
Publ. RIMS Kyoto Univ. 49 (2013), 87–110
DOI 10.4171/PRIMS/97

Representation Theory of Rational Cherednik
Algebras of Type Z/lZ via Microlocal Analysis

by

Toshiro Kuwabara

Abstract

Based on the methods developed in [KR], we consider microlocalization of rational
Cherednik algebras of type Z/lZ. Our goal is to construct irreducible modules and stan-
dard modules of these rational Cherednik algebras by using microlocalization. As a conse-
quence, we obtain sheaves corresponding to holonomic systems with regular singularities.
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§1. Introduction

A symplectic reflection algebra is a noncommutative deformation of the smash

product C[V ]#Γ, introduced by [EG], where V is a symplectic vector space and Γ

is a finite group generated by symplectic reflections on V . Sometimes, we identify

the symplectic reflection algebra with its spherical subalgebra, a noncommutative

deformation of C[V ]Γ, because these algebras are Morita equivalent except for a

certain choice of their parameters.

When the group Γ coincides with a complex reflection group and V coincides

with h⊕ h∗ where h is the reflection representation of Γ, the symplectic reflection

algebra is sometimes called a rational Cherednik algebra. An important property of

rational Cherednik algebras is that they have a triangular decomposition similar to

complex semisimple Lie algebras. Via the triangular decomposition, we can intro-

duce a certain subcategory of the category of modules, called the category O. The

category O is a highest weight category in the sense of [CPS]. Its standard modules
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and costandard modules are studied in [GGOR]. For each irreducible CΓ-module

E ∈ IrrCΓ, we have a corresponding standard module ∆(E). The standard module

has a unique irreducible quotient L(E) and any irreducible module in the cate-

gory O is isomorphic to L(E) for a certain E. One of fundamental problems of the

representation theory of rational Cherednik algebras is to determine multiplicities

[∆(E) : L(F )] in the Grothendieck group for E,F ∈ IrrCΓ.

When the group Γ is a wreath product (Z/lZ) oSn of a cyclic group Z/lZ and

a symmetric group Sn, there is a close connection between rational Cherednik

algebras and quiver varieties which are symplectic varieties introduced in [Na].

After the leading work of [GS1] and [GS2], [KR] constructed a microlocalization

of rational Cherednik algebras of type Sn. The microlocalization is a kind of

Deformation-Quantization algebra, called a W-algebra, on a quiver variety. [KR]

introduced the notion of F-action on W-algebras and established an equivalence

of categories between the category of finitely generated modules over a rational

Cherednik algebra and the category of F-equivariant, good modules over a W-

algebra. This equivalence is an analogue of the Beilinson–Bernstein correspondence

for complex semisimple Lie algebras.

In [BK] and [BLPW], microlocalization of rational Cherednik algebras of type

Z/lZ was studied independently. As an application of the microlocalization of

rational Cherednik algebras, we study the construction of irreducible modules and

standard modules of these rational Cherednik algebras via microlocalization.

Let us describe the structure of this article.

In Section 2, we review fundamental properties of minimal resolutions of

Kleinian singularities of type A. We construct Kleinian singularities and their

resolutions X as quiver varieties of cyclic quivers. Moreover, we see that the struc-

ture of X as a toric variety gives us an affine open covering X =
⋃l
i=1Xi such

that Xi ' C2.

In Section 3, we review the general setting of W-algebras and construct the

microlocalization Ãc of rational Cherednik algebra Ac on X. By [BK, Theorem

6.3] and [BLPW, Theorem 6.1], we have an equivalence of categories

Modgood
F (Ãc)→ Ac-mod, M 7→ HomModgood

F (Ãc)
(Ãc,M ),

under certain conditions on the parameter c.

At the end of Section 3.3, we describe the structure of Ãc|Xi explicitly on the

affine open subset Xi for i = 1, . . . , l.

In Section 4, we briefly review the representation theory of rational Cherednik

algebras. Its spherical subalgebra is isomorphic to Ac. We introduce the category

O(Ac), and review the definition of its standard modules ∆c(i) and irreducible

modules Lc(i).
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In Section 5.1, we construct Ãc-modules M∆
c (i) for i = 1, . . . , l. These are

F-equivariant, holonomic Ãc-modules supported on certain Lagrangian subvari-

eties. We show that the corresponding Ac-modules HomModgood
F (Ãc)

(Ãc,M∆
c (i))

are isomorphic to the standard modules ∆c(i).

In Section 5.2, we construct Ãc-modules Lc(i) for i = 1, . . . , l. These are

also F-equivariant, holonomic Ãc-modules supported on certain Lagrangian sub-

varieties. Moreover, we show that Lc(i) are irreducible Ãc-modules. At the end

of Section 5.2, we determine the multiplicity [∆c(i) : Lc(j)] in the Grothendieck

group of O(Ac) as a corollary of the construction of the Ãc-modules M∆
c (i) and

Lc(j).
Finally, in the appendix, we explicitly construct global sections of the Ãc-

modules M∆
c (i).

§2. Quiver varieties

In this section we review the definition and fundamental properties of quiver vari-

eties without framing, which were introduced in [Kr].

Let Q = (I, E) be a cyclic quiver with vertices I = {Ii | i = 0, . . . , l − 1} and

arrows E = {αi : Ii−1 → Ii | i = 1, . . . , l}. Let Q = (I, E t E∗) be a quiver with

vertices I and arrows E and E∗ = {α∗i : Ii → Ii−1}. Throughout this paper, we

regard indices of vertices and edges of Q and Q as integers modulo l, i.e. we regard

Il+i = Ii and αl+i = αi.

Q : I0
α1

ww α∗l ''
I1

α2

//

α∗1

77

I2 oo //
α∗2oo Il−1

αl

gg

Set δ = (1, . . . , 1) ∈ (Z≥0)l; we call δ a dimension vector. A representation

of Q with dimension vector δ is a pair (V, (ai, bi)i=1,...,l) of an I-graded vector space

V =
⊕l−1

i=0 Vi such that dimVi = 1 for all i ∈ I and linear maps ai : Vi−1 → Vi and

bi : Vi → Vi−1. Since dimVi = 1 for all i, we regard ai and bi as elements of C.

Let GL(δ) =
∏l−1
i=0GL(Vi) ' (C∗)l be a reductive algebraic group acting on V .

Let G = PGL(δ) = GL(δ)/C∗diag ' (C∗)l−1 where C∗diag is the diagonal subgroup

of GL(δ). Let g = Lie(G) be the Lie algebra of G. We have g = (
⊕l−1

i=0 C)/Cdiag

where Cdiag is the diagonal Lie subalgebra of
⊕l−1

i=0 C.

A representation of Q: C1

a1

vv bl
&&C1

a2
//

b1

66

C1 oo //
b2oo C1

al

ff
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Fix a parameter θ = (θ0, . . . , θl−1) ∈ Zl such that θ0 + θ1 + · · · + θl−1 = 0.

Note that we regard indices of θ as integers modulo l, i.e. θ = (θi)i∈Z/lZ, and

θi+θi+1 + · · ·+θj−1 is well-defined for any i, j ∈ Z/lZ. We regard θ as a character

of g.

A representation (V, (ai, bi)i=1,...,l) is called θ-semistable if any I-graded sub-

space W of V which is stable under the action of (ai, bi)i=1,...,l satisfies the condi-

tion
∑l−1
i=0 θi dimWi ≤ 0.

