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Matrix-valued Orthogonal Polynomials Related to
(SU(2)× SU(2), diag), II

by

Erik Koelink, Maarten van Pruijssen and Pablo Román

Abstract

In a previous paper we have introduced matrix-valued analogues of the Chebyshev poly-
nomials by studying matrix-valued spherical functions on SU(2) × SU(2). In particular
the matrix-size of the polynomials is arbitrarily large. In this paper, the matrix-valued
orthogonal polynomials and the corresponding weight function are studied. In particular,
we calculate the LDU-decomposition of the weight where the matrix entries of L are given
in terms of Gegenbauer polynomials. The monic matrix-valued orthogonal polynomials
Pn are expressed in terms of Tirao’s matrix-valued hypergeometric function using the
matrix-valued differential operators of first and second order of which the Pn’s are eigen-
functions. From this result we obtain an explicit formula for coefficients in the three-term
recurrence relation satisfied by the polynomials Pn. These differential operators are also
crucial in expressing the matrix entries of PnL as a product of a Racah and a Gegenbauer
polynomial. We also present a group-theoretic derivation of the matrix-valued differential
operators by considering the Casimir operators corresponding to SU(2) × SU(2).
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§1. Introduction

Matrix-valued orthogonal polynomials introduced by Krein [18], [19] have been

studied from different perspectives in recent years, and related to various different
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subjects, such as higher-order recurrence equations, spectral decompositions, and

representation theory.

The matrix-valued orthogonal polynomials studied in this paper arise from

the representation theory of the group SU(2)× SU(2) with the compact subgroup

SU(2) embedded diagonally; see [16] for this particular case and Gangolli and

Varadarajan [9], Tirao [21], Warner [23] for general group-theoretic interpreta-

tions of matrix-valued spherical functions. An important example is the study of

the matrix-valued orthogonal polynomials for the case (SU(3),U(2)), investigated

by Grünbaum, Pacharoni and Tirao [10] who mainly exploited invariant differ-

ential operators. In [16] we have studied the matrix-valued orthogonal operators

related to the case (SU(2)×SU(2),SU(2)), which lead to the matrix-valued orthog-

onal polynomial analogues of Chebyshev polynomials of the second kind Un, in a

different fashion. In the current paper we study these matrix-valued orthogonal

polynomials in more detail.

In order to state the most important results for these matrix-valued orthogonal

polynomials we recall the following weight function [16, Thm. 5.4]:

W (x)n,m =
√

1− x2
m∑
t=0

αt(m,n)Un+m−2t(x),

αt(m,n) =
2`+ 1

n+ 1

(2`−m)!m!

(2`)!
(−1)m−t

(n− 2`)m−t
(n+ 2)m−t

(2`+ 2− t)t
t!

(1.1)

if n ≥ m and W (x)n,m = W (x)m,n otherwise. Here and elsewhere in this paper

` ∈ 1
2N, n,m ∈ {0, 1, . . . , 2`}, and Un is the Chebyshev polynomial of the second

kind. Note that the sum in (1.1) actually starts from min(0, n+m−2`). It follows

that W : [−1, 1] → M2`+1(C), W (x) = (W (x)n,m)2`n,m=0, is a (2` + 1) × (2` + 1)-

matrix-valued integrable function such that all moments
∫ 1

−1 x
nW (x) dx, n ∈ N,

exist. From the construction in [16, §5] it follows that W (x) is positive definite

almost everywhere. By general considerations (e.g. [11]), we can construct the

corresponding monic matrix-valued orthogonal polynomials {Pn}∞n=0, so

(1.2) 〈Pn, Pm〉W =

∫ 1

−1
Pn(x)W (x)(Pm(x))∗ dx = δnmHn,

0 < Hn ∈M2`+1(C),

where Hn > 0 means that Hn is a positive definite matrix, Pn(x) =
∑n
k=0 x

kPnk
with Pnk ∈ M2`+1(C) and Pnn = I, the identity matrix. The polynomials Pn are

the monic variants of the matrix-valued orthogonal polynomials constructed in

[16] from representation-theoretic considerations. Note that (1.2) defines a matrix-

valued inner product 〈·, ·〉W on the matrix-valued polynomials. Using the orthog-

onality relations for the Chebyshev polynomials Un it follows that
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(1.3) (H0)nm = δnm
π

2

(2`+ 1)2

(n+ 1)(2`− n+ 1)
,

which is in accordance with [16, Prop. 4.6]. From [16] we can also obtain an ex-

pression for Hn by translating the result of [16, Prop. 4.6] to the monic case in [16,

(4.6)], but since the matrix Υd in [16, (4.6)] is rather complicated, this leads to a

complicated expression for the squared norm matrix Hn in (1.2). In Corollary 5.4

we give a simpler expression for Hn from the three-term recurrence relation.

These polynomials have a group-theoretic interpretation as matrix-valued

spherical functions associated to (SU(2)× SU(2),SU(2)) (see [16] and Section 7).

In particular, in [16, §5] we have shown that the corresponding orthogonal poly-

nomials are not irreducible, but can be written as a 2-block-diagonal matrix of

irreducible matrix-valued orthogonal polynomials. Indeed, if we put J ∈ M2`(C),

Jnm = δn+m,2` we have JW (x) = W (x)J for all x ∈ [−1, 1], and by [16, Prop. 5.5],

J and I span the commutant {Y ∈ M2`(C) | [Y,W (x)] = 0 ∀x ∈ [−1, 1]}. Note

that J is a self-adjoint involution, J2 = I, J∗ = J . It is easier to study the poly-

nomials Pn, and we discuss the relation to the irreducible cases when appropriate.

In this paper we continue the study of the matrix-valued orthogonal poly-

nomials and the related weight function. Let us discuss in some more detail the

results we obtain. Some of these results employ the group-theoretic interpretation

and some are obtained using special functions. Essentially, we obtain the following

results for the weight function:

(a) explicit expression for det(W (x)), hence proving [16, Conjecture 5.8] (see

Corollary 2.3);

(b) an LDU-decomposition for W in terms of Gegenbauer polynomials (see The-

orem 2.1).

Part (a) can be proved by group-theoretic considerations, and gives an alternative

proof for a related statement by Koornwinder [17], but we actually calculate it

directly from (b). The LDU-decomposition hinges on expressing the integral of

the product of two Gegenbauer polynomials and a Chebyshev polynomial as a

Racah polynomial (see Lemma 2.7).

For the matrix-valued orthogonal polynomials we obtain the following results:

(i) Pn as eigenfunctions to a second-order matrix-valued differential operator

D̃ and a first-order matrix-valued differential operator Ẽ (cf. [16, §7], see

Theorem 3.1 and Section 3);

(ii) the group-theoretic interpretation of D̃ and Ẽ using the Casimir operators for

SU(2)× SU(2) (see Section 7), for which the paper by Casselman and Miličić

[6] is essential;



274 E. Koelink, M. van Pruijssen and P. Román

(iii) explicit expressions for the matrix entries of the polynomials Pn in terms

of matrix-valued hypergeometric series using the matrix-valued differential

operators (see Theorem 4.5);

(iv) explicit expressions for the matrix entries of the polynomials PnL in terms

of (scalar-valued) Gegenbauer polynomials and Racah polynomials using the

LDU-decomposition of the weight W and differential operators (see Theo-

rem 6.2);

(v) explicit expression for the three-term recurrence satisfied by Pn (see Theo-

rem 5.3).

In particular, (i) and (ii) follow from group-theoretic considerations (see Sections

3 and 7). This then gives the opportunity to link the polynomials to the matrix-

valued hypergeometric differential operator, leading to (iii). The explicit expres-

sion in (iv) involving Gegenbauer polynomials is obtained by using the LDU-

decomposition of the weight matrix and the differential operator D̃. The expres-

sion of the coefficients as Racah polynomials involves the first-order differential

operator as well. Finally, in [16, Thm. 4.8] we have obtained an expression for the

coefficients of the three-term recurrence relation where the matrix entries of the

coefficient matrices are given as sums of products of Clebsch–Gordan coefficients,

and the purpose of (v) is to give a closed expression for these matrices. The case

` = 0, or the spherical case, corresponds to the Chebyshev polynomials Un(x),

which occur as spherical functions for (SU(2) × SU(2),SU(2)) or equivalently as

characters on SU(2). For these cases almost all of the statements above reduce

to well-known statements for Chebyshev polynomials, except that the first-order

differential operator has no meaning for this special case.

The structure of the paper is as follows. In Section 2 we discuss the LDU-

decomposition of the weight, but the main core of the proof is deferred to Ap-

pendix A. In Section 3 we discuss the matrix-valued differential operators to which

the matrix-valued orthogonal polynomials are eigenfunctions. We give a group-

theoretic proof of this result in Section 7. In [16, §7] we have derived the same

operators by a judicious guess and next proving the result. In order to connect to

Tirao’s matrix-valued hypergeometric series, we switch to another variable. The

connection is made precise in Section 4. This result is next used in Section 5

to derive a simple expression for the coefficients in the three-term recurrence of

the monic orthogonal polynomials, improving a lot on the corresponding result

[16, Thm. 4.8]. In Section 6 we explicitly establish that the entries of the matrix-

valued orthogonal polynomials times the L-part of the LDU-decomposition of the

weight W can be given explicitly as a product of a Racah polynomial and a Gegen-

bauer polynomial (see Theorem 6.2). Some of the above statements require some-
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what lengthy and/or tedious manipulations; to deal with these computations and

also for various other checks, we have used computer algebra.

As mentioned before, we consider the matrix-valued orthogonal polynomials

studied in this paper as matrix-valued analogues of the Chebyshev polynomials

of the second kind. As is well known, the group-theoretic interpretation of the

Chebyshev polynomials, or more generally of spherical functions, leads to more

information on these special functions, and it remains to study which of these

properties can be extended in this way to the explicit set of matrix-valued orthog-

onal polynomials studied in this paper. This paper is mainly analytic in nature,

and we only use the group-theoretic interpretation to give a new method of ob-

taining the first- and second-order matrix-valued differential operators which have

the matrix-valued orthogonal polynomials as eigenfunctions. We note that all dif-

ferential operators act on the right. The fact that we have both a first- and a

second-order differential operator makes it possible to consider linear combina-

tions, and this is useful in Section 4 to link to Tirao’s matrix-valued differential

hypergeometric function and in Section 6 to diagonalize (or decouple) a suitable

matrix-valued differential operator.

We finally remark that J. A. Tirao has informed us that Ignacio Zurrián

has obtained results of a similar nature by considering matrix-valued orthogonal

polynomials for the closely related pair (SO(4),SO(3)). We stress that our results

and the results by Zurrián have been obtained independently.

§2. LDU-decomposition of the weight

In this section we state the LDU-decomposition of the weight matrix W of (1.1).

The details of the proof, involving summation and transformation formulas for

hypergeometric series (up to 7F6-level), are presented in Appendix A. Some direct

consequences of the LDU-decomposition are discussed. The explicit decomposition

is a crucial ingredient in Section 6, where the matrix-valued orthogonal polynomials

are related to the classical Gegenbauer and Racah polynomials.

In order to formulate the result we need the Gegenbauer, or ultraspherical,

polynomials (see e.g. [2], [12], [15]), defined by

(2.1) C(α)
n (x) =

(2α)n
n!

2F1

(
−n, n+ 2α

α+ 1
2

;
1− x

2

)
.

The Gegenbauer polynomials are orthogonal polynomials;

(2.2)

∫ 1

−1
(1− x2)α−1/2C(α)

n (x)C(α)
m (x)dx = δnm

(2α)n
√
π Γ(α+ 1/2)

n!(n+ α)Γ(α)

= δnm
πΓ(n+ 2α)21−2α

Γ(α)2(n+ α)n!
.
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Theorem 2.1. The weight matrix W has the following LDU-decomposition:

W (x) =
√

1− x2 L(x)T (x)L(x)t, x ∈ [−1, 1],

where L : [−1, 1]→M2`+1(C) is the unipotent lower triangular matrix

L(x)mk =

0, k > m,
m!(2k + 1)!

(m+ k + 1)!k!
C

(k+1)
m−k (x), k ≤ m,

and T : [−1, 1]→M2`+1(C) is the diagonal matrix

T (x)kk = ck(`)(1− x2)k, ck(`) =
4k(k!)4(2k + 1)

((2k + 1)!)2
(2`+ k + 1)!(2`− k)!

((2`)!)2
.

