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Abstract

We prove the periodicities of the restricted T-systems and Y-systems associated with the
quantum affine algebra of type Br at any level. We also prove the dilogarithm identities
for the Y-systems of type Br at any level. Our proof is based on the tropical Y-systems
and the categorification of the cluster algebra associated with any skew-symmetric matrix
by Plamondon. Using this new method, we also give an alternative and simplified proof
of the periodicities of the T-systems and Y-systems associated with pairs of simply laced
Dynkin diagrams.
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§1. Main results

§1.1. Background

The T-systems and Y-systems are systems of algebraic relations originally asso-

ciated with quantum affine algebras [KNS2, Nkj, Her1], or more generally, with

the quantum affinizations of a wide class of quantum Kac–Moody algebras [Her2,

KNS3].

On the other hand, these systems also appear naturally in cluster algebras

[FZ2, FZ3]. This identification has provided several fruitful results. The periodic-

ities of Y-systems were proved by [FZ2] for any simply laced type at level 2 (in

our terminology). Here by ‘simply laced’ we mean the Y-systems associated with

the quantum affine algebras of simply laced type. The periodicities of Y-systems

were further proved by [Ke1, Ke2] for any simply laced type at any level, by the

combination with the cluster category method. Using the method of [Ke1, Ke2],

the periodicities of T-systems were also proved by [IIKNS] for any simply laced

type at any level. Closely related to the Y-systems, the dilogarithm identities were

proved by [C] for any simply laced type at level 2 based on the result of [FZ2],

and further by [Nkn] for any simply laced type and any level. So far, however, all

these systematic treatments were limited to the simply laced case only, since the

above methods are not straightforwardly applicable to the non-simply laced case.

In this paper and the subsequent one [IIKKN], we prove the periodicities of T-

systems and Y-systems, and also the dilogarithm identities, in the non-simply laced

case using the cluster algebra/cluster category method with suitable modifications

in comparison to the method used in the simply laced case. We remark that the

non-simply laced systems here are different from those arising from cluster algebras

and studied in [FZ2, FZ3].

As is often the case in the non-simply laced setting, each type requires some

nonuniform, ‘customized’ treatment. So, in this paper, we concentrate on type Br
and highlight the underlying common method. Then, in [IIKKN], types Cr, F4,

and G2 will be treated with emphasis on the special features of each case.

§1.2. Restricted T-systems and Y-systems of type Br

Let Br be the Dynkin diagram of type B with rank r, and I = {1, . . . , r} be the

enumeration of the vertices of Br:

1 2 r − 1 r

Let h = 2r and h∨ = 2r− 1 be the Coxeter number and the dual Coxeter number
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of Br, respectively. We set

ta =

{
1, a = 1, . . . , r − 1,

2, a = r.
(1.1)

For a given integer ` ≥ 2, we define

I` = I`(Br) := {(a,m, u) | a ∈ I; m = 1, . . . , ta`− 1; u ∈ 1
2Z}.(1.2)

Definition 1.1 ([KNS2]). Fix an integer ` ≥ 2. The level ` restricted T-system

T`(Br) of type Br (with the unit boundary condition) is the following system of

relations (1.3) for a family of variables T` = {T (a)
m (u) | (a,m, u) ∈ I`}, where

T
(0)
m (u) = T

(a)
0 (u) = 1, and furthermore T

(a)
ta`

(u) = 1 (the unit boundary condition)

if they occur in the right hand sides of the relations.

(Here and throughout the paper, 2m (resp. 2m+ 1) in the left hand sides, for

example, represents elements 2, 4, . . . (resp. 1, 3, . . . ).)

T (a)
m (u− 1)T (a)

m (u+ 1) = T
(a)
m−1(u)T

(a)
m+1(u) + T (a−1)

m (u)T (a+1)
m (u)

(1 ≤ a ≤ r − 2),

T (r−1)
m (u− 1)T (r−1)

m (u+ 1) = T
(r−1)
m−1 (u)T

(r−1)
m+1 (u) + T (r−2)

m (u)T
(r)
2m(u),

T
(r)
2m(u− 1

2 )T
(r)
2m(u+ 1

2 ) = T
(r)
2m−1(u)T

(r)
2m+1(u)

+ T (r−1)
m (u− 1

2 )T
(r−1)
m (u+ 1

2 ),

T
(r)
2m+1(u− 1

2 )T
(r)
2m+1(u+ 1

2 ) = T
(r)
2m(u)T

(r)
2m+2(u) + T (r−1)

m (u)T
(r−1)
m+1 (u).

(1.3)

Definition 1.2 ([KN]). Fix an integer ` ≥ 2. The level ` restricted Y-system

Y`(Br) of type Br is the following system of relations (1.4) for a family of variables

Y` = {Y (a)
m (u) | (a,m, u) ∈ I`}, where Y

(0)
m (u) = Y

(a)
0 (u)−1 = Y

(a)
ta`

(u)−1 = 0 if

they occur in the right hand sides of the relations:

(1.4)

Y (a)
m (u−1)Y (a)

m (u+1) =
(1+Y

(a−1)
m (u))(1+Y

(a+1)
m (u))

(1+Y
(a)
m−1(u)−1)(1+Y

(a)
m+1(u)−1)

(1 ≤ a ≤ r−2),

Y (r−1)
m (u−1)Y (r−1)

m (u+1) =

(1+Y
(r−2)
m (u))(1+Y

(r)
2m−1(u))(1+Y

(r)
2m+1(u))

×(1+Y
(r)
2m (u− 1

2 ))(1+Y
(r)
2m (u+ 1

2 ))

(1+Y
(r−1)
m−1 (u)−1)(1+Y

(r−1)
m+1 (u)−1)

,

Y
(r)
2m (u− 1

2 )Y
(r)
2m (u+ 1

2 ) =
1+Y

(r−1)
m (u)

(1+Y
(r)
2m−1(u)−1)(1+Y

(r)
2m+1(u)−1)

,

Y
(r)
2m+1(u− 1

2 )Y
(r)
2m+1(u+ 1

2 ) =
1

(1+Y
(r)
2m (u)−1)(1+Y

(r)
2m+2(u)−1)

.
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Let us write (1.3) in a unified manner

(1.5) T (a)
m

(
u− 1

ta

)
T

(a)
m

(
u+ 1

ta

)
= T

(a)
m−1(u)T

(a)
m+1(u) +

∏
(b,k,v)∈I`

T
(b)
k (v)G(b,k,v;a,m,u).

Define the transposition tG(b, k, v; a,m, u) = G(a,m, u; b, k, v). Then we have

Y (a)
m

(
u− 1

ta

)
Y

(a)
m

(
u+ 1

ta

)
=

∏
(b,k,v)∈I`(1 + Y

(b)
k (v))

tG(b,k,v;a,m,u)

(1 + Y
(a)
m−1(u)−1)(1 + Y

(a)
m+1(u)−1)

.(1.6)

See [IIKNS, KNS3] and references therein for the background of these systems.

§1.3. Periodicities

Definition 1.3. Let T`(Br) be the commutative ring over Z with identity element,

with generators T
(a)
m (u)±1 ((a,m, u) ∈ I`) and relations T`(Br) together with

T
(a)
m (u)T

(a)
m (u)−1 = 1. Let T◦` (Br) be the subring of T`(Br) generated by T

(a)
m (u)

((a,m, u) ∈ I`).

A semifield (P,⊕) is an abelian multiplicative group P endowed with addition

⊕ which is commutative, associative, and distributive with respect to multiplica-

tion in P [FZ3, HW].

Definition 1.4. Let Y`(Br) be the semifield with generators Y
(a)
m (u) ((a,m, u)

∈ I`) and relations Y`(Br). Let Y◦` (Br) be the multiplicative subgroup of Y`(Br)

generated by Y
(a)
m (u), 1 + Y

(a)
m (u) ((a,m, u) ∈ I`). (Here we use + instead of ⊕

for simplicity.)

The first main result of the paper concerns the periodicities of the T-systems

and Y-systems.

Theorem 1.5 (Conjectured in [IIKNS]). The following relations hold in T◦` (Br):

(i) Half periodicity: T
(a)
m (u+ h∨ + `) = T

(a)
ta`−m(u).

(ii) Full periodicity: T
(a)
m (u+ 2(h∨ + `)) = T

(a)
m (u).

Theorem 1.6 (Conjectured in [KNS2]). The following relations hold in Y◦` (Br):

(i) Half periodicity: Y
(a)
m (u+ h∨ + `) = Y

(a)
ta`−m(u).

(ii) Full periodicity: Y
(a)
m (u+ 2(h∨ + `)) = Y

(a)
m (u).
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§1.4. Dilogarithm identities

Let L(x) be the Rogers dilogarithm function [L, Ki2, Zag]:

(1.7) L(x) = −1

2

∫ x

0

{
log(1− y)

y
+

log y

1− y

}
dy (0 ≤ x ≤ 1).

It is well known that

L(0) = 0, L(1) = π2/6,(1.8)

L(x) + L(1− x) = π2/6 (0 ≤ x ≤ 1).(1.9)

We introduce the constant version of the Y-system.

Definition 1.7. Fix an integer ` ≥ 2. The level ` restricted constant Y-system

Yc
`(Br) of type Br is the following system of relations (1.10) for a family of variables

Y c
` = {Y (a)

m | a ∈ I; m = 1, . . . , ta` − 1}, where Y
(0)
m = Y

(a)
0
−1 = Y

(a)
ta`
−1 = 0 if

they occur in the right hand sides of the relations:

(Y (a)
m )2 =

(1 + Y
(a−1)
m )(1 + Y

(a+1)
m )

(1 + Y
(a)
m−1

−1)(1 + Y
(a)
m+1

−1)
(1 ≤ a ≤ r − 2),

(Y (r−1)
m )2 =

(1 + Y
(r−2)
m )(1 + Y

(r)
2m−1)(1 + Y

(r)
2m )2(1 + Y

(r)
2m+1)

(1 + Y
(r−1)
m−1

−1)(1 + Y
(r−1)
m+1

−1)
,

(Y
(r)
2m )2 =

1 + Y
(r−1)
m

(1 + Y
(r)
2m−1

−1)(1 + Y
(r)
2m+1

−1)
,

(Y
(r)
2m+1)2 =

1

(1 + Y
(r)
2m
−1)(1 + Y

(r)
2m+2

−1)
.

