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Localization of Cohomological Induction

by

Yoshiki Oshima

Abstract

We give a geometric realization of cohomologically induced (g,K)-modules. Let (h, L) be
a subpair of (g,K). The cohomological induction is an algebraic construction of (g,K)-
modules from an (h, L)-module V . For a real semisimple Lie group, the duality theorem
by Hecht, Miličić, Schmid, and Wolf relates (g,K)-modules cohomologically induced from
a Borel subalgebra to D-modules on the flag variety of g. In this article we extend the
theorem to more general pairs (g,K) and (h, L). We consider the tensor product of a
D-module and a certain module associated with V , and prove that its sheaf cohomology
groups are isomorphic to cohomologically induced modules.
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§1. Introduction

The aim of this article is to realize cohomologically induced modules as sheaf

cohomology groups of certain sheaves on homogeneous spaces.

Cohomological induction is defined as a functor between the categories of

(g,K)-modules. Let (g,K) be a pair (Definition 2.1) and let C(g,K) be the category

of (g,K)-modules. Suppose that (h, L) is a subpair of (g,K) and that K and L

are reductive. Following the book by Knapp and Vogan [KV95], we define the

functors P g,K
h,L and Ig,Kh,L : C(h, L) → C(g,K) as V 7→ R(g,K) ⊗R(h,L) V and

V 7→ (HomR(h,L)(R(g,K), V ))K , respectively. See Section 2 for the definition of

the Hecke algebra R(g,K). When g = h, the functor Ig,Kh,L = Ig,Kg,L is called the

Zuckerman functor. Let V be an (h, L)-module. We define the cohomologically

induced module as the (g,K)-module (P g,K
h,L )j(V ) for j ∈ N, where (P g,K

h,L )j is the
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j-th left derived functor of P g,K
h,L . Similarly, we define (Ig,Kh,L )j(V ), where (Ig,Kh,L )j is

the j-th right derived functor of Ig,Kh,L .

This construction produces a large family of representations of real reductive

Lie groups. Let GR be a real reductive Lie group with a Cartan involution θ so

that the group of fixed points KR := (GR)θ is a maximal compact subgroup. Let g

be the complexified Lie algebra of GR and K the complexification of KR. We give

examples of cohomologically induced (g,K)-modules below. In the following three

examples we suppose that h is a parabolic subalgebra of g, and L is a maximal

reductive subgroup of the normalizer NK(h). We also suppose that V is a one-

dimensional (h, L)-module.

• We assume the rank condition rank g = rankK and that h is a θ-stable Borel

subalgebra. Then under a certain positivity condition on V , (P g,K
h,L )s(V ) (or

(Ig,Kh,L )s(V )) is the underlying (g,K)-module of a discrete series representation

of GR. Here s = 1
2 dimK/L.

• Suppose that h is a θ-stable parabolic subalgebra. Then the (g,K)-module

(P g,K
h,L )s(V ) (or (Ig,Kh,L )s(V )) is called Zuckerman’s derived functor module Ah(λ).

Here s = 1
2 dimK/L.

• Let PR be a parabolic subgroup of GR and suppose that h is its complexified

Lie algebra. Then (P g,K
h,L )0(V ) (or (Ig,Kh,L )0(V )) is the underlying (g,K)-module

of a degenerate principal series representation realized on the real flag variety

GR/PR.

The localization theory by Bĕılinson–Bernstein [BB81] provides another im-

portant construction of (g,K)-modules. It gives a realization of (g,K)-modules as

K-equivariant twisted D-modules on the full flag variety X of g.

These two constructions are related by a result of Hecht–Miličić–Schmid–

Wolf [HMSW87]. We now recall their theorem. Let GR be a connected real re-

ductive Lie group and let (g,K) be the pair defined in the above way. Suppose

that h = b is a Borel subalgebra of g and L is a maximal reductive subgroup of

the normalizer NK(b). Let X be the full flag variety of g, Y the K-orbit through

b ∈ X, and i : Y → X the inclusion map. Suppose that V is a (b, L)-module and

b acts as scalars given by λ ∈ b∗ := HomC(b,C). Write VY for the corresponding

locally free OY -module on Y and view it as a twisted D-module. Let DX,λ be

the ring of twisted differential operators on X corresponding to λ and define the

DX,λ-module direct image i+VY . Then the following is called the duality theorem:

Theorem 1.1 ([HMSW87]). There is an isomorphism of (g,K)-modules

Hs(X, i+VY )∗ ' (Ig,Kb,L )u−s
(
V ∗ ⊗

∧top
(g/b)∗

)
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for s ∈ N and u = dimK/L− dimY . Here the left side is the K-finite dual of the

(g,K)-module Hs(X, i+VY ).

The proof in [HMSW87] is by describing the cohomology groups of both

sides by using standard resolutions and giving an isomorphism between the two

complexes. We note that by using the dual isomorphism ([KV95, Theorem 3.1])

(P g,K
h,L )j(V )∗ ' (Ig,Kh,L )j(V ∗), Theorem 1.1 can be deduced from

(1.1) Hs(X, i+VY ) ' (P g,K
b,L )u−s

(
V ⊗

∧top
(g/b)

)
.

The relation between cohomological induction and localization has been stud-

ied further (see [Bie90], [Cha93], [Kit10], [MP98], [Sch91]). Miličić–Pandžić [MP98]

gave a more conceptual proof of Theorem 1.1 by using equivariant derived cate-

gories. In [Cha93] and [Kit10], Theorem 1.1 was extended to the case of partial

flag varieties.

In this article we will realize geometrically the cohomologically induced mod-

ules in the following setting. Let i : K → G be a homomorphism between complex

linear algebraic groups. Suppose that K is reductive and the kernel of i is finite so

that the pair (g,K) is defined. Let H be a closed subgroup of G. Put M := i−1(H)

and take a Levi decomposition M = Ln U . We write i : Y = K/M → G/H = X

for the natural immersion. Let V be an (h,M)-module. We view V as an (h, L)-

module by restriction and define the cohomologically induced module (P g,K
h,L )j(V ).

In this generality, we can no longer realize it as a (twisted) D-module on X = G/H.

Instead we use the tensor product of an i−1DX -module and an i−1OX -module as-

sociated with V which is equipped with a (g,K)-action (see Definition 3.3). We

now state the main theorem of this article.

Main Theorem (Theorem 4.1). Suppose that V is an i−1g̃X-module associated

with V (see Definition 3.3). Then we have an isomorphism of (g,K)-modules

Hs(Y, i−1i+L ⊗i−1OX V) ' (P g,K
h,L )u−s

(
V ⊗

∧top
(g/h)

)
for s ∈ N and u = dimU .

Here L is the invertible sheaf on Y defined at the beginning of Section 4 and

the direct image i+L in the categories of D-modules is defined as

i∗
(
(L ⊗OY ΩY )⊗DY i∗DX

)
⊗OX Ω∨X .

Hence its inverse image i−1i+L as a sheaf of abelian groups is given by

(L ⊗OY ΩY )⊗DY i∗DX ⊗i−1OX i
−1Ω∨X .
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We note that if V comes from an algebraic H-module, then we can take V to be

i−1VX , where VX is a G-equivariant locally free OX -module with typical fiber V

(Example 3.5).

