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A Non-linear Approach to Signal Processing by
Means of Vector Measure Orthogonal Functions

by
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Abstract

Sequences of real functions that are orthogonal with respect to a vector measure are a
natural generalization of orthogonal systems with respect to a parametric measure. In
this paper we develop a new procedure to construct non-linear approximations of func-
tions by defining orthogonal series in spaces of square integrable functions with respect
to a vector measure whose Fourier coefficients are also functions. We study the conver-
gence properties of such series, defining a convenient approximation procedure for signal
processing involving time dependence of the measure. Some examples involving classical
orthogonal polynomials are given.
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§1. Introduction

Let (Ω,Σ) be a measurable space and X a Banach space. Given a vector measure

λ : Σ → X, consider a sequence (fn) of (non-zero) real functions that are λ-

square integrable. We say that it is orthogonal with respect to λ if for any distinct

j, k ∈ N,
∫
fjfk dλ = 0. This notion generalizes the usual orthogonality given

by the integral with respect to a scalar measure, and provides a natural setting

for studying the properties of functions that are orthogonal with respect to a

family of measures. The analysis of such sequences has a long history, for instance
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regarding orthogonal polynomials. At the end of the 19th century some relevant

cases of families of polynomials that are orthogonal with respect to a large set of

scalar measures—indeterminate measures—were found. The first example of such

an indeterminate measure was presented by Stieltjes in 1894 (see [31]). He showed

that ∫ ∞
0

xn−log x sin[2π log(x)] dx = 0 for each n = 0, 1, . . . ,

which implies that all the densities

dα(x) =
1 + α sin[2π log(x)]

xlog x
, α ∈ [−1, 1],

on the half-line have the same moments. The polynomials that are orthogonal with

respect to this class of measures are a special case of the Stieltjes–Wigert polyno-

mials. The study of such measures was the starting point of a mathematical theory

that was first developed by Riesz and Nevanlinna and is still a fruitful research

area (see for instance §2.7 in [32], and [2, 18, 21]). Using the family (dα)α∈[−1,1]

of densities, a vector measure can be defined in an easy way (see Example 2.2). In

general this construction can be done for abstract sets of measures—for instance,

parametric models in statistics—and then finding sequences of functions that are

orthogonal for all the elements of a family of measures is equivalent to finding

sequences that are orthogonal with respect to a vector measure.

From the point of view of vector measure theory, orthogonality with respect

to a vector measure has been studied in a series of papers in the last 10 years (see

[9, 10, 11, 20, 28]). The aim of this paper is to develop an approximation procedure

for sequences of functions that are orthogonal with respect to a vector measure.

Take a signal f(t) belonging to a real Hilbert space L2([a, b], µ) and suppose

that we want to find a good approximation for it as a series defined by functions

belonging to a particular family. Suppose that the properties of the measure that

models the approximation depend also on t, i.e. there is not a fixed measure,

but a parametric family of measures, t  µt. Such a parametric measure can be

represented by means of a vector measure and a Bochner integrable function, and

the functions that can be analyzed in this setting are exactly the ones that are

2-integrable with respect to the vector measure λ.

In this paper we show that integration with respect to vector measures pro-

vides a good framework for this kind of analysis. Using orthogonality with respect

to a vector measure, we define a suitable functional structure and an error, and we

prove a best approximation theorem with respect to this error. Moreover, we ana-

lyze the nature of the Bochner integrable function that determines the parametric

measure λφ(ω) (see Definition 3.1) and we show that the function can always be

pointwise approximated in the norm of the Bochner space.
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Let us now introduce the basics of Bartle–Dunford–Schwartz integration (see

for instance [19, Ch. 3]). Let (Ω,Σ) be a measurable space. Consider a Banach space

X and a countably additive vector measure λ : Σ→ X. A measurable function f

is scalarly integrable if it is integrable with respect to each scalar measure

〈λ, x′〉(A) := 〈λ(A), x′〉, A ∈ Σ,

for every x′ ∈ X ′, where X ′ is the space of X and BX′ is the ball of X ′. We say

that a scalarly integrable function f is integrable with respect to λ (λ-integrable for

short) if for each A ∈ Σ there is an element
∫
A
f dλ ∈ X such that 〈

∫
A
f dλ, x′〉 =∫

A
fd〈λ, x′〉 for every x′ ∈ X ′. Let |〈λ, x′〉| be the variation of the scalar measure

〈λ, x′〉. The semivariation of λ in a setA ∈ Σ is given by ‖λ‖(A) = sup{|〈λ, x′〉|(A) :

x′ ∈ BX′}.
A natural setting for our analysis is the space L2(λ) of λ-square integrable

functions, i.e., the set of (classes of) measurable functions f such that f2 is λ-

integrable, where the classes of functions are defined by means of the equivalence

relation ≈ given by f ≈ g if the set where they differ has null λ-semivariation. The

quantity

‖f‖L2(λ) := sup
x′∈BX′

(∫
Ω

|f |2 d|〈λ, x′〉|
)1/2

is well-defined for every f ∈ L2(λ) and gives a norm on L2(λ), which becomes a

Banach function space in the sense of [14, p. 28] over a Rybakov measure for λ

when the λ-a.e. order is considered (see [6, Ch. IX] for the definition of Rybakov

measure). A product of two λ-square integrable functions is always an integrable

function (see [6, 7, 19, 27] for all these definitions and results). For a positive

vector measure λ the expression |||f |||L2(λ) := ‖
∫

Ω
|f |2 dλ‖1/2, f ∈ L2(λ), coincides

with the norm. Notice that L2(λ) is not in general isomorphic to a Hilbert space,

although it is always 2-convex with 2-convexity constant 1 (see [19, Proposition

3.28]).

Let g ∈ L2(λ). Following the research on applications of orthonormal se-

quences on spaces of vector measure integrable functions (see [9, 10, 11, 20, 28]),

we develop a formalism to find an approximation to g with respect to a distance

defined using the norm ‖ · ‖L2(λ) by means of products of special sequences of

functions (fi)
∞
i=1 ⊂ L2(λ) and other functions αφi , i ∈ N, whose definition depends

on a Bochner integrable function φ. Essentially the Bochner integrable function

provides a parametrization of a family of measures that are defined as 〈λ, x′〉 for

different x′ ∈ X ′. The functions αφi will be called pointwise dependent Fourier

coefficients, since the construction is closely related to the usual way of defining

these coefficients in the Hilbert space formalism. However, the series defined in
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this way is not given by a linear combination of the elements of an orthonormal

system, since in our case the coefficients of the expansion are also functions. Thus,

we obtain a non-linear approximation to the function g.

These ideas are presented in the five sections of this paper. After this introduc-

tory section, we establishing in Section 2 some preliminary definitions and results.

Section 3 is devoted to establish our functional setting and our main approxima-

tion result (Theorem 3.7), together with some examples. We also present in that

section an explicit formula for the pointwise dependent Fourier coefficients for the

case where the (parametric) measure is defined by a simple function. The resulting

easy representation of the coefficients motivates Section 4, where continuity of the

pointwise dependent coefficients with respect to the Bochner norm is analyzed.

Finally, in Section 5 we give a particular example to illustrate our technique, and

we present an application to approximation of signals in acoustics.