(1.10)

Proposition 1.8. There exists a unique positive real solution of Yc
`(Br).

Proof. Set f
(a)
m = Y

(a)
m /(1 + Y

(a)
m ). Then (1.10) is equivalent to the system of

equations [KNS2, Eq. (B.28)]

f (a)m =
∏
(b,k)

(1− f (b)k )K
mk
ab , Kmk

ab = (αa|αb)(min(tbm, tak)−mk/`),(1.11)

where (αa|αb) is the invariant bilinear form for the simple Lie algebra of type Br
with normalization (αa|αa) = 2 for a long root αa. By elementary transformations,

one can show that every principal minor of the matrix K is positive. Therefore, K

is positive definite. Also, it is clear that K is symmetric. Therefore, the theorem

of [NK, Section 1] is applicable.
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The second main result of the paper is the dilogarithm identities conjectured

by Kirillov [Ki1, Eq. (7)], and corrected by Kuniba [Ku, Eqs. (A.1a), (A.1c)]:

Theorem 1.9 (Dilogarithm identities). Suppose that a family of positive real

numbers {Y (a)
m | a ∈ I; m = 1, . . . , ta`− 1} satisfies (1.10). Then

(1.12)
6

π2

∑
a∈I

ta`−1∑
m=1

L

(
Y

(a)
m

1 + Y
(a)
m

)
=
` dim g

h∨ + `
− r,

where g is the simple Lie algebra of type Br.

The rational number of the first term on the right hand side of (1.12) is the

central charge of the Wess–Zumino–Witten conformal field theory of type Br with

level `. The rational number on the right hand side of (1.12) itself is also the

central charge of the parafermion conformal field theory of type Br with level `.

See [KNS1, Ki2, Nah, Zag] for more background of (1.12).

By the well-known formula dim g = r(h+ 1), the right hand side of (1.12) is

equal to

r(`h− h∨)

h∨ + `
.(1.13)

In fact, we prove a functional generalization of Theorem 1.9, following the

ideas of [GT, FS, C, Nkn].

Theorem 1.10 (Functional dilogarithm identities). Suppose that a family of pos-

itive real numbers {Y (a)
m (u) | (a,m, u) ∈ I`} satisfies Y`(Br). Then

6

π2

∑
(a,m,u)∈I`

0≤u<2(h∨+`)

L

(
Y

(a)
m (u)

1 + Y
(a)
m (u)

)
= 4r(`h− h∨) = 4r(2r`− 2r + 1),(1.14)

6

π2

∑
(a,m,u)∈I`

0≤u<2(h∨+`)

L

(
1

1 + Y
(a)
m (u)

)
= 4`(r`+ `− 1).(1.15)

The two identities (1.14) and (1.15) are equivalent to each other due to (1.9),

since the sum of their right hand sides is equal to 4(h∨ + `)(r` + ` − r), which is

the total number of (a,m, u) ∈ I` with 0 ≤ u < 2(h∨ + `).

It is clear that Theorem 1.9 follows from Theorem 1.10 by considering a

constant solution Y
(a)
m = Y

(a)
m (u) of Y`(Br) in the variable u.

§1.5. Outline of the method and contents

Let us briefly explain the idea of our proof of the main results, Theorems 1.5, 1.6,

and 1.10.
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To start with, we identify the T-systems and Y-systems, T`(Br) and Y`(Br)
in Definitions 1.1 and 1.2, as systems of relations for cluster variables and coeffi-

cients of a cluster algebra, respectively. This procedure is mostly parallel to the

simply laced case [FZ2, FZ3, Ke1, DiK, HL, IIKNS, KNS3], but necessarily more

complicated. For example, unlike the simply laced case, the composite mutation

which generates the translation of the spectral parameter u is neither of bipartite

type nor obviously related to the Coxeter element of a certain Weyl group. This is

not a serious problem, though. A real problem is that the arising quiver Q`(Br)

for the cluster algebra, which is seen in Figure 1 of Section 2.3, is not a familiar

one in the representation theory of quivers; in particular, we have no known or

obvious periodicity result. This is the main obstacle to a straightforward applica-

tion of the method in [Ke1, IIKNS, Ke2], where the periodicities of the T-systems

and Y-systems in the simply laced case were derived from the periodicity in the

corresponding cluster category.

The key to bypassing this obstacle is to consider the tropical Y-system. The

tropical Y-system is the tropicalization of the Y-system, or more generally, of

the exchange relations of the coefficients in the tropical semifield (called principal

coefficients in [FZ3]) of a given cluster algebra. In fact, it was already used by

Fomin–Zelevinsky [FZ2] as a main tool in the proof of the periodicity of the Y-

systems in the simply laced case at level 2. In addition, we make two crucial

observations.

Observation 1. The periodicities of cluster variables and coefficients follow from

the periodicity of principal coefficients.

See Theorem 5.1 for a precise statement. This claim was essentially conjec-

tured by Fomin–Zelevinsky [FZ3, Conjecture 4.7]. We prove the claim for the

cluster algebra associated with any skew-symmetric matrix, or equivalently, with

any quiver. To prove it, we use the recent result by Plamondon [Pl1, Pl2] on the

categorification of the cluster algebra associated with an arbitrary quiver. It is

so far the most general formulation of the categorification by 2-Calabi–Yau cate-

gories recently developed by various authors in particular cases (see [A] and the

references therein). Since each principal coefficient tuple carries complete informa-

tion on the corresponding object in the category through index, the periodicity of

principal coefficients implies the same periodicity of objects in the category. There-

fore, it also implies the same periodicities of cluster variables and coefficients by

categorification.

Observation 2. The tropical Y-system for Y`(Br) has a remarkable ‘factorization

property’ so that its periodicity can be directly verified.
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This factorization property was first noticed by [Nkn] in the proof of the

dilogarithm identities in the simply laced case. It roughly means that the tropical

Y-system at a higher level splits into level 2 pieces and type A pieces. Moreover,

each piece can be described in terms of the piecewise-linear analogue of the simple

reflections of a certain Weyl group introduced by [FZ2]. Therefore, the periodicity

is tractable.

Combining these two observations, we obtain the desired periodicities in The-

orems 1.5 and 1.6.

The tropical Y-system plays a central role not only in the periodicity but also

in the dilogarithm identity. The following observation was made in [Nkn] in the

simply laced case.

Observation 3. The dilogarithm identity reduces to the positivity/negativity prop-

erty of the tropical Y-system for Y`(Br).

Briefly, “the tropical Y-system knows everything”.

The organization of the paper is as follows. In Section 2, we introduce a quiver

Q`(Br) and identify the T-systems and Y-systems with systems of relations for

cluster variables and coefficients of the cluster algebra associated with Q`(Br)

(Theorems 2.7 and 2.10). In Section 3, we study the tropical Y-system at level 2

and derive the periodicity and the positivity/negativity property (Proposition 3.2).

In Section 4, we study the tropical Y-system at higher levels and show the fac-

torization property. As a result, we obtain the periodicity (Theorems 4.2) and the

positivity/negativity property (Theorem 4.3). In Section 5, based on the result

by Plamondon, we present a general theorem giving Observation 1 above (Theo-

rem 5.1) for the cluster algebra associated with any skew-symmetric matrix. As

corollaries, we obtain the periodicities of T-systems and Y-systems in Theorems

1.5 and 1.6. In Section 6, using Theorem 4.3, we prove the dilogarithm identity

of Theorem 1.10. In Section 7, as feedback from the newly introduced method,

we give an alternative and simplified proof of the periodicities of the T-systems

and Y-systems associated with pairs of simply laced Dynkin diagrams, which were

formerly proved in [Ke1, IIKNS, Ke2].

§2. Cluster algebraic formulation

The systems T`(Br) and Y`(Br) are naturally identified with systems of relations

for cluster variables and coefficients, respectively, of a certain cluster algebra. They

are mostly parallel to the simply laced case [FZ2, FZ3, Ke1, DiK, HL, IIKNS,

KNS3], but necessarily more complicated.
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§2.1. Definitions for cluster algebras

Here we collect basic definitions for cluster algebras to fix the conventions and

notation, mainly following [FZ3]. For further necessary definitions and information

on cluster algebras, see [FZ3].

Let I be a finite index set throughout this subsection.

(i) Semifield. A semifield (P,⊕, ·) is an abelian multiplicative group endowed

with addition ⊕ which is commutative, associative, and distributive with respect

to multiplication in P. The following three examples are relevant in this paper.

(a) Trivial semifield. The trivial semifield 1 = {1} consists of the multiplica-

tive identity element 1 with 1⊕ 1 = 1.

(b) Universal semifield. For an I-tuple of variables y = (yi)i∈I , the univer-

sal semifield Qsf(y) consists of all the rational functions of the form P (y)/Q(y)

(subtraction-free rational expressions), where P (y) and Q(y) are the nonzero poly-

nomials in yi’s with nonnegative integer coefficients. Multiplication and addition

are given by the usual operations on rational functions.

(c) Tropical semifield. For an I-tuple of variables y = (yi)i∈I , the tropical

semifield Trop(y) is the abelian multiplicative group freely generated by the vari-

ables yi endowed with addition ⊕ defined by

(2.1)
∏
i

yaii ⊕
∏
i

ybii =
∏
i

y
min(ai,bi)
i .

(ii) Mutations of matrices and quivers. An integer matrix B = (Bij)i,j∈I
is skew-symmetrizable if there is a diagonal matrix D = diag (di)i∈I with di ∈ N
such that DB is skew-symmetric. For a skew-symmetrizable matrix B and k ∈ I,

another matrix B′ = µk(B), called the mutation of B at k, is defined by

(2.2) B′ij =

{
−Bij , i = k or j = k,

Bij + 1
2 (|Bik|Bkj +Bik|Bkj |), otherwise.

