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Abstract

We consider the inverse scattering problem for the two-dimensional stationary wave equa-
tion with a friction term. We prove that the friction coefficient can be uniquely recon-
structed from the scattering amplitude at a fixed low energy. A reconstruction procedure
is also given. The method is to reduce the inverse scattering problem to an inverse bound-
ary value problem. We use the ∂-method for a 3× 3 first order elliptic system to give the
reconstruction procedure.
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§1. Introduction

§1.1. Problems and results

Let b(x) be a real-valued continuous function which decays sufficiently fast at

infinity. We consider the wave equation with friction coefficient b(x):

(1.1) wtt(t, x)−∆w(t, x) + b(x)wt(t, x) = 0, (t, x) ∈ R× Rn.

The equation (1.1) is regarded as a perturbation of the free wave equation

w0tt(t, x)−∆w0(t, x) = 0, (t, x) ∈ R× Rn.

Then we can consider the scattering problem and the inverse scattering problem of

identifying the friction coefficient b(x). There are some works on these problems for
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the wave equation (1.1). In the multi-dimensional case n ≥ 3, Mochizuki ([?]–[20])

proved the existence and completeness of wave operators for (1.1) with small b(x).

He also gave an expression for the scattering amplitude and gave a reconstruction

procedure of small b(x) from the scattering amplitude at a fixed energy. For the

scattering problem, we also refer the reader to [24].

In two dimensions, Nakazawa [25] studied the scattering problem for the wave

equation (1.1) with small dissipative terms. Recently, Kadowaki, Nakazawa and

Watanabe [13] improved the smallness assumption on the dissipative terms.

As reviewed so far, smallness assumptions on b(x) have been required in the

scattering and the inverse scattering problem. For the problem of two-dimensional

inverse scattering at a fixed energy, while a uniqueness theorem was proved in [30],

there has not been much research on the reconstruction problem of b(x). Here, the

uniqueness problem is whether the scattering amplitude uniquely determines the

friction coefficient b(x), and the reconstruction problem is whether b(x) can be

calculated in terms of the scattering amplitude.

The purpose of this study is to give an answer to the reconstruction problem

in two dimensions.

Consider the stationary wave equation of (1.1). The substitutionw=ei
√
E tu(x)

in (1.1) yields

(1.2) −∆u+ i
√
E b(x)u = Eu in R2.

To begin with, we define the scattering amplitude via outgoing eigenfunctions.

For s ∈ R, we consider the weighted L2 space

L2,s(Rn) =

{
u :

(∫
Rn
|(1 + |x|)su(x)|2 dx

)1/2

<∞
}
.

Theorem 1.1 ([12]). Assume that b(x) is a complex-valued C∞0 (R2) function.

Then there is a discrete set E0 in a neighborhood of (0,∞) such that for E ∈
(0,∞) \ E0 and ω ∈ S1, there exists a unique solution u(x,E, ω) of (1.2) with the

radiation condition(
∂

∂r
− i
√
E

)
ψ ∈ L2,−α(R2), 0 < α < 1/2,

where r = |x| and ψ = u− ei
√
E ω·x.

The solution u has the asymptotic expansion

(1.3)

u(x,E, ω) = ei
√
E ω·x +

ei
√
E |x|

|x|1/2
A(E, θ, ω) + o(|x|−1/2), θ = x/|x|, |x| → ∞.
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The first term of the right-hand side is an incident plane wave. The second term

is a spherical wave, termed the scattered wave, since it is caused by the frictional

force of the medium. Theorem 1.1 and the asymptotic expansion (1.3) show that

the scattered wave exists and for large value of |x|, where the scattered wave is to

be measured, the solution u to (1.2) has the asymptotic form (1.3).

The amplitude of the scattered wave is called the scattering amplitude, and is

represented by

(1.4) A(E, θ, ω) = −1

4

√
2

π
E1/4e−iπ/4

∫
R2

e−i
√
E θ·xb(x)u(x) dx,

where u is the solution given in Theorem 1.1.

In this paper we consider the inverse scattering problem of whether the fric-

tional force of the medium is uniquely determined from observations of the am-

plitude of the scattered wave. The mathematical formulation of this problem is as

follows: Determine b(x) from A(E, θ, ω).

The following statement shows that if the friction coefficient has compact

support and is bounded by a constant, then for any sufficiently low energy level,

the coefficient can be uniquely reconstructed from the scattering amplitude at a

fixed energy. This result does not require the smallness assumption on the friction

coefficient, which means that global uniqueness holds for low energy levels.

Let Ω = BR = {x ∈ R2 : |x| ≤ R} and let Wm,p(Ω) denote the usual

Lp Sobolev space of order m. In what follows, C(a, b, c) always means a positive

constant, possibly different in different occurrences, depending on a, b, c.

Theorem 1.2. Assume that b(x) is a complex-valued C∞0 (R2) function and that

supp b ⊂ Ω. Suppose that for some p > 2 the W 1,p(Ω) norm of b(x) is bounded by

a constant M :

‖b‖W 1,p(Ω) ≤M.

Then there exists a constant N = N(p,Ω,M) such that b(x) can be uniquely de-

termined from the corresponding scattering amplitude A(E, θ, ω) at a fixed E ∈
(0, N) \ E0. Moreover, we give a reconstruction procedure to identify b(x) from

A(E, θ, ω).

In order to prove Theorem 1.2, we reduce the inverse scattering problem to

an inverse boundary value problem. Put V (x) =
√
E (ib(x) −

√
E ). Then we can

rewrite the equation (1.2) as

(1.5) −∆u+ V u = 0 in Ω.