Our main references on measure spaces, scalar measures, integration with

respect to scalar measures, vector measures and function spaces are [8, 6, 14, 19].

The reader can find general definitions and results on integration with respect to

vector measures and the related L1(λ) spaces in [12, 13, 4].

§2. Preliminaries

Throughout, λ : Σ→ X will be a Banach space valued countably additive vector

measure. Let µ be a finite control measure for λ that satisfies L1(λ) ⊆ L1(µ).

Such a measure always exists and it can be written as a Rybakov measure for λ,

i.e. |〈λ, x′0〉| for a certain x′0 ∈ X ′ (see [6]). Since each x′ ∈ X ′ defines a scalar

measure, we can consider Bochner integrable functions φ ∈ L1(µ,X ′) such that

〈λ, φ(ω)〉 is a positive measure for each ω ∈ Ω µ-a.e. The notion of λ-orthogonality

for sequences of functions (see [9, 10, 11, 28, 20]) becomes useful to ensure the

orthogonality of the sequence with respect to every scalar product defined by

each positive measure 〈λ, φ(ω)〉, ω ∈ Ω. In fact, this leads to the definition of the

pointwise dependent Fourier coefficients, which are functions αi : Ω→ R.

Definition 2.1. Let (Ω,Σ) be a measurable space and X a Banach space. Given

a vector measure λ : Σ→ X, consider a sequence (fi)
∞
i=1 of real functions that are

λ-square integrable. We say that (fi)
∞
i=1 is λ-orthogonal if

(2.1)

∫
f2
i dλ 6= 0 for all i ∈ N,

∫
fifj dλ = 0, i 6= j, i, j ∈ N.

Furthermore, we say that a λ-orthonormal sequence (fn)n is λ-orthonormal if∥∥∥∥∫ f2
n dλ

∥∥∥∥
X

= 1 for all n ∈ N.
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Example 2.2. The first example of an indeterminate measure was presented by

Stieltjes in 1894 (see [31]). Recall that a measure µ is said to be indeterminate

when the solution to the Moment Problem is not unique. For each n ∈ N, consider

the integrals ∫ ∞
0

xne− ln2(x)[1 + α sin(2π ln(x))] dx =
√
π e(n+1)2/4.

If we take |α| < 1 then µα(x) = e− ln2(x)[1 + α sin(2π ln(x))] > 0 is a positive

function for all x ∈ [0,∞[, thus Fα(y) =
∫ y

0
e− ln2(x)xn[1 + α sin(2π ln(x))] dx is

a family of non-decreasing distributions with support into [0,∞[ which have the

same moments Sn =
√
π e(n+1)2/4. We consider the (n+1)×(n+1) Hankel matrix

(2.2) ∆n =



S0 S1 S2 . . . Sn

S1 S2

...

S2

...

Sn . . . S2n


.

The sequence (Sn)∞n=0 is positive definite if det(∆n) > 0 for all n ∈ N. Let P[x] be

the real polynomials of degree n ∈ N. We define the linear operator L : P[x]→ R
by L(Qn(x)) =

∑n
k=0 akSk where Qn(x) =

∑n
k=0 akx

k.

Note that if the sequence (Sn)∞n=0 is positive definite then the polynomial

(2.3) Pn(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

S0 S1 . . . Sn

S1
. . .

...
...

Sn−1 . . . S2n−1

1 x . . . xn

∣∣∣∣∣∣∣∣∣∣∣∣∣
satisfies

(2.4) L(xkPn(x)) =

{
0 if k < n,

det(∆n) if k = n,

from which it follows that for every polynomial Qn−1(x) of degree less than or

equal to n− 1 we have

(2.5) L(Qn−1(x)Pn(x)) = 0.
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It is immediate that the sequence (Sn =
√
π e(n+1)2/4)∞n=0 is positive definite

and ∫ ∞
0

xkPn(x)e− ln2(x)[1 + α sin(2π ln(x))] dx =

{
0 if k < n,

det(∆n) if k = n,

for every α ∈ R, |α| < 1.

The above construction provides a procedure for building an m-orthogonal

sequence for a suitable vector measure m. For instance, consider the following

polynomials obtained from the moment problem presented by Stieltjes:

p0(x) = S0 = 2.27588,

p1(x) =−4.81803 + 2.27588x,

p2(x) = 183.457− 139.22x+ 15.059x2,

p4(x) =−655344.+ 611203.x− 106211.x2 + 3438.93x3,

...

Now we take Ω = (0,∞) and Σ the σ-algebra of Lebesgue subsets of Ω. We can

define ν : Ω→ c0 by

ν(A) =

(∫
A

e− ln2(x)

m

[
1 +

1

m+ 1
sin(2π ln(x))

]
dx

)∞
m=1

,

where dx is the Lebesgue measure and A ∈ Σ. Using elementary integral calculus,

it is easy to prove that for every A ∈ Σ,

lim
m→∞

∫
A

e− ln2(x)

m

[
1 +

1

m+ 1
sin(2π ln(x))

]
dx = 0.

This shows that ν is well defined and so countably additive. Moreover, it is also

clear that pl ∈ L2(ν) and for all j < l,∫ ∞
0

pj(x)pl(x) dν = 0

while ∥∥∥∥∫ pl(x)pl(x) dν

∥∥∥∥
c0

= Bl

where Bl is a non-null constant for all l ∈ N.

Example 2.3. Let us provide another example of a ν-orthogonal sequence with

respect to a vector measure ν. Consider the family {Pn,k}∞n,k=1 of Stieltjes–Wigert
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polynomials. For every n ∈ N and k ∈ N,

Pn,k(x) =
(−1)nq(k)n/2+1/4√∏k

j=1(1− q(k)j)

n∑
i=0

[(
n

i

)]
q

q(k)i
2

(−
√
q(k)x)i

where q(k) = exp(−(2k2)−1), k is a positive integer and we call[(
n

i

)]
q

=
(1− q(k)n)(1− q(k)n−1) · · · (1− q(k)n−i+1)

(1− q(k))(1− q(k)2) · · · (1− q(k)i)
,

a q-binomial coefficient (also called a Gaussian coefficient or Gaussian polynomial).

Let us also consider the family of normalized weights

{wk}∞k=1 =

{
1

α(k)
√
π
kx−k

2 log x

}∞
k=1

in [0,∞), where α(k) = e1/4k2 . It is well-known that the family of polynomials

above is orthogonal in the following sense: for a fixed k ∈ N, the sequence (Pn,k)∞n=1

is orthogonal with weight wk, i.e.∫ ∞
0

Pn,k(x)Pm,k(x)wk(x) dµ(x) = 0, n 6= m

(see [32, 2.7]). Consider the Lebesgue measure space ([0,∞),B, µ) and the set

Ω0 =
⋃∞
k=1([0,∞)× {k}). Let Σ0 be the σ-algebra given by elements of the form

A =
⋃∞
k=1(Ak × {k}) ⊆ Ω0, where Ak is a Lebesgue measurable subset of [0,∞)

for every k. Let us define the vector measure ν : Σ0 → c0 as

ν(A) :=

∞∑
k=1

(
1

k

∫
Ak

wk(x) dµ(x)

)
ek,

where A is an element of Σ0 as above.

