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Mori Contractions of Maximal Length
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Abstract

We prove a relative version of the theorem of Cho, Miyaoka and Shepherd-Barron: a Mori
fibre space of maximal length is birational to a projective bundle.
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§1. Introduction

§1.A. Motivation

Let X be a Fano manifold of dimension d with Picard number one, and denote by

H the ample generator of the Picard group. Let i(X) ∈ N be such that −KX ≡
i(X)H; by a classical theorem of Kobayashi and Ochiai [KO73] one has i(X) ≤ d+1

and equality holds if and only if X is isomorphic to the projective space Pd. If one

tries to understand Fano manifolds of higher Picard number, the index i(X) is less

useful, since it can be equal to one even for very simple manifolds like Pd × Pd+1.

For these manifolds the pseudoindex

min{−KX · C | C ⊂ X a rational curve}

yields much more precise results, the most well-known being the theorem of Cho,

Miyaoka and Shepherd-Barron:
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Theorem 1.1 ([CMSB02, Cor. 0.3] [Keb02, Thm. 1.1]). LetX be a projective man-

ifold of dimension d such that for every curve C ⊂ X, we have −KX · C ≥ d+ 1.

Then X is isomorphic to the projective space Pd.

Fano manifolds (or more generally Fano varieties with certain singularities)

are important objects since they appear naturally in the minimal model program as

the general fibres of Mori fibre spaces. However if one wants to get a more complete

picture of Mori fibre spaces, one should also try to obtain some information on the

special fibres. In the polarised setting we have a relative version of the Kobayashi–

Ochiai theorem:

Theorem 1.2 ([Fuj87, Lemma 2.12], [Ion86]). LetX be a manifold andϕ : X → Y

a projective, equidimensional morphism of relative dimension d onto a normal

variety. Suppose that the general fibre F is isomorphic to Pd and that there exists

a ϕ-ample Cartier divisor A on X such that the restriction to F is isomorphic to

the hyperplane divisor H. Then ϕ is the projectivisation of a vector bundle and A

is a global hyperplane divisor.

The existence of the ϕ-ample Cartier divisor A being a rather restrictive con-

dition, the object of this paper is to replace it by a more flexible “numerical”

hypothesis, i.e. we prove a relative version of Cho–Miyaoka–Shepherd-Barron the-

orem, even for fibrations that are not equidimensional.

§1.B. Main results

Let X be a quasi-projective manifold and let ϕ : X → Y be an elementary contrac-

tion, i.e. a Mori contraction associated with an extremal ray R of X. The length

of the extremal ray R (or of the elementary contraction) is defined as

l(R) := min{−KX · C | C ⊂ X a rational curve such that [C] ∈ R}.

Denote by E ⊂ X an irreducible component of the ϕ-exceptional locus (E = X for

a contraction of fibre type), and let F be an irreducible component of any ϕ-fibre

contained in E. Then by the Ionescu–Wísniewski inequality [Ion86, Thm. 0.4],

[Wís91a, Thm. 1.1] one has

(1.1) dimE + dimF ≥ dimX + l(R)− 1.

In this paper we investigate the case when (1.1) is an equality: examples of

such a situation are given by projective bundles, i.e. smooth fibrations ϕ : X → Y

that are locally trivial in the analytic topology with fibre F ' Pd. If the contrac-

tion ϕ maps X onto a point, Theorem 1.1 says that X = E = F is a projective
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space; more generally Andreatta and Wísniewski conjectured that F is a projec-

tive space regardless of the dimension of the target [AW97, Conj. 2.6]. We prove

a strong version of this conjecture for Mori fibre spaces:

Theorem 1.3. Let X be a quasi-projective manifold that admits an elementary

contraction ϕ : X → Y of fibre type onto a normal variety Y such that the general

fibre has dimension d. Suppose that the contraction has length l(R) = d+1. If ϕ is

equidimensional, it is a projective bundle. If ϕ is not equidimensional, there exists

a commutative diagram

X ′

ϕ′

��

µ′ // X

ϕ

��
Y ′

µ // Y

such that µ and µ′ are birational, X ′ and Y ′ are smooth, and ϕ′ : X ′ → Y ′ is a

projective bundle.