Fix a parameter θ. Let X̃θ ⊂ C2l be the space of all θ-semistable representa-

tions,

X̃θ = {(ai, bi)i=1,...,l ∈ C2l | (ai, bi)i=1,...,l is θ-semistable}.
The group GL(δ) acts on X̃θ by

GL(δ)× X̃θ → X̃θ,
(
(gi)i∈Z/lZ, (aj , bj)j=1,...,l

)
7→ (gjg

−1
j−1aj , gj−1g

−1
j bj)j=1,...,l.

This action clearly factors through G = PGL(δ). Two points p, p′ of X̃θ are called

S-equivalent if the closures of their orbits intersect in X̃θ.

Consider the following moment map with respect to the action ofGL(δ) on X̃θ:

µ : X̃θ → g∗ ⊂ Cl, (ai, bi)i=1,...,l 7→ (ai+1bi+1 − aibi)i=0,...,l−1.

We consider the Hamiltonian reduction of X̃θ with respect to the moment map µ.

The subset µ−1(0) ⊂ X̃θ is stable under the action of G.

Definition 2.1. The quiver variety of the quiver Q with dimension vector δ and

stability parameter θ is a complex symplectic variety

Xθ = µ−1(0)/∼S

where ∼S is S-equivalence.

We denote the S-equivalence class in Xθ containing (ai, bi)i=1,...,l ∈ X̃θ by

[ai, bi]i=1,...,l.

Let us consider the case of θ = 0 = (0, . . . , 0). For (ai, bi)i=1,...,l ∈ µ−1(0), we

set ā = l
√
a1 · · · al, b̄ = l

√
b1 · · · bl such that āb̄ = a1b1. Then we have the following

isomorphism of algebraic varieties:

X0
'−→ C2/(Z/lZ), [ai, bi]i=1,...,l 7→ (ā, b̄).

Note that the image of (ā, b̄) in C2/(Z/lZ) is independent of the choice of root (cf.

[Kr, Corollary 3.2]).

Proposition 2.2 ([Kr, Corollary 3.12]). If a stability parameter θ = (θi)i=0,...,l−1

satisfies θi + θi+1 + · · ·+ θj−1 6= 0 for all i, j (i 6= j), then Xθ is nonsingular and

we have a minimal resolution of Kleinian singularities of type Al−1:

πθ : Xθ → X0 ' C2/(Z/lZ).



Cherednik Algebra via Microlocal Analysis 91

In the rest of this paper, we fix a stability parameter θ satisfying the condition

of Proposition 2.2. We denote Xθ by X, πθ by π, etc. for simplicity.

Remark 2.3. Although all Xθ are isomorphic to one another as algebraic vari-

eties, we use the explicit construction in Definition 2.1 to construct W-algebras in

Section 3.3. Moreover, we give a condition for θ in order that W-affinity holds in

Theorem 3.10.

One of the fundamental properties of X is that it is a toric variety with respect

to the following action of the 2-dimensional torus T2 = (C∗)2:

(1) (q1, q2)[ai, bi]i=1,...,l = [q1ai, q2bi]i=1,...,l

for (q1, q2) ∈ T2 and [ai, bi]i=1,...,l ∈ X. The following facts are easy to obtain

from the general theory of toric varieties. We refer the reader to [Ku, Section 2]

for proofs of these facts, or to [Fu] for the general theory of toric varieties.

The variety X has l T-fixed points p′1, . . . , p′l where p′i = [aj , bj ]j=1,...,l is given

as follows:
ai = 0, bi = 0,

aj = 0, bj 6= 0 if θi + θi+1 + · · ·+ θj−1 < 0,

aj 6= 0, bj = 0 if θi + θi+1 + · · ·+ θj−1 > 0.

Note that our condition on the parameter θ ensures θi + θi+1 + · · ·+ θj−1 6= 0 for

all i 6= j.

Define an ordering � on the set of indices Λ = {1, . . . , l} by

i� j ⇔ θi + · · ·+ θj−1 < 0.

By the condition on the stability parameter θ, the ordering � is a total ordering.

Let η1, . . . , ηl be the indices in Λ arranged so that

(2) η1 � · · ·� ηl.

Remark 2.4. Note that the order of η1, . . . , ηi is reverse to the one of [Ku].

Set pi = p′ηi for i = 1, . . . , l. The explicit description of the point pi is given

as follows.

Lemma 2.5. For i = 1, . . . , l, the fixed point pi = p′ηi = [aj , bj ]j=1,...,l is given by

aηi = 0, bηi = 0,

aηj = 0, bηj 6= 0 for j > i,

aηj 6= 0, bηj = 0 for j < i.
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Let us consider the Lagrangian subvariety π−1({ā = 0 or b̄ = 0}). It has l+ 1

irreducible components D0, D1, . . . , Dl such that D0, Dl ' C1, Di ' P1 for

1 ≤ i ≤ l − 1 and pi is the unique intersection point of Di−1 and Di. We can

describe Di explicitly as follows.

Lemma 2.6. For i = 1, . . . , l, the T-divisor Di is given by

Di =

{
[aj , bj ]j=1,...,l

∣∣∣∣ aηj = 0, bηj 6= 0 for j > i

aηj 6= 0, bηj = 0 for j ≤ i

}
.

Similarly, D0 is given by

D0 = {[aj , bj ]j=1,...,l | aj = 0, bj 6= 0}.

The description as a toric variety gives us the following affine open covering

of X:

X =

l⋃
i=1

Xi, Xi =

{
[aj , bj ]j=1,...,l

∣∣∣∣ aηj 6= 0 for j < i

bηj 6= 0 for j > i

}
.

We define coordinate functions x̄i (resp. ȳi) for i = 1, . . . , l on X̃ ⊂ C2l by

x̄i((aj , bj)j=1,...,l) = ai (resp. ȳi((aj , bj)j=1,...,l) = bi). For i = 1, . . . , l, let Ri be the

following subring of C(x̄1, . . . , x̄l, ȳ1, . . . , ȳl) which is isomorphic to a polynomial

ring in two variables:

Ri = C[f̄i, ḡi]

where

f̄i =
x̄η1 x̄η2 . . . x̄ηi
ȳηi+1 ȳηi+2 . . . ȳηl

, ḡi =
ȳηi ȳηi+1 . . . ȳηl
x̄η1 x̄η2 . . . x̄ηi−1

∈ C(x̄1, . . . , x̄l, ȳ1, . . . , ȳl)

Then we have

Xi = SpecRi ' C2 = T ∗C1.

Consider the symplectic form ωX̃ =
∑l
i=1 dx̄i ∧ dȳi on X̃. It induces a symplectic

form ωX on X, and we have ωX |Xi = df̄i ∧ dḡi.
For i = 1, . . . , l, the fixed point pi belongs to Xi. For i = 1, . . . , l− 1, we have

Di ' P1 ⊂ Xi ∪Xi+1 and there is an isomorphism Xi ∪Xi+1 ' T ∗P1. Note that

f̄iḡi+1 = 1 on Xi ∩Xi+1.

