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Quantum Recurrence Relation and
Its Generating Functions

by

Noboru Nakanishi

Abstract

A homogeneous linear recurrence relation with constant coefficients is extended to the
case in which the relevant quantities are not necessarily commutative with each other.
Two kinds of its generating functions are explicitly given, and a relation between them is
established. This result is essentially nothing but the reduction to a common (symmetric)
denominator for a sum of fractions of non-commutative quantities.
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§1. Introduction

We consider a sequence {Φn} defined by the following homogeneous linear recur-

rence relation (or linear difference equation [1], [4]):

(1.1) Φn+N−1 =

N−1∑
k=0

akΦn+k−1 (n ≥ 1),

where a0, a1, . . . , aN−1 and Φ0, Φ1, . . . , ΦN−1 are given quantities independent of n.

Usually, these quantities are assumed to be mutually commutative as a mat-

ter of course. It is an interesting problem to see what happens if they are not

necessarily commutative, that is, we wish to consider the “quantum” version of

the recurrence relation. A simple example (with N = 2) is the recurrence relation

for the Bessel functions of the first, second and third kinds:

Zn+1(x) = −2
d

dx
Zn(x) + Zn−1(x).
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In this example, the coefficient a0 contains a differential operator with respect to

a parameter x; hence the commutativity between a0 and Φn no longer holds, but

the coefficients aj remain mutually commutative. What we wish to consider is the

case in which they are not necessarily mutually commutative.

In the present paper, we investigate the generating functions of the non-

commutative extension of the sequence (1.1). Our main result is stated in Section 2.

It is noteworthy that Gelfand et al. [2] proposed the theory of quasi-determinants,

which is a non-commutative extension of determinants. In the course of our inves-

tigation, we encounter the same problem as the one discussed by them.

The present paper is organized as follows. In Section 2, two kinds of generating

functions of a homogeneous linear recurrence sequence with non-commutative con-

stant coefficients are defined and their explicit expressions are given. It is pointed

out that they are related through the Laplace transform. This implies a certain

identity for fractional expressions, which is the main goal of the present paper. In

Section 3, the case of N = 2 is explicitly worked out. In Section 4, it is shown

how to calculate the denominator and numerator functions appearing in the above

identity. In Section 5, this method is applied to the case of N = 3. The identity

of Section 2 is proved in Section 6. The final section is devoted to a discussion in

which it is pointed out that this identity can be regarded as the reduction to a

common denominator for a sum of fractions of non-commutative quantities.

§2. Generating functions

We consider two kinds of generating functions [3] of the sequence {Φn}:

(a) ordinary generating function,

(2.1) g(t) =

∞∑
n=0

Φnt
n;

(b) exponential generating function,

(2.2) f(t) =

∞∑
n=0

Φn
tn

n!
.

In the above, the infinite sums should be understood as formal power series.

Proposition 2.1. The ordinary generating function (2.1) is given by

(2.3) g(t) =
(

1−
N∑
k=1

aN−kt
k
)−1 N−1∑

m=0

(
1−

N−m−1∑
k=1

aN−kt
k
)
Φmt

m,

where inversion is defined in the sense of formal power series.
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Proof. From (1.1), we have

(2.4) g(t) =

∞∑
n=0

Φnt
n =

N−1∑
m=0

Φmt
m +G(t),

where

G(t) ≡
∞∑
n=N

Φnt
n =

∞∑
n=N

[N−1∑
k=0

akΦn−N+k

]
tn.

With n−N + k = m, this is rewritten as

G(t) =

N−1∑
k=0

akt
N−k

∞∑
m=k

Φmt
m =

N−1∑
k=0

akt
N−k

[
g(t)−

k−1∑
m=0

Φmt
m
]
.

With N − k = j, it can be further rewritten as

G(t) =

N∑
j=1

aN−jt
j
[
g(t)−

N−j−1∑
m=0

Φmt
m
]
,

that is,

G(t) =
[ N∑
j=1

aN−jt
j
]
g(t)−

N−2∑
m=0

[N−m−1∑
j=1

aN−jt
j
]
Φmt

m.

Substituting this expression into (2.4), we find

[
1−

N∑
k=1

aN−kt
k
]
g(t) =

N−1∑
m=0

Φmt
m −

N−2∑
m=0

[N−m−1∑
j=1

aN−jt
j
]
Φmt

m.

