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Abstract

We prove the periodicities of the restricted T-systems and Y-systems associated with the
quantum affine algebra of type C,., F4, and G2 at any level. We also prove the dilogarithm
identities for these Y-systems at any level. Our proof is based on the tropical Y-systems
and the categorification of the cluster algebra associated with any skew-symmetric matrix
by Plamondon.
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81. Introduction

This is a continuation of the paper [[IKKN]. In [ITKKN], we proved the periodicities
of the restricted T-systems and Y-systems associated with the quantum affine
algebra of type B, at any level. We also proved the dilogarithm identities for these
Y-systems at any level. Our proof was based on the tropical Y-systems and the
categorification of the cluster algebra associated with any skew-symmetric matrix
by Plamondon [P1, P2]. In this paper, using the same method, we prove the
corresponding statements for types C,., Fy, and Gs, thereby completing all the
non-simply laced types.

The results are basically parallel to type B,. Since the common method and
the proofs of the statements for type B, were described in [IIKKN] in detail, in
this paper, we skip the proofs of most statements, and concentrate on presenting
the results with emphasis on the special features of each case. Notably, the tropical
Y-system at level 2, which is the core part in the entire method, is quite specific
to each case.

While we try to make the paper as self-contained as possible, we also try to
minimize duplication with [IIKKN]. Therefore, we have to ask the reader for tol-
erating numerous references to the companion paper [IIKKN] for the things which
are omitted. In particular, basic definitions for cluster algebras are summarized in
[ITIKKN, Section 2.1].

The organization of the paper is as follows. In Section 2 we present the main
results as well as the T-systems and Y-systems for each type. In Section 3 the
results for type C, are established. The key tropical Y-system at level 2 is de-
scribed in detail in Section 3.6. In Section 4 the results for type F), are proved. In
Section 5 we give the results for type Gs. In Section 6 we list the known mutation
equivalences of quivers corresponding to the T-systems and Y-systems.

§2. Main results
.1. Restricte -systems an -systems of types C,, Fy, an 2
2.1. R icted T dyY f C., F d G

Let X, be the Dynkin diagram of type C,., Fy, or G with rank r,and I = {1,...,r}
be the enumeration of the vertices of X,.:

c. o—o— -+ —o  Fy 0—0x0—0 Gy =0
1 2

r—1r 1 2 3 4 1 2

Let i and hY be the Coxeter number and the dual Coxeter number of X, respec-
tively. Then
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X, | C, F G
(2.1) h| 2r 12 6
Y | r+1 9 4

We define numbers ¢ and ¢, (a € I) by

(2.2) . 2, X,=0C,, Fy, . 1, aq long root,
. 3, X,=0Gs, ¢ t, g short root.

For a given integer ¢ > 2, we introduce a set of triplets
(2.3) I =Ty(X,) :={(a,m,u) Jlac I, m=1,...,t,L — 1; u € (1/t)Z}.

Definition 2.1 ([KNS]). Fix an integer ¢ > 2. The level ¢ restricted T-system
Te(X,) of type X, (with the unit boundary condition) is the following system of
relations for a family of variables T, = {Tr(,f) (u) | (a,m,u) € Iy}, where T (u) =
To(a)(u) = 1, and furthermore, Tt(ff) (u) = 1 (the unit boundary condition) if they
occur in the right hand sides of the relations.

(Here and throughout the paper, 2m (resp. 2m + 1) on the left hand sides,

for example, represents elements 2,4, ... (resp. 1,3,...).)
For X, = C,,
T (= HT (e + 3) = T2 @ () + T @) T ()
(l<a<r-2),
r—1 r—1 r—1 r—1
T = DTV u+4) = Tém f(u)Témf(u)
(2.4) o )T (0= T3 (u+ ),
r—1 r—1 r—1) r—1
T2(m+1)( %)TQ(m-i-l)(u—i_ %) T( (U) 2m+2)(u)
2 (r
+ T 2 )T ()T (w),

T (= DT+ 1) = Ty ()T () + T (w).

For X, = Fy,
T (w— D)TO (u+ 1) = T ()T (u) + T (),
T (u— TP (u+ 1) = T ()T (u) + T (u) T4 (),

Tz(frz (u - %)Tz(frz (u + ’) sz 1(“) 2m+1(u)
+ T (u = 1T (u+ $)T5,) (w),
Tio) ) (u— DTS (u+ 3) = Too) (W) TE) o (u) + TS (u) T )y (u) Ty (1),
D=1 ()T (w) + TP (w).
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(2.6) T (u—

2
m+1 %)Ts(szrl(u + ;1),)

2 2
Ty o (u— D8 (u+ 1) =

=ﬂ”<>”<>+ﬁmw,

T?szn 1(“’)T3(72n+1( )
+ T (u = 2T ()T (u+ 2),
T3 (u) Ty o (1)
+ TV (= HTW (w+ HT (w),
T32) ()T 5 (w)

(u

3m—+1
1 1
+ T ()T (0 — DT (u+ D).

Definition 2.2 ([KN]). Fix an integer £ > 2. The level ¢ restricted Y-system
Yo(X,) of type X, is the following system of relations for a family of variables
Yo = {Y.\(u) | (a,m,u) € T}, where Y.\ (u) = Yy (u)™" = VY (w)"! = 0 if
they occur in the right hand sides in the relations:

For X, = C,

Y (u— DY (u+ 1) =

(1+ YV () (1 + Y (w))
(14 Y () (A + Y (w))
(I1<a<r-—2),

(1+ Yoo () (1 + v ()

awﬁmrw+mﬂwﬂ’

+ Yo i1 (1)

u+@$kw (L4 Yamps (w)~1)

(1 + Yoo (u)) (1 + Vi ()

<(1+ Yo Vu—3)A+ Yy D+ d))
C+Y 7 ) A+ YL @

Yo Y (u -
(2.7)
r—1 r—1
Y2(m+l) (u— %)Y2(m+l) (u+3) =

DYam Dt d) =

Y (0= 1)V, (u+1) =

For X, = Fy,
1+ Y2 ()
1+ Y2 ()= (1 + Y, (w)Y)
(1+ Y () (1 4+ Vi) () (1 + Yy (u))
(14 Yoo (= 1)1+ Yol (u + 1))
(1+ Y2 ()" )1+ Y5 ()
(1+ Yo (w) (1 + V) ()
(1+ Yooy (u) =) (1 + Yool (u)~1)

VD = YD) =

(2.8)

Y2 (u—-1)YD(u+1)=

Vi (u— Y (u+ 1) = :
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4
1+ Yy (u)

(3) 1)y (3)
Yool (u— 3o (u+d) =
2m 1\t T 2/ 2m1 (14 Vi) ()= (1 + Vi) o (w) )

)

(2.8) )
o) Y= ¥t d) = L Yo (o) .
A+ Y () + Y, (u)-1)
For X, = G>,
(1+ Y3<222<u>><1 + YD o (u w)
x(1+Y3‘§,1<u NA+YD (u+ 1))
x(1+ Y?ngH(u - ya+ gg(le(u +1y)
><<1+Y3§g;<u— 2) (1 + Yo (u+ 2))
x(14+Y-
29) A+ Y )+ v )
' 1+ 5 (u)
Ys(jl)(u* %)K}(i)(u+ 3) (2) 1 (2) —1\’
(I + Y, (u) (1 + Y g (u)~h)
1
Y3(31)+1(“_ %)Y:s(i)ﬂ(u"‘ %) = )
(1+ Y52 (u) 1) (1 + Yar) o (u)~1)
1

2 2
Y3(m)+2(“ - %)Y},(m)u (u+ %) =

5 .

(U Yo a ()7 (L4 Y1) )
Let us write (2.4)—(2.6) in a unified manner

(210) T (u— 25 (u+ L)

=L T+ [ 1 @)@k,
(b,k,v)ET,

Define the transposition *G(b, k,v;a, m,u) = G(a, m,u;b, k,v). Then (2.7)-(2.9)
can be written as

b K via,m,u
H(b,k,v)ezl(l—i—y( )( ))G(b,k, ca,mau)
(14 Y1) 1+ Y ()

§2.2. Periodicities

(211) YO (u— L)V (ut L) =

m ta

Definition 2.3. Let T¢(X,) be the commutative ring over Z with identity ele-
ment, with generators TT(,A?)(u)il ((a,m,u) € Z;) and relations Ty(X,) together
with T8 (u)T4 (u)~! = 1. Let T(X,) be the subring of T;(X,) generated by
T35 (w) ((a,m,u) € Iy).