In general, assume that V (x) is a complex-valued function in Lp(Ω), p > 2, and

suppose that 0 is not a Dirichlet eigenvalue for the operator −∆+V in Ω. One can
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then show that for any f ∈ C1,α(∂Ω) there exists a unique solution u ∈ C1,α(Ω)

of (1.5) with u|∂Ω = f . Here C1,α(Ω) is the usual Hölder space and α = (p− 2)/p

(p > 2). Therefore, we can define the Dirichlet-to-Neumann map (DN map) ΛV :

C1,α(∂Ω)→ Cα(∂Ω) by

ΛV : f 7→ ∂u

∂ν

∣∣∣∣
∂Ω

,

where ν denotes the unit outer normal to ∂Ω.

The inverse boundary value problem is to identify the complex-valued function

V (x) from the DN map ΛV . In particular, the uniqueness problem is whether

the DN map uniquely determines V (x). When the uniqueness holds, we want to

calculate V (x) in terms of the DN map. We call it the reconstruction problem.

As is well known, for the Schrödinger equation with compact support po-

tentials, the scattering amplitude with a fixed energy uniquely determines the DN

map ΛV (see, e.g., Nachman [21]). Therefore, it is enough to show that the complex

coefficient V (x) in (1.5) can be uniquely reconstructed from ΛV .

There are many works on the inverse boundary value problem for (1.5).

In the multi-dimensional case (n ≥ 3), the global uniqueness was proved by

Sylvester and Uhlmann [28]. Nachman [23] gave a solution of the reconstruction

problem. The algorithm of Nachman [23] was derived independently by Novikov

[26]. For details on the inverse boundary value problem, we also refer the reader

to [9].

In two dimensions, the local uniqueness for complex-valued potentials with

small Lp(Ω) norm was proved by Kang [14] and Kang and Uhlmann [15]. Bukhgeim

[3] resolved the global uniqueness problem for complex-valued V ∈ Lp(Ω), p > 2.

He also showed that smooth potentials can be reconstructed from boundary mea-

surements with a special boundary condition. It is still not clear whether we can

reconstruct a complex-valued potential in terms of the DN map. A recent result of

Imanuvilov, Uhlmann and Yamamoto [8] gives the global uniqueness of a complex-

valued potential from Cauchy data measured on part of the boundary.

On the reconstruction problem in two dimensions, there are some partial

results. Isakov and Nachman [10] gave a uniqueness theorem and a reconstruction

procedure for non-negative function V (x) ≥ 0 in Lp(Ω), p > 1. Isakov and Sun

[11] proved that a real-valued potential V ∈ C2,α(R2) with compact support can

be uniquely determined from the associated scattering amplitude at finitely many

energies. For other results on the inverse scattering problem at a fixed energy, we

refer to [6], [27].

We should mention that the global uniqueness and reconstruction procedure

for the conductivity potential V = γ−1/2∆γ1/2 have been established. Nachman

[22] proved uniqueness and gave a reconstruction procedure for γ ∈ W 2,p(Ω),
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p > 1, with a positive lower bound. Brown and Uhlmann [2] improved the reg-

ularity assumption and showed uniqueness for γ ∈ W 1,p(Ω), p > 2. A recon-

struction procedure for γ ∈ W 1+ε,p(Ω) (p > 2, ε > 0) was given by Knudsen

and Tamasan [17]. For γ ∈ L∞(Ω), the global uniqueness and reconstruction

problem was resolved by Astala and Päivärinta [1]. Cheng and Yamamoto [4]

proved the global uniqueness for real-valued coefficients of an elliptic equation

which contains the conductivity equation. Francini [5] proved the uniqueness for

the complex conductivity γ ∈ W 1,∞(Ω) with a smallness condition on the imagi-

nary part of γ.

As reviewed so far, solutions of the reconstruction problem in two dimensions

have been studied for real-valued potentials or conductivity type potential. How-

ever, there have been few results on the reconstruction problem for complex-valued

potentials.

In this paper we give a partial answer to the reconstruction problem for

complex-valued potentials in two dimensions.

Theorem 1.3. Assume that V is a complex-valued W 1,p(Ω) function for some

p > 2. Then there exists a positive constant M = M(p,Ω) such that if ‖V ‖W 1,p(Ω)

≤M , there is a reconstruction procedure to identify V (x) for any x ∈ Ω from ΛV .

Assuming Theorem 1.3, we prove Theorem 1.2 as follows. Put V (x) =√
E (ib(x) −

√
E). Then ‖V ‖W 1,p(Ω) is small when E is small. By the reduction

argument in Nachman [21], ΛV can be calculated from A(E, θ, ω). It follows from

Theorem 1.3 that V (x) can be uniquely reconstructed from A(E, θ, ω). Thus we

obtain b(x) from

b(x) =
V (x) + E√

E i
.

The proof of Theorem 1.3 relies on the ∂-method for a first order elliptic

system. In the ∂-method given by Nachman [22], symmetry of solutions plays an

important role. A difficulty in the complex-valued case is the lack of symmetry of

solutions. This can be removed by considering the system

(1.6)


∂z 0 0

0 ∂z 0

0 0 ∂z

−
0 q 0

1 0 0

0 q 0


Φ(z) = 0, q = q(z) = V (z)/4,

where we identify x = (x1, x2) ∈ R2 with the complex variable z = x1 + ix2 and

use the complex notations

∂z = 1
2 (∂x1 − i∂x2), ∂z = 1

2 (∂x1 + i∂x2).
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Consequently, we give a complete characterization of the trace of the complex

geometrical optics solutions (CGO solutions). This characterization provides a

method for finding the trace of the CGO solution from ΛV (see Lemma 4.2 below).