Suppose now that the polynomials Pn,k are normalized in the Hilbert space

L2([0,∞), wk dµ) given by the weighted measure wk(x)dµ(x). Define the functions

Qn,k : Ω0 → [0,∞) by

Qn,k((xj , j)) := k1/2Pn,k(xj)δk,j

for (xj , j) ∈ Ω0. A careful consideration of the integrals with respect to ν of

products of such functions shows that∫
Ω0

Qn,kQm,s dν = 0
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whenever n 6= m or k 6= s. To see this, just take into account that if k 6= s, then∫
Ω0

Qn,kQm,s dν =

(∑
j 6=s,k

(
s1/2k1/2

j

∫ ∞
0

0 · 0wj(x) dµ(x)

)
ej

)

+

(
s1/2k1/2

k

∫ ∞
0

Pn,k(x) · 0wk(x) dµ(x)

)
ek

+

(
s1/2k1/2

s

∫ ∞
0

0 · Pm,s(x)ws(x) dµ(x)

)
es = 0

and for k = s and n 6= m,∫
Ω0

Qn,kQm,k dν =

(∑
j 6=k

(
k

j

∫ ∞
0

0 · 0wj(x) dµ(x)

)
ej

)

+

(∫ ∞
0

Pn,k(x) · Pm,k(x)wk(x) dµ(x)

)
ek = 0.

Therefore, every subsequence of (Qn,k)∞n,k=1 defines a ν-orthonormal sequence.

§3. Pointwise dependent Fourier coefficients

In this section we develop the framework and establish the main results of the

paper concerning approximation of functions. Roughly speaking, we provide the

mathematical tools to define parametric measures by means of Bochner integrable

functions, which leads to the definition of pointwise dependent Fourier coefficients

and motivates the definition of error for our technique. We also compute the coef-

ficients when the Bochner integrable function that defines the parametric measure

is a simple function. This leads in Section 4 to show how we can compute these

coefficients in the general case by approximating by the ones that hold in the sim-

ple functions case. Throughout this section (Ω,Σ, µ) will be a finite measure space

that controls the Banach space valued measure λ : Σ→ X and L1(λ) ⊆ L1(µ).

Let 1 ≤ p < ∞. Let φ : Ω → X be a Bochner integrable function, i.e. a

strongly measurable function such that the integral
∫

Ω
‖φ(ω)‖ dµ(ω) is finite. We

will use such individual functions to define the class of measures that will be

considered in the following sections. We will also consider the space Lp(µ,X) of

classes of Bochner p-integrable functions, that is, functions φ ∈ M(Ω, X) such

that
∫

Ω
‖φ(ω)‖pX dµ(ω) <∞, whereM(Ω, X) is the set of all strongly measurable

functions from Ω to X. The norm of this space is given by

‖φ‖ :=

(∫
Ω

‖φ(ω)‖pX dµ(ω)

)1/p

, φ ∈ Lp(µ,X).
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Although the functions φ as above will be considered as single functions, for ap-

proximation results we will use the Bochner norm, so φ will be considered some-

times as a representative of a class of functions. For clarity, we will occasionally

use [φ] to denote the class of φ. The set of (classes of) simple functions is dense in

Lp(µ,X) (see for instance Definition 11.42 in [1, Ch. 11]).

Definition 3.1. Let X be a Banach space and X ′ its dual space. We say that a

Bochner integrable function φ : Ω→ X ′ defines a parametric measure λφ(ω) if the

formula

λφ(ω)(A) := 〈λ, φ(ω)〉(A), A ∈ Σ,

gives a positive measure that controls µ for every ω ∈ Ω.

Note that for h ∈ L1(λ), the function ω 7→
∫

Ω
h dλφ(ω) = 〈

∫
h dλ, φ(ω)〉

is measurable, since by hypothesis φ is strongly (and hence weak∗) measurable

and
∫
h dλ ∈ X. This implies in particular that the functions αφi that appear in

Definition 3.2 below are measurable. For the following definition and some purposes

of this section it is enough to assume that the function φ is Gel’fand integrable

(see for instance [1, 11.9]). However, for the approximation procedure developed

in Section 4, Bochner integrability is needed.

Definition 3.2. Consider a λ-orthogonal sequence (fi)
∞
i=1 and a Bochner inte-

grable function φ that defines a parametric measure λφ(ω). For each i ∈ N, we

define the i-th pointwise dependent Fourier coefficient of g ∈ L2(λ) as the func-

tion αφi : Ω→ R given by

αφi (ω) :=

∫
Ω
gfi dλφ(ω)∫

Ω
f2
i dλφ(ω)

.

Definition 3.2 makes sense µ-a.e.: in fact, if we have two different Bochner

integrable functions φ1 and φ2 that belong to the same class in L1(µ,X ′), the

coefficients αφ1

i (ω) and αφ2

i (ω) are equal µ-a.e. However, note that these functions

are defined pointwise, and will be considered in this way throughout the paper.

Definition 3.3. Let φ : Ω → X ′ be a Bochner integrable function. We say that

a sequence (βi)
∞
i=1 of measurable functions βi : Ω → R is φ-compatible with the

λ-orthogonal sequence (fi)
∞
i=1 (compatible for short if the function φ is clear from

the context) if the function
∑∞
i=1 β

2
i (ω)(

∫
Ω
f2
i dλφ(ω)) is integrable with respect

to µ.

Lemma 3.4. Let φ : Ω→ X ′ be a Bochner integrable function that defines a para-

metric measure λφ(ω). Let (fi)
∞
i=1 be a λ-orthogonal sequence and let g ∈ L2(λ).
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Then the corresponding sequence (αφi )∞i=1 of pointwise dependent Fourier coeffi-

cients is φ-compatible with (fi)
∞
i=1.

Proof. Each function αφi is clearly measurable, being a quotient of measurable

functions. Recall that g ∈ L2(λφ(ω)) for every ω ∈ Ω. Clearly for every ω ∈ Ω,∑∞
i=1 α

φ
i (ω)fi(η) is integrable with respect to the measure λφ(ω) as a consequence

of the definition of αφi and the Hilbert space structure of L2(λφ(ω)) at each point ω.

Fix ω ∈ Ω. Bessel’s inequality gives

∞∑
i=1

|αφi (ω)|2
∫

Ω

f2
i dλφ(ω) = lim

N

N∑
i=1

|αφi (ω)|2
∫

Ω

f2
i dλφ(ω)

= lim
N

N∑
i=1

(
∫

Ω
gfi dλφ(ω))

2∫
Ω
f2
i dλφ(ω)

≤ ‖g‖2L2(λφ(ω))
.

The function ω  ‖g‖2L2(λφ(ω))
is measurable. Thus, the computation

∥∥‖g‖2L2(λφ(ω))

∥∥
L1(µ)

=

∫
Ω

∣∣∣∣∫
Ω

g2(η) dλφ(ω)(η)

∣∣∣∣ dµ(ω)

=

∫
Ω

〈∫
Ω

g2(η) dλ(η), φ(ω)

〉
dµ(ω)

≤
∥∥∥∥∫

Ω

g2(η) dλ(η)

∥∥∥∥ · ∫
Ω

‖φ(ω)‖ dµ(ω)

= ‖g‖2L2(λ) · ‖φ‖L1(µ,X′) <∞

finishes the proof.

