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Transcendental Kähler Cohomology Classes

by

Dan Popovici

Abstract

Associated with a real, smooth, d-closed (1, 1)-form α of possibly non-rational de Rham
cohomology class on a compact complex manifold X is a sequence of asymptotically
holomorphic complex line bundles Lk on X equipped with (0, 1)-connections ∂̄k for which
∂̄2
k 6= 0. Their study was begun in the thesis of L. Laeng. We propose in this non-

integrable context a substitute for Hörmander’s familiar L2-estimates of the ∂̄-equation
of the integrable case that is based on analysing the spectra of the Laplace–Beltrami
operators ∆′′

k associated with ∂̄k. Global approximately holomorphic peak sections of Lk

are constructed as a counterpart to Tian’s holomorphic peak sections of the integral-
class case. Two applications are then obtained when α is strictly positive: a Kodaira-
type approximately holomorphic projective embedding theorem and a Tian-type almost-
isometry theorem for compact Kähler, possibly non-projective, manifolds. Unlike similar
results in the literature for symplectic forms of integral classes, the peculiarity of α lies
in its transcendental class. This approach will be hopefully continued in future work by
relaxing the positivity assumption on α.
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Keywords: approximately holomorphic peak sections, approximately holomorphic projec-
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§1. Introduction

Let X be a compact complex manifold, dimCX = n. Fix an arbitrary Hermitian

metric ω on X (which will be identified throughout with the corresponding C∞

positive-definite (1, 1)-form on X). Let α be any real C∞ d-closed (1, 1)-form on X.

Thus its de Rham cohomology 2-class {α} ∈ H2
DR(X,R) may be a transcendental

(i.e. non-rational) class.

For every q = 0, . . . , n, denote as in [Dem85a] by X(α, q) ⊂ X the open subset

of points z ∈ X such that α has q negative and n−q positive eigenvalues (counted
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with multiplicities) at z. Set X(α,≤1) := X(α, 0) ∪ X(α, 1). When {α} is an

integral class (i.e. {α} is the first Chern class c1(L) of a holomorphic line bundle

L on X), it follows from Demailly’s holomorphic Morse inequalities [Dem85a]

that the (a priori very weak) positivity assumption
∫
X(α,≤1)

αn > 0 suffices to

guarantee that L is big. Moreover, it is well known that the first Chern class of

any big holomorphic line bundle L→ X contains a Kähler current T (i.e. a d-closed

(1, 1)-current T such that T ≥ δω on X for some constant δ > 0).

On the other hand, the existence of a Kähler current (possibly of transcenden-

tal class) on X is equivalent, thanks to [DP04], to X being a class C manifold (i.e.

bimeromorphically equivalent to a compact Kähler manifold). Thus extending to

arbitrary classes {α} the (by now) classical results for integral classes alluded to

above is of the utmost importance in the study of the geometry of X. In this paper

we make the first moves towards an eventual resolution of Demailly’s conjecture

on transcendental Morse inequalities.

Conjecture 1.1 (Demailly). Let α be any real C∞ d-closed (1, 1)-form on X of

arbitrary (i.e. possibly non-rational) cohomology class {α} ∈ H2
DR(X,R). If

(1)

∫
X(α,≤1)

αn > 0,

then there exists a Kähler current in the class {α}.

In view of the results we have obtained in [Pop08] and [Pop09], this conjecture

of Demailly is the last missing link in a (hopefully forthcoming, but still elusive)

resolution of the following long-conjectured fact.

Conjecture 1.2 (standard). Suppose that in a complex analytic family of com-

pact complex manifolds (Xt)t∈∆ over the unit disc ∆ ⊂ C the fibre Xt is Kähler

for every t ∈ ∆ \ {0}. Then X0 is a class C manifold.

The results we obtain in this paper build on earlier work by L. Laeng [Lae02]

whose set-up and main result we now summarise. They will serve as the starting

point of the present work.

§1.1. Setting considered by L. Laeng in [Lae02]

By [Lae02, Théorème 1.3, p. 57], one can find an infinite subset S ⊂ N? (that

will be assumed without loss of generality to be N?) and a sequence (αk)k∈S of

real C∞ d-closed 2-forms (in general not of type (1, 1)) on X such that

(2) (i) {αk} ∈ H2
DR(X,Z), (ii) ‖αk − kα‖C∞ ≤

C

k1/b2
for all k ∈ S,
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where C > 0 is a constant independent of k but depending on X, and b2 :=

dimRH
2
DR(X,R) denotes the second Betti number of X. Here and throughout,

the symbol ‖ ‖C∞ means that the stated estimate holds in every Cl-norm with a

constant C = Cl > 0 depending on l ∈ N (but not on k). Thus the notation used

in part (ii) of (2) is shorthand for

‖αk − kα‖Cl ≤ Cl
k1/b2

for all k ∈ S and all l ∈ N.

It is clear that if αk = α2,0
k +α1,1

k +α0,2
k denotes the splitting of αk into pure-type

components, we have

(3) (i) ‖α1,1
k − kα‖C∞ ≤

C

k1/b2
, (ii) ‖α0,2

k ‖C∞ ≤
C

k1/b2
for all k ∈ S.

In particular, α1,1
k (as well as αk) comes arbitrarily close to kα, while α0,2

k converges

to zero in the C∞-topology when k →∞.

Since the classes {αk} are integral, there exists for every k ∈ S a Hermi-

tian C∞ (in general not holomorphic) complex line bundle (Lk, hk)→ X carrying

a Hermitian connection Dk of curvature i
2πD

2
k = αk. In particular c1(Lk) = {αk}.

The complex structure of X induces a splitting of Dk into components ∂k and ∂̄k
of respective types (1, 0) and (0, 1):

Dk = ∂k + ∂̄k,

for which one clearly has

(4) ∂̄2
k = −2πiα0,2

k and ∂k∂̄k + ∂̄k∂k = −2πiα1,1
k .

In particular, ∂̄2
k 6= 0 (i.e. ∂̄k is a non-integrable connection of type (0, 1) on Lk)

if Lk is not holomorphic. This means that, even locally, Lk may admit no holo-

morphic sections, as ker ∂̄k need not contain any non-trivial elements. However,

combined with (ii) of (3), the first part of (4) shows that although the line bundle

Lk is non-holomorphic, it comes arbitrarily close to being holomorphic as k →∞.

The sequence of asymptotically holomorphic line bundles (Lk)k∈S will play a major

role in what follows.

(In the classical case when {α} = c1(L) is an integral class, one can of course

choose αk = kα and Lk = Lk is then a genuine holomorphic line bundle in which

∂̄k = ∂̄ is integrable, i.e. ∂̄2
k = 0. However, the non-integrable case is of concern

here.)

§1.2. Results of L. Laeng [Lae02]

One of the main problems considered in [Lae02] was to find a suitable notion

of approximately holomorphic sections of the approximately holomorphic line
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bundles Lk. Various such notions have been put forward by a number of authors

in similar (though not identical) situations (e.g. Donaldson in [Don90] where sec-

tions of some vector bundle E lying in the kernel of D := ∂?E + ∂̄?E are considered;

Donaldson in [Don96] where Gaussian sections in the local flat model are used

to construct global approximately holomorphic sections; Shiffman and Zelditch in

[SZ02] where the Boutet de Monvel–Sjöstrand [BS76] and the Boutet de Monvel-

Guillemin [BG81] methods are used on a suitable circle bundle to construct a

pseudodifferential operator D0 replacing the standard ∂̄b of the integrable case; Ma

and Marinescu in [MM02] where the spinc Dirac operator is used and in [MM08]

where the asymptotics of projections onto eigenspaces of low-lying eigenvalues is

established; Borthwick and Uribe in [BU00], etc.).

However, all the works mentioned above share a common, very strong hypoth-

esis that we would like to dispense with: the curvature form of the line bundle in

whose high tensor powers approximately holomorphic sections are constructed is

supposed to be non-degenerate (i.e. a symplectic form). The Boutet de Monvel–

Sjöstrand theory [BS76] relies heavily on the non-degeneracy assumption and no

version of it in the degenerate case is known.

As far as we are aware, the only attempt at tackling the non-integrable, de-

generate case (i.e. where the initial closed 2-form α does not have rational class

and may degenerate at certain points of X) was made in the thesis of L. Laeng

[Lae02] whose main result we now recall.

In the setting described in §1.1, the anti-holomorphic Laplace–Beltrami oper-

ator acting in bi-degree (0, 0) (i.e. on C∞ sections of Lk)

∆′′k = ∂̄?k ∂̄k : C∞(X,Lk)→ C∞(X,Lk)

may have trivial kernel, but the direct sum of its eigenspaces corresponding to small

eigenvalues is a natural substitute thereof. Thus Laeng put forward the following

space of sections (cf. [Lae02, Propriété 4.5, p. 92]).

Definition 1.3. For every k ∈ S (= N?), let

Hk :=
⊕

µ≤C/k1+ε

E0,0
∆′′k

(µ) ⊂ C∞(X,Lk),

where E0,0
∆′′k

(µ) stands for the eigenspace of ∆′′k in bi-degree (0, 0) corresponding to

the eigenvalue µ, ε is any constant such that 0 < ε < 2/b2 (where b2 = b2(X) =

dimRH
2(X,R) is the second Betti number of X) and C > 0 is an arbitrary

constant.

The spaces Hk are not uniquely or even canonically associated with {α} since

there is no privileged choice of rational classes (1/k){αk} in H2
DR(X,R) approx-
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imating {α}. The C∞ sections of Lk belonging to the space Hk will be termed

approximately holomorphic sections of Lk by virtue of their satisfying the following

obvious property (cf. [Lae02, p. 92]).

Lemma 1.4. For every k ∈ S and every section s ∈ Hk, we have

(5) ‖∂̄ks‖2 ≤ εk‖s‖2,

where εk := C/k1+ε and ‖ · ‖ denotes the L2-norm defined by ω and hk on any

space C∞p,q(X,Lk).

Proof. If 〈〈·, ·〉〉 denotes the L2 scalar product induced by ω and hk on any space

C∞p,q(X,Lk), for every s ∈ Hk we have

‖∂̄ks‖2 = 〈〈∆′′ks, s〉〉 ≤ εk‖s‖2

by the definition of Hk.

The main result of Laeng is the following asymptotic growth estimate of the

dimension of Hk which provides the non-integrable analogue of the key estimate

in Demailly’s holomorphic Morse inequalities [Dem85a].

Theorem 1.5 (Théorème 4.4. in [Lae02]). We have

(6) lim inf
k→∞, k∈S

n!

kn
dimC Hk ≥

∫
X(α,≤1)

αn.

In particular, if we assume
∫
X(α,≤1)

αn > 0 (Demailly’s hypothesis in [Dem85a]),

then dimC Hk has maximal growth rate (i.e. O(kn)) as k →∞.

Thus Theorem 1.5 shows that the asymptotically holomorphic line bundles Lk
for which one has singled out spaces of approximately holomorphic sections Hk

display in the non-integrable context a property analogous to the familiar notion

of big holomorphic line bundle of the integrable context.

The underlying idea in this approach to Demailly’s conjecture on transcenden-

tal Morse inequalities is to manufacture the desired Kähler current in the class {α}
by modifying in the same class a positive current obtained as a limit of currents

explicitly constructed from approximately holomorphic sections of the approxi-

mately holomorphic line bundles Lk. If (σk,l)0≤l≤Nk
(where Nk+1 := dimC Hk) is

an orthonormal basis of Hk, it is natural to consider the closed (1, 1)-currents Tk
(cohomologous to α) on X defined by

(7) Tk = α+
i

2πk
∂∂̄ log

Nk∑
l=0

|σk,l|2hk
, k ∈ S (= N?),
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where at every point z ∈ X we denote by |σk,l(z)|hk
the hk-norm of σk,l(z) ∈ (Lk)z

(see [Lae02, pp. 92–100] where an extra εk is inserted to enable the calculations).

Since the sections σk,l are not holomorphic, each current Tk may have a negative

part. Moreover, the L2-estimate (5) which makes precise the sense in which sections

in Hk are approximately holomorphic falls far short of what is needed to control

the negative parts of these currents. To obtain such a control, pointwise estimates

of the sections σk,l and their derivatives of order ≤ 2 are needed. We need to be

able to either produce sections of Lk that are approximately holomorphic in a

sense much stronger than L2, or to get a far better grip on the existing sections

making up the space Hk. This is where the work of [Lae02] comes to an end and

new ingredients are needed.

§1.3. Results obtained in this paper

We propose in this paper a method of constructing global C∞ approximately holo-

morphic peak sections of Lk by a careful analysis of the spectrum and (lack of) com-

mutation properties of the anti-holomorphic Laplace–Beltrami operator ∆′′k of Lk.

The familiar L2 techniques of the integrable case based on resolutions of the ∂̄-

operator are inapplicable in our case where ∂̄2
k 6= 0 (hence ∂̄k-exact forms need not

even be ∂̄k-closed). Thus ∂̄k is replaced in this approach by ∆′′k as the main object

of study. The starting point is a Weitzenböck-type formula for non-holomorphic

vector bundles that essentially appears in [Lae02]. We only very slightly simplify

it in Section 2.

Having fixed an arbitrary point x ∈ X, the construction of an approximately

holomorphic peak section at x will proceed in two stages. First, a local peak section

is constructed on a neighbourhood of x as a Gaussian section lying in the kernel

of a coupled ∂̄-operator ∂̄kA := ∂̄+A0,1
k defined by an appropriate (0, 1)-form A0,1

k

coming from the curvature 2-form αk of Lk. This local construction, performed in

§3.1, has been inspired by Donaldson’s approach in [Don96]. Second, we extend the

local section v to a global C∞ section θv of Lk by multiplying by a cut-off function θ

and then we take the orthogonal projection sh of this extension onto the space Hk.

This is tantamount to correcting s := θv to an approximately holomorphic global

section sh of Lk by subtracting its orthogonal projection snh onto the orthogonal

complement of Hk in C∞(X,Lk). We are faced with the challenge of estimating

(for example in L2-norm over X and in a stronger norm on a neighbourhood

of x) the correction snh in terms of ∂̄ks. This is done (cf. Proposition 3.5) for an

arbitrary global section s ∈ C∞(X,Lk) in §3.2 which is the heart of the paper.

When α > 0, the global L2-estimate obtained is

‖snh‖2 ≤
C

k
‖∂̄ks‖2, k � 1.
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A refined local estimate is then obtained in §3.3 in a neighbourhood of x when s

is the extension of the local Gaussian section of §3.1.

We then go on to give two applications of the approximately holomorphic

peak sections in the special case when α > 0 on X (i.e. α is a Kähler metric). This

(rather strong positivity) assumption will be removed in future work, but there

are already some interesting features in this most basic case.

The first application is an approximately holomorphic Kodaira-type projective

embedding theorem for compact Kähler manifolds (see Theorem 4.1 for a more

precise statement).

Theorem 1.6. Let X be a compact Kähler (possibly non-projective) manifold.

Pick any Kähler metric α (possibly of non-rational class) on X and a choice of

spaces Hk (k ∈ S ⊂ N?) for {α}. Then the Kodaira-type map

Φk : X → PNk

associated with Hk is everywhere defined and an embedding for k large enough.

Similar statements have been proved by various authors (e.g. [SZ02]) for sym-

plectic forms of integral classes. The novelty of our result lies in allowing for the

class {α} to be transcendental.