The characterization in Lemma 4.2 is the main ingredient in the reconstruction

procedure. It will also be shown that the properties of the CGO solution to (1.6)

give a new reconstruction procedure.

§1.2. Reconstruction procedure

We shall summarize our reconstruction procedure of b(x) from the corresponding

scattering amplitude A(E, θ, ω). In order to do this we adopt some notations.

• zR is the real part of z and zI is the imaginary part of z.

• ek = ek(z) = ei(kz+k̄z̄).

• ν = (ν1, ν2) is the unit outer normal to ∂Ω; η = ν1 + iν2; τ = (−ν2, ν1). The

tangential derivative on ∂Ω is denoted by

∂

∂τ
= τ · ∇.

• Let ρ(s) be an arc length parameterization of ∂Ω. We define an operator L by

(Lf)(ρ(s)) =

∫ s

0

f(ρ(t)) dt.

• Let F be the Cauchy integral,

(Fg)(z) =
1

2πi

∫
∂Ω

g(ζ)

ζ − z
dζ.

The conjugate of F is denoted by F , i.e., (Fg)(z) := (F ḡ)(z). We then define

an operator F by

Fg =

F 0 0

0 F 0

0 0 F


g1

g2

g3

 .

• Let X = (xij) be a 3× 3 matrix. We define an operator Pk by

PkX =

 x11 e−k̄x12 e−k̄x13

ekx21 x22 x23

ekx31 x32 x33

 .

• E = E(z, k) =

eikz 0 0

0 e−ikz̄ 0

0 0 e−ikz̄

.
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• The j-th column vector of the matrix X = (xij) is denoted by x(j).

• I is the unit matrix and O is the zero matrix.

The reconstruction procedure for the friction coefficient b(x) now consists of several

steps.

Step 1. Calculate the DN map ΛV from the scattering amplitude A(E, θ, ω) at a

fixed E > 0 for all θ, ω ∈ S1 (see, e.g., Isakov and Nachman [10], Nachman ([21],

[23, p. 567]) and Ikehata [7, pp. 38–44]).

Step 2. Let k ∈ C. Solve the system of equations on ∂Ω

(1.7)


P−kF(PkΨE−1)|∂Ω = I,(
iΛV L 0 −iΛV L

0 i ∂∂τ 0

)η 0 0

0 1 0

0 0 η̄

Ψ =

(
η 0 η̄

−η 0 η̄

)
Ψ

to determine the 3 × 3 matrix Ψ(·, k) = (ψij) on ∂Ω such that ψ(j) ∈ Cα(∂Ω) ×
C1,α(∂Ω)× Cα(∂Ω), j = 1, 2, 3, where α = (p− 2)/p for some p > 2 (see Lemma

4.2 below).

Step 3. Define

S(k) =

(
0 1

2πi

∫
∂Ω
e−ik̄ζψ12(ζ, k) dζ

− 1
2πi

∫
∂Ω
eik̄ζ̄ψ21(ζ, k) dζ̄ 0

)
.

Let ∂̄−1
k be the integral operator

∂̄−1
k f(k) = − 1

π

∫
R2

f(ζ)

ζ̄ − k̄
dζR dζI .

Introduce the matrix

Γz(k) =

(
ek̄(z) 0

0 e−k(z)

)
.

Solve the integral equation

M(z, k) = I + ∂̄−1
k (M(z, ·)ΓzS)(k)

for the 2× 2 matrix M(z, ·), z ∈ Ω, with the condition M(z, ·)− I ∈ L2,δ(C) for

−1 < δ < 0 (see Kang and Uhlmann [15]).

Step 4. Define ϕ(z, k) = e−ikz̄m12(z, k) and set

V (z) =
4

π
lim
|k0|→∞

∫
|k−k0|<1

eikz̄∂̄zϕ(z, k) dkR dkI .
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Then b(x) is obtained from the formula

b(x) =
V (z) + E√

E i

(see Brown and Uhlmann [2, pp. 1024–1025]).

The properties of the third row of the 3 × 3 matrix Φ, the CGO solution to

(1.6), turn out to give us another reconstruction procedure.

First, according to the above procedure (Steps 1 and 2), we determine func-

tions ψ11, ψ12, ψ21. Then we perform Steps 3′ and 4′ below.

Step 3′. Let S(k) = (sij(k)) and Γz(k) be the 2× 2 matrix given in Step 3. Set

S0(k) = tS(k),

S1(k) =

(
1

2πi

∫
∂Ω
eik̄ζ̄ψ11(ζ, k) dζ − ik̄s21(k)

0

)
.

Solve the integral equation

m(z, k) = I + ∂̄−1
k (Γ∗zS0m(z, ·)− iS1)(k)

for m(z, k) = t(m1(z, k),m2(z, k)), z ∈ Ω, with the condition m(z, ·) − e1 ∈
L2,δ(C) for −1 < δ < 0, where Γ∗z(k) = Γz(−k̄) and e1 = t(1, 0).

Step 4′. Set

V (z) = 4∂z lim
|k|→∞

m2(z, k), z ∈ Ω.

Then b(x) is obtained from

b(x) =
V (z) + E√

E i
.

Remark 1.4. Steps 2, 3′ and 4′ are new in the case where the potential is

complex-valued.