Note that the matrix-entries of L are independent of `, hence of the size of

the matrix-valued weight W . Using

dk

dxk
C(α)
n (x) = 2k(α)kC

(α+k)
n−k (x)

we can write uniformly L(x)mk = m!2−k(2k+1)!
(k!)2(m+k+1)!

dkUm

dxk (x). In Theorem 6.2 we extend

Theorem 2.1, but Theorem 2.1 is an essential ingredient in Theorem 6.2.

Since W (x) is symmetric, in Theorem 2.1 it suffices to consider the (n,m)

matrix entries for m ≤ n. The theorem follows directly from Proposition 2.2 below

using the explicit expression (1.1) for the weight W .

Proposition 2.2. The relation

m∑
t=0

αt(m,n)Un+m−2t(x) =

m∑
k=0

βk(m,n)(1− x2)kC
(k+1)
n−k (x)C

(k+1)
m−k (x)

with the coefficients αt(m,n) given by (1.1) and

βk(m,n) =
m!

(m+ k + 1)!

n!

(n+ k + 1)!
k!k!22k(2k + 1)

(2`+ k + 1)!(2`− k)!

(2`)!(2`)!

holds for all integers 0 ≤ m ≤ n ≤ 2`, and all ` ∈ 1
2N.

Before discussing the proof we list some corollaries of Theorem 2.1. First of

all, we can use Theorem 2.1 to prove [16, Conjecture 5.8] (see (a) of Section 1).

Corollary 2.3. det
(
W (x)

)
= (1− x2)2(`+1/2)2

∏2`
k=0 ck(`).

Remark 2.4. We also have another proof of this fact using a group-theoretic

approach to calculate det(Φ0(x)) (see [16] and Section 7 for the definition of Φ0),

and W is up to trivial factors equal to Φ0(Φ0)∗. This proof is along the lines of

Koornwinder [17].
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Secondly, using J ∈M2`+1(C), Jnm = δn+m,2` and W (x) = JW (x)J (see [16,

Prop. 5.5, §6.2]), we obtain from Theorem 2.1 the UDL-decomposition for W . For

later reference we also record JPn(x)J = Pn(x), since both are the monic matrix-

valued orthogonal polynomials with respect to W (x) = JW (x)J .

Corollary 2.5. W (x) =
√

1− x2(JL(x)J)(JT (x)J)(JL(x)J)t, x ∈ [−1, 1], gives

the UDL-decomposition of the weight W .

Thirdly, considering the Fourier expansion of the weight function W (cos θ),

and using the expression of the weight in terms of Clebsch–Gordan coefficients (see

[16, (5.4), (5.6), (5.7)]) we obtain a Fourier expansion, which is actually equivalent

to Theorem 2.1.

Corollary 2.6. We have the following Fourier expansion:

m∧n∑
k=0

(−4)k(2k + 1)
(m− k + 1)k(n− k + 1)k

(m+ 1)k+1(n+ 1)k+1

(2`+ k + 1)!(2`− k)!

(2`)!(2`)!
e−i(n+m)t

× (1− e2it)2k 2F1

(
k − n, k + 1

−n
; e2it

)
2F1

(
k −m, k + 1

−m
; e2it

)
=

2∑̀
j=0

n∑
j1=0

2`−n∑
j2=0

j1+j2=j

m∑
i1=0

2`−m∑
i2=0

i1+i2=j

(
n
j1

)(
2`−n
j2

)(
2`
j

) (
m
i1

)(
2`−m
i2

)(
2`
j

) ei((n−j1+j2)−(m−i1+i2))t.

Proof. In [16, §§5, 6] the weight function W (cos t) was initially defined as a Fourier

polynomial with the coefficients given in terms of Clebsch–Gordan coefficients.

After relabeling this gives

2∑̀
j=0

n∑
j1=0

2`−n∑
j2=0

j1+j2=j

m∑
i1=0

2`−m∑
i2=0

i1+i2=j

(
n
j1

)(
2`−n
j2

)(
2`
j

) (
m
i1

)(
2`−m
i2

)(
2`
j

) ei((n−j1+j2)−(m−i1+i2))t

=
(
L(cos t)T (cos t)L(cos t)t

)
nm

=

min(m,n)∑
k=0

βk(m,n) sin2k t C
(k+1)
n−k (cos t)C

(k+1)
m−k (cos t)

where we have used [16, (5.10)] to express the Clebsch–Gordan coefficients in terms

of binomial coefficients.

Using the result [3, Cor. 6.3] by Badertscher and Koornwinder together with

the Fourier expansion of the Gegenbauer polynomial (see [3, (2.8)], [2, (6.4.11)],

[12, (4.5.13)]), we find the Fourier expansion of sink t C
(k+λ)
n−k (cos t) in terms of
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Hahn polynomials defined by

(2.3) Qk(j;α, β,N) = 3F2

(
−k, k + α+ β + 1,−j

α+ 1,−N
; 1

)
, k ∈ {0, 1, . . . , N}

(see [2, p. 345], [12, §6.2], [15, §1.5]). For λ = 1 the explicit formula is

(2.4)
ik(n+ 1)k+1(n− k)!

2k(3/2)k(2k + 2)n−k
sink t C

(k+1)
n−k (cos t) =

n∑
j=0

Qk(j; 0, 0, n)ei(2j−n)t

= e−int(1− e2it)k 2F1

(
k − n, k + 1

−n
; e2it

)
using the generating function [15, (1.6.12)] for the Hahn polynomials in the last

equality. Plugging this in the identity gives the required result.

In the proof of Proposition 2.2 and Theorem 2.1 given in Appendix A we

use a somewhat unusual integral representation of a Racah polynomial. Recall the

Racah polynomials, [2, p. 344], [15, §1.2], defined by

(2.5) Rk(λ(t);α, β, γ, δ) = 4F3

(
−k, k + α+ β + 1,−t, t+ γ + δ + 1

α+ 1, β + δ + 1, γ + 1
; 1

)
where λ(t) = t(t + γ + δ + 1), and one of α + 1, β + δ + 1, γ + 1 equals −N
with a non-negative integer N . The Racah polynomials with 0 ≤ k ≤ N form

a set of orthogonal polynomials for t ∈ {0, 1, . . . , N} for suitable conditions on

the parameters. For the special case of the Racah polynomials in Lemma 2.7 the

orthogonality relations are given in Appendix A.

Lemma 2.7. For integers 0 ≤ t, k ≤ m ≤ n we have∫ 1

−1
(1−x2)k+1/2C

(k+1)
n−k (x)C

(k+1)
m−k (x)Un+m−2t(x) dx =

√
π Γ(k + 3/2)

(k + 1)

(k + 1)m−k
(m− k)!

× (k + 1)n−k
(n− k)!

(−1)k(2k + 2)m+n−2k(k + 1)!

(n+m+ 1)!
Rk(λ(t); 0, 0,−n− 1,−m− 1).

Remark 2.8. Lemma 2.7 can be extended, using the same method of proof, to

(2.6)

∫ 1

−1
(1− x2)α+k+1/2C

(α+k+1)
n−k (x)C

(α+k+1)
m−k (x)C

(β)
n+m−2t(x) dx =

(α+ k+ 1)m−k(2k+ 2α+ 2)n−k
(m− k)!(n−m)!

(−m+ β − α− 1)m−t
(m− t)!

(β)n−t
√
π Γ(α+ k+ 3/2)

Γ(α+ n+m− t+ 2)

× 4F3

(
k −m,−m− 2α− k − 1, t−m,β + n− t

β − α− 1−m,−m− α, n−m+ 1
; 1

)
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assuming n ≥ m. Lemma 2.7 corresponds to the case α = 0, β = 1 after using a

transformation for a balanced 4F3-series. Note that the 4F3-series can be expressed

as a Racah polynomial orthogonal on {0, 1, . . . ,m} in case α = 0 or β = α + 1,

which corresponds to Lemma 2.7. We do not use (2.6) in the paper, and a proof

follows the lines of the proof of Lemma 2.7 as given in Appendix A.

In [16, Thm. 6.5] (see Section 1), we have proved that the weight function W

is not irreducible, meaning that there exists Y ∈M2`+1(C) so that

(2.7) YW (x)Y t =

(
W1(x) 0

0 W2(x)

)
, Y Y t = I = Y tY,

and that there is no further reduction.

Writing

Y =

(
A B

C D

)
, L(x) =

(
l1(x) 0

r(x) l2(x)

)
, T (x) =

(
t1(x) 0

0 t2(x)

)
,

with A, D diagonal and B, C antidiagonal (see [16, Cor. 5.6]), l1(x), l2(x) lower-

diagonal matrices and r(x) a full matrix, we can work out the block-diagonal

structure of Y L(x)T (x)L(x)tY t. It follows that the off-diagonal blocks being zero

is equivalent to

(2.8)
(
Al1(x)t1(x)+Br(x)t1(x)

)(
l1(x)tCt+r(x)tDt

)
+Bl2(x)t2(x)l2(x)tDt = 0.

This can be rewritten as an identity for four sums of products of two Gegenbauer

polynomials involving the weight function and the constants in Theorem 2.1 being

zero. We do not write the explicit results, since we do not need them.

§3. Matrix-valued orthogonal polynomials as eigenfunctions of

matrix-valued differential operators

In [16, §7] we have derived that the matrix-valued orthogonal polynomials are

eigenfunctions for a second and a first order matrix-valued differential operator

by looking for suitable matrix-valued differential operators self-adjoint with re-

spect to the matrix-valued inner product 〈·, ·〉W . The method was to establish

relations between the coefficients of the differential operators and the weight W ,

then judiciously guessing the general result and next proving it by a verification.

In this paper we show that essentially these operators can be obtained from the

group-theoretic interpretation by establishing that the matrix-valued differential

operators are obtainable from the Casimir operators for SU(2)× SU(2). Since the

paper is split into a first part of analytic nature and a second part of group-

theoretic nature, we state the result in this section whereas the proofs are given
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in Section 7. Sections 4 and 6 depend strongly on the matrix-valued differential

operators in Theorem 3.1.

Recall that all differential operators act on the right, so for a matrix-valued

polynomial P : R→MN (C) depending on the variable x, the s-th order differential

operator D =
∑s
i=0

di

dxiFi(x), Fi : R→MN (C), acts by

(PD)(x) =

s∑
i=0

diP

dxi
(x)Fi(x), PD : R→MN (C)

where
(
diP
dxi (x)

)
nm

= diPnm

dxi (x) is a matrix which is multiplied from the right by

the matrix Fi(x). The matrix-valued orthogonal polynomial is an eigenfunction

of a matrix-valued differential operator if there exists a matrix Λ ∈ MN (C), the

eigenvalue matrix, so that PD = ΛP as matrix-valued functions. Note that the

eigenvalue matrix is multiplied from the left. For more information on differential

operators for matrix-valued functions, see e.g. [11], [22].

We denote by Eij the standard matrix units, i.e. Eij is the matrix with all

matrix entries equal to zero, except for the (i, j) entry which is 1. By convention,

if either i or j is not in the appropriate range, the matrix Eij is zero.

Theorem 3.1. Define the second-order matrix-valued differential operator

D̃ = (1− x2)
d2

dx2
+

(
d

dx

)
(C̃ − xŨ)− Ṽ ,

C̃ =

2∑̀
i=0

(2`− i)Ei,i+1 +

2∑̀
i=0

iEi,i−1, Ũ = (2`+ 3)I, Ṽ = −
2∑̀
i=0

i(2`− i)Eii,

and the first-order matrix-valued differential operator

Ẽ =

(
d

dx

)
(B̃0 + xB̃1) + Ã,

B̃0 = −
2∑̀
i=0

2`− i
4`

Ei,i+1 +

2∑̀
i=0

`− i
2`

Eii +

2∑̀
i=0

i

4`
Ei,i−1,

B̃1 = −
2∑̀
i=0

`− i
`

Ei,i, Ã =

2∑̀
i=0

(2`+ 2)(i− 2`)

−4`
Ei,i.

Then the monic orthogonal matrix-valued orthogonal polynomials Pn satisfy

PnD̃ = Λn(D̃)Pn, Λn(D̃) =

2∑̀
i=0

(
−n(n− 1)− n(2`+ 3) + i(2`− i)

)
Eii,

PnẼ = Λn(Ẽ)Pn, Λn(Ẽ) =

2∑̀
i=0

(
n(`− i)

2`
− (2`+ 2)(i− 2`)

4`

)
Eii,
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and the operators D̃ and Ẽ commute. The operators are symmetric with respect

to W .