Definition 2.4. Let Y,(X,) be the semifield with generators v\ (w) ((a,m,u)
€ I, and relations Y,(X,). Let Y7(X,) be the multiplicative subgroup of Y,(X,)
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generated by Vi (u), 1+ Y5 (u) ((a,m,u) € Ty). (Here we use the symbol +
instead of @ for simplicity.)

The first main result of the paper concern the periodicities of the T-systems
and Y-systems.

Theorem 2.5 (Conjectured in [IIKNS]). The following relations hold in T5(X,):

(i) Half periodicity: T (u+ hY +€) = T')_(u).

tal—m

(i) Pull periodicity: TS (u + 2(hY + £)) = T\ (u).
Theorem 2.6 (Conjectured in [KNS)]). The following relations hold in Y5(X,):

(i) Half periodicity: Y,S{l) (u+hY +10) = Yt(a) (u).

ol—m

(i) Pull periodicity: Y, (u + 2(hY + 0)) = Vi (u).

§2.3. Dilogarithm identities

Let L(x) be the Rogers dilogarithm function

(2.12) L(z) = f% /O"”{log(ly Y i"f@;} dy (0<z<1).

We introduce the constant version of the Y-system.

Definition 2.7. Fix an integer ¢ > 2. The level £ restricted constant Y-system
Y$(X,) of type X, is the following system of relations for a family of variables
Ye={v\ lael;m=1,.. t—1}, where Y, = {1 =yl =0if
they occur on the right hand sides of the relations.

For X, = C,,
vy _ + V)1 + vt G<a<r_2),
(14 Y2 )+ Y2, )
0y = (Lt Yo DT
(2.13) (1 ! Y2m*1 71)((1rj;)Y2m+1 71)
(Yz(&fff = (r—i)_i— Y2m+1 (r—1)_1y’
(1+Y5, DA+ Y5051
oz = LYo DO+ Y D20+ Y5, 0)

1+Y0 A+ -y
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For X, = Fy,
(2)
Ty O, a0y
1 3 3 3
@z = LY )0+ Yol )L+ Y5, 20+ Vi)
" 1 +Y,2 0+ Y2,
(2) (4)
(2 14) (Y2(3))2 _ (1 + Yo )( YZm)
: m 3 3 )
(1+ Yo )+ Y )
(4)
(3,02 = Subyie2
T Ay T+ YY)
3
JCESERRTESEND
For X, = G,
2 2 2 2 2
(VD)2 = (1+ Y3(m)72)(1 + Y3(7’n)71>2(1 + Ys(m))g(l + 1@,(m)+1)2(1 + Y3(m)+2)
" (1+Y7$1121_1)(1+Y7£114)-1_1) 7
(¥i2)? = L+ )
3m - 2 2 )
(2.15) (1+ Yo 7)1+ Vgl ™)
1
(Y3(731)+1)2 = 2 2 9
(1+ Y3(m)_1)(1 + Y3(773+2_1)
1
2
( 3(7rz)+2)2 =

2 2 :
(L4 Yy D+ Y s
Proposition 2.8. There exists a unique positive real solution of Y§(X,).
Proof. The proof of [IIKKN, Proposition 1.8] is applicable. O

The second main result of the paper is the dilogarithm identities conjectured
by Kirillov [Ki, Eq. (7)], and properly corrected by Kuniba [Ku, Egs. (A.la),
(A.1c)].

Theorem 2.9 (Dilogarithm identities). Suppose that a family of positive real
numbers {ngla) laeI,m=1,...,t,0 — 1} satisfies Y3(X,). Then

tol—1 (a) .
Y {dimg
(2.16) 7r2 E g ( ) =wae "

acl m=1 1+ Y(a)

where g is the simple Lie algebra of type X,..
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The right hand side of (2.16) is equal to

r(th — hY)

(2.17) ]

In fact, we prove a functional generalization of Theorem 2.9.

Theorem 2.10 (Functional dilogarithm identities). Suppose that a family of pos-
itive real numbers {Yn(ma)(u) | (a,m,u) € Ip} satisfies Yo(X,). Then

@y,
(2.18) % 3y L<%) — 2tr(¢h — hY)

(a,m,u)EZ,
0<u<2(hY +£)
dr2re—r—1), C,,
= 48(4£ — 3), F4,
24(3¢ — 2), G,

Art—0-1), C,,

(2.19) % > L(%)z 8¢(30+ 1), Fy,

14+Y,
(a,m,u)ET, m
pmaeTe 12020+1),  Ga.

The two identities (2.18) and (2.19) are equivalent to each other, since the
sum of the right hand sides is equal to 2t(hY + £)((3,c;ta)l — r), which is the
total number of (a,m,u) € Z; in the region 0 < u < 2(hY + ).

It is clear that Theorem 2.9 follows from Theorem 2.10.

§3. Type C,

The C, case is quite parallel to the B, case. For the reader’s convenience, we
repeat most of the basic definitions and results from [IIKKN]. Most propositions
are proved in a parallel manner to the B, case, so that proofs are omitted. The
properties of the tropical Y-system at level 2 (Proposition 3.10) are crucial and
specific to C.. Since its derivation is a little more complicated than in the B, case,
an outline of the proof is provided.

§3.1. Parity decompositions of T-systems and Y-systems

For a triplet (a,m,u) € Zy, we define the ‘parity conditions’ P4 and P_ by

(3.1) P,: r+a+m+2uisoddifa##r;2uisevenifa=r,
(3.2) P_:r+a+m+2uisevenifa##r;2uisoddifa=r.
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- o o— o o
- 1|i_—i_—>»i_—i_ o:/ivi;o"'
1‘_—>ﬁi——»_—>i+ I\ﬁ—s_ l
201 uir—o;:of—i* -1 f—i:\ -
AR SIS S T o
1;f—o_—>:|i_—i_ o:/ivi;o"'
D S A Sl \£+

20—1 s 04>.<7|‘I4>. £—1

@ —r+—0—0

Figure 1. The quiver Q.(C,) for £ even (top) and for ¢ odd (botom), where we
identify the rightmost column in the left quiver with the middle column in the
right quiver.

We write, for example, (a,m,u) : Py if (a,m,u) satisfies P.. We have 7, =
Toy UZy—, where Ty, is the set of all (a,m,u) : P..

Define 77(C,). (¢ = £) to be the subring of J7(C,) generated by T\ (u)
((a,m,u) € Zy.). Then we have T7(Cy)y ~ T7(Cy)— via Ty(,f)(u) s T (u+3)
and

(3:3) T7(Cr) = TP(Cr)+ ®2 T3 (Cr) .
For a triplet (a,m,u) € Z; , we set other ‘parity conditions’ P/ and P’ by

(3.4) P .:r+a+m+2uisevenifa+#r;2uisevenifa=r,

(3.5) P : r+a+m+2uisoddifa#r;2uisoddifa=r.
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We have Z, = ), UT,_, where Z,,_ is the set of all (a,m,u) : PL. We also have
(3.6) (a,m,u) : P, & (a,mu+t): Py

Define Y9(C,). (¢ = £) to be the subgroup of Y5(C,) generated by v\ (u),
14+Y$ (w) ((a,m,u) € T).). Then Y3(C) 1 =~ Y3(Cy)— via Vi (u) — Vi (u+1),
1+ v, (u) » 14 Y,S{l)(u + 1), and

(3.7) Y7(Cr) = ¥3(Cr)4 x Y2 (Cr)—.
§3.2. Quiver Q,(C,)

With type C, and ¢ > 2 we associate the quiver Q,(C,) by Figure 1, where the
rightmost column in the left quiver and the middle column in the right quiver are
identified. Also, we assign an empty or filled circle o/e and a sign +/— to each
vertex.

Let us choose the index set I of the vertices of Q,(C,) so that i = (i,i') € I
represents the vertex in the ¢'th row (from the bottom) and the ith column (from
the left) of the left quiver for i« = 1,...,r — 1, in the right column of the right
quiver for ¢ = r, and in the left column of the right quiver for ¢ = r + 1. Thus,
i=1,....r+1,and i’ = 1,...,0—1ifi #r,r+ 1, while i’ = 1,...,20 — 1 if
i = r,7+ 1. We use the natural notation I° (resp. I ) for the set of vertices i with
property o (resp. o and +), and so on. We have I =I°UI®* =15 UI° LIS UI®.