The work in this article was motivated by the study of branching laws of

representations. In [Osh11] a special case of Theorem 4.1 was proved and it was

used to get an estimate of the restriction of Aq(λ) to reductive subalgebras.

This article is organized as follows. In Section 2 we recall the definition of

cohomological induction following [KV95]. In Section 3 we give the definition of

an i−1O-module associated with an (h,M)-module. We state and prove the main

theorem (Theorem 4.1) in Section 4. Our proof basically follows the proof of the

duality theorem in [HMSW87]. Section 5 is devoted to the construction of the

i−1O-module associated with an (h,M)-module, which can be used for the geo-

metric realization of cohomologically induced modules. In Section 6, we see that

the module i−1i+L⊗V can be viewed as a twisted D-module if h acts as scalars on

V . Therefore, Theorem 4.1 becomes the isomorphism (1.1) and hence Theorem 1.1

in the particular setting.

§2. Cohomological induction

In this section we recall the definition of cohomological induction following [KV95].

Let K be a complex reductive algebraic group and let KR be a compact real

form. Since any locally finite action of KR uniquely extends to an algebraic action

of K, the locally finite KR-modules are identified with the algebraic K-modules.

Define the Hecke algebra R(KR) as the space of KR-finite distributions on KR. For

S ∈ R(KR), the pairing with a smooth function f on KR is written as∫
KR

f(k) dS(k).

The product of S, T ∈ R(KR) is given by

S ∗ T : f 7→
∫
KR×KR

f(kk′) dS(k) dT (k′).

The associative algebra R(KR) does not have the identity, but has an approximate

identity (see [KV95, Chapter I]). The locally finite KR-modules are identified with

the approximately unital left R(KR)-modules. The action map R(KR) × V → V

is given by

(S, v) 7→
∫
KR

kv dS(k)
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for a locally finite KR-module V . Here, kv is regarded as a smooth function on KR
that takes values in V . We have a natural isomorphism of C-algebras

R(KR) '
⊕
τ∈K̂

EndC(Vτ ),

where K̂ is the set of equivalence classes of irreducible K-modules, and Vτ is a

representation space of τ ∈ K̂. Hence R(KR) depends only on the complexification

K up to natural isomorphisms, so in what follows, we also denote R(KR) by R(K).

Definition 2.1. Let g be a Lie algebra and K a complex linear algebraic group

such that the Lie algebra k ofK is a subalgebra of g. Suppose that a homomorphism

φ : K → Aut(g) of algebraic groups is given, where Aut(g) is the automorphism

group of g. We say (g,K) is a pair if

• φ(·)|k is equal to the adjoint action Adk(K) of K, and

• the differential of φ is equal to the adjoint action adg(k).

Let i : K → G be a homomorphism of complex linear algebraic groups with

finite kernel and let g be the Lie algebra of G. Then (g,K) with the homomorphism

φ := Ad ◦ i is a pair in the above sense.

Definition 2.2. Let (g,K) be a pair. Let V be a complex vector space with a Lie

algebra action of g and an algebraic action of K. We say that V is a (g,K)-module

if

• the differential of the action of K coincides with the restriction of the action of

g to k, and

• (φ(k)ξ)v = k(ξ(k−1(v))) for k ∈ K, ξ ∈ g, and v ∈ V .

For a pair (g,K), we denote by C(g,K) the category of (g,K)-modules. Sup-

pose moreover that K is reductive. We extend the representation φ : K → Aut(g)

to a representation φ : K → Aut(U(g)) on the universal enveloping algebra. We

define the Hecke algebra R(g,K) as

R(g,K) := R(K)⊗U(k) U(g).

The product is given by

(S ⊗ ξ) · (T ⊗ η) =
∑
i

(
S ∗ (〈ξ∗i , φ(·)−1ξ〉T )⊗ ξiη

)
for S, T ∈ R(K) and ξ, η ∈ U(g). Here ξi is a basis of the linear span of φ(K)ξ,

and ξ∗i is its dual basis. We regard 〈ξ∗i , φ(·)−1ξ〉 as a function on KR. As in the
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group case, the (g,K)-modules are identified with the approximately unital left

R(g,K)-modules. The action map R(g,K)× V → V is given by

(S ⊗ ξ, v) 7→
∫
KR

k(ξv) dS(k)

for a (g,K)-module V .

Let (g,K) and (h, L) be pairs in the sense of Definition 2.1. Suppose that K

and L are reductive. Let i : (h, L) → (g,K) be a map between pairs, namely, a

Lie algebra homomorphism ialg : h → g and an algebraic group homomorphism

igp : L→ K satisfy the following two assumptions:

• The restriction of ialg to the Lie algebra l of L is equal to the differential of igp.

• φK(igp(l)) ◦ ialg = ialg ◦ φL(l) for l ∈ L, where φK denotes φ for (g,K) in

Definition 2.1 and φL denotes φ for (h, L).

We define the functors P g,K
h,L , I

g,K
h,L : C(h, L)→ C(g,K) by

P g,K
h,L : V 7→ R(g,K)⊗R(h,L) V,

Ig,Kh,L : V 7→ (HomR(h,L)(R(g,K), V ))K ,

where (·)K is the subspace of K-finite vectors. Then P g,K
h,L is right exact and Ig,Kh,L

is left exact. Write (P g,K
h,L )j for the j-th left derived functor of P g,K

h,L and write

(Ig,Kh,L )j for the j-th right derived functor of Ig,Kh,L . We can see that Ig,Kh,L is the right

adjoint functor of the forgetful functor

Forh,Lg,K : C(g,K)→ C(h, L), V 7→ R(g,K)⊗R(g,K) V ' V,

and P g,K
h,L is the left adjoint functor of the functor

For∨h,Lg,K : C(g,K)→ C(h, L), V 7→ (HomR(g,K)(R(g,K), V ))L.

For an (h, L)-module V , the (g,K)-modules (P g,K
h,L )j(V ) and (Ig,Kh,L )j(V ) are called

cohomologically induced modules.

§3. O-modules associated with (g,K)-modules

Let G be a complex linear algebraic group acting on a variety (or more generally a

scheme) X. Let a : G×X → X be the action map and p2 : G×X → X the second

projection. Write OX for the structure sheaf of X and a∗, p∗2 for the inverse image

functors as O-modules. We say that an OX -moduleM is G-equivariant if there is

an isomorphism a∗M' p∗2M satisfying the cocycle condition. For a G-equivariant

OX -module M, the G-action on M differentiates to a g-action on M.



Localization of Cohomological Induction 367

Definition 3.1. Suppose that H is a closed algebraic subgroup of G, and X =

G/H is the quotient variety. For an algebraic H-module V , define VX as the G-

equivariant quasi-coherent OX -module that has typical fiber V .

