2"% and using estimates (2.45) and

(2.44), we obtain

1 - —T -~ _—T 1 T
(2.46) HH(VU/)@ T2y + [Tl 1@e™ 1220y + HHwe “0||§{1/2,T(f)
< Corf|ue™|22(q)-

From this estimate and the standard duality argument, the statement of Corollary
2.1 follows immediately. O

Consider the problem

(2.47) Au+ ZA% + QB%; +qu=fe™ inQ, ulp, =ge?.
Set 5 5

L(z,D)u = Au+ 2Aa—z + 23%2 +qu in Q.
We have

Proposition 2.6. Let A, B € C°*%(Q) for some a € (0,1) and g € L>(Q). There
exists 7o > 0 such that for all |T| > 7o there exists a solution to the boundary value
problem (2.47) such that

(2.48) I(Vu)e™ ™| L2 ) +V/ 7] lue™ |22 ()

1
Vil
< Coo([ fllr2ce) + N9l z1/2.7 (1))

Let € be a sufficiently small positive number. If suppf C G, = {& € Q |
dist(z,H) > €} and g = 0, then there exists 79 > 0 such that for all |T| > 79
there exists a solution to the boundary value problem (2.47) such that

(2.49) [(Vu)e ™[z + [T| lue™ ™| z2(0) < Cas(€)| fllL2(a)-

Proof. First we reduce the problem (2.47) to the case g = 0. Let r(z) be a holomor-
phic function and 7(Z) be an antiholomorphic function such that (e”Ar4-e57)|r, = g
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where A, B € C%7%(Q) are defined as in (2.12). The existence of r,7 follows from
Proposition 2.3, and they can be chosen such that

711z ) + 171 2 ) < Coallgll gz ()
We look for a solution w in the form
u = (eA-‘rT(I)r + eB+T6m 1+,
where
L(z,D)i=fe™® inQ, i, =0,

2.50 ~ ‘ |
B0 b (1o )t — (g2 ap) s
0z 0z

In order to prove (2.48), we consider the extremal problem
@50) L) = 5llue R + oo L Du— e
. elu) = 2 ue Hl’T(Q) 26 Z, u e Lz(ﬂ)
1, .
+ §||ue “’||?{1/2YT® — inf
for
(2.52) ueY={weH(Q) |w|r, =0, L(x,D)w € L*(N)}.

There exists a unique solution to problem (2.51), (2.52), which we denote by ..
By Fermat’s theorem, we have

(2.53) I'(G)[8) =0 Vée.

Let p. = 1(L(z, D)u, — fe™®). Applying Corollary 2.1 we obtain from (2.53)

@5) e s < ol sy + 1T )
< 20551 (a).
Substituting 6 = @, in (2.53), we obtain
21, (@) + Re (pe, few)LZ(Q) =0.
Applying estimate (2.54) to this equality, we have
I.(@e) < Cog7| ||fH2L2(Q)-
Using this estimate, we pass to the limit as € — +0. We obtain

(2.55) L(z,D)u— fe™¥ =0 in€Q, ulp, =0
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and

(2.56)

[0 oy + e 3y < Corlrl 120

Since ||ﬂ|L2(Q) < Cos([| fllz2(0) + lgllzr1/2(ry))s inequality (2.56) implies (2.48).
In order to prove (2.49), we consider the extremal problem

~ 1, 1 .
(2.57) Je(u) = 5 llue 1220 + §€||L($7D)U — fe7I72 0
1
_— —Tel2 i
+ o0 ||ue ”Lg(r) — inf
where
(2.58) we X ={we H/*Q) | L(z, D)w € L*(), w|r, = 0}.

Here we recall that d(z) is a smooth positive function on I' which blows up like
ﬁ for any y € OI'. There exists a unique solution to problem (2.57), (2.58),
which we denote by u.. By Fermat’s theorem, we have

J@)F) =0 VieX.

This equality implies

N M ~ 8 € Ae —
(2.59) L(x,D)*p. + uee*2ﬂp =0 inQ, Peoa=0, p _ gl 21
g 7l
By Proposition 2.5, we obtain
1 . Ope 2 od| 2
(260) 7”]366 Lp”%.]l,r(ﬂ) + H a € ® +7—2 ’a De€ ¥
|7—‘ v L2(To) 2z L2(9)

< (e ¥ gy + 1 [ e o) < CaaJi (00
Taking the scalar product of the equation in (2.59) with @, we obtain
255@6) +Re (pe, fe™?)r2(n) = 0.
Applying estimate (2.60) to this equality, we have
(2.61) 72T (@) < Car[| f1172(q)-
Using this estimate we pass to the limit in (2.59). We conclude that

dp U
2.62 Lz, D)Y*p+ue 2™ =0 inQ =0 = =
(2.62) (z,D)*p+ ue in Q, plag C wl T

2.63 L(z,D)u — fe™ =0 inQ, ulpr, =0.
0
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Moreover (2.61) implies

(2.64) [T llue™ ) o) + |7l lue 117, 5 < Ca2llfllZ20) O

§3. Estimates and asymptotics

In this section we prove some estimates and obtain asymptotic expansions needed
in the construction of the complex geometrical optics solutions in Section 4.

We recall that ¢ = & +i&; with &, & € R is identified with & = (€1, &) € R2.
By v = (71, 72) we denote the outward unit normal vector to S(z,0).

Consider the operator

(3.1) Ly(z,D) = §§+2A ; +231§+q1
<2+B1>< +A1)+q1—288A — A1 B;
(L) (2 m) a2,

Let Ay, By € C5t%(Q) with some a € (0,1) satisfy

(3.2) 2% = —A; in Q, Tm A|p, =0, 2? = —B; in Q, ImBi|p, = 0.

Observe that

0 0
2— + A Jet =0 inQ, 2— 4+ B |eFr =0 inQ.
0z 0z

Therefore if a(z), ®(z) are holomorphic functions and b(z) is an antiholomorphic
function, then

0z
0B,
0z

0A
Ly(x, D)(eAlaeT@) (q1 _ 92 AlBl> Lae™®,

Li(z,D)(e BlbeT‘b) <q1 -2—-A1B )eBlbeT‘b.

Let us introduce the operators

o1 9(&1, &) =_ 1 (51,52)
afg_?m'/g (-2 N W/sz (-2 Tt
1 9(&1, &) =_ 1 (51752)
070 = g | TN = /Q oL ey dea

We have (see, e.g., [29, pp. 47, 56, 72]):
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Proposition 3.1. (A) Let m > 0 be an integer and a € (0,1). Then 02',07" €
L(CmH(Q), Cm Q).

(B) Let 1<p<2and1<~y< %, Then 07,07 € L(LP(Q), L7()).

(C) Let 1 <p<oo. Then 07,071 € L(LP(R), WL(Q)).

Assume that A, B, A, B satisfy (2.12). Setting Tpg = €20, 1 (e Bg) and Pag =
eA9- 1 (e=Ag) for any g € C*(Q), we have

22—4—3 Tpg=g¢g in Q, 22+A Pag=g in Q.
0z 0z

We define two more operators:

RT,Ag _ leAeT(CD—(b)a;l ge—AeT(<I>—$) ’
(3.3) 27 e ( )

R,pg = %eBef(éfé)agl (gefBe'r(éfg))

for A, B, A, B satisfying (2.12).
The following proposition follows from straightforward calculations.

Proposition 3.2. Let g € C*(Q) for some positive a.. The function R, ag is a
solution to

0 o
(3.4) 2—R; a9 — 27’8 Rrag+ AR ag=g in .

0z 0z
The function ﬁﬂgg solves

0 0% ~ ~
(35) 2£RT,BQ + 27—5737'739 + BRT,BQ =g in 2.

Using the stationary phase argument (e.g., Bleistein and Handelsman [4]), we
show

Proposition 3.3. Let g € LY(Q) and let a function ® satisfy (2.1) and (2.2).
Then

lim geT (@ =2 g — 0.

|7|=+00 J

For the proof, see Proposition 2.4 in [15].
Moreover we have

Proposition 3.4. Let g € C%(Q), g
P < 00,

o. = 0 and glyy = 0. Then for any 1 <

g RT,Bg -

279,90

+
Lr(Q)

=o(l/7) as|t| = +o0.

(3.6) HRT,W
Lr(Q)

g
270, P
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Proof. We give a proof of the asymptotic formula for 7%77 Bg- The proof for R, ag
is similar. Let §(¢,¢) = ge™B. Then

7'(5—@) ~ - _
2€_BRT,Bg = _¢ / ‘nga ¢) e™ (=2 ge, de,
T(®—d a
__¢ ( ) lim g(¢, E) T(®(¢)—
T 5540 o\B(28) (—Z

(D) dg, de,.

Let z = 21 + iz and suppose x = (1, z3) is not a critical point of ®. Then

T(@-9) G(C,0) Oeem(®—2(0)
37) 20 BR.pg=-C li ¢
( ) € B9 T 5—12-10 Q\B(x,6) C —Z 84(13(4-) 1os2
er(*7 ) 1 3¢9
— li _ T(2($)—2(C)) dé d
7T k0 O\B(z,5) ( —Z 0 ((8<<1>(§)> <12
(- Va —
_€ e lim 9(¢, C) — iy eT(@(O=2() ge, dg,.

T 540 ) 5(a,0) Z (I)(C)

Since g|3 = 0, we have

(3.8) ‘6<(~( )‘ |:z”_(’;(:| cIP(Q) Vpe(l,2).

Hence, passing to the limit in (3.7) we obtain

_ T(2-®) 1 3(¢.0) (2,2
B _ € 7(2(¢)—2(C))
2 " Repg = — /Qg—za<<a< <<>) W = 5 30y

= [ 5 (R ) e

By Proposition 3.3, we see that

Denote

(3.9) G.(z) =0 as|r|— +oo Vae.
Denote =
9:9(¢,¢)
_ 1<
T(§1a€2) - 8<(I)(C) XQ(£17§2)7

where xq is the characteristic function of Q. Clearly
T(
(3.10) z)| < / [T, &)| 51’52 dé dés  ae.inQ V.
y (3.8), T € LP(R?) for any p € (1,2). For any f € LP(R?), we set

= [ = dee
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Then, by the Hardy-Littlewood—Sobolev inequality, if » > 1 and % =1- (% — l)
for 1 < p < q < o0, then

7 fllLa2) < Coqll fllre2)-

Set r = 2. Then we have to choose 1/p — 1/g = 1/2, that is, we can arbitrarily
choose p > 2 close to 2, so that ¢ is arbitrarily large. Hence fQ % dé&; d&s belongs
to L1(Q) with ¢ > 1. By (3.9), (3.10) and the dominated convergence theorem, we
obtain

G, —0 in LI(Q) Vqe (1,00). O

We now consider the contribution from the critical points.

Proposition 3.5. Let ® satisfy (2.1) and (2.2). Let g € C**(Q) for some a > 0,
glo. =0 and gl = 0. Then there exist constants py such that

¢
— 1 s
(3.11) / geT(¢(2)7¢(z)) de = — Zpke%“p(m’“) + 0(1/7’2) as || = 4o0.
Q ™=
Proof. Let § > 0 be a sufficiently small number and €, € C§°(B(T,d)) with
€kl B@@,,5/2) = 1. The stationary phase argument yields

¢
I(r) = / ge™ ) dg = Z/ eege™ @) dx + o(1/72)
Q =1/ B(

Tg,0)

¢

= ¥ / rge PR THTVE) gy 4 o(1/7%)  as || — +oo.
k=1 B(T%,9)

Since all the critical points of ® are nondegenerate, in some neighborhood of

2

one can take local coordinates such that ® — ® — 2i71(Z,) = 22 — z2. Therefore

¢
I(1) = Zezmﬂ(ﬁ)/ / gee™ ) da + o(1/7%) as || = +o0,
— B(0,5)

where g, € C§(B(0,0’)) and ¢x(0) = 0. Hence there exist functions 71 g, 72 €
C3(B(0,6")) such that gz = 2271k, + 2Zra k. Integrating by parts, one can decom-
pose I(7) as

‘
1 e Orir  Orag 2_z2
I(r) = —= 62”w(xk)/ ( Li 2200 e g 4 o(1/72)
(1) . ; B, \ 0z 0z /
‘

N ) / (8””“ - aTQ"“)(O)X(x)eT(ZQ—ZQ) d
T 1 B(0,6") 0z 0z
1 sirpa 22
- = 62”1/’(”)/ Gre™ 2 ) da + 0(1/72)  as |7 — +o0,
T B(0,5)
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where x,qx € C§(B(0,4")), x|p(0,6'/2) = 1 and gx(0) = 0. Hence there exist func-

tions 71, 7o, € Cg(B(0,4")) such that g = 227 1, + 2272 k. Integrating by parts
and applying Proposition 3.3, we obtain

. 2 _2
lim T/ Gee™* ) dx
|T‘—>+OO B(O,(S’)

14 ~ ~
1 | 7] =400 B(0,6" 0z 0z

Therefore (3.11) follows from a standard application of the stationary phase. [

Proposition 3.6. Let 0 < € < €, and let a function ® satisfy (2.1), (2.2) and
O.N(H\To) = 0. Suppose that g € C*(Q) N HY(Q) for some a € (0,1),
and gl = 0. Then

glo. =0

(312) |7/ RrB9l=(0.) + IVR- B3l L=(0.) < CLle; ) glloa@na o)

Moreover

(3.13) IVR 59l 2@ + 17172 Rr 59l 220y + |7] | 5= Rer.B9

L2(Q)
< Cz(éla )9l ce @)nm ()-

Proof. Denote § = ge 3. Let & = (x1,22) be an arbitrary point from O, and
z = x1 + izo2. Then

= ge‘r(<I> D) -
— w0, (T g) = / —=———d& dé = lim Z / —,d& dés.
o (—%Z i=+0e—= Jo\B@.5) (—Z
Integrating by parts and taking ¢ sufficiently small, we have
1 99
- T(®—d)= _ Lt 9. 9¢ T(®—D)
(3.14) — 707N (eT PG = —= lim — % __¢ e, dés
T 6=+0 Syt _, B@ns) (C—2)5E
1 95
T a¢2 T(‘I)—E)
+ = lim =55 € dé1 dgs
T =40 JavUt_, B@ws) (C—2)(58)?
1 ~ ] -0
+ — lim (71 — iDy) =————e"(®=P) dg.
27 6540 JUt_, S(@00) (C-2)%¢

Since g[3 = 0, we have |[g[|co(s@.5) < 0%l|9llca(m)- Using this inequality and the
fact that all the critical points of ® are nondegenerate, we obtain

(’1;1 — iﬁg)%e‘r((bia) do = 0.