We define composite mutations,

(3.8) p =T m v =Tl m ws=1]m w=]]m
i€l i€l iely iel®
Note that they do not depend on the order of the product.

Let r be the involution acting on I by left-right reflection of the right quiver.
Let w be the involution acting on I defined by, for even r, up-down reflection of the
left quiver and 180° rotation of the right quiver; and for odd r, up-down reflection
of the left and right quivers. Let r(Q(C,)) and w(Q(C;,)) denote the quivers
induced from Q,(C;) by r and w, respectively. For example, if there is an arrow
i— jin Q¢(C,), then there is an arrow r(i) — 7(j) in r(Q.(C,)). For a quiver Q,
QQ°P denotes the opposite quiver.

Lemma 3.1. Let Q = Q¢(C,).
(i) We have a periodic sequence of mutations of quivers
puipl *

(3.9) Q L, gor I Q) LS (@) 45 0,

(ii) w(Q) =Q if bV + £ is even, and w(Q) = r(Q) if hY + £ is odd.
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83.3. Cluster algebra and alternative labels

It is standard to identify a quiver @) with no loop and no 2-cycle with a skew-
symmetric matrix B. We use the following convention for the direction of arrows:

(3.10) i—j & By=1

(In this paper we only encounter the situation where B;; = —1,0,1.) Let B,(C,)
be the skew-symmetric matrix corresponding to the quiver Q(C,). In the rest of
the section, we set B = (Bjj)ije1 = Be(C)) unless otherwise mentioned.

Let A(B, z,y) be the cluster algebra with coefficients in the universal semifield
Qst(y), where (B, x,y) is the initial seed [FZ2]. See also [IIKKN, Section 2.1] for
the conventions and notations on cluster algebras we employ. (Here we use the
symbol + instead of @ in Qg (y), since it is the ordinary addition of subtraction-
free expressions of rational functions of y.)

Definition 3.2. The coefficient group G(B,y) associated with A(B,x,y) is the
multiplicative subgroup of the semifield Qs¢(y) generated by all the coefficients y;
of A(B,z,y) together with 1+ y;.

In view of Lemma 3.1 we set (0) = x, y(0) = y and define clusters z(u) =
(zi(w))ier (u € £Z) and coefficient tuples y(u) = (yi(u))ier (v € 3Z) by the
sequence of mutations

B11) 5 (BL2(0),5(0) L (B x(3).u(1)
&5 (r(B), 2(1),5(1) <HS (—r(B), 2(3), 5(3) £ -

where r(B) = B’ is defined by Bj; = By(i)r(j)-
For a pair (i,u) € I x %Z, we define the parity conditions p; and p_ by

ieI ULy, u=0, ielf LI, uE%,
(3.12) pr:giel®, u=1,3, p-:qiel’, u=0,1,
iel° UIY, u=1, iel> UIy, u=3,
where = is equivalence modulo 2Z. We have
(3.13) (iu):py & (L,u+i):p_.

Each (i,u) : p4 is a mutation point of (3.11) in the forward direction of w, and
each (i,u) : p— is one in the backward direction of u. Notice that there are also
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Figure 2. (Continued in Figure 3.) Labeling of cluster variables x;(u) by Zy4 for C,
¢ = 4. The variables framed by solid/dashed lines satisfy the condition py/p_,
respectively. The middle column in the right quiver (marked by ¢) is identified
with the rightmost column in the left quiver.

some (i, u) which satisfy neither p4 nor p_, and are not mutation points of (3.11);
explicitly, they are (i,u) with i € I3, u = 1,3 mod 2Z, or withi € I°, u =0, 3
mod 27Z.

There is a correspondence between the parity condition py here and Py, P/,
in (3.1) and (3.4).
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A
M) = o =«
T3 (0) LT h
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r--—-—=—-= 1
z(1) oo = a o)
~
77777 A
x(r)(O) «\r o W\» *
1 [ J
1 s
AT
r—2 r-—-—=-——=-- 1 r-—=—-——7— 1
o ) ek o
~
r-—-——-—=-=-- 1 r-—=--- 1
| * — x(r_l)(l) | * I—>| < *
L — - - - = Lo - - - — J
} g
r—2 r-—-—=—=—-—=-- 1 r-—=—-——-—- 1
Ol e B o
Vs
r--——-=-=-- 1 r--=-—-—- 1
w(3) e x w“?(l) I S o R
AN
oDy e L Lo T
3 L - - - - = J L — - - — J
S
r-—-—=—-—=—-—=-- 1 r-—=--- 1
Lfffi(fff‘# x(Tfl)(l) ‘L,,j{,,J‘% < *
777777777777 v
gr—z)(l) e * ) ] o |

Figure 3. Continuation of Figure 2.

Lemma 3.3. Below = means equivalence modulo 27Z.
(i) The map g : Zyyw — {(i,u) : p4+} given by

((a,m),u), a#r,
(3.14) (a,m,u—i)H (r+1,m),u), a=r;m+u=0,

((r,m), u), a=r;m+u=1,

18 a bijection.
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(ii) The map ¢': T, — {(i,u) : py or p_} given by

((a,m),u), a#r,
(3.15) (a,m,u) = < ((r+1,m),u), a=r;m+u=0,

((rym),u), a=r;m+u=1,
18 a bijection.

We introduce alternative labels x;(u) = 2 (u—1/t,) ((a,m,u—1/t,) € Tyy)
for (i,u) = g((a,m,u — 1/t,)) and yi(u) = y,ﬁ)(u) ((a,m,u) € Z;,) for (i,u) =
g’ ((a,m,u)), respectively. See Figures 2-3.

§3.4. T-system and cluster algebra

The result in this subsection is completely parallel to the B, case [IIKKN].

Let A(B,x) be the cluster algebra with trivial coefficients, where (B, z) is
the initial seed [FZ2]. Let 1 = {1} be the trivial semifield and 7 : Qs (y) — 1,
yi — 1, be the projection. Let [x;(u)]1 denote the image of x;(u) under the alge-
bra homomorphism A(B,z,y) — A(B,z) induced by 7. It is called the trivial
evaluation.

Recall that G(b, k,v;a, m,u) is defined in (2.10).

Lemma 3.4. The family {x%) () | (a,m,u) € Iyt } satisfies a system of relations

(@),
(3.16) 2@ (u— L)ale (u+ L) = yi(i)) [ o ()eehmems

Lty (4) 1 vyeze,
1

(@ ()
1435 (u)

+ mfl(u)xm+1(u)7

where (a,m,u) € I, . In particular, the family {[xgg)(u)]l | (a,m,u) € Tpy}
satisfies the T-system To(C,) in A(B,x) after replacing T (u) with [xg,?)(u)]l,

Definition 3.5. The T-subalgebra Ar(B,z) of A(B,z,y) associated with the se-
quence (3.11) is the subalgebra of A(B, z) generated by [z;(u)]1 ((i,u) € I x 3Z).

Theorem 3.6. The ring T;(C,) 4 is isomorphic to Ar(B,x) via the correspon-

dence T (u) — [xS:? (w)]1.

83.5. Y-system and cluster algebra

The result in this subsection is completely parallel to the B, case [IIKKN].
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Lemma 3.7. The family {y,(ff) (u) | (a,m,u) € T, } satisfies the Y-system Y¢(C,)
after replacing Y\ (u) with y,(,‘f)(u)

Definition 3.8. The Y-subgroup Gy (B,y) of G(B,y) associated with the sequence
(3.11) is the subgroup of G(B,y) generated by y;(u) ((i,u) € Ix 1Z) and 1+ y;(u)
((Lu): Py or p).

Theorem 3.9. The group Y3(C,) is isomorphic to Gy (B,y) via the correspon-
dence Y () = v\ () and 1+ Y, (w) — 1+ 5 ().

83.6. Tropical Y-system at level 2

The tropical semifield Trop(y) is an abelian multiplicative group freely generated
by the elements y; (i € I) with addition

(3.17) [Tve]lvw = Hy;nm(a"b‘).
iel icl icl

Let 7t : Qs¢(y) — Trop(y), yi— yi, be the projection. Let [y;(v)]T and [Gy (B, y)]T
denote the images of y;(u) and Gy (B, y) under the multiplicative group homomor-
phism induced by mr, respectively. They are called the tropical evaluations, and
the resulting relations in the group [Gy (B, y)]T form the tropical Y-system.