Lemma 3.5. Let φ : Ω→ X ′ be a Bochner integrable function that defines a para-

metric measure λφ(ω). Let (βi)
∞
i=1 be a sequence of functions that is φ-compatible

with the λ-orthogonal sequence (fi)
∞
i=1 and let g ∈ L2(λ). Then the function

ψ(ω) :=

∫
Ω

(
g(η)−

∞∑
i=1

βi(ω)fi(η)
)2

dλφ(ω)(η)

is defined µ-a.e. and integrable with respect to µ.

Proof. For every ω ∈ Ω, the definition of compatibility implies that the function∑∞
i=1 βi(ω)fi(η) is the limit of the partial sums

∑N
i=1 βi(ω)fi(η) in L2(λφ(ω)).
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Consequently, fixing ω we have

ψ(ω) := lim
N

∫
Ω

(
g(η)−

N∑
i=1

βi(ω)fi(η)
)2

dλφ(ω)(η)

= lim
N

∫
Ω

(
g2(η) +

N∑
i=1

β2
i (ω)f2

i (η)− 2

N∑
i=1

βi(ω)g(η)fi(η)
)
dλφ(ω)(η)

=

∫
Ω

g2 dλφ(ω)(η) +

∞∑
i=1

β2
i (ω)

(∫
Ω

f2
i dλφ(ω)(η)

)

− 2

∞∑
i=1

βi(ω)

∫
Ω

g(η)fi(η) dλφ(ω)(η)

(for the last term of the sum just use orthogonality of (fi)
N
i=1 and Hölder’s inequal-

ity and the compatibility of (βi)). Thus the sequence (τN ) of measurable functions,

where

τN (ω) :=

∫
Ω

(
g(η)−

N∑
i=1

βi(ω)fi(η)
)2

dλφ(ω)(η)

converges pointwise to ψ and so it is a measurable function. Moreover, the sequence

(τ
1/2
N ) is order bounded by the square integrable function

h(ω) :=

(∫
Ω

g2(η) dλφ(ω)(η)

)1/2

+

(∫
Ω

∞∑
i=1

β2
i (ω)f2

i (η) dλφ(ω)(η)

)1/2

.

The Dominated Convergence Theorem for the Lebesgue integral implies that the

pointwise limit limN τ
1/2
N = ψ1/2 belongs to L2(µ), and so ψ ∈ L1(µ).

Lemma 3.5 allows us to give the following definition.

Definition 3.6. Let φ : Ω→ X ′ be a Bochner integrable function that defines a

parametric measure λφ(ω) and let (fi)
∞
i=1 be a λ-orthogonal sequence. Let g ∈ L2(λ)

and consider a sequence (βi)
∞
i=1 of functions which is compatible with (fi)

∞
i=1. We

define the error ε associated to the function g ∈ L2(λ) and the sequence (βi)
∞
i=1

by

ε(g, (βi)
∞
i=1) :=

∫
Ω

(∫
Ω

(
g(η)−

∞∑
i=1

βi(ω)fi(η)
)2

dλφ(ω)(η)

)
dµ(ω).

The following result is a direct consequence of the definitions and Lemma

3.5 and relates the best approximation with error ε to the sequence of pointwise

dependent Fourier coefficients.
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Theorem 3.7. Let φ : Ω → X ′ be a Bochner integrable function that defines a

parametric measure λφ(ω) and let g ∈ L2(λ). Let (fi)
∞
i=1 be a λ-orthogonal se-

quence. If (βi(ω))∞i=1 is a sequence of functions that is φ-compatible with (fi)
∞
i=1,

then

ε(g, (αφi )∞i=1) ≤ ε(g, (βi)∞i=1).

Proof. Consider the functions

ψα(ω) :=

(∫
Ω

( ∞∑
i=1

αφi (ω)fi(η)
)2

dλφ(ω)(η)

)1/2

and

ψβ(ω) :=

(∫
Ω

( ∞∑
i=1

βi(ω)fi(η)
)2

dλφ(ω)(η)

)1/2

and take a µ-null set A such that ψα and ψβ are defined for all ω ∈ Ω \ A. Since

g ∈ L2(λ) we have g ∈ L2(λφ(ω)) for every ω ∈ Ω. The Hilbert space structure of

the spaces L2(λφ(ω)) gives the inequalities∫
Ω

(
g −

∞∑
i=1

αφi (ω)fi(η)
)2

dλφ(ω)(η) ≤
(∫

Ω

(
g −

∞∑
i=1

βi(ω)fi(η)
)2

dλφ(ω)(η)

)
for each ω ∈ Ω, since the pointwise dependent Fourier coefficients give the best

approximation at such ω in each L2(λφ(ω)). Then the result is a direct consequence

of the lattice properties of L2(µ).

The fact that ε(g, (αi)
∞
i=1) = ε(g, (βi)

∞
i=1) only when ψα(ω) = ψβ(ω) µ-a.e. is

a direct consequence of the above proof.

Let φ1 and φ2 be Bochner integrable functions that define parametric mea-

sures λφ1 and λφ2 . Suppose that there is a positive function k(ω) such that

φ1(ω) = k(ω)φ2(ω). Then it is clear by the definition of the pointwise dependent

Fourier coefficients that

αφ1

i (ω) = αφ2

i (ω)

for every ω ∈ Ω. This motivates the following definition.

Definition 3.8. We say that a strongly measurable function φ : Ω→ X is point-

wise normalized if ‖φ(ω)‖X = 1 for every ω ∈ Ω. We will write C(µ,X) for the set

of all such functions. Note that the set of all (classes of µ-a.e. equal) functions in

C(µ,X) is included in all the Lp(µ,X) spaces, 1 ≤ p ≤ ∞.

Proposition 3.9. Let 1 ≤ p <∞ and let X be a Banach space. Then the classes

of functions belonging to C(µ,X) define a closed subset in Lp(µ,X), and the set
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of (classes of ) functions

SC(µ,X) =
{ m∑
i=1

viχAi : ‖vi‖ = 1, {Ai}mi=1 ⊂ Σ partition of Ω, m ∈ N
}

is dense in the set of (equivalence classes of µ-a.e. equal) functions in C(µ,X),

when it is considered as a subset of Lp(µ,X).

Proof. Consider a convergent sequence ([φn])∞n=1 of classes of functions in C(µ,X)

and let limn[φn] = [φ]. Suppose that no representative φ of [φ] belongs to C(µ,X).

Then for all functions in [φ], ‖φ(ω)‖ 6= 1 in a measurable set B such that µ(B) 6= 0.

Thus, there is an ε > 0 such that satisfies that∫
B

∣∣‖φ‖ − 1
∣∣p dµ > ε.

But this would imply, for each n ∈ N,

∫
Ω

‖φ− φn‖p dµ ≥
∫

Ω

∣∣‖φ‖ − ‖φn‖∣∣p dµ =

∫
Ω

∣∣‖φ‖ − 1
∣∣p dµ ≥ ∫

B

∣∣‖φ‖ − 1
∣∣p dµ > ε,

which contradicts the fact that limn[φn] = [φ].