Although the summation over m ends at N − 2 in the second term of the right-

hand side, it can be extended to N − 1 without bringing any change because

the summation over j is absent for m = N − 1. Finally, multiplying the above

expression by (1−
∑N
k=1 aN−kt

k)−1 from the left, we obtain (2.3).

The following equation for α is called the characteristic equation of the recur-

rence relation:

(2.5) αN −
N−1∑
k=0

akα
k = 0.

Although the fundamental theorem of algebra no longer holds when the coefficients

are non-commutative quantities, we assume that (2.5) has N solutions α1, . . . , αN ,

and for simplicity that they are all different (if some of them are equal, we treat

them as the limiting case).
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Proposition 2.2. The exponential generating function (2.2) is given by

(2.6) f(t) =

N∑
j=1

eαjtCj ,

where {C1, . . . , CN} is the solution to the simultaneous linear equations

(2.7)

N∑
j=1

αmj Cj = Φm (m = 0, 1, . . . , N − 1).

Proof. Because ( ddt )
nf(t)|t=0 = Φn, (1.1) implies that f(t) satisfies the linear

differential equation [(
d

dt

)N
−
N−1∑
k=0

ak

(
d

dt

)k]
f(t) = 0.

Solving this equation, we obtain (2.6) with (2.7).

Since ∫ ∞
0

dt e−pt
tn

n!
= p−n−1,

we find that the Laplace transform of f(t) is essentially given by g(t), that is,∫ ∞
0

dt e−ptf(t) =

∫ ∞
0

dt

N∑
j=1

e−(p−αj)tCj =

N∑
j=1

(p− αj)−1Cj

should coincide with p−1g(p−1). Hence, setting p−1 = t, we should have the fol-

lowing theorem.

Theorem 2.1. Let α1, . . . , αN be N mutually different solutions to the algebraic

equation

(2.8) αN −
N−1∑
k=0

akα
k = 0,

where the coefficients a0, a1, . . . , aN−1 are mutually generically non-commutative.

Furthermore, let Cj be quantities generically non-commutative with the ak, and t

be a commutative parameter. Then the following identity holds:

(2.9)

N∑
j=1

(1− αjt)−1Cj = g(t),
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where

(2.10) g(t) =
(

1−
N∑
k=1

aN−kt
k
)−1 N−1∑

m=0

(
1−

N−m−1∑
k=1

aN−kt
k
)
tm

N∑
j=1

αmj Cj .

Here inversion is defined in the sense of formal power series.

Since both (2.1) and (2.2) are formal series, the reasoning based on the Laplace

transform cannot be regarded as a proof. The direct proof of the theorem is pre-

sented in Section 6 (of course, without assuming the commutativity between αj ’s).

§3. The case of N = 2

To begin with, we consider the case of N = 2, in which (2.3) with (2.7) reduces to

(3.1) g(t) = (1− a1t− a0t2)−1[(1− a1t+ α1t)C1 + (1− a1t+ α2t)C2],

where

(3.2) α2
1 − a1α1 − a0 = 0, α2

2 − a1α2 − a0 = 0.

The characteristic equation is the quadratic equation α2 − a1α − a0 = 0. We

investigate relations between its solutions and its coefficients without assuming

commutativity. First, from the difference between the two equations of (3.2), we

find

α2
1 − α2

2 − a1(α1 − α2) = 0.

Therefore,

a1 = (α2
1 − α2

2)(α1 − α2)−1,

where we assume that α1 − α2 is invertible.

Substitution of this result into the first equation of (3.2) yields

a0 = α2
1 − (α2

1 − α2
2)(α1 − α2)−1α1

= α2
1(α2 − α1)−1α2 + α2

2(α1 − α2)−1α1.

Substituting these expressions for a1 and a0 into g(t), we have

g(t) = [ψ(t)]−1[{1 + α1t− (α2
1 − α2

2)(α1 − α2)−1t}C1(3.3)

+ {1 + α2t− (α2
2 − α2

1)(α2 − α1)−1t}C2],

where

ψ(t) ≡ 1− (α2
1 − α2

2)(α1 − α2)−1t(3.4)

− {α2
1(α2 − α1)−1α2 + α2

2(α1 − α2)−1α1}t2.
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The fact that (3.3) with (3.4) is the right answer can be confirmed by rewriting

ψ(t) in the following way:

ψ(t) = 1 + α2
1(α2 − α1)−1(1− α2t)t+ α2

2(α1 − α2)−1(1− α1t)t

= 1− α2
1t

2 + α2
1(α2 − α1)−1(1− α1t)t+ α2

2(α1 − α2)−1(1− α1t)t

= [1 + α1t− (α2
1 − α2

2)(α1 − α2)−1t](1− α1t);

that is, the factor 1− α1t has been moved to the right. Since (AB)−1 = B−1A−1,

the left factor cancels with the coefficient of C1 in the numerator of (3.1). Likewise,

the factor 1− α2t can be taken out from ψ(t).