The matrix µk(B) is also skew-symmetrizable.

It is standard to represent a skew-symmetric (integer) matrix B = (Bij)i,j∈I
by a quiver Q without loops or 2-cycles. The set of vertices of Q is given by I, and

we put Bij arrows from i to j if Bij > 0. The mutation Q′ = µk(Q) of the quiver

Q is given by the following rule: For each pair of an incoming arrow i→ k and an

outgoing arrow k → j in Q, add a new arrow i→ j. Then, remove a maximal set

of pairwise disjoint 2-cycles. Finally, reverse all arrows incident with k.

(iii) Exchange relation of a coefficient tuple. Let P be a given semifield. For

an I-tuple y = (yi)i∈I with yi ∈ P and k ∈ I, another I-tuple y′ is defined by the
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exchange relation

(2.3) y′i =


y−1k , i = k,

yi

(
yk

1⊕ yk

)Bki

, i 6= k, Bki ≥ 0,

yi(1⊕ yk)−Bkib i 6= k, Bki ≤ 0.

(iv) Exchange relation of a cluster. Let QP be the quotient field of the group

ring ZP of P, and let QP(z) be the rational function field of algebraically indepen-

dent variables, say, z = (zi)i∈I over QP. For an I-tuple x = (xi)i∈I which is a free

generating set of QP(z) and k ∈ I, another I-tuple x′ is defined by the exchange

relation

(2.4) x′i =


xi, i 6= k,

yk
∏
j:Bjk>0 x

Bjk

j +
∏
j:Bjk<0 x

−Bjk

j

(1⊕ yk)xk
, i = k.

(v) Seed mutation. For the above triplet (B, x, y) in (ii)–(iv), which is called

a seed, the mutation µk(B, x, y) = (B′, x′, y′) at k is defined by combining (2.2),

(2.3), and (2.4).

(vi) Cluster algebra. Fix a semifield P and a seed (initial seed) (B, x, y),

where x = (xi)i∈I are algebraically independent variables over QP. Starting from

(B, x, y), iterate mutations and collect all the seeds (B′, x′, y′). We call y′ and y′i a

coefficient tuple and a coefficient, respectively. We call x′ and x′i ∈ QP(x) a cluster

and a cluster variable, respectively. The cluster algebra A(B, x, y) with coefficients

in P is the ZP-subalgebra of the rational function field QP(x) generated by all the

cluster variables.

(vii) Cluster pattern. Let I = {1, . . . , n}, and let Tn be the n-regular tree whose

edges are labeled by the numbers 1, . . . , n. A cluster pattern is the assignment of a

seed (B(t), x(t), y(t)) to each vertex t ∈ Tn so that the seeds assigned to the end-

points of any edge t k t′ are obtained from each other by seed mutation at k. Take

t0 ∈ Tn arbitrarily, and consider the cluster algebra A(B(t0), x(t0), y(t0)). Then

x(t) and y(t) (t ∈ Tn) are a cluster and a coefficient tuple of A(B(t0), x(t0), y(t0)).

(viii) F -polynomial. The cluster algebra A(B, x, y) with coefficients in the trop-

ical semifield Trop(y) is called the cluster algebra with principal coefficients. Here,

each cluster variable x′i is an element in Z[x±1, y]. The F -polynomial F ′i (y) ∈ Z[y]

(for x′i) is defined as the specialization of x′i with xi = 1 (i ∈ I).
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§2.2. Parity decompositions of T-systems and Y-systems

For a triplet (a,m, u) ∈ I`, we define the ‘parity conditions’ P+ and P− by

P+ : 2u is even if a 6= r; m+ 2u is even if a = r,(2.5)

P− : 2u is odd if a 6= r; m+ 2u is odd if a = r.(2.6)

We write, for example, (a,m, u) : P+ if (a,m, u) satisfies P+. We have I` =

I`+ t I`−, where I`ε is the set of all (a,m, u) : Pε.

Define T◦` (Br)ε (ε = ±) to be the subring of T◦` (Br) generated by T
(a)
m (u)

((a,m, u) ∈ I`ε). Then T◦` (Br)+ ' T◦` (Br)− via T
(a)
m (u) 7→ T

(a)
m (u+ 1

2 ) and

(2.7) T◦` (Br) ' T◦` (Br)+ ⊗Z T◦` (Br)−.

For a triplet (a,m, u) ∈ I` , we define other ‘parity conditions’ P′+ and P′−
by

P′+ : 2u is even if a 6= r; m+ 2u is odd if a = r,(2.8)

P′− : 2u is odd if a 6= r; m+ 2u is even if a = r.(2.9)

We have I` = I ′`+ t I ′`−, where I ′`ε is the set of all (a,m, u) : P′ε. We also have

(a,m, u) : P′+ ⇔
(
a,m, u± 1

ta

)
: P+.(2.10)

Define Y◦` (Br)ε (ε = ±) to be the subgroup of Y◦` (Br) generated by Y
(a)
m (u),

1+Y
(a)
m (u) ((a,m, u) ∈ I ′`ε). Then Y◦` (Br)+ ' Y◦` (Br)− by Y

(a)
m (u) 7→ Y

(a)
m (u+ 1

2 ),

1 + Y
(a)
m (u) 7→ 1 + Y

(a)
m (u+ 1

2 ), and

Y◦` (Br) ' Y◦` (Br)+ × Y◦` (Br)−.(2.11)

§2.3. Quiver Q`(Br)

With type Br and ` ≥ 2 we associate the quiver Q`(Br) by Figure 1, where, in

addition, we assign an empty or filled circle ◦/• and a sign +/− to each vertex.

Let B`(Br) be the skew-symmetric matrix corresponding to Q`(Br) as defined in

Section 2.1(ii). (Unfortunately, there is an obvious conflict between two standard

notations using symbol B. We hope it does not cause serious confusion to the

reader.)

Let us choose the index set I of the vertices of Q`(Br) so that i = (i, i′) ∈ I

represents the vertex in the i′th row (from the bottom) and the ith column (from

the left). Thus, i = 1, . . . , 2r−1, and i′ = 1, . . . , `−1 if i 6= r and i′ = 1, . . . , 2`−1

if i = r. We use the natural notation I◦ (resp. I◦+) for the set of vertices i with

property ◦ (resp. ◦ and +), and so on. We have I = I◦ t I• = I◦+ t I◦− t I•+ t I•−.



12 R. Inoue et al.

d d d d t d d d dt
� - � � - � - �

d d d d t d d d dt
- � - � - - � -

d d d d t d d d dt
� - � � - � - �

t6?
6

?

6

?

H
HHj

��
�*

H
HHj

��
�*

�
���

HH
HY

6

?

6

?

6

?

6

?

?

6

?

6

?

6

?

6

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−
+

−
+

+

−

+

−

+

−

+

−

+

−

+

−

︸ ︷︷ ︸
r−1

︸ ︷︷ ︸
r−1

`−1



d d d d t d d d dt
� - � � - � - �

d d d d t d d d dt
- � - � - - � -

d d d d t d d d dt
� - � � - � - �

t

d d d d t d d d dt
- � - � - - � -

6

?

6

?

6

?

6

?

6

?

6

?

6

?

6

?

?

6

?

6

?

6

?

6

6

?

6

?

6

?

6

?

HHHj

�
��*

H
HHj

��
�*

�
���

HH
HY

�
���

HH
HY

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

+

−

+

−

−

+

−

+

+

−

+

−

−

+

−

+

+

−

+

−
+

−

+

−
+

+

−

+

−

−

+

−

+

+

−

+

−

−

+

−

+

︸ ︷︷ ︸
r−1

︸ ︷︷ ︸
r−1

`−1



Figure 1. The quiver Q`(Br) for ` even (top) and ` odd (bottom).

We define composite mutations,

µ◦+ =
∏
i∈I◦+

µi, µ◦− =
∏
i∈I◦−

µi, µ•+ =
∏
i∈I•+

µi, µ•− =
∏
i∈I•−

µi.(2.12)

Note that they do not depend on the order of the product.

Let r be the involution acting on I by left-right reflection. Let ω be the

involution acting on I by 180◦ rotation. Let r(Q`(Br)) and ω(Q`(Br)) denote the

quivers induced from Q`(Br) by r and ω, respectively. For example, if there is an

arrow i → j in Q`(Br), then there is an arrow r(i) → r(j) in r(Q`(Br)). For a

quiver Q, Qop denotes the opposite quiver.

Lemma 2.1. Let Q = Q`(Br).

(i) We have a periodic sequence of mutations of quivers

(2.13) Q
µ•+µ

◦
+←−−−→ Qop µ•−←−→ r(Q)

µ•+µ
◦
−←−−−→ r(Q)op

µ•−←−→ Q.

(ii) ω(Q) = Q if h∨ + ` is even, and ω(Q) = r(Q) if h∨ + ` is odd.
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Example 2.2. The sequence (2.13) for Q = Q2(B3) is given below.
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§2.4. The cluster algebra A(B, x, y) and the coefficient group G(B, y)

For the matrix B = (Bij)i,j∈I = B`(Br), let A(B, x, y) be the cluster algebra with

coefficients in the universal semifield Qsf(y), where (B, x, y) is the initial seed.

(Here we use the symbol + instead of ⊕ in Qsf(y), since it is the ordinary addition

of subtraction-free expressions of rational functions of y.)

For our purpose, it is natural to introduce not only the ‘ring of cluster vari-

ables’ but also the ‘group of coefficients’.

Definition 2.3. The coefficient group G(B, y) associated with A(B, x, y) is the

multiplicative subgroup of the semifield Qsf(y) generated by all the coefficients y′i
of A(B, x, y) together with 1 + y′i.