The group-theoretic proof of Theorem 3.1 is given in Section 7. Theorem 3.1

has been proved in [16, Thms. 7.5, 7.6] analytically. The symmetry of the operators

with respect toW means that 〈PD,Q〉W = 〈P,QD〉W and 〈PE,Q〉W = 〈P,QE〉W
for all matrix-valued polynomials with respect to the matrix-valued inner product

〈·, ·〉W defined in (1.2). The last statement follows immediately from the first by

the results of Grünbaum and Tirao [11]. Also, [D,E] = 0 follows from the fact that

the eigenvalue matrices commute. In the notation of [11] we have D̃, Ẽ ∈ D(W ),

where D(W ) is the ∗-algebra of matrix-valued differential operators having the

matrix-valued orthogonal polynomials as eigenfunctions.

Note that Ẽ has no analogue in case ` = 0, whereas D̃ reduces to the hyper-

geometric differential operator for the Chebyshev polynomials Un.

The matrix-differential operator D̃ is J-invariant, i.e. JD̃J = D̃. The operator

Ẽ is almost J-anti-invariant, up to a multiple of the identity. This is explained in

Theorem 7.15 and the discussion following it. In particular, D̃ descends to the

corresponding irreducible matrix-valued orthogonal polynomials, but Ẽ does not

(see also [16, §7]).

§4. Matrix-valued orthogonal polynomials as matrix-valued

hypergeometric functions

The polynomial solutions to the hypergeometric differential equation (see (6.5))

are uniquely determined. Many classical orthogonal polynomials, such as the Ja-

cobi, Hermite, Laguerre and Chebyshev polynomials, can be written in terms of

hypergeometric series. For matrix-valued valued functions Tirao [22] has intro-

duced a matrix-valued hypergeometric differential operator and its solutions. The

purpose of this section is to link the monic matrix-valued orthogonal polynomials

to Tirao’s matrix-valued hypergeometric functions.

We want to use Theorem 3.1 in order to express the matrix-valued orthogonal

polynomials as matrix-valued hypergeometric functions using Tirao’s approach

[22]. In order to do so we have to switch from the interval [−1, 1] to [0, 1] using

x = 1− 2u. We define

(4.1) Rn(u) = (−1)n2−nPn(1− 2u), Z(u) = W (1− 2u),

so that the rescaled monic matrix-valued orthogonal polynomials Rn satisfy

(4.2)

∫ 1

0

Rn(u)Z(u)Rm(u)∗ du = δnm2−1−2nHn.
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In the remainder of Section 4 we work with the polynomials Rn on [0, 1]. It is a

straightforward check to rewrite Theorem 3.1.

Corollary 4.1. Let D and E be the matrix-valued differential operators

D = u(1− u)
d2

du2
+

(
d

du

)
(C − uU)− V, E =

(
d

du

)
(uB1 +B0) +A0,

where the matrices C, U , V , B0, B1 and A0 are given by

C = −
2∑̀
i=0

2`− i
2

Ei,i+1 +

2∑̀
i=0

2`+ 3

2
Eii −

2∑̀
i=0

i

2
Ei,i−1, U = (2`+ 3)I,

V = −
2∑̀
i=0

i(2`− i)Ei,i, A0 =

2∑̀
i=0

(2`+ 2)(i− 2`)

2`
Ei,i, B1 = −

2∑̀
i=0

`− i
`

Ei,i,

B0 = −
2∑̀
i=0

2`− i
4`

Ei,i+1 +

2∑̀
i=0

`− i
2`

Eii +

2∑̀
i=0

i

4`
Ei,i−1.

Then D and E are symmetric with respect to the weight W , and D and E commute.

Moreover for every integer n ≥ 0,

RnD = Λn(D)Rn, Λn(D) =

2∑̀
i=0

(
−n(n− 1)− n(2`+ 3) + i(2`− i)

)
Eii,

RnE = Λn(E)Rn, Λn(E) =

2∑̀
i=0

(
−n(`− i)

`
+

(2`+ 2)(i− 2`)

2`

)
Eii.

It turns out that it is more convenient to work with Dα = D + αE for

α ∈ R, so that RnDα = Λn(Dα)Rn with diagonal eigenvalue matrix Λn(Dα) =

Λn(D)+αΛn(E). By [11, Prop. 2.6] we have Λn(Dα) = −n2−n(Uα−1)−Vα. Since

the eigenvalue matrix Λn(Dα) is diagonal, the matrix-valued differential equation

RnDα = Λn(Dα)Rn can be read as 2`+1 differential equations for the rows of Rn.

The i-th row of Rn is a solution to

(4.3) u(1− u)p′′(u) + p′(u)(Cα − uUα)− p(u)(Vα + λ) = 0, λ = (Λn(Dα))ii,

for p : C→ C2`+1 a (row-)vector-valued polynomial function. Here Cα = C+αB0,

Uα = U − αB1, Vα = V − αA0 using the notation of Corollary 4.1. Now (4.3)

allows us to connect to Tirao’s matrix-valued hypergeometric function [22], which

we briefly recall below.

Remark 4.2. Given d× d matrices C, U and V we can consider the differential

equation

(4.4) z(1− z)F ′′(z) + (C − zU)F ′(z)− V F (z) = 0, z ∈ C,
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where F : C → Cd is a (column-)vector-valued function which is twice differen-

tiable. It is shown by Tirao [22] that if the eigenvalues of C are not in −N, then

the matrix valued hypergeometric function 2H1 defined as the power series

(4.5)
2H1

(
U, V

C
; z

)
=

∞∑
i=0

zi

i!
[C,U, V ]i,

[C,U, V ]0 = 1, [C,U, V ]i+1 = (C + i)−1
(
i2 + i(U − 1) + V

)
[C,U, V ]i,

converges for |z| < 1 in Md(C). Moreover, for F0 ∈ Cd the (column-)vector-valued

function

F (z) = 2H1

(
U, V

C
; z

)
F0

is a solution to (4.4) which is analytic for |z| < 1, and any analytic (on |z| < 1)

solution to (4.4) is of this form.

Comparing Tirao’s matrix-valued hypergeometric differential equation (4.4)

with (4.3) and using Remark 4.2, we see that

(4.6) p(u) =

(
2H1

(
U tα, V

t
α + λ

Ctα
;u

)
P0

)t
= P t0

(
2H1

(
U tα, V

t
α + λ

Cα
;u

))t
,

for any P0 ∈ C2`+1, are the solutions to (4.3) which are analytic in |u| < 1 assum-

ing that eigenvalues of Ctα are not in −N. We first verify this assumption. Even

though Vα and Uα are symmetric, we keep the notation for transposed matrices

for notational esthetics.

Lemma 4.3. For every ` ∈ 1
2N, the matrix Cα is diagonalizable with eigenvalues

(2j + 3)/2, j ∈ {0, . . . , 2`}.

Proof. Note that Cα is tridiagonal, so that vλ =
∑2`
n=0 pn(λ)en is an eigenvector

for Cα for the eigenvalue λ if and only if

−
(
λ− 3

2

)
pn(λ) =

(2`− n)(2`+ α)

4`
pn+1(λ)

−
(

(2`+ α)(2`− n) + n(2`− α)

4`

)
pn(λ) +

(2`− α)n

4`
pn−1(λ).

The three-term recurrence relation corresponds precisely to the three-term recur-

rence relation for the Krawtchouk polynomials for N ∈ N,

Kn(x; p,N) = 2F1

(
−n,−x
−N

;
1

p

)
, n, x ∈ {0, 1, . . . , N}
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(see e.g. [2, p. 347], [12, §6.2], [15, §1.10]), with N = 2`, p = 2`+α
4` . The Krawtchouk

polynomials are orthogonal with respect to the binomial distribution for 0 < p < 1,

or α ∈ (−2`, 2`), and we find

pn(λ) = Kn

(
λ;

2`+ α

4`
, `

)
and the eigenvalues of Cα are 3/2+x, x ∈ {0, 1, . . . , 2`}. This proves the statement

for α ∈ (−2`, 2`).

Note that for α 6= ±2`, the matrix Cα is tridiagonal, and the eigenvalue

equation is solved by the same contiguous relation for the 2F1-series leading to the

same statement for |α| > 2`. In case α = ±2` the matrix C±2` is upper or lower

triangular, and the eigenvalues can be read off from the diagonal.

In particular, we can give the eigenvectors of Cα explicitly in terms of termi-

nating 2F1-hypergeometric series, but we do not use this in the paper.

So (4.6) is valid and this gives a series representation for the rows of the

monic polynomial Rn. Since each row is polynomial, the series has to terminate.

This implies that there exists n ∈ N so that [Ctα, U
t
α, V

t
α + λ]n+1 is singular and

0 6= P0 ∈ Ker([Ctα, U
t
α, V

t
α + λ]n+1).

Suppose that n is the least integer for which [Ctα, U
t
α, V

t
α + λ]n+1 is singular,

i.e. [Ctα, U
t
α, V

t
α + λ]i is regular for all i ≤ n. Since

(4.7) [Ctα, U
t
α, V

t
α+λ]n+1 = (Ctα+n)−1(n2+n(U tα−1)+V tα+λ)[Ctα, U

t
α, V

t
α+λ]n

and since the matrix (Cα + n) is invertible by Lemma 4.3, [Ctα, U
t
α, V

t
α + λ]n+1 is

a singular matrix if and only if the diagonal matrix

(4.8) Mα
n (λ) = n2 + n(U tα − 1) + V tα + λ

= n2 + n(Uα − 1) + Vα + λ = λ− Λn(Dα)

is singular. Note that the diagonal entries of Mα
n (λ) are of the form λ − λαj (n),

so that Mn(λ) is singular if and only if λ = λαj (n) for some j ∈ {0, 1, . . . , 2`}. We

need that the eigenvalues are sufficiently generic.

Lemma 4.4. Let α ∈ R \Q. Then (j, n) = (i,m) ∈ {0, 1, . . . , 2`} × N if and only

if λαj (n) = λαi (m).

Proof. Assume λαj (n) = λαi (m) and let (j, n), (i,m) ∈ {0, 1, . . . , 2`} × N. Then

0 = λαj (n)− λαi (m) = (m− n)(n+m+ 2 + 2`) + (j − i)
(
α(2`+ 4)

2`
− j − i+ 2`

)
.

If j 6= i, then we solve for α = 2`
2`+4

(
− (m−n)(m+n+2`+2)

j−i + j + i − 2`
)
, which is

rational.
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Assume next that j = i. Then (m−n)(n+m+ 2 + 2`) = 0. Since n,m, ` ≥ 0,

it follows that n = m and hence (j, n) = (i,m).

Assume α irrational, so that Lemma 4.4 shows that Mn(λαi (m)) is singular if

and only if n = m. So in the series (4.6) the matrix [Ctα, U
t
α, V

t
α +λ]n+1 is singular

and [Ctα, U
t
α, V

t
α + λ]i is non-singular for 0 ≤ i ≤ n. Furthermore, by Lemma 4.4

we see that the kernel of [Ctα, U
t
α, V

t
α + λ]n+1 is one-dimensional if and only if

λ = λαn(i), i ∈ {0, 1, . . . , 2`}. In case λ = λαn(i),

P0 = [Ctα, U
t
α, V

t
α + λαn(i)]−1n ei

is uniquely determined up to a scalar, where ei is the standard basis vector.

We can now state the main result of this section, expressing the monic poly-

nomials Rn as a matrix-valued hypergeometric function.

Theorem 4.5. With the notation of Remark 4.2 the monic matrix-valued orthog-

onal polynomials can be written as

(Rn(u))ij =

(
2H1

(
U tα, V

t
α + λαn(i)

Ctα
;u

)
n![Ctα, U

t
α, V

t
α + λαn(i)]−1n ei

)t
j

for all α ∈ R.

Note that the left hand side is independent of α, which is not obvious for the

right hand side.

Proof. Let us first assume that α is irrational, so that the result follows from

the considerations in this section using that the i-th row of Rn(u) is a polyno-

mial of (precise) degree n. The constant follows from Rn being monic, so that

(Rn(u))ii = un.

Note that the left hand side is independent of α, and the right hand side is

continuous in α. Hence the result follows for α ∈ R.

In the scalar case ` = 0 Theorem 4.5 reduces to

(4.9) Rn(u) = (−4)−n(n+ 1) 2F1

(
−n, n+ 2

3/2
;u

)
,

which is the well-known hypergeometric expression for the monic Chebyshev poly-

nomials (see [2, §2.5], [12, (4.5.21)], [15, (1.8.31)]).