Remark 1.5. We prove Theorem 1.3 without using an extension argument in-

volving x ∈ R2 instead of x ∈ Ω. In order to derive the boundary integral equation

to associate the boundary value of the CGO solution with the DN map, it is the

standard argument to employ the jump formula on the boundary:

lim
ε→0
Sf(z ± νε) = ∓1

2
f(z) +

1

2πi
p.v.

∫
∂Ω

f(ζ)

ζ − z
dζ, z ∈ ∂Ω,

where S is the Cauchy integral operator

Sf(z) =
1

2πi

∫
∂Ω

f(ζ)

ζ − z
dζ, z ∈ R2 \ ∂Ω
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(see, e.g., Knudsen [16, pp. 34–48]). The argument based on the jump formula

shows that the CGO solution should be constructed in R2.

Instead of the jump formula, we apply the generalized Cauchy integral formula

to derive the boundary equation given in Step 2. Our method shows that it is

enough to construct the CGO solution in Ω. Consequently, we can prove Theorem

1.3 by an argument in Ω which does not use an extension to R2.

The following is the outline of the remaining sections of this paper.

Section 2. Summarizes some useful lemmas.

Section 3. Presents a construction of the CGO solution and its properties.

Section 4. Discusses the determination of the boundary value of the CGO solu-

tion from the DN map.

Section 5. Provides the unique solvability of the ∂-equation and the proof of

Theorem 1.3.

§2. Preliminaries

In this section we state some useful lemmas. Let T and T denote the Cauchy type

operators

Tf(z) ≡ TΩf(z) = − 1

π

∫
Ω

f(ζ)

ζ − z
dζRdζI , T f(z) = T f̄(z).

In particular, we denote TR2f by (∂−1
k f)(k) (k ∈ C).

Lemma 2.1. Let p > 2 and α = 1 − 2/p. Then T and T are bounded operators

from Lp(Ω) to Cα(Ω) and satisfy

‖Tf‖Cα(Ω), ‖Tf‖Cα(Ω) ≤ C1‖f‖Lp(Ω), ∀f ∈ Lp(Ω),

where C1 is a positive constant which depends only on p and Ω.

Lemma 2.2. For f ∈ L1(Ω), we have the estimate

‖∂zTf‖Lp(Ω) ≤ C2‖f‖Lp(Ω), ∀f ∈ Lp(Ω),

where C2 is a positive constant which depends only on p and Ω. Similarly for T .

Lemmas 2.1 and 2.2 are proved in Vekua [29, Chapter 1].

Lemma 2.3. The map k 7→ (∂−ik)−1 is holomorphic on C in the strong operator

topology L∞(Ω)→ L∞(Ω).

This lemma is proved in a manner similar to that of Nachman [22, Lemma

2.2] (see also [15]).
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§3. CGO solutions

In this section we construct the CGO solutions for the system (1.6) and derive

some of their properties.

For x = (x1, x2) ∈ R2, we put z = x1 + ix2. In what follows, we abbreviate

functions u(z, z̄) as u(z), ∂z as ∂, and ∂z as ∂. The equation (−∆+V (x))u(x) = 0

is rewritten as

(3.1) (∂∂ − q(z))u(z) = 0, q(z) = 1
4V (z).

Let u be a solution to (3.1). Then it is easy to see that

(D −Q)

∂uu
∂u

 = 0 in Ω,

where

D =

∂ 0 0

0 ∂ 0

0 0 ∂

 , Q =

0 q 0

1 0 0

0 q 0

 .

Consider the equation

(3.2) (D −Q)Φ = O in Ω.

In this section we construct the CGO solutions to (3.2) and derive some of their

properties.

§3.1. Existence

For each k ∈ C, we seek solutions to (3.2) of the form Φ = Φ(z, k) = ME, where

M = M(z, k) = (mij(z, k)) is a 3× 3 matrix and

E = E(z, k) =

eikz 0 0

0 e−ikz̄ 0

0 0 e−ikz̄

 .

Let ek = ek(z) = ei(kz+k̄z̄) and Pk be the operator defined by

PkX =

 x11 e−k̄x12 e−k̄x13

ekx21 x22 x23

ekx31 x32 x33

 for X = (xij)1≤i,j≤3.

Then simple computation shows that

(3.3) DPkM − PkQM = O in Ω.
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We will construct M . Let |Ω| =
∫

Ω
dx and

T =

T 0 0

0 T 0

0 0 T

 , T k = P−kT Pk.

The following lemmas require almost the same assumptions. We denote the

common part by (A-1):

(A-1) q ∈ Lp(Ω) with C2
1 |Ω|1/p‖q‖Lp(Ω) < 1 for p > 2, where C1 is the positive

constant given in Lemma 2.1.

Lemma 3.1. Assume (A-1). Then (I − T kQ)−1 exists on Cα(Ω).

Proof. It follows from q ∈ Lp(Ω) and Lemma 2.1 that T kQ is a compact operator

on Cα(Ω). Therefore, it suffices to show the injectivity of I − T kQ. Consider the

equation (I − T kQ)X = O. Then X = (xij)1≤i,j≤3 satisfies
x11 − T (qx21) = 0,

ekx21 − T (ekx11) = 0,

ekx31 − T (ekqx21) = 0,


e−k̄x12 − T (e−k̄qx22) = 0,

x22 − Tx12 = 0,

x32 − T (qx22) = 0,
e−k̄x13 − T (e−k̄qx23) = 0,

x23 − Tx13 = 0,

x33 − T (qx23) = 0.