Thus, it is interesting to note that ψ(t) can be factorized in two different

ways, though, of course, both factorizations reduce to (1 − α1t)(1 − α2t) in the

commutative case.

Remark. In general, factorizations are not necessarily unique in the polynomial

whose coefficients are non-commutative quantities.

§4. Relations between solutions and coefficients

In order to express the denominator function,

ψ(t) = 1−
N∑
k=1

aN−kt
k,

of g(t) in terms of α1, . . . , αN , we need the relation between the solutions to an

algebraic equation and the coefficients appearing in it in the non-commutative

case. This problem was discussed in the theory of quasi-determinants developed

by Gelfand et al. [2]. We here consider this problem without referring to quasi-

determinants explicitly.

Even in an ordinary matrix, if it is decomposed into some blocks, those blocks

may be regarded as non-commutative elements. Below we make use of the well-

known inversion formula for a matrix in block form.

Proposition 4.1. Let A,B,C,D be generically non-commutative quantities. The

inverse of the nonsingular matrix

M =

[
A B

C D

]
,

is given by

M−1 =

[
(A−BD−1C)−1 (C −DB−1A)−1

(B −AC−1D)−1 (D − CA−1B)−1

]
,

provided that A,B,C,D are invertible.
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Proof. We have only to confirm that the product of both matrices becomes the

unit matrix. This is easily seen from

(B −AC−1D)−1 = [(BD−1C −A)C−1D]−1 = −D−1C(A−BD−1C)−1,

(C −DB−1A)−1 = [(CA−1B −D)B−1A]−1 = −A−1B(D − CA−1B)−1.

Since the existence of M−1 is assumed, the above formal expression must be the

correct expression for M−1.

In order to calculate the determinant of the inverse matrix in the general

case, we need not extend this formula to the form of N × N blocks, because we

can regard A,B,C,D as blocks consisting of non-commutative elements.

Now, we wish to solve the simultaneous equations for aN−1, aN−2, . . . , a0,

(4.1) αNj − aN−1αN−1j − · · · − a1αj − a0 = 0 (j = 1, . . . , N).

We set

V (α1, . . . , αN ) ≡


αN−11 αN−12 · · · αN−1N

αN−21 αN−22 · · · αN−2N
. . . . . . . . . . . . . . . . . . . . . . . . . .

α1 α2 · · · αN
1 1 · · · 1

 ;

then (4.1) is rewritten in matrix form as

[aN−1 aN−2 . . . a0]V (α1, . . . , αN ) = [αN1 · · · αNN ].

Hence aN−1, aN−2, . . . , a0 are expressed as

[aN−1 aN−2 . . . a0] = [αN1 · · · αNN ][V (α1, . . . , αN )]−1.

Thus our problem is to calculate the inverse matrix of V (α1, . . . , αN ).

For example, in the case of N = 2, since

V (α1, α2) =

[
α1 α2

1 1

]
Proposition 4.1 implies

[V (α1, α2)]−1 =

[
(α1 − α2)−1 (α2 − α1)−1α2

(α2 − α1)−1 (α1 − α2)−1α1

]
.

Therefore, we have

[a1 a0] = [(α2
1 − α2

2)(α1 − α2)−1 α2
1(α2 − α1)−1α2 + α2

2(α1 − α2)−1α1].

Of course, this result coincides with the one given in Section 3.



184 N. Nakanishi

§5. The case of N = 3

It is quite nontrivial already in the case of N = 3 to express a0, . . . , aN−1 in terms

of αj ’s.