Since X is smooth, Theorem 1.1 immediately implies that a general ϕ-fibre

is isomorphic to Pd. Our contribution is to prove that the condition on the length

severely limits the possible degenerations of these projective spaces. The smooth-

ness of X is not essential for these degeneration results (cf. Section 3), so one can

easily derive analogues of Theorem 1.3 making some assumption on the singulari-

ties of the general fibre (e.g. isolated LCIQ singularities [CT07]).

If the contraction ϕ is birational, the situation is more complicated:

Theorem 1.4. Let X be a quasi-projective manifold that admits a birational el-

ementary contraction ϕ : X → Y . Let E ⊂ X be an irreducible component of the

exceptional locus such that for a general fibre of E → ϕ(E) =: Z the inequality

(1.1) is an equality. Let Ẽ → E be the normalisation of E and ϕ̃ : Ẽ → Z̃ be the

fibration obtained by the Stein factorisation of Ẽ → E → Z. Then ϕ̃ is a projective

bundle in codimension one. Moreover, there exists a commutative diagram

E′

ϕ′

��

µ′ // Ẽ

ϕ̃
��

Z ′
µ // Z̃

such that µ and µ′ are birational, E′ and Z ′ are smooth, and ϕ′ : E′ → Z ′ is a

projective bundle.

As in the case of a Mori fibre space, it is not hard to see that the general

fibre of ϕ̃ : Ẽ → Z̃ is a projective space ([CMSB02, Rem. 12], cf. Lemma 2.2),
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so the key point is to study its degenerations. While this result gives a rather

precise description of the normalisation Ẽ and the fibration ϕ̃, it does not prove

that an irreducible component of a general fibre of ϕ|E : E → Z is a projective

space. However, if the contraction ϕ is divisorial (so the inequality (1.1) simplifies

to dimF ≥ l(R)), Andreatta and Occhetta [AO02, Thm. 5.1] proved that all the

nontrivial fibres of ϕ have dimension l(R) if and only if X is the blow-up of a

manifold along a submanifold of codimension l(R) + 1. If one studies the proof

of Kawamata’s classification of smooth fourfold flips [Kaw89, Thm. 1.1] (which

corresponds to the case dimX = 4, dimE = dimF = 2, l(R) = 1) one sees that

for flipping contractions the proof of the normality requires completely different

techniques. We leave this interesting problem for future research.

§1.C. Further developments

Theorem 1.3 completely determines the equidimensional fibre type contractions of

maximal length: they are projective bundles. If the fibration is not equidimensional

it still gives a precise description of the Chow family defined by the fibration. It

seems reasonable to expect that this description will allow one to deduce some

information about higher-dimensional fibres. For example ifX of dimension nmaps

onto a threefold Y , it is not hard to see that any fibre component of dimension

n− 2 is normalised by Pn−2. More generally we expect that the theory of varieties

covered by high-dimensional linear spaces [Ein85], [Wís91b], [BSW92], [ABW92],

[Sat97], [NO11] can be applied in this context.

Another interesting line of investigation would be to prove that under addi-

tional assumptions the fibration ϕ is always equidimensional. We recall the follow-

ing conjecture by Beltrametti and Sommese:

Conjecture 1.5 ([BS93], [BS95, Conj. 14.1.10]). Let (X,L) be a polarised projec-

tive manifold of dimension n that is an adjunction theoretic scroll ϕ : X → Y over

a normal variety Y of dimension m. If n ≥ 2m− 1, then ϕ is equidimensional.

Wísniewski [Wís91b, Thm. 2.6] proved this conjecture if L is very ample and

n ≥ 2m, but apart from partial results for low-dimensional Y , [BSW92], [Som86],

[Tir10], this conjecture is very much open. We expect that Conjecture 1.5 even

holds in the more general setting of Theorem 1.3.

Conjecture 1.6. Let X be a projective manifold of dimension n that admits an

elementary contraction ϕ : X → Y of fibre type onto a normal variety Y of dimen-

sion m. Suppose that the contraction has length l(R) = n−m+ 1. If n ≥ 2m− 1,

then ϕ is equidimensional.
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§2. Notation and basic results

We work over the complex field C. A fibration is a projective surjective morphism

ϕ : X → Y with connected fibres between normal varieties such that dimX >

dimY . The ϕ-equidimensional (resp. ϕ-smooth) locus is the largest Zariski open

subset Y ∗ ⊂ Y such that for every y ∈ Y ∗, the fibre ϕ−1(y) has dimension dimX−
dimY (resp. has dimension dimX − dimY and is smooth).