§3. W-algebras

In this section, we recall the definition of W-algebras (~-localized DQ-algebras),

and construct a W-algebra on X by quantum Hamiltonian reduction. We intro-

duce quantized symplectic coordinates of the W-algebra on X. In the rest of the

paper, we consider complex manifolds equipped with the analytic topology. For a

manifold M , we denote by OM the sheaf of holomorphic functions on M .
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§3.1. Definition of W-algebras

Let ~ be an indeterminate. Given m ∈ Z, let WT∗Cn(m) be the sheaf of formal

series
∑
k≥−m ~kak (ak ∈ OT∗Cn) on the cotangent bundle T ∗Cn of Cn. We set

WT∗Cn =
⋃
m WT∗Cn(m). We define a noncommutative C((~))-algebra structure

on WT∗Cn by

f ◦ g =
∑
α∈Zn≥0

~|α|
1

α!
∂αξ f · ∂αx g

where, for a multi-power α = (α1, . . . , αn) ∈ Zn≥0, we set α! = α1! · · ·αn! and

|α| = α1 + · · ·+ αn. Note that WT∗Cn(0) is a C[[~]]-subalgebra of WT∗Cn .

Let X be a complex symplectic manifold with symplectic form ω. A W-algebra

on X is a sheaf W of C((~))-algebras such that for any point x ∈ X, there is an

open neighbourhood U of x, a symplectic map ϕ : U → T ∗Cn, and a C((~))-algebra

isomorphism ψ : W |U
∼−→ ϕ−1WT∗Cn .

The following fundamental properties of any W-algebra W are listed in [KR].

1. The algebra W is a coherent and noetherian algebra.

2. W contains a canonical C[[~]]-subalgebra W (0) which is locally isomorphic to

WT∗Cn(0) (via the maps ψ). We set W (m) = ~−mW (0).

3. We have a canonical C-algebra isomorphism W (0)/W (−1)
∼−→ OX (coming

from the canonical isomorphism via the maps ψ). The corresponding morphism

σm : W (m)→ ~−mOX is called the symbol map.

4. We have

σ0(~−1[f, g]) = {σ0(f), σ0(g)}

for any f, g ∈ W (0). Here {·, ·} is the Poisson bracket of X induced from the

symplectic structure of X.

5. The canonical map W (0)→ lim←−m→∞W (0)/W (−m) is an isomorphism.

6. A section a of W (0) is invertible in W (0) if and only if σ0(a) is invertible in OX .

7. Given a C((~))-algebra automorphism φ of W , we can find locally an invertible

section a of W (0) such that φ = Ad(a). Moreover a is unique up to a scalar

multiple. In other words, we have canonical isomorphisms

W (0)×/C[[~]]×
∼
Ad

//

∼
��

Aut(W (0))

∼
��

W ×/C((~))×
∼
Ad

// Aut(W )

8. Let v be a C((~))-linear filtration-preserving derivation of W . Then there exists

locally a section a of W (1) such that v = ad(a). Moreover a is unique up to a
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scalar. In other words, we have an isomorphism

W (1)/~−1C[[~]]
∼−→
ad

Derfiltered(W ).

9. If W is a W-algebra, then its opposite ring W opp is a W-algebra on Xopp where

Xopp is the symplectic manifold with symplectic form −ω.

A tuple (f1, . . . , fn; g1, . . . , gn) of elements fi, gi ∈ W (0) is called quantized

symplectic coordinates of W if [fi, fj ] = [gi, gj ] = 0 and [gi, fj ] = ~δij .
For a W -module M , a W (0)-lattice of M is a coherent W (0)-submodule M (0)

such that the canonical homomorphism W ⊗W (0) M (0)→M is an isomorphism.

We say that a W -module M is good if, for any relatively compact open subset U

of X, there is a coherent W (0)|U -lattice of M |U . We denote the category of W -

modules by Mod(W ) and the full subcategory of good W -modules by Modgood(W ).

Then Modgood(W ) is an abelian subcategory of Mod(W ).

Remark 3.1. For a W -module M with a W (0)-lattice M (0), the above prop-

erty 6 implies that the support of M coincides with the support of the associated

OX -module M (0)/M (−1). We denote it by Supp M .

Next, we review the notion of F-actions.

Let X be a symplectic manifold with an action of Gm: C∗ 3 t 7→ Tt ∈ Aut(X).

We assume there exists a positive integer m ∈ Z>0 such that T ∗t ω = tmω for all

t ∈ C∗.
An F-action with exponent m on W is an action of Gm on the C-algebra W ,

Ft : T−1
t W

∼−→ W for t ∈ C∗, such that Ft(~) = tm~ and Ft(f) depends holo-

morphically on t for any f ∈ W .

An F-action with exponent m on W extends to an F-action with exponent 1

on W [~1/m] = C((~1/m))⊗C((~)) W given by Ft(~1/m) = t1~1/m.

Definition 3.2. A W [~1/m]-module with F-action is a Gm-equivariant W [~1/m]-

module, i.e. there exist isomorphisms Ft : T−1
t M

∼−→ M for t ∈ C∗, and we

assume that

1. Ft(u) depends holomorphically on t for any u ∈M ;

2. Ft(fu) = Ft(f)Ft(u) for f ∈ W [~1/m] and u ∈M ; and

3. Ft ◦Ft′ = Ftt′ for t, t′ ∈ C∗.

We denote by ModF (W [~1/m]) the category of W [~1/m]-modules with F-

action, and by Modgood
F (W [~1/m]) its full subcategory of good W [~1/m]-modules

with F-action. These are C-linear abelian categories.
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§3.2. Holonomic W -modules

In this section, we review the notion of holonomic W -modules introduced in [KS2].

The following proposition is due to [KS1].

Proposition 3.3 ([KS1, Prop. 2.3.17]). For a good W -module M , Supp M is in-

volutive with respect to the Poisson bracket of X. In particular, dim Supp M ≥
dimX/2.

Definition 3.4 ([KS2]). We call a good W -module M holonomic if Supp M is a

Lagrangian subvariety of X, i.e., dim Supp M = dimX/2.

Proposition 3.5. The category Modhol(W ) of all holonomic W -modules is an

abelian subcategory of Modgood(W ).

The following lemma is obvious.

Lemma 3.6. Let M be a good W -module such that Supp M is the disjoint union

of subsets Z1 and Z2. Then there exist submodules N1, N2 of M with support Z1,

Z2, respectively, and such that M = N1 ⊕N2.

Proof. Define

Ni = {m ∈M | Suppm ⊂ Zi}

for i = 1, 2. Then the claim of the lemma follows immediately.

In the present paper, we consider the case dimX = 2.

Let x̄, ξ̄ ∈ OT∗C1 be coordinate functions on T ∗C1 defined by x̄((a, b)) = a,

ξ̄((a, b)) = b for (a, b) ∈ T ∗C1. Let x, ξ ∈ WT∗C1(0) be the standard quantized

symplectic coordinates, that is, [ξ, x] = ~ and σ0(x) = x̄, σ0(ξ) = ξ̄.

For λ ∈ C, let Mλ be the WT∗C1-module defined by

Mλ = WT∗C1/WT∗C1(xξ − ~λ).

Then Mλ is a holonomic WT∗C1-module supported on {x̄ξ̄ = 0} ⊂ T ∗C1. Let vλ
be the image of the constant section 1 ∈ WT∗C1 in Mλ.

Lemma 3.7. For m ∈ Z, we have the following isomorphism of WT∗C1 |{x̄ 6=0}-

modules:

Mλ|{x̄ 6=0} →Mλ+m|{x̄ 6=0}, vλ 7→ x−mvλ+m.