The other application, an approximately holomorphic analogue of Tian’s al-

most isometry theorem [Tia90, Theorem A], can be stated as follows (see Theorem

5.1 for a more precise statement).

Theorem 1.7. The assumptions are those of Theorem 1.6.

(a) The (1, 1)-current Tk := α + i
2πk∂∂̄ log

∑Nk

l=0 |σk,l|2hk
defined in (7) converges

to α in the C2-topology as k →∞.

(b) If ω
(k)
FS denotes the Fubini–Study metric of PNk and Φk is the embedding of

Theorem 1.6, then (1/k)Φ?kω
(k)
FS converges to α in the C2-topology as k →∞.

The natural question arising is whether the above C2-norm convergences can

be improved to C∞-topology convergences and, moreover, whether there exists

an asymptotic expansion for the Bergman kernel function
∑
|σk,l|2hk

that would

parallel Zelditch’s results of [Zel98]. Given the non-degeneracy assumption on α,

this is likely but the approach would be probably different to the one based on

approximately holomorphic peak sections that we have undertaken here. However,

in our view, the present approach has the advantage of lending itself to generali-

sations when α is allowed to degenerate. This far more general situation that one

faces in tackling Demailly’s conjecture on transcendental Morse inequalities will

be taken up in future work.
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The global approximately holomorphic peak sections of Lk constructed in

Section 3 provide a non-integrable analogue to Tian’s holomorphic peak sections

of [Tia90]. While in the case of an ample holomorphic line bundle treated in [Tia90]

the Kodaira Embedding Theorem was already available, we show in Section 4 that

its standard proof can be imitated in the present non-integrable context using our

peak sections. Finally, the proof of Theorem 1.7 is spelt out in Section 5 along

the lines of Tian’s proof of his holomorphic case result with an emphasis on the

handling of the extra derivatives peculiar to the approximately holomorphic case

at hand.

§2. Preliminaries

We collect here a few essentially known facts about the Bochner–Kodaira–Nakano

and Weitzenböck identities for not necessarily holomorphic vector bundles on pos-

sibly non-Kähler compact complex manifolds that we arrange in a form that will be

useful to us in the subsequent sections. The references are [Gri66], [Dem85b] (the

non-Kähler case), [Lae02] (the non-holomorphic bundle case) and [Don90] (whose

straightforward approach in the almost Kähler situation inspired the presentation

in §2.1 and §2.2). This section also fixes the notation for the rest of the paper.

§2.1. Weitzenböck formula: the non-integrable case

Let (E, hE , DE)→ (X,ω) be a complex Hermitian C∞ vector bundle (rankCE =

r ≥ 1) equipped with a Hermitian connection DE over a complex Hermitian man-

ifold (dimCX = n). One denotes by

DE = ∂E + ∂̄E and d = ∂ + ∂̄

the splittings into (1, 0) and (0, 1)-type components of DE (acting on E-valued

forms) and respectively d (the Poincaré differential operator acting on scalar-

valued forms of X) with respect to the complex structure of X. Note that in

the general case when E is not holomorphic, we have

∂̄2
E = Θ(E)0,2 6= 0,

where Θ(E)0,2 denotes the (0, 2)-component of the curvature form of (E, hE). Thus

∂̄E is a non-integrable connection of type (0, 1) when E is non-holomorphic.

For all p, q = 0, . . . , n, one considers the Laplace–Beltrami operators

∆′E = ∂E∂
?
E + ∂?E∂E : C∞p,q(X,E)→ C∞p,q(X,E) (hence ∆′E = [∂E , ∂

?
E ])

and

∆′′E = ∂̄E ∂̄
?
E + ∂̄?E ∂̄E : C∞p,q(X,E)→ C∞p,q(X,E) (hence ∆′′E = [∂̄E , ∂̄

?
E ])
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acting on spaces of E-valued C∞ (p, q)-forms. (As usual, we use the notation

[A,B] := AB − (−1)abBA for operators of degrees deg(A) = a and deg(B) = b on

the graded algebra C∞·,· (X,E).)

If Λ = Λω denotes the formal adjoint (with respect to ω) of the multiplication

operator L = Lω := ω ∧ ·, one considers (cf. [Dem85b]) the following torsion

operator associated with the Hermitian metric ω on X:

τ := [Λ, ∂ω].

It is clear that τ is an operator of order zero and bi-degree (1, 0). The metric ω is

Kähler if and only if τ = 0.

The Bochner–Kodaira–Nakano identity for holomorphic vector bundles E was

extended to the case of a Hermitian (possibly non-Kähler) metric ω by Griffiths in

[Gri66] and in a more precise form by Demailly in [Dem85b]. It was later further

extended to the case of a possibly non-holomorphic C∞ vector bundle E by Laeng

in [Lae02] in the following form.

Bochner–Kodaira–Nakano identity.

(8) ∆′′E = ∆′E,τ + [iΘ(E)1,1,Λ] + Tω

as operators acting on C∞p,q(X,E) (for any p, q = 0, . . . , n), where

∆′E,τ := [∂E + τ, ∂?E + τ?] : C∞p,q(X,E)→ C∞p,q(X,E)

is the torsion-twisted version of ∆′E (and clearly a non-negative formally self-

adjoint elliptic operator of order two) and

Tω := [Λ, [Λ, 1
2 i∂∂̄ω]]− [∂ω, (∂ω)?] : C∞p,q(X,E)→ C∞p,q(X,E)

is a zero-order operator that vanishes if ω is Kähler, while iΘ(E)1,1 denotes the

(1, 1)-component of the curvature form of (E, hE) (which is not of type (1, 1) when

E is not holomorphic).

To derive a Weitzenböck-type formula for E-valued (0, q)-forms in this gen-

eral setting, one follows the usual route. For every q = 1, . . . , n, set Ω0,q
E :=

Λ0,qT ?X ⊗ E. This complex C∞ vector bundle has a natural Hermitian metric

induced by ω and hE . Let

∇ = ∇′ +∇′′

be the connection on Ω0,q
E induced by DE , ω and hE , while ∇′, ∇′′ denote its re-

spective (1, 0) and (0, 1)-components with respect to the complex structure of X.

Since the vector bundle Λ0,qT ?X is anti-holomorphic, it has a natural Hermitian



322 D. Popovici

connection whose (1, 0)-component is ∂, so∇ is the unique connection on Ω0,q
E com-

patible with the metric induced by hE and ω and having ∂E as (1, 0)-component.

Thus

(9) ∇′ = ∂E .

It is clear that E-valued (0, q)-forms identify naturally with sections of Ω0,q
E

under the obvious isomorphism

(10) C∞0,q(X,E) ' C∞(X,Ω0,q
E ).

One naturally defines Laplace–Beltrami operators on sections of Ω0,q
E :

�′′E := ∇′′?∇′′ : C∞(X,Ω0,q
E )→ C∞(X,Ω0,q

E )

and

�′E := ∇′?∇′ : C∞(X,Ω0,q
E )→ C∞(X,Ω0,q

E ),

as well as the torsion-twisted version of the latter by

�′E,τ := (∇′? + τ?)(∇′ + τ) : C∞(X,Ω0,q
E )→ C∞(X,Ω0,q

E ).

It is clear that the identifications (9) and (10) give

(11) �′E,τ = ∆′E,τ + l .o.t .,

where l.o.t. stands for “terms of order ≤ 1” throughout this section. The Weitzen-

böck formula will follow from a double application of the Bochner–Kodaira–Nakano

identity (8), first to relate ∆′′E and ∆′E,τ acting on C∞0,q(X,E) and then to relate

�′′E and �′E,τ acting on C∞(X,Ω0,q
E ). The link is provided by (11).

Indeed, applying (8) on sections (i.e. (0, 0)-forms) of Ω0,q
E , we get

(12) �′′E = �′E,τ + [iΘ(Ω0,q
E )1,1,Λ] + Tω on C∞(X,Ω0,q

E ).

Now using identification (10) and identity (11) and putting together the two in-

stances (8) and (12) of the Bochner–Kodaira–Nakano identity, we get:

Weitzenböck formula for E-valued (0, q)-forms.

(13) ∆′′E = �′′E − [iΘ(Ω0,q
E )1,1,Λ] + [iΘ(E)1,1,Λ] + l .o.t .

on C∞0,q(X,E) ' C∞(X,Ω0,q
E ).

§2.2. Weitzenböck formula in Laeng’s special setting

We now specialise the discussion in Subsection 2.1 to the situation described in

Subsection 1.1. This was already done in [Lae02]. We only very slightly simplify

the formulae. The complex manifold X is supposed to be compact.
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If we choose E = (Lk, hk, Dk)→ (X,ω) (so rankC Lk = 1), the curvature form

is i
2πΘ(Lk) = αk and the Laplace–Beltrami operators ∆′′E , ∆′E and ∆′E,τ become

the following operators acting on C∞p,q(X,Lk):

∆′′k = [∂̄k, ∂̄
?
k ], ∆′k = [∂k, ∂

?
k ] and ∆′k,τ = [∂k + τ, ∂?k + τ?].

If the connection on Ω0,q
k := Λ0,qT ?X⊗Lk induced by Dk and ω is denoted (when

splitting into (1, 0) and (0, 1)-components)

∇k = ∇′k +∇′′k ,

we have ∇′k = ∂k (cf. (9)) on C∞0,q(X,Lk) ' C∞(X,Ω0,q
k ). The Laplace–Beltrami

operators induced by ∇k on C∞(X,Ω0,q
k ) read

�′′k := ∇′′k
?∇′′k , �′k := ∇′k

?∇′k and �′k,τ := (∇′k
?

+ τ?)(∇′k + τ).

Thus by (11) we have �′k = ∆′k,τ + l .o.t . and the Weitzenböck formula (13) for

Lk-valued (0, q)-forms reduces to

(14) ∆′′k = �′′k + Λ(iΘ(Ω0,q
k )1,1)− Λ(iΘ(Lk)1,1) + l .o.t .

on C∞0,q(X,Lk) ' C∞(X,Ω0,q
k ) because Λ (which is of type (−1,−1)) acts trivially

on (0, q)-forms for bi-degree reasons.

Now iΘ(Lk)1,1 = α1,1
k and iΘ(Ω0,q

k ) = iΘ(Λ0,qT ?X) ⊗ IdLk
+ IdΛ0,qT?X ⊗

iΘ(Lk). Since iΘ(Λ0,qT ?X) is of type (1, 1) (due to Λ0,qT ?X being anti-holomor-

phic), passing to (1, 1)-components in the last identity we are left with iΘ(Ω0,q
k )1,1

= iΘ(Λ0,qT ?X)⊗IdLk
+IdΛ0,qT?X⊗α1,1

k . The Weitzenböck formula (14) translates

to

(15) ∆′′k = �′′k+Λ(IdΛ0,qT?X⊗α1,1
k )−Λ(α1,1

k )+Λ(iΘ(Λ0,qT ?X)⊗IdLk
)+ l .o.t .

Set R := Λ(iΘ(Λ0,qT ?X) ⊗ IdLk
), a zero-order operator independent of k.

In order to better exploit the fact that α1,1
k is close to kα for k large, we write

α1,1
k = (α1,1

k − kα) + kα and (15) translates to the following

Weitzenböck formula for Lk-valued (0, q)-forms.

(16) ∆′′k = �′′k + kV + (Rα,k +R) + l .o.t .

on C∞0,q(X,Lk) ' C∞(X,Λ0,qT ?X ⊗ Lk), where we have denoted

(17) V := Λ(IdΛ0,qT?X ⊗ α)− Λ(α),

a zero-order operator, independent of k,

(18) Rα,k := Λ(IdΛ0,qT?X ⊗ (α1,1
k − kα))− Λ(α1,1

k − kα),
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a zero-order operator that depends on k but tends to zero as k →∞, and

(19) R := Λ(iΘ(Λ0,qT ?X)⊗ IdLk
),

a zero-order operator, independent of k.

Calculation of V . Let λ1 ≤ · · · ≤ λn stand for the eigenvalues of α with respect

to ω ordered non-decreasingly. Let us fix an arbitrary point x ∈ X. We can find

local holomorphic coordinates z1, . . . , zn about x such that

ω(x) = i

n∑
j=1

dzj ∧ dz̄j and α(x) = i

n∑
j=1

λj(x)dzj ∧ dz̄j .

Fix some 0 ≤ q ≤ n and let u ∈ C∞0,q(X,Lk) be arbitrary. Then in a neigh-

bourhood of x we can write

u =
∑
|J|=q

uJdz̄J for some smooth functions uJ ,

where dz̄J := dz̄j1 ∧ · · · ∧ z̄jq for every J = (j1 < · · · < jq). The first identity in

the following formula is known to hold at x (cf. e.g. [Dem97, VI-§5.2] or [Lae02,

II.2.6, p. 68]):

〈[α,Λ]u, u〉=
∑
|J|=q

(∑
j∈J

λj −
n∑
l=1

λl

)
|uJ |2

=
∑
|J|=q

(∑
j∈J

λj

)
|uJ |2 −

( n∑
l=1

λl

) ∑
|J|=q

|uJ |2.

Since [α,Λ]u = −(Λα)u (because Λu = 0 for bi-degree reasons) and since
∑n
l=1 λl

= Trω α is the trace of α with respect to ω, we have obtained the formula

(20) 〈(Λα)u, u〉 = (Trω α)|u|2 −
∑
|J|=q

(∑
j∈J

λj

)
|uJ |2

at x for any Lk-valued (0, q)-form u.

We can now regard u as a (0, 0)-form with values in Ω0,q
k . The above formula

(20) applied to Ω0,q
k -valued (0, 0)-forms reads:

(21) 〈Λ(IdΛ0,qT?X ⊗ α)u, u〉 = (Trω α)|u|2

at x for any section u of Ω0,q
k .

Combining (20) and (21), we obtain the formula

(22) 〈V u, u〉 =
∑
|J|=q

(∑
j∈J

λj

)
|uJ |2

at every point x ∈ X and for every u =
∑
|J|=q uJdz̄J ∈ C∞0,q(X,Lk).
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Consequently the Weitzenböck formula (16) translates to the following

Explicit Weitzenböck formula for C∞0,q(X,Lk) ' C∞(X,Λ0,qT ?X ⊗ Lk).

(23) 〈∆′′ku, u〉 = 〈�′′ku, u〉+ k
∑
|J|=q

(∑
j∈J

λj

)
|uJ |2 + 〈(Rα,k +R)u, u〉+ l .o.t .

at every point x ∈ X and for every u =
∑
|J|=q uJdz̄J ∈ C∞0,q(X,Lk).

The l.o.t. can be incorporated into �′′ku after replacing �′′ku with �′′ku+S (see

[Dem85a, §3] or [Lae02, II.2.6, pp. 67–68] for the definition of S). When q = 1, we

get

(24) 〈∆′′ku, u〉 = 〈�′′ku, u〉+ k

n∑
j=1

λj |uj |2 + 〈(Rα,k +R)u, u〉.

Note that �′′k is a non-negative operator (i.e. 〈〈�′′ku, u〉〉 ≥ 0 for every u) and

Rα,k+R is an operator of order 0, bounded independently of k (see (18) and (19)).

Hence in the special case when α is supposed to be positive-definite (i.e. λj(z) > 0

for all j = 1, . . . , n and all z ∈ X), we immediately get

Corollary 2.1. Suppose that α > 0 at every point of X. Then the Laplace–

Beltrami operator ∆′′k : C∞0,1(X,Lk)→ C∞0,1(X,Lk) satisfies

(25) ∆′′k ≥ δ0k > 0 for all k � 1,

(i.e. 〈〈∆′′ku, u〉〉 ≥ δ0k‖u‖2 for all u ∈ C∞0,1(X,Lk) and all k � 1), where δ0 > 0 is

any constant for which α ≥ 2δ0ω on X.