Now let us show that SC(µ,X) is dense. Let φ ∈ C(µ,X). Since the set

of simple functions is dense in Lp(µ,X), there is a sequence (φn)∞n=1 of simple

functions such that limn[φn] = [φ]. We can assume without loss of generality

that ‖φn(ω)‖ 6= 0, and then we can define the sequence of pointwise normalized

functions (φn(ω)/‖φn(ω)‖)∞n=1. The inequalities(∫
Ω

∥∥∥∥φ− φn
‖φn‖

∥∥∥∥p dµ)1/p

≤
(∫

Ω

‖φ− φn‖p dµ
)1/p

+

(∫
Ω

∣∣‖φn‖ − 1
∣∣p dµ)1/p

≤ 2

(∫
Ω

‖φ− φn‖p dµ
)1/p

show that the sequence ([φn(ω)/‖φn(ω)‖])∞n=1 also converges to [φ] in Lp(µ,X).

This finishes the proof.

We can obtain with a direct calculation an expression for the pointwise depen-

dent Fourier coefficients when the function φ that defines the parametric measure

λφ(ω) is a simple function. If φ(ω) :=
∑m
i=1 x

′
iχAi(ω) and fj is an element of the

λ-orthogonal sequence (fi)
∞
i=1, we obtain

αφj (ω) =

∑m
i=1〈

∫
Ω
gfj dλ, x

′
i〉χAi(ω)∑m

i=1〈
∫

Ω
f2
j dλ, x

′
i〉χAi(ω)

=

m∑
i=1

〈
∫

Ω
gfj dλ, x

′
i〉

〈
∫

Ω
f2
j dλ, x

′
i〉
χAi(ω),
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where we have supposed that 〈
∫

Ω
f2
j dλ, x

′
i〉 6= 0 for every i = 1, . . . ,m, since∫

f2
j dλφ(ω) for all ω and (Ai)

m
i=1 is a disjoint sequence. In the other case, the

corresponding i-th term does not appear in the sum.

This definition shows that the calculation of the pointwise dependent Fourier

coefficients is easy when φ is a simple function. On the other hand, Proposition 3.9

implies that we can approximate every normalized function that can be used to

define a parametric measure by simple functions in SC(µ,X ′). Therefore, devising

an approximation procedure depends on the definition of reasonable conditions

to ensure the continuity of the pointwise dependent Fourier coefficients αφi with

respect to φ in Lp(µ,X
′) for a certain 1 ≤ p <∞. We will establish such conditions

in the following section.

Example 3.10. (a) Let ([−π, π],Σ, µ) be the Lebesgue measure space and con-

sider the vector measure m0 : Σ→ `∞ given by

m0(A) :=

(∫
A∩[−π,π]

cos2(kx) dµ

)∞
k=1

.

The measure m0 is clearly countably additive since each integral over A in the

definition is bounded by µ(A). Consider the functions f1(x) = sinx, f2(x) =

sin 2x, . . . , fn(x) = sinnx, n ≥ 1. Let us show that this family of functions defines

an m0-orthogonal sequence. For every couple n,m ∈ N and k ∈ N such that the

expressions below are defined, we obtain the following equalities.

If m 6= n, then∫
fnfm dm0 =

(∫ π

−π
sin(nx) sin(mx) cos2(kx) dx

)∞
k=1

=

(
1

8

(
sin[(2k −m− n)π]

−2k +m+ n
+

sin[2(m− n)π]

m− n
+

sin[(2k +m− n)π]

2k +m− n

+
sin[(2k −m+ n)π]

2k −m+ n
− 2 sin[(m+ n)π]

m+ n
− sin[(2k +m+ n)π]

2k +m+ n

))∞
k=1

.

For m = n and k 6= n, we get∫
fnfn dm0 =

(∫ π

−π
sin2(nx) cos2(kx) dx

)∞
k=1

=

(
1

8

(
4π +

2 sin(2kπ)

k
− sin(2(k − n)π)

k − n

− 2 sin(2nπ)

n
− sin(2(k + n))π

k + n

))∞
k=1

.

Notice that the quotients of the expressions above are 0 for some values n,m, k.

Consider now the functions that are given for i, j, r ∈ N, k = 2r, n = 3i and
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m = 3j. Define the (countably additive) vector measure

m(A) :=

(∫
A∩[−π,π]

2

π
cos2(2rx) dµ

)∞
r=1

.

Then, as a consequence of the calculations above,∫
fnfm dm = (δnm)∞r=1.

Thus, for these values, the sequence (f3i)
∞
i=1 is m-orthogonal.

(b) Let us define a parametric measure using the vector measure m given

above. Here, `1 is considered (isometrically) as a subspace of (`∞)′. Consider the

family of sets In = [−π + π/2n, π − π/2n] and the standard basis (en) of `1. Let

us take the Bochner integrable function φ given by

φ(ω) =
∑
n≥1

χIn\In−1
(ω)en.

It is easy to prove that this function is strongly measurable and is the limit of the

sequence of simple functions φN (ω) :=
∑N
n=1 χIn\In−1

(ω)en, N ∈ N. Let g(x) = x

and let us compute the corresponding pointwise dependent Fourier coefficients.

For every i ∈ N,

αφi (ω) =
〈
∫

[−π,π]
gfi dm, φ(ω)〉

〈
∫

[−π,π]
f2
i dm, φ(ω)〉

=
∑
r≥1

(
cos((21+r − 3i)π)

21+r − 3i
− 2 cos(3iπ)

3i
− cos((21+r − 3i)π)

21+r + 3i

)
χIr\Ir−1

(ω).

Therefore, the function h(ω) :=
∑∞
i=1 α

φ
i (ω) sin(3iω) approximates g.

§4. Continuity of the pointwise dependent Fourier coefficients

Take a vector measure λ, a Bocher integrable function φ and a sequence (φn)∞n=1

of simple functions whose classes converge to [φ] in the Bochner space L1(µ,X ′).

In this section we analyze the convergence properties of the pointwise dependent

Fourier coefficients αφni to αφi for a given λ-orthogonal sequence (fi)
∞
i=1 and a

function g ∈ L2(λ). Our aim is to show that under suitable requirements on the

functions φn and φ, the projections
∑∞
i=1 α

φn
i fi converge to

∑∞
i=1 α

φ
i fi in L2(λ).

Further assumptions are necessary to obtain the results of this section. It is

important to note that our results are meaningful even in the case of finite (even

short) sequences of λ-orthogonal functions, since the formulas provide a nonlinear

approximation that is completely different from the usual (Hilbert space) linear

approximations. In Section 5 we will show an easy example.
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Recall that we are supposing that the λ-orthogonal sequence (fi)
∞
i=1 belongs

to L2(µ) (since L1(λ) ⊆ L1(µ)). For instance, this is just a consequence of its

λ-square integrability when µ is defined as 〈λ, x′〉 for a certain element x′ ∈ X ′.
In general, we will assume that the vector measure λ is equivalent to µ.

We use a pointwise boundedness condition for the functions that define a

parametric measure.