§5. Three-term recurrence relation

Matrix-valued orthogonal polynomials satisfy a three-term recurrence relation (see

e.g. [7], [11]). In [16, Thm. 4.8] we have determined the three-term recurrence re-

lation for the closely related matrix-valued orthogonal polynomials explicitly in
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terms of Clebsch–Gordan coefficients. The matrix entries of the matrices occur-

ring in the three-term recurrence relation have been given explicitly as sums of

products of Clebsch–Gordan coefficients. The purpose of this section is to give

simpler expressions for the monic matrix-valued orthogonal polynomials using the

explicit expression in terms of Tirao’s matrix-valued hypergeometric functions as

established in Theorem 4.5.

From general theory, the monic orthogonal polynomials Rn : R→MN (C) sat-

isfy a three-term recurrence relation uRn(u) = Rn+1(u) +XnRn(u) +YnRn−1(u),

n ≥ 0, where R−1 = 0 and Xn, Yn ∈ M2`+1(C) are matrices depending on n and

not on x. Lemma 5.1 should be compared to [7, Lemma 2.6].

Lemma 5.1. Let {Rn}n≥0 be the sequence of monic orthogonal polynomials and

write Rn(u) =
∑n
k=0R

n
ku

k, Rnk ∈MN (C), and Rnn = I. Then the coefficients Xn,

Zn of the three-term recurrence relation are given by

Xn = Rnn−1 −Rn+1
n , Yn = Rnn−2 −Rn+1

n−1 −XnR
n
n−1.

Proof. Let 〈·, ·〉 denote the matrix-valued inner product for which the monic poly-

nomials are orthogonal. Using the three-term recursion, orthogonality relations

and expanding the monic polynomial of degree n+ 1 gives

〈uRn −XnRn − YnRn−1, Rn〉 = 〈Rn+1, Rn〉 = 〈un+1, Rn〉+Rn+1
n 〈un, Rn〉.

By the orthogonality relations the left hand side can be evaluated as

〈uRn −XnRn − YnRn−1, Rn〉 = 〈un+1, Rn〉+Rnn−1〈un, Rn〉 −Xn〈Rn, Rn〉

and comparing the two right hand sides gives the required expression for Xn, since

〈Rn, Rn〉 = 〈un, Rn〉 is invertible.

The expression for Yn follows by considering on the one hand

〈uRn −XnRn − YnRn−1, Rn−1〉 = 〈Rn+1, Rn−1〉
= 〈un+1, Rn−1〉+Rn+1

n 〈un, Rn−1〉+Rn+1
n−1〈un−1, Rn−1〉,

while on the other hand the left hand side also equals

〈un+1, Rn−1〉+Rnn−1〈un, Rn−1〉+Rnn−2〈un−1, Rn−1〉
−Xn〈un, Rn−1〉 −XnR

n
n−1〈un−1, Rn−1〉 − Yn〈Rn−1, Rn−1〉,

and using the expression for Xn and canceling common terms gives the required

expression, since 〈Rn−1, Rn−1〉 = 〈un−1, Rn−1〉 is invertible.

In order to apply Lemma 5.1 for the explicit monic polynomials in this paper

we need to calculate the coefficients, which is an application of Theorem 4.5.
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Lemma 5.2. Let {Rn}n≥0 be the monic polynomials with respect to Z on [0, 1].

Then

Rnn−1 =

n∑
j=0

jn

4(n+ j)
Ej,j−1 −

n∑
j=0

n

2
Ej,j +

n∑
i=0

n(2`− j)
4(2`− j + n)

Ej,j+1,

Rnn−2 =

n∑
j=0

n(n− 1)j(j − 1)

32(n+ j)(n+ j − 1)
Ej,j−2 −

n∑
j=0

n(n− 1)j

8(n+ j)
Ej,j−1

+

n∑
j=0

n(n− 1)(3j2 − 6`j − 2n2 + n− 4n`)

16(n+ j)(i− 2`− n)
Ej,j

−
n∑
j=0

n(n− 1)(2`− j)
8(2`+ n− j)

Ej,j+1

+

n∑
j=0

n(n− 1)(2`− j)(2`− j − 1)

32(2`− j + n− 1)(2`+ n− j)
Ej,j+2.

Proof. We can calculate Rnn−1 by considering the coefficients of un−1 using the

expression in Theorem 4.5. This gives

(Rnn−1)ij =
n!

(n− 1)!

(
[Ctα, U

t
α, V

t
α + λαn(i)]n−1[Ctα, U

t
α, V

t
α + λαn(i)]−1n ei

)t
j

= n
(
Mα
n−1(λαn(i))−1(Ctα + n− 1)ei

)t
j

using the recursive definition (4.7) of [Ctα, U
t
α, V

t
α+λαn(i)]n. Note that Mα

n−1
(
λαn(i)

)
is indeed invertible by Lemma 4.4 for irrational α. The explicit expression of the

right hand side gives the result after a straightforward computation, since the

resulting matrix is tridiagonal.

We can calculate Rnn−2 analogously,

(Rnn−2)ij = n(n− 1)
(
Mα
n−2(λαn(i))−1(Ctα + n− 2)Mα

n−1(λαn(i))−1(Ctα + n− 1)ei
)t
j
,

and a straightforward but tedious calculation gives the result. Note that Rnn−2 is

a five-diagonal matrix, since it is the product of two tridiagonal matrices.

Note that even though we have used the additional degree of freedom α in

the proof of Lemma 5.2, the resulting expressions are indeed independent of α.

Now we are ready to obtain the coefficients in the recurrence relation satisfied

by the polynomials Rn.

Theorem 5.3. For any ` ∈ 1
2N the monic orthogonal polynomials Rn satisfy the

three-term recurrence relation

uRn(u) = Rn+1(u) +XnRn(u) + YnRn−1(u),
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where the matrices Xn, Yn are given by

Xn = −
2∑̀
i=0

[
i2Ei,i−1

4(n+ i)(n+ i+ 1)
− Ei,i

2
+

(2`− i)2Ei,i+1

4(2`+ n− i)(2`+ n− i+ 1)

]
,

Yn =

2∑̀
i=0

n2(2`+ n+ 1)2

16(n+ i)(n+ i+ 1)(2`+ n− i)(2`+ n− i+ 1)
Ei,i.

Proof. The calculation of Xn is straightforward from Lemmas 5.1 and 5.2. In order

to calculate Yn we need XnRn−1. A calculation shows

XnR
n
n−1 = −

2∑̀
j=0

nj2(j − 1)

16(n+ j − 1)(n+ j)(n+ j + 1)
Ej,j−2

+

2∑̀
j=0

nj(n+ 2j + 1)

8(n+ j)(n+ j + 1)
Ej,j−1

+

2∑̀
j=0

(
−i2n(2`− i+ 1)

16(n+ i)(n+ i+ 1)(2`− i+ 1 + n)
− n

4

− (2`− i)2(i+ 1)n

16(2`− i+ 1 + n)(2`− i+ n)(n+ i+ 1)

)
Ejj

−
2∑̀
j=0

n(2`− i)(4`− 2j + n+ 1)

8(2`+ n− j)(2`+ n− j + 1)
Ej,j+1

+

2∑̀
j=0

n(2`− j)2(2`− j + 1)

16(2`− j + n− 1)(2`− j + n)(2`− j + n+ 1)
Ej,j+2.

Now Lemma 5.1 and a computation show that Yn reduces to a diagonal matrix.

Now (4.1) and Theorem 5.3 give the three-term recurrence

(5.1) xPn(x) = Pn+1(x) + (1− 2Xn)Pn(x) + 4YnPn−1(x)

for the monic orthogonal polynomials with respect to the matrix-valued weight

W on [−1, 1]. The case ` = 0 corresponds to the three-term recurrence for the

monic Chebyshev polynomials Un. Note, moreover, that limn→∞Xn = 1/2 and

limn→∞ Yn = 1/16, so that the monic matrix-valued orthogonal polynomials fit in

the Nevai class (see [8]). Note the matrix-valued orthogonal polynomials Pn in this

paper are considered as matrix-valued analogues of the Chebyshev polynomials of

the second kind, because of the group-theoretic interpretation [16] and Section 7,

but that these polynomials are not matrix-valued Chebyshev polynomials in the

sense of [8, §3].
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Using the three-term recurrence relation (5.1) and (1.2) we get

(5.2) 4YnHn−1 =

∫ 1

−1
xPn(x)W (x)Pn−1(x)∗dx

=

∫ 1

−1
Pn(x)W (x)(xPn−1(x))∗dx = Hn,

analogous to the scalar-valued case. Since H0 is determined in (1.3), we obtain Hn.

Corollary 5.4. The squared norm matrix Hn is

(Hn)ij = δij
π

2

(n!)2(2`+ 1)2n+1

(i+ 1)2n(2`− i+ 1)2n

2−2n

(n+ i+ 1)(2`− i+ n+ 1)

and JHnJ = Hn.

In [16, Thm. 4.8] we have stated the three-term recurrence relation for the

polynomials Q`n(a), a ∈ A∗ (see also Section 7 of this paper). Apart from a rela-

beling of the orthonormal basis, the monic polynomials corresponding to Q`n are

precisely the polynomials Pn (see [16, §6.2, (6.4)] for the precise identification)

(5.3) Pd(x)n,m = Υ−1d Qd(aarccos x)−`+n,−`+m, n,m ∈ {0, 1, . . . , 2`}

(see also Section 7), where Υd is the leading coefficient of Q`d.

Corollary 5.5. The polynomials Q`n as in [16, §4] satisfy the recurrence

φ(a)Q`n(a) = AnQ
`
n+1(a) +BnQ

`
n(a) + CnQ

`
n−1(a)

where

An =
∑̀
q=−`

(n+ 1)(2`+ n+ 2)

2(`− q + n+ 1)(`+ q + n+ 1)
Eq,q,

Bn =
∑̀
q=−`

(`− q + 1)(`+ q)

2(`− q + n+ 1)(`+ q + n+ 1)
Eq,q−1

+
∑̀
q=−`

(`+ q + 1)(`− q)
2(`− q + n+ 1)(`+ q + n+ 1)

Eq,q+1,

Cn =
∑̀
q=−`

n(2`+ n+ 1)

2(n+ q + `+ 1)(n− q + `+ 1)
Eq,q.

Proof. We use An = ΥnΥ−1n+1, Bn = Υn(1 − 2Xn)Υ−1n , Cn = Υn(4Yn)Υ−1n−1 and

Theorem 5.3 to obtain the result from a straighforward computation.
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Recall from [16, Thm. 4.8, (3.2)] that the matrix entries of the matrices An,

Bn and Cn are explicitly known: each is the square of a double sum with summand

the product of four Clebsch–Gordan coefficients, hence Corollary 5.5 leads to an

explicit expression for this square.

§6. The matrix-valued orthogonal polynomials related to

Gegenbauer and Racah polynomials

The LDU-decomposition of the weight W of Theorem 2.1 has the weight functions

of the Gegenbauer polynomials in the diagonal T , so we can expect a link between

the matrix-valued polynomials Pn(x)L(x) and the Gegenbauer polynomials. We

cannot do this via the orthogonality relations and the weight function, since the

matrix L also depends on x. Instead we use an approach based on the differential

operators D̃ and Ẽ of Section 3, and because of the link to the matrix-valued

hypergeometric differential operator as in Theorem 4.5, we switch to the matrix-

valued orthogonal polynomials Rn and x = 1 − 2u. It turns out that the matrix

entries of Pn(x)L(x) can be given as a product of a Racah polynomial times a

Gegenbauer polynomial (see Theorem 6.2).

We use the differential operators D and E of Corollary 4.1, and as in Section 4

it is handier to work with the second-order differential operator D−2` = D −
2`E. From Theorem 2.1 we know that W (x) =

√
1− x2L(x)T (x)L(x)t, and hence

Z(u) = 2
√
u(1− u)L(1− 2u)T (1− 2u)L(1− 2u)t. For this reason we look at the

differential operator conjugated by M(u) = L(1− 2u).

In general, for D = d2

du2F2(u) + d
duF1(u) +F0(u) a second order matrix-valued

differential operator, conjugation with the matrix-valued function M , which we

assume invertible for all u, gives

M−1DM =
d2

du2
M−1F2M +

d

du

(
M−1F1M + 2

dM−1

du
F0M

)
+

(
M−1F0M +

dM−1

du
F1M +

d2M−1

du2
F0M

)
.

Note that differentiating M−1M = I gives dM−1

du = −M−1 dMdu M
−1, and similarly

we find d2M−1

du2 = −M−1 d
2M
du2 M

−1 + 2M−1 dMdu M
−1 dM

du M
−1. We are investigating

the possibility ofM−1DM being a diagonal matrix-valued differential operator. We

now assume that F2(u) = u(1−u), so that M−1F2M = u(1−u). A straightforward

calculation using this assumption and the calculation of the derivatives of M−1

shows that M−1DM = u(1 − u) d2

du2 + d
duT1 + T0 with T0 and T1 matrix-valued

functions if and only if the following equations hold:
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F0M −
dM

du
T1 − u(1− u)

d2M

du2
= MT0,(6.1)

F1M − 2u(1− u)
dM

du
= MT1.(6.2)

Of course, T0 and T1 need not be diagonal in general, but this is the case of interest.