The category of G-equivariant quasi-coherent OX -modules is equivalent to

the category of algebraic H-modules, and VX is the OX -module which corre-

sponds to V via this equivalence. It also corresponds to the associated bundle

G ×H V → G/H. The local sections of VX can be identified with the V -valued

regular functions f on open subsets of G satisfying f(gh) = h−1 · f(g) for h ∈ H.

We often use this identification in the following.

Note that VX is locally free if V is finite-dimensional. Indeed, let v1, . . . , vn be

a basis of V and take local sections ṽ1, . . . , ṽn such that ṽi(e) = vi for the identity

element e ∈ G. Then the map O⊕nX → VX given by (fi)i 7→
∑n
i=1 fiṽi is defined

near the base point eH ∈ G/H and is an isomorphism on some open neighborhood

of eH.

Suppose that X is a smooth G-variety. Then the infinitesimal action is defined

as a Lie algebra homomorphism from the Lie algebra g of G to the space of vector

fields T (X) on X. Denote the image of ξ ∈ g by ξX ∈ T (X). Then ξX gives a

first-order differential operator on the structure sheaf OX . Let g̃X := OX ⊗C g.

This module becomes a Lie algebroid in a natural way (see [BB93, §1.2]): the Lie

bracket is defined by

[f ⊗ ξ, g ⊗ η] = fg ⊗ [ξ, η] + fξX(g)⊗ η − gηX(f)⊗ ξ

for f, g ∈ OX and ξ, η ∈ g. Here f ∈ OX means that f is a local section of OX .

Similar notation will be used for other sheaves. Write U(g̃X) (' OX ⊗ U(g)) for

the universal enveloping algebra of g̃X . Then a U(g̃X)-module is identified with

an OX -module M with a g-action satisfying ξ(fm) = ξX(f)m+ f(ξm) for ξ ∈ g,

f ∈ OX , and m ∈M.

Let TX be the tangent sheaf of X and let p : g̃X (= OX ⊗C g) → TX be

the map given by f ⊗ ξ 7→ fξX . Then the kernel H := ker p is isomorphic to the

G-equivariant locally free OX -module with typical fiber h. Let DX be the ring of

differential operators on X. The map p extends to p : U(g̃X)→ DX and descends

to an isomorphism of algebras

(3.1) U(g̃X)/U(g̃X)H ∼−→ DX .

We will work in the following setting.

Setting 3.2. Let i : K → G be a homomorphism of complex linear algebraic

groups with finite kernel. Let H be a closed algebraic subgroup of G. Put M :=
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i−1(H), which is an algebraic subgroup of K, and write X := G/H and Y := K/M

for the quotient varieties. The map i : K → G induces an injective morphism

i : Y → X between the quotient varieties and an injective homomorphism di :

k → g between Lie algebras. We identify k with its image di(k) and regard k as a

subalgebra of g.

In particular, (g,K) and (h,M) become pairs in the sense of Definition 2.1,

where h is the Lie algebra of H.

Let e ∈ K be the identity element and let o := eM ∈ Y be the base point

of Y . Write

IY := {f ∈ OX : f(y) = 0 for y ∈ Y }, Io := {f ∈ OX : f(o) = 0},

so IY is the defining ideal of the closure Y of Y . It follows that i−1OX/IY ' OY .

Here i−1 denotes the inverse image functor for the sheaves of abelian groups. For

an i−1OX -module M, the support of the sheaf M/(i−1Io)M is contained in {o}
so it is regarded as a vector space.

Let Yp be the scheme (Y, i−1OX/(IY )p) for p ≥ 1. If locally we have X =

SpecA, Y = Spec I, and Y is closed in X, then Yp = Spec(A/Ip). The scheme

Y1 is identified with the algebraic variety Y . If M is an i−1OX -module, then the

sheaf M/(i−1IY )pM can be viewed as an OYp -module.

The inverse image i−1U(g̃X) of U(g̃X) is a sheaf of algebras on Y and an

i−1OX -bimodule. We will call i−1U(g̃X)-modules simply i−1g̃X -modules. The K-

action on i−1g̃X is given by f ⊗ ξ 7→ (k · f) ⊗ Ad(i(k))(ξ) for f ∈ i−1OX , ξ ∈ g,

k ∈ K. Suppose that M is an i−1g̃X -module and let i−1g̃X ⊗M → M be the

action map. Then the inclusion g · (IY )p ⊂ (IY )p−1 induces a map i−1g̃X ⊗
M/(i−1IY )pM → M/(i−1IY )p−1M. The K-actions on X and Y induce a K-

action on Yp. Since Y is K-stable in X, we have k · (IY )p ⊂ (IY )p. Therefore, we

can define a k-action onM/(i−1IY )pM. Similarly, we have h · Io ⊂ Io and we can

equip M/(i−1Io)M with an h-module structure.

Definition 3.3. Let V be an (h,M)-module. We say an i−1g̃X -module V is as-

sociated with V if V/(i−1IY )pV is a K-equivariant quasi-coherent OYp -module for

all p ≥ 1 and the following five assumptions hold.

(1) The canonical map

V/(i−1IY )pV → V/(i−1IY )p−1V

commutes with K-actions for p ≥ 2.

(2) V/(i−1IY )pV is a flat OYp -module for p ≥ 1.
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(3) The action map i−1g̃X ⊗ V/(i−1IY )pV → V/(i−1IY )p−1V commutes with

K-actions for p ≥ 2. Here K acts on i−1g̃X ⊗ V/(i−1IY )pV diagonally.

(4) The k-action on V/(i−1IY )pV induced from the g-action on V coincides with

the differential of the K-action on V/(i−1IY )pV for p ≥ 1.

(5) There is an isomorphism ι : V/(i−1Io)V
∼−→ V which commutes with h-actions

and M -actions.

Remark 3.4. The g-action and the K-action on V induce an h-action and an M -

action on V/(i−1Io)V. The conditions (3) and (4) imply that V/(i−1Io)V becomes

an (h,M)-module.

Example 3.5. Suppose that V is an H-module and define the G-equivariant

quasi-coherent OX -module VX as in Definition 3.1. The G-action on VX induces a

g-action and a K-action on VX . Then by regarding V as an (h,M)-module, i−1VX
is associated with V .

We will construct an i−1g̃X -module associated with an arbitrary (h,M)-

module in Section 5.

Example 3.6. Let V and W be i−1g̃X -modules associated with (h,M)-modules

V and W , respectively. Then the tensor product V ⊗i−1OX W is associated with

the (h,M)-module V ⊗W .

We can define the pull-back of i−1g̃X -modules associated with V in the fol-

lowing way. Let K ′, G′, H ′ be another triple of algebraic groups satisfying the

assumptions in Setting 3.2. In particular, the map i′ : K ′ → G′ induces a mor-

phism of the quotient varieties i′ : K ′/M ′ → G′/H ′, where M ′ := (i′)−1(H ′).