Definition 4.1. Let ε > 0. We say that a Bochner integrable function φ : Ω→ X ′

that defines a parametric measure λφ(ω) is ε-lower bounded with respect to the λ-

orthogonal sequence (fi)
∞
i=1 if for every i ∈ N and ω ∈ Ω,

ε <

〈∫
Ω

f2
i dλ, φ(ω)

〉
.

Lemma 4.2. Let g ∈ L2(λ) and let φ ∈ C(µ,X ′) be a Bochner integrable function

that defines a parametric measure λφ(ω). Assume that φ is ε-lower bounded with

respect to (fi)
∞
i=1 for some ε > 0. Then the Fourier coefficient αφi of g is square

integrable with respect to µ for every i ∈ N. Moreover, ([αφi ])∞i=1 is a norm bounded

sequence in L2(µ).

Proof. Let i ∈ N. The definition of the pointwise dependent Fourier coefficients

gives that αφi (ω) is a measurable function. Moreover,

(αφi (ω))2 =
〈
∫

Ω
gfi dλ, φ(ω)〉2

〈
∫

Ω
f2
i dλ, φ(ω)〉2

≤
〈
∫

Ω
g2 dλ, φ(ω)〉〈

∫
Ω
f2
i dλ, φ(ω)〉

〈
∫

Ω
f2
i dλ, φ(ω)〉2

≤
‖
∫

Ω
g2 dλ‖ ‖φ(ω)‖

ε
.

Thus, ∫
Ω

(αφi (ω))2 dµ ≤
‖
∫

Ω
g2 dλ‖
ε

‖φ‖L1(µ,X′).

This inequality and the well-known properties of the Banach function space L2(µ)

give the result.

Theorem 4.3. Let g ∈ L2(λ). Let ε > 0 and let φ ∈ C(µ,X ′) be a function that is

ε-lower bounded with respect to the λ-orthogonal sequence (fi)
∞
i=1. Let (φn)∞n=1 be a

sequence of functions in C(µ,X ′) such that ([φn])∞n=1 converges to [φ] in L2(µ,X ′).

Then for every i ∈ N,

lim
n→∞

‖[αφi ]− [αφni ]‖L2(µ) = 0.

Proof. Let i ∈ N. Then there is a natural number n0 such that for every n ≥ n0,

ε <

〈∫
Ω

f2
i dλ, φn(ω)

〉
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µ-a.e. We will simply write (φn)∞n=1 for the subsequence (φn)∞n=n0
. An application

of Lemma 4.2 shows that αφi , α
φn
i ∈ L2(µ) for each n ∈ N. Now we define

hn(ω) :=
〈
∫

Ω
f2
i dλ, φ(ω)〉

〈
∫

Ω
f2
i dλ, φn(ω)〉

,

for every n ∈ N and ω ∈ Ω if 〈
∫

Ω
f2
i dλ, φn(ω)〉 6= 0, and hn(ω) = 0 otherwise.

Then the result is a direct consequence of the following calculations:

‖αφi − α
φn
i ‖L2(µ)

≤
(∫

Ω

(〈
∫

Ω
gfi dλ, φ(ω)〉 − hn(ω)〈

∫
Ω
gfi dλ, φn(ω)〉)2

〈
∫

Ω
f2
i dλ, φ(ω)〉2

dµ

)1/2

≤
∥∥∥∥∫

Ω

gfi dλ

∥∥∥∥1

ε

(∫
Ω

‖φ− hnφn‖2 dµ
)1/2

≤
∥∥∥∥∫

Ω

gfi dλ

∥∥∥∥ 1

ε

(∫
Ω

‖φ− φn‖2 dµ
)1/2

+

∥∥∥∥∫
Ω

gfi dλ

∥∥∥∥ 1

ε

(∫
Ω

(1− hn)2‖φn‖2 dµ
)1/2

≤
∥∥∥∥∫

Ω

gfi dλ

∥∥∥∥ 1

ε

[(∫
Ω

‖φ− φn‖2 dµ
)1/2

+
1

ε

∥∥∥∥∫
Ω

f2
i dλ

∥∥∥∥(∫
Ω

‖φ− φn‖2 dµ
)1/2]

.

The results of Section 3 ensure that the set of simple functions is dense in

C(µ,X ′) in all the spaces Lp(µ,X). Therefore, Theorem 4.3 implies that under the

assumption that φ is ε-lower bounded with respect to (fi)
∞
i=1, we can approximate

µ-a.e. each Fourier coefficient αφi (i ∈ N) by the sequence (αφni )∞n=1, whenever

(φn)∞n=1 is a sequence of simple functions defining a sequence of parametric mea-

sures λφn(ω) converging to φ in L2(µ,X ′). If the λ-orthogonal sequence is finite,

we obtain an approximation calculus under the assumptions given above.

Definition 4.4. Let m ∈ N and consider a finite λ-orthogonal sequence (fi)
m
i=1.

Let φ ∈ C(µ,X ′) define a parametric measure λφ(ω). Then we define the 1-error

for the approximation of a function g ∈ L2(λ) to be

E1(g, φ) :=
∥∥∥g − m∑

i=1

αφi fi

∥∥∥
L1(µ)

µ-a.e.

Corollary 4.5. Let m ∈ N and consider a function φ ∈ C(µ,X ′) that defines

a parametric measure λφ(ω) and it is ε-lower bounded with respect to the (finite)

λ-orthogonal sequence (fi)
m
i=1. Let δ > 0. Then there is a simple function φ′ ∈

C(µ,X ′) such that ∥∥∥ m∑
i=1

αφi fi −
m∑
i=1

αφ
′

i fi

∥∥∥
L1(µ)

≤ δ,
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and consequently

|E1(g, φ)− E1(g, φ′)| ≤ δ.

Proof. We just need to consider the following inequalities and apply Theorem 4.3:∥∥∥ m∑
i=1

αφi fi −
m∑
i=1

αφ
′

i fi

∥∥∥
L1(µ)

≤
∫

Ω

( m∑
i=1

(αφi − α
φ′

i )2
)1/2( m∑

i=1

f2
i

)1/2

dµ

≤
(∫

Ω

m∑
i=1

(αφi − α
φ′

i )2 dµ

)1/2(∫
Ω

m∑
i=1

f2
i dµ

)1/2

.

§5. An example: approximation with finite λ-orthogonal sequences

when λ is defined by a simple function

In this section we develop an easy numerical example in order to show the nonlinear

approximation that can be obtained with our procedure. Let λ : Σ → X be a

countably additive vector measure, and let µ be a finite control measure for λ that

is equivalent to it and L1(λ) ⊆ L1(µ).

Definition 5.1. We say that λ is µ-simply representable if there is a natural

number m ∈ N and a simple function Ψ(ω) :=
∑m
j=1 xjχAj (ω) such that {Aj : j =

1, . . . ,m} defines a (measurable) partition of Ω, {xj : j = 1, . . . ,m} is a linearly

independent subset of X, and

λ(A) =

∫
A

Ψ(ω) dµ =

m∑
j=1

µ(A ∩Aj)xj , A ∈ Σ.

Note that in this case the integral of a function f ∈ L1(λ) can be directly

computed by means of the formula∫
A

f dλ =

m∑
j=1

(∫
A∩Aj

f dµ

)
xj , A ∈ Σ.