Since C2
1 |Ω|1/p‖q‖Lp(Ω) < 1, it follows that xij = 0, 1 ≤ i, j ≤ 2, as shown in

Kang–Uhlmann [15, Lemma 2]. Using Lemma 2.1, we have

‖x23‖Cα(Ω) = ‖Tx13‖Cα(Ω) ≤ C1‖x13‖Lp(Ω) ≤ C1|Ω|1/p‖x13‖Cα(Ω),

‖x13‖Cα(Ω) ≤C1‖e−k̄qx23‖Lp(Ω) ≤ C1‖q‖Lp(Ω)‖x23‖Cα(Ω).

Now C2
1 |Ω|1/p‖q‖Lp(Ω) < 1 together with these estimates implies that x13 =

x23 = 0, which allows us to obtain x31 = x32 = x33 = 0. Thus X = O and

Lemma 3.1 is proved.

Now we define M = M(·, k) ∈ Cα(Ω) by

(3.4) M = (I − T kQ)−1I.

It is easy to see that M satisfies (3.3). The function Φ = ME is called the CGO

solution to the equation (3.2).
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§3.2. Asymptotic behavior of M(z, k) as |k| → ∞

In this subsection, it will be shown that

M(z, k)→

1 0 0

0 1 0

0 Tq 1

 , |k| → ∞.

From this property together with Lemma 2.2 we obtain the formula

q(z) = ∂ lim
|k|→∞

m32(z, k).

Lemma 3.2. Assume (A-1) and let M = (mij(z, k))1≤i,j≤3 be the function de-

fined by (3.4). Then

‖m11(·, k)− 1‖L∞(Ω) + ‖m22(·, k)− 1‖L∞(Ω) ≤
2C1

|k|
‖q‖Lp(Ω),(3.5)

‖m12(·, k)‖L∞(Ω) + ‖m21(·, k)‖L∞(Ω) ≤
2

|k|
,(3.6)

m13(z, k) = m23(z, k) = 0, m33(z, k) = 1, ∀z ∈ Ω,(3.7)

‖m31(·, k)‖L∞(Ω) ≤
2C1

|k|
‖q‖Lp(Ω),(3.8)

‖m32(·, k)− (Tq)(·)‖L∞(Ω) ≤
2C2

1

|k|
‖q‖2Lp(Ω)(3.9)

for k ∈ C such that 2{(1 + C3

2π ) + C2}C1‖q‖Lp(Ω) < |k|, where C2 is the positive

constant given in Lemma 2.2.

Proof. The estimates (3.5) and (3.6) are proved in [15, Theorem 5]. To prove the

identities (3.7) we first note that mi3 (i = 1, 2, 3) satisfy
m33 − T (qm23) = 1,

m13 − ek̄T (e−k̄qm23) = 0,

m23 − Tm13 = 0.

From the generalized Cauchy integral formula and Lemma 2.1 we have

(3.10) ‖m23(·, k)‖L∞(Ω) = ‖T (m13)‖L∞(Ω)

≤ 1

|k|
{‖T (∂m13)‖L∞(Ω) + ‖T (ek̄∂(e−k̄m13))‖L∞(Ω)}

≤ 1

|k|

{
‖m13‖L∞(Ω) +

∥∥∥∥ 1

2πi

∫
∂Ω

m13(ζ, k)

ζ − z
dζ̄

∥∥∥∥
L∞(Ω)

+ C1‖∂(e−k̄m13)‖Lp(Ω)

}
≤ 1

|k|

{(
1 +

C3

2π

)
‖m13(·, k)‖L∞(Ω) + C1‖∂(e−k̄m13)‖Lp(Ω)

}
,
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where C3 is a positive constant independent of k. According to Lemma 2.2, the

second term on the right-hand side in (3.10) is estimated as follows:

‖∂(e−k̄m13)‖Lp(Ω) = ‖∂T (e−k̄qm23)‖Lp(Ω) ≤ C2‖qm23‖Lp(Ω)

≤C2‖q‖Lp(Ω)‖m23‖L∞(Ω).

This estimate together with (3.10) shows that

‖m23(·, k)‖L∞(Ω) ≤
1

|k|

{(
1 +

C3

2π

)
‖m13‖L∞(Ω) + C1C2‖q‖Lp(Ω)‖m23‖L∞(Ω)

}
.

Using the estimate

‖m13(·, k)‖L∞(Ω) = ‖T (e−k̄qm23)‖L∞(Ω) ≤ C1‖e−k̄qm23‖Lp(Ω)(3.11)

≤C1‖q‖Lp(Ω)‖m23(·, k)‖L∞(Ω)

we obtain

‖m23(·, k)‖L∞(Ω) ≤
1

|k|

{(
1 +

C3

2π

)
+ C2

}
C1‖q‖Lp(Ω)‖m23(·, k)‖L∞(Ω).

Thus ‖m23(·, k)‖L∞(Ω) = 0 for k ∈ C satisfying {(1 + C3

2π ) + C2}C1‖q‖Lp(Ω) < |k|.
From (3.11) we get ‖m13(·, k)‖L∞(Ω) = 0. Moreover, the estimate

‖m33(·, k)− 1‖Cα(Ω) = ‖T (qm23)‖Cα(Ω)

≤C1‖qm23‖Lp(Ω) ≤ C1‖q‖Lp(Ω)‖m23(·, k)‖L∞(Ω)

yields ‖m33(·, k)− 1‖L∞(Ω) = 0. Thus the identities (3.7) hold.