§5.1. Calculation of a2

First, we rewrite the matrix

V (α1, α2, α3) =

α2
1 α2

2 α2
3

α1 α2 α3

1 1 1


in the following block form:

V (α1, α2, α3) =

[
α2
1 [α2

2 α2
3]

t[α1 1] V (α2, α3)

]
,

where t denotes transposition. By using Proposition 4.1, we calculate the (1, 1)-

element of [V (α1, α2, α3)]−1. Since

[V (α2, α3)]−1 =

[
(α2 − α3)−1 (α3 − α2)−1α3

(α3 − α2)−1 (α2 − α3)−1α2

]
,

we find[
[V (α1, α2, α3)]−1

]
11

= {α2
1 − [α2

2 α2
3][V (α2, α3)]−1 t[α1 1]}−1

= {α2
1 − α2

2(α2 − α3)−1(α1 − α3)− α2
3(α3 − α2)−1(α1 − α2)}−1.

The (2, 1)-element and the (3, 1)-element are obtained by cyclic permutations of

subscripts (1→ 2→ 3→ 1). Thus,

(5.1) a2 =
∑

i,j,k:cycl.

α3
i {α2

i−α2
j (αj−αk)−1(αi−αk)−α2

k(αk−αj)−1(αi−αj)}−1.

§5.2. Calculation of a1

In this case, in order to apply Proposition 4.1, we move the top row of the matrix V

to the bottom. Setting

V ′(α2, α3) =

[
1 1

α2
2 α2

3

]
,

we have

[V ′(α2, α3)]−1 =

[
(α2

3 − α2
2)−1α2

3 (α2
2 − α2

3)−1

(α2
2 − α2

3)−1α2
2 (α2

3 − α2
2)−1

]
.
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Applying Proposition 4.1 to the modified form of V , we obtain[
[V (α1, α2, α3)]−1

]
12

= {α1 − [α2 α3][V ′(α2, α3)]−1 t[1 α2
1]}−1

= {α1 − α2(α2
2 − α2

3)−1(α2
1 − α2

3)− α3(α2
3 − α2

2)−1(α2
1 − α2

2)}−1.

Thus,

(5.2) a1 =
∑

i,j,k:cycl.

α3
i {αi−αj(α2

j−α2
k)−1(α2

i−α2
k)−αk(α2

k−α2
j )
−1(α2

i−α2
j )}−1.

§5.3. Calculation of a0

We move the bottom row of V to the top. Setting

V ′′(α2, α3) =

[
α2
2 α2

3

α2 α3

]
,

we have

[V ′′(α2, α3)]−1 =

[
α−12 (α2 − α3)−1 α−12 (α3 − α2)−1α3

α−13 (α3 − α2)−1 α−13 (α2 − α3)−1α2

]
.

Hence, Proposition 4.1 implies[
[V (α1, α2, α3)]−1

]
13

= {1− [1 1][V ′′(α2, α3)]−1 t[α2
1 α1]}−1

= {1− α−12 (α2 − α3)−1(α1 − α3)α1 − α−13 (α3 − α2)−1(α1 − α2)α1}−1.

Thus,

(5.3) a0 =
∑

i,j,k:cycl.

α3
i {1− α−1j (αj − αk)−1(αi − αk)αi

− α−1k (αk − αj)−1(αi − αj)αi}−1.

§5.4. Reduction in the commutative case

If α1, α2 and α3 are mutually commutative, (5.1), (5.2) and (5.3) reduce to

acomm
2 =

α3
1(α2 − α3) + α3

2(α3 − α1) + α3
3(α1 − α2)

α2
1(α2 − α3) + α2

2(α3 − α1) + α2
3(α1 − α2)

= α1 + α2 + α3,

acomm
1 =

α3
1(α2

2 − α2
3) + α3

2(α2
3 − α2

1) + α3
3(α2

1 − α2
2)

α1(α2
2 − α2

3) + α2(α2
3 − α2

1) + α3(α2
1 − α2

2)
= −(α1α2 + α2α3 + α3α1),

acomm
0 =

α3
1α2α3(α2 − α3) + α3

2α3α1(α3 − α1) + α3
3α1α2(α1 − α2)

α2α3(α2 − α3) + α3α1(α3 − α1) + α1α2(α1 − α2)
= α1α2α3,

respectively. That is, a2, −a1 and a0 reproduce the fundamental symmetric func-

tions of αj ’s, as it should be.
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§6. Proof of Theorem 2.1

For the general N , it is quite laborious to write down the concrete expressions for

a0, a1, . . . , aN−1 in terms of αj ’s, but it is certainly possible, as shown in Section 4.