An elementary Mori contraction of a quasi-projective manifold X is a mor-

phism ϕ : X → Y with connected fibres onto a normal variety Y such that the

anticanonical divisor −KX is ϕ-ample and the numerical classes of curves con-

tracted by ϕ lie on an extremal ray R ⊂ N1(X).

We will use the notation of [Kol96, Ch.II]: if U → V is a variety U that

is projective over some base V , we denote by RatCurvesn(U/V ) the space pa-

rameterising rational curves on U . If moreover s : V → U is a section, we de-

note by RatCurvesn(s, U/V ) the space parameterising rational curves passing

through s(V ). In the case where V is a point and x = s(V ), we simply write

RatCurvesn(U) and RatCurvesn(x, U).

Let F be a normal, projective variety of dimension d. If H ⊂ RatCurvesn(F )

is an irreducible component parameterising a family of rational curves that domi-

nates F , then for a general point x ∈ F one has

dimHx = dimH+ 1− d,

whereHx ⊂ RatCurvesn(x, F ) parameterises the members ofH passing through x.

If Hx is proper, it follows from bend-and-break [Mor79] that dimHx ≤ d−1. Thus

in this case we have

(2.1) dimH ≤ 2d− 2.

Fix now an ample Q-Cartier divisor A on F . Let C ⊂ F be a rational curve such

that

A · C = min{A · C ′ | C ′ ⊂ F is a rational curve};

then any irreducible component of H ⊂ RatCurvesn(F ) containing C is proper

[Kol96, Ch. II, Prop. 2.14], so it parameterises a family H of rational curves that is

unsplit in the sense of [CMSB02, Def. 0.2]. If moreover the irreducible componentH
has the maximal dimension 2d − 2, the family is doubly dominant, i.e. for every

x, y ∈ F there exists a member of the family H that joins x and y. In this setting

one can prove a version of Theorem 1.1 that includes normal varieties:

Theorem 2.1 ([CMSB02, Main Thm. 0.1]). Let F be a normal, projective variety

of dimension d and A an ample Q-Cartier divisor on F . Suppose that there exists
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an irreducible component H ⊂ RatCurvesn(F ) of dimension at least 2d − 2 such

that for a curve [C] ∈ H we have

A · C = min{A · C ′ | C ′ ⊂ F is a rational curve}.

Then F is isomorphic to a projective space Pd and H parameterises the family of

lines on Pd.

Remark. A proof of this statement following the strategy in [Keb02] can be found

in [CT07, §4].

If F is not smooth, it is in general quite hard to verify the condition dimH ≥
2d − 2 (cf. [CT07]). Since we work with an ambient space that is smooth, things

are much simpler:

Lemma 2.2. Let X be a quasi-projective manifold that admits a proper birational

morphism ϕ : X → Y such that −KX is ϕ-ample. Set

l(ϕ) := min{−KX · C | C ⊂ X a rational curve such that ϕ(C) = pt}.

Let E ⊂ X be an irreducible component of the exceptional locus such that

(2.2) 2 dimE − dimϕ(E) = dimX + l(ϕ)− 1.

Let F be an irreducible component of a general fibre of E → ϕ(E). Then the

normalisation of F is a projective space.

Proof. If ϕ(E) has positive dimension, let H ⊂ Y be a general hyperplane section

and XH := ϕ−1(H) its preimage. By adjunction the intersection numbers of −KX

and −KXH
with the ϕ-exceptional curves agree, so we have l(ϕ|XH

) ≥ l(ϕ). Let

EH be an irreducible component of E ∩ XH that surjects onto an irreducible

component of ϕ(E)∩H. Applying the inequality (1.1) to the birational morphism1

ϕ|XH
: XH → H and EH we get

2 dimEH − dimϕ(EH) ≥ dimXH + l(ϕ|XH
)− 1.