Suppose that ϕK : K ′ → K and ϕ : G′ → G are homomorphisms such that the

diagram

K ′
i′ //

ϕK

��

G′

ϕ

��
K

i // G

commutes and that ϕ(H ′) ⊂ H. Then ϕK(M ′) ⊂ M . The maps ϕ, ϕK induce

morphisms ϕ : X ′ := G′/H ′ → X, ϕK : Y ′ := K ′/M ′ → Y and ϕp : Y ′p :=

(Y ′, (i′)−1OX′/(IY ′)p)→ Yp. We get the commutative diagram

Y ′
i′ //

ϕK

��

X ′

ϕ

��
Y

i // X
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Suppose that V is an i−1g̃X -module associated with an (h,M)-module V . Let

V ′ := (i′)−1OX′ ⊗(ϕ◦i′)−1OX ϕ−1
K V. We define a g′-action on V ′ by ξ(f ⊗ v) =

ξX′(f)⊗v+f ⊗ϕ(ξ)v for ξ ∈ g′, f ∈ (i′)−1OX′ , and v ∈ ϕ−1
K V so that V ′ becomes

an (i′)−1g̃′X′ -module. Since

V ′/((i′)−1IY ′)pV ′ ' (i′)−1OX′/(IY ′)p ⊗(ϕ◦i′)−1OX ϕ
−1
K V ' ϕ

∗
p(V/(i−1IY )pV),

the sheaf V ′/((i′)−1IY ′)pV ′ is a K ′-equivariant quasi-coherent OY ′p -module. We

can easily show the following proposition by checking the five assumptions in

Definition 3.3.

Proposition 3.7. Let V be an (h,M)-module and V an i−1g̃X-module associated

with V . Then the (i′)−1g̃′X′-module (i′)−1OX′⊗(ϕ◦i′)−1OX ϕ
−1
K V is associated with

the (h′,M ′)-module Forh
′,M ′

h,M (V ).

§4. Localization of cohomological induction

We retain Setting 3.2. In this section, we assume moreover that K is reductive. Let

M = LnU be a Levi decomposition ofM , where L is a maximal reductive subgroup

of M , and U is the unipotent radical of M . The corresponding decomposition of

the Lie algebra is m = l⊕ u.

Let V be an (h,M)-module. We can view V as an (h, L)-module by restriction

and then define the cohomologically induced module (P g,K
h,L )j(V ) as in Section 2.

In order to state the main theorem, we need a shift of modules by a character

(or an invertible sheaf) that we will define in the following. Write
∧top

(k/l) for

the top exterior product of k/l and view it as a one-dimensional L-module by the

adjoint action. Since K and L are reductive, the identity component of L acts

trivially on
∧top

(k/l). We extend the L-action on
∧top

(k/l) to an M -action by

letting U act trivially. Define L as the K-equivariant locally free OY -module on

Y := K/M whose typical fiber is isomorphic to the M -module
∧top

(k/l). The

K-action on L differentiates to a k-action. Then L becomes a U (̃kY )-module and

the kernel of the map k̃Y → TY acts by zero because the identity component of M

acts trivially on
∧top

(k/l). Therefore, L has a structure of left DY -module via the

isomorphism (3.1) for Y .

Let M be a left DY -module. Recall that the direct image of M by i in the

category of left D-modules is defined as

(4.1) i+M := i∗((M⊗OY ΩY )⊗DY i∗DX)⊗OX Ω∨X ,

where i∗ is the direct image functor for sheaves of abelian groups, ΩY is the

canonical sheaf of Y , and Ω∨X is the dual of the canonical sheaf of X. Via the map
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p : U(g̃X)→ DX , we can view i+M as a g̃X -module. The inverse image i−1i+M
as a sheaf of abelian groups is

i−1i+M = (M⊗OY ΩY )⊗DY i∗DX ⊗i−1OX i
−1Ω∨X ,

which has an i−1g̃X -module structure. We note that the functor i−1i+ is exact.

Define subsheaves of DX by

FpDX := {D ∈ DX : D(IY )p+1 ⊂ IY }

for p ≥ 0. They are OX -bi-submodules of DX and form a filtration of DX . It

induces a filtration of i−1i+L:

Fpi
−1i+L := (L ⊗OY ΩY )⊗DY i∗FpDX ⊗i−1OX i

−1Ω∨X .

It follows from the definition of FpDX that Fpi
−1i+L is annihilated by (i−1IY )p+1

and hence is regarded as a quasi-coherent OYp+1
-module.

Here is the main theorem of this article:

Theorem 4.1. In Setting 3.2, assume that K is reductive. Let M = L n U be a

Levi decomposition. Suppose that V is an (h,M)-module and that V is an i−1g̃X-

module associated with V (Definition 3.3). Then we have an isomorphism of (g,K)-

modules

Hs(Y, i−1i+L ⊗i−1OX V) ' (P g,K
h,L )u−s

(
V ⊗

∧top
(g/h)

)
for s ∈ N and u = dimU . (See the remark below for the definition of the (g,K)-

action on the left side.)

Remark 4.2. Since i−1i+L and V have i−1g̃X -module structures, the tensor

product i−1i+L ⊗i−1OX V becomes an i−1g̃X -module. This gives a g-action on

the cohomology group Hs(Y, i−1i+L⊗i−1OX V). In order to define a K-action, we

use the filtration Fpi
−1i+L defined above. By definition, (i−1IY )p+1 annihilates

Fpi
−1i+L and hence

(4.2) Fpi
−1i+L ⊗i−1OX V ' Fpi

−1i+L ⊗OYq V/(i
−1IY )qV

for p < q. Since V/(i−1IY )qV is a flat OYq -module by Definition 3.3(2), the map

Fp−1i
−1i+L ⊗i−1OX V → Fpi

−1i+L ⊗i−1OX V

is injective. We let K act diagonally on the right side of (4.2). This gives a K-action

on Hs(Y, Fpi
−1i+L ⊗i−1OX V). Using the isomorphisms
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Hs(Y, i−1i+L ⊗i−1OX V) ' Hs
(
Y, (lim−→

p

Fpi
−1i+L)⊗i−1OX V

)
' Hs

(
Y, lim−→

p

(Fpi
−1i+L ⊗i−1OX V)

)
' lim−→

p

Hs(Y, Fpi
−1i+L ⊗i−1OX V),

we define a K-action on Hs(Y, i−1i+L⊗i−1OX V). With these actions, Hs(Y, i−1i+L
⊗i−1OX V) becomes a (g,K)-module because of Definition 3.3(3), (4).

Proof of Theorem 4.1. Let X̃ := G/L and Ỹ := K/L be the quotient varieties.

We have the commutative diagram

Ỹ
ı̃ //

πK

��

X̃

π

��
Y

i // X

where the maps are defined canonically.

The direct image functor i+ defined as in (4.1) induces the direct image functor

between the bounded derived categories of left D-modules, which we denote by

i+ : Db(DY ) → Db(DX). Similarly for ı̃+, π+, and (πK)+. We have π+ ◦ ı̃+ '
i+◦(πK)+. Since πK is a smooth morphism and the fiber is isomorphic to the affine

space Cu, it follows that (πK)+Ω∨
Ỹ
' L[u] (see [HMSW87]). Here L[u] ∈ Db(DY )

is the complex (· · · → 0 → L → 0 → · · · ), concentrated in degree −u. Therefore,

i+(πK)+Ω∨
Ỹ
' i+L[u] in Db(DX).