Next, noting that m3j (j = 1, 2) satisfy

(3.12)

{
m31 − e−kT (ekqm21) = 0,

m32 − T (qm22) = 0,

and using (3.5) and (3.6), we get the estimates (3.8) and (3.9):

‖m31(·, k)‖L∞(Ω) = ‖T (ekqm21)‖L∞(Ω) ≤ C1‖qm21(·, k)‖Lp(Ω)

≤C1‖q‖Lp(Ω)‖m21(·, k)‖L∞(Ω) ≤
2C1

|k|
‖q‖Lp(Ω),

and

‖m32(·, k)− Tq(·)‖L∞(Ω) = ‖T (qm22)− Tq‖L∞(Ω) = ‖Tq(m22 − 1)‖L∞(Ω)

≤C1‖q‖Lp(Ω)‖m22(·, k)− 1‖L∞(Ω) ≤
2C2

1

|k|
‖q‖2Lp(Ω).

Lemma 3.2 is proved.
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§3.3. ∂-equation

In this subsection, we derive another property of M(z, k) defined by (3.4). We

need some notations. For a 3 × 3 matrix X = (xij), we denote a submatrix by

[X]2 = (xij)1≤i,j≤2. We first recall that [M ]2 = [(I − T kQ)−1I]2 satisfies the

system of differential equations with respect to k ∈ C, which is called the ∂-

equation.

Lemma 3.3 (Kang and Uhlmann [15]). Assume (A-1). Let Γz(k) be the function

given in Step 3 and

S(k) =

(
0 1

2πi

∫
∂Ω
e−k̄(ζ)m12(ζ, k) dζ

− 1
2πi

∫
∂Ω
ek(ζ)m21(ζ, k) dζ̄ 0

)
.

Then

(3.13) ∂k[M(z, k)]2 = [M(z, k̄)]2Γz(k)S(k) in L∞(Ω).

Note that substituting the identity Φ = ME into S(k) gives

(3.14) S(k) =

(
0 1

2πi

∫
∂Ω
e−ik̄ζφ12(ζ, k) dζ

− 1
2πi

∫
∂Ω
eik̄ζ̄φ21(ζ, k) dζ̄ 0

)
.

This identity means that S(k) can be determined from the boundary values of the

CGO solution, φ12|∂Ω and φ21|∂Ω.

In the previous subsection, we proved that q(z) can be calculated from

m32(z, k). Hence we are interested in the properties of m32(z, k). We will show

that m31(z, k) and m32(z, k) also satisfy a ∂ type equation.

Lemma 3.4. Assume (A-1) and let M = (mij(z, k))1≤i,j≤3 be the function de-

fined by (3.4). Then

(3.15)

{
∂km31(z, k) =−ie−k(z)s31(k) + ie−k(z)s21(k)m32(z, k̄),

∂km32(z, k) = iek̄(z)s12(k)m31(z, k̄),

where

s12(k) =− 1

π

∫
Ω

e−k̄(ζ)q(ζ)m22(ζ, k) dζR dζI ,

s21(k) =
1

π

∫
Ω

ek(ζ)m11(ζ, k) dζR dζI ,

s31(k) =
1

π

∫
Ω

ek(ζ)q(ζ)m21(ζ, k) dζR dζI .
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Proof. We first prove the identity

(3.16) ∂k(Tqm22) = T (q∂km22).

Since T is a bounded operator Lp(Ω)→ Cα(Ω) and q is in Lp(Ω), it suffices to show

the uniform boundedness of ∂km22 by the application of dominated convergence.

Since mij , 1 ≤ i, j ≤ 2, satisfy

(3.17)

{
m11 − T (qm21) = 1,

m21 − e−kT (ekm11) = 0,

{
m12 − ek̄T (e−k̄qm22) = 0,

m22 − T (m12) = 1,

Lemma 2.1 yields the estimates

‖m22 − 1‖L∞(Ω) ≤C1|Ω|1/p‖m12‖L∞(Ω), ‖m12‖L∞(Ω) ≤ C1‖q‖Lp(Ω)‖m22‖L∞(Ω),

‖m11 − 1‖L∞(Ω) ≤C1‖q‖Lp(Ω)‖m21‖L∞(Ω), ‖m21‖L∞(Ω) ≤ C1|Ω|1/p‖m11‖L∞(Ω).

If C2
1 |Ω|1/p‖q‖Lp(Ω) < δ < 1, then we obtain

‖m11‖L∞(Ω), ‖m22‖L∞(Ω) ≤
1

1− δ
,

‖m12‖L∞(Ω) ≤
C1‖q‖Lp(Ω)

1− δ
, ‖m21‖L∞(Ω) ≤

C1|Ω|1/p

1− δ
.

By Lemma 3.3 we already know that ∂km22 = is12(k)ek̄(z)m21(z, k̄). Hence we

obtain the boundedness of ∂km22:

|∂km22| ≤
C1|Ω|1/p

1− δ
|s12(k)| ≤ 1

π

C1|Ω|1/p

1− δ

∫
Ω

|q(z)m22(z, k)| dzR dzI

≤ 1

π

C1|Ω|
(1− δ)2

‖q‖Lp(Ω).

Using Lemma 3.3 and the identities (3.12) and (3.16), we have

∂km32(z, k) = ∂k(Tqm22) = T (q∂km22)

= is12(k)T (qek̄m21(·, k̄)) = is12(k)ek̄(z)m31(z, k̄).