§2.3. The spectral gap in bi-degree (0, 0) when α > 0

Before developing the new arguments, we explain in this subsection how a result

of Laeng [Lae02, 4.2.2, pp. 90–91] gives additional information on the spectrum of

∆′′k : C∞(X,Lk) → C∞(X,Lk) in a special case. This will be needed in the next

section.

Since ∂̄2
k 6= 0, ∂̄k does not commute with ∆′′k . Indeed, the commutation defect

is easily seen to be

(∆′′k ∂̄k − ∂̄k∆′′k)s = ∂̄?k ∂̄
2
ks, s ∈ C∞(X,Lk),

and the following L2-norm estimate was given in [Lae02, p. 90]:

(26) ‖∂̄?k ∂̄2
ks‖2 ≤

C

k2/b2
(k‖s‖2 + ‖∂̄ks‖2), s ∈ C∞(X,Lk).

Since ∂̄k and ∆′′k do not commute, an eigenvalue λ of ∆′′k in bi-degree (0, 0)

need not be an eigenvalue of ∆′′k in bi-degree (0, 1). In particular, ∂̄k need not define
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an injection of the eigenspace E0,0
∆′′k

(λ) into E0,1
∆′′k

(λ) when λ 6= 0 as is the case when

∂̄k is integrable. However, it was shown in [Lae02] that a part of the spectrum in bi-

degree (0, 0) injects into an appropriate part of the spectrum in bi-degree (0, 1). For

any (p, q), let Ep,q∆′′k
(µ) stand for the eigenspace of ∆′′k : C∞p,q(X,Lk)→ C∞p,q(X,Lk)

corresponding to the eigenvalue µ (with the understanding that Ep,q∆′′k
(µ) = {0} if

µ is not an actual eigenvalue). For any 0 < λ1 < λ2 and any ε′0 > 0, considering

the intervals I = (λ1, λ2] and J = [0, λ2 + ε′0] of R and setting

E0,0
I :=

⊕
λ∈I

E0,0
∆′′k

(λ) ⊂ C∞(X,Lk) and E0,1
J :=

⊕
µ∈J

E0,1
∆′′k

(µ) ⊂ C∞0,1(X,Lk)

(the present notation differs from that of [Lae02] where λ and µ stood for eigen-

values of 1
k∆′′k rather than ∆′′k), it was shown in [Lae02] that the map

ΠJ ◦ ∂̄k : E0,0
I → E0,1

J ,

which is the composition of ∂̄k with the orthogonal projection ΠJ of C∞0,1(X,Lk)

onto E0,1
J , is injective if appropriate choices of λ1, λ2 and ε′0 are made. The rea-

soning proceeds in [Lae02] by contradiction in the following way: if for some

s ∈ E0,0
I \ {0} we had ΠJ(∂̄ks) = 0, then ∂̄ks ∈

⊕
µ>λ2+ε′0

E0,1
∆′′k

(µ), hence

(27) ‖∆′′k ∂̄ks‖ ≥ (λ2 + ε′0)‖∂̄ks‖,

while, on the other hand, we have

‖∂̄ks‖2 = 〈〈∆′′ks, s〉〉 ≥ λ1‖s‖2

which, for this particular s, transforms (26) to

(28) ‖∂̄?k ∂̄2
ks‖2 ≤

C

k2/b2

(
1 +

k

λ1

)
‖∂̄ks‖2.

Writing now ∆′′k ∂̄ks = ∂̄k∆′′ks+ ∂̄?k ∂̄
2
ks, we get

(29) ‖∆′′k ∂̄ks‖ ≤ ‖∂̄k∆′′ks‖+ ‖∂̄?k ∂̄2
ks‖ ≤

(
λ2 + Ck−1/b2

√
k√
λ1

)
‖∂̄ks‖

if we choose λ1 < k. (Indeed, ∆′′ks ∈ E
0,0
I for s ∈ E0,0

I , so ‖∂̄k∆′′ks‖ ≤ λ2‖∂̄ks‖.
Meanwhile, 1 + k/λ1 < 2k/λ1 if we choose λ1 < k; the factor 2 can be absorbed

in the constant C in (28).) Now putting (27) and (29) together and using the fact

that ∂̄ks 6= 0 (because ∂̄ks = 0⇔ 〈〈∆′′ks, s〉〉 = 0⇔ s ∈ E0,0
∆′′k

(0), which is ruled out

by the choices made above), we get

ε′0 ≤ Ck−1/b2

√
k√
λ1

.
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Now fix an arbitrary ε′′0 > 0 independent of k and choose ε′0 = ε′0(k) := ε′′0k. The

above inequality translates to

(30) ε′′0 ≤ Ck−1−1/b2

√
k√
λ1

.

Choose moreover λ1 = λ1(k) = Ck−1−ε with an arbitrary 0 < ε < 2/b2. Then

(30) reads

ε′′0 ≤
C

k
1
2 (2/b2−ε)

,

which is impossible if k is large enough since 2/b2 − ε > 0 with the above choices.

Thus no s as above exists, which means that the map ΠJ ◦ ∂̄k is injective when

k � 1. Hence

(31) dimCE
0,1
J ≥ dimCE

0,0
I ≥ 0 if k � 1,

with the above choices of λ1 = λ1(k) > 0, ε′0 = ε′0(k) (for any fixed ε′′0 > 0

independent of k) and every λ2 > 0 (that may or may not depend on k). This

inequality (31) was used in [Lae02] in the proof of Theorem 1.5.

Alternatively, we can use it in the following way. If we assume that α > 0

on X, Corollary 2.1 implies that all the eigenvalues of ∆′′k in bi-degree (0, 1) are

≥ δ0k for k large enough. Hence E0,1
J = {0} if we choose λ2 > 0, ε′′0 > 0 and

ε′0 = ε′′0k > 0 such that λ2 + ε′′0k < δ0k. (We can choose, for example, 0 < ε′′0 < δ0
and λ2 = λ2(k) := (δ0−ε0)k where 0 < ε′′0 < ε0 < δ0 with ε0 independent of k). In

this case, (31) implies that E0,0
I = {0}, which means that ∆′′k acting in bi-degree

(0, 0) has no eigenvalues in the interval I = (λ1, λ2]. We thus get the following

Corollary 2.2. Suppose that α > 0 at every point of X. Let Spec0,0(∆′′k) denote

the set of eigenvalues of ∆′′k : C∞(X,Lk)→ C∞(X,Lk). Then, for any constants

C > 0, 0 < ε < 2/b2, δ0 > 0 such that α ≥ 2δ0ω on X and any 0 < ε0 < δ0, we

have

(32) Spec0,0(∆′′k) ∩ (C/k1+ε, (δ0 − ε0)k] = ∅ if k is large enough.

§3. Construction of peak sections

To control the negative part of Tk (defined in (7)), the first estimate we need is a

pointwise lower bound for the Bergman kernel function

(33) ak(x) :=

Nk∑
l=1

|σk,l(x)|2 = sup
σ∈B̄k(1)

|σ(x)|2, x ∈ X,
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where B̄k(1) ⊂ Hk denotes the closed unit ball of Hk and the latter identity

follows by considering the evaluation linear map Hk 3 σ 7→ σ(x) ∈ C (whose

squared L2-norm equals both ak(x) and the right-hand term of (33)) at any given

point x ∈ X. The function ak features in the denominators of expressions that

make up Tk when the derivatives of log ak are calculated.

In the integrable case, the only known way of obtaining a pointwise lower

bound for expressions similar to ak (in which the σk,l’s are genuine holomorphic

functions) is Demailly’s method of [Dem92, Proposition 3.1] consisting in an ap-

plication of the Ohsawa–Takegoshi L2-extension theorem at the given point x: a

global holomorphic function σ exists with prescribed value at x (σ(x) = eϕk(x)

is chosen if ϕk denotes the psh local weight of hk near x) and with L2-norm un-

der control. After normalisation, σ can be made to fit in the unit ball B̄k(1) and

const · |σ(x)|2 provides an explicit lower bound for ak(x) in terms of ϕk(x). By

construction, this section σ is “not too small” at x.

Genuine peak sections in the sense of L2-norms were constructed by Tian

for high tensor powers of a positive holomorphic line bundle L in [Tia90] (where

the term peak section was used). Hörmander’s L2-estimates were employed there

to produce global holomorphic sections of Lk whose L2-norms get increasingly

concentrated on increasingly smaller balls about a given point x as k →∞.

Both these methods completely break down in our case: no non-integrable

analogues of the Ohsawa–Takegoshi and Hörmander’s theorems are known and no

positivity assumption is made on the possibly degenerate form α.

As a substitute for these (by now) classical techniques, we propose a method

of constructing global C∞ sections of Lk belonging to the space Hk (hence approx-

imately holomorphic) that peak at an arbitrary point x ∈ X given beforehand and

whose L2-norms are under control. The starting point of the construction, consist-

ing in the use of appropriate locally defined Gaussian sections, has been inspired

by Donaldson’s approach in [Don96].

§3.1. The local model

The notation is that of 1.1. Fix an arbitrary point x ∈ X. Since α is a real closed

(1, 1)-form, one can find a C∞ function ϕ : U → R on an open neighbourhood U

of x such that

α =
i

2π
∂∂̄ϕ on U.

It follows that

α = d

(
i

2π
∂̄ϕ

)
= d

(
− i

2π
∂ϕ

)
, so α = d

(
i

4π
(∂̄ϕ− ∂ϕ)

)
= idA,
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where we have denoted A := 1
4π (∂̄ϕ − ∂ϕ), a 1-form on U . Since the (possibly)

non-rational class {α} need not correspond to a line bundle on X, A need not be

associated with a connection of a holomorphic line bundle with curvature form α,

but can be thought of as mimicking such a connection. We have

A1,0 = − 1

4π
∂ϕ and A0,1 =

1

4π
∂̄ϕ on U.

On the other hand, shrinking U about x if necessary, Lk may be assumed

trivial on U . Let 2πAk be the C∞ 1-form representing the connection Dk of Lk

(known to have curvature form αk) in this local trivialisation Lk|U
θk' U × C:

Dk = d+ 2πAk on U.

It follows that αk = i
2πD

2
k = idAk (hence α0,2

k = i∂̄A0,1
k ) on U and

(34) ∂̄k = ∂̄ + 2πA0,1
k on U.

Since ‖kα − αk‖C∞ = ‖d(kA − Ak)‖C∞ ≤ C/k1/b2 by (2), we can choose ϕ

and θk such that ‖kA−Ak‖C∞ ≤ C/k1/b2 , which amounts to

(35) ‖kA1,0 −A1,0
k ‖C∞ ≤

C

k1/b2
and ‖kA0,1 −A0,1

k ‖C∞ ≤
C

k1/b2
.

To exploit the proximity of kA0,1 to A0,1
k , we define the following coupled

∂̄-operators on U (which unlike ∂̄k do not globalise to the whole of X since the

class {α} need not be rational).

Definition 3.1. On the Lk-trivialising open subset U ⊂ X, set

(36) ∂̄A = ∂̄ + 2πA0,1 and ∂̄kA = ∂̄ + 2πkA0,1, k ∈ N?.

Thanks to (35), ∂̄kA is close to ∂̄k as will be seen shortly.

Now choose local holomorphic coordinates z1, . . . , zn centred at x (and defined

on U) such that

(37) ω(x) =
i

2π

n∑
j=1

dzj ∧ dz̄j and α(x) =
i

2π

n∑
j=1

λj(x)dzj ∧ dz̄j ,

where λ1(x) ≤ · · · ≤ λn(x) are the eigenvalues of α with respect to ω at x (cf.

notation in §2.2). It is clear that the C∞ function ϕ : U → R with the property

(i/2π)∂∂̄ϕ = α can be chosen such that

(38) ϕ(z) =

n∑
j=1

λj(x)|zj |2 +O(|z|3), z ∈ U.
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Consider now the following C∞ function u : U → R:

u(z) := e−
1
2ϕ(z) = e−

1
2

∑n
j=1 λj(x)|zj |2+O(|z|3), z ∈ U.

We have ∂̄u = −e− 1
2ϕ(z)( 1

2 ∂̄ϕ) = −2πA0,1 ∧ u, so

∂̄Au = 0 on U.

Similarly, for

(39) uk(z) = e−
k
2ϕ(z) = e−

k
2

∑n
j=1 λj(x)|zj |2+O(|z|3), z ∈ U, k ∈ N?,

we have

∂̄kA(uk) = 0 on U.

We can now easily go from ∂̄kA to ∂̄k:

‖∂̄k(uk)‖C∞ ≤ ‖∂̄k(uk)− ∂̄kA(uk)‖C∞ + ‖∂̄kA(uk)‖C∞ = ‖2π(A0,1
k − kA

0,1)uk‖C∞

≤ 2π‖A0,1
k − kA

0,1‖C∞‖uk‖C∞ ≤
C

k1/b2
‖uk‖C∞ ,

having used (34)–(36). We have thus obtained

(40) ‖∂̄k(uk)‖C∞ ≤
C

k1/b2
‖uk‖C∞ .

It is clear that the same estimate also holds with C0-norms and L2-norms in place

of C∞-norms. So we also have

(41) ‖∂̄k(uk)‖C0 ≤ C

k1/b2
‖uk‖C0 and ‖∂̄k(uk)‖L2(U) ≤

C

k1/b2
‖uk‖L2(U).

Now uk can be regarded as a C∞ section of Lk over U . If e(k) denotes the C∞

local frame of Lk corresponding to the trivialisation θk over U , we have

(42) uk(z) = e−
k
2ϕ(z) θk' fk(z)⊗ e(k)(z), z ∈ U,

where fk := θk(uk) is the C∞ function on U representing the section uk of Lk in

the trivialisation θk. With respect to the fibre metric hk of Lk we have

(43) |uk(z)| = e−
k
2ϕ(z) = |fk(z)⊗ e(k)(z)|hk

,

where |uk| is the modulus of the function uk, while |fk ⊗ e(k)|hk
is the pointwise

hk-norm of the corresponding local section of Lk.

The crucial estimate (40) shows that the Gaussian function uk, viewed as a

local C∞ section of Lk, is an approximately holomorphic section of Lk over U in the

strong sense of the C∞-topology (cf. the much weaker L2-norm inequality (5)).
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In the special case where λ1(x) > 0, the local section uk peaks at x and does

increasingly so as k →∞.

We can go further and define jets of approximately holomorphic sections of Lk
at x. Notice that for every m1, . . . ,mn ∈ N we have on U :

∂̄A(zm1
1 . . . zmn

n e−
1
2ϕ) = 0 and ∂̄kA(zm1

1 . . . zmn
n e−

k
2ϕ) = 0,

so, in particular, each zm1
1 . . . zmn

n e−
k
2ϕ = zm1

1 . . . zmn
n uk satisfies the same esti-

mates (40) and (41) as uk does. This motivates the following

Definition 3.2. For all m, k ∈ N and every x ∈ X, the space of m-jets of approx-

imately holomorphic sections of Lk at x is set to be

(JmLk)x :=
{ ∑
m1+···+mn≤m

c(m1,...,mn)z
m1
1 . . . zmn

n e−
k
2ϕ; c(m1,...,mn) ∈ C

}
,

where z1, . . . , zn are local holomorphic coordinates of X centred on x.