We say a (Laurent) monomial m = [ yii is positive (vesp. negative) if
m # 1 and k; > 0 (resp. ki < 0) for any i.

The following properties of the tropical Y-system at level 2 will be the key in
the entire method.

Proposition 3.10. For [Gy (B, y)]T with B = B2(C,.), the following facts hold:

(i) Let 0 <u < 2. For any (i,u) : py, the monomial [y;(u)]T is positive.
(i) Let —h¥ < u < 0.
(a) Leti= (3,2) (i <r—1), (r,1), or (r+1,1). For any (i,u) : py, the
monomial [y;(u)]T is negative.
(b) Leti=(i,1),(i,3) (i <r—1). For any (i,u) : p4, the monomial [y;(u)]T
is positive for u=—3h",—1hY — 1 and negative otherwise.
(iil) yiir(2) equals y;j_i, ifi<r—1, and yi;,l ifi=rr+1.
(iv) For even r, y;i(—hY) equals y;,l ifi1 <r—1, and y;,,ﬂrlii’i, if i =77+ 1.
For odd v, y;ir (—h") = y;;.

One can directly verify (i) and (iii) in the same way as in the B, case [ITKKN,
Proposition 3.2]. In the rest of this subsection we give the outline of the proof
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of (ii) and (iv). Note that (ii) and (iv) can be proved independently for each
variable y;. (To be precise, we also need to ensure that no monomial is 1. How-
ever, this can be easily guaranteed, so that we do not describe the details here.)
Below we separate the variables into two parts. Here is a brief summary of the
results.

(1) The D part. The powers of [y;(u)]T in the variables y; 2 (¢ < r —1) and
Yr.1, Yr4+1,1 are described by the root system of type D,,; with a Coxeter-like
transformation. It turns out that they are further described by (a subset of) the
root system of type Ag,y1 with the Coxeter transformation.

(2) The A part. The powers of [yi(u)]T in the variables y;; and y; 3 (i <
r — 1) are mainly described by the root system of type A,_; with the Coxeter
transformation.

3.6.1. D part. Let us consider the D part first. Let D, be the Dynkin diagram
of type D with index set J = {1,...,r + 1}. We assign a sign +/— to vertices of
D, 41 (no sign for  and r + 1) as inherited from Q2(C}).

1 2 r—1 _or
O O O O T even
-+ - + - o+l
1 2 r-1 _or
o A o O< r odd
+ -+ - + - Tor+l
Let IT = {a1,...,ar11}, —II, @, be the sets of simple roots, of negative

simple roots, and of positive roots, respectively, of type D,.;. Following [FZ1], we
introduce the piecewise-linear analogue o; of the simple reflection s;, acting on the
set ®>_1 = &4 U (—II) of almost positive roots by

oi(a) = si(@), a€ Py,

3.18 a;, | =1,
(315) oi(—ay) = { o .
—ay, otherwise.

Let

(3.19) or=[]oi o-=1]] o

iedy ieJ_

where J is the set of vertices of D,.;; with the respective sign. We define

(3.20) 0O=0_040,410_040y.
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Lemma 3.11. The following facts hold:
(I) Let r be even.
(i) Fori<r—1, o"(—a;) € @, (1 <k <7r/2), o"/?t(—y) = —ay.
(ii) Fori<r—1, cf(a;) € @4 (0 <k <7/2), 0"/* () = .
(iii) oF(—a,) € &y (1 <k <7/2), 0"/? T (—a,) = —a,y1.
) oF(—ap1) € @y (1 <k <r/241), 0"* 2 (—app1) = —a,.
)

The elements of ®4 appearing in (1)—(iv) exhaust the set &, thereby
providing the orbit decomposition of ® under o.

(iv

(v

(IT) Let r be odd.

(i) Fori € Jo, oF(~;) € &, (1 < k <7+ 1), 0" (~) = —ay,
ort/2(—q) = a.
(i) Fori € J_, o"(—ay) € @, (1 < k < r+1), 0" 2(~qy) = —ay,

o2 (—q;) = a.

(iii) oF(—a,) € @, (1 <k < (r+1)/2), o +3/2(—q,) = —a,.

(iv) o*(~arp1) € @4 1<k < (r+1)/2), 0P (—appn) = —aria.

(v) The elements of &4 appearing in (1)—(iv) ezhaust the set @, thereby
providing the orbit decomposition of & under o.

Proof. The statements are verified by explicitly calculating o*(—ca;) and o* (o).
The examples for = 10 (for even r) and 9 (for odd r) are given in Tables 1 and 2,

respectively, where we use the notations

(3.21)
jl=ai+--+a; (1<i<ji<r), [l=a @Q1<i<lr),
{i,j} =(vi+-+a)+(aj+ - +a) (<i<j<r+1,i<r-1),

and {r + 1} = a;41. In fact, it is not difficult to read off the general rule from
these examples. O

The orbits o(—a;) and o(a;) are further described by (a subset of) the root
system of type Agpq1. Let II' = {of,...,ah, 1} and @, be the sets of simple
roots and of positive roots of type As,11, respectively, with standard index set
J' ={1,...,2r + 1}. Define J, = {i € J' | i—riseven} and J. = {i € J' |
i — 7 is odd}. We introduce the notations [i, j]' = aj+---+a} (1 <i < j < 2r+1)
and [i]’ = o/, parallel to (3.21). Let O} = {(¢/)*(—al) | 1 < k < r+1} be the orbit
of —aj in @’ under o’ =0’ 0/, 0!, = Hz‘eJ’i o}, where o} is the piecewise-linear

analogue of the simple reflection s acting as in (3.18).
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Lemma 3.12. Let
(3.22) p:®—| |O;
i=1
be the map defined by
.o [i7j]/7 j_T Odd7
[i, 4] — _ o
2r+2—4,2r+2—14), j—r even,
(3.23) [} [i,2r +2—34), j—r odd,
4]
[4,2r+2—14), j—r even,
{r+1} = [r,r+1],
where [i] = [i,i]. Then p is a bijection. Furthermore, under the bijection p, the

action of o is translated into the one of the square of the Coxeter element s' = s'_s',
of type Agri1 acting on @', where 5!y = HiEJ’i st

For —hY < u < 0, define

o2 (—ay), 1€ Jy,u=0,
o~ (=/2(qy), i€ Jp,u=—1,
SCu-D/A(_g) i u=_3
(3.24) al(u) _ g ( aZ)? ? , U 27
o~ GutD/A (), ieJ_,u=—3,
o2 (—ay,), t=r,u=0,
o~ W=D2(_a, ), i=r+1,u=—1,

where = is equivalence modulo 2Z. Note that they correspond to the positive roots
in Tables 1 and 2 with u being the parameter in the head lines. By Lemma 3.11
they are all the positive roots of D,.11.

Lemma 3.13. The family in (3.24) satisfies the recurrence relations
ai(u—3z)+ai(u+tz) = aim(u) +aa(u) 1<i<r-2),
ar_o(u) + ap(u) (u even),
ar_o(u) + arp1(u)  (u odd),
ar(u—1)+a(u+1)=ar_1(u—3)+ar—1(u+3) (uodd),

arri(u—1)+opp(u+l)=ar_1(u—3) +ar_1(u+3) (ueven),

(3.25) ar—i(u—3)+ara(utz)= {

where ag(u) = 0.
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Proof. These relations are easily verified by using the explicit expressions of a;(u).
See Tables 1 and 2. The first two relations can also be obtained from Lemma 3.12
and [FZ2, Eq. (10.9)]. O

Let us return to the proof of (ii) of Proposition 3.10 for the D part. For a
monomial m in y = (yi)ier, let mp(m) denote the specialization with y; 1 = y;3 =1
(¢ < r —1). For simplicity, we set yio =¥ (0 <7 —1), Y1 = Yr, Yr41,1 = Yrt1,
and also yo(u) = y;(u) (4 <7 —1), yr1(u) = yr(v), yr+1,1(w) = yr(u). We define
the vectors t;(u) = (t;(u)g)iL; by

r+1

(3.26) o (lyi(w)]z) = [T v
k=1

We also identify each vector t;(u) with o = ZZ’; ti(u) oy € ZI1.