Since dimEH = dimE − 1 and dimϕ(EH) = dimϕ(E) − 1 the equality (2.2)

implies that this inequality is an equality and l(ϕ|XH
) = l(ϕ).

Thus we can take general hyperplane sections on Y until F is an irreducible

component of E, and the equality (2.2) simplifies to

2 dimF = dimX + l(ϕ)− 1.

1The proof of [Wís91a, Thm. 1.1] does not use that the contraction is elementary.
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Let C ⊂ F ⊂ X be a rational curve passing through a general point x ∈ F

that has minimal degree with respect to −KX . Then C belongs to an irreducible

family H ⊂ RatCurvesn(F ) of rational curves that dominates F and moreover Hx
is proper. Note now that any deformation of C in X is contracted by ϕ, hence

contained in F . Thus we can estimate dimH by applying the standard Riemann–

Roch estimate [CMSB02, p. 14] for the dimension of deformation spaces on the

manifold X:

dimH ≥ −KX · C − 3 + dimX ≥ l(ϕ)− 3 + dimX = 2 dimF − 2.

By (2.1) we see that these inequalities are in fact equalities, in particular one has

−KX · C = l(ϕ). Thus if ν : F̃ → F is the normalisation and H̃ ⊂ RatCurvesn(F̃ )

the family obtained by lifting the members of H, it satisfies the conditions of

Theorem 2.1 with respect to the polarisation A := −ν∗KX . Consequently, we

have F̃ ' PdimF and −ν∗KX ≡ l(R)H with H the hyperplane divisor.2

§3. Degenerations of Pd

In this section we prove our main results on degenerations of Pd satisfying a length

condition.

Proposition 3.1. Let X be a normal, quasi-projective variety and let ϕ : X → Y

be an equidimensional fibration of relative dimension d onto a normal variety such

that the general fibre F is isomorphic to Pd. Let A be a ϕ-ample Q-Cartier divisor,

and let e ∈ N be such that A|F ≡ eH with H the hyperplane divisor. Suppose that

the following length condition holds:

(3.1) A · C ≥ e ∀ C ⊂ X rational curve such that ϕ(C) = pt.

Then all the fibres are irreducible and generically reduced. Moreover the normali-

sation of any fibre is a projective space.

Remark 3.2. In general the degeneration behaviour of projective spaces can be

quite complicated, for example it depends in a subtle manner on the geometry

of the total space. Consider ϕ : X → C a fibration from a normal variety X

onto a smooth curve C such that all the fibres are integral and the general fibre

is isomorphic to Pd. If X is smooth (or at least factorial), then Tsen’s theorem

implies that X → C is a Pd-bundle ([NO07, Lemma 2.17], cf. also the proof of

[DP10, Lemma 4]). This assumption cannot be weakened:

2Cf. [Zha91] for an argument assuming smoothness of the general fibre.
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Example 3.3 ([AR12]). Let W4 ⊂ P6 be the cone over the Veronese surface

R4 ⊂ P5 (that is the 2-uple embedding of P2 in P5). The blow-up of W4 in the

vertex P is isomorphic to the projectivised bundle P(OP2 ⊕ OP2(−2)) → P2; this

desingularisation contracts a P2 with normal bundle OP2(−2) onto the vertex P .

In particular W4 is a terminal Q-factorial threefold and the canonical divisor KW4

is not Gorenstein, but 2-Gorenstein.

The base locus of a general pencil of hyperplane sections of W4 ⊂ P6 identifies

to a smooth quartic curve C ⊂ R4. If we denote by µ : X →W4 the blow-up in C, it

is a terminal, Q-factorial, 2-Gorenstein threefold admitting a fibration ϕ : X → P1

whose fibres are isomorphic to the members of the general pencil, in particular

they are integral. Thus the general fibre F is isomorphic to R4 ' P2, but the fibre

F0 corresponding to the hyperplane section through the vertex P is a cone over

the quartic curve C. In particular it is not normalised by P2.

Let us note that A := KX ⊗ µ∗OW4
(2) is a ϕ-ample Q-Cartier divisor such

that the restriction to a general fibre is numerically equivalent to the hyperplane

divisor H ⊂ P2. However this divisor is not Cartier, so Theorem 1.2 does not apply.