If A ∈ Σ, we denote by L2(A,Σ|A, µ|A) the function space defined by restrict-

ing the measure space (Ω,Σ, µ) to A. In particular, we can consider functions in

L2(µ) as functions in L2(A,Σ|A, µ|A).

Lemma 5.2. Let λ be a µ-simply representable vector measure by means of a

function Ψ :=
∑m
j=1 xjχAj and let (fi)

∞
i=1 be a λ-orthogonal sequence. Then this

sequence is contained in the space L2(µ) and is also orthogonal in it. Moreover, it

is orthogonal in each space L2(Aj ,Σ|Aj , µ|Aj ), j = 1, . . . ,m.

Proof. A direct calculation leads to the equivalence of the norms ‖ · ‖L2(µ) and

‖ · ‖L2(λ), and then it is easy to show that L2(λ) = L2(µ). Moreover, since the
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set {xj : j = 1, . . . ,m} is linearly independent, for each j = 1, . . . ,m there is a

functional x′j ∈ X ′ such that 〈xj , x′j〉 = τj > 0 and 〈xi, x′j〉 = 0 for every i 6= j.

Then, for every i, j, k = 1, . . . ,m with i 6= j, we obtain

τk

∫
Ak

fifj dµ =

〈∫
Ω

fifj dλ, x
′
k

〉
= 〈0, x′k〉 = 0.

This gives the result.

The following is a direct consequence of Lemma 5.2.

Lemma 5.3. Let λ be a µ-simply representable vector measure by means of a

function Ψ :=
∑m
j=1 xjχAj . Let n ∈ N and let (fi)

n
i=1 be a λ-orthogonal sequence.

Then the sequence (fi,j)
n,m
i=1,j=1 in L2(µ) given by the functions fi,j := fiχAj ,

i = 1, . . . , n, j = 1, . . . ,m, is orthogonal.

Theorem 5.4. Let λ, Ψ, (fi)
n
i=1 and (fi,j)

n,m
i=1,j=1 be as in Lemma 5.3. Then there

is a Bochner integrable simple function Ψ′ such that for every g ∈ L2(µ) and every

i = 1, . . . , n, the corresponding pointwise dependent Fourier coefficient satisfies

αΨ′

i (ω)fi(ω) =

m∑
j=1

αi,jfi,j(ω),

where the constants αi,j =
∫
Aj
gfi dµ/

∫
Aj
f2
i dµ are the Fourier coefficients related

to the functions fi,j.

Consequently, the projection of the function g on the subspace of L2(µ) gen-

erated by (fi,j)
n,m
i=1,j=1 is given by

n∑
i=1

αΨ′

i (ω)fi(ω).

Proof. The function Ψ′ can be defined by means of the functionals x′j that appear

in the proof of Lemma 5.2. Using the elements introduced there, we define

Ψ′(ω) :=

m∑
j=1

x′jχAj (ω).

Now we just compute αΨ′

i (ω) for every i = 1, . . . , n by straightforward calculation:

αΨ′

i (ω) =
〈
∫

Ω
gfi dλ,Ψ

′(ω)〉
〈
∫

Ω
f2
i dλ,Ψ

′(ω)〉
=

∑m
j=1 τj(

∫
Aj
gfi dµ)χAj∑m

j=1 τj(
∫
Aj
f2
i dµ)χAj

=

m∑
j=1

(∫
Aj
gfi dµ∫

Aj
f2
i dµ

)
χAj .

These equalities imply the result.
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We finish this section with an example and an application to approximation

of signals in acoustics.

Example 5.5. Consider the 3-dimensional Euclidean space `23 and the vector

measure λ0 : Σ→ `23 given by

λ0(A) :=

3∑
j=1

µ0(A ∩ [j − 1, j])ej , A ∈ Σ,

where (ei)
3
i=1 is the basis of `23 and ([0, 3],Σ, µ0) is the Lebesgue measure space

associated with the interval [0, 3]. It is clear that λ0 is a simply representable vector

measure.

For every x ∈ [0, 3], we define the following polynomials (see Figure 1):

p1(x) := 1,

p2(x) :=
3

2
− 11

2
x+

9

2
x2 − x3,

p3(x) :=
171

175
− 63

5
x+

393

10
x2 − 252

5
x3 +

309

10
x4 − 9x5 + x6.

Figure 1. The functions of the λ0-orthogonal sequence.

A direct calculation shows that this defines a (finite) λ0-orthogonal sequence of

λ0-square integrable functions.

Let g(x) := 3.5
10x2+1 + 2e(−3(x−1.5)2) be a function in L2(λ0) (see Figure 2).

Let us consider different functions φ and compute the corresponding pointwise

dependent Fourier coefficients αφi . It is clear that in this case L2(λ0) = L2(µ0).

Let φ1(x) :=
∑3
j=1 χ[j−1,j](x)ej . This function satisfies the conditions of The-

orem 5.4, and the approximation given by the pointwise dependent Fourier coeffi-

cients

αφ1

i (x) =

3∑
j=1

∫
[j−1,j]

pig dµ0∫
[j−1,j]

p2
i dµ0

χ[j−1,j](x), i = 1, 2, 3,
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Figure 2. The function g(x) := 3.5
10x2+1 + 2e(−3(x−1.5)2).

gives the approximation

h1(x) :=

3∑
i=1

αφ1

i (x)pi(x)

to g given by the projection on the subspace of L2(µ0) generated by the functions

pi,j := piχ[j−1,j], i, j = 1, 2, 3. Note that h1 is a linear combination of discontinuous

functions and is not continuous (see Figure 3).

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0

1

2

3

h1HxL

Figure 3. The function h1(x) :=
∑3
j=1 α

φ1

i pi(x).

If we consider the function φ2(x) := χ[0,3](e1 + e2 + e3)/
√

3 and apply the

same procedure (see Figure 5), we obtain a set of coefficients αφ2

i , i = 1, 2, 3,

that are constant functions. In fact, we obtain the coefficients of the standard

approximation in the Hilbert space L2(µ0) by the functions p1, p2 and p3,

h2(x) =

3∑
i=1

αφ2

i pi(x) = 1.22283p1(x) + 0.735055p2(x) + 0.104471p3(x).
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0.0 0.5 1.0 1.5 2.0 2.5 3.0

0

1

2

3

gHxL

h1HxL

Figure 4. The function g(x) and the approximation h1(x) using the parametrization

corresponding to φ1(x).

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

2.0

<Φ2,e3>

<Φ2,e2>

<Φ2,e1>

Figure 5. The graph of the projections of the function φ2(x). All of them coincide.

However h2 does not provide a good approximation to the function g. We

continue by testing and we can obtain a continuous function that approximates g.

Consider the function

ψ(x) :=

3∑
j=1

exp

(
−
(
x− (j − 1/2)

0.4

)2)
ej ,

and define (see Figure 7)

φ3(x) :=
ψ(x)

‖ψ(x)‖
, x ∈ [0, 3].