1
— lim / —
27 §—+0 ¢ S(F.0) (C _ Z)i

¢
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~9 ~62
Since a‘f,fz (¢, C)‘ Csl9ll e @y S W’ we see that @ty (C ¢) e LY()
and
99

(3.15) oM@ Pgy = L / =% () g, de,

T Ja (C-2)5¢

1 gac eT(2-0)

e e derde

From this equality, Proposition 3.3 and the definition (3.3) of the operator 7%7’ B,
the estimate (3.12) follows immediately. In order to prove (3.13), we observe

OR.pg OB~ ~ [dg 0B
’ 77?/7’ RT — -
oz oz mBIT B{ oz 077
9B a%(z)
T D . D
+ 276T(<I>7<I’)+B ‘%7779670?74)) dfl dfg
m Q (—7z

Proposition 3.1 yields

0B ~ ~ 0 oB
HazRT,Bg + RT,B{g - } S C4H9HH1(Q)

0z 82 L2()

Using arguments similar to (3.14) and (3.15), we obtain

0B(C) _ 03(2)
T e 9z

Gem(®*=) dg, de, <C

21 Jo Z -z L2(Q) (@nH @)
Hence
aRT BY
< C (S .
H 0z Ly sllgllc ()NH(Q)
Combining this estimate with (3.12), we conclude that
VR~ B3llr20) < Crllgllca@nm -
Using this estimate and equation (3.5), we have
0P ~
|7l || 5 Rr.BY < Gsllgll co@nu @)
92 . Ca(@NH(Q)
finishing the proof of the proposition. O
Let e1,ea € C(Q) satisfy
(3.16) el +es=1 1in Q,

and let es vanish in some neighborhood of H\ Ty and e; vanish in a neighborhood
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of 9Q. We set

15) 0z

Proposition 3.7. Let A, B € C°%(Q) and A, B € C%T*(Q) with some o € (0,1)
satisfy (2.12). Let e1,eq be defined as in (3.16). Let g € LP(QY) for some p > 2,
supp g CC supp ey and dist(T'o,supp g) > 0. Define
ea(Pag — MeA)

270,® ’
where M = M(z) is a polynomial such that %(PAg . MeA)m = 0 for any k
from {0,...,6}. Then

Pz, D)(ue™®) = (282 + A) (28 + B> (ue™).

u = ﬁT,B(el(PAg - MBA)) +

eT?

(3.17) Pz, D)(ue™®) = ge™ + I

hy as || = 40

where
[l (@) < CoP)l9gllLr ()
and for some sufficiently small positive € we have

1
(3.18) W”VUHB(Q) + |T|1/2||UHL2(Q) +lullgr-0.) < Crollgllzr )

Proof. By Proposition 3.1, P4g belongs to WZ}(Q) Since p > 2, by the Sobolev
embedding theorem there exists a > 0 such that P4g € C%(Q). By properties of el-
liptic operators and the fact that supp eaNsupp g = ), we have P4g € C®(supp ez).

The estimate (3.18) follows from Proposition 3.6. Short calculations give

TP P —M@A)
1 D TO) _ TP L D 62( Ad
319)  PlaD)u) =g + p(ep) (A
This formula implies (3.17) with h, = e!™¥P(z, D)(@(Igggijeﬂ)/sign T. O

The following proposition is critical to the construction of the complex geo-
metrical optics solutions.

Proposition 3.8. Let f € LP(Q) for some p > 2, dist(Tg,supp f) > 0, ¢ €
HY2(T), and € a small positive number such that O N (H\T) = 0. Then there
exists 19 such that for all |T| > 7o there exists a solution to the boundary value

problem
(3.20) L(z,D)w = fe™ inQ, wp, =qe™?/T,
such that
—T 1 —T —T
VTl lwe™ ™20y + Wll(vw)e o) + llwe™ ™m0,

< Culllfllze) + llall iz g))-



PARTIAL CAUCHY DATA FOR ELLIPTIC OPERATORS 1003

Proof. Let x € C§°(€2) be equal to one in some neighborhood of the set H\'y. By
Proposition 2.6 there exists a solution to the problem (3.20) with inhomogeneous
term (1 — x)f and boundary data ¢/7 such that

(3.21) [wre™ ™| mrr @) < Crallflle2@) + llallmem))-

Denote .
(Pa(xf) — Me*)

270,P
where M = M(z) is a polynomial such that %(PA(Xf) — ]TjeA)M = 0 for any
k from {0,...,6}. Let ¢, be the restriction of ws to I'g. By (3.12) there exists a
constant C;3 independent of 7 such that

ws = R_7 p(er(Palxf) — MeA)) + 2

(3.22) 1712 qr 17200y < Casll fll Lo

By Proposition 3.7 there exists a constant C14 independent of 7 such that

1

7]

(323) VI llwse ™ lliaga) + = (Vw)e ™™ |2y + lw2e™ v 0,

e/

< Cull fllzr -

Let 67,57 € H'(Q) be holomorphic and antiholomorphic functions, respectively,
such that (a,e? + b.eB)|r, = —¢,. By (3.22) and Proposition 2.3, there exist
constants C15,C16 independent of 7 such that

_ - £l e e
(3.24) @110y + 107 i1 () < Cusllgrll gy < Cus |< )

LD

The function W = (wq + a,e?)e”™ + b, BT satisfies

hr .
Lz, D)W = xfe™® 4+ ¢7% inQ, W|r, =0,

VIl

where

(3.25) 1l 220y < Crell £l 220
with some constant C7 independent of 7. By (3.23) and (3.24), we have

b

VIl

(3:26)  I7[[[We ™|z ) + [(VW)e ™| 2 + IWe ™| gm0,

< Cusllfller)-
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Let W be a solution to problem (2.47) with inhomogeneous term f = —h, A/[7]
and zero boundary value g = 0. Estimate (2.48) in Proposition 2.6 takes the form
(3.27) [We™ ™| gy < Cl9||ﬁf||L2(Q) < Cooll fllz2(0)-

The function w = wy + W + W solves (3.20). The conclusion, that is, the estimate
for w follows from (3.21), (3.26) and (3.27). O

84. Complex geometrical optics solutions

For a complex-valued vector field (41, B1) and a complex-valued potential ¢, we
will construct solutions to the boundary value problem

(4.1) Li(x,D)uy =0 inQ, wulp, =0,
of the form
(4.2) ui(z) = ar(2)e™ T 4 d, (E)eBﬁ'T6 +upre”? + upe’?.

We recall that L (z, D) is defined by (3.1), and A; and B; are defined by
(3.2) respectively for A; and By; moreover a,(z) = a(z) + a1(2)/7 + a2, (2) /72,
d-(z) = d(z) + d1(2)/7 + d2,(2) /72, and

(4.3) a,d € C°T(Q), %:0 in Q, % =0 inQ,
(4.4) (ae + deBr)|p, = 0.

Let Z be some fixed point from H \ 092. Suppose in addition that
oFa A

=0 Vke{0,...,5}, a(@)#£0,d(7)#0.
H\{z}

Such functions exist by Proposition 7.2.

Denote

B
g1 =15, <<Q1 - QQ A131>d681> — My(2)e™,

0z
0A
g2 = Pa, ((fh - 26‘71 - A1B1>G€A1> — My (z)e,
2
where M (z) and M3(Z) are polynomials chosen such that
g1 9" gs
4.6 = =0 Vk 0,...,6}.
(%6) o7 |, 0 |y, € 10,6

Thanks to our assumptions on the regularity of A;, By and ¢, the functions g1, go
belong to C5+(Q).
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By (4.6) and (4.5),

gy Mgy

. = . =0 ifk+j<6.
62']682] H\{F} 32’“827 H\{F} ' )=

(4.7)

The function a;(z) is holomorphic in Q and d;(Z) is antiholomorphic in © and

g1 g2
20,9  20.®

The existence of such functions is given again by Proposition 2.3. Observe that by
(4.7) the functions ezg; /0, ®, e2g2/d.® belong to the space C*(€2). Here we recall
that ep € C*°(Q) vanishes in some neighborhood of H \ 'y and that (3.16) holds.

Let
0B —
/g\l :TB1(<q1 —2671 —AlBl>d16 1) —MQ(E)GBI,

§2:PA1(<(11—2 —A B1>a16 ) Ml() ',

where M, (z) and Mg( ) are polynomials chosen such that

0*g
Bz

et 4 dieP = on I'y.

9" go

(4.8) =
02k |,

=0 Vke{0,...,3}.

H
The function wy; is given by (recall (3.3))

(49)  wn = —eTR_. 4 {er(gr +G1/7)} — e—irv 2O 9/
’ 270,
YR -~ irw €2(92 + G2/7)
— ™R, p, {e1(ge +G2/7)} — € ”’W
We set
2iﬂb(5) 722’7'1!1(5)
Ay (1,7) = A(1,7) =

|det 4" ()| 1/2 |det () |'/2

Now let us determine the functions u12, a2(z) and da(Z).
First we can obtain the following asymptotic formulae for any point on 9€:

et (N (7, 8)oy(T)  A_(1,T)m ()
(4.10) R_; a,{e191}]oa = 572 < EEEE + = ) +W- 1,
~ eBi=2imy /A ,x)op (T A (r,2)mq (T
(411)  Rep{ergetlon = —5 ( +(f 0@ +(T: )71( )> +W,o,
T (z —2)? Z-z

where

(412)  o1(@) =

9:91(7) () = 1(@51(5) Be@) 226 (7) aggl(%))
o2e(x)” T 2\ 020(2) 920(3)  o2d(z) O20(T)
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(4.13)  01(7) = 2005 26(z) 020(T) 020(2) GZECI)(%)

g1 =e Mgy, go = e Brgy, and W, 1, Wr 2 € HY/?(T) satisfy

_ 05g2(7) (&) = 1<32§2(5) BE(T) 9292(T) 82§2@)>
) 1T 2 ’

(414) ||WT,1||H1/2(F0) + HW—,—’QHHl/Z(FO) = 0(1/7’2) as |T| — 400.
The proof of (4.10) and (4.11) is given in Section 8.
Denote
_ A (@) ma(T) _ B (_01(®)  m(T)
pete) = (D ) ) 2D 29,

z_
Thanks to Proposition 2.3 we can define as 4 (2) € C*(Q) and d» () € C%*(Q)
satisfying

(4.15) ag,ieAl + dgieBl =p4+ only.
Straightforward computations give

(416) Ll(SC, D) ((a + CLl/T)e'AlJrTq) + (d + dl/T)681+75 —+ e“”ull)

0B ~ ~ 15
- (q1 -2 [fl B A1B1>€T¢ <_RTaBl{el(92 +92/7)} - e2(g292/7)>

ES 270,
+ <q1 - 2% = AlBl)ew (_RT,Al{el(g1 9/ - W)
(o) (o o) S
(22 ) (2 ) O R

Using Proposition 3.4 we transform the right-hand side of (4.16) as follows:

(4.17) Ly(z,D)((a + ay/7)eM T 4(d + dl/T)eBH'T6 + u11€™%)

= — (lh — 2% — AlBl)eTCD g

0z 270,P

0 0 ea(ga + Go/T)e™®
<28z+A1)(28z BT

9 9 e2(g1 + G1/7)e™®
(282 * Bl) (28z * A1> 270.%

0B T 92
— (- 2222 — A By e
(ql 0z ! l)e 270,d

+e"x0. OL4(Q)(1/T2) + eT‘PXQ\OS, 0L4(Q) (1/7‘)

as |1| = +o0.
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We are looking for w12 in the form w2 = ug +u—_1. The function u_; is given

by ‘ 4 , ,
(4.18) U_q1 = el:b ﬁT,Bl {e1g5} + e_:w R_;a,{e1g6} + e;f;;;f 62257’_6268_;:) )
where
(4.19) g5 = Pa, <(QI - 28{2;;1)14131)92

+ (236; + A1> (2;2 + Bl> W) — Ms(2)e™,
(420) g6 =Tp, ((ql - 28%13;131)91)

Here Mj5(z), Mg(Z) are polynomials chosen such that

9s51% = g6l = Vgsln = Vgsln = 0.

Using Proposition 2.3 we introduce functions as o, da,o € Wi () (holomorphic and
antiholomorphic respectively) such that

421 ALy gy 0Bt = 96 T.
( ) a,2706 + 2706 28zq) + 2az¢ on 0

Next we claim that
(422)  |R-ra{ergolla mo) + IRr s {ergs gy = o(1/7)  as |7 = +oc.
To see this, let us introduce the function F with domain I'y:
F = QefAleT(q)*g)R_T,Al {e1g6}
=zt (ele—A1+T<q>_<1>) Tp, (91 — 2% — A1B1)gs) — Mge® )

20,0
Denoting
4, T8, (1 — 2221 — Ay By)gy) — Mg(2)eP!
r@) =e 20.® ’
h z
e e 1 [ ei(z)r(z)er™?
F(z) = _;/ = d&y d§s
Q (—7
2
_ 1 i al €1 (l’) 7’(117) 2iTY
T 2imT /ka_l oxy, (8zk VY12 (—=% ¢ dey dt

Since Sr_, %(Iéflﬁ? el(z)r(x)) € LY(Q), we have F = o(1/7). This proves (4.22).
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Now we finish the construction of as -(2) and ds -(Z) by setting

dy,r(Z) = do0(Z) + (24 (2) Ay (7, T) 4 do,— (Z)A_ (7, T)),

a2, (2) = a2,0(2) + 5(a2,4(2) A4 (7, ) + a2, (2) A (7, 7)),

)

where aa +, ds + satisfy (4.15). In order to complete the construction of a solution
to (4.1), we define ug as the solution to the inhomogeneous problem

(4.23) Li(xz,D)(upe™) = h1e”™® in Q,
(4.24) upe™ =€e"?m;  on Iy,
where
hi(1) = —e ¥ Ly(x, D)(aTeAlJrT‘I) +d BT e + u_1€"%),
m; = —eiT“"(CLTeAﬁT<I> + dTeBlJrT6 +u11€”? +u_1"%)|p,.

Observe that by (4.17)-(4.19), we can represent hy(7) in the form hi(7) =
hll + hlg, where

(425) thlHL‘l(Q) = O(]./T2), ||h12||L4(Q) = 0(1/’7’) as |T‘ — +OO,
and for some positive ¢,
supp h11 C O,  dist(supp hi2,98) >0
and
(4.26) lwoll 12y = o(1/7?) as |1| = +o0

by (4.8), (4.14), (4.15) and (4.21).

By Propositions 2.6 and 3.8, there exists a solution to (4.23), (4.25) such that
L
Vi

84.1. Complex geometrical optics solutions for the adjoint operator

(427) ||UOHH1(Q)+V |T| ||U0||L2(Q)+||’UJO||H1,1—((9€) = 0(1/7’) as |7'| — 400.

We now construct complex geometrical optics solutions for the adjoint operator.
This parallels the previous construction since the adjoint has a similar form.

Consider the operator Ls(x, D) = 4%% + 2A28% + 232% + go. Its adjoint
has the form

by 00 0 gm0 04y 0B
Lol D) =45 5 = 2e gz = 2Ba 4+ = 252 —
(0 N[0\ 0A
= (Qaz B ) (Qaz ‘B2> T2~ Ab
8 —\[(.0 0B;
= (282 - 2) (28 - A2> +q727 27822 - AQBQ.
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Next we construct solutions to the boundary value problem
(4.28) Ly(z,D)*v=0 in€Q, wvlp, =0,
of the form
(4.29)  wv(x) = b (2)eP277® 4 cT(Z)eAQ_Ta +ov1e7 7P 4 v2e” ¥, wlp, = 0.