Proposition 6.1. The differential operator D = M−1D−2`M is the diagonal dif-

ferential operator

D = u(1− u)
d2

du2
+

(
d

du

)
T1(u) + T0,

where

T1(u) =
1

2
T 1
1 − uT 1

1 , T 1
1 =

2∑̀
i=0

(2i+ 3)Ei,i, T0 =

2∑̀
i=0

(2`− i)(2`+ i+ 2)Ei,i.

Moreover, Rn(u) = Rn(u)M(u) satisfies

RnD = Λn(D)Rn, Λn(D) = Λn(D)− 2`Λn(E).

The proof shows that M−1DαM can only be a diagonal differential operator

for α = −2`. Note that D is a matrix-valued differential operator as considered

by Tirao (see Remark 4.2 and [22]), and diagonality of D implies that the matrix-

valued hypergeometric 2H1-series can be given explicitly in terms of the (usual)

hypergeometric series. In particular, we find as in the proof of Theorem 4.5 that

(6.3)
(Rn(u))kj =

(
2H1

(
T 1
1 , λn(k)− T0

1
2T

1
1

;u

)
v

)t
j

,

vk = (Rn(0))kj , λn(k) = Λn(D)kk,

since the condition σ( 1
2T

1
1 ) 6⊂ −N is satisfied.

Proof of Proposition 6.1. Consider Dα = D + αE, so that F2(u) = u(1 − u) and

the above considerations apply and F1(u) = Cα − uUα, and F0 = −Vα. We want

to find out if we can obtain matrix-valued functions T1 and T0 satisfying (6.1),

(6.2) for these particular F1, F2 and M(u) = L(1− 2u). Since F0 is diagonal, and

assuming that T0, T1 can be taken diagonal, it is clear that taking the (k, l) entry

of (6.1) leads to

(6.4) (F0)kkMkl −
dMkl

du
(T1)ll − u(1− u)

d2Mkl

du2
= Mkl(T0)ll.

By Theorem 2.1 we have Mkl = 0 for l > k, while for l ≤ k,

Mkl(u) =

(
k

l

)
2F1

(
l − k, k + l + 2

l + 3/2
;u

)
,
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so that (6.4) has to correspond to the second-order differential operator

(6.5) u(1−u)f ′′(u)+(c−(a+b+1)u)f ′(u)−abf(u) = 0, f(u) = 2F1

(
a, b

c
;u

)
,

for the hypergeometric function. This immediately gives

(T1)ll = l +
3

2
− (2l + 3)u, (T0)ll − (F0)kk = k2 + 2k − (l2 + 2l).

Since (F0)kk = (−Vα)kk = −k2 +
(
2`+α (2`+2)

2`

)
k−α(2`+ 2), this is only possible

for α = −2`, and in that case

(6.6) (T1)ll = l +
3

2
− (2l + 3)u, (T0)ll = −l2 − 2l + 2`(2`+ 2).

It remains to check that for α = −2` the condition (6.2) is valid with the

explicit values (6.6). For α = −2` the matrix-valued function F1 is lower triangu-

lar instead of tridiagonal, so that (6.2) is an identity in the subalgebra of lower

triangular matrices. With the explicit expression for M we have to check that((
3

2
+k

)
−u(3+2k)

)
Mkl−kMk−1,l−2u(1−u)

dMkl

du
= Mkl

(
3

2
+ l−u(3+2l)

)
,

which can be identified with the identity

(1− x2)
dC

(l+1)
k−l
dx

(x) = (k + l + 1)C
(l+1)
k−l−1(x)− x(k − l)C(l+1)

k−l (x).

In turn, this identity can be easily obtained from [1, (22.7.21)] or from [12, (4.5.3),

(4.5.7)].

Since Rn and M are polynomial, Proposition 6.1 and the explicit expression

for the eigenvalue matrix in Corollary 4.1 imply that (Rn)kj is a polynomial solu-

tion to

u(1− u)f ′′(u) +
(
(j + 3/2)− u(2j + 3)

)
f ′(u) + (2`− j)(2`+ j + 2)f(u)

=
(
−n(n− 1)− n(2`+ 3) + k(2`− k) + 2n(`− k)− (2`+ 2)(k − 2`)

)
f(u),

which can be rewritten as

u(1− u)f ′′(u) +
(
(j + 3

2 )− u(2j + 3)
)
f ′(u)− (j − k − n)(n+ k + j + 2)f(u) = 0,

which is the hypergeometric differential operator for which the polynomial solu-
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tions are uniquely determined up to a constant. This immediately gives

(6.7) Rn(u)kj = ckj(n) 2F1

(
j − k − n, n+ k + j + 2

j + 3/2
;u

)
for j − k − n ≤ 0 and Rn(u)kj = 0 otherwise. The case n = 0 corresponds to

Theorem 2.1 and we obtain ckj(0) =
(
k
j

)
. It remains to determine the constants

ckj(n) in (6.7).

First, switching to the variable x, we find

(6.8) (Pn(x))kj = (Pn(x)L(x))kj = (−2)nckj(n)
(n+ k − j)!

(2j + 2)n+k−j
C

(j+1)
n+k−j(x),

so that by (6.8) the orthogonality relations (1.2) and (2.2) give

δnm(Hn)kl = (−2)n+m
2`∧(n+k)∑
j=0

ckj(n)clj(m)cj(`)

× (n+ k − j)!
(2j + 2)n+k−j

δn+k,m+l

√
π Γ(j + 3/2)

(n+ k + 1)j!
.

Using the explicit value for cj(`) as in Theorem 2.1 and Corollary 5.4 we find

orthogonality relations for the coefficients ckj(n):

(6.9) (Hn)kk2−2nδnm =

2`∧(n+k)∑
j=0

ckj(n)ck+m−n,j(m)

× (j!)2(2j + 1)(2`+ j + 1)!(2`− j)!(n+ k − j)!
(n+ k + j + 1)!(n+ k + 1)(2`)!2

.

Note that we can also obtain recurrence relations for the coefficients ckj(n)

using the three-term recurrence relation of Theorem 5.3.

Theorem 6.2. The polynomials Rn(u) = Rn(u)M(u) satisfy

Rn(u)kj = ck,0(n)(−1)j
(−2`)j(−k − n)j

j!(2`+ 2)j
4F3

(
−j, j + 1,−k,−2`− n− 1

1,−k − n,−2`
; 1

)
× 2F1

(
j − k − n, n+ k + j + 2

j + 3/2
;u

)
with Rn(u)kj = 0 for j − k − n > 0 and

ck,0(n) = (−1)n4−n
n!(2`+ 2)n

(k + 1)n(2`− k + 1)n
.
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We view Theorem 6.2 is an extension of Theorem 2.1, but Theorem 2.1 is in-

strumental in the proof of Theorem 6.2. Since the inverse of M(u), or of L(x), does

not seem to have a nice explicit expression, we do not obtain an interesting expres-

sion for the matrix elements of the matrix-valued monic orthogonal polynomials

Rn(u) or Pn(x). Note also that in the case ` = 0 we recover the hypergeometric

representation of the Chebyshev polynomials Un of the second kind (see (4.9)).

Comparing with (2.5) we see that the 4F3-series in Theorem 6.2 can be

viewed as a Racah polynomial Rk(λ(j);−2` − 1,−k − n − 1, 0, 0), respectively

Rk+n−m(λ(j);−2` − 1,−k − n − 1, 0, 0) (see (2.5)), where the N of the Racah

polynomials equals 2` in case 2` ≤ k + n, and k + n in case 2` ≥ k + n. Using the

first part of Theorem 6.2 we see that the orthogonality relations (6.9) lead to

(6.10) (Hn)kk2−2nδnm

=
π

2

2`+ 1

(n+ k + 1)2
|ck0(n)|2

2`∧(n+k)∑
j=0

(2j + 1)(−2`)j(−n− k)j
(2`+ 2)j(n+ k + 2)j

×Rk(λ(j);−2`− 1,−k − n− 1, 0, 0)Rk+n−m(λ(j);−2`− 1,−k − n− 1, 0, 0),

which corresponds to the orthogonality relations for the corresponding Racah poly-

nomials (see [2, p. 344], [15, §1.2]). From this we find that the sum in (6.10) equals

δnm
(2`+ 1)(n+ k + 1)

2`+ 1 + n− k
.

Hence,

(6.11) |ck0(n)|2 = (Hn)kk2−2n
2

π

(n+ k + 1)(2`+ 1 + n− k)

(2`+ 1)2

= 4−2n
(n!)2(2`+ 2)2n

(k + 1)2n(2`− k + 1)2n

using Corollary 5.4.

We end this section with the proof of Theorem 6.2. The idea of the proof is

to obtain a three-term recurrence for the coefficients ckj(n) with explicit initial

conditions, and to compare the resulting three-term recurrence with well-known

recurrences for Racah polynomials (see [2], [12], [15]). The three-term recurrence

relation is obtained using the first-order differential operator E and the fact that

the Rn, being analytic eigenfunctions to D, are completely determined by the

value at 0 (see Remark 4.2).

Proof of Theorem 6.2. Since the matrix-valued differential operators D and E

commute and have the matrix-valued orthogonal polynomials Rn as eigenfunctions
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by Corollary 4.1, we see that E = M−1EM satisfies

(6.12) ERn = Λn(E)Rn, Λn(E) = Λn(E), ED = DE .

Moreover, in the same spirit as in the proof of Proposition 6.1 we obtain

(6.13)

E =

(
d

du

)
S1(u) + S0(u),

S1(u) = u(1− u)

2∑̀
i=0

i2(2`+ i+ 1)

`(2i− 1)(2i+ 1)
Ei,i−1 −

2∑̀
i=0

2`− i
4`

Ei,i+1,

S0(u) = (1− 2u)

2∑̀
i=0

i2(2`+ i+ 1)

2`(2i− 1)
Ei,i−1 +

2∑̀
i=0

i(i+ 1)− 4`(`+ 1)

2`
Ei,i

by a straightforward calculation.

Define the vector space of (row-)vector-valued functions

V (λ) = {F analytic at u = 0 | FD = λF},

and ν : V (λ) → C2`+1, F 7→ F (0), is an isomorphism (see Remark 4.2 and [22]).

Because of (6.12) we have the commutative diagram

V (λ)
E−−−−→ V (λ)

ν

y yν
C2`+1 N(λ)−−−−→ C2`+1

with N(λ) a linear map. In order to determine N(λ) we note that F ∈ V (λ) can

be written as (cf. (6.3))

Fj(u) =

(
2H1

(
T 1
1 , λ− T0

1
2T

1
1

;u

)
F (0)t

)t
j

,

so that
dFj

du (0) = F (0)(λ − T0)( 1
2T

1
1 )−1 by construction of the 2H1-series (see

Remark 4.2). Now (6.12) gives

N(λ) = (λ− T0)( 1
2T

1
1 )−1S1(0) + S0(0)

acting from the right on row-vectors from C2`+1.

By Proposition 6.1 the k-th row ((Rn)kj(·))2`j=0 of Rn is contained in V (λn(k))

(see (6.3)). On the other hand, the k-th row of Rn is an eigenfunction of E for

the eigenvalue µn(k) = Λn(E)kk. Since ν
(
((Rn)kj)

2`
j=0

)
= (ckj(n))2`j=0 we see that

the row-vector ck = (ckj(n))2`j=0 satisfies ckN(λn(k)) = µn(k)ck, which gives the
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recurrence relation

(6.14) − (i+ k + n+ 1)(i− k − n− 1)(2`− i+ 1)

(2i+ 1)
ck,i−1(n)

+ (i(i+ 1)− 4`(`+ 1))ck,i(n) +
(i+ 1)2(2`+ i+ 2)

(2i+ 1)
ck,i+1(n)

= (−2n(`− k) + (2`+ 2)(k − 2`))ck,i(n),

with the convention ck,−1(n) = 0. Note that cjk(0) =
(
k
j

)
indeed satisfies (6.14).

Comparing (6.14) with the three-term recurrence relation for the Racah polyno-

mials or the corresponding contiguous relation for balanced 4F3-series (see e.g. [2,

p. 344], [15, §1.2]) gives

ckj(n) = ck,0(n)(−1)j
(−2`)j(−k − n)j

j!(2`+ 2)j
4F3

(
−j, j + 1,−k,−2`− n− 1

1,−k − n,−2`
; 1

)
and ckj(n) = 0 for j > k + n.