Similarly, using the identity

T (ekq∂km21) = T (ekqis21(k)e−km22(·, k̄)) = is21(k)T (qm22(·, k̄))

= is21(k)m32(z, k̄)
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together with Lemma 2.3, we obtain the equation

∂km31(z, k) = ∂k(e−kT (ekqm21))

= ∂k

(
− 1

π

∫
Ω

ek(ζ − z)
ζ̄ − z̄

q(ζ)m21(ζ, k) dζR dζI

)
=− 1

π

(
i

∫
Ω

ek(ζ − z)q(ζ)m21(ζ, k) dζR dζI

+

∫
Ω

ek(ζ − z)
ζ̄ − z̄

q(ζ)∂km21(ζ, k) dζR dζI

)
=−ie−k(z)s31(k) + e−k(z)T (ekq∂km21)

=−ie−k(z)s31(k) + ie−k(z)s21(k)m32(z, k̄).

Thus, Lemma 3.4 is proved.

By Green’s formula,

s12(k) =− 1

π

∫
Ω

e−k̄(ζ)q(ζ)m22(ζ, k) dζR dζI =
1

2πi

∫
∂Ω

e−ik̄ζφ12(ζ, k) dζ,

s21(k) =
1

π

∫
Ω

ek(ζ)m11(ζ, k) dζR dζI = − 1

2πi

∫
∂Ω

eik̄ζ̄φ21(ζ, k) dζ̄,

which shows that s12(k) and s21(k) can be determined from the boundary values

of the CGO solution, φ12|∂Ω and φ21|∂Ω. We can also determine s31(k) from the

boundary values φ11|∂Ω and φ21|∂Ω. Indeed, it follows from (3.17) and Green’s

formula that

s31(k) =
1

π

∫
Ω

{∂(ekm11)−m11∂ek} dzR dzI(3.18)

=
1

π

∫
Ω

∂(ekm11) dzR dzI −
1

π

∫
Ω

ik̄ekm11 dzR dzI

=
1

π

∫
Ω

∂(ekm11) dzR dzI −
ik̄

π

∫
Ω

∂(ekm21) dzR dzI

=
1

2πi

∫
∂Ω

ek(z)m11(z, k) dz +
k̄

2π

∫
∂Ω

ek(z)m21(z, k) dz̄

=
1

2πi

∫
∂Ω

eik̄z̄Φ11(z, k) dz − ik̄s21(k).

§4. From ΛV to Φ|∂Ω

In this section we show that the boundary value Φ|∂Ω of the CGO solution can

be constructed from the DN map ΛV . Let us denote column vectors by boldface,
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e.g., f = t(f1, f2, f3). We define a set of Cauchy data by

Dq = {v|∂Ω : v ∈ Cα(Ω)× C1,α(Ω)× Cα(Ω), (D −Q)v = 0 in Ω}.

Let HV = ΛV L and define a set of functions on ∂Ω by

B = {h ∈ Cα(∂Ω)× C1,α(∂Ω)× Cα(∂Ω) : (ηh1 − η̄h3) ∈ C1,α
0 (∂Ω),

iHV (ηh1 − η̄h3) = ηh1 + η̄h3, τ · ∇h2 = i(ηh1 − η̄h3)},

where C1,α
0 (∂Ω) denotes the set of C1,α functions on ∂Ω such that

∫
∂Ω
f dσ = 0

(dσ is the Euclidean surface measure on ∂Ω).

The following characterization of the Cauchy data for the first order ∂-system

is shown in a manner similar to that of Knudsen and Tamasan [17].

Lemma 4.1. Let q ∈ Lp(Ω). Assume that

Q =

0 q 0

1 0 0

0 q 0

 .

Then Dq = B.

Proof. We first show that B ⊂ Dq. Let h ∈ B and u be a C1,α(Ω) solution of{
−∆u+ V u = 0 in Ω,

u|∂Ω = iL(ηh1 − η̄h3) ∈ C1,α(∂Ω).

Putting t(ϕ,ψ, χ) = t(∂u, u, ∂u) ∈ Cα(Ω) × C1,α(Ω) × Cα(Ω), we deduce that

(D −Q)t(ϕ,ψ, χ) = 0. Since h ∈ B, we obtain the relation(
ϕ

χ

)∣∣∣∣
∂Ω

=
1

2

(
η̄ −iη̄
η iη

)(
ΛV (u|∂Ω)

τ · ∇(u|∂Ω)

)
=

1

2

(
η̄ −iη̄
η iη

)(
iHV (ηh1 − η̄h3)

i(ηh1 − η̄h3)

)
=

1

2

(
η̄ −iη̄
η iη

)(
ηh1 + η̄h3

i(ηh1 − η̄h3)

)
=

(
h1

h3

)
.

The identity ψ|∂Ω = u|∂Ω ∈ C1,α(∂Ω) implies that h ∈ Dq.
Next we show that Dq ⊂ B. Let h ∈ Dq and t(ϕ,ψ, χ) ∈ Cα(Ω)× C1,α(Ω)×

Cα(Ω) be a solution of {
(D −Q)t(ϕ,ψ, χ) = 0 in Ω,
t(ϕ,ψ, χ)|∂Ω = h.

Simple computation shows that ϕ, ψ and χ satisfy ∂ϕ = qψ, ∂ψ = ϕ and ∂χ = qψ.

Since there exists a C1,α(Ω) function u such that ψ = u, ϕ = ∂u and χ = ∂u, we
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obtain the relationh1

h2

h3

=

ϕψ
χ


∣∣∣∣∣∣∣
∂Ω

=

∂uu
∂u


∣∣∣∣∣∣∣
∂Ω

=
1

2

ηΛV h2 − iητ · ∇h2

2h2

ηΛV h2 + iητ · ∇h2


=

1

2

η 0 −iη
0 2 0

η 0 iη


 ΛV h2

h2

τ · ∇h2

 .