Here Ay, By € C6T(Q) satisfy

(4.30) R A2 =A; inQ, ImAlp, =0, 28—132 =By inQ, ImBs|r, =0,
0z 0z

and by (2) = b(2) + b1(2)/T + ba,r(2)/72%, ¢ (2) = c(Z) + a1 (Z) /7 + c2.+(2) /72,

(4.31)  b,ce CT¥(Q), % =0 inQ, % =0 inQ,

(4.32)  (beP2 + ce™2)|p, =0,
kb k

(4.33) % - ig =0 Vke{0,...,5}, b@E)#0,cF) #0.
g 97 o

The existence of b and c is given by Proposition 7.2. Denote

0Ay  ——

g3 = PBg((QQ — 287; - A232>b€82> - ]\43(2)6627
0By ——

gq = TA2(<q2 — 28722 — AQBQ>06A2> — M4(§)6A2,

where the polynomials M3(z), My(Z) are chosen such that

3k93 5k94
4.34 - =0 Vkel{0,...,6}.
(4.34) o2k |, 0FF |y { }
By (4.34) and (4.33), we have
k+j k+j

(4.35) 0795 _ 0 =0 Vk+j<6.

Ozk077 - 0zko7 ~

H\{z} H\{z}

Observe that by (4.35), ¢3/0,®,94/0,® € C*%(Q). Using Proposition 2.3, we
introduce a holomorphic function b1(z) € C?(Q2) and an antiholomorphic function
c1(%) € C?(Q) such that

€203 €204
20.® 20,9

(4.36) bieB? + cret? = on I'p.

Let

N _ 0Ay —— —
g3 = P—B2<<q2 -2 872 AQBQ>b1€B2) - Mg(Z)eBz,

z
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~ 0By
g4 = T <(q2 — 287; — AQBQ) cie > M4( ) ,

where the polynomials Z/W\g(z), M, (%) are chosen such that

ak§3 8k§4
4.37 = =0 Vke{0,...,3}.
(4.37) o2k |, o7 €{0,...,3}
The function v1; is defined by
—iTY R -~ e"imve +gs/T
(4.38) v =—e TR {ea(gs +Gs/7)} + 22(?93‘11 i)
. 1T¢ ( + /T)
_ m—z/;R o +A €2(ga 94
e r_Be1(9a +ga/7)} + 253

Here we set

R-r _37{9} _ Bo T(<I> <I>)a ( —Ba2 e‘r(<I>76))

ﬁ_T _AQ{Q} =

provided that As, By, As, By satisfy (4.30). By Proposition 8.1 the following asymp-
totic formulae hold:

1o
2¢ ’
% <I>7<I>)a; (genger(tbf@)),

- A +27i0 /A (T = A (1. D)t (T —

(4.39) R_, _s{ergatlon = Sy ( 2@ | A2 @)) s,

e 27 (z —2)2 z—z

eBo2mi (A (7 D)V (T) A (7, D)t (F)

(4.40) RT’7£{€1Q4}|3Q = 972 ( (Z — 2)2 + =, > + Wi -,
where

. 0zg5(T) o1 ((%53(5) Bo(x)  Igs(7) 53?3@))
4.41 = , t = - — + — — ,
( ) ’1"1(1') 32(1)(5) 1(35) 9 62@(.%') 920 (7 82‘1)(32) 83(1)(.%)

o~

(4.42) 71(3) =

Az

where we set g3 = e "*2g3 and gy = 6’5294. Here the functions WTJ,WTQ IS

H'2(Iy) satisfy
(4.43) ||W7—,1||H1/2(F0) + HWT,QHHU?(FO) = 0(1/7’2) as |7‘| — +00.

Using Proposition 2.3 we define holomorphic functions bs 4 (2) € C?(2) and
antiholomorphic ¢z +(Z) € C%(Q2) such that

(4.44) bg,iesz + CgieA2 =pg only,
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where py are defined by

Mx):e&( "(3) +§@>)7 ﬁ_(x):eAQ( (@) +§1@>)_

(z=2)2 Z-2z (z—2 zZ—Z

Similarly to (4.17), there exist positive numbers € and €' such that
(4.45) Lo(x, D) ((b+ b1 /7)e®> ™% + (b + 1 /T)e2 T 4 vite %)

-7® B -7 A
gse T _ aBQ —_— gqc€ T _ (9142 —_—
= —2— - ABy | — -2 — AyB
270, (Q2 92 2 2) 970.0 <Q2 9% 202

0 — 0 ——\gze ™®
+ <2az B B2> <2az - AQ) 27,0

0 — 0 = g46*76
(o 2) (%)

+ 67T¢XQ\020L4(Q)(1/T) + eiﬂpXOEOLAL(Q) (1/7’2).

We are looking for vys in the form vy2 = vy + v_1. The function v_; is given
by

i —ri —irep
(4.46) v_q1 = _¥RT7_372{€198} _¢ wﬁ_f’_fz{elm} + %
e2gge’™
2729,%
where
(447) g =P B((%—28£2 —ABa)gs (26 _Bz) (26 _Az) g3 )
—b2 20, 0z 0z 20,
— My (2)ePz,
2 20, 0z 0z 20, P
— Ms(2)e”,

and M7(z), Mg(Z) are polynomials chosen such that
(4.49) 97ln = gsln = Vgrlau = Vgs|lu = 0.
Using Proposition 2.3, we introduce by g, ca 0 € C?(Q) such that

4.50 by €52 A 97 98 Ty
(4.50) 2067 0 = T T oge Mo

Similarly to (4.22), we have

1 1 =
—IR. mlergstlmwo) + —lIIR . g{ergrtllmry) = o(1/7%)  as |r| = +o0.
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Now we finish the construction of by -(2) and ¢y -(Z) by setting

(451) bQ,T(Z) = b270(2’) +
(452) CQ’T(E) = 62’0(5) +

(b2, + (2)A4(7, %) + by, (2)A_(7, 7)),
(c2.+(R)AL(T,T) + c2, - (2)A (7, 7)),

N D=

where by y,co _ are defined in (4.44).
Consider the boundary value problem

(4.53) Lo(x,D)*(e" " uvg) = hoe™ ™% in
(454) e_ﬂp’Uo‘FO = mge_w,
where
he = —€"?La(x, D)*(bTeBQ_T‘i’ + cTeAQ_T6 +vp1e 7P fv_1e7 %),
my = few(bq.e““rT<I> + cq.eBTT6 +vi1e 7P 4 v_1e77¥).

By (4.45)—(4.47) we can represent ho in the form he = hoy + hoo where for some

positive e,
supp ha1 C O,  dist(supp haz, 9Q) > 0.

The norms of the functions hg; are estimated as

(4.55) Ihotll o) = O(1/7%),  |lhaallpae) = o(1/7)  as |7| — +oo.
By (4.51), (4.52), (4.44), (4.43) and (4.31), we have

(4.56) [voll gri/2(rg) = 0(1/7%)  as |7] — +oc.

Thanks to (4.55) and (4.56), by Propositions 2.6 and 3.8, for sufficiently small
positive e there exists a solution to problem (4.53), (4.54) such that

1

VIl

(4.57) llvoll 1 ) +V/ || llvoll L2(e) + l|voll 17 (0,) = o(1/T) as |7] = 4o00.

85. Proof of Theorem 1.3

Let u; be a complex geometrical optics solution as in (4.2). Let us be a solution
to the boundary value problem

Bug

v

o aul

(5.1) La(z,D)uz =0 inQ, wualsq = uilaq, = o
T v

r
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Setting u = u; — ug and ¢ = q1 — ¢, we have

(5.2)  Lo(w,D)u+2(A; — A@% +2(By — Bz)% Yqui=0 inQ,
ou
(5.3) u|aQ = 0, % . =0.

Let v be a solution to (4.28) in the form (4.29). Taking the scalar product of (5.2)
with v in L?(£2) we obtain

B Ouq Ouy _
(5.4) O—/Q<2(A1 Ag)a——i—Q(B — Bs) 7% —l—qul)vdx.

Our goal is to obtain the asymptotic formula for the right-hand side of (5.4). We
have

Proposition 5.1. The following asymptotic formula is valid as |T| = +o0:
(5.5) Iy := (quq,v )LQ(Q /(anG(AlJrE) + nge(BlJrBiz)) dx

+ <q aib+ acy)e (AI_E) + q(abl—f—bdl)e(““z_lgl)) dx
a\7T T

+ l - s dx
7 Jo\20.6 " 200 20.0 ' 20.9
(qa V(&) Ay (7, )eATB)@) 4 (qde)(Z)A_ (1, 7)eBrA2) @)

T

<ag4e 092672 Bgleg_i_ dgs

1 A1+BQ+2T1’¢) (V vw) d
271 Joq [V[?

1 (v, V)
_ de B+ Az —27i1) d 1 .
57 /aQq ce Vol o+ o(1/7)

Proof. By (4.2), (4.9), (4.27) and Proposition 3.4, we have

(5.6) ur(2) = (a(z) + a1 (2) /7)™ 4 (d(Z) + dy (2)/7)eP T

gler@ g2€Tq>

270,® 270.®

+ €T¢0L2(Q)(1/T).
Using (4.29), (4.38), (4.57) and Proposition 3.4, we obtain

(57) U(.Z‘) e (b(z) + bl(z)/7)6327'r¢> + (C(E) + 81(5)/7')6"42776

) —7P
ga€ gse —
a—— +e %o 1/7).
27'8,2‘1) QTazé L2(Q)( / )
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By (5.6), (5.7) and Proposition 3.3, we obtain

(qu1,V)2(Q) =

_ 67’5 6'r<I>
(q ((a + a1/7’)e“41+7¢ + (d+ d1/7’)681+7<I> - ;ﬁ — ngﬁ + €T¢0L2(Q)(1/7)>,
P —7d

_r i e e _r
(b4by/7)eB2"T® 4 (c4¢; /7)™ q>+g24787<1> +g23782<1> +e ”OLZ(Q)(1/7)>

L2(Q)
1 _ 1 o
= / (q <db+ —(d1b + db1)> ePribr 4 Q<a0+ = (ac1 + a10)>6A1+A2) dx
Q T p

1 / <ag46Al Zgaefz bgrebe d93651>
- + dx
Q

20.0  20.% 20.0  20.9
+ / q(ageAlJrBjJ”(@_g) + dEeBlJ”TﬁT@_@)) dz +o(1/7).
Q

+7
T

Applying the stationary phase argument to the last integral, we finish the proof. [J

We set

U(x) = aT(Z)eAl(x)+T<I>(z) + d.,.(E)eBl(m)JrTq)(Z)
V(.%‘) — bT(Z)eB2(3:)—T<I>(Z) + CT(z)eAQ(x)—T@.

Short calculations give

)

(5.8)

(59) Il = 2((141 - Ag)azjl7V)
0z ) 129

0 0o da 0B -
(o () )

bTeB2_Tq> + CTeA2_Tq>>

, 12(0)
= 272_k:‘$k + / {—(Al — Ag)Bldraelgl-i_AQ_mﬂ/}
Q

R B e 1

+ / (Al — AQ)(I/l — iyg)aTEeA1+E+2iT¢ do + 121(89) + 0(1/7')
o0 T
and

(5.10) I := ((Bl — B2)87[:{ V>
0z " ) 12(a)

)
z

= (2(31 — BQ) <(J,T€A1+T(I)66.Al + aa(d_regl"r‘r‘b)) , bTeBz—T@ + CT€A2—7<I>>
z z

L2(Q)
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727k, +/ 2B — Bz)%aTE6A1+F2+2Ti¢ dz
Q 4

I
NE

b

=1

8 — —
T(Bl _ BQ)dTeBl-l-T(ID’CTeAz—T@)

0z

L2(Q)

) az T

T N T N

2(B; — Bg)alTeBl*T5 %c eAzTCD)
L2(9)

o2 1
(B]_ — BQ)(I/l + Z'VQ)dTaeBl—F’AQ_Q”-w do + *12(89) + 0(1/7’)
T

+
cp\
2

|
NE

T2_k%k + / {—(Bl - Bz)AlaTae'Al_‘—E—i_Qﬂw
Q

x>

=1

— 2—_(By — By)d,erePr AT (g BQ)chTAQeBﬁA”W} dzx

&

. 1
+ / (By — By) (1 + iv)d, P A2 =27 o 4 ZT,(0Q) + o(1/7).
o0 T

Here the constants ky, ki are independent of 7 but may depend on A;, B;, ®. The
terms 77 (0€2) and Z»(0N) are given by

(511) Il (39) = / (Al - A2)6A1+A72(27f6(a27+/\+ (7'7 5) + 1127_A_ (7'7 %)) dz
Q

- 0P
n / (A; — Ag)eitHz 8870/(02,+A+(T, T)+coA_(1,7)) dx
Q

0 ;00 _ ~ ~
=-2 A £eA1+A2£c(a27+A+(T, Z)+ag,_A_(1,7))dx

0 40P _ _
_QA£6A1+A2£Q(027+A+(T,x)—|—027_A_(T,x)) da

- 0P ~ ~
= — / (U]_ + ’L'l/g)e'A1 +A2 EE(G/Q,"‘A"F (T, ZL‘) + G/Q,_A_(T, ZL‘)) do
o0

;0P = —
- / (rn + iV2)€A1+A2£a(CQ’+A+(T, T)+coA_(1,7)) do
o9

and

(512) IQ(@Q) = / (Bl - BQ)GBlJrFZ%B(dQ,_FAJ'_(T, E) + d27_A_ (’7', 5)) dx
Q

5 0D
+/(B1 —B2)631+Bzg—zd(bg7+A+(T,E)+b27_A_(7',5)) da
Q

_ a 31-0-672@7 e ~
=-2 A 55¢ a@b(dz,+A+(T,m) +do,_A_(7,7))dz

gezsﬁl?z@
0 32 82

-2 d(ba+ Ay (7,Z) + bo,_A_(7,7)) da
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. 85 .
= 7/ (v1 —ivg)e Bi+B, e b(do + Ay (1,Z) + do,—A_(7,7)) do
o2

0]
_ / (1 — ivp)eP1+B2 %d(bg AL (1, T) + bo AL (7,7)) do.
o9
Denote

U, = —€T¢R—T,A1{€191}7 U = —674)7%7,31{6192}-

Short calculations give

8U T
(5.13) 8’1 (—e191 + AR a, {e1gr})e™®,
oU. =
(5.14) 257 = (~e1g2 + BiR g, {erga})e”™
We have

0
(5.15) aRiT’Al {6191}

0A 0P d(e
37173 raeigi} + TgR*T,Al{elgl} + RT,AI{ (61291) }
0A 0P
—R_ra, {6191 82’1} —TR_7.4, { azelgl}
_ d(e191)
N R_T’Al{ 0z
et 5 50— 52(2)
+To 677@7@)/9%(61916 1)(€1, £2)e™ PO~ g, dey
e = 941(¢,¢) - 6«11 (2,%2)
+ 76_7@_@)/ % ? (exgre™1) (€1, &2)e™ @O~ dg, dey.
2m Q (—=z
Let
(z,9,A,7)
93(0) | DA 0BG) | DAG:)
1 T + — + > A (B
= 5 ( 9¢ ¢ ) ( o )elge Am(2-2) d&, ds.
T Ja (—=z
We set

61(1:77-) = ®($7917A1a7')7 62(1:77-) = 6(587?238717 T)a
63($7T) = 6(37’9737/472’ _T>7 64($7T) = 6(1’,94,827 _T)'
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By (3.16), (4.6), (5.15) and Proposition 3.5, we obtain

0
(5.16) aR,T’AI{elgl}

d(e 3
= R_T,Al{ (aljl) } —eMe TG (1) + 0p2(0)(1/7).