It remains to determine the constants ck0(n), and we have already determined

their absolute values in (6.11) by matching it to the orthogonality relations for

Racah polynomials. From the three-term recurrence relation of Theorem 5.3 we

see that the constants ckj(n) are all real, so it remains to determine the sign of

ck0(n). Theorem 5.3 gives a three-term recurrence for Rn(u), and taking the (k, 0)

matrix entry gives a polynomial identity in u using (6.7). Next taking the leading

coefficient gives the recursion

ck0(n+ 1) = − n+ k + 2

4(n+ k + 1)
ck0(n) +

(2`− k)2

4(2`+ n− k)(2`+ n− k + 1)
ck+1,0(n),

and plugging in ck0(n) = sgn(ck0(n))|ck0(n)| and using the explicit value for

|ck0(n)| gives

sgn(ck0(n+ 1))(n+ 1)(2`+ n+ 2)

= −sgn(ck0(n))(n+ k + 2)(2l − k + n+ 1) + sgn(ck+1,0(n))(2`− k)(k + 1).

This gives sgn(ck0(n)) = sgn(ck+1,0(n)) for the right hand side to factorize as on

the left hand side, and then sgn(ck0(n+ 1)) = −sgn(ck0(n)). Since ck0(0) = 1, we

find sgn(ck0(n)) = (−1)n.

Remark 6.3. Theorem 6.2 can now be plugged into the three-term recurrence

relation for Rn of Theorem 5.3, and this then gives an intricate three-term re-

currence relation for Gegenbauer polynomials involving coefficients which involve

sums of two Racah polynomials. We leave this to the interested reader.
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Remark 6.4. We sketch another approach to the proof of the value of ck0(n) by

calculating the value ck,2`(n) in case k + n ≥ 2` or ck,n+k(n) in case k + n < 2`.

For instance, in case k + n ≥ 2` we have

(Rn(u))k,2` = (Rn(u)M(u))k,2` = (Rn(u))k,2` = (Rn(u))2`−k,0

using that M is a unipotent lower triangular matrix-valued polynomial, and the

symmetry JRn(u)J = Rn(u) (see [16, §5]). Now the leading coefficient of the right

hand side can be calculated using Theorem 4.5, and combining with (6.7), the

value ck,2`(n) follows. Then the recurrence (6.14) can be used to find ck0(n).

§7. Group-theoretic interpretation

The purpose of this section is to give a group-theoretic derivation of Theorem 3.1

complementing the analytic derivation of [16, §7]. For this we need to recall some

of the results of [16].

§7.1. Group-theoretic setting of the matrix-valued

orthogonal polynomials

In this subsection we recall the construction of the matrix-valued orthogonal poly-

nomials and the corresponding weight starting from the pair (SU(2)×SU(2),SU(2))

and an SU(2)-representation T `. Then we discuss how the differential operators

come into play and what their relation is to the matrix-valued orthogonal poly-

nomials. The goal of this section is to provide a map of the relevant differential

operators in the group setting to the relevant differential operators for the matrix-

valued orthogonal polynomials in Theorem 7.8.

Let U = SU(2) × SU(2) and K = SU(2) diagonally embedded in U . Note

that K is the set of fixed points of the involution θ : U → U : (x, y) 7→ (y, x).

The irreducible representations of U and K are denoted by T `1,`2 and T `, as is

explained in [16, §2]. The representation space of T ` is denoted by H`, which is a

2` + 1-dimensional vector space. If T ` occurs in T `1,`2 , upon restriction to K we

defined in [16, Def. 2.2] the spherical function Φ``1,`2 as the T `-isotypical part of

the matrix T `1,`2 . Let A ⊂ U be the subgroup

A =

{
at =

((
eit/2 0

0 e−it/2

)
,

(
e−it/2 0

0 eit/2

)) ∣∣∣∣ 0 ≤ t < 4π

}
and let M = ZK(A). Recall the decomposition U = KAK [13, Thm. 7.38]. The re-

stricted spherical functions Φ``1,`2 |A take values in EndM (H`) (see [16, Prop. 2.3]).

Since EndM (H`) ∼= C2`+1 this allows us to view the restricted spherical functions
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as being C2`+1-valued. The parametrization of the U -representations that con-

tain T ` indicates how to combine the restricted spherical functions. Following [16,

Fig. 3] we write (`1, `2) = ζ(d, h) with ζ(d, h) = (1
2 (d+ `+ h), 12 (d+ `− h)). Here

d ∈ N and h ∈ {−`,−` + 1, . . . , `}. We recall the definition of the full spherical

functions of type ` [16, Def. 4.2].

Definition 7.1. The full spherical function of type ` and degree d is the matrix-

valued function Φ`d : A→ End(C2`+1) whose j-th column is the restricted spherical

function Φ``1,`2 with (`1, `2) = ζ(d, j).

The full spherical function of degree zero has the remarkable property of being

invertible on the subset Areg := {at | t ∈ (0, π)∪(π, 2π)∪(2π, 3π)∪(3π, 4π)}, which

was first proved by Koornwinder [17, Prop. 3.2]. The invertibility follows also from

Corollary 2.3. Let φ = Φ0
1/2,1/2 be the minimal non-trivial zonal spherical function

[16, §3]. Together with the recurrence relations for the full spherical functions

with φ [16, Prop. 3.1] this gives rise to the full spherical polynomials [16, Def. 4.4].

Definition 7.2. The full spherical polynomial Q`d : A → End(C2`+1) is defined

by Q`d(a) = (Φ`0(a))−1Φ`d(a).

The name “full spherical polynomial” comes from the fact that the Q`d are

polynomials in φ. The full spherical polynomials Q`d are orthogonal with respect

to

〈Q,P 〉V ` =

∫
A

Q(a)V `(a)P (a) da, V `(at) = (Φ`0(at))
∗Φ`0(at) sin2 t

(see [16, Cor. 5.7]).

In [16, §5] we studied the weight functions V ` extensively. It turns out that

the matrix entries are polynomials in the function φ, apart from the common

factor sin t. Upon changing the variable x = φ(a) we obtain the following system

of matrix-valued orthogonal polynomials.

Definition 7.3. Let R`d : [0, 1] → End(C2`+1) be the polynomial defined by

R`d(φ(a)) = Q`d(a). The degree of R`d is d. The polynomials are orthogonal with

respect to

〈R,P 〉W ` =

∫ 1

−1
R(x)W `(x)P (x) dx,

where W ` is defined by W `(φ(a))dφ = V `(a)da.

The weight W `(x) from Definition 7.3 is the same as the weight defined in

(1.1) where we have to bear in mind that the basis is parametrized differently. The

matrix-valued polynomials R`d correspond to the family {Pd}d≥0 from Theorem 3.1
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by means of making the R`d monic. Given a system of matrix-valued orthogonal

polynomials as in Definition 7.3 it is of great interest to see whether there are

interesting differential operators. More precisely we define the algebra D(W `) as

the algebra of differential operators that are self-adjoint with respect to the weight

W ` and that have the R`d as eigenfunctions. We define a map that associates to a

certain left invariant differential operator on the group U an element in D(W ).

Before we go into the construction we observe that the spherical functions may

also be defined on the complexification AC, using Weyl’s unitary trick. Indeed, all

the representations that we consider are finite-dimensional and unitary, so they

give holomorphic representations of the complexifications UC and KC.

A great part of the constructions that we are about to consider follows Cas-

selman and Miličić [6], where the differential operators act from the left. In this

section we follow this convention, except that we transpose the results at the end

in order to obtain the proof of Theorem 3.1 where the differential operators act

from the right.

Let U(uC) be the universal enveloping algebra for the complexification uC of

the Lie algebra u of the group U = SU(2)×SU(2). Let θ : U(uC)→ U(uC) be the flip

on simple tensors extending the Cartan involution θ : su(2)×su(2)→ su(2)×su(2),

(X,Y ) 7→ (Y,X). Recall k ∼= su(2) is the fixed-point set of θ. Let U(uC)k
C

denote

the subalgebra of elements that commute with kC. Let Z denote the center of U(kC).

Lemma 7.4. U(uC)k
C ∼= Z⊗ Z⊗ Z.

Proof. From [14, Satz 2.1 and Satz 2.3] it follows that U(uC)k
C ∼= Z⊗Z(j) (Z⊗ Z)

where j ⊂ uC is the largest ideal of uC contained in kC. Since j = 0 the result

follows.

Proposition 7.5. The elements of the algebra U(uC)k
C

have the spherical func-

tions Φ``1,`2 as eigenfunctions. This remains true when we extend Φ``1,`2 to UC.

Proof. See [23, Thm. 6.1.2.3]. The second statement follows from Weyl’s unitary

trick.

The spherical functions Φ``1,`2 have T `-transformation behaviour:

Φ``1,`2(k1uk2) = T `(k1)Φ``1,`2(u)T `(k2)(7.1)

for all k1, k2 ∈ K and u ∈ U (see [16, Def. 2.2]). Let C(A) denote the set of

continuous (C-valued) functions on A. Casselman and Miličić [6] define the map

Π` : U(uC)k
C
→ C(A)⊗ U(aC)⊗ End(EndM (H`))

and prove the following properties [6, Thm. 3.1, Thm. 3.3].
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Theorem 7.6. Let F : U → End(H`) be a smooth function that satisfies (7.1).

Then (DF )|A = Π`(D)(F |A) for all D ∈ U(uC)k
C
. Moreover, Π` is an algebra

homomorphism.

We call Π`(D) the T `-radial part of D ∈ U(uC)k
C
. In particular we have

Π`(D)(Φ``1,`2 |A) = λ`D,`1,`2Φ``1,`2 |A, λ`D,`1,`2 ∈ C.

Upon identifying EndM (H`) ∼= C2`+1 we observe that we may view Π`(D) as a

differential operator on End(C2`+1)-valued functions that acts from the left. In

particular, let C(A,End(C2`+1), T `) denote the vector space generated by the Φ`d,

d ≥ 0. The following lemma follows immediately from the construction.

Lemma 7.7. Let D ∈ U(uC)k
C

be self-adjoint and consider Π`(D) as a differential

operator acting on C(A,End(C2`+1), T `) from the left. Then Π`(D) is self-adjoint

for 〈·, ·〉V ` .

Definition 7.8. Let f : U(uC)k
C → D(W `) be defined by sending D to the conju-

gation of the differential operator Π`(D) by Φ`0 followed by changing the variable

x = φ(a).

The map f : U(uC)k
C → D(W `) is an algebra homomorphism. It gives an

abstract description of a part of D(W `). Note that f is not surjective because in

[16, Prop. 8.1] we have found a differential operator that does not commute with

some of the other differential operators in D(W `). However, the algebra U(uC)k
C

is commutative by Lemma 7.4.

From Lemma 7.4 we know that U(uC)k
C

has Ω1 = Ωk ⊗ 1 and Ω2 = 1 ⊗ Ωk

among its generators, where Ωk ∈ Z is the Casimir operator. In the following

subsection we calculate f(Ω1 + Ω2) and f(Ω1 − Ω2) explicitly. Upon transposing

and taking suitable linear combinations we find the differential operators D̃ and Ẽ

from Theorem 3.1.

§7.2. Calculation of the Casimir operators

The goal of this subsection is to calculate f(Ω) and f(Ω′) where f is the map

described in Definition 7.8 and where Ω = Ω1 + Ω2 and Ω′ = Ω1−Ω2. We proceed

in a series of six steps. (1) First we provide expressions for the Casimir operators Ω

and Ω′ which (2) we rewrite according to the infinitesimal Cartan decomposition

defined by Casselman and Miličić [6, §2]. These calculations are similar to those in

[23, Prop. 9.1.2.11]. (3) From this expression we can easily calculate the T `-radial

parts (see Theorem 7.6). The radial parts are differential operators on EndM (H`)-

valued functions on A. At this point we see that we can extend matters to the
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complexification AC of A as in [6, Ex. 3.7]. (4) We identify EndM (H`) ∼= C2`+1 and

rewrite the radial parts of step (3) accordingly. (5) We conjugate these differential

operators with Φ0 and (6) we make a change of variables to obtain two matrix-

valued differential operators f(Ω) and f(Ω′). Along the way we keep track of the

differential equations for the spherical functions. Finally we give expressions for the

eigenvalues Λd and Γd of f(Ω) and f(Ω′) such that the full spherical polynomials

Qd are the corresponding eigenfunctions. Following Casselman and Miličić [6, §2]

the roots are considered as characters, hence written multiplicatively.