In this case, the pointwise dependent Fourier coefficients that give the approxima-

tion h3(x) =
∑3
i=1 α

φ3

i (x)pi(x) are

αφ3

i (x) =

∑3
j=1(

∫
[j−1,j]

fig dµ0) exp(−(x−(j−1/2)
0.4 )2)∑3

j=1(
∫

[j−1,j]
f2
i dµ0) exp(−(x−(j−1/2)

0.4 )2)
, i = 1, 2, 3.
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0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

2.0

h2HxL

Figure 6. The function h2(x) :=
∑3
j=1 α

φ1

i pi(x).
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<Φ3,e3>

<Φ3,e2>

<Φ3,e1>

Figure 7. The graphs of the projections of φ3(x).

Figure 8. g(x) and the approximations h2(x) and h3(x).

Figure 8 shows g(x) and the approximations h2(x) and h3(x) that are contin-

uous by the construction.

The results on the continuity of the pointwise dependent Fourier coefficients

can be applied to obtain the corresponding errors of this kind of approximation.

If φ, φ′ ∈ L1(µ,X ′) are such that there is an ε > 0 such that both φ and φ′ are
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ε-lower bounded with respect to the corresponding λ-orthogonal sequence (as in

the case of the example), we can obtain bounds for the distances ‖αφi − α
φ′

i ‖L2(µ)

in terms of ‖φ−φ′‖L1(µ,X′) following the technique given in the proof of Theorem

4.3. Therefore, we can also obtain a bound for the L1(µ)-norm of the difference

between the approximations associated to the corresponding functions φ and φ′,

the 1-errors E1(g, φ) and E1(g, φ′) and a bound for the difference between them

using the procedure given in the proof of Corollary 4.5.

Remark 5.6. As a concluding remark, we point out that Figure 5 shows that

our approach is fundamentally different from the classical one. This procedure—

that weighs every function fi with a Fourier coefficient that depends on the

parametrized measure and it is in fact a function itself depending also on the

variable— produces a non-linear approximation of the original function g. That

is, suppose that our function g is the result of sampling a signal during a time in-

terval of length ∆T (in the preceding example, the interval is [0, 3], i.e., ∆T = 3).

Then we choose functions fi (in the example {p1(x), p2(x), p3(x)}) according to

the shape of g and we can produce two approximations shown in the example.

Suppose that these three functions are so chosen that the Hilbert space approxi-

mation is very good. Now we sample the signal again and we obtain a new function

g. It is not guaranteed that the same functions fi will be suitable for this new ap-

proximation of g. In fact, Hilbert approximation can be very bad. In our approach,

parametrized Fourier coefficients avoid this and allow one to keep the same bases

of functions during iterative approximations. Consequently, our procedure is a

natural framework for a dynamic approximation of functions depending on one

parameter, for example time. In the following section, we show how this technique

can be applied to a real-world problem.

§5.1. Application to real data

In the previous sections we have developed our approximation considering a func-

tion g that mimics signals that appear in some applied areas, like physics. In this

section we are going to present an analysis of a true signal coming from the field

of acoustics. In order to be consistent we are going to use the same sequence of

functions as in the previous section. We will see that our technique is so flexible

that functions that are not adequate “a priori” because their shape does not fit

the shape of the signal, can still be used in our case. Our approximation produces

better results that the corresponding standard approximation.

We are going to use a particular example related to acoustics, more precisely

to sonic crystals (SC). These are periodic arrangements of scatterers embedded

in a medium with different physical properties, in our case cylinders of a rigid
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material embedded in air [17]. These structures, when considered as an infinite

periodic medium (an eigenvalue problem), present ranges of frequencies where the

transmission of waves is forbidden. These ranges are known as band gaps (BGs).

In the last years, there is an increasing interest in the potential exploitation of SC

as environmental noise barriers [30], [26]. However, the acoustical properties of SC

depend on several factors showing some particularities in their attenuation proper-

ties. For example, the size and position of the BGs depend on several factors such

as the direction of incidence of the wave on the SC and the type of arrangement

of the scatterers [29]. As a consequence, the development of screens based on SC

is not a trivial process.

When a finite structure is considered, the correct understanding of these at-

tenuation bands requires multiple scattering theory [3], [33]. Then waves are not

transmitted through the structures due to the appearance of evanescent modes (see

[22, 23, 25]). In this section we are dealing with one of these evanescent modes.

The physical nature of such modes remains elusive and recent developments have

allowed to clarify part of their nature. But the comparison of experimental mea-

surements with theoretical models implies having good approximations of such a

kind of signals.

In this section we show that orthogonal functions with respect to vector mea-

sures could be an interesting tool in studying such phenomena. If we measure the

acoustic pressure between two rows of a SC, we observe a signal corresponding to

an evanescent mode (see Figure 9), that is, a mode whose amplitude decreases as

Figure 9. Evanescent modes. Both top and bottom panels show examples of evanes-

cent modes. The exponential decay of the modes can be observed. The central

panel shows a normal oscillating mode propagated through the cristal. The figure

shows the experimental measurement of the acoustic field between two rows of the

crystal.
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the wave passes through the periodic structure. Figure 9 shows the experimental

measurement of the acoustic field between two rows of the crystal. The top and

bottom panels show examples of these evanescent modes where one can see the

exponential decay (fitted using the values of the pressure at the maxima) of the

modes when the impinging wave propagates through the cristal. In comparison,

the central panel shows a normal oscillating mode propagated through the cristal.

For comparison with the preceding approximations we use the same finite

sequence of λ0-orthogonal functions (λ0 defined as before; see Example 5.5), shown

in Figure 1 and also the same parametrizations φ2(x), that provide the same

coefficients as the standard approximation in the Hilbert space L2(µ0) by the

functions p1, p2 and p3, and φ3(x). The signal to be approximated is represented

in Figure 10.

If we apply our approximation with parametrization corresponding to φ2(x),

we obtain the result shown in Figure 11. The result is not surprising because

“a priori” the shape of the functions considered in our approximation is unsuit-

able for the shape of the signal. Keeping apart the oscillations of the signal. the

approximation equivalent to the Hilbert approximations is not able to reproduce

the decay of the original signal.

Figure 10. Data points of the signal to be approximated. These data correspond

to the evanescent mode shown in the top panel of Figure 9.

Figure 11. Hilbert-like approximation of the signal using the parametrization given

by the function φ2(x).
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But the parametrization using φ3(x) allows us to weigh the different behaviour

of the signal in the support, and the result is much more satisfactory, keeping the

same finite sequence of λ0-orthogonal functions {p1, p2, p3}. The result can be seen

in Figure 12.

Figure 12. Vector measure non-linear approximation of the signal using the

parametrization given by the function φ3(x).

As a summary of this section, it is clear that a much more suitable finite

sequence of functions can be found in order to have a correct approximation from

the Hilbert space point of view but, when a fixed sequence has to be kept for doing

the approximation of different signals whose shape can change in different time

intervals, the procedure based on orthogonality with respect to a vector measure

turns out to be a convenient tool that provides approximations that reproduce

correctly the shape of the original signal.
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p-integrable functions with respect to a vector measure, Positivity 10(2006), 1–16.
Zbl 1111.46018 MR 2223581

[8] D. H. Fremlin, Measure theory, Vol. 1, Torres Fremlin, Colchester, 2000.
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