Simple computations provide the formula

0 ~
(517) %RT,BI {6192}

0B 0D ~ 0
= 8*1 TBl{e1gz}+Ta 731{61gz}+72731{(352)}
~ 0P ~ oB
_ TRT,Bl{azeng} - RT,Bl{ 8*1 6192}
5 d(e192)
_RT’BI{ oz
R 92(0) - 22(z)
oz
+776T(‘1’—‘I’)/ 67—7(61926 1) (&1, &)e T(®(O)— C))d& dés
Q (—7Z
B¢, ) - % (2,%)
@) [ B T e e ) (€, £0)e MO dy de.
T Q C —Z

By (3.16), (4.6), (5.17) and Proposition 3.5, we have

0 ~ ~ (e T
(518) %RﬂBl {6192} = RT,Bl{ (81292)} — eBleT(@—¢)®2(.77) + OL‘Z(Q)(l/T)-

Denote

Vi= —6_7(1)7%_7,_72{@193}7
Vo= —e PR__g{ergs}, P(z,D)=2(A —A )g +2(B; — B )g
2 = r—Bs 161945, s = 1 2 2 1— D2 ek

0
Q = —(B1 — B2)A; — (A1 — A2)Bs — 25(1‘11 — A2) + (1 — q2),

0
Q, = _(Al — Ag)Bl — (Bl BQ)AQ — 26 (Bl Bg) —|— (q1 — QQ).

The following proposition is proved in Section 8.

Proposition 5.2. There exist numbers k, kg independent of T such that the fol-

lowing asymptotic formula holds true:
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(519) (P, D)(Us +Un), byeP ™ 4 et g
+ (P(Q?, D)(aTeAlJrTq) + dTeBl+T$), V1 + %)L2((2)

:H@—Q/ (11 + i02) e 0 @) B4 (z, 7) do
o0

T

+2 / (1 — i02) P B ()8 (@, 7) do
o0

+2/ a,(2)B3(x, 7)(11 —I—iug)eAﬁ“Tzdo
[o19)

_2/ (1 — i2) BB b (2) s (2, 7) dor
o0

A_(7,7) {394(5) }6—62(5)/ (1 — ivy)deBi+52 p
o0

T 0z

. Af(T, E) 391 (%) e*Al(E) / (Vl + iV2)66A1+T2
T 0z 50 Z—z

g

+

Z—Z

do

__ ; Ar+Ay
4 A+(m ) Ay (r,T) 893( ) AQ(E)/ (1 + Z52)@6 + do
T 0z 20 zZ—z

do

T 0z

2:(Q+abA+(T Z)e A1+B2 + Q_tdA_(1,%)e 51+A2)( ).

zZ—z

_ A (1.7) 992(3) s, (3 / () — ivy)bebBi+Bz
o

By (5.13), (5.14), (5.16), (5.18) and Proposition 3.3, there exists a constant Cy
independent of 7 such that

(P(z, D)(Uy + Uz), Vi + V2) 12 ()
0 = _
= ((A1 — Aj) (—2 (RT,Al{ (gljl) } - 6“416_7—(@_(1))61 + OLZ(Q)(]./T))eT(I)

Bye
+ <—elgz + 2181?1) +oL2<Q>(1/T)> ),v1 + Vz)

L2(2)

+((Bl — By) (—8191 + Al 8 <I>

o <1/r>)e7¢,v1 + V2>
12(0)

( (BlBQ)< TBl{ 6192 } BleT(q)(I))@Q+0L2(Q)(1/T))6T®,V1+Vr2>

=Co/T+o0(1/7) as|T| = +o0.

L2(Q)

Next we claim that

(5.20) (P(z, D)(uoe™),v)12(q) = o(1/7)  as [r] = +o0,
(5.21) (P(z, D)ui,voe” %) 2() = o(1/7) as || = +o0.
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Let us first prove (5.21). By (4.27), (4.57), (5.16), (5.18), and Propositions 3.2 and
3.4, we have

(522) (P($,D)U1,U0677@)L2(Q)
= (P(z, D)U,voe” "?)12(q) + 0o(1/7) as |T| = 4o0.

We recall that the functions & and V are defined by (5.8). By (4.57) we obtain
from (5.22)

(523) ('P($,D)U1,U0€7W‘D)L2(Q)
0P . oD .
= 7-/ x| == (A1 — Ag)ae TV 4 Z—(By — By)beP ~Y w5 dx + o(1/7)
Q 0z 0z
as || — +oo. Here x € C§°(1) is a function such that y = 1 in some neighborhood
of supp ey and H \ 90 C supp es.

By (4.53), the functions vy = e~"™¥7g and vg, _ = "%y satisfy

e La(x, D)*(e"™vo,4) = hoe'™  and e Ly(x, D)*(e= vy, _) = hae TV,

More explicitly, there exist first-order operators Py (z, D), k = 1,2, such that

= 0® [ _0v
eT‘i)Lg(.Z‘, D)*(6_7¢v0’+) = A’UO’J’, — 27‘5 (2 3027+ — A2U0’+> + P (SL‘, D)U0’+
=o0r2(q)(1/7) as || = +oo,
676L2(1:,D)*(e*7¢v07_) = A75 - — 27’% (2 agoz,— - Bgv07_> + Pa(z, D)vg =

=op2)(1/7) as 7| = 4o0.

In the above equalities we used (4.55).
Let x1 € C5°(Q2) be a function such that x; = 1 on supp x and g € C?(Q).
Taking the scalar product of the first equation with Y7g, we obtain

o 0
/S; 27'51}0,_;’_)(1 (282 + Ag)g dz
— * 0P 0
—o(1/r) = [ (F(d + Piw D))ag) + 270550 5 + 42 ) ) da
Q 027\ 0z
By (4.57) we have

0P 0
(5.24) \/(;Ta’l)oﬁ_xl (2(% + Az)gdac =o(l/7) as || = +oo.
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Taking the scalar product of the second equation with ¥1g with g € C%(Q),

we have
0 0
/9278 To, X1( 7 +32>gdx
0P[O
o(1/7) — To,— (A + Pa(z,D)*)(x19) + 2700,—9—= | 2= + B2 | x1 | dz.
0z \ 0z
By (4.57) we obtain
0P 0
(5.25) A 27£KX1 (28,2 + Bg>gdm =o(l/7) as|r| = +oo.

Taking g such that (2 % + As)g = (A] — As)eMa(z) in (5.24) and g such that
(22 + Ba)g = (By — B2)b(2)eP in (5.25), from (5.22) we obtain (5.21).
In order to prove (5.20), we observe that
(5.26) (P(x, D)(upe™),v) 200y = (P(z, D)(uoe™), V) 2(q) + o(1/7)
= (P(z, D)(uoe™), xV) 2(q) + o(1/7)
— (uoe™, Pl D) (V) oy + o(1/7) a8 || = +o0.

Then we can finish the proof of (5.20) using arguments similar to (5.23)—(5.24).
Denote

€205 ~ €296
R, , = —
2720, + Re{egs/7} M 2720,

€297 1 €298
- -R ;o Mi= "=
2720, T .,.7_,42{6197} 4 T20:P

My = +7€—T,A1{€196/7—}7

Mg = - 7%_7,_37{6198/7}

Then there exists a constant C independent of 7 such that

(5.27) (P(z, D)(e™* My + eTgMQ),'U)LZ(Q)
+ (P(Z‘7D)U,677—¢M3 + 67T6M4)L2(Q) =C/t+o(l/7) as|r|— +o0.

Denote
ea(g1 +91/7) ~ ea(g2 +92/7) ~
X = - —r s X - —_—— - - - ,
1 2700 R_ra,{€1g1/7}, X2 5700 Rr i {e1g2/7}
e +g3/T ~ N e +gu/T N
Xy = e2(gs +93/7) _ R_, _milegs/7}, Xa= e2(ga +94/7) _ R, _gAeida/7}.

270, 270D

Then, using the stationary phase argument, we conclude that
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(5.28)  (P(2, D)(e™®Xo+e"®X1),0) 12 () + (P2, D)u, e "X +e T2 Xy) 12

=Ci1+Co/7
1 0%, - By 27it . @ Ay —27ip (Vy,v)
+T/f<(A1 AQ)&XQb@ e (Bl B2) 8§X1b6 e 21|V¢|2 dU
1 00— Ay 27Tip . @*7 By —27it (Vip,v)
+;/f((A1 Ag)a.)(gae e (Bl Bg)%/ﬂae e )22|V1/)|2 dO’

+o(1/7) as|T] = +oo.
Here the constants C; and Cy are independent of 7.
Proposition 5.3. Under the conditions of Theorem 1.3, we have
(5.29) Ay =A,, B =By, onl.

Moreover, for any function ® satisfying (2.1) and (2.2) and for any functions
a, b, c,d satisfying (4.3), (4.4), (4.31) and (4.32), we have

(5.30) 3(<I> a,b,c,d)
AL+ A 0P Bi+Bs
(v1 +ivy —a(z)c(z)e A2 4 (g — wg)Fd(z)b(z)e 152 5 do = 0.
Z
Proof. Let 7 € IntT and I', be an arc containing # such that I', cC I'. By

Proposition 2.2 there exists a weight function ® satisfying (2.4) and (2.6). Then
the boundary integrals in (5.9) and (5.10) have the following asymptotics:

(5.31) /f (By — By)d,(2)c, (2)eP A2 g

+ /~(A1 — As)(1n — iyg)aT(z)bT(z)eA1+E+2iT¢ do
r

e(Bi+Az—27iy) (2)

-y {(%)I/Q<cd<31—32>><x> NG

weG\{z— .z} o7
o 2 e(A1+B2+27iy) ()
=5 (ab(A1— Az))(x)}
(z‘?;f (x)) VT

+0(1/7) as || — +o0.

We recall that the set G is introduced in (2.4). Moreover, in order to avoid
the contribution from the points x4, functions a,b are chosen in such a way
that
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olBlg 918l 9lBle
5.32 —— (1) = —F——(rx) = ———(
(5:52) D 9z * O 9 - Oz ol *
91814

= W(xi) =0 Vg €{0,...,5}.
1 2

Let x1 € C*°(09) be equal to 1 near x4 and have support in a small neighborhood
of those points. Then

/ X1(By—Bs)d,creB A2 gy / X1 (A1 —As) (1 —ivg)a, b e B2V g
.

T
X1(B1 — By)d,crePitAz ge—2ite
- oY — do
I —QZTW OF
_|_/ X1(Ar — Az) (11 —aiug)aTaeAﬁE aemjw a
. QiT% 97
= / é <5<{1 (Bl — Bz)dTa681+A2 ) e—QiT‘l’ do
r. 07 2i7 2%
0 (x1(A1—A4 —1 TE Ai+B; .
_/ W<X1( o el e )‘32”‘” do = O(1/7).
r. o1 2”?

In order to obtain the last estimate, we used that by (5.32) and (2.7) the func-
tions

0 (xa(B1— By)d,creBrtAs 0 (Xa(Ar — Ar) (1 — ive)a b, e B2
o7 2i%% ’ 2i%%

or

are bounded. By (5.5), (5.9)—(5.12), (5.19)—(5.21), (5.27)—(5.28) and (5.31), we can
represent the right-hand side of (5.4) as

2m 12 6(31+A7272n'w)(z)
O(1/7) = TF1+Fy+ Z <<32¢> (Ed(Bl—BQ))(x)f
2eq\(amay} > Mgz (T) b=

e(Bi+Az+27i9p) (2)
)

Taking into account that Fj is equal to the left-hand side of (5.30), we obtain the
equality (5.30). Using (2.6) and applying Bohr’s theorem (see, e.g., [5, p. 393]), we
obtain (5.29). O

27_(_ 1/2 _
" (%) (ab(As — Ag))(x)

T

Thanks to (5.5), (5.9)-(5.12), (5.19)-(5.21), (5.27)—(5.29) and (5.31), we can
write the right-hand side of (5.4) as
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3
(5.33) Lo+ L+I=Y ™ F(kx+Fe)+k
k=1

+ / (A) — As) (g — Z'VQ)CLTEeAlHT2 do + / (By — Bo) (11 + Z'Vg)dTa(iBDLE do
To To
1 _ = (Vi,v) 1 = A48 (Vi v)
- b Bi+Az ’ do — — _ab Ai1+B2
27 Jr, S VoP o fy, S NE

_ g((QJrag)(g)AJr(T’ F)eATB@® 4 (Q_de)(F)A_(r,7)eBr+A) @)

do

+ %(11(89) +12(09)) — 2/39(1/1 + iyg)eAﬁEcTi(E)@l(x,T) do

+ 2/ (rn — iV2)661+EdT(2)64(I, T)do
oN

+ 2/ (1 + iug)eAﬁ“TZaT(z)(’Sg(z, T)do
oN

~2 / (v — i12)eP TB2h ()B4 (2, 7) do
oN

+ A_ (7-7 %) 694(5) B_E(f) / (1/1 - ’Li/2)de‘81+672
o0

T 0z do

Z—Z

do

. A_ (7—7 i) agl (E) e*Al(i) / (l/l + iV2)66A1+T2
T 0z 90 Z—z

n A+ (T, %) 893 (f) 6_72(55) / (1/1 + iVQ)aeA1+A2
o0

T 0z

— do
Z—Z
Ay (1, T) Dga(T) Bi+B2

_ — i)
- 776781(9:)/ (11 22) ¢ do+o(1/1) as|r| — +oo.
T 82’ o0 z—z

We note that ki and ki denote generic constants which are independent of 7.

In order to transform some terms in the above equality, we need the following
proposition:

Proposition 5.4. There exist a holomorphic function © € HY?(Q) and an anti-
holomorphic function © € H'/?(Q) such that

(5.34) Ol = eArtAz (:)|f — BBz

(5.35) BriBg _ gAitAg =0 on Ty,

Proof. Consider the extremal problem

2 2

+
L%(T)

~ —— 0
(5.36) J(U, V) = HeAl+A2gac— v

661""3726(})50[ ./
z 7

— inf,

L2(I)
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oV o ~
(5.37) Vi 0 inQ, o 0 inQ, ((tn+iv2)¥+ (1 —irve)¥)|r, =0.

Here the functions a, b, ¢, d satisfy (4.3), (4.4), (4.31) and (4.32). Denote the unique

solution to this extremal problem (5.36), (5.37) by (\T/, U). Applying Lagrange’s
principle, we obtain

(5.38) Re (eA1+A2%ac — U, 5) +Re <651+328@bd —, S) =0
0z L2(F) 0z 12(F)
for any 8,6 from H'/2(Q) such that
95 : 95 : . s
i 0 in Q, 5= 0 inQ, (v +iva)dlr, = —(v1 —iva)dr,

and there exist P, P € HY/2(Q) such that

P P
(11 +ive)P = eAlJFEa—(I)aE ~ ¥ onT,
(5.40) bz
(11 — o) P = eBl"'E%Bd ~ U onT,
(5.41) (P — P)|p, = 0.