Since L is reductive, the varieties X̃ and Ỹ are affine by Matsushima’s crite-

rion. Hence the functor ı̃+ is exact for quasi-coherent D-modules and π∗ is exact

for quasi-coherent O-modules.

Denote by TX̃/X the sheaf of local vector fields on X̃ tangent to the fiber of π,

and denote by ΩX̃/X the top exterior product of its dual T ∨
X̃/X

. We note that there

is a natural isomorphism ΩX̃/X ' ΩX̃ ⊗OX̃ π∗Ω∨X . Recall that for M ∈ Db(DX̃)

the direct image π+M is defined as

π+M = π∗
(
(M⊗O

X̃
ΩX̃)⊗L

D
X̃
π∗DX

)
⊗OX Ω∨X .

The left DX̃ -module π∗DX has the resolution (see [HMSW87, Appendix A.3.3])

(4.3) DX̃ ⊗OX̃
∧• TX̃/X → π∗DX ,

where the boundary map ∂ on DX̃ ⊗OX̃
∧• TX̃/X is given as

D ⊗ ξ̃1 ∧ · · · ∧ ξ̃d 7→
d∑
i=1

(−1)i+1Dξ̃i ⊗ ξ̃1 ∧ · · · ∧
̂̃
ξi ∧ · · · ∧ ξ̃d

+
∑

1≤i<j≤d

(−1)i+jD ⊗ [ξ̃i, ξ̃j ] ∧ ξ̃1 ∧ · · · ∧
̂̃
ξi ∧ · · · ∧

̂̃
ξj ∧ · · · ∧ ξ̃d.
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The right π−1DX -module structure is not canonically defined on the complex, but

the g-action can be described as

ξ(D ⊗ ξ̃1 ∧ · · · ∧ ξ̃d) = −DξX̃ ⊗ ξ̃1 ∧ · · · ∧ ξ̃d +D ⊗ ξ(ξ̃1 ∧ · · · ∧ ξ̃d)

for ξ ∈ g. Here we use the g-action on
∧
TX̃/X induced from the G-equivariant

structure.

By using the resolution (4.3), the direct image π+ ı̃+Ω∨
Ỹ

is given as the complex

π∗
(
ı̃+Ω∨

Ỹ
⊗O

X̃
ΩX̃ ⊗OX̃

∧• TX̃/X)⊗OX Ω∨X .

As a result, we have

i+L[u] ' π∗
(
ı̃+Ω∨

Ỹ
⊗O

X̃

∧• TX̃/X ⊗OX̃ ΩX̃/X
)

and hence

i−1i+L[u] ' i−1π∗
(
ı̃+Ω∨

Ỹ
⊗O

X̃

∧• TX̃/X ⊗OX̃ ΩX̃/X
)

(4.4)

' i−1π∗ ı̃∗
(
ı̃−1 ı̃+Ω∨

Ỹ
⊗ı̃−1O

X̃
ı̃−1∧• TX̃/X ⊗ı̃−1O

X̃
ı̃−1ΩX̃/X

)
' (πK)∗

(
ı̃−1 ı̃+Ω∨

Ỹ
⊗ı̃−1O

X̃
ı̃−1(

∧• TX̃/X ⊗OX̃ ΩX̃/X)
)
.

There is a natural morphism of complexes of i−1OX -modules

(4.5) ψ : (πK)∗
(
ı̃−1 ı̃+Ω∨

Ỹ
⊗ı̃−1O

X̃
ı̃−1(

∧• TX̃/X ⊗OX̃ ΩX̃/X)
)
⊗i−1OX V

→ (πK)∗
(
ı̃−1 ı̃+Ω∨

Ỹ
⊗ı̃−1O

X̃
ı̃−1(

∧• TX̃/X ⊗OX̃ ΩX̃/X)⊗π−1
K i−1OX π

−1
K V

)
.

We claim that ψ is an isomorphism. Indeed, if Fp ı̃
−1 ı̃+Ω∨

Ỹ
denotes the filtration

of ı̃−1 ı̃+Ω∨
Ỹ

defined in a way similar to Fpi
−1i+L, then we get a map

ψp : (πK)∗
(
Fp ı̃
−1 ı̃+Ω∨

Ỹ
⊗ı̃−1O

X̃
ı̃−1(

∧• TX̃/X ⊗OX̃ ΩX̃/X)
)
⊗i−1OX V

→ (πK)∗
(
Fp ı̃
−1 ı̃+Ω∨

Ỹ
⊗ı̃−1O

X̃
ı̃−1(

∧• TX̃/X ⊗OX̃ ΩX̃/X)⊗π−1
K i−1OX π

−1
K V

)
.

It is enough to show that ψp is an isomorphism for all p≥0 because lim−→p
Fp ı̃
−1 ı̃+Ω∨

Ỹ

' ı̃−1 ı̃+Ω∨
Ỹ

. Since the ideal π−1
K (i−1IY )p+1 of π−1

K i−1OX annihilates Fp ı̃
−1 ı̃+Ω∨

Ỹ
,

we have

(πK)∗
(
Fp ı̃
−1 ı̃+Ω∨

Ỹ
⊗ı̃−1O

X̃
ı̃−1(

∧• TX̃/X ⊗OX̃ ΩX̃/X)
)
⊗i−1OX V

' (πK)∗
(
Fp ı̃
−1 ı̃+Ω∨

Ỹ
⊗ı̃−1O

X̃
ı̃−1(

∧• TX̃/X⊗OX̃ ΩX̃/X)
)
⊗OYp+1

(V/(i−1IY )p+1V).

By Definition 3.3(2), V/(i−1IY )p+1V is a flat OYp+1
-module. Hence the projection

formula shows that ψp is an isomorphism and the claim is verified.

The successive quotient of the filtration

FpM := Fp ı̃
−1 ı̃+Ω∨

Ỹ
⊗ı̃−1O

X̃
ı̃−1(

∧d TX̃/X ⊗OX̃ ΩX̃/X)⊗π−1
K i−1OX π

−1
K V
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is

(Fp ı̃
−1 ı̃+Ω∨

Ỹ
/Fp−1 ı̃

−1 ı̃+Ω∨
Ỹ

)⊗OỸ ı̃
∗(
∧d TX̃/X ⊗OX̃ ΩX̃/X)⊗OỸ π

∗
K(V/(i−1IY )V),

which is a quasi-coherent OỸ -module. Since Ỹ is affine, Hs(Ỹ , FpM/Fp−1M) = 0

for s > 0. Hence Hs(Ỹ , FpM) = 0 and

Hs
(
Ỹ , ı̃−1 ı̃+Ω∨

Ỹ
⊗ı̃−1O

X̃
ı̃−1(

∧d TX̃/X ⊗OX̃ ΩX̃/X)⊗π−1
K i−1OX π

−1
K V

)
= 0

for s > 0. By (4.4) and (4.5), we conclude that

Hs(Y, i−1i+L ⊗i−1OX V)

' Hs−uΓ
(
Ỹ , ı̃−1 ı̃+Ω∨

Ỹ
⊗ı̃−1O

X̃
ı̃−1(

∧• TX̃/X ⊗OX̃ ΩX̃/X)⊗π−1
K i−1OX π

−1
K V

)
.