Obviously, the inverse homomorphism is given by vλ+m 7→ xmvλ.

A similar proposition holds globally on T ∗C1. It is an analogue of a well-known

fact about regular holonomic DC1-modules.
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Proposition 3.8. For any λ 6= −1, we have an isomorphism of WT∗C1-modules

Mλ 'Mλ+1.

Proof. Define homomorphisms of WT∗C1-modules

φ : Mλ →Mλ+1, vλ 7→ ~−1ξvλ+1,

ψ : Mλ+1 →Mλ, vλ+1 7→
1

λ+ 1
xvλ.

These homomorphisms are mutually inverse:

φ ◦ ψ(vλ+1) = φ

(
1

λ+ 1
xvλ

)
=

~−1

λ+ 1
(x ◦ ξ)vλ+1 = vλ+1,

ψ ◦ φ(vλ) = ψ(~−1ξvλ) =
~−1

λ+ 1
(ξ ◦ x)vλ = vλ.

Therefore Mλ and Mλ+1 are isomorphic.

The following proposition is essential for the microlocal analysis of holonomic

WT∗C1-modules. This is an analogue of a consequence of the classification theorem

of simple holonomic systems (cf. [Ka, Proposition 8.36]).

Proposition 3.9. Set Z1 = {x = 0} and Z2 = {ξ = 0}. Note that the module Mλ

is supported on the Lagrangian subvariety Z1 ∪ Z2. Then:

1. For λ 6∈ Z, Mλ is an irreducible WT∗C1-module.

2. For λ ∈ Z≥0, there exists a WT∗C1-submodule N of Mλ supported on Z1 and

such that Supp Mλ/N = Z2 on a neighbourhood of {x = ξ = 0}.
3. For λ ∈ Z<0, there exists a WT∗C1-submodule N of Mλ supported on Z2 and

such that Supp Mλ/N = Z1 on a neighbourhood of {x = ξ = 0}.

Proof. The proof is similar to that of [Ka, Proposition 8.36].

§3.3. W-algebras Ãc on the quiver variety X

In this section, we define W-algebras on the quiver variety X = Xθ depending

on a parameter c = (c0, . . . , cl−1) ∈ Cl such that c0 + · · · + cl−1 = 0. To ensure

the smoothness of Xθ, we assume that the stability parameter θ = (θ0, . . . , θl−1)

satisfies the condition of Proposition 2.2.

We denote the restriction of the canonical W-algebra WT∗Cl to X̃ ⊂ T ∗Cl by

WX̃ . Let (x1, . . . , xl; y1, . . . , yl) (xi, yi ∈ WT∗Cl) be the standard quantized sym-

plectic coordinates: [xi, xj ] = [yi, yj ] = 0 and [yi, xj ] = δij~ for all i, j. The action

of the reductive group G on X̃ induces an action on WX̃ . We define the following

homomorphism µX̃ of Lie algebras:

µX̃ : g→ WX̃(1), Ai 7→ ~−1(xi+1yi+1 − xiyi).
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We call µX̃ the quantum moment map with respect to the action of G. Fix a

parameter c = (c0, . . . , cl−1) ∈ Cl such that c0 + · · · + cl−1 = 0. We define a

WX̃ -module Lc by

Lc = WX̃

/ l−1∑
i=0

WX̃(µX̃(Ai) + ci) = WX̃

/ l−1∑
i=0

WX̃(xi+1yi+1 − xiyi + ~ci).

The WX̃ -module Lc is a good WX̃ -module with a WX̃(0)-lattice

Lc(0) := WX̃(0)
/ l−1∑
i=0

WX̃(0)(xi+1yi+1 − xiyi + ~ci).

Define a sheaf of algebras on X,

Ac = (p∗ EndW
X̃

(Lc)
G)opp

where p : µ−1(0)→ X is the projection. By [KR], Ac is a W-algebra on X. Set

Ac(0) =
(
p∗ EndW

X̃
(0)(Lc(0))G

)opp
.

Then Ac(0) is a canonical C[[~]]-subalgebra of Ac.

Define an F-action on WX̃ by Ft(xi) = txi, Ft(yi) = tyi, and Ft(~) = t2~ for

t ∈ C∗. The corresponding Gm-action on X̃ is given by Gm 3 t 7→ Tt ∈ Aut(X̃),

Tt((ai, bi)i=1,...,l) = (tai, tbi)i=1,...,l. This action induces a Gm-action on the quiver

variety X. Under the embedding Gm ⊂ T2, t 7→ (t, t), this action coincides with

the action given by (1).

The F-action on WX̃ induces an F-action with exponent 2 on Ac. Then we set

Ãc = Ac[~1/2] and Ãc(0) = Ac(0)[~1/2].

Set Ac = (EndModgood
F (Ãc)

(Ãc))
opp. From [BK] or [BLPW], we have the fol-

lowing W-affinity of the algebra Ãc:

Theorem 3.10 ([BK, Theorem 6.3], [BLPW, Theorem 6.1]). Assume that we have

ci + ci+1 + · · ·+ cj−1 6= 0 for all 0 < i < j ≤ l, and that

ci + ci+1 + · · ·+ cj−1 ∈ Z≥0 implies θi + θi+1 + · · ·+ θj−1 < 0,

i.e. i� j. Then we have the following equivalence of categories:

Modgood
F (Ãc) ' Ac-mod, M 7→ HomModgood

F (Ãc)
(Ãc,M ).

Its quasi-inverse functor is given by M 7→ Ãc ⊗Ac M .

Remark 3.11. As we will see in Section 4, the algebra Ac is isomorphic to the

spherical subalgebra of the rational Cherednik algebra of type Z/lZ.

In the rest of this paper, we assume the assumptions of Theorem 3.10.
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Let 1c be the image of the constant section 1 ∈ WX̃ in Lc. For a G-invariant

section f ∈ WX̃ , a G-invariant endomorphism of Lc is uniquely defined by the

right multiplication g1c 7→ gf1c ∈ EndW
X̃

(Lc) for g ∈ WX̃ . By abuse of notation,

we denote the image of the above G-invariant endomorphism in Ãc by the same

symbol f .

Consider the global sections x1 · · ·xl, y1 · · · yl, xiyi of Ãc for i = 1, . . . , l.

Although they are not F-invariant, the global sections ~−l/2x1 · · ·xl, ~−l/2y1 · · · yl,
~−1xiyi are elements of Ac = (EndModgood

F (Ãc)
(Ãc))

opp. In Ãc, we have the relations

xi+1yi+1 − xiyi + ~ci = 0 for i = 1, . . . , l.

Next, we consider the local structure of the W-algebra Ãc on the affine open

subset Xi for i = 1, . . . , l. Set Ãc,i = Ãc|Xi . Recall the arrangement of the indices

η1, . . . , ηl in (2). We define local sections of Ãc on Xi by

fi = (xη1 · · ·xηi) ◦ (yηi+1
· · · yηl)−1, gi = (yηi · · · yηl) ◦ (xη1 · · ·xηi−1

)−1.

Note that xηj (1 ≤ j ≤ i−1) and yηk (i+1 ≤ k ≤ l) are invertible on p−1(Xi), and

fi and gi are well-defined (see property 6 in Section 3.1). We have fi ◦ gi = xηiyηi
and gi ◦ fi = xηiyηi + ~. That is, (fi; gi) are quantized symplectic coordinates of

Ãc,i for i = 1, . . . , l. Thus, as explained in [KR, 2.2.3], Ãc,i is isomorphic to WT∗C1

via x 7→ fi, ξ 7→ gi.