Denote Wo(z) = &(P(2) — P(2)) and ®(2) = L(P(z) + P(2)). Equality (5.41)

yields

(542) Im \I’O|Fo =1Im (PO|F0 =0.
Note that
(5.43) P =&y +ily, P=a;— il

~

From (5.38), taking § = U and 6 = ¥, we have

L2(T

= 0P o o
(5.44) Re (e*‘ﬁfb —at— U, \p)
0z 12()

— 0D = =
+ Re (681+B28bd—\11,‘1/) =0.
) 0z
By (5.39), (5.40) and (5.43), we have

Hi = Re (6A1+A28(I)ac - \TI, 6A1+“428q)ac>
0z z L2(F)

— 0D _ = — 0D
+Re (BB 025§ BB 027y
0z 0z L2(F)
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= Re ((m —ivg) P, eA1+“428(I)ac)
0z ) 1a(r)

N
+ Re ((u1 + ivy) P, P11 B2 bd)
L2(T)

z

—_— - 0P
=2Re (1/1 — illz)(@o + i\Ilo), 6'A1+'A2 —ac
0z /) 1wy

I 67
+ 2Re (1/1 +il/2)(¢’0 —’L.\I/()),egl—,—[ﬁaibd .
82 Lz(i—")

We can rewrite

5.45 2Re | (v — ive) P, e TA2 78(1) ac
( ) (11 2)Po,
z L2(T)

— 0D _
+2Re ((ul + ivy) @y, eBl+326bd)
/)

= 3(®, Boa, b, ¢, Dod) + I(D, Boa, b, ¢, Pod)

and
— - 0P
(5.46) 2Re ((m — i) (iWy), eAlJrAzaac)
0z ) pa(r)
7 0P
+ 2Re ((u1 +ivg) (—iWy), eBl+szd)
0z ) 1)
— - 0P
= —2Im ((1/1 —ivg)acYy, eAlJrA?a)
0z ) 1)
- 7 0@
—2Im ((1/1 + iv2)bd ¥y, 681+828)
2/ 1D
1 — 0P 4= 00 4 7
= /~ ((yl —ivg)acy 56“41_'42 —(n+ iug)ac\IfoazeAl"’M) do
r

1 = 0D 5 R, v S—
-7 /1: ((Vl + W2)bd‘1’05661+82 — (- zu2)bd\I/o(%eBl+B"’) do

1
= ;(j(q)7 CL\IJ(), b7 C, d\I/O) - j(q)v G\I/(), ba c, d\IIO))

Then by (5.42), (5.45), (5.46) and Proposition 5.3, we see that Hy = 0. Taking
into account (5.44), we obtain J(¥, El) = 0. Consequently, setting © = @/(@@aé)
and © = T/(5.3db), we obtain (5.34).

Observe that
0P

.09 .
(5.47) (n +ivg) — = —(v1 — zz/g)g

0z

on I'y.
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In order to see this, we argue as follows. We have
op 1/ 09 .0 dp O i dp O
— == (<p+¢) — |tz +t5 |
82 2 8I1 6:0 (91’1 aIQ 2 (91'2 (91’1

Op _ 0 Op _ 0% dp _ _0¢ 9 _ d¢
Hence 7= =—ge oo = a7 and 5 = 55 Observe that

(v +iu)3—1 0 + v 0 +£ Vi—ui _1 g—kzg
L ey T o\ Moy T P 0xs ) T 2\ P0x, tOxe)  2\0v | 0F)°

(1 —i )Qfl 9 .0
ez T o\ar T 'oR)

Hence
02 _1(9 .9 1(op O\  ifdp 0¥
( +iva) 5 2(&“3*)(@“@ 2<ay a;) 2(8F+0V
_ 9y 9y
"o T'or
Therefore

L) 877/1 oY Oy
1= i) = 7 T aT ~ o o
Taking into account that |, = 0, we obtain (5.47).

From (5.47), (4.3), (4.4), (4.31), (4.32) and (5.37), we obtain (5.35). The proof
of the proposition is complete. In general ®, a, b, ¢, d may have a finite number of
zeros in §2. At those zeros O, 0 may have poles. On the other hand observe that
o, O are independent of the particular choice of the functions @, a, b, ¢, d. Making
small perturbations of these functions, we can shift the position of the zeros.
Therefore we may assume that there are no poles for O, o. O

Thanks to Proposition 5.4, we can rewrite (5.33) as

3

(5.48)  o(1/7) = Z “FE,

— Z{(Qrab)(@)A +(T755)6<A1+87)(5)+(Q_ck)(ﬁ)A_(ﬂ55)6<61+A7)@)}
.

1 / (v1 + iug)(eA“L“T? - @)a—@a(z)(627+A+(T, T)+co,_A_(7,7))do
T Ty 82
1 , BiiB 5 0P~ _ -

— = | (nn —iva) (™2 — 0)—=b(2)(da + Ay (1,%) + do,_A_(7,Z)) do
T To (9?

1 . T+ Ay 0P —— B
- /Fo(lq + ivg) (e A2 @)@c( Z)(ag,+ Ay (7,7) + ag,_A_(7,7)) do

— % /po (11 — z'uz)(elglJrET2 - )?F(bd( )(b2,+ Ay (7, 7) + bo - A_(7, 7)) do
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- 2/ (1 + i) (eM T2 — ©)e, (2)61 (2, 7) do
I

+ 2/F (1 — iug)(esﬁg — 0)d,(2)&4(z,7) do

T 0z -z
A 89617(%)6_Al(i) (/ (1 +in)e( et~ 0) 27r(c®)(a?)>
T z To Z—z
T, T z - vy +ivg)a(eAr Az — ~
AJr(Tv ) aggé ) —As(T) </FO ( i )E(— 2 6) do — 27T(G@)($)>

T o(T) _p (x ul—iugieBlBj—~ —
_wag?i)e Blm(/rﬂ( be @)do——%(b@)(w))-

Z—Z

Here }N?k are some constants independent of 7.
Then, using (4.15), (5.35) and (5.47), on I'y we have

0P - . .
(5_49) _ (Vl + ng)g(@AH—A? _ @)E(a2)+e2mw(m) + az’_e—Zﬂw(m»

D = . .
_ (Vl _ iVQ)%(@Bl+B2 _ @)b(d27+€272w(m) + d27_6727'1w(a:))

00 . o & B e
= _(V1+iy2)76((6A1+A2—@)a2,+62T2w(m)+(€Bl+A2—@€A2762)d2,+627'2w(m))

0z

I . o o o
_ (1/171'112)gib((eA1+327@6827./42)a27_672nw(0€)+(661+327@)d27_672ﬂw(z))
z
o _ s — .
= 7(y1+i1/2)%6((6./41+¢427®)a2’+62ﬂw(0€)+(661+A27@67A1+B1)d27+627up(z))
z

3. o o o o
_ (Vlfiyg)({;ib((eAl+B27@6"41761)a2)7672‘”w($)+(681+827@)d27,€72‘mw(w))
z

0P, & . 00, 7z ~ - o
= —(1/1—&—2'1/2)8—(6“42—@6_“41 )Ep+e2”w<””)—(Vl—iug)?(eBz—Ge_Bl)bp,e_zT“[’(””)
z z

and

e P —— —
(5.50) — (v1 + i) (e A2 — @)ia(02,+627—1¢(x) + co, e~ 2TV (7))

0z
A % — —
_ (1/1 _ Z'VZ)(631+82 _ @)%d(b2,+e2‘”¢(m) + b2776727'7/¢1(:1:))
z
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= —(u1+z'z/2)g—fa,((eA1+72_@)W+(6A1+B§_6761+A1é)m)
- (V1fiuz)gd((esﬁftee%ﬁ& Jeg 1 e 2TV 4 (P1H82 @b, | e2Ti0(@))
— 7(V1+i1/2)aa—i)a((eAlJ“T?f@)er(eAl+B*276872*A72®)m)
— (1/1—iug)gd((e&+A72—96A72’872)W+(651+872_@)W)
= _(V1+iV2)%f (e _ee_z)am—(m—iuz)gg
Using (5.49), (5.50) and Proposition 8.2, we rewrite (5.48) as

3
(551)  o(l/T) =) TFE
k=1

(B —éC_E)dﬁ+ 27 (),

= Z{(Quab) @A (7, ) B 4 (Q_de)(@)A- (7, F)e B DD

N /Fg(ul +ivy) (et — @)a@da

20D [ i) om0 2N

_ @ /ro(yl NG é)d@%;j)@da

Ll /F (i) é)b()w do

N @@(Em (/FO (1 — iV2)§(fBZI+Bz =9 4y 2w(dé)(f)>

Z—z

T 32 Ty

do — 271'(0@)(5))

Ay (7,7) 995(F) _mp) </ (1 + ivp)a(et 42 — ©)
po 2R, =
T 0z o zZ—z

do — 27?((1@)(55))

_ M) 02(®) s, ) (/ (1 — in):b(egﬁm -9) 27r(b(:))(%)>.
T 0z o Z—Z

Let 1 be a smooth function such that 7 is zero in some neighborhood of 92 and

n(Z) = —1. Observe that the partial Cauchy data of the operators Ly(z, D) and

the operator e™*"Lq(x, D)e®" are exactly the same. Therefore we have the analog

of (5.51) for these two operators with A; and By replaced by A; — sn and By — sn.

The coefficients Ay, By should be replaced by A; + 25%, B+ 23%. The functions

Q4 do not change. The function ¢; should be replaced by ¢1 + sAn + s2|Vn|? +
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25141%2 + 25?1%. The functions g1, go should be replaced by e™*7g1,e™*"7gs. The
functions O, © remain unchanged since 7 is zero in a neighborhood of the boundary
and therefore A;, B; remain unchanged in a neighborhood of the boundary.

Since (%) # 0, all F}, are zero. The third till the tenth terms on the right-
hand side of (5.51) are independent of s. On the other hand, the term in the second
line of (5.51) has the form

e

—{(Q1ab) @A (7, H) D 1 (Q_de) (@A (r, F)el P )

This immediately implies that (Qab)(Z) = (Q_de)(Z) = 0. O

86. Proof of Theorem 1.1

Suppose that we have two operators

0 0
Ll(l‘,D) = Agl —|—2A1$ +231£ +Q1

and
Ly(x,D) = Ag, + 21422 + 2322 +q2
’ 0z 0z
with the same partial Cauchy data. Multiplying the metric gs, if necessary, by
some positive smooth function E, we may assume that

¢ .
(6.1) %(g{’“ g =0 Ve {0,1} and Vj, k € {1,2}.
T

We note that {g7"} denotes the inverse matrix to g, = {g1 x}. Without loss of
generality, we may assume that there exists a smooth positive function ps such
that go = psl. Indeed, using isothermal coordinates we make a change of variables
in the operator Lo(z, D) such that go = usl. Then we make the same changes of
variables in the operator L (z, D). The partial Cauchy data of both operators
obtained by this change of variables are the same.

Let w be a subdomain in R? such that QNw = 0, dwNdQ = I and the boundary
of the domain Q = Int(QUw) is smooth. We extend pg onto Q as a smooth
positive function and set g?* = (1/p)I in w. By (6.1), we have g; € C(Q). There
exists an isothermal mapping x1 = (x1.1, x1,2) such that the operator L, (z, D) is
transformed to

1 0 0
(62) Ql(y,D)—aA+201£+2D1£+T1, yexl(Q),
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where ;1 is a smooth positive function in Xl(ﬁ) and Cq, Dy, r1 are some smooth
complex-valued functions. Consider a solution to the boundary value problem

Ql(va)w =0 in Xl(Q)7 w‘Xl(FO) =0,

of the form (4.2) with a holomorphic weight function ®;. Then the function u; (x) =
w(x1(z)) is a solution to

Ly(z,D)uy =0 inQ, wus|p, =0.

Since the partial Cauchy data for the operators Li(x, D) and Lo(x, D) are the
same, there exists a function us such that

=0.

Ovg, Ovg,

(6.3)  Lo(z,D)up =0 inQ, uslp, =0, (
r

8’114 6u2 >

Using (6.1) and (6.3) we extend ug to a function uy € H'(Q) such that
(64) U1|w = ’U,2|w.
Let @2 be a harmonic function in Q such that

9p2

3 =0, @2=Red;0x; on(‘)ﬁ\Fo.
v |p,

We claim that
(6.5) w2 =Re®P;ox; onw.

A difficulty comes from the fact that the function 5 is continuous on € (see

e.g. [25]) but the derivatives of ¢ may be discontinuous at some points of dT.

First we observe that it suffices to prove (6.5) for the functions such that Im ®; = 0

in some open set Og, C 8x1(§) such that x1(T'g) C Os,. Indeed, without loss

of generality, assume that o0 \ Ty is an arc with two endpoints zy. We choose

sequences {z._},{ze+} C o0 \ T'o such that z+ — x4 as € — 0. Consider a
sequence {®1 }ee(o,1) of holomorphic functions such that

8‘;;‘ =0 inxi(Q), Imd,,

D20, (2) #0 Vz € {z]0,P1.(2) =0},

x1(Toe) = 0,

@1’5 — (I)l in Cl(F€)7
where i c T is the arc between Te,— e, and I'g e = o0 \ fe. We define @3 by

=0, ¢2.=Re®;.0x1 on o0 \Toe.
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First we assume that
(6.6) w2 =Re®i.0x1 onw.

Passing to the limit in the above equality, we obtain (6.5).

Now we prove that (6.6) indeed holds. Let ®; . be one of the functions in
the sequence {P1.c}eco, - Con51der a sequence of domains Q. such that Q, C Q
90N 0Q =Ty and dist(9Q, \To,I') — 0 as € — 0. Then 2. is smooth in Q.. Let
us take as u; the complex geometrical optics solution constructed in the previous
sections. Thanks to the Carleman estimate (2.25) there exists 79 = 79(€) such that

(6.7) le™ T2 sl 10, < Colre™!™| V7| > 7,

where Cy = Cy(e) is independent of 7 and §. — 0 as € — 0. On the other hand,
Uy = eTRe@LeOXl((aTicl‘”TImq’lve +beP1mimIm®ie) 6 vy 4+ O(1/7)). Here we note
that Cy, Dy € CO+(€),) are defined similarly to (3.2):

8C 1
82

Then by (6.4),

_ oD _
=—-C; in QE, Im(31|p0 =0, 2(972’1 =—-D; in Qev ImD1|F0 =0.

(68) Uy = eTRe‘I’l,eOX1 ((aTeCIHTIm‘I’LG + b-reDl_iTImd)l‘e) ox1 + 0(1/7_))

Vr € w.
This equality implies (6.6) immediately. Indeed, suppose that for some T € w,
(6.9) ©2,(T) # Re @1 c 0 x1(2).
Then there exists a ball B(Z,¢") C w such that

(6.10) lp2.c(x) —Re®ycoxi(z)| >’ >0 Vae B(x,d).

Fix a positive €; such that B(Z,d") C Q, and 20, < . From (6.8), by (6.7) and
(6.10), for some positive C’ we have

C'el™ Vol(B(z, §))/?

< He‘r(RcéLgoXl—gpg,g)((a C1+i7 Im &4 ‘—|—b €D 7 Im &1 ‘)OX1+O(1/T )HLQ(B )
— ||67T@2’£UQHL2(B(£,6')) < C’0|T|e5 Ir\’

where 7 > 79 if p2,(Z) < Re®1 .0 x1(Z) and 7 < —79 if 2 (T) > Re Py . 0 x1(Z).
The above inequality contradicts (6.10) and therefore (6.9).
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Let = = x1,1 + ix1,2. Using the Cauchy-Riemann equations, we construct a
multivalued function ¥y such that ®5 = g + i) is holomorphic on the Riemann
surface associated with €. Moreover we take ®; which can be holomorphically
extended onto some domain O such that y1(€2) C O. Observe that

Py =P 0= on w.