(1) First we concentrate on one factor K ∼= SU(2), with Lie algebra k and

standard Cartan subalgebra t. The complexifications are denoted by kC, tC, and

we use the standard basis

H =

(
1 0

0 −1

)
, Eα =

1

2

(
0 1

0 0

)
, Eα−1 =

1

2

(
0 0

1 0

)
for kC. The Casimir of K is given by Ωk = 1

2H
2 + 4{EαEα−1 + Eα−1Eα}. It

is well-known that the matrix elements of the irreducible unitary representa-

tion T ` of SU(2) are eigenfunctions of the Casimir operator Ωk for the eigen-

value 1
2 (`2 + `) (see e.g. [13, Thm. 5.28]). The roots of the pair (kC ⊕ kC, tC ⊕ tC)

are given by R = {(α, 1), (α−1, 1), (1, α), (1, α−1)}. The positive roots are cho-

sen as R+ = {(α, 1), (1, α−1)}, so that the two positive roots restrict to the

same root R(uC, aC) which we declare positive. The corresponding root vectors

are E(α,1) = (Eα, 0), etc. Define

E = (Eα, 0)(Eα−1 , 0) + (Eα−1 , 0)(Eα, 0).

Then we have Ω1 = 1
2 (H, 0)2 + 4E and Ω2 = θ(Ω1). In particular, the spherical

function Φ``1,`2 is an eigenfunction of Ωi for the eigenvalue 1
2 (`2i + `i) for i = 1, 2.

We have (H, 0) = 1
2 ((H,−H) + (H,H)) and (0, H) = 1

2 ((H,H) − (H,−H))

and from this we find, in U(uC),

(7.2)
Ω = Ω1 + Ω2 =

1

4
(H,H)2 +

1

4
(H,−H)2 + 4(E + θ(E)),

Ω′ = Ω1 − Ω2 =
1

2
(H,−H)(H,H) + 4(E − θ(E)).

(2) Following Casselman and Miličić [6, §2] we can express Ω and Ω′ according

to the infinitesimal Cartan decomposition of U(uC). Let β ∈ R and denote Xβ =

Eβ+θ(Eβ) ∈ kC. Denote Y a = Ad(a−1)Y for a ∈ A. In [6, Lemma 2.2] it is proved

that

(1− β(a)2)Xβ = β(a)(Eaβ − β(a)Eβ)

for all a ∈ Areg. This is the key identity in a straightforward but tedious calculation

to prove the following proposition, which we leave to the reader.
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Proposition 7.9. Let a ∈ Areg and β ∈ R+. Then

Ω =
1

16
((H,−H)2 + (H,H)2)(7.3)

− 2

(β(a)−1 − β(a))2
{
Xa
βX

a
β−1 +Xa

β−1Xa
β +XβXβ−1 +Xβ−1Xβ

− (β(a) + β(a)−1)(Xa
βXβ−1 +Xa

β−1Xβ)
}

+
1

4

β(a) + β(a)−1

β(a)− β(a)−1
(H,−H),

and

Ω′ =
1

8
(H,H)(H,−H) +

1

4

β(a) + β(a)−1

β(a)− β(a)−1
(H,H)(7.4)

+
2

β(a)− β(a)−1
(Xa

β−1Xβ −Xa
βXβ−1).

The calculation of (7.3) is completely analogous to that of [23, Prop. 9.1.2.11]

and it is clear that (7.3) is invariant under interchanging β and β−1. The expression

in (7.4) is also invariant under interchanging β and β−1 although it is less clear

in this case. In either case the expressions (7.3) and (7.4) do not depend on the

choice of β ∈ R+.

(3) Following Casselman and Miličić [6, §3] we calculate the T `-radial parts

of Ω and Ω′. This is a matter of applying the map Π` from Theorem 7.6 to the

expressions (7.3) and (7.4). At the same time we note that the coefficients in (7.3)

and (7.4) are analytic functions on Areg. They extend to meromorphic functions

on the complexification AC of A which we identify with C× using the map

a : C× → AC : w 7→ a(w) =

((
w 0

0 w−1

)
,

(
w−1 0

0 w

))
.

Under this isomorphism the differential operator (H,−H) translates to w d
dw . To

see this let g : AC → C be holomorphic and consider (H,−H)g(a(w)), which is

equal to

(H,−H)g(a(w)) =

{
d

dt
g(a(etw))

}
t=0

= w
d

dw
(g ◦ a)(w).

Following [6], [23] we find the following expressions for the T `-radial parts of Ω

and Ω′:

Π`(Ω) =
1

16

(
w
d

dw

)2

+
1

4

w2 + w−2

w2 − w−2
w
d

dw
+

1

16
T `(H)2(7.5)

− 2

(w2 − w−2)2
{
T `(Eα)T `(Eα−1)•+ T `(Eα−1)T `(Eα)•

+ •T `(Eα)T `(Eα−1) + •T `(Eα−1)T `(Eα)
}

+ 2
w2 + w−2

(w2 − w−2)2
{T `(Eα) • T `(Eα−1) + T `(Eα−1) • T `(Eα)},
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and

Π`(Ω
′) =

1

8
T `(H)w

d

dw
+

1

4

w2 + w−2

w2 − w−2
T `(H)(7.6)

+
2

w2 − w−2
{T `(Eα−1) • T `(Eα) + T `(Eα) • T `(Eα−1)}

where the bullet (•) indicates where to put the restricted spherical function. The

matrices T `(Eα) and T `(H) are easily calculated in the basis of weight vectors.

Note that T `(Eα−1) = JT `(Eα)J . We give the entries of T `(Eα) in the proof of

Lemma 7.11.

The following proposition is a direct consequence of Theorem 7.6 and Propo-

sition 7.5.

Proposition 7.10. The restricted spherical functions are eigenfunctions of the

radial parts of Ω and Ω′,

Π`(Ω)(Φ`1,`2` |AC) =
1

2
(`21 + `1 + `22 + `2)Φ`1,`2` |AC ,

Π`(Ω
′)(Φ`1,`2` |AC) =

1

2
(`21 + `1 − `22 − `2)Φ`1,`2` |AC .

(4) The spherical functions Φ``1,`2 restricted to the torus AC take their values

in EndM (H`), which is a 2`+ 1-dimensional vector space. We identify

EndM (H`)→ C2`+1 : Y 7→ Y up

to obtain functions (Φ``1,`2 |AC)up. The reason for putting the diagonals up is that

we want to write the differential operators as differential operators with coefficients

in the function algebra on A with values in End(C2`+1), instead of the way Π`(Ω)

and Π`(Ω
′) are defined. The differential operators that are conjugated to act on

C2`+1-valued functions are also denoted by (·)up. The differential operators (7.5)

and (7.6) that are defined on EndM (H`)-valued functions conjugate to differential

operators Π`(Ω)up and Π`(Ω
′)up on C2`+1-valued functions. All the terms except

for the last ones in (7.5) and (7.6) transform straightforwardly.

Lemma 7.11. The linear isomorphism EndM (H`) → C2`+1 : D 7→ Dup con-

jugates the linear map EndM (H`) → EndM (H`) : D 7→ T `(Eα)DT `(Eα−1) to

C2`+1 → C2`+1 : Dup 7→ C`Dup, where C` ∈ End(C2`+1) is the matrix given by

C`p,j =
1

4
(`+ j)(`− j + 1)δj−p,1, ` ≤ p, j ≤ `.

Likewise, D 7→ T `(Eα−1)DT `(Eα) transforms to Dup 7→ JC`JDup, where J is the

anti-diagonal defined by Jij = δi,−j with −` ≤ i, j ≤ `.
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Proof. Working with the normalized weight basis as in [17, §1] we see that T `(Eα)

is the matrix given by

T `(Eα)ij = δi,i+1
`+ i+ 1

2

√
(`− i− 2)!(`+ i+ 2)!

(`− i− 1)!(`+ i+ 1)!
,

and T `(Eα−1) = JT `(Eα)J . The lemma follows from elementary manipulations.

We collect the expressions for the conjugation of the differential operators

(7.5) and (7.6) by the linear map Y 7→ Y up where we have used Lemma 7.11:

Π`(Ω1 + Ω2)up =
1

16

(
w
d

dw

)2

+
1

4

w2 + w−2

w2 − w−2
w
d

dw
+

1

16
T `(H)2(7.7)

− 4

(w2 − w−2)2
{T `(Eα)T `(Eα−1) + T `(Eα−1)T `(Eα)}

+ 2
w2 + w−2

(w2 − w−2)2
{JC`J + C`},

Π`(Ω1 − Ω2)up =
1

8
T `(H)w

d

dw
+

1

4

w2 + w−2

w2 − w−2
T `(H)(7.8)

+
2

w2 − w−2
{JC`J − C`}.

The differential operators (7.7) and (7.8) also act on the full spherical func-

tions Φ`,td . Collecting the eigenvalues of the columns in Φ`,td in diagonal matrices

we obtain the following differential equations:

Π`(Ω1 + Ω2)upΦd = ΦdΛd,(7.9)

Π`(Ω1 − Ω2)upΦd = ΦdΓd,(7.10)

where (Λd)pj = 1
4δp,j(d

2 + j2 + 2d(`+ 1) + `(`+ 2)) and (Γd)pj = 1
2δp,jj(`+d+ 1).

For further reference we write

Π`(Ω1 + Ω2)up = a2(w)
d2

dw2
+ a1(w)

d

dw
+ a0(w),(7.11)

Π`(Ω1 − Ω2)up = b1(w)
d

dw
+ b0(w).(7.12)

(5) Recall from Definition 7.1 that the full spherical polynomials Q`,td are ob-

tained from the full spherical functions Φ`,td via Q`,td = (Φ`,t0 )−1Φ`,td . We conjugate

the differential operators (7.7) and (7.8) with Φ0 to obtain differential operators

for which the polynomials Qd are eigenfunctions. We need a technical lemma.
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Lemma 7.12. Let σ` : C× → End(C2`+1) be defined by σ`(w) = `(w2+w−2)I+S`

where S` is defined by (S`)p,j = −(`− j)δp−j,1 − (`+ j)δj−p,1. Then

(7.13)
1

2
w(w2 − w−2)

d

dw
Φ`,t0 (w) = Φ`,t0 (w)σ`(w).

Let υ` : C× → End(C2`+1) be defined by υ`(w) = 1
8

w3

w4−1
(
1+w4

w2 U `diag +U `lu
)
, where

(U `lu)i,j = (−2`+ 2j)δi,j+1 + (2`+ 2j)δi+1,j and (U `diag)i,j = −2iδij. Then

b1(w)Φ`,t0 (a(w)) = Φ`,t0 (a(w))υ`(w).(7.14)

Proof. The matrix coefficients of Φ`,t0 (a(w)) are given by

(Φ`,t0 (a(w)))p,j =
(`− j)!(`+ j)!(`− p)!(`+ p)!

(2`)!
(7.15)

×
min(`−p,`−j)∑
r=max(0,−p−j)

w4r−2`+2p+2j

r!(`− p− r)!(`− j − r)!(p+ j + r)!

(see [17, Prop. 3.2]). The matrix-valued function b1(w) is equal to the constant

matrix 1
8T

` where T `(H)ij = 2δijj. We can now express the matrix coefficients of

the matrices in (7.13) and (7.14) as Laurent polynomials in the variable w, and

comparing coefficients of these polynomials shows that the equalities hold.

Definition 7.13. Define Ω` = (Φ`,t0 )−1 ◦ Π`(Ω)up ◦ Φ`,t0 and ∆` = (Φ`,t0 )−1 ◦
Π`(Ω

′)up ◦ Φ`,t0 .

Theorem 7.14. The differential operators Ω` and ∆` are given by

Ω` =
1

16

(
w
d

dw

)2

+
1

4
{(`+ 1)(w2 + w−2) + S`} w

w2 − w−2
d

dw
+ Λ0,(7.16)

∆` = υ`(w)
d

dw
+ Γ0.(7.17)

Proof. This is a straightforward calculation using the expressions (7.11) and (7.12),

bearing in mind that the coefficients are matrix-valued. In both calculations the

difficult parts are taken care of by Lemma 7.12.