Since ı̃−1 ı̃+Ω∨
Ỹ
⊗ı̃−1O

X̃
ı̃−1ΩX̃ ' OỸ ⊗DỸ ı̃

∗DX̃ , we have

ı̃−1 ı̃+Ω∨
Ỹ
⊗ı̃−1O

X̃
ı̃−1(

∧• TX̃/X ⊗OX̃ ΩX̃/X)⊗π−1
K i−1OX π

−1
K V

' OỸ ⊗DỸ ı̃
∗DX̃ ⊗ı̃−1O

X̃
ı̃−1∧• TX̃/X ⊗π−1

K i−1OX π
−1
K (V ⊗i−1OX i

−1Ω∨X).

If we put

V−d := ı̃−1∧d TX̃/X ⊗π−1
K i−1OX π

−1
K (V ⊗i−1OX i

−1Ω∨X),

then we obtain

(4.6) Hs(Y, i−1i+L ⊗i−1OX V) ' Hs−uΓ
(
Ỹ ,OỸ ⊗DỸ ı̃

∗DX̃ ⊗ı̃−1O
X̃
V•).

The boundary map

∂ : OỸ ⊗DỸ ı̃
∗DX̃ ⊗ı̃−1O

X̃
V−d → OỸ ⊗DỸ ı̃

∗DX̃ ⊗ı̃−1O
X̃
V−d+1

is given by

f ⊗D ⊗ ξ̃1 ∧ · · · ∧ ξ̃d ⊗ v

7→
d∑
i=1

(−1)i+1f ⊗Dξ̃i ⊗ ξ̃1 ∧ · · · ∧
̂̃
ξi ∧ · · · ∧ ξ̃d ⊗ v

+
∑

1≤i<j≤d

(−1)i+jf ⊗D ⊗ [ξ̃i, ξ̃j ] ∧ ξ̃1 ∧ · · · ∧
̂̃
ξi ∧ · · · ∧

̂̃
ξj ∧ · · · ∧ ξ̃d ⊗ v,

where f ∈ OỸ , D ∈ ı̃∗DX̃ , ξ̃1, . . . , ξ̃d ∈ ı̃−1TX̃/X , and v ∈ π−1
K (V ⊗i−1OX i

−1Ω∨X).

The right side of (4.6) can be computed by using the following lemma.

Lemma 4.3. Let V ′ be an L-module, or equivalently an (l, L)-module. Let V ′ be

an ı̃−1g̃X̃-module associated with V ′. Then

Γ(Ỹ ,OỸ ⊗DỸ ı̃
∗DX̃ ⊗ı̃−1O

X̃
V ′) ' R(g,K)⊗R(L) V

′.
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Proof. The proof is similar to that of [Osh11, Lemma 3.4].

Using the right ı̃−1DX̃ -module structure of ı̃∗DX̃ , we can define a g-action ρ

on the sheaf ı̃∗DX̃ ⊗ı̃−1O
X̃
V ′ by

ρ(ξ)(D ⊗ v) := −DξX̃ ⊗ v +D ⊗ ξv

for ξ ∈ g, D ∈ ı̃∗DX̃ , and v ∈ V ′. Moreover, the sheaf ı̃∗DX̃ ⊗ı̃−1O
X̃
V ′ is K-

equivariant. We denote this K-action and also its infinitesimal k-action by ν. Def-

inition 3.3(4) implies that the k-action ν is given by

ν(η)(D ⊗ v) = ηỸD ⊗ v −DηX̃ ⊗ v +D ⊗ ηv

for η ∈ k. Here, ηỸD and DηX̃ are defined by the (DỸ , ı̃
−1DX̃)-bimodule structure

on ı̃∗DX̃ . Then it follows from Definition 3.3(3) that Γ(Ỹ , ı̃∗DX̃ ⊗ı̃−1O
X̃
V ′) is a

weak (g,K)-module in the sense of [BL95], namely,

ν(k)ρ(ξ)ν(k−1) = ρ(Ad(i(k))ξ)

for k ∈ K and ξ ∈ g. Put ω(η) := ν(η)− ρ(η) for η ∈ k. Then ω(η) is given by

ω(η)(D ⊗ v) = ηỸD ⊗ v.

Since Ỹ is an affine variety, Γ(Ỹ ,DỸ ) is generated by U(k) and O(Ỹ ) as an algebra.

Therefore,

Γ(Ỹ ,OỸ ⊗DỸ ı̃
∗DX̃ ⊗ı̃−1O

X̃
V ′) ' O(Ỹ )⊗Γ(Ỹ ,DỸ ) Γ(Ỹ , ı̃∗DX̃ ⊗ı̃−1O

X̃
V ′)

' Γ(Ỹ , ı̃∗DX̃ ⊗ı̃−1O
X̃
V ′) /ω(k)Γ(Ỹ , ı̃∗DX̃ ⊗ı̃−1O

X̃
V ′).

Let e ∈ K be the identity element. Write o := eL ∈ Ỹ for the base point

and io : {o} → Ỹ for the inclusion map. Let Io be the maximal ideal of OỸ
corresponding to o. The fiber of ı̃∗DX̃ ⊗ı̃−1O

X̃
V ′ at o is given by

W := i∗o (̃ı
∗DX̃ ⊗ı̃−1O

X̃
V ′)

' Γ(Ỹ , ı̃∗DX̃ ⊗ı̃−1O
X̃
V ′) / Io(Ỹ )Γ(Ỹ , ı̃∗DX̃ ⊗ı̃−1O

X̃
V ′).

The actions ρ and ν on ı̃∗DX̃ ⊗ı̃−1O
X̃
V ′ induce a g-action and an L-action on W .

With these actions, W becomes a (g, L)-module and there is an isomorphism

(4.7) ϕ : U(g)⊗U(l) V
′ ∼−→W.

This can be proved by using [Osh11, Lemma 3.3] and Definition 3.3 (see the proof

of [Osh11, Lemma 3.4]). Hence we have

Γ(Ỹ , ı̃∗DX̃ ⊗ı̃−1O
X̃
V ′) ' R(K)⊗R(L) (U(g)⊗U(l) V

′).