Then = = <I>f1 o ®5 on w.

We claim that = can be extended to a single-valued holomorphic function =
on Q such that Z : © — x1(Q), Z(Q) = x1(Q) and 8.Z # 0. First we show that
= can be extended along any curve connecting two points in €. Indeed, let v be
a continuous curve connecting a point z; in w and a point z9 in € such that =
cannot be extended along 7. Consider a parametrization of v such that we are
moving from z; = v(0) to zg = y(1). Let Z = (k) be the first point on v around
which the holomorphic continuation of = is impossible. Consider the function &
such that {z | 9,®; =0} N{z | z = Z((s)), s € [0,x]} = 0. Observe that

Da(v(s)) = P10 E(v(s)) Vs €0,4].

Indeed, let § = sup,cx s where X = {s | there exists §(s) > 0 such that ®»(z) =
@y 0 E(z) for all z € B(v(s),d)}. Let § < k. Since 9,P1((5)) # 0, we see that
7! o @y is holomorphic with a domain which contains a ball centered at ().
Since = = 1_1 o ®5 in some open set, this equality holds true on this ball, which
contradicts the definition of s.

Now we consider the situation at the point Z. Since we cannot extend = around
this point, we have I = {Z | (%) = ®3(2)} C x1(09). Since 9,9 (Z) # 0, we can
extend = onto some ball centered at Z. (Of course such an extension might not be
one which we are looking for, since = : € — y1(Q) might not be valid.) Consider
a perturbation ®; 4+ e¥; of ®;, where ¥y is a smooth holomorphic function in O
such that Im W1 |, (ry)unr = 0. This perturbation generates a perturbation ®5+€Ws
of @5, where

3RG\I’2

=0, ReW¥;=ReVioyxy; on 8()\1}.
ov I

(6.11) AReW¥, =0 inQ,

For these new functions we still have
Dy +eVy = (D) +ely)0E onw.

For all sufficiently small €, the function ®; 4+ e¥; does not have a critical point
in Q. Therefore the function (®; + €¥;)~! o (@5 + €¥3) can be holomorphically
continued along + up to z. Denote this extension onto some ball centered at z
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= Z. Choosing ¥y such that Im ¥y(2) # Im ¥ (2(3)), we
conclude that this equality is impossible.

[11?

by EE. Obviously =

Let us show that = does not have critical points in Q. Indeed, suppose that
Z is a critical point of =. Then 7 is a critical point of ®5. Consider the pertur-
bation ®; + €Uy, where ¥, is a smooth holomorphic function in Xl(ﬁ) such that
ImWy[y, ) = 0 and for the function Wy given by (6.11) we have 9, W5(z) # 0.
The mapping = is still the same but the critical points for ®5 4 V5 change, which
is a contradiction.

Let us show that = is a single-valued function. Indeed, suppose that = is
multivalued around some point z. Then there exists a holomorphic function ®;

such that 9,®, (%) = 0 and ®; = ®; o Z. Obviously
(6.12) {z|2=E2(3)} c {2 0.9, = 0}.

Let ¥y be a function holomorphic in O and smooth on O such that Im U1 |y, (royumt
=0and 9,V # 0 for all z € {2 | 9,®; = 0}. Then for the function ®; + e¥; we
should again have Z(2) € {z | 9,(®; + e¥;) = 0}. This contradicts (6.12).

If 2() # x1(Q), then we still have Z(€) C x1(€2). On the other hand, on the
boundary of x1(€2) \ Z(€) the imaginary part of the function ®; is zero. This is
impossible.

In the domain €2 consider the new infinitesimal coordinates for the operator

-1

Py given by the mapping =10 E(x). In these coordinates, the operator P (z, D)

has the form

1 ~ 0 ~ 0
6.13 , D)= —A+24,—+2B1— +q1.
(6.13) Q(z,D) oA + 24, Ep 157 +q1
Since =1 o Els = Id, the Cauchy data for the operators Lo and @ are exactly
the same. The operators Lo and ) are particular cases of the operator (1.1).

Since (2 — f11)|g = 0, the partial Cauchy data C,,1 4,,B,.,4, and C are

" fi1l,A1,B1,@
equal. We multiply the operator @ by the function fi;/uo and denote the resulting
operator by Q(z, D). Then by Corollary 1.1 there exists a function n which satisfies

1.5) such that Lo(z, D) = e’”@ x, D)e". O
(1.5) (z,D) :

Proof of Theorem 1.2. First we observe that in order to prove this theorem it
suffices to prove it in the case when instead of the whole f, both the input and
output are measured on an arbitrary small neighborhood of the point Z.

Now one can consider only the case when I' C {z; = 0} is a small neighbor-
hood of the point 0. We observe that if

0
(6.14) (07 = 03?)l5 = 5 —(0f* —03%)|_ =0,
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then an argument similar to that in [20] and [27] yields

~ 80’1 - 80’2 ~

(6.15) o1 =09 onl, 9s Oy onT.
Let us show that there exists a diffeomorphism
(6.16) F:Q—Q, F(x)=z Vzel,

such that for the metric &; = |det DF~1|F*o; we have

02 =032 onl.

First assume that we already have

0
(6.17) 022(0) = 03%(0) and %(032 — 032)(0) = 0.
2
Let y = y(z) be some diffeomorphism of € into itself. By = x(y) we denote the
inverse mapping. Then

2
522 — 011(6951) Oxy +20%2% +022%

Vo \oye ) /oy dya ' Oy

This equality and (6.17) immediately imply that taking a perturbation of the
identity mapping one can construct a diffeomorphism of €2 into itself which satisfies
(6.14) and (6.16).

Let us construct a diffeomorphism which satisfies (6.14) such that (6.17) holds
true. Let p be a smooth function such that p|gg = 0 and p is strictly positive in Q
and % loo < 0. Consider the system of ordinary differential equations

W pwp).
The corresponding phase flow ¢° is a diffeomorphism of 2 into itself such that
g°(z) = x on 9N. Let f1(0) # 0 and f2(0) # 0. With appropriate choice of f1, fa,
one can arrange that (9z1/0y2)(0) = 0 and (9z2/0y2)(0) = 032(0)/0%2(0). Then
the first equality in (6.17) holds true. Adjusting the second derivatives of f1, fa,

= p(y) f2(y)-

we can arrange that

82.’1?1 621'2 1 80'%2 80%2 8952
00wt FR0 = o (0 - FLo Fo)

Then the second equality in (6.17) holds true.
Now (6.15) is established. The rest of the proof of Theorem 1.2 is similar to
the proof of Theorem 1.1. O
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87. Appendix I

Consider the following problem for the Cauchy—Riemann equations:

_(9¢ O 9¢ O\ _. .
Lie.v) = <8x1 Owy’ Oy 8m1> =0 inf,

(7.1) (6, 9)Ir, = (br(x), ba()),

o BN .

@(qﬂ—zw)(m]’) =co; Vje{l,...,N}andVle{0,...,5}

Here Z1,...,Z N are arbitrary fixed points in 2. We consider real-valued functions
b1, be and complex numbers C' = (co,1,¢1,1,€2,1,€3,1,C4,1,C5,15- - -, CON; C1,N, C2, N s
C3.N,C4,N,C5,N) as initial data for (7.1). The following proposition establishes the
solvability of (7.1) for a dense set of Cauchy data.

Proposition 7.1. There ezists a dense subset O C C%(T) x C%(Tg) x CON such
that for each (b1, by, C) € O, (7.1) has at least one solution (¢, 1) € CO(Q)x C4(Q).

Proof. Denote by B = (b1, bs) an arbitrary element of C7(Tg) x C7(T). Consider
the extremal problem

(:)k

8u’€ 27/4 k(aﬂ)

2

— inf,

3
(72)  Jd(6,9) = 16,9) = Bl gz, Z
Z ¢+l¢ (T)) — ey

N
IR LG D ey + 2

j=1k=0

(73)  (6,%) € WI(Q) x W{(Q).

Here B}, denotes the Besov space of the corresponding orders.

For each € > 0 there exists a unique solution to (7.2), (7.3), which we denote
by (ae, 126) This fact can be proved by standard arguments. We fix € > 0. Denote
by U,a the set of admissible elements for the problem (7.2), (7.3), namely

Una = {(6,9) € WI(Q) x W{(Q) | Je(,1) < o0}
Denote J, = inf( yyewr (@) xwi() Je(¢,¢). Clearly (0,0) € Uaa. Therefore there
exists a minimizing sequence {(¢x, V) }52, C W7 () x W] (Q) such that
Je = lim Je(¢x, vr)-
k—o0

Observe that the minimizing sequence is bounded in W](Q) x W[ (Q). Indeed,
since the sequence {A3L(e,¥r), (¢k,1/Jk)|aQ,..., 81}3 L(ég, ¥1)|oa} is bounded
in LA(Q) x LY(Q) x [[o_, BX*7*(00) x BI/*7"(09), the standard elliptic LP-
estimate implies that the sequence {L(¢,r)} is bounded in W (Q) x WS(Q).
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Taking into account that the sequence of the traces of the functions (¢p, ) is
bounded in Biw 1(09) x Biw *(89) and applying the estimates for elliptic operators
one more time, we find that {(¢g, )} is bounded in W] (Q2) x W] (). By the
Sobolev imbedding theorem, the sequence {(¢x,¥)} is bounded in C%(Q) x C%(€Q2).
Then taking a subsequence if necessary (denoted again by {(¢x,¥x)}), we obtain

(61, 1) = (Do, ) weakly in W (Q) x W] (),

Dy ey, Hpe 9. . 27/A—j 27/4—j
( 95 D ) — (5‘1/j B weakly in Bj (09) x By (092)

Vi€ {0,1,2,3},

ok BN
ﬁ(¢+zw)(acj)fck7j — Crje, ke{0,...,5},
A3 L(¢p,x) — re  weakly in L*(Q) x L1(Q),
L(p,hr) — Te weakly in W (Q) x WH(Q).
Obviously, r. = ASL((Eg, 126) and 7, = L(q@e,ﬂ)\e). Then, since the norms in L*(Q)

27/4—k . . .
and Bj / (0R2) are lower semicontinuous with respect to weak convergence, we

obtain

Je((ga{p\e) S klgglo Je(¢k7¢k> = j\e

Thus the pair ((55, 126) is a solution to the extremal problem (7.2), (7.3). Since the
set of admissible elements is convex and the functional J is strictly convex, this
solution is unique.

By Fermat’s theorem we have

TP, )] =0 V6 € W(Q) x W (9).
This equality can be written in the form

L B 3 oF oF <
(T4)  Iiyorya(De 00) = BYO) + € Tog o/ (w(¢€’¢f)) {ak‘g]

k=0

N 5 A
(pe,A L5 Lz(Q +ZZ( §Z56 +Z¢e)($J) Ck’j>8 k(61 +Z(52)( )

7=1k=0

k

O (G+id)GE 0" 5, +id 0
+<8zk(¢e+z¢e>($j)—ck,j>ak(1+l 2)(Z;) =0,

N 80 DN\’ (500 0N\’
p€€<( (f%l 5332)) ’(A (3$2+5l‘1>> )

and Ip. (W) denotes the derivative of the functional w Hw”‘}ag(r*) at .

where
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Observe that we have J(¢e, 1) <J.(0,0)= || B|[% /1yt SN o lerdl?.

This implies that the sequence {(;56,@;5)} is bounded in Bz7/4(FO) X Bi7/4(I‘o),
the sequences {687’1((,255 + ithe)(Z;) — cx,j} are bounded in C and the sequence
622:0 159’27/47,6(%((;6, 1}6)) [%g] converges to zero for any $ from 327/4(8(2)
X Bi7/4(8Q). Then (7.4) implies that the sequence {pc }ee (0,1 is bounded in L4/3(€2)
x LA3(0Q).
: 27/4 27/4

Therefore there exist B € By''"(I'g) x B;"'"(T'g), Co,5,C1,,...,C5,; € C and

p = (p1,p2) € L*3(Q) x L*/3(Q) such that

(be,the) — B = B weakly in BZ/*(Ty) x BX/*(T),
pe —p weakly in L¥3(Q) x LY3(Q),
k

0zF

(7.5)

(76) (&)\E"’_i{b\é)(fj)_ck,j_)Ck,ja kg{oala"'af)}ng{L"'vN}'

Passing to the limit in (7.4) we obtain

(7.7) IL/“O,27/4(B) [5~] + (p, ABLS)H(Q)

N 5 P
ok ~ ~ ~
+ 2ReZch,j@(51 +i09)(T;) =0 V6 € W (Q) x W(Q).
j=1k=0
Next we claim that
N
(7.8) APp=0 inQ\ | J{z;}

Jj=1

in the sense of distributions. Suppose that (7.8) is already proved. This implies

k . — ~ o~
(01 4 i02)(Z;) =0 Vo1,02 € C°(Q).

N 5
(p, A?’L(S)Lz(g) + 2Re Z Z C].C7j @

j=1k=0
If p = (p1,p2), then denoting P = p; — ips, we have
Re (Agp7 82(51 + lg?))LQ(Q)
N 5

9k~ o~ ~ ~ -
+Re;kz:00k,jw(5l+@52)(xj) =0 V01,02 € C°(Q).

Since supp AP C U;Vfl{@} by (7.8), there exist some constants mg_; and lz such
that A3P = Z;V:1 Zfﬁ‘zl mgp jDPS(x — 7;). The above equality can be written in
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the form

d 0 R > o OF _
=D mp =D —75) = Y (=1)"Cjmpole — ;).
|81=1 k=0

From this we obtain

(79) Coyj:CLj:"':CS,J:O, ]E{l,,N}
Therefore
(7.10) A3p=0 in Q.

This implies
(p, A’LO)12() =0 V6 € W{(Q) x W(Q),

LS| &L

Lolog = —| =--- = 0.
09 v

o0

v
This equality and (7.7) yield

I} a7a(B)] =0 W5 € W] (Q) x WI(€),

LS| L

(7.11) 5
Lilopg = ——| =---
a0 ov®

=0.
oQ

ov

Then using the trace theorem, we conclude that B = 0. Using this and (7.5), we
obtain

(7.12) (berse,) — B — 0 weakly in B27/*(Tg) x BZ/*(T).

From (7.6) and (7.9), we obtain

oF ~ o~ )
@(@—sze)(:ﬁ) — ¢k, ke{0,1,...,5}, j€{1,...,N}L

The Sobolev embedding theorem yields B2/*(Ty) cC C®(Ty). Therefore (7.12)
implies

(7.13) (¢er:Pe,) — B— 0 in C*(Tg) x C*(Ty).

Let the pair (gZek,Jek) be a solution to the boundary value problem

(7.14) L(be, o) = Loy the) Qe lon = 7,

Here 1}, is a smooth function such that ¢’ |r, = 0 and the pair (L(¢e,, Q/ﬂ;k), 2
is orthogonal to all solutions of the adjoint problem (see [29]). Moreover since
L(¢ey s the,) = 0in WE(Q) x W (Q) we may assume 97— 0 in C®(9€2) x C®(09).
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Among all possible solutions to problem (7.14) (clearly there is no uniqueness of
solution for this problem), we choose one such that fQ @¢, dr = 0. Thus we obtain

(7.15) (hepshe,) — 0 in WI(Q) x WI(Q).