(6) The elementary zonal spherical function Φ
1/2,1/2
0 is denoted by φ and

we have φ(a(w)) = 1
2 (w2 + w−2). In this final step we note that the differential

operators Ω` and ∆` are invariant under the maps w 7→ −w and w 7→ w−1. This

shows that the differential operators can be pushed forward by φ ◦ a to obtain



306 E. Koelink, M. van Pruijssen and P. Román

differential operators on C in the coordinate z = φ(a(w)). Using the identities

w
d

dw
(h ◦ φ)(w) = (w2 − w−2)h′(φ(w)),(

w
d

dw

)2

(h ◦ φ)(w) = (w2 − w−2)2h′′(φ(a(w))) + 2(w2 + w−2)h′(φ(a(w))) and

(w2 − w−2)2 = 4(φ(a(w))2 − 1)

we transform (7.16) and (7.17) into

Ω̃` =
1

4
(z2 − 1)

(
d

dz

)2

+
1

4
{(2`+ 3)z + S`} d

dz
+ Λ0,(7.18)

∆̃` =
1

8
(2zU `diag + U `ul)

d

dz
+ Γ0.(7.19)

Recall that the End(C2`+1)-valued polynomials R`,td are defined by pushing

forward the End(C2`+1)-valued functions Q`,td by φ ◦ a (see Definition 7.3).

Theorem 7.15. The members of the family {R`,td }d≥0 of End(C2`+1)-valued poly-

nomials of degree d are eigenfunctions of the differential operators Ω̃` and ∆̃` with

eigenvalues Λd and Γd respecively. The transposed differential operators (Ω̃`)
t and

(∆̃`)
t satisfy

−4(Ω̃`)
t + 2(`2 + `) = D̃, −2

`
(∆̃`)

t − (`+ 1) = Ẽ,

where D̃ and Ẽ are defined in Theorem 3.1.

Proof. The only things that need proofs are the equalities of the differential op-

erators. These follow easily upon comparing coefficients where one has to bear in

mind the different labeling of the matrices involved in the two cases.

Note that the differential operators D̃ and Ω̃` are invariant under conjugation

by the matrix J , where Ji,j = δi,−j . The differential operator ∆̃` is anti-invariant

for this conjugation. The differential operator Ẽ does not have this nice property.

Appendix A. Proof of Theorem 2.1

The purpose of this appendix is to prove the LDU-decomposition of Theorem 2.1.

We prove instead the equivalent Proposition 2.2, and we start by proving Lem-

ma 2.7.

Note that the integral in Lemma 2.7 is zero by (2.2) in case t > m, since

C
(k+1)
m−k (x)Un+m−2t(x) is a polynomial of degree n+ 2m− k − 2t < n− k.
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In the remaining case we use the following well-known connection and lin-

earization formulas for Gegenbauer polynomials (see e.g. [2, Thm. 6.8.2], [12,

Thm. 9.2.1]):

(A.1)

C(γ)
n (x) =

bn/2c∑
k=0

(γ − β)k(γ)n−k
k!(β + 1)n−k

(
β + n− 2k

β

)
C

(β)
n−2k(x),

C(α)
n (x)C(α)

m (x) =

m∧n∑
k=0

(n+m− 2k + α)(n+m− 2k)!(α)k
(n+m− k + α)k!

× (α)n−k(α)m−k(2α)n+m−k
(n− k)!(m− k)!(α)n+m−k(2α)n+m−2k

C
(α)
n+m−2k(x).

Proof of Lemma 2.7. We only sketch the proof, so that the reader can easily fill

in the details. Calculating the product of two Gegenbauer polynomials as a sum

using the linearization formula of (A.1) and expanding the Chebyshev polynomial

Un+m−2t(x) = C
(1)
n+m−2t(x) in terms of Chebyshev polynomials with parameter

k + 1 using the linearization formula of (A.1), we can rewrite the integral as a

double sum with an integral of Chebyshev polynomials that can be evaluated

using the orthogonality relations (2.2) reducing the integral of Lemma 2.7 to the

single sum

min(t,m−k)∑
r=max(0,t−k)

m+ n− k + 1− 2r

m+ n− k + 1− r
(k + 1)r(k + 1)n−k−r(k + 1)m−k−r

r!(m− k − r)!(n− k − r)!

× (2k + 2)m+n−2k−r(−k)k+r−t(n+m− t− k − r)!
(k + 1)m+n−2k−r(k − t+ r)!(k + 2)n+m−t−k−r

√
π Γ(k + 3/2)

(k + 1)Γ(k + 1)
.

Assume for the moment that k ≥ t, so the sum is
∑min(t,m−k)
r=0 . Then this sum can

be written as a very-well-poised 7F6-series

√
π Γ(k + 3/2)

(k + 1)Γ(k + 1)

(k + 1)m−k
(m− k)!

(k + 1)n−k
(n− k)!

(2k + 2)m+n−2k

(k + 1)m+n−2k

(−k)k−t
(k − t)!

(n+m− t− k)!

(k + 2)n+m−t−k

7F6

( 1
2 (k −m− n+ 1), k + 1, k −m, k − n, k −m− n− 1,−t, t−m− n− 1

1
2 (k −m− n− 1),−m,−n,−m− n− 1, k − t+ 1,−n−m+ k + t

; 1

)
Using Whipple’s transformation [2, Thm. 3.4.4], [4, §4.3] of a very-well-poised

7F6-series to a balanced 4F3-series, we find that the 7F6-series can be written as

(k −m− n)t(−t)t
(k − t+ 1)t(−m− n− 1)t

4F3

(
−k, k + 1,−t, t−m− n− 1

−n,−m, 1
; 1

)
.

Simplifying the shifted factorials and recalling the definition of the Racah polyno-

mials (2.5) in terms of a balanced 4F3-series gives the result in case k ≥ t.
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In case k ≤ t we have to relabel the sum, which turns out again to be a

very-well-poised 7F6-series which can be transformed to a balanced 4F3-series.

The resulting balanced 4F3-series is not a Racah polynomial as in the statement

of Lemma 2.7, but it can be transformed to a Racah polynomial using Whip-

ple’s transformation for balanced 4F3-series [2, Thm. 3.3.3]. Keeping track of the

constants proves Lemma 2.7 in this case.

As remarked in Section 2, Theorem 2.1 follows from Proposition 2.2. In order

to prove Proposition 2.2 we assume αt(m,n) to be known (see (1.1)) and we will

find βk(m,n). Given the explicit αt(m,n), multiplying by
√

1− x2 Un+m−2t(x)

and integrating we find, from Lemma 2.7,

(A.2) αt(m,n)
π

2
=

m∑
k=0

βk(m,n)Ck(m,n)Rk(λ(t); 0, 0,−m− 1,−n− 1)

where

Ck(m,n) =

√
π Γ(k + 3/2)

(k + 1)

(k + 1)m−k
(m− k)!

(k + 1)n−k
(n− k)!

(−1)k(2k + 2)m+n−2k(k + 1)!

(n+m+ 1)!
.

Using the orthogonality relations for the Racah polynomials (see [2, p. 344], [15,

§1.2]),

m∑
t=0

(m+ n+ 1− 2t)Rk(λ(t); 0, 0,−m− 1,−n− 1)Rl(λ(t); 0, 0,−m− 1,−n− 1)

= δk,l
(n+ 1)(m+ 1)

2k + 1

(m+ 2)k(n+ 2)k
(−m)k(−n)k

,

we find the following explicit expression for βk(m,n):

(A.3) βk(m,n) =
1

Ck(m,n)

2k + 1

(n+ 1)(m+ 1)

(−m)k(−n)k
(m+ 2)k(n+ 2)k

×
m∑
t=0

(m+ n+ 1− 2t)Rk(λ(t); 0, 0,−m− 1,−n− 1)αt(m,n)
π

2
.

Now Proposition 2.2, and hence Theorem 2.1, follows from the following summa-

tion and simplifying the result.

Lemma A.1. For ` ∈ 1
2N, n,m, k ∈ N with 0 ≤ k ≤ m ≤ n we have

m∑
t=0

(−1)t
(n− 2`)m−t
(n+ 2)m−t

(2`+ 2− t)t
t!

(m+ n+ 1− 2t)Rk(λ(t); 0, 0,−m− 1,−n− 1)

= (−1)m+k (2`+ k + 1)! (2`− k)!

(2`+ 1)!

n+ 1

m!(2`−m)!
.
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Proof. Start with the left hand side and insert the 4F3-series for the Racah poly-

nomial and interchange summations to find

k∑
j=0

(−k)j(k + 1)j
j!j!(−m)j(−n)j

(n− 2`)m
(n+ 2)m

m∑
t=j

(−1)t
(−1− n−m)t

(2`− n−m+ 1)t

× (−2`− 1)t
t!

(−1)t(m+ n+ 1− 2t)(−t)j(t−m− n− 1)j .

Relabeling the inner sum t = j + p shows that the inner sum equals

(−1)j
(−1− n−m)2j

(2`− n−m+ 1)j
(−2`− 1)j(1 +m+ n− 2j)

×
m−j∑
p=0

(−1− n−m+ j)p
(2`− n−m+ 1 + j)p

(−2`− 1 + j)p
p!

×
(1 + 1

2 (−1−m− n+ 2j))p

( 1
2 (−1−m− n+ 2j))p

(−1−m− n+ 2j)p
(−1−m− n+ j)p

and the sum over p is a hypergeometric sum. On multiplying by
(j−m)p(j−n)p
(j−m)p(j−n)p , the

sum can be written as a very-well-poised 5F4-series

5F4

(
1 + 1

2 (−1−m− n+ 2j),−1−m− n+ 2j,−1− 2`+ j, j −m, j − n
1
2 (−1−m− n+ 2j), 2`− n−m+ j + 1, j − n, j −m

; 1

)
=

(−m− n+ 2j)m−j
(−m− n+ j + 1 + 2`)m−j

(−m+ 1 + 2`)m−j
(−m+ j)m−j

by the terminating Rogers–Dougall summation formula [4, §4.4].

Simplifying shows that the left hand side of the lemma is equal to the single

sum

(n− 2`)m
(n+ 2)m

(−1)m(n+m+ 1)
(−n−m)m

(2`− n−m+ 1)m

(2`+ 1−m)m
m!

×
k∑
j=0

(−k)j(k + 1)j
j!j!

(−2`− 1)j
(−2`)j

,

which can be summed by the Pfaff–Saalschütz summation [2, Thm. 2.2.6], [12,

(1.4.5)]. This proves the lemma after some simplifications.

Appendix B. Moments

In this appendix we give an explicit sum for the generalized moments for W . By

the explicit expression
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Ur(x) = (r + 1) 2F1

(
−r, r + 2

3/2
;

1− x
2

)
we find∫ 1

−1
(1− x)nUr(x)

√
1− x2 dx

= (r + 1)

r∑
k=0

(−r)k(r + 2)k
k!(3/2)k

2−k2n+k+2 Γ(n+ k + 3/2)Γ(3/2)

Γ(n+ k + 3)

= (r + 1)2n+2 Γ(n+ 3/2)Γ(3/2)

Γ(n+ 3)
3F2

(
−r, r + 2, n+ 3/2

3/2, n+ 3
; 1

)
= (r + 1)2n+2 Γ(n+ 3/2)Γ(3/2)

Γ(n+ 3)

(−n)r
(n+ 3)r

using the beta-integral in the first equality and the Pfaff–Saalschütz summation

[2, Thm. 2.2.6], [12, (1.4.5)] in the last equality. For m ≤ n, the explicit expression

(1.1) gives the following generalized moments:

(B.1)

∫ 1

−1
(1− x)pW (x)nm dx = 2p+2 Γ(p+ 3/2)Γ(3/2)

Γ(p+ 3)

2`+ 1

n+ 1

(2`−m)!m!

(2`)!

×
m∑
t=0

(−1)m−t
(n− 2`)m−t
(n+ 2)m−t

(2`+ 2− t)t
t!

(n+m− 2t+ 1)
(−p)n+m−2t

(p+ 3)n+m−2t
.

Addendum

In the remark following Theorem 6.2 we state that L(x) does not seem to have a

nice expression. Tom Koornwinder has pointed out to us the following. First, the

inverse of L(x) can be explicitly given by

(L−1(x))ij =
i!(i+ j)!

(2i)!j!
C

(−i)
i−j (x), i ≥ j,

in terms of Gegenbauer polynomials (with negative parameter) with the convention

C
(0)
0 (x) = 1. This follows from the following more general identity communicated

to us by Koornwinder:

m∑
k=0

k + α

α
P

(α+k,α+k)
m−k (x)P

(−α−k,−α−k)
k (x) = δ0,m

where P
(α,β)
m (x) denotes the Jacobi polynomial. The inverse of L follows by taking

α = 1
2 ,

3
2 ,

5
2 , . . . . A closely related result is Theorem 3.2 of [5], which follows from

the case α ∈ N of the more general identity of Koornwinder.
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