We have

(3) y1 · · · yl = gi ◦ (xη1yη1) ◦ · · · ◦ (xηi−1
yηi−1

) on Xi.

Moreover gi+1 ◦fi = fi ◦gi+1 = 1 in Ãc|Xi∩Xi+1 . Sometimes, we denote the section

gi+1|Xi∩Xi+1 by f−1
i .

For i = 1, . . . , l − 1, we set

(4) c̃i = cηi + cηi+1 + · · ·+ cηi+1−1.

Under the assumption of Theorem 3.10, we have c̃i + c̃i+1 + · · ·+ c̃j−1 6∈ Z≤0 for

1 ≤ i < j ≤ l. Then

(5) xηi+1
yηi+1

− xηiyηi + ~c̃i = 0.

§4. Rational Cherednik algebras and categories O

In this section, we review the definition of, and fundamental facts about, rational

Cherednik algebras of type Z/lZ and their categories O.

Let Z/lZ = 〈γ〉 be a cyclic group with an action on C given by γ 7→ ζ =

exp(2π
√
−1/l). Let D(C∗) be the algebra of algebraic differential operators on C∗.

Let z be the standard coordinate function on C. Then we have C = Spec[z] and

C∗ = SpecC[z, z−1]. The algebra D(C∗) is generated by z±1 and d/dz.
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The action of Z/lZ on C induces an action of D(C∗) given by γ(z) = ζ−1z,

γ(d/dz) = ζd/dz. We denote by D(C∗) # Z/lZ the smash product of D(C∗) and

Z/lZ.

For a parameter κ = (κ1, . . . , κl−1) ∈ Cl−1, we define the Dunkl operator ∂κ
by

∂κ =
d

dz
+
l

z

l−1∑
i=0

κiei

where we regard κ0 = 0 and let ei = (1/l)
∑l−1
j=0 ζ

ijγj be an idempotent of C(Z/lZ)

for i = 0, 1, . . . , l − 1.

Definition 4.1 ([EG]). 1. The rational Cherednik algebra Hκ = Hκ(Z/lZ) is the

subalgebra of D(C∗) # Z/lZ generated by z, ∂κ and γ.

2. The spherical subalgebra of Hκ is the algebra e0Hκe0.

The following proposition is an analogue of the triangular decomposition of

semisimple Lie algebras.

Proposition 4.2 ([EG]). We have the following isomorphisms of C-linear spaces:

Hκ ' C[z]⊗C C(Z/lZ)⊗C C[∂κ] and e0Hκe0 ' C[z, ∂κ]Z/lZ = C[zl, z∂κ, ∂
l
κ].

The following isomorphism is essentially established by Holland in [Ho, Corol-

lary 4.7]:

(6)

e0Hκe0 → Ac, e0z
le0 7→ ~−l/2x1 · · ·xl,

e0∂
l
κe0 7→ ~−l/2y1 · · · yl,

e0z∂κe0 7→ ~−1x1y1,

where

(7) c = c(κ) = (ci)i=0,1,...,l−1, ci = κi − κi+1 − 1/l + δi,0.

Remark 4.3. We consider the algebra Ac defined in Section 3.3 instead of the

algebra Aλ studied in [Ho]. As shown in [BK, Proposition 3.5], these two algebras

are isomorphic.

Remark 4.4. In [Ho] and [Ku], the parameters λi = −ci are used for the quantum

Hamiltonian reduction Ac.

Lemma 4.5 (cf. [Ku, Proposition 4.4]). Assume ci + ci+1 + · · · + cj−1 6= 0 for

0 < i < j ≤ l. Then the rational Cherednik algebra Hκ is Morita equivalent to its

spherical subalgebra e0Hκe0 ' Ac, i.e. we have an equivalence of categories

Hκ-mod→ (e0Hκe0)-mod, M 7→ e0M.

In the present paper, we assume the assumption of Lemma 4.5 holds.
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The category O(Hκ) is the subcategory of Hκ-mod such that the Dunkl op-

erator ∂κ acts locally nilpotently on each module M ∈ O(Hκ).

Consider an irreducible C(Z/lZ)-module Cei for i = 0, . . . , l. We regard Cei
as a C[∂κ] # Z/lZ-module by ∂κei = 0. We define an Hκ-module by

∆κ(i) = Hκ ⊗C[∂κ]#Z/lZ Cei

called a standard module. By Proposition 4.2, we have

(8) ∆κ(i) = C[z]ei

as a C-linear space.

By the equivalence of Lemma 4.5, we have a subcategory O(Ac) of Ac-mod

which is equivalent to the category O(Hκ). We call O(Ac) the category O of Ac.

For i = 1, . . . , l, we define an Ac-module by

∆c(i) = e0∆κ(i)

where c is given by (7) and we regard el = e0. The module ∆c(i) is the standard

module for O(Ac).

The following proposition is a list of fundamental and well-known facts about

the category O(Ac) and the modules ∆c(i) (i = 1, . . . , l).

Proposition 4.6 ([GGOR]). We have the following fundamental facts about the

standard modules ∆c(i):

1. For i = 1, . . . , l, the standard module ∆c(i) has a unique irreducible quotient

Lc(i).

2. The irreducible modules Lc(i) (i = 1, . . . , l) are mutually nonisomorphic.

3. Any simple object in the category O(Ac) is isomorphic to Lc(i) for some i =

1, . . . , l.

Remark 4.7. Originally [GGOR] considered the category O(Hκ) of the rational

Cherednik algebra Hκ, and not of its spherical subalgebra e0Hκe0 ' Ac.

By (8), we have

(9) ∆c(i) = e0∆κ(i) = e0C[zl]zl−iei = C[~−l/2x1 · · ·xl]ei

as a C-linear space where we denote e0z
l−iei by ei.

In Ac, we have

[~−1xη1yη1 , ~−l/2x1 · · ·xl] = ~−l/2x1 · · ·xl,

[~−1xη1yη1 , ~−l/2y1 · · · yl] = −~−l/2y1 · · · yl.

For i = 1, . . . , l, the operator ~−1xη1yη1 acts semisimply on the standard module

∆c(ηi), i.e. ∆c(ηi) is a direct sum of eigenspaces with respect to the action of
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~−1xη1yη1 . In fact, by direct calculation we have

∆c(ηi) =
⊕

m∈Z≥0

(~−l/2x1 · · ·xl)meηi ,

and

(10) (~−1xη1yη1) ◦ (~−l/2x1 · · ·xl)meηi
= (m+ c̃η1 + c̃η2 + · · ·+ c̃ηi−1

)(~−l/2x1 · · ·xl)meηi ,

where c̃ηj is the parameter defined at (4).

Lemma 4.8. We have

∆c(ηi) = Ac/(Ac(~−1xηiyηi) +Ac(~−l/2y1 · · · yl))

for i = 1, . . . , l.

Proof. The standard module ∆c(ηi) is cyclic with cyclic vector eηi . By (5) and (10),

we have ~−1xηiyηieηi = 0. Thus, we have the surjective homomorphism of Ac-

modules

Ac/(Ac(~−1xηiyηi) +Ac(~−l/2y1 · · · yl)) � ∆c(ηi), f 7→ feηi .