We now prove Theorem 2.1, that is, we show that the identity (2.9) with (2.10)

indeed holds.

Proof. Multiplying (2.9) with (2.10) by 1−
∑N
k=1 aN−kt

k from the left, and com-

paring the coefficients of Cj on both sides, we see that the formula to be proved

is

(6.1)
(

1−
N∑
k=1

aN−kt
k
)

(1− αjt)−1 =

N−1∑
m=0

(
1−

N−m−1∑
k=1

aN−kt
k
)
αmj t

m.

Furthermore, multiplying this formula by 1− αjt from the right, we have

(6.2)
[N−1∑
m=0

(
1−

N−m−1∑
k=1

aN−kt
k
)
αmj t

m
]
(1− αjt) = 1−

N∑
k=1

aN−kt
k.

In the following we prove this identity.

We denote the left-hand side of (6.2) by F (t). Setting m+ k = n in F (t), we

have

F (t) =
[N−1∑
n=0

(
αnj −

n∑
k=1

aN−kα
n−k
j

)
tn
]
(1− αjt).

Rewriting this expression in powers of t, we obtain

F (t) = 1 +

N−1∑
n=1

[(
αnj −

n∑
k=1

aN−kα
n−k
j

)
− αj

(
αn−1j −

n−1∑
k=1

aN−kα
n−k−1
j

)]
tn

− αj
(
αN−1j −

N−1∑
k=1

aN−kα
N−k−1
j

)
tN .

The expression in square brackets cancels except for the term k = n. Then we find

F (t) = 1−
N−1∑
n=1

aN−nt
n −

(
αNj −

N−1∑
k=1

aN−kα
N−k
j

)
tN .

Since αj is a solution to (2.8), we see that

αNj −
N−1∑
k=1

aN−kα
N−k
j = a0.
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Hence, we obtain

F (t) = 1−
N−1∑
n=1

aN−nt
n − a0tN = 1−

N∑
n=1

aN−nt
n,

which coincides with the right-hand side of (6.2).

§7. Discussion

In the present paper, we have discussed a homogeneous linear recurrence sequence

with non-commutative coefficients. Its ordinary generating function, g(t), and its

exponential generating function, f(t), are defined and their relation is explicitly

established.

Our main theorem can be regarded as the reduction to a common denominator

for a sum of fractions of generically non-commutative quantities. Indeed, (2.9) with

(2.10) can be written as

N∑
j=1

(1− αjt)−1Cj = [ψ(t)]−1
N∑
j=1

ϕj(t)Cj ,

where ψ(t) is totally symmetric,
∑
j ϕj(t)Cj being manifestly invariant under si-

multaneous permutations of {α1, . . . , αN} and {C1, . . . , CN}, and none of them

involves α−1j . Setting Aj = 1 − αjt,1 we may restate this result in the following

way:

Corollary 7.1. Let A1, . . . , AN ; B1, . . . , BN ; C1, . . . , CN be generically non-com-

mutative quantities. Then the following formal identity holds:

(7.1)

N∑
j=1

BjA
−1
j Cj =

N∑
j=1

Bj [ψ(A)]−1ϕj(A)Cj ,

where ψ(A) and ϕj(A)’s are functions of A1, . . . , AN involving no A−1k , and ψ(A)

is totally symmetric,
∑N
j=1Bjϕj(A)Cj being manifestly invariant under simulta-

neous permutations of {A1, . . . , AN}, {B1, . . . , BN} and {C1, . . . , CN}.

For example, in the case of N = 2, the concrete expressions are as follows:

B1A
−1
1 C1 +B2A

−1
2 C2

= B1[ψ(A1, A2)]−1ϕ1(A1, A2)C1 +B2[ψ(A1, A2)]−1ϕ2(A1, A2)C2,

1Then, of course, the formal power series expansion with respect to t becomes impossible.
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where

ψ(A1, A2) = A2
1(A1 −A2)−1A2 +A2

2(A2 −A1)−1A1,

ϕ1(A1, A2) = −A1 + (A2
1 −A2

2)(A1 −A2)−1,

ϕ2(A1, A2) = −A2 + (A2
2 −A2

1)(A2 −A1)−1,

as is derived from the results given in Section 3. Of course, if A1 and A2 commute,

the expressions reduce to ψcomm = A1A2, ϕcomm
1 = A2, ϕcomm

2 = A1.
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