In view of Lemma 2.1 we set x(0) = x, y(0) = y and define clusters x(u) =

(xi(u))i∈I (u ∈ 1
2Z) and coefficient tuples y(u) = (yi(u))i∈I (u ∈ 1

2Z) by the

sequence of mutations

(2.14) · · ·
µ•−←−→ (B, x(0), y(0))

µ•+µ
◦
+←−−−→ (−B, x( 1

2 ), y( 1
2 ))

µ•−←−→ (r(B), x(1), y(1))
µ•+µ

◦
−←−−−→ (−r(B), x( 3

2 ), y( 3
2 ))

µ•−←−→ · · · ,

where r(B) = B′ is defined by B′r(i)r(j) = Bij.

For a pair (i, u) ∈ I× 1
2Z, we define the parity conditions p+ and p− by

(2.15) p+ :


i ∈ I◦+ t I•+, u ≡ 0,

i ∈ I•−, u ≡ 1
2 ,

3
2 ,

i ∈ I◦− t I•+, u ≡ 1,

p− :


i ∈ I◦+ t I•+, u ≡ 1

2 ,

i ∈ I•−, u ≡ 0, 1,

i ∈ I◦− t I•+, u ≡ 3
2 ,

where ≡ is equivalence modulo 2Z. We have

(2.16) (i, u) : p+ ⇔ (i, u+ 1
2 ) : p−.
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Each (i, u) : p+ is a mutation point of (2.14) in the forward direction of u, and

each (i, u) : p− is one in the backward direction of u. Notice that there are also

some (i, u) which satisfy neither p+ nor p−, and are not mutation points of (2.14);

explicitly, they are (i, u) with i ∈ I◦+, u ≡ 1, 32 mod 2Z, or with i ∈ I◦−, u ≡ 0, 12
mod 2Z. Consequently, we have the following relations for (i, u) : p±:

xi(u) = xi(u∓ 1
2 ) (i ∈ I•),(2.17)

xi(u) = xi(u∓ 1
2 ) = xi(u∓ 1) = xi(u∓ 3

2 ) (i ∈ I◦),(2.18)

yi(u) = yi(u± 1
2 )−1.(2.19)

There is a correspondence between the parity condition p+ here and P+, P′+
in (2.5) and (2.8).

Lemma 2.4. Below ≡ means equivalence modulo 2Z.

(i) The map g : I`+ → {(i, u) : p+} given by

(2.20)
(
a,m, u− 1

ta

)
7→


((a,m), u), a 6= r; r + a+m+ u ≡ 1,

((2r − a,m), u), a 6= r; r + a+m+ u ≡ 0,

((r,m), u), a = r,

is a bijection.

(ii) The map g′ : I ′`+ → {(i, u) : p+} given by

(2.21) (a,m, u) 7→


((a,m), u), a 6= r; r + a+m+ u ≡ 1,

((2r − a,m), u), a 6= r; r + a+m+ u ≡ 0,

((r,m), u), a = r,

is a bijection.

Proof. Look at the example in Figures 2–5.

We introduce alternative labels xi(u) = x
(a)
m (u−1/ta) ((a,m, u−1/ta) ∈ I`+)

for (i, u) = g((a,m, u − 1/ta)) and yi(u) = y
(a)
m (u) ((a,m, u) ∈ I ′`+) for (i, u) =

g′((a,m, u)), respectively, as in Figures 2–5. They will be used below (and also in

Section 6) to relate the T-systems and Y-systems with A(B, x, y) and G(B, y).

§2.5. T-system and cluster algebra

The T-system T`(Br) naturally appears as a system of relations among the cluster

variables xi(u) in the trivial evaluation of coefficients. (The quiver Q`(Br) is de-

signed to do so.) Let A(B, x) be the cluster algebra with trivial coefficients, where
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x(0)

x
(r−2)
1 (−1) ∗ x
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1 (−1) ∗

∗ x
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2 (−1) ∗ x
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x
(r−2)
3 (−1) ∗ x
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3 (−1) ∗

x
(r)
1 (− 1

2
)
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x
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2
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Figure 2. (Continued in Figure 3.) Labeling of the cluster variables xi(u) by I`+
for Br, ` = 4. The variables framed by solid/dashed lines satisfy the condition

p+/p−, respectively.

(B, x) is the initial seed. Let 1 = {1} be the trivial semifield and π1 : Qsf(y)→ 1,

yi 7→ 1, be the projection. Let [xi(u)]1 denote the image of xi(u) under the alge-

bra homomorphism A(B, x, y) → A(B, x) induced by π1. It is called the trivial

evaluation.

Recall that G(b, k, v; a,m, u) is defined in (1.5).
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Figure 3. Continuation of Figure 2.

Lemma 2.5. The family {x(a)m (u) | (a,m, u) ∈ I`+} satisfies the system of rela-

tions

(2.22) x(a)m
(
u− 1

ta

)
x
(a)
m

(
u+ 1

ta

)
=

y
(a)
m (u)

1 + y
(a)
m (u)

∏
(b,k,v)∈I`+

x
(b)
k (v)G(b,k,v; a,m,u)

+
1

1 + y
(a)
m (u)

x
(a)
m−1(u)x

(a)
m+1(u),

where (a,m, u) ∈ I ′+`. In particular, the family {[x(a)m (u)]1 | (a,m, u) ∈ I`+}
satisfies the T-system T`(Br) in A(B, x) after replacing T

(a)
m (u) with [x

(a)
m (u)]1.
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Figure 4. Continuation of Figure 5. Labeling of the coefficients yi(u) by I ′`+ for Br,

` = 4. The variables framed by solid/dashed lines satisfy the condition p+/p−,

respectively.

Proof. An easy way to prove this is to represent all the relevant cluster variables

in Figures 2 and 3 by x
(a)
m (u) (a,m, u) ∈ I`+, and then to apply mutations at

(i, u) : p+ in the figures. For example, consider the mutation at ((r, 3), 0) : p+.

Then, by the exchange relation, x
(r)
3 (− 1

2 ) is mutated to

(2.23)
1

x
(r)
3 (− 1

2 )

{
y
(r)
3 (0)

1 + y
(r)
3 (0)

x
(r−1)
1 (0)x

(r−1)
2 (0) +

1

1 + y
(r)
3 (0)

x
(r)
2 (0)x

(r)
4 (0)

}
,
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Figure 5. Continuation of Figure 4.

which should be equal to x
(r)
3 ( 1

2 ). We note that Figures 2 and 3 are general enough

for that purpose.

Definition 2.6. The T-subalgebra AT (B, x) of A(B, x) associated with the se-

quence (2.14) is the subalgebra of A(B, x) generated by [xi(u)]1 ((i, u) ∈ I× 1
2Z).

Theorem 2.7. The ring T◦` (Br)+ is isomorphic to AT (B, x) via the correspon-

dence T
(a)
m (u) 7→ [x

(a)
m (u)]1.
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Proof. First we note that AT (B, x) is generated by [xi(u)]1 ((i, u) : p+) by (2.17)

and (2.18). Then the claim follows from Lemma 2.5 in the same way as [IIKNS,

Proposition 4.24].

§2.6. Y-system and cluster algebra

The Y-system Y`(Br) also naturally appears as a system of relations among the

coefficients yi(u).

Lemma 2.8. The family {y(a)m (u) | (a,m, u) ∈ I ′`+} satisfies the Y-system Y`(Br)
after replacing Y

(a)
m (u) with y

(a)
m (u).

Proof. This can be easily shown using Figures 4 and 5. For example, consider the

mutation at ((r−1, 2), 0) : p+. The coefficient y
(r−1)
2 (0) is mutated to y

(r−1)
2 (0)−1.

Then, at u = 1
2 , 1,

3
2 , y

(r−1)
2 (0)−1 is multiplied by the factors

1 + y
(r)
4 ( 1

2 ),
y
(r−1)
3 (1)

1 + y
(r−1)
1 (1)

,
y
(r−1)
3 (1)

1 + y
(r−1)
1 (1)

,

1 + y
(r)
3 (1), 1 + y

(r)
5 (1), 1 + y

(r)
4 ( 3

2 ).

(2.24)

The result should be equal to y
(r−1)
2 (2).

Definition 2.9. The Y-subgroup GY (B, y) of G(B, y) associated with the sequence

(2.14) is the subgroup of G(B, y) generated by yi(u) ((i, u) ∈ I× 1
2Z) and 1 +yi(u)

((i, u) : p+ or p−).

Notice that we excluded 1+yi(u) for (i, u) satisfying neither p+ nor p−. This

is because such an (i, u) is not a mutation point so that the factor 1 + yi(u) does

not appear anywhere for the mutation sequence (2.14).

Theorem 2.10. The group Y◦` (Br)+ is isomorphic to GY (B, y) via the correspon-

dence Y
(a)
m (u) 7→ y

(a)
m (u) and 1 + Y

(a)
m (u) 7→ 1 + y

(a)
m (u).

Proof. We note that GY (B, y) is generated by yi(u), 1+yi(u) ((i, u) : p+) by (2.19).

Then the claim follows from Lemma 2.8 in the same way as [KNS3, Theorem

6.19].

§3. Tropical Y-system at level 2

In this section we study the tropical version of the Y-system at level 2.
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§3.1. Tropical Y-system

Let y = y(0) be the initial coefficient tuple of the cluster algebra A(B, x, y) with

B = B`(Br) of the previous section. Let Trop(y) be the tropical semifield for y. Let

πT : Qsf(y) → Trop(y), yi 7→ yi, be the projection. Let [yi(u)]T and [GY (B, y)]T
denote the images of yi(u) and GY (B, y) under the multiplicative group homomor-

phism induced from πT, respectively. They are called the tropical evaluations, and

the resulting relations in the group [GY (B, y)]T form the tropical Y-system. They

we are first studied in [FZ2] for simply laced type at level 2 in our terminology.

We say a (Laurent) monomial m =
∏

i∈I y
ki
i is positive (resp. negative) if

m 6= 1 and ki ≥ 0 (resp. ki ≤ 0) for any i.

The next ‘tropical mutation rule’ for [yi(u)]T is general and useful.