Proposition 3.14. Let —h" <wu < 0. Then

(3.27) ti(u) = —a;(u)

for (i,u) as in (3.24), and

(3.28) mo([yin(uw)]T) =7mp([yis(w)]r) =1 (GE<r—1,r+i+ 2u even).
Note that these formulas determine 7 p([y;(u)]t) for any (i,u) : py.

Proof. We can verify the claim for —2 < u < f% by direct computation. Then, by
backward induction on u, one can establish the claim, together with the recurrence
relations among t;(u)’s with (¢, u) in (3.24),
tr_a(u) + t,-(uw) (u even),
tr—o(u) + trp1(uw)  (uodd),

te(u—1) +t(u+1)=t,—1(u—3)+t,—1(u+3) (uodd),
trpi(u—1) +tp(u+1) =t (u—23)+t,_1(u+3) (ueven).

1 ut 1y =
(329) TR HEalerd) {

Note that (3.29) coincides with (3.25) under (3.27). To derive (3.29), one uses the
mutations as in [IIKKN, Figure 6] (or the tropical version of the Y-system Ys(C}.)
directly) and the positivity/negativity of mp([y;(u)]T) resulting from (3.27) and
(3.28) by induction hypothesis. O

Now (ii) and (iv) of Proposition 3.10 for the D part follow from Proposition 3.14.

3.6.2. A part. The A part can be studied in a similar way to the D part. Ther-
fore, we only present the result.
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First we note that the quiver Q2(C)) is symmetric under the exchange y; 1 <
¥i,3 (1 < r—1). Thus, one can concentrate on the powers of [y;(u)]T in the variables
Yin (Z S T — 1)

Let A,_1 be the Dynkin diagram of type A with index set J = {1,...,r—1}.
We assign a sign +/— to vertices (except for r) of A,_1 as inherited from Q2(C,.):

1 2 r—2 r—1
O O O O O r even
+ — + — +
1 2 r—2 r—1
) ) O O r odd
— + + — +

Let IT = {aq,...,a,—1}, —II, @, be the sets of simple roots, of negative
simple roots, and of positive roots, respectively, of type A,_1. Again, we introduce
the piecewise-linear analogue o; of the simple reflection s;, acting on ®>_; =
O, U (—TII) as in (3.18). Let

(3.30) or = H oy O = H Ois

icJy ieJ_
where J is the set of vertices of A,_; with the respective sign. We define
(3.31) c=0_04.

For a monomial m in y = (yj)ie1, let ma(m) denote the specialization with
Yie=viz=10(<r—1)and yp1 =yry11 =1 Weset yin =y; (1 <r—1).
We define the vectors t;(u) = (i (u)g)j_} by

(3.32) rall (o)) = [ ™"
k=1

We also identify each vector ti(u) with a = Z;;i ti(u)poy, € ZI1.
With these notations, the result for the A part is summarized as follows.

Proposition 3.15. Let —hY < u < 0. For (i,u) : py, ti(u) is given by, for
1 <r—1,

T Someniz gy, e

(3.33) —2r+2—i+2ur—1, —3hY <u<o,
—[-1—i—2u,r—1], —hY <u< -1nY,
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and
b (1) = —[r+2+2u,r—1], —3rY<u<0,
(3:34) —[-1—=7r—2u,r—-1], —hY<u<-—-3hY,
3.34
—[r+2+2u,r—1], —1nY<u<0,
tr+1,1(u):
—[-1—=7r—2u,r—-1], —hY<u<-—-3hY,

where [i, j] equals o; + - -+ o if 1 < j and 0 if i > j.

Note that t;1(—hY/2) = a,—; (i € J_ for r even and 7 € J, for r odd) and
tin(—hY/2 —1/2) = a,—; (i € J; for 7 even and ¢ € J_ for r odd), and that
they are the only positive monomials in (3.33) and (3.34). Now (ii) and (iv) of
Proposition 3.10 for the A part follow from Proposition 3.15.

This completes the proof of Proposition 3.10.

83.7. Tropical Y-systems at higher levels

By the same method as for the B, case [IIKKN, Proposition 4.1], one can establish
the ‘factorization property’ of the tropical Y-system at higher levels. As a result,
we obtain a generalization of Proposition 3.10.

Proposition 3.16. For [Gy (B, y)]T with B = B(C,.), the following facts hold:
(i) Let 0 <u < £. For any (i,u) : p+, the monomial [yi(u)]T is positive.
(i) Let —hY <u < 0.

(a) Leti € I° ori= (i,¢) (t <r—1,14 € 2N). For any (i,u) : p4, the
monomial [y;(u)]T is negative.

(b) Leti= (i,i') (t <r—1,4 ¢ 2N). For any (i,u) : p4+, the monomial
[yi(w)]T is positive for u = —2hY, —1hY — L and negative otherwise.

(iil) yiir (£) equals y;,ng_i, ifi<r—1, and y;zl_l-, ifi=rr+1.
(iv) For even r, yur(—h") equals y;;' if i <r—1, and yi}ﬂ—m" ifi =nr,r+1.
For odd v, yiir (—h") = y;;.

We obtain two important corollaries of Propositions 3.10 and 3.16.

Theorem 3.17. For [Gy (B, y)|T the following relations hold:

(i) Half periodicity: [y;(u+ hY + )]t = [Yuw) (u)]T
(i) Full periodicity: [y;(u+ 2(hY 4+ €))]T = [yi(uw)]T.
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Theorem 3.18. For [Gy (B, y)]T, let N1 and N_ denote the total numbers of the
positive and negative monomials, respectively, among [yi(u)]T for (i,u) : p4 in the
region 0 < u < 2(h"Y +£). Then

(3.35) Ny =202rf—0—1), N_=2r(20r —r—1).

We observe the symmetry (the level-rank duality) for the numbers N, and N_
under the exchange of r and ¢.

83.8. Periodicities and dilogarithm identities
Applying [IIKKN, Theorem 5.1] to Theorem 3.17, we obtain the periodicities:
Theorem 3.19. For A(B,x,y), the following relations hold:

(i) Half periodicity: zi(u + hY +£) = Ty (u).
(i1) Full periodicity: zi(u + 2(hY +£)) = z;(u).

Theorem 3.20. For G(B,y), the following relations hold:

(i) Half periodicity: yi(u+ hY +€) = yea)(u).
(ii) Pull periodicity: yi(u +2(hY +£)) = yi(u).

Theorems 2.5 and 2.6 for C,. follow from Theorems 3.6, 3.9, 3.19, and 3.20.
Furthermore, Theorem 2.10 for C, is obtained from the above periodicities and
Theorem 3.18 as in the B, case [IIKKN, Section 6].

84. Type F}

The Fy case is quite parallel to the B, and C,. cases. We do not repeat the same
definitions unless otherwise mentioned. Again, the properties of the tropical Y-
system at level 2 (Proposition 4.7) are crucial and specific to Fy.

84.1. Parity decompositions of T-systems and Y-systems

For a triplet (a,m,u) € Zy, we reset the ‘parity conditions’ P, and P_ to be

(4.1) P,: 2uisevenifa=1,2; a+m+ 2u is odd if a = 3,4,
P_: 2uisoddifa=1,2; a+m+ 2u is even if a = 3, 4.

Then we have T (Fy)4+ ~ Ty (Fy)— via T\ (u) — Tr(na)(u + 3) and

(4.3) T (Fy) = T3 (Fa)4 ®2 T7 (Fy)-.
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For a triplet (a,m,u) € Z;, we reset the parity conditions P, and P’ to be

(4.4) P : 2uisevenifa=1,2;a+m+2uiseven if a = 3,4,
(4.5) P’ : 2uisoddifa=1,2; a +m+ 2uis odd if a = 3, 4.
We have

(4.6) (a,m,u) : P, & (a,m,u+ i) P

Also, we have Y9(Fy)y ~ Y9(Fy)— via szia)(u) > Y,;“)(u +3), 1+ Yrgf)(u) —
1-+}4“N + 1), and

(4.7) P (Fa) =95 (Fa)y x g (Fa) -

§4.2. Quiver Q(Fy)

With type Fy and ¢ > 2 we associate the quiver Q¢(Fy) by Figure 4, where the
right column in the left quiver and the middle column in the right quiver are

o o' o

Ll PRy SR

4" LT
201 i—f—i_ -1 = 55 ‘\ = L4f

' [ ]

o— o

£+ if / y— + —

i_—»i+ \o+

o o o

S o— of—i:\—»o_—»')+

— bt t

° ) ®

S S Sl SR TR =
201 i;p_ -1 \i—’—

S S i:\—w_ St

— b i ﬁ/l

° ) /t

LT [ A &

i;i—'_ .+

Figure 4. The quiver Q(Fy) for ¢ even (top) and for £ odd (bottom), where we
identify the right column in the left quiver with the middle column in the right
quiver.
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identified. Also, we assign an empty or filled circle o/e and a sign 4+/— to each
vertex.