Let us also note that under the 2-uple embedding P2 ↪→ P5, a line is mapped onto

a conic. If we degenerate the general fibre F to F0, these conics degenerate to a

union of two lines l1 ∪ l2 passing through the vertex of the cone F0. Since we have

A · li = 1
2 , the length condition (3.1) is not satisfied.

Proof of Proposition 3.1. By assumption the general fibre is a projective space.

Let H ⊂ RatCurvesn(X/Y ) be the unique irreducible component such that a

general point corresponds to a line l contained in the general fibre F . We have

A · l = e and by (3.1) one has A · C ≥ e for every rational curve C contained

in a fibre, so the variety H is proper over the base Y [Kol96, Ch. II, Prop. 2.14].

Since the general fibre of H → Y corresponds to the 2d − 2-dimensional family

of lines in the projective space Pd ' F , it follows by upper semicontinuity that

for every 0 ∈ Y , all the irreducible components of the fibre H0 have dimension

at least 2d − 2. Let H0,i be the normalisation of such an irreducible component

and U0,i → H0,i be the universal family over it. The image of the evaluation

morphism p : U0,i → X is an irreducible component Di of the set-theoretical fi-

bre (ϕ−1(0))red, so it has dimension d. Let ν : D̃i → Di be the normalisation;

then the family of rational curves H0,i lifts to D̃i, so RatCurvesn(D̃i) has an ir-

reducible component of dimension at least 2d − 2. Since for any rational curve

C ⊂ Di ⊂ X we have A · C ≥ e by (3.1), the pull-back ν∗A also satisfies this in-

equality. Moreover ν∗A has degree exactly e on the rational curves parameterised

by H0,i. Thus we conclude with Theorem 2.1 that D̃i is isomorphic to a projective

space.
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We now suppose for contradiction that there exists a 0 ∈ Y such that the fibre

F0 := ϕ−1(0) is reducible or not generically reduced. Then we can decompose the

cycle [F0] as

[F0] =
∑
i

ai[Di]

with ai ∈ N and Di the irreducible components of the set-theoretical fibre

(ϕ−1(0))red. Since the degree is constant in a well-defined family of proper al-

gebraic cycles [Kol96, Prop. 3.12], we have

ed = [F ] ·Ad = [F0] ·Ad =
∑
i

ai([Di] ·Ad).

By assumption the sum on the right hand side is not trivial, so [D1] · Ad < ed.

Denote by ν : Pd → D1 the normalisation; then

(ν∗A)d = [Di] ·Ad < ed.

Thus we see that ν∗A ≡ bH with 0 < b < e. Yet this is impossible, since it implies

that for a general line l ⊂ Pd, we have

A · ν(l) = ν∗A · l = b < e,

contradicting (3.1).

Lemma 3.4. Let ϕ : X → Y be an equidimensional fibration from a normal va-

riety X onto a manifold Y . Suppose that ϕ is generically smooth and the general

fibre F is a Fano manifold with Picard number one. If ϕ has irreducible and gener-

ically reduced fibres, then −KX is Q-Cartier.

Proof. Denote by H the ample generator of Pic(F ) and let A be a ϕ-ample Cartier

divisor. Set e ∈ N such that A|F ≡ eH, and d ∈ N such that −KF ≡ dH. The

reflexive sheaf OX(eKX+dA) is locally free in a neighbourhood of a general fibre F

and the restriction OX(eKX + dA)⊗OF is isomorphic to the structure sheaf OF .

Up to replacing A by A ⊗ ϕ∗H with H a sufficiently ample Cartier divisor on Y

we can suppose without loss of generality that

H0(X,OX(eKX + dA)) ' H0(Y, ϕ∗OX(eKX + dA)) 6= 0.

Thus we obtain a nonzero morphism

OX(−eKX)→ OX(dA)

which is an isomorphism on the general fibre F . The vanishing locus is thus a Weil

divisor
∑
kiDi such that for all i we have ϕ(Di) ( Y . Since ϕ is equidimensional
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and all the fibres are irreducible and generically reduced we see that Di = ϕ∗Ei
with Ei a prime divisor on Y . Since Y is smooth, the divisor Ei is Cartier, hence∑
kiDi =

∑
kiϕ
∗Ei is Cartier. Thus we have an isomorphism

OX(−eKX) ' OX(dA−
∑

kiϕ
∗Ei).