Lemma 3.1. Suppose that y′′ is the coefficient tuple obtained from the mutation

of another coefficient tuple y′ at k with mutation matrix B′. Then, for any i 6= k,

we have the rule:

(i) [y′′i ]T = [y′i]T[y′k]T if one of the following conditions holds:

(a) B′ki > 0, and [y′k]T is positive.

(b) B′ki < 0, and [y′k]T is negative.

(ii) [y′′i ]T = [y′i]T if one of the following conditions holds:

(a) B′ki = 0.

(b) B′ki > 0, and [y′k]T is negative.

(c) B′ki < 0, and [y′k]T is positive.

Proof. An immediate consequence of the exchange relation (2.3) and (2.1).

The following properties of the tropical Y-system at level 2 will be the key in

the entire method.

Proposition 3.2. For [GY (B, y)]T with B = B2(Br), the following facts hold:

(i) Let 0 ≤ u < 2. For any (i, u) : p+, the monomial [yi(u)]T is positive.

(ii) Let −h∨ ≤ u < 0.

(a) Let i ∈ I◦ t I•−. For any (i, u) : p+, the monomial [yi(u)]T is negative.

(b) Let i ∈ I•+. For any (i, u) : p+, the monomial [yi(u)]T is negative for

u = −1,−3, . . . and positive for u = −2,−4, . . . .

(iii) yii′(2) = y−1ii′ if i 6= r and y−1r,4−i′ if i = r.

(iv) yii′(−h∨) = y−12r−i,i′ .
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Example 3.3. Consider the simplest case B2. All the coefficients [yi(u)]T in the

region −3 ≤ u ≤ 2 are calculated from Lemma 3.1 and explicitly given in Fig-

ure 6. We continue to use the convention in Figures 2–5 that the variables framed

by solid/dashed lines satisfy the condition p+/p−. We recall that they are the

mutation points for the forward/backward direction of u. In Figure 6, the config-

uration
·

1 1 ·
·

for example represents the monomial y11y22, where · stands for 0. One can observe

all the properties of Proposition 3.2 in Figure 6. Let us further observe that, in

the region −3 ≤ u < 0, we have six negative monomials for i ∈ I◦ t I•−, (i, u) : p+,

·
· · -1
·

·
· -1 -1
·

-1
-1 -1 -1

-1

·
-1 · ·
·

·
· -1 ·
·

·
-1 -1 ·
·

If we concentrate on the middle row, they naturally correspond to the positive

roots of type A3,

(3.1) α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 + α3.

§3.2. Proof of Proposition 3.2

For general r, one can directly verify (i) and (iii) as in Figure 6.

Note that (ii) and (iv) can be proved independently for each variable yi. (To

be precise, we also need to ensure that no monomial is 1. However, this can be

easily guaranteed, so that we do not give the details here.) As for the powers of yr1
and yr3, it is easy to verify the claim by direct calculations. Therefore, it is enough

to prove (ii) and (iv) only for the powers of variables yi1 (i 6= r) and yr2. To do

that, we use the description of the tropical Y-system in the region −h∨ ≤ u < 0

by the root system of type A2r−1, in the spirit of [FZ2].

Let A2r−1 be the Dynkin diagram of type A with index set J = {1, . . . , 2r−1}.
We assign a sign +/− to each vertex of A2r−1 (except for r) of A2r−1 as inherited

from Q2(Br):

d d d d d d d1 2 r 2r − 2 2r − 1

− + − + − +
r even

d d d d d d d d d1 2 r 2r − 2 2r − 1

+ − + − + − + −
r odd
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Figure 6. Tropical Y-system of typeB2 at level 2. We continue to use the convention

in Figures 2–5 that the variables framed by solid/dashed lines satisfy the condition

p+/p−.
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Let Π = {α1, . . . , α2r−1}, −Π and Φ+ be the set of simple roots, negative

simple roots and positive roots, respectively, of type A2r−1. Following [FZ2], we

introduce the piecewise-linear analogue σi of the simple reflection si, acting on the

set Φ≥−1 = Φ+ t (−Π) of almost positive roots, by

σi(α) = si(α), α ∈ Φ+,

σi(−αj) =

{
αj , j = i,

−αj , otherwise.

(3.2)

Let

(3.3) σ+ =
∏
i∈J+

σi, σ− =
∏
i∈J−

σi,

where J± is the set of vertices of A2r−1 with property ±. We define

(3.4) σ = σrσ−σrσ+.

Let ω : i→ 2r − i be an involution on J .

Lemma 3.4. The following facts hold:

(i) For i ∈ J+, σk(−αi) ∈ Φ+ (1 ≤ k ≤ r − 1), σr(−αi) = −αω(i).
(ii) For i ∈ J−, σk(−αi) ∈ Φ+ (1 ≤ k ≤ r), σr+1(−αi) = −αω(i).
(iii) σk(−αr) ∈ Φ+ (1 ≤ k ≤ r − 1), σr(−αr) = −αr.
(iv) σk(αr) ∈ Φ+ (0 ≤ k ≤ r − 1), σr(αr) = αr.

(v) The elements in Φ+ in (i)–(iv) exhaust the set Φ+, thereby providing the orbit

decomposition of Φ+ by σ.

Proof. (i)–(iv). These are verified by explicitly calculating σk(−αi) (i ∈ J) and

σk(αr). The example for r = 6 is given in Table 1, where we use the notation

(3.5) [i, j] = αi + · · ·+ αj (i < j), [i] = αi.

In fact, it is not difficult to read off the general rule from this example.

(v) The total number of elements in Φ+ in (i)–(iv) is r(2r−1), which coincides

with |Φ+|.

The orbit of σ(−αi) (i 6= r) is further described by the root system of type

A2r−2.
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Lemma 3.5. Let Oi = {σk(−αi) | 1 ≤ k ≤ r−1} for i ∈ J+ and Oi = {σk(−αi) |
1 ≤ k ≤ r} for i ∈ J−. Let Φ′+ be the set of positive roots of type A2r−2 with index

set J ′ = J − {r}, and

(3.6) ρ :
⊔
i∈J′

Oi → Φ′+

be the map which removes αr from α if α contains αr, and does nothing otherwise.

Then ρ is a bijection, and its inverse ρ−1(α′) adds αr if α′ contains αr−1, and

does nothing otherwise. Furthermore, under the bijection ρ, the action of σ is

translated into the Coxeter element s = s−s+ of type A2r−2 acting on Φ′+, where

s± =
∏
i∈J± si.

For −h∨ ≤ u < 0, define

(3.7) αi(u) =


σ−u/2(−αi), i ∈ J+, u ≡ 0,

σ−(u−1)/2(−αi), i ∈ J−, u ≡ −1,

σ−(2u−1)/4(−αr), i = r, u ≡ − 3
2 ,

σ−(2u+1)/4(αr), i = r, u ≡ − 1
2 ,

where ≡ is equivalence modulo 2Z. Note that they correspond to the positive roots

in Table 1 with u being the parameter in the head line. By Lemma 3.4 these are

all the positive roots of A2r−1.

Lemma 3.6. The family in (3.7) satisfies the recurrence relations

αi(u− 1) + αi(u+ 1) = αi−1(u) + αi+1(u) (i 6= r − 1, r, r + 1),

αr−1(u− 1) + αr−1(u+ 1) = αr−2(u) + αr+1(u),

αr+1(u− 1) + αr+1(u+ 1) = αr−1(u) + αr+2(u),

αr(u− 1
2 ) + αr(u+ 1

2 ) = αr−1(u) (u odd),

αr(u− 1
2 ) + αr(u+ 1

2 ) = αr+1(u) (u even),

(3.8)

where α0(u) = α2r(u) = 0.

Proof. These relations are easily verified by using the explicit expressions of αi(u).

See Table 1. The first three relations can also be obtained from Lemma 3.5 and

[FZ3, Eq. (10.9)].

Let us return to the proof of (ii) of Proposition 3.2 for the powers of the

variables yi1 (i 6= r) and yr2. For a monomial m in y = (yi)i∈I, let πA(m) denote

the specialization with yr1 = yr3 = 1. For simplicity, we set yi1 = yi (i 6= r),
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yr2 = yr, and also yi1(u) = yi(u) (i 6= r), yr2(u) = yr(u). We define the vectors

ti(u) = (ti(u)k)2r−1k=1 by

(3.9) πA([yi(u)]T) =

2r−1∏
k=1

y
ti(u)k
k .

We also identify each vector ti(u) with α =
∑2r−1
k=1 ti(u)kαk ∈ ZΠ.

Proposition 3.7. Let −h∨ ≤ u < 0. Then

(3.10) ti(u) = −αi(u)

for (i, u) in (3.7), and

(3.11) πA([yr1(u)]T) = πA([yr3(u)]T) = 1, u ≡ 0 mod 2Z.

Note that these formulas determine πA([yi(u)]T) for any (i, u) : p+.

Proof. We can verify the claim for −2 ≤ u ≤ −1
2 by direct computation. Then,

by induction on u in the backward direction, we can establish the claim, together

with the recurrence relations among ti(u)’s with (i, u) in (3.7),

ti(u− 1) + ti(u+ 1) = ti−1(u) + ti+1(u), i 6= r − 1, r, r + 1,

tr−1(u− 1) + tr−1(u+ 1) = tr−2(u) + tr(u− 1
2 ) + tr(u+ 1

2 ),

tr+1(u− 1) + tr+1(u+ 1) = tr+2(u) + tr(u− 1
2 ) + tr(u+ 1

2 ),

tr(u− 1
2 ) + tr(u+ 1

2 ) = tr−1(u), u odd,

tr(u− 1
2 ) + tr(u+ 1

2 ) = tr+1(u), u even.

(3.12)

Note that (3.12) coincides with (3.8) under (3.10). To derive (3.12), one uses

mutations as in Figure 6 (or the tropical version of the Y-system Y2(Br) directly)

and the positivity/negativity of πA([yi(u)]T) resulting from (3.10) and (3.11) by

induction hypothesis.