As with uk, these jets can be regarded as C∞ sections of Lk over U :

zm1
1 . . . zmn

n uk(z) = zm1
1 . . . zmn

n e−
k
2ϕ(z) θk' f

(m1,...,mn)
k (z)⊗ e(k)(z), z ∈ U,

and the norms are given by

(44) |zm1
1 . . . zmn

n uk(z)| = zm1
1 . . . zmn

n e−
k
2ϕ(z) = |f (m1,...,mn)

k (z)⊗ e(k)(z)|hk
.

In particular, (J0Lk)x consists of multiples of uk. These jets will be used

later on to show that a Kodaira-type map defined by approximately holomorphic

sections of Lk is an embedding when α > 0 and k � 1. (The reader may wish

to compare the discussion of the integrable case treated in [Tia90] where (jets of)

holomorphic peak sections (in the L2-sense) are constructed in high tensor powers

of an ample holomorphic line bundle—a strategy that inspired in part our present

treatment of the non-integrable case.)

The next step is to construct a global C∞ section of Lk that belongs to Hk

(so is approximately holomorphic in the L2-norm sense) starting from the locally

defined peak section uk. We can define a global section s by multiplying by a cut-

off function θ with support in a neighbourhood of x. However, there is no reason

for s constructed in this fashion to belong to Hk, so we need to correct it in the

most economical way possible to bring it into Hk. This will be done in the next

subsection for an arbitrary s ∈ C∞(X,Lk).

§3.2. Approximately holomorphic corrections of global C∞ sections

For every k ∈ N?, the non-negative, formally self-adjoint Laplace–Beltrami opera-

tor ∆′′k : C∞(X,Lk) → C∞(X,Lk) is elliptic. So, since X is compact, there is an
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orthonormal basis (ej)j∈N of C∞(X,Lk) consisting of eigenvectors of ∆′′k , while the

spectrum of ∆′′k is discrete with +∞ its only accumulation point. Fix any constant

δ > 0 independent of k and let

(45) 0 ≤ µ0 ≤ · · · ≤ µNk
< δ ≤ µNk+1 ≤ · · ·

denote the eigenvalues (ordered non-decreasingly) of ∆′′k acting in bi-degree (0, 0).

Thus ∆′′kej = µjej for every j. (Actually ej = ek,j and µj = µk,j depend on k

but we drop the k-index to lighten the notation.) The corresponding eigenspaces

are denoted E0,0
∆′′k

(µj) ⊂ C∞(X,Lk) (and similarly Ep,q∆′′k
(µ) ⊂ C∞p,q(X,Lk) for ∆′′k :

C∞p,q(X,Lk)→ C∞p,q(X,Lk)). Set

(46) H̃k :=
⊕
µ<δ

E0,0
∆′′k

(µ) and Nk :=
⊕
µ≥δ

E0,0
∆′′k

(µ)

(with the understanding that E0,0
∆′′k

(µ) = {0} if µ is not an eigenvalue of ∆′′k).

We can regard H̃k as the space of approximately holomorphic sections of Lk (in

a sense less restrictive than for Hk of Definition 1.3), while Nk is its orthogonal

complement in C∞(X,Lk).

Remark 3.3. In the special case when α > 0, Corollary 2.2 shows that

(47) 0 ≤ µ0 ≤ · · · ≤ µNk
≤ C

k1+ε
< δ < (δ0 − ε0)k ≤ µNk+1 ≤ · · · if k � 1.

In particular, Laeng’s space Hk of approximately holomorphic sections of Lk
introduced in Definition 1.3 coincides with the space H̃k defined in (46) if k is

large enough.

In all cases we have an orthogonal splitting

(48) C∞(X,Lk) = H̃k ⊕Nk.

For every j = 0, . . . , Nk, let

Pk,j : C∞(X,Lk)→ Cej

be the orthogonal projection onto the C-vector line of C∞(X,Lk) generated by ej .

We introduce the following operator.

Definition 3.4. For every k ∈ N?, let

(49) Pk := ∆′′k −
Nk∑
j=0

µjPk,j : C∞(X,Lk)→ C∞(X,Lk).
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It is clear that kerPk = H̃k. Meanwhile, if s ∈ C∞(X,Lk) is an arbitrary

section, there is an orthogonal splitting of s induced by (48):

(50) s = sh + snh, with sh ∈ H̃k, snh ∈ Nk.

Moreover, if s =
∑∞
j=0 cjej (with cj ∈ C) is the decomposition of s with respect

to the orthonormal basis (ej)j∈N, we have sh =
∑Nk

j=0 cjej , snh =
∑
j≥Nk+1 cjej

and

(51) Pks =
∑

j≥Nk+1

µjcjej = ∆′′k

( ∑
j≥Nk+1

cjej

)
= ∆′′ksnh ∈ Nk.

In particular, Pk|Nk
= ∆′′k|Nk

. If we denote by P−1
k : Nk → Nk the Green operator

of Pk (i.e. the inverse of the restriction Pk|Nk
: Nk → Nk), we have

(52) P−1
k Pks =

∑
j≥Nk+1

cjej = snh ∈ Nk.

Our goal in this subsection is to estimate the L2-norm of snh in terms of the

L2-norm of ∂̄ks for any section s ∈ C∞(X,Lk). Being the orthogonal projection

of s onto Nk, snh has minimal L2-norm among all sections ξ ∈ C∞(X,Lk) for

which s − ξ ∈ H̃k. In other words, snh is the minimal correction of an arbitrary

s ∈ C∞(X,Lk) to an approximately holomorphic section sh.

Estimating the L2-norm of snh can be seen as a non-integrable analogue in

this particular situation of Hörmander’s familiar L2-estimates of the integrable

case. Indeed, recall that the standard method of correcting an arbitrary global

C∞ section s of a positive holomorphic line bundle Lk to a global holomorphic

section sh of Lk is to solve the ∂̄-equation

∂̄kξ = ∂̄ks on X

by selecting the solution ξ ∈ C∞(X,Lk) of minimal L2-norm which is given ex-

plicitly by the familiar formula

(53) ξ = Gk∂̄
?
k(∂̄ks)

(whereGk stands for the Green operator of ∆′′k) and to set sh = s−ξ. It is clear that

sh and ξ are nothing but the orthogonal projections of s onto the subspace of global

holomorphic sections and respectively its orthogonal complement in C∞(X,Lk).

In our non-integrable case, the roles of these two subspaces are played by H̃k and

respectively Nk, while formula (52) is the analogue of (53) for snh = ξ.

We shall now obtain the desired estimate in the particular case when the

initial (1, 1)-form α is supposed to be strictly positive on X. (Recall that in the
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general case α is only to be assumed to satisfy Demailly’s substantially weaker

hypothesis
∫
X(α,≤1)

αn > 0.) This assumption, which parallels the strict positivity

curvature assumption in Hörmander’s L2-estimates of the integrable case, will be

relaxed in future work.

Proposition 3.5. Suppose α is a C∞ positive-definite d-closed (1, 1)-form of

possibly non-rational de Rham cohomology class on a compact complex Hermi-

tian manifold (X,ω). Fix an arbitrary constant δ > 0.

Then, with the notation of Subsections 1.1, 1.2 and 3.2, the following property

holds. For every s ∈ C∞(X,Lk), the non-approximately-holomorphic component

snh of s (cf. (50) and (46)) satisfies the estimate

(54) ‖snh‖2 ≤
4

δ0k

(
1 +

C

δ0δ2

1

k1+2/b2

)
‖∂̄ks‖2, k ≥ kδ,

where ‖ ‖ stands for L2-norm, δ0 > 0 is any constant for which α ≥ 2δ0ω, while

C > 0 is a constant depending only on (X,ω) and kδ ∈ N? depends only on δ > 0

and α.

Proof. By Remark 3.3, H̃k = Hk under the present assumptions. Note that by

(51) and (45) we have

〈〈Pks, s〉〉 = 〈〈∆′′ksnh, snh〉〉 ≥ µNk+1‖snh|2 ≥ δ‖snh|2, s ∈ C∞(X,Lk).

If we extend the Green operator P−1
k : Nk → Nk to P−1

k : C∞(X,Lk) → Nk by

letting (P−1
k )|Hk

= 0, we infer

(55) 〈〈P−1
k s, s〉〉 = 〈〈P−1

k snh, snh〉〉 ≤
1

µNk+1
‖snh‖2 ≤

1

δ
‖snh‖2 ≤

1

δ
‖s‖2

for all s ∈ C∞(X,Lk), where the last inequality follows from sh and snh being

orthogonal (hence ‖s‖2 = ‖sh‖2 + ‖snh‖2 ≥ ‖snh‖2).

On the other hand, definition (49) of Pk makes sense in any bi-degree (p, q) and

gives an operator Pk : C∞p,q(X,Lk)→ C∞p,q(X,Lk) defined by the same formula (49)

as in bi-degree (0, 0) if we make the convention that Pk,j and µjPk,j are the zero

operator when µj is not an eigenvalue of ∆′′k : C∞p,q(X,Lk)→ C∞p,q(X,Lk). Indeed,

due to the non-commutation of ∆′′k with ∂̄k (because ∂̄2
k 6= 0), the eigenvalues µj

of ∆′′k in bi-degree (0, 0) need not be eigenvalues of ∆′′k in bi-degree (p, q) 6= (0, 0).

Furthermore, Corollary 2.1 of the Weitzenböck formula shows that in bi-degree

(0, 1) we have

Pk = ∆′′k ≥ δ0k > 0 on C∞0,1(X,Lk) if k � 1 (i.e. if k > δ/δ0).
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(Implicitly Pk,j = 0 in bi-degree (0, 1) for all j = 0, . . . , Nk and all large k.) So

Pk : C∞0,1(X,Lk) → C∞0,1(X,Lk) is invertible for k large enough and its inverse

satisfies the estimate

(56) P−1
k ≤ 1

δ0k
on C∞0,1(X,Lk) if k � 1.

Let us introduce the operator

Qk := P−1
k ∂̄?k − ∂̄?kP−1

k : C∞0,1(X,Lk)→ C∞(X,Lk)

measuring the commutation defect of P−1
k with ∂̄?k . Similarly we set

Sk := ∂̄?kPk − Pk∂̄?k : C∞0,1(X,Lk)→ C∞(X,Lk),

which measures the commutation defect of Pk with ∂̄?k . We clearly have

(57) Qk = P−1
k SkP

−1
k .

In all these expressions, P−1
k and Pk act on C∞(X,Lk) or C∞0,1(X,Lk) according

to the case.

Now fix an arbitrary s ∈ C∞(X,Lk). Using (52) and (51), we get

snh = P−1
k Pks = P−1

k ∆′′ksnh = P−1
k ∂̄?k ∂̄ksnh,

which, after writing P−1
k ∂̄?k = ∂̄?kP

−1
k +Qk, transforms to

(58) snh = ∂̄?kP
−1
k ∂̄ksnh +Qk∂̄ksnh.

We shall estimate separately the L2-norms of ∂̄?kP
−1
k ∂̄ksnh and Qk∂̄ksnh.

In the case of ∂̄?kP
−1
k ∂̄ksnh, we have

‖∂̄?kP−1
k ∂̄ksnh‖2 = 〈〈∂̄?kP−1

k ∂̄ksnh, ∂̄
?
kP
−1
k ∂̄ksnh〉〉(59)

= 〈〈∂̄k∂̄?kP−1
k ∂̄ksnh, P

−1
k ∂̄ksnh〉〉

= 〈〈(∆′′k − ∂̄?k ∂̄k)P−1
k ∂̄ksnh, P

−1
k ∂̄ksnh〉〉

(a)
= 〈〈(Pk − ∂̄?k ∂̄k)P−1

k ∂̄ksnh, P
−1
k ∂̄ksnh〉〉

= 〈〈∂̄ksnh, P−1
k ∂̄ksnh〉〉 − 〈〈∂̄kP−1

k ∂̄ksnh, ∂̄kP
−1
k ∂̄ksnh〉〉

(b)
= 〈〈P−1

k ∂̄ksnh, ∂̄ksnh〉〉 − ‖∂̄kP−1
k ∂̄ksnh‖2

≤ 〈〈P−1
k ∂̄ksnh, ∂̄ksnh〉〉 ≤

1

δ0k
‖∂̄ksnh‖2 if k � 1.

In (a), we have used the identity ∆′′k = Pk on C∞0,1(X,Lk) (see the discussion

preceding (56)—a consequence of the Weitzenböck formula), while (b) has used

the fact that 〈〈∂̄ksnh, P−1
k ∂̄ksnh〉〉 = 〈〈P−1

k ∂̄ksnh, ∂̄ksnh〉〉 is real. The last inequality

follows from estimate (56).
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We shall now estimate the second term Qk∂̄ksnh in the expression (58) of snh.

We shall actually estimate the L2-norm of Sk∂̄ksnh and then use (57) to go from Sk
to Qk.

Since Pk = ∆′′k on C∞0,1(X,Lk) (hence also on ∂̄ksnh) for k � 1, we get

Sk∂̄ksnh = (∂̄?k∆′′k −∆′′k ∂̄
?
k)(∂̄ksnh) +

Nk∑
j=1

µjPk,j ∂̄
?
k(∂̄ksnh)

= ∂̄?2k ∂̄k(∂̄ksnh) +

Nk∑
j=1

µjPk,j ∂̄
?
k(∂̄ksnh) if k � 1.

(Indeed, ∂̄?k∆′′k−∆′′k ∂̄
?
k = ∂̄?2k ∂̄k− ∂̄k∂̄?2k but ∂̄?2k (∂̄ksnh) = 0 for bi-degree reasons.)

Since ∆′′k = ∂̄?k ∂̄k in bi-degree (0, 0), we see that Pk,j ∂̄
?
k(∂̄ksnh) = Pk,j(∆

′′
ksnh) = 0

for every j ∈ {1, . . . , Nk}. Indeed, snh ∈ Nk by definition, so ∆′′ksnh ∈ Nk, while

Pk,j is the orthogonal projection onto a subspace of Hk = N⊥k . Thus

(60) Sk∂̄ksnh = ∂̄?2k ∂̄k(∂̄ksnh) if k � 1.

We pause briefly to prove in full generality (i.e. without using the positivity

assumption on α made in Proposition 3.5) the following estimate reminiscent of

Laeng’s estimate (26).

Lemma 3.6. For every section s ∈ C∞(X,Lk) we have

‖∂̄?2k ∂̄k(∂̄ks)‖2 ≤
C

k2/b2
(k‖s‖2 + ‖∂̄ks‖2), k ∈ N?,

where C > 0 is a constant independent of k.

Proof. Recall that the fundamental commutation relations for non-Kähler metrics

(that are common to the integrable and non-integrable cases—see e.g. [Dem85b]

or [Lae02] or [Don96]) give (cf. notation in Subsection 2.1):

(61) i(∂̄?k + τ̄?) = [Λ, ∂k] or equivalently ∂̄?k = −i[Λ, ∂k]− τ̄?.

Thus for every σ ∈ C∞0,1(X,Lk), from (61) we get

∂̄?2k ∂̄kσ = (i[Λ, ∂k] + τ̄?)(i[Λ, ∂k] + τ̄?)∂̄kσ

= (i[Λ, ∂k] + τ̄?)(iΛ∂k∂̄kσ + τ̄?(∂̄kσ))

=−Λ∂kΛ∂k∂̄kσ + iΛ∂k τ̄
?(∂̄kσ) + iτ̄?Λ∂k∂̄kσ + τ̄?2(∂̄kσ).