Let us choose the index set I of the vertices of Q¢(Fy) so that i = (4,i') € 1
represents the vertex in the #'th row (from the bottom) and the ith column (from
the left) of the right quiver for i = 1,2, 3, in the (i —1)th column of the right quiver
for ¢ = 5,6, and in the left column of the left quiver for ¢ = 4. Thus, ¢ =1,...,6,
and i’ =1,...,0—1ifi=1,2,5,6, while ¢ =1,...,20 — 1 if i = 3,4.

Let r be the involution acting on I by left-right reflection of the right quiver.
Let w be the involution acting on I by up-down reflection of the left quiver and
180° rotation of the right quiver.

Lemma 4.1. Let Q = Qu(Fy).

(i) We have the same periodic sequence of mutations of quivers as in (3.9).
(il) w(Q)=Q if hV + £ is even, and w(Q) = r(Q) if bV + £ is odd.

§4.3. Cluster algebra and alternative labels

Let By(Fy) be the skew-symmetric matrix corresponding to the quiver Qy(Fy). In
the rest of this section, we set B = (Bj;)i,jer = Be(F1) unless otherwise mentioned.

Let A(B, z,y) be the cluster algebra with coefficients in the universal semifield
Qst(y), and G(B,y) be the coeflicient group associated with A(B,z,y).

In view of Lemma 4.1 we set (0) = z, y(0) = y and define clusters z(u) =
(zi(uw))ier (u € 1Z) and coefficient tuples y(u) = (yi(u))ier (u € 3Z) by the
sequence of mutations (3.11).

For a pair (i,u) € I x %Z, we set the same parity condition p; and p_ as in
(3.12). We have (3.13), and each (i,u) : p+ is a mutation point of (3.11) in the
forward direction of u, while each (i,u) : p— is one in the backward direction of u
as before.

Lemma 4.2. Below = means equivalence modulo 27Z.

(i) The map g : Zyy — {(i,u) : p4} defined by

((a,m),u), a=1,2;a+m+u=0,
(4.8) (a,m,u—i)»ﬁ (7T—a,m),u), a=1,2;a+m+u=1,
((a,m),u), a = 3747

is a bijection.



PERIODICITIES OF T-SYSTEMS AND Y-SYSTEMS II: TYPES C), F4, AND G2 69
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Figure 5. (Continued in Figure 6.) Labeling of cluster variables x;(u) by Zyy for Fy,
¢ = 4. The middle column in the right quiver (marked by ¢) is identified with the
right column in the left quiver.

(ii) The map g': 7, — {(i,u) : p4} defined by

((a,m),u), a=1,2a+m+u=0,
(4.9) (a,m,u) = ((T—a,m),u), a=1,2,a+m+u=1,
((a7m)7u)a a=3,4,

s a bijection.
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Figure 6. Continuation of Figure 5.

We introduce alternative labels z;(u) = 7 (u—1/ts) ((a,m,u—1/t,) € Tpy)
for (1,u) = g((a,m,u — 1/ts)) and yi(u) =y (w) ((a,m,u) € I},) for (i,u) =
g’ ((a,m,u)), respectively. See Figures 5-6.

84.4. T-system and cluster algebra
The result in this subsection is completely parallel to the B, and C, cases.

Lemma 4.3. The family {xsff) (w) | (a,m,u) € Zyy} satisfies the system of rela-
tions (3.16) with G(b, k,v;a, m,u) for T¢(Fy). In particular, the family {[x%) (u)]1 |
(a,m,u) € Tpi} satisfies the T-system T¢(Fy) in A(B,x) after replacing T,Ef)(u)
with [ngf) (w)]1-
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The T-subalgebra Ar (B, z) is defined as in Definition 3.5.

Theorem 4.4. The ring T5(Fy)4+ is isomorphic to Ap(B,z) via the correspon-
dence Ty(,f)(u) — [ngf) (u)]1-

84.5. Y-system and cluster algebra

The result in this subsection is completely parallel to the B, and C,. cases.

Lemma 4.5. The family {y,(,(f)(u) | (a,m,u) € T;, } satisfies the Y-system Y,(F})

after replacing Y;\" (u) with y,(ﬁ)(u)

The Y-subgroup Gy (B,y) is defined as in Definition 3.8.

Theorem 4.6. The group Y5(Fy)+ is isomorphic to Gy (B,y) via the correspon-
dence Y7£La)(u) — yg,‘:) (u) and 1+ nga)(u) — 14+ y,(ﬁ)(u)

84.6. Tropical Y-system at level 2
By direct computations, the following properties are verified.
Proposition 4.7. For [Gy (B, y)|t with B = Ba(Fy), the following facts hold:

(i) Let 0 <u < 2. For any (i,u) : p4, the monomial [yi(u)]T is positive.
(i) Let —hY <u < 0.
(a) Leti= (1,1),(2,1),(5,1),(6,1),(3,2), or (4,2). For any (i,u) : p, the
monomial [y;(u)]T is negative.
(b) Leti= (3,1),(3,3),(4,1), or (4,3). For any (i,u) : p4, the monomial

; . _ 1 3 7 11 13
[yl(u)]T (5] negatwe fOT u = _57_17_57_33_57_47_77_6a_77_8,
—%, —9 and positive for u = —2, —%, —%, -5, -7, —1—25,

(iil) wii(2) equals y;;' if i =1,2,5,6, and y; ,_, if i = 3,4.
(iv) v (—hY) equals y;_li,i, if i =1,2,5,6, and y;;" if i = 3,4.

Also we have a description of the ‘core part’ of [y;(u)]T for —hY < u < 0,
corresponding to the D part for C,., in terms of the root system of Fg. We use the
following indexing of the Dynkin diagram FEjg:

g

O

— O
D
[=Y6)
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Let II = {aq,...,ag}, —II, &4 be the sets of simple roots, of negative simple
roots, and of positive roots, respectively, of type Eg. Let o; be the piecewise-
linear analogue of the simple reflection s;, acting on the set ®>_; = &, LI (—II) of

almost positive roots. We write ) . m;a; € & as [1™1,2™2, ..., 6™¢]; furthermore,
(10,21 31 41 50 69], for example, is abbreviated as [2,3,4].

We define
(4.10) 0 = 03(040206)03(040105).

Lemma 4.8. The orbits under o are:

4.11
(—043 - [1,2,3] — [2,3,4,5,6] — [1,2,3%,4,5] — [5,6] — —as,

—ay — [2,3] — [1,22,3%,4,5,6] — [1,22 3% 42 5% 6]

— [1,2,3%,4,5%6] — [5] - —as,

—az — [2,3, } — [1,2,3%,4,5,6] — [2,3%,4,5%,6] — [1,2,3,5] = —as,

as — [2,3,5,6] — [1,2%,3%,4,5] — [1,2,3,4,5,6] — [3,4,5] — as,
—ay — [2] = [1,2,3,4] — [3,4,5,6] = [3,5] =& —au,

ay — [3,4] — [3,5,6] — [2,3,5] — [1,2] — au,

—as — [2,3%,4,5,6] — [1,2%,3%,4,5%,6] — [1,2% 3% 4,5% 6]

= [1,2,3,4,5] — —ag,
—ag — [6] — [2732,475] - [1,2,3,5,6] — [2,3,4,5] — [1] = —ag.

In particular, these elements of @4 exhaust the set @, thereby providing the orbit
decomposition of ®1 under o.