Now (ii) in Proposition 3.2 is an immediate consequence of Lemma 3.4 and

Proposition 3.7. Finally, let us prove (iv), i.e., ti(−h∨) = −αω(i). This is shown

by the following formulas obtained from Lemma 3.4 and (2.19):

ti(−h∨ + 1) =

{
−αω(i)−1 − αω(i) − αω(i)+1, i 6= r + 1,

−αr−2 − αr−1 − αr − αr+1, i = r + 1,
i ∈ J+,

ti(−h∨ + 1
2 ) = αω(i), ti(−h∨) = −αω(i), i ∈ J−,

tr(−h∨ + 1) = αr + αr+1, tr(−h∨ + 1
2 ) = −αr − αr+1,

(3.13)

where α0 = α2r = 0. This completes the proof of Proposition 3.2.
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§4. Tropical Y-systems at higher levels

We have a generalization of Proposition 3.2 for the tropical Y-systems at higher

levels.

Proposition 4.1. Let ` > 2 be an integer. For [GY (B, y)]T with B = B`(Br), the

following facts hold:

(i) Let 0 ≤ u < `. For any (i, u) : p+, the monomial [yi(u)]T is positive.

(ii) Let −h∨ ≤ u < 0.

(a) Let i ∈ I◦ t I•−. For any (i, u) : p+, the monomial [yi(u)]T is negative.

(b) Let i ∈ I•+. For any (i, u) : p+, the monomial [yi(u)]T is negative for

u = −1,−3, . . . and positive for u = −2,−4, . . . .

(iii) yii′(`) = y−1i,`−i′ if i 6= r, and yri′(`) = y−1r,2`−i′ .

(iv) yii′(−h∨) = y−12r−i,i′ .

Proof. This is a consequence of the factorization property of the tropical Y-system

found in [Nkn] for the simply laced case. Roughly speaking, in the region −h∨ ≤
u ≤ 0, the system is factorized into ‘level 2 pieces’, while in the region 0 ≤ u ≤ `,
it is factorized into ‘type A pieces’.

First, we consider the region −h∨ ≤ u < 0. Let us concentrate on the simplest

nontrivial example B2 at level 3. It turns out that this example is almost general

enough. In Figure 7, all the variables [yi(u)]T in the region −2 ≤ u ≤ 0 are

given explicitly. It is better to view it in the backward direction from u = 0 to

−2. If we look at only the first three rows from the bottom, we observe that the

mutations occur in exactly the same pattern as in the level 2 case of Figure 6. So

is the case for the last three rows (with a 180◦ rotation). This is the factorization

property. It occurs due to the coordination of the mutation sequence (2.14) and

the positivity/negativity in Proposition 3.2. For example, in Figure 7, let us look

at the vertical arrows between the second and the fourth rows. At any mutation

point (i, u) : p− these arrows are incoming while the [yi(u)]T are positive by (2.19)

and Proposition 3.2(ii). Therefore, by Lemma 3.1, these arrows can be forgotten

during mutations. For a similar reason, the variables in the third rows are not

affected by mutations in the second and the fourth rows. Therefore, as long as the

positivity in the second and the fourth rows continues, so does the factorization;

hence (ii) holds. Moreover, (iv) holds because it does for level 2. This argument is

also applicable to any rank r and level ` because of the definitions of the quiver

Q`(Br) and the mutation sequence (2.14).

Next, we consider the region 0 ≤ u < `. Again, let us concentrate on the case

B2 at level 3. In Figure 8, all the variables [yi(u)]T in the region 0 ≤ u ≤ 2 are
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Figure 7. Tropical Y-system of type B2 at level 3 in the region −2 ≤ u ≤ 0.
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Figure 8. Tropical Y-system of type B2 at level 3 in the region 0 ≤ u ≤ 2.
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given explicitly. It is better to view it in the forward direction from u = 0 to 2. We

observe that no column affects any other in mutations. More precisely, the first

and third columns (from the left) are in the same mutation pattern as the tropical

Y-system of type A2 studied in [FZ2, FZ3] (see also [Nkn] for more details). The

second column is in the same mutation pattern as the tropical Y-system of type

A5 (at the twice faster pace). By [FZ3, Proposition 10.7], [yi(u)]T for (i, u) : p+

are positive in the region 0 ≤ u < 3 (3 is the Coxeter number of A2 and half

of the Coxeter number of A5). The factorization occurs for the same reason as

before; at any mutation point (i, u) : p+ the arrows between adjacent columns

are incoming while [yi(u)]T are positive. Therefore, these arrows can be forgotten,

and we have (ii). Finally, (iii) is also a consequence of [FZ3, Proposition 10.7].

Again, this argument is also applicable to any rank r and level ` by replacing the

number 3 in the above with `, which is the Coxeter number of A`−1 and half of

the Coxeter number of A2`−1.

We obtain two important corollaries of Propositions 3.2 and 4.1.

Theorem 4.2. For [GY (B, y)]T with B = B`(Br), the following relations hold:

(i) Half periodicity: [yi(u+ h∨ + `)]T = [yω(i)(u)]T.

(ii) Full periodicity: [yi(u+ 2(h∨ + `))]T = [yi(u)]T.

Proof. (i) follows from (iii) and (iv) of Propositions 3.2 and 4.1; and (ii) follows

from (i).

We remark that the half periodicity above is compatible with the one for

mutation matrices; namely, set B(u) = B := B`(Br),−B, r(B),−r(B) for u ≡
0, 12 , 1,

3
2 mod 2Z, respectively. Then

(4.1) B(u+ h∨ + `) = ω(B(u))

due to Lemma 2.1(ii).

Theorem 4.3. For [GY (B, y)]T with B = B`(Br), let N+ and N− denote the

total numbers of positive and negative monomials, respectively, among [yi(u)]T for

(i, u) : p+ in the region 0 ≤ u < 2(h∨ + `). Then

(4.2) N+ = 2`(`r + `− 1), N− = 2r(2`r − 2r + 1).

Proof. This follows from (i) and (ii) of Propositions 3.2 and 4.1, and (i) in Theorem

4.2.
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§5. 2-Calabi–Yau realization and periodicity

In this section we prove Theorems 1.5 and 1.6. Our method is based on the 2-

Calabi–Yau realizations of cluster algebras. They are triangulated categories satis-

fying the 2-Calabi–Yau property, and their categorical structure realizes the com-

binatorial structure of cluster algebras.

§5.1. Periodicity theorem for cluster algebras

In this subsection we assume that B = (Bij)i,j∈I is an arbitrary skew-symmetric

(integer) matrix. Let A(B, x, y) be the cluster algebra with coefficients in the

universal semifield Qsf(y), where (B, x, y) is the initial seed. Alternatively, we

may consider the cluster pattern assigned to the n-regular tree Tn, n = |I|, with

the following data (see Section 2.1). Let Q be the quiver (without loops or 2-

cycles) corresponding to B with the set of vertices I. We fix a vertex t0 ∈ Tn,

and assign the initial seed to t0, (Q(t0), x(t0), y(t0)) = (Q, x, y). Then we have a

seed (Q(t), x(t), y(t)) for each t ∈ Tn, where we identify the quiver Q(t) and the

corresponding skew-symmetric matrix B(t) in each seed.

Let Trop(y) be the tropical semifield. As in Section 3.1, we define the tropical

evaluation of yi(t),

(5.1) [yi(t)]T ∈ Trop(y),

as the image of yi(t) ∈ Qsf(y) under the natural map πT : Qsf(y)→ Trop(y). Here

we call [yi(t)]T’s the principal coefficients in accordance with the nomenclature of

[FZ3]. (They may also be called the tropical Y -variables.)

For an automorphism ω : I → I, we define a new quiver ω(Q) with the same

set I of vertices by drawing an arrow ω(a) : ω(i) → ω(j) in ω(Q) for each arrow

a : i→ j in Q.

The following theorem is Observation 1 explained in Section 1.5. Just as it

is crucial in our proof of the periodicities of the T-systems and Y-systems in this

paper and also in [IIKKN], it is expected to be useful in other applications.

Theorem 5.1 (Periodicity theorem). Let B be an arbitrary skew-symmetric ma-

trix, and let Q be the quiver corresponding to B. Let (Q(t), x(t), y(t)) be the seed

at t ∈ Tn for A(B, x, y) as above. Suppose that there exists some t ∈ Tn and an

automorphism ω of I such that [yi(t)]T = [yω(i)]T for any i ∈ I. Then

Q(t) = ω−1(Q) (equivalently, Bij(t) = Bω(i)ω(j)),

xi(t) = xω(i) (i ∈ I),

yi(t) = yω(i) (i ∈ I).

(5.2)
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In particular, the periodicity of seeds of A(B, x, y) coincides with the periodicity

of principal coefficient tuples.

Let A•(B, x, y) be the cluster algebra with coefficients in the tropical semifield

Trop(y), where (B, x, y) is the initial seed. It is also called the cluster algebra with

principal coefficients [FZ3]. Note that a coefficient yi(t) in A•(B, x, y) coincides

with [yi(t)]T in (5.1).

According to [FZ3, Theorem 4.6] and its proof, Theorem 5.1 reduces to the

following result for A•(B, x, y).

Theorem 5.2. Let B and Q be as in Theorem 5.1. Let (Q(t), x(t), y(t)) be the

seed at t ∈ Tn for A•(B, x, y). Suppose that there exists some t ∈ Tn and an

automorphism ω of I such that yi(t) = yω(i) for any i ∈ I. Then

(5.3) Q(t) = ω−1(Q), xi(t) = xω(i) (i ∈ I).

We give a proof of Theorem 5.2 in Section 5.3.

Remark 5.3. Theorem 5.2 was essentially conjectured by Fomin–Zelevinsky

[FZ3, Conjecture 4.7] for an arbitrary skew-symmetrizable matrix B. Therefore,

we partly prove the conjecture for a skew-symmetric matrix B. Note that our

claim is a little stronger than [FZ3, Conjecture 4.7] because the periodicity of the

principal parts of exchange matrices also follows from the periodicity of principal

coefficients. (Meanwhile, the periodicity of the complementary parts of exchange

matrices coincides with the periodicity of principal coefficients by definition [FZ3].)