By Proposition 4.2 and (9), this homomorphism is an isomorphism.

§5. Microlocal construction of modules

§5.1. Construction of the standard modules

In this section, we introduce Ãc-modulesM∆
c (ηi) supported on Lagrangian subva-

rieties Di∪Di+1∪ · · ·∪Dl of X. Moreover, we show thatM∆
c (ηi) is a counterpart

of the standard module ∆c(ηi) of Ac through the equivalence of Theorem 3.10.

Definition 5.1. For 1 ≤ i < i′ ≤ l, a parameter λ = (λj)j=i+1,...,i′ ∈ Ci′−i is

called admissible when λj − λj+1 − c̃j ∈ Z for j = i, . . . , i′ − 1, where we regard

λi = 0.

Definition 5.2. For i = 1, . . . , l, fix an admissible parameter λ = (λj)j=i+1,...,l.

We define an Ãc-module Mc,λ(ηi) by gluing local sheaves as follows:

Mc,λ(ηi)|Xi = Ãc,i/Ãc,igi,

Mc,λ(ηi)|Xj = Ãc,j/Ãc,j(fj ◦ gj − ~λj)

= Ãc,j/Ãc,j(xηjyηj − ~λj) (for j = i+ 1, . . . , l),

Mc,λ(ηi)|Xj = 0 (for j = 1, . . . , i− 1).
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The gluing is given by

(11) uj = f
λj−λj+1−c̃j
j uj+1 on Xj ∩Xj+1

where uj is the image of the constant section 1 ∈ Ac,j in Mc,λ(ηi)|Xj for j =

i, . . . , l.

Note that we have

(12) Mc,λ(ηi)|Xj 'Mλj , uj 7→ vλj ,

under the isomorphism Ãc,j ' WT∗C1 .

Lemma 5.3. The module Mc,λ(ηi) is a well-defined good Ãc-module supported

on the Lagrangian subvariety Di ∪Di+1 ∪ · · · ∪Dl.

Proof. For j = i + 1, . . . , l − 1, set N1 = Mc,λ(ηi)|Xj and N2 = Mc,λ(ηi)|Xj+1 .

By (5), we have

fj+1 ◦ gj+1 − fj ◦ gj + ~c̃j = 0

on Xj ∩Xj+1. Thus,

N2|Xj∩Xj+1 = Ãc|Xj∩Xj+1/Ãc|Xj∩Xj+1(fj+1 ◦ gj+1 − ~λj+1),

= Ãc|Xj∩Xj+1
/Ãc|Xj∩Xj+1

(fj ◦ gj − ~(λj+1 + c̃j)).

Since λ is admissible, by Lemma 3.7, N1|Xj∩Xj+1 is isomorphic to N2|Xj∩Xj+1

via the map uj 7→ f
λj−λj+1−c̃j
j uj+1. For j = i, we set N1 = Ãc,i/Ãc,i(fi ◦ gi),

and N2 =Mc,λ(ηi)|Xi+1
. By the same argument for the case j = i+ 1, . . . , l − 1,

N1|Xi∩Xi+1
is isomorphic to N2|Xi∩Xi+1

. By Proposition 3.9, this isomorphism

induces an isomorphism between Ãc,i/Ãc,igi|Xi∩Xi+1
and N2|Xi∩Xi+1

. As a con-

sequence, Mc,λ(ηi) is well-defined.

Set N1(0) = Ãc(0)|Xjuj and N2(0) = Ãc(0)|Xj+1
uj+1. Clearly Nα(0) is

an Ãc(0)|Xj -lattice of Nα for α = 1, 2. Moreover, the above isomorphism be-

tween N1|Xj∩Xj+1 and N2|Xj∩Xj+1 induces an isomorphism of Ãc(0)|Xj∩Xj+1-

modules between N1(0)|Xj∩Xj+1
and N2(0)|Xj∩Xj+1

. Thus we have an Ãc(0)-

latticeMc,λ(0) ofMc,λ, which is defined byMc,λ(0)|Xj = Ãc(0)|Xjuj . Therefore

Mc,λ(ηi) is a good Ãc-module.

Lemma 5.4. Fix i ∈ {1, . . . , l}. Take an arbitrary admissible parameter λ =

(λj)j=i+1,...,l ∈ Cl−i such that λ ∈ (C \ Z<0)l−i (resp. λ ∈ (C \ Z≥0)l−i) and

λ′ ∈ λ + (Z≥0)l−i (resp. λ′ ∈ λ + (Z≤0)l−i). Then we have an isomorphism of

Ãc-modules

Mc,λ(ηi) 'Mc,λ′(ηi).
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Proof. We will prove the case where λ ∈ (C \ Z<0)l−i and λ′ ∈ λ + (Z≥0)l−i. It

is enough to show that the claim of the lemma holds when there exists an index

j ∈ {i+ 1, . . . , l} such that λ′j + 1 = λj and λ′k = λk for k 6= j.

By (12), we have

Mc,λ(ηi)|Xj 'Mλj , Mc,λ′(ηi)|Xj 'Mλj+1.

Thus, there exists an isomorphism of Ãc,j-modules Mc,λ(ηi)|Xj ' Mc,λ′(ηi)|Xj
by Proposition 3.8. For k 6= j, we have a trivial isomorphism of Ãc,k-modules

Mc,λ(ηi)|Xk ' Mc,λ′(ηi)|Xk . These isomorphisms induce an isomorphism of Ãc-

modules Mc,λ(ηi) 'Mc,λ′(ηi).

The case where λ ∈ (C\Z≥0)l−i and λ′ ∈ λ+(Z≤0)l−i is proved similarly.

Next, we define Ãc-modules M∆
c (ηi), M∇c (ηi).

Definition 5.5. For an admissible parameter λ ∈ (C \ Z≥0)l−i, we denote

M∆
c (ηi) =Mc,λ(ηi).

Remark 5.6. For an admissible parameter λ ∈ (C \ Z<0)l−i, we denote

M∇c (ηi) =Mc,λ(ηi).

The module M∇c (ηi) is an Ãc-module (conjecturally) corresponding to a costan-

dard module of Ac.

In the rest of this section, we show that the Ãc-module M∆
c (ηi) corresponds

to the standard module ∆c(ηi) via the equivalence of categories in Theorem 3.10,

i.e. we have HomModgood
F (Ãc)

(Ãc,M∆
c (ηi)) ' ∆c(ηi).

Theorem 5.7. We have an isomorphism of Ãc-modulesM∆
c (ηi)'Ãc⊗Ac∆c(ηi).

In other words, we have an isomorphism of Ac-modules

HomModgood
F (Ãc)

(Ãc,M∆
c (ηi)) ' ∆c(ηi).

Proof. By Lemma 4.8, we have

(13) Ãc ⊗Ac ∆c(ηi) ' Ãc/(Ãcxηiyηi + Ãcy1 · · · yl).