Since the second half of (4) amounts to ∂k∂̄k = −2πiα1,1
k − ∂̄k∂k, we get

∂̄?2k ∂̄kσ = Λ∂kΛ(2πiα1,1
k ∧ σ + ∂̄k∂kσ) + iτ̄?Λ(−2πiα1,1

k ∧ σ − ∂̄k∂kσ)(62)

+ iΛ∂k τ̄
?(∂̄kσ) + τ̄?2(∂̄kσ).



Transcendental Kähler Cohomology Classes 337

Now suppose that σ = ∂̄ks ∈ C∞0,1(X,Lk) for some s ∈ C∞(X,Lk). Then

∂̄k∂kσ = ∂̄k(∂k∂̄ks) = −2πi∂̄k(α1,1
k ∧ s)− ∂̄

2
k∂ks

=−2πi∂̄α1,1
k ∧ s− 2πiα1,1

k ∧ ∂̄ks+ 2πiα0,2
k ∧ ∂ks,

having used the first half of (4) to obtain the last term. Now dαk = 0, so passing

to the (1, 2)-component we see that ∂̄α1,1
k = −∂α0,2

k . Hence

∂̄k∂kσ = 2πi(∂α0,2
k ∧ s− α

1,1
k ∧ ∂̄ks+ α0,2

k ∧ ∂ks),

from which, since ∂̄ks = σ, we further get

(63) 2πiα1,1
k ∧ σ + ∂̄k∂kσ = 2πi(∂α0,2

k ∧ s+ α0,2
k ∧ ∂ks).

Combining (62) and (63) gives

∂̄?2k ∂̄kσ = 2πiΛ∂kΛ(∂α0,2
k ∧ s+ α0,2

k ∧ ∂ks)(64)

+ 2πτ̄?Λ(∂α0,2
k ∧ s+ α0,2

k ∧ ∂ks) + iΛ∂k τ̄
?(∂̄2

ks) + τ̄?2(∂̄2
ks)

for all σ = ∂̄ks ∈ C∞0,1(X,Lk). Recall that ∂̄2
ks = −2πiα0,2

k ∧ s (cf. (4)) and

‖α0,2
k ‖C∞ ≤ C/k1/b2 (cf. (3)). Consequently, in (64), the L2-norms of the expres-

sions ∂̄2
ks (a zero-order operator acting on s) and ∂α0,2

k ∧s+α0,2
k ∧∂ks (a first-order

operator acting on s) can be controlled in terms of the L2-norms of s and ∂ks.

Meanwhile, Λ, τ̄? are zero-order operators independent of k, hence bounded inde-

pendently of k. Thus so are τ̄?Λ and τ̄?2, too.

Putting these facts together, we see that the L2-norms of the terms featur-

ing on the right of (64) are estimated as follows (where the constant C > 0 is

independent of k and is allowed to vary from line to line):

‖∂α0,2
k ∧ s+ α0,2

k ∧ ∂ks‖ ≤
C

k1/b2
(‖s‖+ ‖∂ks‖),

and similarly

‖Λ∂kΛ(∂α0,2
k ∧ s+ α0,2

k ∧ ∂ks)‖ ≤
C

k1/b2
(‖s‖+ ‖∂ks‖),

‖τ̄?Λ(∂α0,2
k ∧ s+ α0,2

k ∧ ∂ks)‖ ≤
C

k1/b2
(‖s‖+ ‖∂ks‖),

‖Λ∂k τ̄?(α0,2
k ∧ s)‖ ≤

C

k1/b2
(‖s‖+ ‖∂ks‖),

‖τ̄?2(α0,2
k ∧ s)‖ ≤

C

k1/b2
‖s‖.
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If we now take the squared L2-norm on either side of (64) (with σ = ∂̄ks ∈
C∞0,1(X,Lk)), the above estimates add up to

(65) ‖∂̄?2k ∂̄k(∂̄ks)‖2 ≤
C

k2/b2
(‖s‖2 + ‖∂ks‖2) for all s ∈ C∞(X,Lk).

Since ∂̄ks (measuring how far short a section s of Lk falls from being holomor-

phic) is better adapted to our purposes than ∂ks, we wish to replace ∂ks by ∂̄ks

on the right-hand side of the above estimate (65). The transition from ∂ks to ∂̄ks

was done in a natural way by Laeng in [Lae02, p. 89] using the Bochner–Kodaira–

Nakano identity (8) which, when specialised to the case E = (Lk, hk, Dk) →
(X,ω), reads

∆′′k = ∆′k,τ + 2π[α1,1
k ,Λ] + Tω.

This allows one to express ‖∂̄ks‖2 = 〈〈∆′′ks, s〉〉 in terms of ‖∂ks+τs‖2 = 〈〈∆′k,τs, s〉〉.
The straightforward calculation performed in [Lae02, p. 89] gave the estimate

(66) ‖∂ks‖2 ≤ C(k‖s‖2 + ‖∂̄ks‖2), s ∈ C∞(X,Lk).

Note that the factor k of ‖s‖2 comes from the curvature term α1,1
k which is close

(in C∞-norm) to kα.

Using (66), (65) transforms to

‖∂̄?2k ∂̄k(∂̄ks)‖2 ≤
C

k2/b2
(k‖s‖2 + ‖∂̄ks‖2) for all s ∈ C∞(X,Lk),

which is precisely the estimate claimed in the statement. The proof of Lemma 3.6

is complete.

Thanks to (60), Lemma 3.6 immediately implies the following

Corollary 3.7. Under the hypotheses of Proposition 3.5, every s ∈ C∞(X,Lk)

satisfies the following estimate:

(67) ‖Sk∂̄ksnh‖2 ≤
C

k2/b2
(k‖s‖2 + ‖∂̄ks‖2), k � 1,

where C > 0 is a constant independent of k.

Proof. Applying Lemma 3.6 to snh and using (60), we get

(68) ‖Sk∂̄ksnh‖2 ≤
C

k2/b2
(k‖snh‖2 + ‖∂̄ksnh‖2), k � 1.

As already noticed, ‖snh‖2 ≤ ‖s‖2 by virtue of sh and snh being orthogonal

in the splitting s = sh + snh.
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On the other hand, taking ∂̄k in this splitting, we get ∂̄ks = ∂̄ksh+ ∂̄ksnh. We

claim that the Lk-valued (0, 1)-forms ∂̄ksh and ∂̄ksnh are orthogonal. Indeed, we

see that

〈〈∂̄ksh, ∂̄ksnh〉〉 = 〈〈∂̄?k ∂̄ksh, snh〉〉 = 〈〈∆′′ksh, snh〉〉 = 0.

The reason for the last equality is that sh∈Hk (by construction), hence ∆′′ksh∈Hk,

while snh ∈ Nk (again by construction) and Hk ⊥ Nk. Thus ∂̄ksh ⊥ ∂̄ksnh and it

follows that ‖∂̄ks‖2 = ‖∂̄ksh‖2 + ‖∂̄ksnh‖2 ≥ ‖∂̄ksnh‖2.

It is now clear that the right-hand side of (68) is ≤ than the right-hand side

of (67). This completes the proof.

End of proof of Proposition 3.5. By (57) we have

Qk∂̄ksnh = P−1
k SkP

−1
k (∂̄ksnh).

Using (68), (55) and (56) we get for every s ∈ C∞(X,Lk) the estimate

(69) ‖Qk∂̄ksnh‖2 ≤
C

δ2(δ0k)2k2/b2
(k‖snh‖2 + ‖∂̄ksnh‖2), k � 1,

where C > 0 is a constant independent of k. By (55), the δ2 of the above denomi-

nator can be improved to µ2
Nk+1, hence also to (δ0 − ε0)2k2 by (47), but this will

be of no consequence in what follows.

Using now the splitting (58) and the estimates (59) and (69) of its two terms,

we get for every s ∈ C∞(X,Lk) the estimate

‖snh‖2 ≤ 2(‖∂̄?kP−1
k ∂̄ksnh‖2 + ‖Qk∂̄ksnh‖2)

≤ 2

δ0k

(
1 +

C

δ0δ2

1

k1+2/b2

)
‖∂̄ksnh‖2 +

2C

(δ0δ)2

1

k1+2/b2
‖snh‖2, k � 1,

which is equivalent to(
1− 2C

(δ0δ)2

1

k1+2/b2

)
‖snh‖2 ≤

2

δ0k

(
1 +

C

δ0δ2

1

k1+2/b2

)
‖∂̄ksnh‖2, k � 1.

Now it is clear that the coefficient on the left-hand side above satisfies

1

2
≤ 1− 2C

(δ0δ)2

1

k1+2/b2
< 1 for k � 1,

so we get

‖snh‖2 ≤
4

δ0k

(
1 +

C

δ0δ2

1

k1+2/b2

)
‖∂̄ksnh‖2 for k � 1.

Since ‖∂̄ksnh‖ ≤ ‖∂̄ks‖ (as explained in the proof of Corollary 3.7), the above

estimate implies estimate (54). The proof of Proposition 3.5 is complete.
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§3.3. Global approximately holomorphic peak sections

We now bring the discussions of Subsections 3.1 and 3.2 together. We suppose that

α > 0 on X as in Proposition 3.5. As in the previous subsections, the symbol ‖ ‖
will stand for the global L2-norm on X when it has no index, while an index will

change its meaning to the norm it indicates.

Let x ∈ X be an arbitrary point and let U ⊂ X be an open neighbourhood

of x as in Subsection 3.1 with local holomorphic coordinates as in (37). Consider,

for every k ∈ N?, the Gaussian section uk of Lk over U defined in (39). Choose an

open neighbourhood V of x such that V b U and a C∞ cut-off function θ : X → R
such that

θ ≡ 1 on V and Supp θ b U.

We can apply the results of Subsection 3.2 to the global section

s := θuk ∈ C∞(X,Lk)

whose snh component satisfies thus the L2-estimate (54). This estimate can be

refined in the special case of s = θuk using the C∞-estimate (40) satisfied by uk.

Indeed, applying ∂̄k we get

∂̄ks = ∂̄k(θuk) = θ∂̄ku
k + (∂̄θ)uk,

hence ∂̄ks = 0 on X \ U and ∂̄ks = ∂̄ku
k on V . Thus

‖∂̄ks‖C∞ ≤ ‖∂̄kuk‖C∞ + C‖uk‖C∞ ≤ C
(

1 +
1

k1/b2

)
‖uk‖C∞ ,

having used (40) to get the last estimate. The analogous estimate holds for C0-

norms by (41), so

(70) ‖∂̄ks‖C∞ ≤ C‖uk‖C∞ and ‖∂̄ks‖C0 ≤ C‖uk‖C0 = C for k � 1.

(The last identity holds whenever α ≥ 0 since uk(0) = 1 and uk(z) ≤ uk(0) in this

case for all z ∈ U \ {0} if U is small enough.) Thus (54) yields

(71) ‖snh‖2 ≤ C(X,ω)δk, k � 1, with δk :=
4

δ0k

(
1 +

C

δ0δ2

1

k1+2/b2

)
,

since ‖∂̄ks‖2 ≤ ‖∂̄ks‖2C0 Volω(X) ≤ C2 Volω(X). Here we have set C(X,ω) :=

C Volω(X) > 0.

We can now go from this global L2-estimate to a local L∞-estimate, but we

first need to rescale the coordinates in a way similar to [Don96, §2]. If B(0, 1) ⊂ Cn

denotes the unit ball in Cn and χ = (z1, . . . , zn) : U → B(0, 1) is the chart of

coordinates z1, . . . , zn centred at x already used above, let α0 stand for the closed
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(1, 1)-form on B(0, 1) such that χ?α0 = α|U . If χ̃ : (1/
√
k)U → B(0, 1) is the chart

of rescaled coordinates wj :=
√
k zj (j = 1, . . . , n), then (kα)|(1/

√
k)U = χ̃?α0.

Since the curvature form αk of Lk is close to kα (see (2)), if we denote by α
(k)
0 the

closed 2-form on B(0, 1) for which αk|(1/
√
k)U = χ̃?α

(k)
0 , we have ‖α(k)

0 −α0‖C∞ ≤
C/k1/b2 by (2). Now χ̃ lifts to a connection-preserving bundle map

χ̃ : Lk| 1√
k
U → ξk

where ξk → B(0, 1) is the algebraically trivial complex line bundle endowed with

the connection of matrix Ak (see 3.1). Thus local sections s ∈ C∞( 1√
k
U,Lk)

identify with sections of ξk over B(0, 1).

Applying the a priori estimate to the elliptic operator ∆′′k on the interior of

V (say on some open subset V ′ b V ), we get the following Sobolev W 2(V ′)-norm

estimate:

(72) ‖snh‖2W 2( 1√
k
V ′) ≤ C(‖∆′′ksnh‖2L2( 1√

k
V ) + ‖snh‖2L2( 1√

k
V )).

The constant C > 0 depends only on the ellipticity constant of ∆′′k , hence only

on the principal part of ∆′′k and this is independent of k. Indeed, the operators ∂̄k
have the same principal part (= ∂̄, see (34)) for all k ∈ N?, hence the Laplacians

∆′′k have the same principal part for all k ∈ N?. Thus C > 0 is independent of k.

Using (71) for the second inequality below, we have

(73) ‖snh‖2L2( 1√
k
V ) ≤ ‖snh‖

2 ≤ C(X,ω)δk, k � 1.

On the other hand, for s = θuk = sh + snh, we have (since θ = 1 on V )

snh = uk − sh on V,

so

‖∆′′ksnh‖2L2( 1√
k
V ) = ‖∆′′kuk −∆′′ksh‖2L2( 1√

k
V )(74)

≤ 2‖∆′′kuk‖2L2( 1√
k
V ) + 2‖∆′′ksh‖2

≤ 2‖∆′′kuk‖2L2( 1√
k
V ) + 2

C

k2+2ε
‖s‖2,

having used the fact that sh ∈ Hk (see Definition 1.3) and that ‖sh‖ ≤ ‖s‖. To

estimate ‖∆′′kuk‖2L2(1/
√
kV )

from above, we see that ‖∆′′kuk‖2L2(1/
√
kV )
≤ ‖∆′′kuk‖2

(if we extend uk to X by setting (uk)|X\U ≡ 0) and

〈〈∆′′kuk, uk〉〉 = ‖∂̄kuk‖2 ≤
C

k2/b2
‖uk‖2,
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having used (41). Hence

‖∆′′kuk‖2L2( 1√
k
V ) ≤ ‖∆

′′
ku

k‖2 ≤ C2

k4/b2
‖uk‖2(75)

≤Volω(X)
C2

k4/b2
‖uk‖2C0 = Volω(X)

C2

k4/b2
,

where the last identity holds since ‖uk‖2C0 = 1 whenever α ≥ 0.

Putting (74) and (75) together, we get

‖∆′′ksnh‖2L2( 1√
k
V ) ≤

C(X,ω)

k4/b2
+

C

k2+2ε
‖s‖2

and combining this with (72) and (73) we finally get

‖snh‖2W 2( 1√
k
V ′) ≤

C(X,ω)

k4/b2
+

C

k2+2ε
‖s‖2 + C(X,ω)δk, k � 1.