Remark 5.4. Since Theorems 5.1 and 5.2 involve quivers corresponding to ar-

bitrary skew-symmetric matrices, the categories appearing in their proof will in

general have infinite-dimensional morphism spaces. It is of interest whether the

quivers which appear in our applications of the two theorems actually admit cate-

gorifications by Hom-finite 2-CY categories. We conjecture that this is indeed the

case for all levels l ≥ 2. For l = 2, it is clear since the quiver Q2(Br) is of finite

cluster type D2r+1. However, for l > 2, the conjecture appears to be nontrivial.

§5.2. 2-Calabi–Yau realization of A•(B, x, y)

Our proof of Theorem 5.2 uses the categorification of the cluster algebra

A•(B, x, y) by a certain 2-Calabi–Yau category [Pa, FK, Ke1, A, KY, Pl1, Pl2].

Here we review the recent result by Plamondon [Pl1, Pl2].

Let Q be the quiver corresponding to an arbitrary skew-symmetric matrix B.

Define the principal extension Q̃ of Q as the quiver obtained from Q by adding

a new vertex i′ and an arrow i′ → i for each i ∈ I. Thus the set of vertices in Q̃
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is given by Ĩ := I t I ′ with I ′ := {i′ | i ∈ I}. By mutations one can associate a

quiver Q̃(t) with each t ∈ Tn, where Q̃(t) contains Q(t) as a full subquiver. Note

that we do not make mutations for ‘frozen indices’ i′ ∈ I ′.
We fix a base field K to be an infinite one. Since Q̃ does not have loops or

2-cycles, we have the following result by [DWZ1, Corollary 7.4].

Proposition 5.5. There exists a nondegenerate potential W on Q̃.

From now on we assume W is a nondegenerate potential on Q̃. We denote by

(5.4) C := C(Q̃,W )

the cluster category associated to the quiver with potential (Q̃,W ), which is not

necessarily Hom-finite [A, KY, Pl1]. The category C canonically contains a rigid

object

(5.5) T =
⊕
i∈Ĩ

Ti ∈ C

such that EndC(T ) is isomorphic to the Jacobian algebra of (Q̃,W ). For each

t ∈ Tn, we have a rigid object

(5.6) T (t) =
⊕
i∈Ĩ

Ti(t) ∈ C

by applying successive mutations (see [Pl1, Section 2.6]). We have Ti′(t) = Ti′ for

any i′ ∈ I ′.
From the definition of T (t) and the nondegeneracy of (Q̃,W ) we have the

following description of Q̃(t).

Proposition 5.6. For each t ∈ Tn, the quiver of EndC(T (t)) is Q̃(t), where each

vertex i ∈ Ĩ corresponds to the direct summand Ti(t) of T (t).

As usual we denote by addT (t) the full subcategory of C consisting of all

direct summands of finite direct sums of copies of T (t). We denote by

(5.7) prT (t)

the full subcategory of C consisting of all objects M ∈ C such that there exists a

triangle

T ′′ → T ′ →M → T ′′[1](5.8)

in C with T ′, T ′′ ∈ addT (t).
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Proposition 5.7 ([Pl1, Proposition 2.7, Corollary 2.12]). (1) prT (t) = prT for

any t ∈ Tn.

(2) The category prT is Krull–Schmidt in the sense that any object can be written

as a finite direct sum of objects whose endomorphism rings are local.

Now let us introduce the following notion.

Definition 5.8. Let t ∈ Tn. For an object T ′ =
⊕

i∈Ĩ Ti(t)
`i in addT (t), we put

(5.9) [T ′]T (t) := (`i)i∈Ĩ ∈ ZĨ .

For an object M ∈ prT (t), we take a triangle (5.8) and define the index of M by

(5.10) indT (t)(M) := [T ′]T (t) − [T ′′]T (t) ∈ ZĨ .

This is independent of the choice of the triangle (5.8) by Proposition 5.7(2).

We have the following relationship between indices and principal coefficients.

Proposition 5.9 ([Pl2, Corollary 3.10], [Ke1, Theorem 7.13(b)]). Let yi(t) be a

coefficient in A•(B, x, y). For t ∈ Tn, we put yj(t) =
∏
i∈I y

cij(t)
i for any j ∈ I.

Then

(5.11) −indT (t)(Ti[1]) = (cij(t))j∈I ∈ ZI

for any i ∈ I, where we embed ZI into ZĨ naturally.

Remark 5.10. Proposition 5.9 shows that the principal coefficients of a quiver Q

are determined by the g-vectors of the opposite quiver Qop. This can also be de-

duced from Conjecture 1.6 (proved in Theorem 1.7) of [DWZ2] using Remark 7.15

of [FZ3] on ‘Langlands duality’.

The following analogue of [DK, Theorem 2.3] is an important ingredient in

our proof.

Proposition 5.11 ([Pl2, Proposition 3.1]). Let X,Y ∈ prT be rigid objects and

t ∈ Tn. Then X ' Y if and only if indT (t)(X) = indT (t)(Y ).

Let us introduce a Caldero–Chapoton-type map.

Definition 5.12. Define a full subcategory

(5.12) D := {M ∈ prT ∩ prT [−1] | dimK HomC(T,M [1]) <∞}.
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For any object M ∈ D, we define an element XM in Z[x±1, y] by

ŷj := yj
∏
i∈I

x
Bij

i (j ∈ I),(5.13)

XM :=
(∏
i∈I

x
indT (M)i
i y

indT (M)i′
i

) ∑
e∈ZĨ

χ(Gre(HomC(T,M [1])))
∏
j∈I

ŷ
ej
j ,(5.14)

where Gre is the quiver Grassmannian and χ is the Euler characteristic.

For each t ∈ Tn we have T (t) ∈ D by Proposition 5.7(1). The following

description of the cluster variables in A•(B, x, y) is crucial in our proof.

Proposition 5.13. Let xi(t) be a cluster variable in A•(B, x, y). Then

(5.15) xi(t) = XTi(t)

for any t ∈ Tn and i ∈ I.

Proof. Specializing (B,n) in [Pl1, Theorem 3.12] to

(5.16)

((
B −En
En O

)
, 2n

)
,

we find that X is a cluster character in the sense of [Pl1, Definition 3.10]. Now the

assertion is an immediate consequence.

§5.3. Proof of Theorem 5.2

Now we are ready to prove Theorem 5.2. Since yj(t) = yω(j) for any j ∈ I, in

Proposition 5.9 we have

(5.17) cij(t) =

{
1, i = ω(j),

0, otherwise,

for any i, j ∈ I. Thus indT (t)(Tω(j)[1]) = indT (t)(Tj(t)[1]) for any j ∈ I. By

Proposition 5.11,

Tω(j) ' Tj(t)(5.18)

for any j ∈ I. By Proposition 5.13 and (5.18), we have

(5.19) xj(t) = XTj(t) = XTω(j)
= xω(j)

for any j ∈ I.

Finally, by (5.18) and Proposition 5.6,

(5.20) ω−1(Q̃) = Q̃(t) and so ω−1(Q) = Q(t).
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§5.4. Proof of periodicities of T-systems and Y-systems

Now the proof of Theorems 1.5 and 1.6 is at hand.

As corollaries of Theorems 4.2 and 5.1 we immediately obtain the periodicities

of the cluster variables and coefficients in A(B, x, y) with B = B`(Br).

Corollary 5.14. For A(B, x, y) with B = B`(Br), the following relations hold:

(i) Half periodicity: xi(u+ h∨ + `) = xω(i)(u).

(ii) Full periodicity: xi(u+ 2(h∨ + `)) = xi(u).

Corollary 5.15. For G(B, y) with B = B`(Br), the following relations hold:

(i) Half periodicity: yi(u+ h∨ + `) = yω(i)(u).

(ii) Full periodicity: yi(u+ 2(h∨ + `)) = yi(u).

As further corollaries of Corollaries 5.14 and 5.15 and Theorems 2.7 and 2.10

we obtain Theorems 1.5 and 1.6.

As a corollary of Theorems 4.2 and 5.2 we also obtain the periodicity of F -

polynomials [FZ3] (see Section 2.1 for the definition), which will be used in the

next section.

Corollary 5.16. For A(B, x, y) with B = B`(Br), let Fi(u) be the F -polynomial

at (i, u). Then the following relations hold:

(i) Half periodicity: Fi(u+ h∨ + `) = Fω(i)(u).

(ii) Full periodicity: Fi(u+ 2(h∨ + `)) = Fi(u).

§6. Dilogarithm identities

In this section we prove Theorem 1.10. In the cluster algebraic formulation here,

Theorem 1.10 is expressed as follows.

Theorem 6.1. For GY (B, y) with B = B`(Br), let y
(a)
m (u) be the coefficient tuple

in Theorem 2.10. Then, for any semifield homomorphism ϕ : Qsf(y)→ R+,

(6.1)
6

π2

∑
(a,m,u)∈S′+

L

(
ϕ(y

(a)
m (u))

1 + ϕ(y
(a)
m (u))

)
= 2r(2r`− 2r + 1),

where S′+ = {(a,m, u) ∈ I ′`+ | 0 ≤ u < 2(h∨ + `)}.