The right hand side is Cartier, so KX is Q-Cartier.

Proposition 3.5. In the situation of Proposition 3.1, suppose that Y is smooth.

Then the fibration ϕ is a projective bundle.

Proof. We will proceed by induction on the relative dimension d, the case d = 1 is

[Kol96, Ch. II, Thm. 2.8]. Taking general hyperplane sections on Y and arguing by

induction on the dimension we can suppose without loss of generality that ϕ has at

most finitely many singular fibres. The problem being local, we can suppose that

Y ⊂ CdimY is a polydisc around 0 and ϕ is smooth over Y \ 0. Since all the fibres

are generically reduced, by Proposition 3.1 we can choose a section s : Y → X

such that s(0) ⊂ F0,nons where F0 := ϕ−1(0).

As in the proof of Proposition 3.1, we denote by H ⊂ RatCurvesn(X/Y )

the unique irreducible component such that a general point corresponds to a line l

contained in the general fibre F ' Pd. There exists a unique irreducible component

Hs ⊂ RatCurvesn(s,X/Y ) such that for general y ∈ Y the lines in ϕ−1(y) ' Pd

passing through s(y) are parameterised by Hs. If we denote by ψ : Hs → Y the

natural fibration, its general fibre is isomorphic to a projective space Pd−1. Let

q : Us → Hs be the universal family; then by [Kol96, Ch. II, Cor. 2.12] the fibration

q is a P1-bundle. Let p : Us → X be the evaluation morphism; then p is birational

since this holds for the restriction to a general ϕ-fibre. The variety X being normal,

we know by Zariski’s main theorem that p has connected fibres. The family of

rational curves being unsplit, it follows from bend-and-break that p has finite

fibres over X \ s(Y ). Thus we have an isomorphism

(3.2) X \ s(Y ) ' Us \ E,

where E := (p−1(s(Y )))red. Again by bend-and-break and connectedness of the

fibres the algebraic set E is irreducible, so it is a prime divisor with a finite,

birational morphism q|E : E → Hs. Since Hs is normal, we see by Zariski’s main

theorem that q|E is an isomorphism and E is a q-section.

By Lemma 3.4 we know that −KX is Q-Cartier, so −K(Us\E) is Q-Cartier.

Since Us \ E → Hs is locally trivial (it is a C-bundle), it follows that −KHs is

Q-Cartier. Since Us → Hs is a P1-bundle, it now follows that −KUs is Q-Cartier.

The P1-bundle Us → Hs has a section E, so it is isomorphic to the projectivised
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bundle P(V ) → Hs with V := ϕ∗OX(E). By the canonical bundle formula we

have

(3.3) KUs ≡ q∗(KHs + detV )− 2E.

We claim that the following length condition holds:

(3.4) −KHs
· C ≥ d ∀ C ⊂ Hs rational curve such that ψ(C) = pt.

Assuming this for the time being, let us see how to conclude: applying the induction

hypothesis to ψ, we see that Hs → Y is a Pd−1-bundle. Since q is a P1-bundle,

we see that the central fibre of Us
ψ◦q−−→ Y is a P1-bundle over Pd−1 that contracts

a section onto a smooth point of F0. A classical argument [Mor79] shows that

F0 ' Pd.

Proof of the claim. The claim is obvious for curves in the general fibres which are

isomorphic to Pd−1, so we can concentrate on curves in the central fibre H0 :=

(ψ−1(0))red. We set U0 := q−1(H0) and denote by ν : H̃0 → H0 the normalisation.

Then U0×H0
H̃0 is normal and q̃0 : U0×H0

H̃0 → H̃0 is a P1-bundle. By Proposition

3.1 we already know that F0,red is normalised by Pd, so we obtain a commutative

diagram

Pd

��
U0 ×H0

H̃0
ν̃
//

q̃

��

µ

55

U0
p0 //

q0

��

F0,red

H̃0
ν // H0

Thus the curves parameterised by H̃0 are lines in Pd, in particular H̃0 ' Pd−1 and

U0 ×H0
H̃0 ' P(OPd−1 ⊕OPd−1(−1))

with ν̃−1(E ∩ U0) corresponding to the exceptional section.