Since s = θuk, we have ‖s‖C0 ≤ ‖uk‖C0 = 1, hence ‖s‖ ≤ Volω(X)‖s‖C0 ≤
Volω(X). Thus the above estimate gives

(76) ‖snh‖2W 2( 1√
k
V ′) ≤ C(X,ω)

(
1

k4/b2
+ δk

)
, k � 1

because 2 + 2ε > 4/b2 (since 0 < 2ε < 4/b2 with 2ε very close to 4/b2).

We can now go from this W 2-norm estimate to a W 2p-estimate for any p ∈ N?.
Indeed, the a priori estimate applied to the elliptic operator (∆′′k)p on V ′ b V gives

(77) ‖snh‖2W 2p( 1√
k
V ′) ≤ C

(
‖(∆′′k)psnh‖2L2( 1√

k
V ) + ‖snh‖2L2( 1√

k
V )

)
.

Repeating the above arguments for every p ∈ N? and using the Sobolev embedding

theorem, we finally get

(78) ‖snh‖2C∞( 1√
k
V ′) ≤ C(X,ω)

(
1

k4/b2
+ δk

)
, k � 1.

We have thus constructed a global approximately holomorphic section sh =

θuk − snh ∈ Hk of Lk that peaks at an arbitrary point x ∈ X given beforehand.

Proposition 3.8. Suppose α > 0 is a d-closed (1, 1)-form on a compact Hermi-

tian manifold (X,ω). Then, for every x ∈ X and every k ∈ N?, there exists a

global section sh = s
(k)
h ∈ Hk of Lk such that, for all k � 1, we have

(i) 1− C(X,ω)

(
1

k4/b2
+ δk

)
≤ |sh(x)|hk ≤ 1 + C(X,ω)

(
1

k4/b2
+ δk

)
,
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in particular, sh(x) 6= 0 if k is large enough; and

C(X,ω)(1− δ1/2
k ) ≤ ‖sh‖ ≤ C(X,ω)(1 + δ

1/2
k ),(ii)

−C(X,ω)

(
1

k4/b2
+ δk

)1/2

≤ ‖sh‖C0( 1√
k
V ′) − C

≤ C(X,ω)

(
1

k4/b2
+ δk

)1/2

.

(iii)

Proof. The statement follows immediately from the above considerations. For

s = θuk, we have s(x) = uk(0) = 1, so (i) follows from (78) (in which the

C0((1/
√
k)V ′)-norm on the left suffices).

To get (ii), recall that ‖sh‖2 = ‖s‖2 − ‖snh‖2, use (71) and notice that

‖s‖ ≤ Volω(X)‖s‖C0 while ‖s‖C0 = ‖uk‖C0(U) is bounded independently of k

since uk(0) = 1 and uk is non-increasing on a neighbourhood of 0. Finally (iii)

follows from the same arguments as (i) and (ii).

We end this subsection by noticing that all the above estimates still hold if

uk is replaced by any m-jet of approximately holomorphic sections of Lk at x (cf.

Definition 3.2). Indeed, as pointed out before that definition, any linear combina-

tion of expressions of the form zm1
1 · · · zmn

n uk (with m1, . . . ,mn ∈ N) satisfies the

same estimates (40) and (41) as uk does. It follows that if we start off with a global

section s ∈ C∞(X,Lk) obtained by multiplying a local jet (with coefficients, say,

c(m1,...,mn) ∈ C) by a cut-off function θ:

s(z) := θ(z)c(m1,...,mn)z
m1
1 · · · zmn

n uk(z), z ∈ X,

the non-anti-holomorphic component snh satisfies the C∞-estimate (78) for k large

enough. Moreover, setting m := m1 + · · ·+mn, we have

1

m1! · · ·mn!

∂m(c(m1,...,mn)z
m1
1 · · · zmn

n uk)

∂zm1
1 · · · ∂zmn

n
(0) = c(m1,...,mn)e

− k
2ϕ(0) = c(m1,...,mn),

so |m1! · · ·mn!c(m1,...,mn)| − εk ≤ | ∂msh
∂z

m1
1 ···∂zmn

n
(0)| ≤ |m1! · · ·mn!c(m1,...,mn)| + εk

on a neighbourhood of x, where we have denoted εk := C(X,ω)(1/k4/b2 + δk) ↓ 0

(when k → ∞) the right-hand term of (78). Therefore
∣∣ ∂msh
∂z

m1
1 ···∂zmn

n
(0)
∣∣ 6= 0 for

k � 1 if c(m1,...,mn) 6= 0. Thus we obtain the following addition to Proposition 3.8.

Proposition 3.9. The assumptions are the same as in Proposition 3.8. Fix x ∈ X
and local holomorphic coordinates z1, . . . , zn centred on x. Then, for every k ∈ N?

and every m1, . . . ,mn ∈ N, there exists a global approximately holomorphic section
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sh = s
(k,(m1,...,mn))
h ∈ Hk of Lk such that

∂m1+···+mnsh
∂zm1

1 · · · ∂zmn
n

(x) 6= 0 if k is large enough.

(We have denoted by sh both the global section of Lk and the function that repre-

sents it in a local trivialisation of Lk on a neighbourhood of x = z(0).)

This means that Hk generates all m-jets of approximately holomorphic sec-

tions of Lk at any x ∈ X for any m ∈ N.

§4. Approximately holomorphic projective embeddings

In this section we prove the transcendental analogue of the Kodaira Embedding

Theorem: any C∞ d-closed positive definite (1, 1)-form α > 0 on a compact

complex manifold X with a (possibly) non-rational de Rham cohomology class1

{α} ∈ H2
DR(X,R) defines, by means of the spaces Hk of Definition 1.3, approx-

imately holomorphic embeddings of X into complex projective spaces PNk for k

large enough. The classical Kodaira Embedding Theorem corresponds to the case

when {α} is integral (or merely rational): one then gets genuine holomorphic pro-

jective embeddings.

As noticed in (i) of Proposition 3.8, for every point x ∈ X one can find a

global section of Lk belonging to Hk that does not vanish at x if k is large enough.

In other words, the sections in Hk have no common zeroes for k � 1. Hence the

approximately holomorphic Kodaira maps

(79) Φk : X → PHk ' PNk , Φk(z) = Hz := {s ∈ Hk; s(z) = 0}

(where PHk stands for the complex projective space whose points are hyperplanes

of Hk), defined equivalently by choosing any orthonormal basis (σk,l)0≤l≤Nk
of Hk

and putting

(80) Φk : X → PNk , Φk(z) := [σk,0(z) : · · · : σk,Nk
(z)],

are everywhere defined on X.

Theorem 4.1. Suppose there exists a C∞ d-closed positive definite (1, 1)-form

α > 0 (i.e. a Kähler metric) on a compact complex manifold X. Then, for every

k large enough, the map Φk : X → PNk is an embedding.

1Giving such an α is, of course, equivalent to giving a Kähler metric of (possibly) non-rational
class on X.
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We will adapt to our non-integrable context the classical strategy of proof

of the Kodaira Embedding Theorem. It remains to prove that, for k � 1, the

sections in Hk separate points on X (i.e. for any distinct points x, y ∈ X, there

exists a section s ∈ Hk such that s(x) 6= 0 ∈ (Lk)x but s(y) = 0 ∈ (Lk)y) and

generate 1-jets of sections of Lk at every point x ∈ X. We will work our new

arguments peculiar to the present context and the necessary modifications of the

classical integrable case into the presentation of Demailly’s book [Dem97, Chapter

VII, §13].

We begin by analysing a situation to which our case will be reduced.

Lemma 4.2. Suppose there exists an effective divisor E on X and let x ∈ X \
SuppE. Fix any m ∈ N. Then, for every k large enough, there exists an approxi-

mately holomorphic section τ ∈ Hk of Lk such that

τ(x) 6= 0 and τ vanishes on E to order ≥ m+ 1.

Proof. Consider open subsets U, V such that x ∈ V b U b X, Lk is trivial on

U and U ∩ SuppE = ∅. Let uk ∈ C∞(U,Lk) be the local Gaussian section of Lk
peaking at x constructed in Subsection 3.1. For a cut-off function θ : X → R such

that θ ≡ 1 on V and Supp θ b U set, as in §3.3,

s := θuk ∈ C∞(X,Lk).

We know by (i) of Proposition 3.8 that, in the splitting s = sh+ snh with sh ∈ Hk

and snh ∈ Nk, we have sh(x) 6= 0. However, there is a priori no reason for sh to

vanish on E.

Let h ∈ H0(X,O(E)) be the canonical holomorphic section of the holomorphic

line bundle associated with E. Thus div(h) = E. Since s vanishes identically on a

neighbourhood of SuppE, we get a smooth section of the C∞ complex line bundle

Fk := O(−(m+ 1)E)⊗ Lk by setting

σ := h−(m+1) ⊗ s ∈ C∞(X,Fk).

Put any C∞ Hermitian metric hE on O(E) and endow the holomorphic line bundle

O(−(m + 1)E) with the Chern connection associated with the induced metric

h
−(m+1)
E . Together with the connection Dk = ∂k + ∂̄k of Lk (cf. §1.1) this induces

a connection

DFk
= ∂Fk

+ ∂̄Fk

on Fk that is compatible with the metric hFk
induced on Fk by h

−(m+1)
E and the

metric hk of Lk. Since O(−(m + 1)E) is holomorphic, we actually have ∂̄Fk
= ∂̄k

in the following sense: the (0, 1)-type connection ∂̄k of Lk = O((m + 1)E) ⊗ Fk



346 D. Popovici

splits as

(81) ∂̄k = ∂̄ ⊗ IdFk
+ Id(m+1)E ⊗ ∂̄Fk

.

The corresponding curvature form of Fk reads

i

2π
Θ(Fk) = γm + αk,

where γm := i
2πΘ(O(−(m+ 1)E)) is of type (1, 1). Hence

i

2π
Θ(Fk)0,2 = α0,2

k and
i

2π
Θ(Fk)1,1 = γm + α1,1

k ,

so using (3) we see that

(82)

∥∥∥∥ i

2π
Θ(Fk)1,1 − k

(
α+

1

k
γm

)∥∥∥∥
C∞
≤ C

k1/b2
,∥∥∥∥ i

2π
Θ(Fk)0,2

∥∥∥∥
C∞
≤ C

k1/b2
,

where α+ 1
kγm > 0 for all k large enough since α > 0 by assumption.

This shows that the sequence (Fk)k≥1 of C∞ line bundles on X is asymptot-

ically holomorphic in the same way as the sequence (Lk)k≥1 (introduced in §1.1)

is. We can thus apply to the bundles Fk the results obtained for Lk in the previous

sections. In particular, we can define anti-holomorphic Laplace–Beltrami operators

∆′′Fk
:= ∂̄Fk

∂̄?Fk
+ ∂̄?Fk

∂̄Fk
: C∞p,q(X,Fk)→ C∞p,q(X,Fk)

and spaces of approximately holomorphic sections of Fk analogous to those of

Laeng (cf. Definition 1.3):

HFk
:=

⊕
µ≤C/k1+ε

E0,0
∆′′Fk

(µ) ⊂ C∞(X,Fk)

which induce orthogonal splittings

C∞(X,Fk) = HFk
⊕NFk

,

where NFk
:= (HFk

)⊥ (cf. (46)). Accordingly σ splits as

C∞(X,Fk) 3 σ = h−(m+1) ⊗ s = σh + σnh, σh ∈ HFk
, σnh ∈ NFk

.

By Proposition 3.5, σnh satisfies (in the same notation) the L2-estimate

(83) ‖σnh‖2 ≤
4

δ0k

(
1 +

C

δ0δ2

1

k1+2/b2

)
‖∂̄Fk

σ‖2, k ≥ kδ,

while σnh also satisfies by §3.3 the C∞-estimate (78).
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Now set ξ := hm+1 ⊗ σnh ∈ C∞(X,Lk) and

τ := s− ξ = hm+1 ⊗ σh ∈ C∞(X,Lk).

It is clear that τ vanishes to order ≥ m + 1 on E, by construction. On the other

hand, estimate (83) reads

(84) ‖h−(m+1) ⊗ ξ‖2 ≤ 4

δ0k

(
1 +

C

δ0δ2

1

k1+2/b2

)
‖h−(m+1) ⊗ ∂̄ks‖2, k � 1.

Now ‖h−(m+1)⊗ ξ‖2 ≥ C1‖ξ‖2 for a constant C1 > 0 independent of k (depending

only on ‖hm+1‖C0) because the holomorphic section hm+1 is bounded above on

the compact manifold X. Meanwhile s vanishes identically, hence so does ∂̄ks,

on a neighbourhood W of SuppE in X. So ‖h−(m+1) ⊗ ∂̄ks‖2 ≤ C2‖∂̄ks‖2 for a

constant C2 > 0 independent of k (depending only on infX\W |hm+1|). Therefore,

(84) yields

‖ξ‖2 ≤ 4C2

C1δ0k

(
1 +

C

δ0δ2

1

k1+2/b2

)
‖∂̄ks‖2, k � 1.

This estimate is the analogue of (54) for ξ in place of snh. It leads, by a repetition

of the arguments of Subsection 3.3, to the C∞-estimate for ξ analogous to (78),

which, in turn, leads to the analogue for ξ of (i) of Proposition 3.8:

τ(x) = (s− ξ)(x) 6= 0.

We can now show that Hk separates points on X (and even more).

Lemma 4.3. Let x, y ∈ X be such that x 6= y. Fix any m ∈ N. Then, for every

k large enough, there exists an approximately holomorphic section τ ∈ Hk of Lk
such that

τ(x) 6= 0 and τ vanishes at y to order ≥ m+ 1.

Proof. Let π : X̃ → X be the blow-up of y in X and let E be the exceptional

divisor. Then π?α is a C∞ (1, 1)-form on X̃ (since π is holomorphic) satisfying

π?α ≥ 0 on X̃ and π?α > 0 on X̃ \ SuppE.

Since O(E)|E ' OP(TxX)(−1), we can equip O(E)|E with the smooth metric coming

from OPn−1(−1) (n := dimCX) and then extend it in an arbitrary way to a smooth

metric of O(E). Thus there exists k0 ∈ N? such that i
2πΘ(O(−E)) + k0π

?α > 0

on X̃. It follows that

(85) (m+ 1)
i

2π
Θ(O(−E)) + kπ?α > 0 on X̃ for all k ≥ k0(m+ 1).
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If we equip the C∞ complex line bundle Fk := O(−(m + 1)E) ⊗ π?Lk with

the smooth metric induced from the metrics of O(E) and Lk, the (1, 1)-component

of the associated curvature 2-form reads

i

2π
Θ(Fk)1,1 = k

(
m+ 1

k

i

2π
Θ(O(−E)) + π?α

)
+ π?(α1,1

k − kα) on X̃,

while i
2πΘ(Fk)0,2 = π?α0,2

k , where, thanks to (3), we have

‖π?(α1,1
k − kα)‖C∞ ≤

C

k1/b2
and ‖π?α0,2

k ‖C∞ ≤
C

k1/b2
for k ≥ 1.

These relations compare to (82). Given the strict positivity property (85), the

C∞ approximately holomorphic line bundles Fk → X̃ are analogous to the line

bundles Fk → X of the proof of Lemma 4.2. Thus if we take open neighbourhoods

V b U b X of x in X such that y /∈ U , a cut-off function θ and the section

s = θuk ∈ C∞(X,Lk) peaking at x as in the proof of Lemma 4.2, we can run

the argument of that proof for π?s ∈ C∞(X̃, π?Lk) on X̃ in place of s on X.