For —hY < u < 0, define

o2 (—qy), 1=1,4,5; u=0,
0-—(“_1)/2(_041-), 1= 2,6, u = _17
(4.12) ai(u) = o~V 2 (ay),  i=4u=-1,
oD/ _qg) =3 u=—3,
ot/ (ag) =3 u=—3,

where = is equivalence mod 2Z. By Lemma 4.8 they are (all the) positive roots
of Fg.

For a monomial m in y = (yi)ie1, let ma(m) denote the specialization with
Y31 = Y33 = Ya1 = ya3 = 1. For simplicity, we set y;1 = y; (1 = 1,2,5,6), yi2 = y;
(i = 3,4), and also y;1(uv) = yi(u) (1 = 1,2,5,6), yie(u) = yi(u) (i = 3,4). We
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define the vectors t;(u) = (¢;(u)x)%_; by
6

(4.13) maly(wlr) = [T o™
k=1

We also identify each vector t;(u) with o = 22:1 t;(u)poy, € ZIL
Proposition 4.9. Let —hY < u < 0. Then
(4.14) ti(u) = —a;(u)
for (i,u) as in (4.12).
84.7. Tropical Y-systems at higher levels

Due to the factorization property, we obtain the following.

Proposition 4.10. Let £ > 2 be an integer. For [Gy (B,y)]T with B = By(Fy),
the following facts hold.

(i) Let 0 <u < L. For any (i,u) : p+, the monomial [yi(u)]T is positive.
(i) Let —hY < u < 0.

(a) LetieI® ori=(3,%),(4,i) (i’ € 2N). For any (i,u) : p+, the monomial
[yi(u)]T is negative.

(b) Leti=(3,i),(4,) (¢’ € 2N). For any (i,u) : p+, the monomial [y;(u)]T
is negative for u = —%,—17—%,—3,—%7—4, U6 —13 —87—12—7,—9

and positive for u = —2, —g, —%, -5, -7, —%.

2 2

(iii) yiir (£) equals y;elii, ifi=1,2,5,6, and y;%zfi, if i = 3,4.
(iv) wir (—hY) equals y; ', , if i =1,2,5,6, and y;;' if i = 3,4.
We obtain corollaries of Propositions 4.7 and 4.10.

Theorem 4.11. For [Gy (B, y)|T the following relations hold:

(i) Half periodicity: [yi(u+ hY + €)1 = [Yuw)(w)]T-
(i) Full periodicity: [yi(u+ 2(hY 4+ €))]t = [yi(uw)]T.

Theorem 4.12. For [Gy (B, y)]T, let Ny and N_ denote the total numbers of the
positive and negative monomials, respectively, among [yi(u)]T for (i,u) : p4 in the
region 0 < u < 2(h" + ¢). Then

(4.15) Ny =40(3041), N_ =24(40—3).
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84.8. Periodicities and dilogarithm identities
Applying [ITKKN, Theorem 5.1] to Theorem 4.11, we obtain the periodicities:
Theorem 4.13. For A(B,x,y), the following relations hold:

(i) Half periodicity: xi(u + hY +£) = Ty (u).
(i) Full periodicity: zi(u + 2(hY +£)) = z;(u).

Theorem 4.14. For G(B,y), the following relations hold:

(1) Half periodicity: yi(u+ hY 4+ £) = o) (u).
(i) Full periodicity: yi(u + 2(hY + €)) = yi(u).

Theorems 2.5 and 2.6 for Fj follow from Theorems 4.4, 4.6, 4.13, and 4.14.
Furthermore, Theorem 2.10 for Fj is obtained from the above periodicities and
Theorem 4.12 as in the B, case [IIKKN, Section 6].

85. Type G2

The G2 case is mostly parallel to the former cases, but slightly different because
the number ¢ in (2.2) is three. Again, the properties of the tropical Y-system at
level 2 (Proposition 5.9) are crucial and specific to Gs.

85.1. Parity decompositions of T-systems and Y-systems

For a triplet (a, m,u) € Iy, we reset the parity conditions P, and P_ to be

5.1) P, : a+m+3uis even,
(5.2) P_: a+m+ 3uis odd.

Then we have T7(G2)1 ~ T7(G2)— via Trgf)(u) — Tr(na)(u + %) and
(5.3) T¢(G2) = TP (G2)+ ®2 T; (G2) .
For (a,m,u) € Z,, we reset the parity conditions P/, and P’ to be

P’ : a+m+3uisodd,

P’ : a4+ m+ 3uis even.
We have

(5.6) (a,;m,u) : Pl & (a,myut )Py
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Also, we have Y9(G2)y+ ~ Y7 (Ga)— via Yr%a)(u) — Yn(za)(u I

1+ Y,ﬁf‘)(u + 1), and

(5.7)

Wl

Y7(G2) =~ Y7 (G2)+ x Y3 (Ga)-.

§5.2. Quiver Q(G>)

), 1+ Vi (u) v

With type G2 and ¢ > 2 we associate the quiver Q¢(G2) by Figure 7, where the
right columns in the three quivers are identified. Also we assign an empty or filled
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Figure 7. The quiver Q;(G3) for £ even (top) and for £ odd (bottom), where we
identify the right columns in the three quivers.
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circle o/e to each vertex; furthermore, we assign a sign +/— to each vertex with e,
and one of the numbers I, ..., VI to each vertex with o.

Let us choose the index set I of the vertices of Q;(G2) so that i = (i,i') € 1
represents the vertex in the #'th row (from the bottom) and in the left column in
the ith quiver (from the left) for ¢ = 1,2, 3, and in the right column in any quiver
fori=4. Thus,i=1,...,4,and ¢’ =1,...,£ —1if i #4, whiles =1,...,3( -1
if i = 4.

For a permutation s of {1,2,3}, let v; be the permutation of I such that
vs(i,1') equals (s(i),4') for i # 4, and (4,4') for i = 4. Let w be the involution
acting on I by up-down reflection. Let v4(Q¢(G2)) and w(Q¢(G2)) denote the
quivers induced from Q¢(G2) by v, and w, respectively.

Lemma 5.1. Let Q = Q¢(G2).

(i) We have a periodic sequence of mutations of quivers

nlpy op  HIuD Tt o
(5.8) Q S V(23)(Q) P V(312)(Q) S V(13)(Q) P

ne pry

sy op  HInY
5 V(o3 (Q) ¢ v(12)(Q)P +——

Q.
(i) w(Q) = Q if h¥ +{ is even, and w(Q) = v(13)(Q)°® if h¥ + { is odd.
See Figures 8-10 for an example.

85.3. Cluster algebra and alternative labels

Let By(G2) be the skew-symmetric matrix corresponding to the quiver Q¢(G2). In
the rest of the section, we set B = (Bjj)ije1 = Br(G2) unless otherwise mentioned.
Let A(B, z,y) be the cluster algebra with coefficients in the universal semifield
Qst(y), and G(B,y) be the coefficient group associated with A(B, z,y).
In view of Lemma 5.1 we set x(0) = z, y(0) = y and define clusters z(u) =
(zi(w))ier (u € £Z) and coefficient tuples y(u) = (yi(u))ier (u € 3Z) by the
sequence of mutations

(5.9) - £ (BL(0), 5(0)) L2 (—uas (B), (1), u(2))

L 10y (B), 2(2), y(2))

S oy (B), 2(3),0(3)) 25 (—wy (B, 2(3),w(3)) €555 -

where v4(B) = B’ is defined by B’

V(. G) = Bii-
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Figure 8. (Continued in Figures 9 and 10.) Labeling of cluster variables ax;(u)

by Zyy for Ga, £ = 4. The right columns in the middle and right quivers (marked

by ¢) are identified with the right column in the left quiver.
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Figure 9. Continuation of Figure 8.
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For a pair (i,u) € I x %Z, we set the parity conditions p4 and p_ to be

ieulyl, u=0, icljyul®, u=0,
ieljuls, uE%7 ielf UIY, u—%,
ieIo, Uly, u=2, ieIqul, u=2,

(5.10) po: I = 3 p_ 11 3
ielpyuIt, uv=1, ieljuly, uw=1,
: o ° — 4 . o . 4
ieljyuly, u=s3, ielpj, Ul*, u=g,
iclj;uIs, uzg7 iclj uls, uz%,

where = is equivalence modulo 2Z. We have

(5.11) (i,u):py & (u+t3): p-.

Each (i,u) : p+ is a mutation point of (5.9) in the forward direction of u, and each
(i,u) : p— is one in the backward direction of w.