Therefore {(e, — de, , Ve, — e, )} is the desired approximation to the solution of
the Cauchy problem (7.1).

Now we prove (7.8). Let = € Q\ijzl{ﬁs\j}, let X be a smooth function which is
zero in some neighborhood of 'y U U;yzl{fj} and suppose D = {z € Q | x(z) =1}
contains an open connected subset F such that z € F and I' N F is an open set

in Q. In addition we assume that Int(supp x) is a simply connected domain. By
(7.7) we have

(7.16) 0= (p, A’L(X0)) 12(0)
= (Xp, ALd) 120y + (p, [APL,X]0) 120y VO € WI(Q) x W ().

Consider the linear functional mapping & € W2(supp ) x W2(suppX) to

(p,[A3L, S{]JN)Lz(Q), where
L6=6 inQ, Imdls=0, / Reddx = 0,

supp X
where S denotes the boundary of supp x. For each Se W2(supp X) x W2(supp X),
there exists a unique solution 5 € W3 (suppX) x W(suppX). Hence the func-
tional is well-defined and continuous on WZ(suppy). Therefore there exist
a,r,q0 € L*3(supp¥) such that | (ij:l Tk 897?7;%3—1— (q, g) + qog) de =

supp X

(p7 [ABLa 55]6)[/2(5upp X)*
Consider the boundary value problem
~ - ~ 9P
AP =f insuppx, Pls=——
v

S_8V2

S

Here f = 2 diV(Vfl) —qo— Z?,k:l Bwj{-’i;xkrjk' A solution to this problem exists and
is unique, since f € (W2(supp¥))’. Then P € W41/3(supp X) X Wi/:,)(supp X)- On
the other hand, thanks to (7.16), P = xp € V°V41/3(supp X) X Wi/g(supp X)-

Next we take another smooth cut-off function y; such that supp x1 C D and
Int(supp x1) is a simply connected domain. A neighborhood of Z lies in Dy = {z |

X1 = 1}, the interior of D; is connected, and Int D N [ contains an open subset O
in 9. Similarly to (7.16) we have

(X1ps AL) 12y — (0, [APL, X1)0) 12(0) = 0 V8 € W] () x W] (9).

This implies that x1p € W42/3(Q) X W42/3(Q)7 by a similar argument to the one
above.
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Next we take another smooth cut-off function Yo such that supp ys C Dy,
Int(supp x2) is a simply connected domain, a neighborhood of Z is contained in

Dy = {z | X2 = 1}, the interior of D is connected, and Int D; N T contains an
open subset O in ). Similarly to (7.16) we have

(Xop, APLO) 120y — (0, [A3L, X2]) p2() =0 V6 € W (Q) x WI(Q).

This implies that Yap € WJ5(Q) x W}5(Q), by a similar argument to the one
above. Let w be a domain such that wNQ = @ and dw NI C O contains an open
set in 0.

We extend p onto w by zero. Then

(A%(Xa2p), Lg)Lz(QUw) + (p, [A’L, %2}S)L2(9Uw) =0.
Hence, since [A3L, Xa]|mtp, = 0 we have
L*A%(Xop) =0 in IntDyUw, pl, =0.

By Holmgren’s theorem A®(X2p)|mep, = 0, that is, (A’p)(Z) = 0. Thus (7.8) is
proved. O

Consider the Cauchy problem for the Cauchy—Riemann equations

(06 v 06 N, _
Lo = (g2 - g2 20+ 20) =0 s (00l = 0.0

(117)

0 A .

@(Qﬁ + “ZJ)(ZEJ) = Cp,j Vi e {1, . ,N} and VI € {0, . ,5}

Here 71, ...,Z N are arbitrary fixed points in 2. We consider a real-valued function
b and complex numbers C' = (¢g,1,¢1,1,¢2,1,€3,1,C4,1,C515 - - - , CO,N > C1,N > C2,N ; C3 N 5
c4,N,C5,N) as initial data for (7.1). The following proposition establishes the solv-
ability of (7.1) for a dense set of Cauchy data.

Corollary 7.1. There ezists a dense subset O C C%(Tg) x CON such that for each
(b,C) € O, problem (7.17) has at least one solution (¢,) € C5(Q) x C*(Q).

The proof of Corollary 7.1 is similar to the proof of Proposition 7.1. The only
difference is that instead of the extremal problem considered there, we use the
following extremal problem:

8k
Te(6.0) = 6~ Wl e, xaly

S ovk

N 5
,||A3L(¢, )70 + ZZ

(va/l/)) € WZ(Q) X WZ(Q)7 "/)|Fo =

27/47k(89)
2
¢+u/) (Zj) —ck,j| — inf,
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We have

Proposition 7.2. Let o € (0,1), A,B € C™*(Q) and let y1,...,y; € To,
Yopr -0 Yp €L T € Q \ {y1,.-.,yz} be arbitrary points. Then there exist a
holomorphic function a € C°t*(Q) and an antiholomorphic function d € C°t*(Q)
such that (ae* 4 de®)|r, = 0,

6k+ja ) -
axkalﬂj(y@):o’ k+]S5a€€{1a7k}7
1 2

and
a(@) #0 and d(T)#0.

Proof. Consider the operator

5(1 5(1
R(ry) = (a(yl>7 L) %(yl% .. 'aa/(yg)a ceey %(yﬁ)a
5 5
A). o o)), ng(y%),a@),d(i)).

Here v € Cgc(f) and the functions a and d are solutions to the problem

0 ad

8—2:0 in €, 5:0 inQ, (ae? + deP)|aq = 7.

Consider the range of the operator R. Clearly it is closed, because it lies in a
finite-dimensional space. Let us show that the point (0,...,0,1,1) belongs to the

image of R. Let a holomorphic function a satisfy

9%a ~
—(y;) =0 VBl €{0,...,5}, je{l,...,k}, |a(T)|> 2.
ax'flaajgz (yj) 18] € { bied } |a(Z)]
Consider the function —e?~Ba(z) and the pair (by,by) = (Re{—e*"Ba},

Im{e*~Ba}). Using Proposition 7.1 we solve problem (7.1) with I = 0 approxi-
mately. Let (¢.,.) be a sequence of functions such that

Lot =0 M (G, > (i) I CTTD), (Do) (F) - 1
Denote d. = ¢, — it and B = ae’ + d.eB. Then {B.} converges to zero in
Co*(Ty).

By Proposition 2.3 there exists a solution to problem (2.13) with initial data
Be, which we denote by {55,121}, such that the sequence {Ee,i} converges to
zero in (C5(Q2))2. Denote v, = (a + d,d. + ci)|p0. Clearly R(7.) converges to
(0,...,0,1,1). 0
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88. Appendix II. Asymptotic formulae

Recall that we identify x = (71,72) € R? with 2 = 21 + izy € C, and that
91,92, 393, g4 are defined just after (4.13) and (4.42).

Proposition 8.1. Under the conditions of Theorem 1.3, for any point x on the
boundary of Q, we have, as |T| — +o0,

1 e~ T(@(O=2(¢)
(8.1) ——/ ane dé, dés
T Ja (—=z
L a@  20(@ 2@ | 029:(F) _ 926:1(D)
_A(1,5) [ Fam | 2@ 00G) T e | 020 to(1r?)
72 (z—2)2 2(z — 2) ’
1 ToeT(2(O)=2(¢))
©2) - [ OB
T Jo (—%Z
N 9z92(%) 052 (F) 28(F) _ 92g2(%) + 9252(%)
A (1,7) [ B20(3) 220 (7) 020(F)  92d(x) 929 (2) 5
=== +o(1/72),
T (z —z)2 2(z2 — )
1  e—T(@(O)-3()
(83) - / A e ds
™ Ja (—%Z
0:95(7)  0=3(@ 922(@) 5@ | 9:5:(@)
A_(1,7) [ 220() . o2 028G)  oem) | 020 ,
= 2 ~ — = . +0(1/7‘ )
T (z—7%)? 2(z — %)
1 = T (@(O)-B(0)
(8:4) _*/ s d&y d&2
T Jo (—=z

- 9:94(@) 0:94(%) 03%(F) | 029a(@) _ 9294(®)
A (1, 2) ag(g((z‘) 220(z) 929(@) | 220(z)  020(3) +o(1/7?)
72 (z—2)? 2(z—2) '
Proof. Let § > 0 be sufficiently small and € € C§°(B(z,9)) with €|pz,5/2) = 1.
Let § € C%(Q) be some function such that §(z) = %( ) = 0. We compute the
asymptotics of the following integral as |7| goes to infinity:

Fo—T((0)-B(Q)
(8.5) _%/Q eige - it
T(®(¢) W)
717/(%;)696 (—z déy déy + o(1/72)
= —1/ 5{ 9.9(7)(¢ = 2) + 3029(2) (¢ — 2)°
T JB(%,8) (-2

| 9:0:5( )¢ —2)(C—2) + 3029(2) (¢ — 2)? } ~T(®(O=20) g, dg, + o(1/72)

(—=z
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. (T ozg9(z = =
1/ {@g@@@ BO2(E)(C ~ 7)) + 3 52202 —2)
= —— €
B(7.5) C—=z
050.9() &(I)_i_ 9(33) _
n 82<I>( (C A,) 2 62<P z) (C M) 677_((1)(4_)7@) dé‘l d§2 n 0(1/7_2)
C—=z
8.3(T 3o (T 023(F) 4 m=/F =
1/‘ ,{a£&M&®—§ s 0:e(C - 2) + 21298 - 3)
=—— €
T JB(7,5) (—z
9:0.3(%) 1 925(
= 2)0-P + — -
+ 02®(x) (C N) CC 2 8z (C N) }6—7’(<I>(C)—<1>(C)) dé-l d§2 + 0(1/,7_2)
—Z
9.9(&) 920(F) 925(%) 0.9(@ 22
_ 1 g{ 73§<%(5) 920(@) 920 agfri((?)( - lawgi) (¢-2)
B(3.5) 2(¢—2) (C—2)2

025® 0%
Fem _ oem (2 } () -FE)
2(¢=2)  2(C—2)?

) dgy dés + o(1/72).

Here we used

(—2)?

which is obtained by stationary phase. Another asymptotic calculation is

/ > (C;Z e O ge, dey = o(1/7)  as |r| = +oo,
B(z,9)

~ B .9(T)
! (@ (0)-B(0) | o _
(8.6) —7/ a9e T e dey = 7/ 5 022G 7 (2(0)-2(Q) gy
T Jo ¢—2 7T Jp@s ((—2)?
59(1’) s (%) _|_ 25(F) 3235(@ -
n L s _02%(x) 020(x) 32<I>(z) T 029(@) 6_7_(@(0_(1)(0) do & 0(1/72)
217 JB@z,s) ¢—z

_ 0.3(F 0.3(F) 20(x) | 929(®) _ 929(F)
A(1,7) ( $9Z T 050 T e 960
(7 —2)? 2(z - 2)

+o(1/7?)  as || = +o0.

Taking ¢ = g1 and g = g3, we obtain (8.1) and (8.3) from the above formula.
Taking g = g4 and g = g, and replacing 7 by —7, we obtain (8.4) and (8.2). O

Proposition 8.2. For any = from the boundary of ), the following asymptotic
formulae hold true as || — +00:

8.7) &i(z,7)=—

A;:@<%%”ilzgmﬂ)+?ﬂ)

%) +o(1/7),
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7) (e DG 4 By (3) | 50 (F) %8

(88) ®alz,7) = _A+§:$>< = (5)_4; G2 (7) n (z(_)zd);) +o(1/7),
i) (A G 9%y (7)o (7)22

(8.9) ®&3(x,7) :—A*;T’ )( & ZE_)z =0 (5_)2522) +o(1/7),
M) (M50 @) - B@) @5

810) ®4(o.7) = -2 (D0l B o),

Here = &1 + i@ and mq, M1, 01,01, t1,t1, 71,71 are introduced in (4.12), (4.13),
(4.41) and (4.42). Moreover for sufficiently small positive €,

(8.11) H%l(" ™) + H%?("T) + H%?’("T)
+ H(?QSLL(.7 ™) =o(l/7) as|t| = +oo.
9z @)

Proof. Observe that the functions &y (z,7), k = 1,2,3,4, are given by

ooy = L [ TR (R 45 C)
! ’ o 27T Q C —Zz
x (ergre”™)(&1,&)e () -2(©)) dgy déa,

3319%(,{) —|—T%§(<) (aBl(z ,Z) +7—az( ))
Gz, 7) = — — =
27 0 C*Z
x (61926—81)(51 52)67@(0—‘1’(4)) dé&, dés,

8<I>(C) SAQ(E,E) ( 9%(%) BA%@,E))

1 ac ac oz
63(x,7) = — =
er) =g [ —

x (e1gse™"?)(&1,&)e (- *©) g, des,
99(¢)  9B2(¢0) ( 0®(2) 652(273))

1 T~ 5¢ aC T oz 9z
4z, 7) = —
4@, 7) 271'/ C—=z

x (erg1e™B2) (€1, £2)e™ OO g, de,.

Let z = 21 + ixo where © = (21, 22) € 092. By Proposition 3.5,

T / OB ¢y gye=4r)er FO-O) e, d,
o ¢(—=z A
1 ergre " 0 RICIGER(S)
21 Jo (—z 8( e
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—A; _
_ % 9 (61916>ef<<1>(<>4><o) dey dé

adC\ ¢ —j
A (1, F) 9:(gre” M) (@)
o 27 Z—z +o(1/7),
o= —
i /Q 45 _(? (e1g2e™B1)e O~ dg, dg,

1 61926781 0

- Ze(@O=2(0) g¢, dg,

2t Jo (—-Z OC

—B1 -
_ % 9 (@1926> e @O-FED e, de,

o) 8( C -z
A(n,E) 0l (@)
= o - +o(1/7),
o= 3(0)
QL < (e1gse~2)e"(®O=2(D) gg, de,
T Jo(—%
—As T
1 / % 3 e (O-2D) ge, g,
271'
1 8 61936 2) (@(O)—2(¢))
= — — ~— ! d d
27r o OC < (-z e
 A_(1,T) O:(gzeM2)(T)
B 2T z—Z o/,
T M(ﬁgm_&)eﬂq}(o_@) d€y d€s
2r Jg ¢(—=2

—BQ
_1 61946 3 @O e, de,

A+(T,x) 0:(gae BQ)( )

+o(1/7).

1 (9 (61946 2) T(@()=2() gg, de,
Q0

1045

Noting that §; = e A1 gy, Go = e Brgy, g3 = e *2g3 and g4 = e B2y, and taking
into account Proposition 8.1, we obtain (8.7)—(8.10) for the functions &g (z,7),

k=1,2,3,4.
To prove the estimate (8.11), it suffices to show that
H e )
9z lo@
In fact,
1 0A —A T(®()=2(¢)
06 (1,7) = -5 o1t [ Lame D)8 a6y dés.
4 0z (—=z

Then Proposition 3.5 and (4.6) yield the desired estimate.
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Proof of Proposition 5.2. Using (5.13) and (5.16), we have

0z

oU _
(8.12) Lo = (2(A1 — Ap) L beBeT® cTeAQ‘T‘b)
12(0)

+ <2(Bl N 82)%767—68277-@ +C7-6A2Tq>>
z

L*(Q)
— a — —
=2 ((A1 — Ay)e™® (—RT,AI {(391)} +etTT@ =g, (. T)) : m*‘z-r@)
i L2(%)

30
0z
+((Br = Ba)(—e1g1 + A\R 4, {ergn})e™®, b e cTeAZ‘TE)B(Q)
+o(1/7).