The identity  ΛV h2

h2

τ · ∇h2

 =

 η 0 η̄

0 1 0

iη 0 −iη̄


h1

h2

h3


implies that h ∈ B. Lemma 4.1 is proved.

Next we give a characterization of the traces of the CGO solutions.

Lemma 4.2. Assume that Q satisfies the assumption of Lemma 4.1. Then there

exist ψ(j) ∈ Dq (j = 1, 2, 3) such that

P−kF(PkΨE−1)|∂Ω = I,(4.1) (
iΛV L 0 −iΛV L

0 i ∂∂τ 0

)η 0 0

0 1 0

0 0 η̄

Ψ =

(
η 0 η̄

−η 0 η̄

)
Ψ,(4.2)

where Ψ = (ψ(j))j=1,2,3 is a 3× 3 matrix. Moreover Ψ is the only CGO solution

on ∂Ω, i.e., Ψ = Φ|∂Ω.

Proof. Let Φ = ME be the CGO solution. Then (D − Q)Φ = O. By Lemma

4.1 we have Φ ∈ B, which shows that Φ satisfies (4.2). Taking into account that

M is a solution to DPkM −PkQM = O, it follows from the generalized Cauchy

integral formula that

M − P−kT PkQM = P−kF(PkM |∂Ω).

By (3.4),

P−kF(PkM |∂Ω) = (I − T kQ)M = I,

which implies (4.1).

Now, suppose that Ψ satisfies (4.1) and (4.2). Then Ψ ∈ B. According to

Lemma 4.1, there exists a 3× 3 matrix H such that

(D −Q)H = O, H|∂Ω = Ψ.
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Let G = HE−1. Then G satisfies P−kDPkG−QG = O. The generalized Cauchy

integral formula yields

(I − T kQ)G = P−kF(PkΨE−1|∂Ω).

By (4.1), G = (I − T kQ)−1I = M , which gives

Ψ = H|∂Ω = ME|∂Ω = Φ|∂Ω.

Lemma 4.2 is proved.

The characterization (4.1) and (4.2) gives a method for finding the CGO

solution Φ|∂Ω from the DN map ΛV .

§5. From Φ|∂Ω to m32

In this section we show the unique solvability of the system (3.15). Let s12(k),

s21(k) and s31(k) be the functions given in Lemma 3.4.

Lemma 5.1. Assume (A-1) and suppose that q ∈W 1,p(Ω). Then for k ∈ C,

|s12(k)| ≤ γ1(q)

1 + |k|
‖q‖W 1,p(Ω), |s21(k)| ≤ γ′

1 + |k|
(‖q‖Lp(Ω) + 1),

|s31(k)| ≤ γ2

1 + |k|
‖q‖Lp(Ω),

where γ1(q) is a positive constant depending on ‖q‖W 1,p(Ω) and uniformly bounded

from below, and γ′ and γ2 are positive constants independent of |k| and q.

Proof. The estimates on s12 and s21 are proved in [15]. Let C2
1 |Ω|1/p‖q‖Lp(Ω) =

δ < 1. The estimates

‖m21‖L∞(Ω) ≤ C1|Ω|1/p‖m11‖L∞(Ω), ‖m11‖L∞(Ω) ≤ C1‖q‖Lp(Ω)‖m21‖L∞(Ω) + 1

together with the assumption (A-1) show that for k ∈ C,

‖m21(·, k)‖L∞(Ω) ≤
C1|Ω|1/p

1− δ
.

Thus we obtain

|s31(k)| ≤ C1|Ω|1/p

π(1− δ)
|Ω|1/p

′
‖q‖Lp(Ω) =

C1|Ω|
π(1− δ)

‖q‖Lp(Ω)

for k ∈ C. By Lemma 3.2, there exists a positive constant N such that

|s31(k)| ≤ 1

π
‖m21‖L∞(Ω)

∫
Ω

|q(z)| dzR dzI ≤
2|Ω|1/p′

π

1

|k|
‖q‖Lp(Ω)
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for |k| > N . Thus we get the estimate

|s31(k)| ≤ γ2

|k|+ 1
‖q‖Lp(Ω), γ2 =

C1|Ω|(2 +N)

π(1− δ)
+

2|Ω|1/p′

π

for k ∈ C. Lemma 5.1 is proved.

Let M = (mij) be the 3× 3 matrix defined by (3.4). Then m = t(m31,m32)

is a solution to the system (3.15). The uniqueness of the solution follows from the

next lemma.

Lemma 5.2 (Kang and Uhlmann [15]). Let d1, d2 and ε be positive constants.

Assume that

|a(k)| ≤ d1(ε+ 1)

1 + |k|
, |b(k)| ≤ d2ε

1 + |k|
.

If ε is sufficiently small, then the solution of the system{
∂kf(k) = a(k)g(k̄),

∂kg(k) = b(k)f(k̄)

such that f − 1, g ∈ L2,δ(C) (−1 < δ < 0) is unique.

Proof of Theorem 1.3. We have already justified Steps 2, 3′ and 4′ stated in Sub-

section 1.2. By Lemma 4.2, we obtain the boundary value of the CGO solution

from the DN map. The functions s12(k), s21(k) and s31(k) defined in Step 3′ satisfy

the estimates given in Lemma 5.1. Therefore we can get the function m32(z, k) on

Ω×C by solving the system (3.15). The estimate (3.9) given in Lemma 3.2 shows

that q(z) can be obtained from m32(z, k). Thus Theorem 1.3 has been completely

proved.
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