In order to check the length condition (3.4) it is sufficient to do this for a curve

C0 ⊂ H0 such that C0 = ν(l0) with l0 a general line in H̃0 ' Pd−1. We can lift l0
to a subsection l′ ⊂ P(OPd−1 ⊕ OPd−1(−1)) that is disjoint from the exceptional

section, so we obtain a curve C ′ := ν̃(l′) ⊂ U0 \E such that C ′ → C0 is birational.

In particular we have

−KHs
· C0 = −q∗KHs

· C ′,

so it is sufficient to show that the right hand side is equal to d. The rational curve C ′

does not meet E and µ(l′) is a line, so C ′ corresponds to a point in H that is not
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in Hs. Using the isomorphism (3.2) we can deform C ′ to a curve C ′′ ⊂ Us that is a

line in a general fibre ϕ−1(y) ' Pd and which does not meet the point s(y), so C ′′

is disjoint from E. Yet for such a curve the formula (3.3) restricted to a general

fibre immediately shows that −q∗KHs
· C ′′ = d.

Remark 3.6. Proposition 3.5 should be true without the assumption that Y is

smooth. In fact this assumption is only needed to ensure via Lemma 3.4 that −KX

(and by consequence −KHs and −KUs) is Q-Cartier. However our computations

only use that these varieties are “relatively Q-Cartier”, i.e. some multiple of the

canonical divisor is linearly equivalent to a Cartier divisor plus some Weil divisors

that are pull-backs from the base Y . We leave the technical details to the interested

reader. (Note added in proof: this statement has now been proved by Araujo and

Druel [AD12, Prop. 4.10].)

§4. Proofs of main results

Proof of Theorem 1.3. By Theorem 1.1 the general ϕ-fibre is a projective space.

If ϕ is equidimensional, then A := −KX satisfies the length condition (3.1)

in Proposition 3.1 with e = l(R). Thus we know that every fibre is generically

reduced. In particular for every y ∈ Y there exists a point x ∈ ϕ−1(y) such that

the map between the Zariski tangent spaces

Tϕ : TX,x → TY,y

has rank equal to dimY . Since X is smooth, this implies that Y is smooth at y.

Conclude with Proposition 3.5.

Suppose now that ϕ is not equidimensional. Let now Ȳ be the closure of

the ϕ-equidimensional locus in the relative Chow variety Chow(X/Y ) and let

X̄ → Ȳ be the universal family. Let Y ′ → Ȳ be a desingularisation, and write

X ′ for the normalisation of X̄ ×Ȳ Y ′. We denote by ϕ′ : X ′ → Y ′ the natural

fibre space structure and by µ′ : X ′ → X the birational morphism induced by

the map X̄ → X. By the rigidity lemma there exists a birational morphism

µ : Y ′ → Y such that µ ◦ ϕ′ = ϕ ◦ µ′. Note also that the restriction of µ′ to any

ϕ′-fibre is finite, so the pull-back A′ := −(µ′)∗KX is a ϕ′-ample Cartier divisor.

The divisor A′ on X ′ satisfies the length condition (3.1) in Proposition 3.1 with

e = l(R). Since Y ′ is smooth, we can conclude with Proposition 3.5.

Proof of Theorem 1.4. By Lemma 2.2 the general ϕ̃-fibre is a projective space.

Moreover if ν : Ẽ → E ⊂ X denotes the normalisation, then A := −ν∗KX

(restricted to the ϕ̃-equidimensional locus) satisfies the length condition (3.1) in

Proposition 3.1 with e = l(R). If C ⊂ Z̃ is a curve cut out by general hyperplane
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sections, then C is smooth and the fibration ϕ̃−1(C) → C is equidimensional,

so it is a projective bundle by Proposition 3.5. Thus ϕ̃ is a projective bundle in

codimension one.

The proof of the second statement is analogous to the proof of the second

statement in Theorem 1.3.

Acknowledgements

We thank C. Araujo for sending us her inspiring preprint [AR12]. We thank

M. Andreatta, S. Druel, H. Hamm, F. Han, P. Popescu-Pampu, M. Wolff and
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