By (4.10) and Proposition 3.4 we have

-2 <(A1 — As)e R_ra{eig}s bTeB2Tq>)
L2(Q)

(813) 2 ((Al — A2)6762 —7,A {6191}, bTEBQTq))

0z L2(@)

0
=2 <(A1 - A2)£R—T,A1{€191}, bT€B2)

L2 ()

= (A1 — A2) (11 —ir2)R_ra, {e101}, b-€72) L2 (00)

P o
-2 <R—T,A1{6191}a 5{@632 (A — A2)}>
L2(Q)

eig1 0O BT A% )
= (28 ZipeP2 (A - A +o(1 — +o0.
(7-82@ (92’{ € ( ! 2)} L2(Q) 0( /T) o |T|

Using the stationary phase argument, we obtain
— a —
814)  —2( (41— aper_, o { X
’ 0z 12(2)

_ _<(A1 _ A2)€A1+'A282_1{a(elgl)e_Al_T(q)_(D)},C-,—>
0z L2(9)

9(e1g1) ,— A1 —7(2-3)
o

(A1 — A2)€A1+AzCT</ S C > dfl dfg) d.’El dl’z
Q —

1
T
_ _ — A1+ Ay
= l/ 3(6191)67,41,7(@,@ </ (A1 — Ao)zre dxq dx2> déy d&o
T JQ Q
A

S—

(—=z
AT 991 o @ (/ (As = AgJeei 2 | da;2> +o(1/7).
Q

zZ—z
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Integrating by parts and using (8.11), (3.2), 2 dz = —A; and 2% = Ay from
(4.30), we obtain

(815) 2((A1 — A2)675€A1 677(67(1))61, CT€A277—6)L2 (Q)

= 2((A1 - AQ)GAIle, CTQ'AZ)Lz(Q) = / 2(A1 - Ag)eAlJ“T?cT(i)@l(x, T) dx
Q
_ -/41+-/42
- 4/ e @61 (x,7) dx
:4/ A1+A2m 0 &1 (z,7)dx
Q 0z

- 2/ (v + iyg)eAlJ“T? ¢ (2)81(x,7)do +o(1/7) as || = +oo.
oN

Since
P eAl 9A (ergre=1) (&1, &)e T(2() ()
A __v 1 191 1,82
e 62051(:3, T) i 9 / c—z déi dés
1 aAl 'r (2—-®)

=579, R_ra{eign}s

applying Propositions 3.4 and 3.3 we obtain
0
(8.16) / At Ae ¢ (7) cT(*)a & (z,7)dx =o(1/7) as || = +oo.
Q

By (8.7), (8.14)—(8.16) and Propositions 3.4 and 3.5, we conclude

A
(8.17)  Lo= (B — Bg)(—elgl+ 16191),b7e52>
27'(92(1) L2(Q)

€101 B2 A, — A\
+ be”2 (A1 — A
70,9’ ﬁ{ e (A = 2)}>L2(Q)
_ A — AS)E Ai+Ay
+£ 891( Je= M@ (/ (41 ~2)ce dmdm)
T 0z Q 2z

— 2/ (v + z'z@)eAlJ”‘T2 ¢ (2)B1(x,7)do +o(1/7) as |T| = +oo.
a0

Using (5.14) and (5.18), we obtain after simple computations

(8.18) &, = <Q(A1 - Ag)@,bTeBﬂ‘b - cTeA”<1>>
0z 12(9)

+ (2(31 B2)8U2 bTeB2—T<1> +07—6A2_T¢)
oz’ L2(Q)
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= ((A1 — A2)(—e192 + BiRp, {e1g2})e™ 0P CT€A2_T$) L2(9)

+ 2 <(B1 - BQ) (ﬁT,Bl{a(eng)}eTq) + 651“1’7’(67{))62(.’ 7_)> , bTGBZTq))
0z )

0 ~ s
- 2((31 —Bz)%RT,Bl{ﬁgz}@T@»CTeAz (P) y )-
L2(Q

Integrating by parts and using (4.11), we have

S P Ay—7®
R: . {ei1g2}e™ cre™™ T )

Fl

(8.19) - 2((31 — By) e

0
= —2<(B1 - Bg)aRnBl{elgg},cTeA?)
o L2(Q)
= —2/ 73, B {6192}2((31 — BQ)?@E) dx
o T,D1 az T
- / (B1 — Ba) (1 + Z'V2)7€T,Bl{€192}ﬁ€“472d0
o0

= / :égfb %((Bl - BQ)EGTZ) dx +o(1/7) as|1| = +oo.
Q z

The stationary phase argument implies the formula

) 6(6192) o Bo—1®
8.20 -2 (B — B2)R — 7=/ 2T
( ) (( 1 2) T,Bl{ ) (& ,bTe .

= 7/(31 _ 32)821{69(68192)631+T(¢<1>)}b7_631+32dx
0 z

_ T B1+B2
- l/ Oerge) —sera=p (/ (Br = Bafbec A7 dw) e dés
Q Q

G a¢ (-2
A+ (7'7 5) 8g2 ~\_—Bi(F) / (Bl — BQ)b-,—@Bl_B2
= - — 1 = 1 .
= 9% (T)e A = dx + o(1/7)

By (8.11) we have the asymptotic formula

(8:21)  2((By — Ba)(eP1e B, b,e% ) 12

= 2((By — B2)eP &5, b,€5%) 1210y = 2/(B1 — By)eP B2 b ()6 (2, 7) da
Q

_ 9 BB
= 4/{2826 by (2)®a(x, 7) dx

= —2/ (h —iU2)681+EbT(Z)®2($7T)dU—|—4/ 681+Eb7(z)g®2(m,7)dx.
o Q 0z
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Observe that
1 9B (ergae™BY) (&1, &)

362(1‘,7') =

Dz 4w 0z g (-2

e B T(®—D) >
=—5¢ R:pi{e192}

Then by Proposition 3.4 we have

(8.22) 4/ eBlJrijT(z)QQSg(x,T)dm
Q 0z

:2/ 681“72bT(z)efgleT(q)*@ﬁT’Bl{elgz}dx
Q

= / eBﬁBiQbT(z)(fBleT(q)*g)76192 de =o0(1/7) as || = +o0.
Q

70,
By (8.21)—(8.22) we have

(8.23)
£ = ((A1 — Az) <—€192 + 316192)7076“42)
270,P £2(9)

e1g2 0 _ — Az

+/Q 0.9 %((Bl Bs)tre™?)dx

= T oB1+B2

n Ay (7, 7) 6—93(30')6‘51(5)/ (B: —52)56 + de

T 0z Q -z

- 2/ (v1 — iV2)681+EbT(Z)®2(x,T) do+o(1/7) as|r| = +o0.
o

Recall that V| = —6_7—(1)7%77_,7?2{6193} and V5 = —e‘TaRTﬁBj{elm}.

By Proposition 3.2 we conclude that

oV —_~
(8.24) 28721 = (—€1g3 + AgRi,nE{elgg})e_T(b,
)% — 3
(8.25) 287; = (—€1g4 + BQRT’7§2{6194})€_T(D.
Similarly to (5.15) and (5.17) we calculate
avl —7d15 8(6193) —7P+As
(8.26) o = ¢ ‘PR_T,_AQ{ 5 (¢ A G,(,T),
Ve 5 [ O(e194) —r BB,
(8.27) 5, — ¢ R, 5 { 9% +e By(-, 7).

Using (3.2) and integrating by parts, we obtain

b _
£ = (2(A1 _ A2)67(a7—eAl+T‘I) +dTeB1+T<b)7V1 + ‘/2)
< L2(Q)

_ e (@O-2QD) gg, de,

1049
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((Al — Ag)dTBleBl 676, V1 + ‘/2)L2(Q)
+ (A1 — A2) (1 — iv2)are™ ™2 Vi + V) 1200

- <28(A1 — Ay)a etV 4 V2>
L2(Q)

ovy 0V,
—((A; = Ap)a,ehtT® 2( +>) .
( te 0z 0%z )) 120

We observe that by (8.26), (8.11), Propositions 3.4 and 3.3 and the equality

85623 — _%efAz %67(5*@7%_7,_14—2(@193), we have
(8.28)

oV, 0 T
Ay — Ay)a, et 2 1) :74/ ar(2)—eM A2 gz, 1) da
(41~ 0 5 ) oy =[O R D
+ ((Al — Ag)aTeA1+T¢’, —e_Ttbﬁ—r,—z‘b{ 6(?91}3) }) +o(1/7)
< L2(Q)

= —2/ ar(2)B3(x, 7) (11 —i—iuQ)eAlJ”T"‘da
1%}

Q
1 8(6193) (@75)7_’47 </ (A1 — AQ)aT€A1+Tz )
+ — —e” 2 dx | d&p dés + o1
7T/Q o e ; = x| dé& d&s +o(1/7)
_ A+(7’, x) 893( ) (%) / (A1 — %Q)ae““ﬁfb i
Q z—Zz

-
2/ ar(2)B3(z, 7) (v + iva)e ArtAs do+o(1/7) as|r| — +oo.
o0

Hence, using (8.25) we have

SQ :((A1 — Ag)dTBlegl , 7’%77’772{6193})[/2(9)

(( As)(v1 — i10)ar e TP Vi + Vo) 12 (a0
0
+ (282(Al - Az)areAl,RT,_Bz{elgzx})

A (7, %) %(5)6—72(5)/ (A1 — Ag)aei 42 du
Q

Z—z

L2(Q)

T 0z
+ (A1 — As)are™, —e1gs — ERT)_E{€194})L2(Q) +o(1/7)
+ 2/ ar(2)B3(z, 7) (11 +im)ett A 4 as |7| = +o0.
o0
By (4.40) and (4.39) we obtain

(A1 — A2) (1 — iv2)ar e ™2 Vi + Vi) 12(00) = 0(1/7)  as |7| = +oc.
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Therefore, by Proposition 3.4, we have

2 — —( (A, — Ay)d, BB, 193

0 €194 )
— [ =(4; = Ax)a,e,
(52( 1= 42) 70:® /) 12(q)

— e
+ <(A1A2)GT€A1,€194+BQ L9 )
2T8Z‘I) L2(Q)

(A — ég)aeAlhTz s

A+ (7—7 5) % (5)6—/-\72(?) /
z Q

T 0z
+ 2/ ar(2)B3(x, 7)(v1 + ivn)e A2 do + o(1/7) as |7] = +oo.
a0

zZ—Zz

Integrating by parts, we compute

6 —
Ly = (2(31 — Bg)}(aTeAlJ”q) + dTeBﬁT(I’), Vi + Vg)
Z L2(Q)

- _ <28(B1 — Bo)d, BTV 4 VQ)
9z 2(9)

— ((Bl _ BQ)A]GTeAlJrT(I), ‘/1 _|_ ‘/2)[,2((2)
+ ((1 +ive)(By — Ba)d 57 V) + Va)r2(00)

— <(31 — By)d, P tT®, 2(8‘/1 + W?)) .
0z 0z L2(9)

We observe that by (8.11), (8.27), Propositions 3.4 and 3.3 and the equality

% 1 _—By 8By 7(P—
L= —ge 2% %e ( )Rﬂ_sz(elgzl), we have

0z

5 OV 0 B —
Bi+1® 2 _ Bi+Bz 7 (=
. 1 T 9 - T 9
(8.30) 2<(B Bs)de ) 4/ e d.(Z2)B4(x,7)dx
92 ) 12(q) o 0%

+92 (Bl 7BQ)dT€BI+T$,767T6R = 8(6194) +0(1/7_)
R G PRI

= —2/ (1n — iV2)681+F2dT(Z)®4(x,T) do
o9

1 (By = Ba)d- P45 \(0(e1g) | _Brsr(@—o)
_~_/Q</S il e dm){ o }e d& dés + o(1/7)

) (—%
A (@) / (Br = Bo)dr P72 ) 004 o B
T Q Z—Z o¢

- 2/ (v — iug)eBl+F2dT(§)®4(x,7) do+o(1/7) as|r| = +o0.
o0
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a ~
L5 = <28(Bl - Bz)dTeB%RT,Az{el%})
Z L2(Q)

o5

((B1 — B2)A1GT€A177277_37{6194}&2(0)
+ ((By — By)d-€®, —e195 + Afzﬁ,ﬂ,g{ﬁ%})m(m
+ ((Vl + iVQ)(Bl — Bg)dTBBhLTq), i+ VQ)LZ(aQ)

_A-(n7) %(5)6—@(5)/ (By — By)deB1+B2 du
T 0z Q 3

zZ—z
+ 2/ (11 — iV2)681+EdT(E)®4($,T) do +o(1/T) as|7| = 4o0.
o0
By (4.40), (4.39) and the stationary phase argument, we obtain
((r1 +ive)(By — Bg)dTeBH'T(D, Vi+Va)r200) = o(1/7) as || = 4o0.
Therefore, applying Proposition 3.4, we finally conclude that

0 €193
31 = —2(—(B,-B By _—193
(8:31) L5 (82( 1= Bo)de™ 505 o)

€194
— ((B1 = By)Aja e, —
<< 1= B QTach))LQ(Q)

270,

A_(T, .ff) %(i‘/)e_g(%)/ (Bl - BQ)deBlJFE
T aZ Q z

As
+ <(Bl — By)d,eP, —e1g3 — 26193)
L2(Q)

T

z—Z

+ 2/ (1 — iug)eBﬁBde(?)@é;(x,T) do+o(l/7) as|r| = +o0.
lo)

The sum 22:0 £, is equal to the left-hand side of (5.19). Observe that

z (= — Bi+B>
(8.32) — w%@)g@(z)/ (B1 :BQ)CE(E i
T 9z Q zZ—z
)093 ,— 7o A+ A5
_ M%@)e—h(’@/ (A — i‘}z)ae + "
T 82 Q Z—Z

+ A (n®) 992 o 51 @) / (By — Bo)be® B
T~ Q 72—z
+ m%(g)e—fh(%}/ (A — Ag)getatAz
Q

T 0z

dzx
zZ—z
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_ M@m ~Ba(%) / (1 — ’&'ng)desﬂr?2 o

T 0z zZ—z

( ) 891 — Ay (3) / V1 + iy c@A1+A72d
- o
T Bz 20 Z—z
A Bar Ai+As
+ﬂ 9:5 - m)/ (v +ivg)ae o
T 82 29 Z—z
~A(no) 592 B3 / V) — ivy)beBr B2 p
o
T 62 a0 Z —Z

2 JE—
T (Q abet* B\, (1,7) + Q_zdePr T2 A_(1,7))(7).
-
By (8.17), (8.23), (8.29), (8.31) and (8.32), there exist numbers &, ko such that the
asymptotic formula (5.19) holds true. O
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