For j = 1, . . . , i, by (5), on Xj we have

y1 · · · yl = gj ◦ xη1yη1 ◦ · · · ◦ xηj−1
yηj−1

= gj ◦
j−1∏
k=1

(fj ◦ gj + ~(c̃k + · · ·+ c̃j−1)).
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Since, ~(c̃k + · · ·+ c̃i−1) ∈ C((~)) is a nonzero scalar for k = 1, . . . , i− 1, we have

Ãc,j(fj ◦ gj − ~(c̃j + · · ·+ c̃i−1))

+ Ãc,j gj ◦
j−1∏
k=1

{(fj ◦ gj − ~(c̃j + · · ·+ c̃i−1))− ~(c̃k + · · ·+ c̃j−1)}

= Ãc,j(fj ◦ gj − ~(c̃j + · · ·+ c̃i−1)) + Ãc,jgj ◦
j−1∏
k=1

~(c̃k + · · ·+ c̃j−1)

= Ãc,j(fj ◦ gj − ~(c̃j + · · ·+ c̃i−1)) + Ãc,jgj .

Therefore, on Xj , the isomorphism (13) reduces to

Ãc,j ⊗Ac ∆c(ηi) ' Ãc,j

/{
Ãc,j(fj ◦ gj − ~(c̃j + · · ·+ c̃i−1))

+Ãc,jgj ◦
j−1∏
k=1

(fj ◦ gj − ~(c̃k + · · ·+ c̃j−1))
}

= Ãc,j/{Ãc,j(fj ◦ gj − ~(c̃j + · · ·+ c̃i−1)) + Ãc,jgj}

=

{
Ãc,i/Ãc,i gi for j = i,

0 for j = 1, . . . , i− 1.

For j = i+ 1, . . . , l, on Xj , we have

y1 · · · yl = gj ◦ (xη1yη1) ◦ · · · ◦ (xηiyηi) ◦ · · · ◦ (xηj−1yηj−1)

by (3). Since xηkyηk and xηiyηi commute with each other, on Xj we have

Ãc,j ⊗Ac ∆c(ηi) ' Ãc,j

/(
Ãc,jxηiyηi + Ãc,jgj ◦

(∏
k 6=i

xηkyηk

)
◦ xηiyηi

)
= Ãc,j/Ãc,j(xηjyηj + ~(c̃i + · · ·+ c̃j−1)) for j = i+ 1, . . . , l.

Note that λ = (λj)j=i+1,...,l ∈ Cl−i where λj = −(c̃i + · · · + c̃j−1) is admissible

and λ ∈ (C \ Z≥0)l−i. Thus, the Ãc-module Ãc ⊗Ac ∆c(ηi) is clearly isomorphic

to M∆
c (ηi).

§5.2. Construction of irreducible modules of Ãc

In this subsection, we construct modules Lc(i) over the W-algebra Ãc for i =

1, . . . , l, and show that they are irreducible. Under the equivalence of Theorem 3.10,

HomModgood
F (Ãc)

(Ãc,Lc(i)) is isomorphic to the irreducible module Lc(i) over Ac
defined in Section 4.
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Fix i ∈ {1, . . . , l}. We denote by ε(i) the unique integer in {i + 1, . . . , l + 1}
such that c̃i + c̃i+1 + · · · + c̃ε(i)−1 ∈ Z and c̃i + c̃i+1 + · · · + c̃j−1 6∈ Z for any

i < j < ε(i).

Definition 5.8. Fix an admissible parameter λ = (λi+1, . . . , λε(i)−1) ∈ Cε(i)−i−1

where we regard λε(i) = −1. We define an Ãc-module Lc,λ(ηi) by gluing local

sheaves as follows:

Lc,λ(ηi)|Xi = Ãc,i/Ãc,igi,

Lc,λ(ηi)|Xj = Ãc,j/Ãc,j(fj ◦ gj − ~λj)

= Ãc,j/Ãc,j(xηjyηj − ~λj) (for j = i+ 1, . . . , ε(i)− 1),

Lc,λ(ηi)|Xε(i) = Ãc,ε(i)/Ãc,ε(i)fε(i),

Lc,λ(ηi)|Xj = 0 (for j = 1, . . . , i− 1, ε(i) + 1, . . . , l).

The gluing is given by

(14) uj = f
λj−λj+1−c̃j
j uj+1 on Xj ∩Xj+1

where uj is the image of the constant function 1 ∈ Ãc,j in Lc,λ(ηi)|Xj for j =

i, . . . , ε(i).

Remark 5.9. If c̃i + c̃i+1 + · · · + c̃j−1 6∈ Z for any j = i + 1, . . . , l, we regard

ε(i) = l + 1 and the definition of Lc,λ(ηi) is given by

Lc,λ(ηi)|Xi = Ãc,i/Ãc,igi,

Lc,λ(ηi)|Xj = Ãc,j/Ãc,j(fj ◦ gj − ~λj) (for j = i+ 1, . . . , l),

Lc,λ(ηi)|Xj = 0 (for j = 1, . . . , i− 1).

Clearly Lc,λ(ηi) 'Mc,λ(ηi) in this case.

Note that we have an isomorphism of Ãc,j-modules

(15) Lc,λ(ηi)|Xj 'Mλj , uj 7→ vλj ,

for j = i+ 1, . . . , ε(i)− 1, under the isomorphism Ãc,j ' WT∗C1 .

The following lemmas are proved similarly to Lemmas 5.3 and 5.4 by using

(15) instead of (12).

Lemma 5.10. The module Lc,λ(ηi) is a well-defined good Ãc-module supported

on the Lagrangian subvariety Di ∪Di+1 ∪ · · · ∪Dε(i).

Proof. The well-definedness is proved similarly to Lemma 5.3.
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Similarly to the proof of Lemma 5.3, there exists an Ãc(0)-lattice of Lc,λ(ηi)

given by Lc,λ(ηi)(0)|Xj = Ãc(0)|Xjuj for j = i, . . . , ε(i). Thus, Lc,λ(ηi) is a good

Ãc-module.

Lemma 5.11. For any admissible parameters λ, λ′ ∈ Cε(i)−i−1, we have an iso-

morphism of Ãc-modules Lc,λ(ηi) ' Lc,λ′(ηi).

Proof. Note that λj 6∈ Z because λ is admissible and satisfies c̃i+ c̃i+1 + · · ·+ c̃j−1

6∈ Z for any i < j < ε(i). Thus this lemma is proved similarly to Lemma 5.4.

By the above lemma, the Ãc-module Lc,λ(ηi) is not, up to isomorphism, de-

pendent on λ ∈ Cε(i)−i−1.

Definition 5.12. We denote the Ãc-module Lc,λ(ηi) by Lc(ηi).

In the rest of this subsection, we show that the Ãc-module Lc(ηi) is irreducible.

For i = 1, . . . , l, the good Ãc-module Lc(ηi) is supported on the Lagrangian

subvariety Di ∪Di+1 ∪ · · · ∪Dε(i). Thus, Lc(ηi) is a holonomic module. The irre-

ducibility of Lc(ηi) now follows immediately from Propositions 3.5 and 3.9.

Proposition 5.13. The module Lc(ηi) is an irreducible Ãc-module.

Proof. Assume there exists a nonzero submodule N of Lc(ηi). By Proposition 3.5

and Lemma 3.6, SuppN = Dj∪Dj+1∪· · ·∪Dk for some i ≤ j ≤ k ≤ ε(i). Assume

j 6= i; then Lc(ηi)|Xj is an Ãc,j ' WT∗C1 -module and it has a nontrivial WT∗C1 -

submodule N|Xj supported on {x = 0}. On the other hand, by the definition of

Lc(ηi), we have Lc(ηi)|Xj ' Mλj and λj 6∈ Z. By Proposition 3.9, Lc(ηi)|Xj is

an irreducible WT∗C1 -module, which contradicts the assumption. Thus we have

j = i. Similarly, k = ε(i). Therefore N = Lc(ηi), and thus Lc(ηi) is an irreducible

Ãc-module.