Keeping the notation of the proof of Lemma 4.2 (possibly up to a )̃, we get

sections ξ̃ = hm+1 ⊗ σnh ∈ C∞(X̃, π?Lk) (so ξ̃ vanishes to order ≥ m + 1 on E)

and

τ̃ := π?s− ξ̃ = hm+1 ⊗ σh ∈ C∞(X̃, π?Lk)

with τ̃(x̃) 6= 0 (where x̃ := π−1(x)) and τ̃ vanishing to order ≥ m+ 1 on E. Since

π?Lk is trivial on a neighbourhood of E (because Lk is trivial near y), there exists

a section τ ∈ Hk ⊂ C∞(X,Lk) such that τ̃ = π?s− ξ̃ = π?τ . Since ξ̃ vanishes to

order ≥ m+ 1 on E and π|X̃\SuppE : X̃ \ SuppE → X \ {y} is a biholomorphism,

we see that

s− ξ = τ ∈ Hk ⊂ C∞(X,Lk) on X,

where ξ := π?ξ̃ ∈ C∞(X,Lk) vanishes to order ≥ m + 1 at y. Since s vanishes

identically on a neighbourhood of y, τ ∈ Hk ⊂ C∞(X,Lk) is the desired section.

End of proof of Theorem 4.1. The space Hk separating points on X (the case

m = 0 in Lemma 4.3) amounts to the Kodaira-type map Φk (cf. (79) or (80)) being

injective for k large. On the other hand, by the casem1+· · ·+mn = 1 of Proposition

3.9, the sections in Hk generate all 1-jets of approximately holomorphic sections

of Lk at any point x. This amounts to Φk being an immersion if k is large enough.

The proof of Theorem 4.1 is complete.
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§5. The original form α as a limit

In this section we prove the analogue for transcendental classes of Tian’s almost

isometry theorem [Tia90, Theorem A]. We assume throughout that α > 0 on X

but its class {α} ∈ H2(X,R) need not be rational.

Let Φk : X → PNk be the approximately holomorphic embedding of the

previous section defined by the subspace Hk ⊂ C∞(X,Lk) and let ω
(k)
FS denote

the Fubini–Study metric of PNk . Then 1
kΦ?kω

(k)
FS is again a d-closed C∞ 2-form

on X but in general not of type (1, 1) (since pull-backs under non-holomorphic

maps need not preserve bi-degrees). On the other hand, the current Tk introduced

in (7) is now a genuine C∞ (1, 1)-form on X (since the sections in Hk do not

have common zeroes when α > 0—see Proposition 3.8) if k is large enough. In

the classical case when the class {α} is integral, Tk coincides with 1
kΦ?kω

(k)
FS (since

Φk is holomorphic in that case, hence it commutes with ∂∂̄) and is termed the

kth Bergman metric on X. However, in our case the class {α} is non-rational and

the above 2-forms are different for bi-degree reasons. Since Φk is approximately

(or asymptotically) holomorphic, the (2, 0) and (0, 2)-components of 1
kΦ?kω

(k)
FS are

intuitively expected to converge to zero as k →∞. This fact will be borne out by

a calculation below. On the other hand, the (1, 1)-component of 1
kΦ?kω

(k)
FS need not

be closed, hence it need not coincide with Tk but we will show that 1
k (Φ?kω

(k)
FS )1,1

and Tk converge to the same limit, so they are in a sense asymptotically equal.

Moreover, we will prove that this limit is the original Kähler form α as was the

case in [Tia90] when {α} was integral.

Theorem 5.1. Suppose there exists a Kähler metric α > 0 on a compact complex

manifold X. For an arbitrary orthonormal basis (σk,l)l∈N of Hk, set

(86) Tk := α+
i

2πk
∂∂̄ log

Nk∑
l=0

|σk,l|2hk

(and note that Tk is independent of the choice of orthonormal basis). Then:

(a) ‖Tk − α‖C2 = O(1/
√
k) as k →∞.

(b) ‖ 1
kΦ?kω

(k)
FS − Tk‖C2 = O(1/

√
k) as k →∞.

In particular, Tk and 1
kΦ?kω

(k)
FS converge to α, while 1

k (Φ?kω
(k)
FS )1,1−Tk, 1

k (Φ?kω
(k)
FS )2,0

and 1
k (Φ?kω

(k)
FS )0,2 converge to zero in the C2-topology as k →∞.

The rest of this section will be devoted to proving these statements. Notice

that it suffices to prove the estimates locally with constants independent of the

open subset chosen. So fix a point x ∈ X, local holomorphic coordinates z1, . . . , zn
centred at x and a local trivialisation θk of Lk over a neighbourhood U of x as
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in §3.1. For any global section σ of Lk, denote by f the C∞ function on U that

represents σ with respect to θk. In particular, the functions fk,l represent on U

the sections σk,l forming an orthonormal basis of Hk:

σk,l
θk' fk,l ⊗ e(k) on U, for l = 0, . . . , Nk.

We will choose an orthonormal basis (σk,l)0≤l≤Nk
of Hk that will enable us to

compute derivatives of fk,l at x in the same way as Tian chose his basis in [Tia90,

(3.7)]. Since the evaluation linear map

evx : Hk → C, σ 7→ f(x),

does not vanish identically (cf. (i) of Proposition 3.8), its kernel is a hyperplane

in Hk and we can choose σk,0 ∈ Hk \ ker(evx) such that σk,0 ⊥ ker(evx). Thus

fk,0(x) 6= 0. Since the evaluation linear map

evx
∂

∂z1
: ker(evx)→ C, σ 7→ ∂f

∂z1
(x),

does not vanish identically (otherwise Hk would not generate the approximately

holomorphic 1-jet z1e
−k/2ϕ at x—see Proposition 3.9), its kernel is a hyperplane

in ker(evx) and we can choose σk,1 ∈ ker(evx) \ ker(evx
∂
∂z1

) such that σk,1 ⊥
ker(evx

∂
∂z1

). Thus fk,1(x) = 0 but
∂fk,1

∂z1
(x) 6= 0. We can thus construct inductively

a decreasing sequence of subspaces

Hk ⊃ ker(evx) ⊃ ker

(
evx

∂

∂z1

)
⊃ · · · ⊃ ker

(
evx

∂

∂zn

)
⊃ ker

(
evx

∂2

∂z2
1

)
⊃ . . . ,

each containing the next as a hyperplane (since Hk generates approximately holo-

morphic jets at x), choose σk,l ∈ ker(evx
∂
∂zl

)⊥ ⊂ ker(evx
∂

∂zl−1
) for l = 1, . . . , n

and σk,n+1, . . . , σk,Nk
in the analogous way. Normalising each σk,l to norm 1, we

get an orthonormal basis of Hk such that (cf. [Tia90, (3.7)]):

(87)

fk,0(0) 6= 0 and fk,l(0) = 0 for all l ≥ 1,

∂fk,l
∂z1

(x) = · · · = ∂fk,l
∂zl−1

(x) = 0 but
∂fk,l
∂zl

(x) 6= 0 for all 1 ≤ l ≤ n,

∂fk,n+1

∂z1
(x) = · · · = ∂fk,n+1

∂zn
(x) = 0 but

∂2fk,n+1

∂z2
1

(x) 6= 0,

∂2fk,l
∂z2

1

(x) = 0 for all l ≥ n+ 2.

To streamline the calculations, we may assume that the local holomorphic

coordinates z1, . . . , zn about x, chosen originally as in (37) (where λj(x) > 0 for
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all j since α > 0), have been further rescaled so that

(88) α(x) =
i

2π
∂∂̄ϕ(x) =

i

2π

n∑
j=1

dzj ∧ dz̄j .

Lemma 5.2. Suppose the local coordinates z1, . . . , zn about x have been rescaled

as in (88) and the local potential ϕ of α has been chosen as in (38) (with each λj(x)

replaced by 1). For uk defined in §3.1 write uk = fk ⊗ e(k) on U as in (42), where

e(k) denotes the local frame of Lk with respect to θk. Then, for all j = 1, . . . , n, we

have
∂fk
∂z̄j

(z) = −k
2
fk(z)

∂ϕ

∂z̄j
(z), z ∈ U.

In particular, ∂fk
∂z̄j

(0) = 0 and ∂2fk
∂zj∂z̄j

(0) = −k2fk(0) for all j = 1, . . . , n.

The statements still hold if we replace uk by any jet zm1
1 · · · zmn

n uk.

Proof. Since ∂̄kA(uk) = 0 on U (see §3.1), we have

0 = ∂̄kA(uk) = (∂̄fk + 2πkfkA
0,1)⊗ ek, hence ∂̄fk = −k

2
fk∂̄ϕ on U,

having used the identity A0,1 = (1/4π)∂̄ϕ on U . The first statement of the lemma

follows. The first part of the second statement follows by taking z = 0 in the first

one and using (38) to see that (∂ϕ/∂z̄j)(0) = 0 for every j. The second part follows

by applying ∂/∂zj in the first statement and using (38). These properties still hold

for jets since ∂̄kA(zm1
1 · · · zmn

n uk) = 0 on U .

We need one more preliminary observation in the spirit of [Tia90, Lemmas

2.1–2.3] before performing the actual calculations. We can apply to every ap-

proximately holomorphic jet zm1
1 · · · zmn

n uk at x the procedure described in §3.2:

multiply it by a cut-off function θ (with θ ≡ 1 on V and Supp θ b U) and then

take the orthogonal projections sh := s
(k),h
(m1,...,mn), resp. snh := s

(k),nh
(m1,...,mn), of

s := θzm1
1 · · · zmn

n uk ∈ C∞(X,Lk) onto Hk, resp. Nk. So

s
(k),h
(m1,...,mn) = θzm1

1 · · · zmn
n uk − s(k),nh

(m1,...,mn) on X.

The results obtained in §3.2 and §3.3 starting from uk still apply if we start off

with zm1
1 · · · zmn

n uk instead. Therefore s
(k),nh
(m1,...,mn) satisfies the L2-estimate (54) on

X and the C∞-estimate (78) on (1/
√
k)V ′ b (1/

√
k)V b (1/

√
k)U .

On the other hand, given the properties (87) satisfied by the orthonormal

basis (σk,l)l∈N of Hk, it is not hard to see, after normalising each peak section

s
(k),h
(m1,...,mn) to s̃

(k)
(m1,...,mn) of L2-norm 1, that σk,0 is close to s̃

(k)
(0,...,0), σk,l is close

to s̃
(k)
(0,...,1,...,0) (with 1 in the lth spot) for every l = 1, . . . , n, σk,n+1 is close to

s̃
(k)
(2,0,...,0), etc. In Tian’s holomorphic case, this was an L2-norm proximity (cf.
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[Tia90, Lemma 3.1]). We can show furthermore that the forms in each of these

pairs are close to each other in the C∞-norm on a neighbourhood of x.

Lemma 5.3. We have

‖σk,0 − s̃(k)
(0,...,0)‖C∞( 1√

k
V ′) ≤ C(X,ω)

(
1

k4/b2
+ δk

)
,

‖σk,l − s̃(k)
(0,...,1,...,0)‖C∞( 1√

k
V ′) ≤ C(X,ω)

(
1

k4/b2
+ δk

)
, l = 1, . . . , n,

‖σk,n+1 − s̃(k)
(2,0,...,0)‖C∞( 1√

k
V ′) ≤ C(X,ω)

(
1

k4/b2
+ δk

)
.

Proof. The proof is essentially contained in [Tia90], we only re-interpret it in the

light of our estimate (78). It is well known that, for every l ∈ N, any homoge-

neous polynomial P (X1, . . . , Xd) ∈ R[X1, . . . , Xd] of degree l for which ∆RdP = 0

(where ∆Rd is the usual Laplacian of Rd) restricts to an eigenvector P|Sd−1 of the

(non-positive) Laplace–Beltrami operator ∆Sd−1 of the unit sphere Sd−1 ⊂ Rd

of eigenvalue −l(l + d − 2). Furthermore, all spherical harmonics arise as such

restrictions. For z ∈ Cn, it follows that∫
S2n−1

zm1
1 · · · zmn

n z̄p11 · · · z̄pnn dσ(z) = 0, (m1, . . . ,mn) 6= (p1, . . . , pn),

hence, after integrating by parts, for all (m1, . . . ,mn) 6= (p1, . . . , pn) we get

in
∫
|z|≤R

zm1
1 · · · zmn

n z̄p11 · · · z̄pnn ρ(|z|2) dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n = 0

for any function ρ(z) = ρ(|z|) depending only on |z|. This means that differ-

ent approximately holomorphic jets zm1
1 · · · zmn

n uk and zp11 · · · zpnn uk at x (with

(m1, . . . ,mn) 6= (p1, . . . , pn)) are mutually orthogonal on a neighbourhood of x.

The orthogonality defect on X between the global sections s
(k),h
(m1,...,mn) and

s
(k),h
(p1,...,pn) is due solely to the distorsion introduced by the correcting sections

s
(k),nh
(m1,...,mn) and s

(k),nh
(p1,...,pn). However, these correcting sections satisfy estimate (78),

so they are small in C∞-norm on (1/
√
k)V ′. The lemma follows.

With the choice (87) of an orthonormal basis of Hk we shall now estimate

the latter term on the right-hand side of (86) in the same way as Tian did in

the holomorphic case. Extra terms containing z̄j-derivatives of fk,l appear in our

approximately holomorphic context compared to Tian’s case; Lemma 5.2 will con-

tribute to their estimates. The terms containing only zj-derivatives of fk,l can be

estimated as in [Tia90] and we will be rather brief on details. However, we will spell

out in detail the estimates of the new terms peculiar to our non-holomorphic case.

It suffices to obtain C2-estimates at the fixed point x that are independent of x.
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Thanks to Lemma 5.3, we can compute the derivatives of (86) at x as if the

fk,l were the approximately holomorphic jets uk (for l = 0), zlu
k (for 1 ≤ l ≤ n),

z2
1u

k (for l = n + 1), etc. Indeed, only distortions very small in C∞-norm on

(1/
√
k)V ′ are introduced by this substitution, hence the derivatives at x are only

distorted by O(1/k4/b2 + δk). Thus by (43), (44) we have

(89) Tk|U := α|U +
i

2πk
∂∂̄ log

Nk∑
l=0

|fk,l|2,

where |fk,l| denotes the modulus of fk,l.

Proving that the latter term on the right-hand side of (89) converges to zero

amounts to proving that, for every r, s = 1, . . . , n, the ∂2/∂zr∂z̄s-derivative of

(1/k) log
∑
|fk,l|2 converges to zero. Using an orthogonal transformation, it suffices

to prove this fact for r = s = 1.

We begin with the C0-estimate.

Lemma 5.4. With the above choices we have∣∣∣∣1k ∂2 log
∑Nk

l=0 |fk,l|2

∂z1∂z̄1
(x)

∣∣∣∣ ≤ C

k
for all k � 1,

where C > 0 is a constant independent of x.