The rest is the same as in [Osh11, Lemma 3.4].
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Returning to the proof of Theorem 4.1, let us compute the cohomologi-

cal induction (P g,K
h,L )s(V ⊗

∧top
(g/h)) by using the standard resolution ([KV95,

§II.7]). The standard resolution is a projective resolution of the (h, L)-module

V ⊗
∧top

(g/h) given by the complex

U(h)⊗U(l)

(∧•
(h/l)⊗ V ⊗

∧top
(g/h)

)
,

where the boundary map

∂′ : U(h)⊗U(l)

(∧d
(h/l)⊗V ⊗

∧top
(g/h)

)
→ U(h)⊗U(l)

(∧d−1
(h/l)⊗V ⊗

∧top
(g/h)

)
is

D ⊗ ξ1 ∧ · · · ∧ ξd ⊗ v

7→
d∑
i=1

(−1)i+1(Dξi⊗ ξ1 ∧ · · · ∧ ξ̂i ∧ · · · ∧ ξd⊗ v−D⊗ ξ1 ∧ · · · ∧ ξ̂i ∧ · · · ∧ ξd⊗ ξiv)

+
∑

1≤i<j≤d

(−1)i+jD⊗ [ξi, ξj ]∧ ξ1 ∧ · · · ∧ ξ̂i ∧ · · · ∧ ξ̂j ∧ · · · ∧ ξd⊗ v

for D ∈ U(h), ξ1, . . . , ξd ∈ h, and v ∈ V ⊗
∧top

(g/h). Therefore,

(4.8) (P g,K
h,L )u−s

(
V ⊗

∧top
(g/h)

)
' Hs−uP g,K

h,L

(
U(h)⊗U(l)

(∧•
(h/l)⊗ V ⊗

∧top
(g/h)

))
' Hs−uR(g,K)⊗R(L)

(∧•
(h/l)⊗ V ⊗

∧top
(g/h)

)
,

where the boundary map

∂′ : R(g,K)⊗R(L)

(∧d
(h/l)⊗ V ⊗

∧top
(g/h)

)
→ R(g,K)⊗R(L)

(∧d−1
(h/l)⊗ V ⊗

∧top
(g/h)

)
is given by

D ⊗ ξ1 ∧ · · · ∧ ξd ⊗ v

7→
d∑
i=1

(−1)i+1(Dξi⊗ ξ1 ∧ · · · ∧ ξ̂i ∧ · · · ∧ ξd⊗ v−D⊗ ξ1 ∧ · · · ∧ ξ̂i ∧ · · · ∧ ξd⊗ ξiv)

+
∑

1≤i<j≤d

(−1)i+jD⊗ [ξi, ξj ]∧ ξ1 ∧ · · · ∧ ξ̂i ∧ · · · ∧ ξ̂j ∧ · · · ∧ ξd ⊗ v

for D ∈ R(g,K), ξ1, . . . , ξd ∈ h, and v ∈ V ⊗
∧top

(g/h).

Put

V −d :=
∧d

(h/l)⊗ V ⊗
∧top

(g/h)
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for simplicity. We identify the fiber of TX̃/X with h/l in the following way: if a

vector field ξ̃ ∈ TX̃/X equals −ξX̃ at the base point eL ∈ X̃ for ξ ∈ h, then ξ̃

takes the value ξ ∈ h/l at e ∈ G. Similarly, the fiber of Ω∨
X̃/X

is identified with∧top
(g/h). Then V−d is associated with V −d by Examples 3.5 and 3.6. From (4.6)

and (4.8) it is enough to show that the isomorphisms ϕ given in Lemma 4.3 for

V ′ = V −d, 0 ≤ d ≤ dim(h/l), commute with the boundary maps, that is, the

diagram

R(g,K)⊗R(L) V
−d ∂′ //

��

R(g,K)⊗R(L) V
−d+1

��
Γ(Ỹ ,OỸ ⊗DỸ ı̃

∗DX̃ ⊗ı̃−1O
X̃
V−d) ∂ // Γ(Ỹ ,OỸ ⊗DỸ ı̃

∗DX̃ ⊗ı̃−1O
X̃
V−d+1)

commutes. In view of the proof of Lemma 4.3, the above diagram is obtained by

applying the functor P g,K
g,L to

(4.9)

U(g)⊗U(l) V
−d ∂′ //

ϕd

��

U(g)⊗U(l) V
−d+1

ϕd−1

��
i∗o (̃ı
∗DX̃ ⊗ı̃−1O

X̃
V−d) ∂ // i∗o (̃ı

∗DX̃ ⊗ı̃−1O
X̃
V−d+1)

where ϕd is the map ϕ of (4.7) for V ′ = V −d. Therefore, it suffices to show that

the diagram (4.9) commutes.

To see this, we use the following notation. A section f ∈ ı̃∗DX̃ ⊗ı̃−1O
X̃
V−d

defines a section of i∗o (̃ı
∗DX̃⊗ı̃−1O

X̃
V−d) and hence defines an element of U(g)⊗U(l)

V −d via the isomorphism ϕd. We write i∗of ∈ U(g)⊗U(l) V
−d for this element. Put

Z := H/L and write iZ : Z → X̃ for the inclusion map. Then iZ(Z) = π−1({o})
and there is a canonical isomorphism i∗ZTX̃/X ' TZ . For ξ1, . . . , ξd ∈ h and v ∈
V ⊗

∧top
(g/h), put

m := ξ1 ∧ · · · ∧ ξd ⊗ v ∈ V −d.

We will choose sections ξ̃i ∈ ı̃−1TX̃/X and ṽ ∈ π−1
K (V ⊗i−1OX i

−1Ω∨X) on a neigh-

borhood of the base point o ∈ Ỹ in the following way. Take ξ̃i ∈ TX̃/X such that

ξ̃i|Z ∈ i∗ZTX̃/X corresponds to −(ξi)Z . It gives a section of ı̃−1TX̃/X , which we

denote by the same letter ξ̃i. We take a section ṽ ∈ π−1
K (V ⊗i−1OX i−1Ω∨X) on a

neighborhood of o such that i∗oṽ corresponds to v. Define a section m̃ ∈ V−d in a

neighborhood of o as

m̃ := ξ̃1 ∧ · · · ∧ ξ̃d ⊗ ṽ ∈ V−d.
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Then the element ϕd(1⊗m) is represented by the section

1⊗ m̃ ∈ ı̃ ∗DX̃ ⊗ı̃−1O
X̃
V−d,

in other words, i∗o(1⊗ m̃) = 1⊗m.

We have

∂(1⊗ m̃) =

d∑
i=1

(−1)i+1(ξ̃i ⊗ ξ̃1 ∧ · · · ∧
̂̃
ξi ∧ · · · ∧ ξ̃d ⊗ ṽ)

+
∑

1≤i<j≤d

(−1)i+j (1⊗ [ξ̃i, ξ̃j ] ∧ ξ̃1 ∧ · · · ∧
̂̃
ξi ∧ · · · ∧

̂̃
ξj ∧ · · · ∧ ξ̃d ⊗ ṽ)

and

∂′(1⊗m)

=

d∑
i=1

(−1)i+1(ξi ⊗ ξ1 ∧ · · · ∧ ξ̂i ∧ · · · ∧ ξd ⊗ v − 1⊗ ξ1 ∧ · · · ∧ ξ̂i ∧ · · · ∧ ξd ⊗ ξiv)

+
∑

1≤i<j≤d

(−1)i+j (1⊗ [ξi, ξj ] ∧ ξ1 ∧ · · · ∧ ξ̂i ∧ · · · ∧ ξ̂j ∧ · · · ∧ ξd ⊗ v).