Let F
(a)
m (u) denote the F -polynomial Fi(v) at (i, v) = g((a,m, u)), i.e., with

the same parametrization by I`+ as x
(a)
m (u).
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Lemma 6.2. (i) For (a,m, u) ∈ I ′`+, the following relations hold:

F
(a)
m

(
u− 1

ta

)
F

(a)
m

(
u+ 1

ta

)
=

[
y
(a)
m (u)

1+y
(a)
m (u)

]
T

∏
(b,k,v)∈I`+

F
(b)
k (v)G(b,k,v; a,m,u)

+

[
1

1+y
(a)
m (u)

]
T

F
(a)
m−1(u)F

(a)
m+1(u),

(6.2)

y(a)m (u) = [y(a)m (u)]T

∏
(b,k,v)∈I`+ F

(b)
k (v)G(b,k,v; a,m,u)

F
(a)
m−1(u)F

(a)
m+1(u)

,(6.3)

1+y(a)m (u) = [1+y(a)m (u)]T
F

(a)
m

(
u− 1

ta

)
F

(a)
m

(
u+ 1

ta

)
F

(a)
m−1(u)F

(a)
m+1(u)

.(6.4)

(ii) Periodicity: F
(a)
m (u+2(h∨+`)) = F

(a)
m (u).

(iii) Each polynomial F
(a)
m (u) has constant term 1.

Proof. (i) (6.2) is a specialization of (2.4); (6.3) is due to [FZ3, Proposition 3.13];

and (6.4) follows from (6.2) and (6.3).

(ii) This is a special case of Corollary 5.16.

(iii) The claim is shown by induction on u, by using Fi(0) = 1, (6.2), and

Proposition 4.1 (cf. [FZ3, Proposition 5.6]).

According to [FS, C, Nkn], the proof of Theorem 1.10 reduces to the next

claim.

Proposition 6.3. (i) In
∧2 Qsf(y), we have

(6.5)
∑

(a,m,u)∈S′+

y(a)m (u) ∧ (1 + y(a)m (u)) = 0.

(ii) The total number of negative monomials among [y
(a)
m (u)]T ((a,m, u) ∈ S′+) is

2r(2r`− 2r + 1).

(ii) is already proved in Theorem 4.3. Let us prove (i). The argument is parallel

to the simply laced case [Nkn, Proposition 4.1], but a little more complicated.

Therefore, we present the calculations.

We put (6.3) and (6.4) into (6.5), and expand it.

Firstly,

(6.6)
∑

(a,m,u)∈S′+

[y(a)m (u)]T ∧ [1 + y(a)m (u)]T = 0,

since each monomial [y
(a)
m (u)]T is either positive or negative by Proposition 4.1.
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Secondly, the contributions from the terms involving only Fi(u)’s vanish. To

see this, we divide them into two parts. The first part

(6.7)
∑

(a,m,u)∈S′+

F
(a)
m−1(u)F

(a)
m+1(u) ∧ F (a)

m

(
u− 1

ta

)
F

(a)
m

(
u+ 1

ta

)
vanishes due to the symmetry argument of [CGT, Section 3], where we use the

periodicity of F -polynomials (Lemma 6.2(ii)). The second part

∑
(a,m,u)∈S′+

∏
(b,k,v)∈I`+

F
(b)
k (v)G(b,k,v; a,m,u) ∧

F
(a)
m

(
u− 1

ta

)
F

(a)
m

(
u+ 1

ta

)
F

(a)
m−1(u)F

(a)
m+1(u)

(6.8)

reduces, by the symmetry argument again, to the sum consisting of all terms with

(a, b) = (r − 1, r), (r, r − 1); namely,

(6.9)

`−1∑
m=1

∑
u≡0modZ

0≤u<2(h∨+`)

F
(r)
2m(u) ∧ F

(r−1)
m (u− 1)F

(r−1)
m (u+ 1)

F
(r−1)
m−1 (u)F

(r−1)
m+1 (u)

+

`−1∑
m=1

∑
u≡ 1

2 modZ
0≤u<2(h∨+`)

F (r−1)
m (u− 1

2 )F
(r−1)
m (u+ 1

2 ) ∧
F

(r)
2m(u− 1

2 )F
(r)
2m(u+ 1

2 )

F
(r)
2m−1(u)F

(r)
2m+1(u)

+

`−1∑
m=0

∑
u≡0modZ

0≤u<2(h∨+`)

F (r−1)
m (u)F

(r−1)
m+1 (u) ∧

F
(r)
2m+1(u− 1

2 )F
(r)
2m+1(u+ 1

2 )

F
(r)
2m(u)F

(r)
2m+2(u)

,

where F
(r−1)
0 (u) = F

(r−1)
` (u) = F

(r)
0 (u) = F

(r)
2` (u) = 1. It is easy to check that all

the terms cancel each other.

Thirdly, the contributions from the remaining terms are as follows, where

S+ = {(a,m, u) ∈ I`+ | 0 ≤ u < 2(h∨ + `)}:

(6.10)
∑

(a,m,u)∈S′+

[y(a)m (u)]T ∧ F (a)
m

(
u− 1

ta

)
F

(a)
m

(
u+ 1

ta

)
=

∑
(a,m,u)∈S+

[
y(a)m

(
u− 1

ta

)]
T

[
y
(a)
m

(
u+ 1

ta

)]
T
∧ F (a)

m (u),

(6.11) −
∑

(a,m,u)∈S′+

[y(a)m (u)]T ∧ F (a)
m−1(u)F

(a)
m+1(u)

= −
∑

(a,m,u)∈S+

[y
(a)
m−1(u)]T[y

(a)
m+1(u)]T ∧ F (a)

m (u),
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(6.12)
∑

(a,m,u)∈S′+

[1 + y(a)m (u)]T ∧ F (a)
m−1(u)F

(a)
m+1(u)

=
∑

(a,m,u)∈S+

[1 + y
(a)
m−1(u)]T[1 + y

(a)
m+1(u)]T ∧ F (a)

m (u),

(6.13) −
∑

(a,m,u)∈S′+

[1 + y(a)m (u)]T ∧
∏

(b,k,v)∈I`+

F
(b)
k (v)G(b,k,v; a,m,u)

= −
∑

(a,m,u)∈S+

∏
(b,k,v)∈I′`+

[1+y
(b)
k (v)]

G(a,m,u; b,k,v)
T ∧F (a)

m (u).

These terms cancel if we have the relation

(6.14)
[
y(a)m

(
u− 1

ta

)]
T

[
y
(a)
m

(
u+ 1

ta

)]
T

=

∏
(b,k,v)∈I′`+

[1 + y
(b)
k (v)]

tG(b,k,v;a,m,u)
T

[1 + y
(a)
m−1(u)−1]T[1 + y

(a)
m+1(u)−1]T

.

This is nothing but the Y-system (1.6), therefore, it holds by Lemma 2.8.

This completes the proof of Proposition 6.3.

§7. Alternative proof of periodicities of T-systems and Y-systems

of simply laced type

Let (Xr,X
′
r′) be a pair of simply laced Dynkin diagrams of finite type with index

sets I and I ′.

As an application of Theorem 5.1, we give an alternative and simplified proof

of the periodicities of the T-systems and Y-systems associated with (Xr,X
′
r′).

They were formerly proved in [FZ1, FZ2] for the X ′r′ = A1 (‘level 2 case’) and in

[Ke1, IIKNS, Ke2] for the general case.

For a family of variables {Tii′(u) | i ∈ I, i′ ∈ I ′, u ∈ Z}, the T-system

T(Xr, X
′
r′) associated with a pair (Xr, X

′
r′) is the system of the relations

(7.1) Tii′(u− 1)Tii′(u+ 1) =
∏
j: j∼i

Tji′(u) +
∏

j′: j′∼i′
Tij′(u),

where j ∼ i means j is adjacent to i in Xr, while j′ ∼ i′ means j′ is adjacent to i′

in X ′r′ .

For a family of variables {Yii′(u) | i ∈ I, i′ ∈ I ′, u ∈ Z}, the Y-system

Y(Xr, X
′
r′) associated with a pair (Xr, X

′
r′) is the system of relations

(7.2) Yii′(u− 1)Yii′(u+ 1) =

∏
j: j∼i(1 + Yji′(u))∏

j′: j′∼i′(1 + Yij′(u)−1)
.

Let C = (Cij)i,j∈I and C ′ = (Ci′j′)i′,j′∈I be a pair of Cartan matrices of

types Xr and X ′r′ with fixed bipartite decompositions I = I+tI− and I ′ = I ′+tI ′−.
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Set I = I × I ′. For i = (i, i′) ∈ I, let us write i : (++) if (i, i′) ∈ I+ × I ′+, etc.

Define the matrix B = B(Xr, X
′
r′) = (Bij)i,j∈I by

(7.3) Bij =



−Cijδi′j′ , i : (−+), j : (++) or i : (+−), j : (−−),

Cijδi′j′ , i : (++), j : (−+) or i : (−−), j : (+−),

−δijC ′i′j′ , i : (++), j : (+−) or i : (−−), j : (−+),

δijC
′
i′j′ , i : (+−), j : (++) or i : (−+), j : (−−),

0, otherwise.

Then, as in Section 2, one can express the T-systems and Y-systems in terms of the

cluster algebra A(B, x, y) and its coefficient group G(B, y) with B = B(Xr, X
′
r′)

(cf. [Nkn, Proposition 2.6]).

Theorem 7.1. The following relations hold for the tropical Y-system of G(B, y)

with B = B(Xr, X
′
r′):

(i) Half periodicity: [yi(u+ h+ h′)]T = [yω(i)(u)]T.

(ii) Full periodicity: [yi(u+ 2(h+ h′)]T = [yi(u)]T.

Here, h and h′ are the Coxeter numbers of Xr and X ′r′ , and ω = ω× ω′, where ω

(resp. ω′) is the Dynkin automorphism of Xr (resp. X ′r′) for types Ar, Dr (r odd),

or E6, and the identity otherwise.

Proof. This is an immediate consequence of the factorization property of the trop-

ical Y-system studied in [Nkn, Proposition 3.2].

As a corollary of Theorems 5.1 and 7.1, we obtain the periodicities of the

T-systems and Y-systems.

Corollary 7.2. The following relations hold:

(i) Half periodicity: Ti(u+ h+ h′) = Tω(i)(u), Yi(u+ h+ h′) = Yω(i)(u).

(ii) Full periodicity: Ti(u+ 2(h+ h′)) = Ti(u), Yi(u+ 2(h+ h′)) = Yi(u).
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