Theorem 5.14. For i = 1, . . . , l, we have

HomModgood
F (Ãc)

(Ãc,Lc(ηi)) = Lc(ηi).

Proof. By Proposition 3.9 together with the definitions of M∆
c (ηi) and Lc(ηi)

(Definitions 5.2 and 5.8), Lc(ηi) is a quotient of M∆
c (ηi). Applying the equiva-

lence of Theorem 3.10, the Ac-module HomModgood
F (Ãc)

(Ãc,Lc(ηi)) is a quotient of

HomModgood
F (Ãc)

(Ãc,M∆
c (ηi)) ' ∆c(ηi). Since Lc(ηi) is an irreducible Ãc-module,

the Ac-module HomModgood
F (Ãc)

(Ãc,Lc(ηi)) is an irreducible quotient of ∆c(ηi).

Therefore, it is isomorphic to Lc(ηi).

In [KS2, Sections 2 and 3], Kashiwara and Schapira introduced the notion of

regular holonomic Ãc-modules. By the definition, the full subcategory of regular
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holonomic Ãc-modules is closed under extensions. Thus we have the following

corollary.

Corollary 5.15. For any Ac-module M in O(Ac), the corresponding Ãc-module

Ãc ⊗Ac M is regular holonomic.

Next, we discuss the decomposition of the standard modules of O(Ac) in the

Grothendieck group of O(Ac).

Corollary 5.16. In the Grothendieck group of O(Ac), we have

[∆c(ηi)] =
∑

j: c̃i+···+c̃j−1∈Z
[Lc(ηj)].

Proof. By Proposition 4.6(3), we have

[∆c(ηi)] =

l∑
j=1

nj [Lc(ηj)]

for some nj ∈ Z≥0. If SuppLc(ηj) 6⊂ SuppM∆
c (ηi) = Di ∪ · · · ∪ Dl, we have

nj = 0. The modulesM∆
c (ηi) and Lc(ηj) are (at most) multiplicity-one on Dk, i.e.

M∆
c (ηi)(0)/M∆

c (ηi)(−1) and Lc(ηj)(0)/Lc(ηi)(−1) are invertibleODk -modules on

Dk \ {pk, pk+1}. Thus we have∑
j: SuppLc(ηj)∩Dk 6=∅

nj = 1 for k = i, . . . , l.

That is, [∆c(ηi)] is multiplicity-free in the Grothendieck group. Since Lc(ηj) is a

unique irreducible module whose support is of the form Dj ∪Dj+1 ∪ · · · , we have

nj = 1 for j = i, . . . , l such that c̃i + · · ·+ c̃j−1 ∈ Z by comparing the supports of

M∆
c (ηi) and Lc(ηi).

Remark 5.17. We can also determine the multiplicity [∆c(ηi) : Lc(ηj)] in the

Grothendieck group of O(Ac) algebraically in this case. The same result of Corol-

lary 5.16 follows immediately from [Ku, Lemma 4.3].

Finally, we discuss the subcategory of Modgood
F (Ãc) corresponding to the cat-

egory O(Ac). Since a section f of the W-algebra Ãc is invertible if and only if

its symbol σ0(f) is invertible in OX , ~−1y1 · · · yl acts locally nilpotently on an

Ac-module M if and only if Supp Ãc ⊗Ac M ⊂
⋃l
i=1Di. Thus, as mentioned in

[Mc, Remark 8.8.2], we have an equivalence of these subcategories:

O(Ac) ' Modgood

F,
⋃l
i=1Di

(Ãc),
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where Modgood

F,
⋃l
i=1Di

(Ãc) is the full subcategory of Modgood
F (Ãc) whose modules

are supported on
⋃l
i=1Di. As a consequence of Corollary 5.15, good Ãc-modules

with F -action supported on
⋃l
i=1Di are automatically regular holonomic.

Appendix. Global sections of the standard modules

We can explicitly calculate global sections ofM∆(ηi). Fix an admissible parameter

λ = (λj)j=i+1,...,l ∈ Cl−i. First, the restriction homomorphisms are given explicitly

as follows:

Res1 : Γ(Xj ,Mc,λ(ηi))→ Γ(Xj ∩Xj+1,Mc,λ(ηi)),

fmj uj 7→ fmj uj (m ∈ Z≥0),

gmj uj 7→ C ′−m,jf
−m
j uj (m ∈ Z>0),

Res2 : Γ(Xj+1,Mc,λ(ηi))→ Γ(Xj ∩Xj+1,Mc,λ(ηi)),

gmj+1uj+1 7→ f
−m+λj+1+c̃j−λj
j uj (m ∈ Z≥0),

fmj+1uj+1 7→ Cm,j+1f
m+λj+1+c̃j−λj
j uj (m ∈ Z≥0),

where

Cm,j = ~m(m+ λj)(m+ λj − 1) · · · (λj + 1) (m ∈ Z≥0),

C ′m,j = ~−m(m+ λj + 1)(m+ λj + 2) · · ·λj (m ∈ Z<0)

are scalar constants. For an index j = i, . . . , l such that c̃i + · · · + c̃j−1 6∈ Z, we

have Cm,j , C
′
m,j 6= 0 for all m.

Assume λ = (λj)j=i+1,...,l ∈ (C \ Z≥0)l−i. For an index j = i, . . . , l such that

c̃i + · · ·+ c̃j−1 ∈ Z, we have

Cm,j 6= 0 (for m < −λj , and j = i, . . . , l − 1),(16)

C ′m,j 6= 0 (for any m, and j = i, . . . , l − 1).

Now, we construct global sections of M∆
c (ηi) explicitly. Fix i = 1, . . . , l and

λi+1, . . . , λl such that λj < −c̃i − c̃i+1 − · · · − c̃j−1 for all j = i+ 1, . . . , l.

For j = i, . . . , l and k = j, . . . , l, set

mj,k = −λk − c̃k−1 − c̃k−2 − · · · − c̃j .

Note that we have mj,k + λk + c̃k−1 − λk−1 = mj,k−1. For j = i, . . . , l such that

c̃i + · · · + c̃j−1 ∈ Z, take m ∈ Z such that 0 ≤ m < c̃j + · · · + c̃ε(j)−1 (we regard
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c̃l =∞). Then we define a section

vj,m =


(~−l/2fl)mj,l+mul on Xl,( l∏
k=j′+1

Cmj,k+m,k

)
(~−j

′+l/2fj′)
mj,j′+muj′ on Xj′ (j ≤ j′ ≤ l),

0 on Xj′ (j′ ≤ j − 1).

Note that Cmj,k+m,k 6= 0 by (16), and vj,m is a well-defined global section.

Moreover, because vj,m is an F-equivariant section, we can identify it with an

F-equivariant homomorphism

Ãc 3 1 7→ vj,m ∈M∆
c (ηi)

in HomModgood
F (Ãc)

(Ãc,M∆
c (ηi)). It is clear that the vectors {vj,m}j,m are linearly

independent. By Theorem 5.7 and (9), {vj,m}j,m is a basis of the C-vector space

HomModgood
F (Ãc)

(Ãc,M∆
c (ηi)).
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