Lemma 5.2. Below = means equivalence modulo 27Z.

(i) The map g : Zyy — {(i,u) : p4} defined by

(5.12) (a,m,u — iﬂ) —

IS
|

=
3
+
<
|

Wi wik O

18 a bijection.
(ii) The map ¢': T, — {(i,u) : py} defined by

((Lm),U), a=1,m+u=0,

(513) (a7m7u) — ((27m)7u)7 a = ]., m+u= ;7
((S,m),u), azl;m+uzg’
((4,77’7,),’11,)7 CEZQ,

is a bijection.

We introduce alternative labels z;(u) = 2@ (u—1/ts) ((a,myu—1/t,) € Typy)
for (i,u) = g((a,m,u — 1/ta)) and yi(u) = yi (u) ((a,m,u) € Z},) for (i,u) =
g'((a, m,u)), respectively. See Figures 8-10 for an example.

§5.4. T-system and cluster algebra

Lemma 5.3. The family {xgﬁ)(u) | (a,m,u) € Iy} satisfies the system of
relations (3.16) with G(b,k,v;a,m,u) for Te(Ga). In particular, the family
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{[xgg)(u)]l | (a,m,u) € Lot} satisfies the T-system T¢(G2) in A(B,x) after re-
placing T\ (u) with [xﬁ,‘i) (u)]1-

Definition 5.4. The T-subalgebra Ar(B,x) of A(B,x) associated with the se-
quence (5.9) is the subring of A(B,z) generated by [z;(u)]y ((i,u) € I x 17Z).

Theorem 5.5. The ring Ty (G2)+ is isomorphic to Ap(B,x) via the correspon-
dence T7(,§l)(u) — [.ng) (w)]1-

§5.5. Y-system and cluster algebra
Lemma 5.6. The family {yy(,?)(u) | (a,m,u) € Z), } satisfies the Y-system Y,(G2)
after replacing v, (u) with y%’f)(u)

Definition 5.7. The Y-subgroup Gy (B,y) of G(B,y) associated with the sequence
(5.9) is the subgroup of G(B,y) generated by y;(u) ((i,u) € Ix $Z) and 1+ y;(u)
(L) py or p).

Theorem 5.8. The group Y3(G2)4 is isomorphic to Gy (B,y) via the correspon-
dence Y, (u) = v (u) and 1+ Y5 (w) = 1+ 352 (u).

85.6. Tropical Y-system at level 2
By direct computations, the following properties are verified.
Proposition 5.9. For [Gy (B,y)|t with B = Bs(G2), the following facts hold:

1 Let () < u < 2- }07 dﬂy L,u): p the mon()mlal yl u)|lT 18 pOSZlfwe.
I +>
(11) Let _h\/ < u < 0;

(a) Leti= (1,1), (2,1), (3,1), or (4,3). For any (i,u) : p4, the monomial
[yi(u)]T is negative.
(b) Leti= (4,1), (4,2), (4,4), or (4,5). For any (i,u) : p4+, the monomial

k)
[yi(uw)]T is negative for u = —%,f%,fl—%,f%,—ll, and positive for
_ 4 _5 _8 10
u = _17_57_§a_§a_ s 3

(iii) i (2) equals yi_l-,1 if i £4, and y;éii, if i = 4.

(iv) yir (—hY) =y

Also we have a description of the core part of [y;(u)]T in the region —hY <
u < 0 in terms of the root system of Dy. We use the following indexing of the
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Dynkin diagram Dy:

o 3
O O———oO
1 4 2
Let IT = {ay,...,a4}, —II, &4 be the sets of simple roots, of negative simple

roots, and of positive roots, respectively, of type D,. Let o; be the piecewise-linear
analogue of the simple reflection s;, acting on the set ®>_; = & L(—II) of almost
positive roots. We define

(5.14) 0 = 030401040204.
Lemma 5.10. The orbits under o are:
-1 — a1 t+azt+oayg — o t+agt+oag = —aq,
—qy — a1 toagtaztayg — axtoay — —ag,
(5.15) —a3 — a3 = o1 t+oetaz+20 = —as,
—Qy — Qztoaztoag = oy — g
— g — az3tog = o t+toag — —og.

In particular, these elements of @ exhaust the set @, thereby providing the orbit
decomposition of ®, under o.

For —hY < u < 0, define

o~ (w=D/2(_qy), i=1;u=—1,-3,
O'_(gu_l)/G(_OQ)a i = 27 U = _%7 _%a
_ — - 9. _ 1 7
616 a0 e, i=Bu=—g,
o_(3”+2)/6(a3+a4), i:4;u:—§,—§,
07(3u+4)/6(a1), i:4;u:7%af§v
O'iu/Q(_OléL), i:4;u:—2,—4

By Lemma 5.10 these are (all the) positive roots of Dy.

For a monomial m in y = (¥i)icr1, let mp(m) denote the specialization with
Y41 = Ya2 = Yaa = Ya5 = 1. For simplicity, we set y;1 = y; (i # 4), ya3 = y4, and also
yir(u) = yi(u) (i # 4), yas(u) = ya(u). We define the vectors t;(u) = (;(u)k)i_,
by

(5.17) o (fyi(w)z) = T v ™.
k=1
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We also identify each vector t;(u) with v = Zi:l ti(u) oy € ZI1.
Proposition 5.11. Let —hY <wu < 0. Then
(5.18) ti(u) = —ai(u)
for (i,u) as in (5.16).
85.7. Tropical Y-systems of higher levels

Proposition 5.12. Let £ > 2 be an integer. For |Gy (B,y)|T with B = By(G2),
the following facts hold:

(i) Let 0 <u < L. For any (i,u) : p+, the monomial [yi(u)]T is positive.
(i) Let —hY <u < 0.
(a) Leti e I° ori= (4,7) (¢ € 3N). For any (i,u) : py4, the monomial
[yi(u)]T is negative.
(b) Leti= (4,7) (' € 3N). For any (i,u) : p+, the monomial [y;(u)]T is neg-

ative for u = —%, —%,—2, —%, —%, —4 and positive for u = —1, —%, —%,
_8 g9 _10
31T T g

(iii) vy (€) equals y;el_i/ ifi # 4, and i‘/;;e—i/ if i = 4.
(iv) i (=hY) =y

The following are corollaries of Propositions 5.9 and 5.12.
Theorem 5.13. For [Gy (B, y)|T, the following relations hold:

(i) Half periodicity: [y;(u+ hY + )]t = [Yuwi) (u)]T
(i) Full periodicity: [y;(u+2(hY 4+ €)1t = [yi(uw)]T.

Theorem 5.14. For [Gy (B, y)]T, let Ny and N_ denote the total numbers of the
positive and negative monomials, respectively, among [y;(u)] for (i,u) : p4 in the
region 0 < u < 2(hY + ¢). Then

(5.19) Ny =60(20+1), N_=12(3(—-2).
85.8. Periodicities and dilogarithm identities
Applying [ITKKN, Theorem 5.1] to Theorem 5.13, we obtain the periodicities:

Theorem 5.15. For A(B,x,y), the following relations hold:

(i) Half periodicity: zi(u+ hY +£) = 2,3 (u).
(ii) Pull periodicity: x;(u+2(hY +£)) = z;(u).
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Theorem 5.16. For G(B,y), the following relations hold:

(i) Half periodicity: yi(u + hY +£) = yw(i)(u)'
(ii) Pull periodicity: yi(u +2(hY +£)) = yi(u).

Theorems 2.5 and 2.6 for G5 follow from Theorems 5.5, 5.8, 5.15, and 5.16.
Furthermore, Theorem 2.10 for G5 is obtained from the above periodicities and
Theorem 5.14 as in the B, case [IIKKN, Section 6].

8§6. Mutation equivalence of quivers

Recall that two quivers Q and @’ are said to be mutation equivalent, denoted
Q ~ Q' here, if there is a quiver isomorphism from @ to some quiver obtained
from Q" by successive mutations.

Below we present several mutation equivalent pairs of quivers Q,(X,), though
the list is not complete at all. For simply laced X,., Q¢(X,) is the quiver defined
as the square product )?T ([l /Tg,l in [Ke, Section 8].

Proposition 6.1. We have the following mutation equivalences of quivers:

Q2(By) ~ Q2(Dayy1),

(6.1) Q2
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