Proof. Straightforward calculations give

(90)
1

k

∂2 log
∑Nk

l=0 |fk,l|2

∂z1∂z̄1
(x) =

1

k

∂

∂z1

(∑Nk

l=0 fk,l
∂f̄k,l

∂z̄1
+
∑Nk

l=0 f̄k,l
∂fk,l

∂z̄1∑Nk

l=0 |fk,l|2

)
(x)

=
1

k

∑Nk

l=0

∣∣∂fk,l

∂z1

∣∣2 +
∑Nk

l=0

∣∣∂fk,l

∂z̄1

∣∣2 +
∑Nk

l=0 fk,l
∂2f̄k,l

∂z1∂z̄1
+
∑Nk

l=0 f̄k,l
∂2fk,l

∂z1∂z̄1∑Nk

l=0 |fk,l|2
(x)

− 1

k

∣∣∑Nk

l=0 fk,l
∂f̄k,l

∂z̄1
+
∑Nk

l=0 f̄k,l
∂fk,l

∂z̄1

∣∣2
(
∑Nk

l=0 |fk,l|2)2
(x)

=
1

k

∣∣∂fk,1

∂z1
(x)
∣∣2

|fk,0(x)|2
+

1

k

∑Nk

l=1

∣∣∂fk,l

∂z̄1
(x)
∣∣2 − ∣∣∂fk,0

∂z̄1
(x)
∣∣2

|fk,0(x)|2

+
1

k

fk,0(x)
∂2f̄k,0

∂z1∂z̄1
(x) + f̄k,0(x)

∂2fk,0

∂z1∂z̄1
(x)

|fk,0(x)|2

− 1

k

fk,0(x)2 ∂f̄k,0

∂z1
(x)

∂f̄k,0

∂z̄1
(x) + f̄k,0(x)2 ∂fk,0

∂z1
(x)

∂fk,0

∂z̄1
(x)

|fk,0(x)|4
.

We have used (87) in fk,l(x) = 0 for all l ≥ 1 and in
∂fk,l

∂z1
(x) = 0 for all l ≥ 2.
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By Lemma 5.2, the anti-holomorphic first-order derivatives ∂/∂z̄j vanish at

0 = z(x) in the case of jets, so we are left with calculating the first term and the

terms containing second-order derivatives ∂2/∂z1∂z̄1 at 0 in (90).

By Lemma 5.2, we further have

∂2fk,0
∂z1∂z̄1

(0) = −k
2
fk,0(0), hence f̄k,0(0)

∂2fk,0
∂z1∂z̄1

(0) = −k
2
|fk,0(0)|2.

Thus f̄k,0(0)
∂2fk,0

∂z1∂z̄1
(0) is real and therefore equals its conjugate fk,0(0)

∂2f̄k,0

∂z1∂z̄1
(0).

It follows that at x = 0 we have

(91)
1

k

fk,0(x)
∂2f̄k,0

∂z1∂z̄1
(x) + f̄k,0(x)

∂2fk,0

∂z1∂z̄1
(x)

|fk,0(x)|2
= −1.

The first term in the last sum on the right-hand side of (90) can be estimated in

the same way as the analogous term in [Tia90]. Indeed, if ∼ stands for equality

up to O(1/k) terms involving constants independent of x, we have, as in [Tia90,

§2, §3]:

1

k

∣∣∂fk,1

∂z1
(x)
∣∣2

|fk,0(x)|2
∼
C2

(1,0,...,0)

kC2
(0,...,0)

,

where C(1,0,...,0), C(0,...,0) are the coefficients of the normalised peak sections

s̃
(k)
(1,...,0)(z) = C(1,0,...,0)(z1u

k(z)− s(k),nh
(1,...,0)(z)),

s̃(0,...,0)(z) = C(0,0,...,0)(u
k(z)− s(k),nh

(0,...,0)(z))

given by the formulae

C2
(1,0,...,0) ∼

1∫
|z|≤(log k)/

√
k
|z1|2e−kϕ(z) dVω(z)

,

C2
(0,0,...,0) ∼

1∫
|z|≤(log k)/

√
k
e−kϕ(z) dVω(z)

.

In the rescaled coordinates of (88), λj(x) becomes 1 in (38), so

e−ϕ(z) = 1− |z|2 +O(|z|3), z ∈ U,

hence

C2
(1,0,...,0) ∼

1∫
|z|≤(log k)/

√
k
|z1|2(1− |z|2)k dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n

,

C2
(0,0,...,0) ∼

1∫
|z|≤(log k)/

√
k
(1− |z|2)k dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n

,
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from which it follows that

(92)
1

k

∣∣∂fk,1

∂z1
(x)
∣∣2

|fk,0(x)|2

∼

∫
|z|≤(log k)/

√
k
(1− |z|2)k dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n

k
∫
|z|≤(log k)/

√
k
|z1|2(1− |z|2)k dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n

∼ 1 +O(1/k),

the last estimate appearing in [Tia90, proof of Lemma 3.3].

Putting together (91) and (92) we see that

1

k

∣∣∂fk,1

∂z1
(x)
∣∣2

|fk,0(x)|2
+

1

k

fk,0(x)
∂2f̄k,0

∂z1∂z̄1
(x) + f̄k,0(x)

∂2fk,0

∂z1∂z̄1
(x)

|fk,0(x)|2
∼ O(1/k).

This completes the proof of Lemma 5.4.

It follows from the uniformity with respect to x of the estimate of Lemma 5.4

that i
2πk∂∂̄ log

∑Nk

l=0 log |fk,l|2 converges uniformly to zero on U . Thus we have

Corollary 5.5. As k →∞, Tk converges to α in the C0-topology.

The C1-estimate is handled in a similar way. It suffices to estimate uniformly

the ∂3/∂z2
1∂z̄1-derivative of (1/k) log

∑
|fk,l|2 at x.

Lemma 5.6. With the above choices we have∣∣∣∣1k ∂3 log
∑Nk

l=0 |fk,l|2

∂z2
1∂z̄1

(x)

∣∣∣∣ ≤ C

k
for all k � 1,

where C > 0 is a constant independent of x.

Proof. The third-order ∂3/∂z2
1∂z̄1-derivatives of the fk,l and f̄k,l (which would

vanish if the fk,l were holomorphic, but do not in our case) are handled as follows.

Applying ∂2/∂z2
j in the first conclusion of Lemma 5.2, we get

∂3fk,l
∂z2
j ∂z̄j

(z) = −k
2
fk,l(z)

∂3ϕ

∂z2
j ∂z̄j

(z)− k∂fk,l
∂zj

(z)
∂2ϕ

∂zj∂z̄j
(z)− k

2

∂2fk,l
∂z2
j

(z)
∂ϕ

∂z̄j
(z).

A similar formula is obtained for ∂3f̄k,l/∂z
2
j ∂z̄j . Taking now z = 0 and using

the facts that ∂ϕ/∂zj(0) = ∂ϕ/∂z̄j(0) = 0 (by (38)), ∂2ϕ/∂zj∂z̄j(0) = 1 (again

by (38) in which each λj(x) becomes 1 in the rescaled coordinates of (88)) and

∂f̄k,l/∂zj(0) = 0 (by Lemma 5.2), we find for j = 1 that

∂3fk,l
∂z2

1∂z̄1
(0) = −k

2
fk,l(0)

∂3ϕ

∂z2
1∂z̄1

(0)− k∂fk,l
∂z1

(0),

∂3f̄k,l
∂z2

1∂z̄1
(0) = −k

2
f̄k,l(0)

∂3ϕ

∂z2
1∂z̄1

(0).
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Using these facts and (87), straightforward but tedious calculations give

1

k

∂3 log
∑Nk

l=0 |fk,l|2

∂z2
1∂z̄1

(0) =

∂2fk,1

∂z21
(0)

∂f̄k,1

∂z̄1
(0)

k|fk,0(0)|2
−
|∂fk,1

∂z1
(0)|2f̄k,0(0)

∂fk,0

∂z1
(0)

k|fk,0(0)|4

+ 2
f̄k,0(0)

∂fk,0

∂z1
(0)

|fk,0(0)|2
.

The two terms on the right-hand side of the first line above also appear in the

holomorphic case. The estimates of [Tia90, Lemma 3.2] apply to the sections in-

volved in all of the above expressions thanks to arguments very similar to those

recalled in the proof of Lemma 5.4. Using those estimates, we get the following

uniform growth rates for the three right-hand terms above:

• O
(
k(n−1)/2kn+1

kk2n ) = O
(

1
k(n+1)/2

)
(for the first term);

• O
(
kn+1kn/2k(n/2)−1

kk4n

)
= O

(
1

k2n+1

)
(for the second term);

• O
(
kn/2k(n/2)−1

kn

)
= O

(
1
k

)
(for the third term).

The contention follows.

The C2-estimate can be proved in the same way and is left to the reader. We

have thus proved part (a) of Theorem 5.1. We now prove (b).

Since for any system of homogeneous coordinates [w0 : · · · : wNk
] of PNk the

Fubini–Study metric reads ω
(k)
FS = i

2π∂∂̄ log
∑Nk

l=0 |wl|2, we get

ω
(k)
FS =

1∑Nk

l=0 |wl|2

(Nk∑
l=0

i

2π
dwl ∧ dw̄l −

1∑Nk

l=0 |wl|2

Nk∑
l,r=0

wrw̄l
i

2π
dwl ∧ dw̄r

)
.

Hence

1

k
Φ?kω

(k)
FS =

1

k
∑Nk

l=0 |fk,l|2

(Nk∑
l=0

i

2π
(∂fk,l + ∂̄fk,l) ∧ (∂f̄k,l + ∂̄f̄k,l)

− 1∑Nk

l=0 |fk,l|2

Nk∑
l,r=0

fk,rf̄k,l
i

2π
(∂fk,l + ∂̄fk,l) ∧ (∂f̄k,r + ∂̄f̄k,r)

)
,

from which it follows that

(93)

(
1

k
Φ?kω

(k)
FS

)1,1

=
1

k
∑Nk

l=0 |fk,l|2

(Nk∑
l=0

(
i

2π
∂fk,l ∧ ∂̄f̄k,l −

i

2π
∂f̄k,l ∧ ∂̄fk,l

)

− 1∑Nk

l=0 |fk,l|2

Nk∑
l,r=0

fk,rf̄k,l

(
i

2π
∂fk,l ∧ ∂̄f̄k,r −

i

2π
∂f̄k,r ∧ ∂̄fk,l

))
,
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(94)

(
1

k
Φ?kω

(k)
FS

)2,0

=
1

k
∑Nk

l=0 |fk,l|2

(Nk∑
l=0

i

2π
∂fk,l ∧ ∂f̄k,l

− 1∑Nk

l=0 |fk,l|2

Nk∑
l,r=0

fk,rf̄k,l
i

2π
∂fk,l ∧ ∂f̄k,r

)
,

(95)

(
1

k
Φ?kω

(k)
FS

)0,2

=
1

k
∑Nk

l=0 |fk,l|2

(Nk∑
l=0

i

2π
∂̄fk,l ∧ ∂̄f̄k,l

− 1∑Nk

l=0 |fk,l|2

Nk∑
l,r=0

fk,rf̄k,l
i

2π
∂̄fk,l ∧ ∂̄f̄k,r

)
,

where |fk,l| stands for the modulus of the function fk,l that represents σk,l in

a local trivialisation of Lk. Thanks to Lemma 5.2, if the fk,l’s were the actual

approximately holomorphic jets at x = z(0), we would have

(96) ∂̄fk,l(0) = 0, l = 0, . . . , Nk,

and implicitly (Φ?kω
(k)
FS )2,0 and (Φ?kω

(k)
FS )0,2 would vanish at x. Now, as already

noticed earlier, the fk,l’s need not be the jets at x but they lie within a C∞-

topology distance O(1/k4/b2 + δk) of the jets by Lemma 5.3. This estimate being

uniform with respect to x, we infer that∥∥∥∥(1

k
Φ?kω

(k)
FS

)2,0∥∥∥∥
C2

≤ O
(

1√
k

)
and

∥∥∥∥(1

k
Φ?kω

(k)
FS

)0,2∥∥∥∥
C2

≤ O
(

1√
k

)
.

On the other hand, straightforward calculations show that

(97)
i

2πk
∂∂̄ log

Nk∑
l=0

|fk,l|2 =
1

k
∑Nk

l=0 |fk,l|2

Nk∑
l=0

(
i

2π
∂fk,l ∧ ∂̄f̄k,l

+
i

2π
∂f̄k,l ∧ ∂̄fk,l + fk,l

i

2π
∂∂̄f̄k,l + f̄k,l

i

2π
∂∂̄fk,l

)
− 1

k(
∑Nk

l=0 |fk,l|2)2

Nk∑
l,r=0

(
fk,lfk,r

i

2π
∂f̄k,l ∧ ∂̄f̄k,r + fk,lf̄k,r

i

2π
∂f̄k,l ∧ ∂̄fk,r

+ fk,rf̄k,l
i

2π
∂fk,l ∧ ∂̄f̄k,r + f̄k,lf̄k,r

i

2π
∂fk,l ∧ ∂̄fk,r

)
.

Notice that the right-hand sides of (93) and (97) contain precisely the same terms

featuring products ∂fk,l ∧ ∂̄f̄k,r, while all the products containing a factor ∂f̄k,l
or ∂̄fk,l would vanish at 0 = z(x) if the fk,l’s were the actual approximately

holomorphic jets at 0 by (96). Thus the terms in this latter group are negligible in

the C∞-topology by Lemma 5.3. The only two terms featuring on the right of (97)
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but not on the right of (93) are those containing second-order derivatives i∂∂̄f̄k,l
and i∂∂̄fk,l. Thus we have

(98)
i

2πk
∂∂̄ log

Nk∑
l=0

|fk,l|2(x) =

(
1

k
Φ?kω

(k)
FS

)1,1

(x)

+
1

k
∑Nk

l=0 |fk,l|2

Nk∑
l=0

(
fk,l

i

2π
∂∂̄f̄k,l + f̄k,l

i

2π
∂∂̄fk,l

)
(x) +O

(
1√
k

)
.

Now by Lemma 5.2, if the fk,l’s were the actual approximately holomorphic jets

at 0 = z(x), for every l = 0, . . . , Nk the following would hold on U :

∂̄fk,l = −k
2
fk,l∂̄ϕ, hence

i

2π
∂∂̄fk,l = −k

2
fk,l

i

2π
∂∂̄ϕ− k

2

i

2π
∂fk,l ∧ ∂̄ϕ.

Since i∂∂̄ϕ = 2πα on U (see §3.1) and ∂̄ϕ(0) = 0 (see (38)), the last identity

applied at z = 0 reads

i

2π
∂∂̄fk,l(0) = −k

2
fk,l(0)α(0),

from which we get (at x = z(0)):(
fk,l

i

2π
∂∂̄f̄k,l + f̄k,l

i

2π
∂∂̄fk,l

)
(0) = −k|fk,l(0)|2α(0), l = 0, . . . , Nk.

Since fk,l(0) = 0 for all l ≥ 1 (cf. (87)), we infer that

1

k
∑Nk

l=0 |fk,l(0)|2

Nk∑
l=0

(
fk,l

i

2π
∂∂̄f̄k,l + f̄k,l

i

2π
∂∂̄fk,l

)
(0) = −α(0).

Since x = 0 in the chosen coordinates, from (98) we get

i

2πk
∂∂̄ log

Nk∑
l=0

|fk,l|2(x) =

(
1

k
Φ?kω

(k)
FS

)1,1

(x)− α(x) +O

(
1√
k

)
.

On the other hand, the left-hand term above equals Tk(x)− α(x) thanks to (89),

so we get

Tk(x) =

(
1

k
Φ?kω

(k)
FS

)1,1

(x) +O

(
1√
k

)
.

Since the constant implicit in O(1/
√
k) is independent of x and corresponds to a

C∞ estimate, we have obtained the uniform estimate proving part (b) of Theorem

5.1.

This completes the proof of Theorem 5.1.
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