Since ξ̃i|Z corresponds to −(ξi)Z , the vector fields ξ̃i and (ξi)X̃ satisfy the relation

ξ̃i = −(ξi)X̃ at o. Recall that the g-action on TX̃/X is defined as the differential

of the G-equivariant structure on it. Hence our choice implies that ξi · ξ̃j |Z =

−([ξi, ξj ])Z . As a result,

i∗o(ξ̃i ⊗ ξ̃1 ∧ · · · ∧
̂̃
ξi ∧ · · · ∧ ξ̃d ⊗ ṽ)

= i∗o
(
ρ(ξi)(1⊗ ξ̃1 ∧ · · · ∧

̂̃
ξi ∧ · · · ∧ ξ̃d ⊗ ṽ)

)
− i∗o(1⊗ ξ̃1 ∧ · · · ∧

̂̃
ξi ∧ · · · ∧ ξ̃d ⊗ ξiṽ)

−
∑

1≤i<j≤d

i∗o(1⊗ ξ̃1 ∧ · · · ∧
̂̃
ξi ∧ · · · ∧ ξ̃j−1 ∧ (ξi · ξ̃j) ∧ ξ̃j+1 ∧ · · · ∧ ξ̃d ⊗ ṽ)

−
∑

1≤j<i≤d

i∗o(1⊗ ξ̃1 ∧ · · · ∧ ξ̃j−1 ∧ (ξi · ξ̃j) ∧ ξ̃j+1 ∧ · · · ∧
̂̃
ξi ∧ · · · ∧ ξ̃d ⊗ ṽ)

= ξi ⊗ ξ1 ∧ · · · ∧ ξ̂i ∧ · · · ∧ ξd ⊗ v − 1⊗ ξ1 ∧ · · · ∧ ξ̂i ∧ · · · ∧ ξd ⊗ ξiv

+
∑

1≤i<j≤d

(−1)j+1(1⊗ [ξi, ξj ] ∧ ξ1 ∧ · · · ∧ ξ̂i ∧ · · · ∧ ξ̂j ∧ · · · ∧ ξd ⊗ v)

+
∑

1≤j<i≤d

(−1)j(1⊗ [ξi, ξj ] ∧ ξ1 ∧ · · · ∧ ξ̂j ∧ · · · ∧ ξ̂i ∧ · · · ∧ ξd ⊗ v).
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Moreover, [ξ̃i, ξ̃j ]|Z corresponds to [−(ξi)Z ,−(ξj)Z ] = ([ξi, ξj ])Z . Hence

i∗o(1⊗ [ξ̃i, ξ̃j ] ∧ ξ̃1 ∧ · · · ∧
̂̃
ξi ∧ · · · ∧

̂̃
ξj ∧ · · · ∧ ξ̃d ⊗ ṽ)

= −1⊗ [ξi, ξj ] ∧ ξ1 ∧ · · · ∧ ξ̂i ∧ · · · ∧ ξ̂j ∧ · · · ∧ ξd ⊗ v.

We thus conclude that

(ϕd−1)−1 ◦ ∂ ◦ ϕd(1⊗m) = i∗o(∂(1⊗ m̃))

= i∗o

( d∑
i=1

(−1)i+1(ξ̃i ⊗ ξ̃1 ∧ · · · ∧
̂̃
ξi ∧ · · · ∧ ξ̃d ⊗ ṽ)

+
∑

1≤i<j≤d

(−1)i+j(1⊗ [ξ̃i, ξ̃j ] ∧ ξ̃1 ∧ · · · ∧
̂̃
ξi ∧ · · · ∧

̂̃
ξj ∧ · · · ∧ ξ̃d ⊗ ṽ)

)

=

d∑
i=1

(−1)i+1
(
ξi ⊗ ξ1 ∧ · · · ∧ ξ̂i ∧ · · · ∧ ξd ⊗ v − 1⊗ ξ1 ∧ · · · ∧ ξ̂i ∧ · · · ∧ ξd ⊗ ξiv

+
∑

1≤i<j≤d

(−1)j+1(1⊗ [ξi, ξj ] ∧ ξ1 ∧ · · · ∧ ξ̂i ∧ · · · ∧ ξ̂j ∧ · · · ∧ ξd ⊗ v)

+
∑

1≤j<i≤d

(−1)j(1⊗ [ξi, ξj ] ∧ ξ1 ∧ · · · ∧ ξ̂j ∧ · · · ∧ ξ̂i ∧ · · · ∧ ξd ⊗ v)
)

+
∑

1≤i<j≤d

(−1)i+j+1(1⊗ [ξi, ξj ] ∧ ξ1 ∧ · · · ∧ ξ̂i ∧ · · · ∧ ξ̂j ∧ · · · ∧ ξd ⊗ v)

=

d∑
i=1

(−1)i+1(ξi ⊗ ξ1 ∧ · · · ∧ ξ̂i ∧ · · · ∧ ξd ⊗ v − 1⊗ ξ1 ∧ · · · ∧ ξ̂i ∧ · · · ∧ ξd ⊗ ξiv)

+
∑

1≤i<j≤d

(−1)i+j(1⊗ [ξi, ξj ] ∧ ξ1 ∧ · · · ∧ ξ̂i ∧ · · · ∧ ξ̂j ∧ · · · ∧ ξd ⊗ v)

= ∂′(1⊗m).

Since ∂, ∂′ and ϕd commute with g-actions,

∂(ϕd(D ⊗m)) = D∂(ϕd(1⊗m)) = Dϕd−1(∂′(1⊗m)) = ϕd−1(∂′(D ⊗m))

for D ∈ U(g). Consequently, the diagram (4.9) commutes and the proof of the

theorem is complete.

§5. Construction of modules

In this section, we will construct an i−1g̃X -module V associated with an (h,M)-

module V , which can be used in Section 4 for the realization of cohomologically

induced modules.
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Let VY be the K-equivariant quasi-coherent OY -module with typical fiber

the M -module V . Let p : OX ⊗C g → TX be the map given by f ⊗ ξ 7→ fξX and

put H := ker p. The OX -module H is G-equivariant with typical fiber h. Hence

a section ξ ∈ H is identified with an h-valued regular function on a subset of G

satisfying ξ(gh) = Ad(h−1)(ξ(g)) for h ∈ H. Let ξ, ξ′ ∈ H. By regarding g̃X =

OX ⊗C g as a submodule of U(g̃X) = OX ⊗C U(g), we have [ξ, ξ′] := ξξ′− ξ′ξ ∈ H
and [ξ, ξ′](g) = [ξ(g), ξ′(g)] with the identification above. If we write ξ =

∑
i fi⊗ξi

for fi ∈ OX and ξi ∈ g, then ξ(g) =
∑
i fi(g) Ad(g−1)(ξi).

LetA be the subalgebra of i−1U(g̃X) = i−1OX⊗U(g) generated by i−1H, 1⊗k,
and i−1OX ⊗ 1. We view i−1U(g̃X) as an i−1OX -module and consider the inverse

image OY ⊗i−1OX i
−1U(g̃X) (' OY ⊗ U(g)) of U(g̃X). Let A be the image of the

map OY ⊗i−1OX A → OY ⊗i−1OX i
−1U(g̃X) so that A ' A/(A∩ (i−1IY ⊗U(g))).

Since A · (i−1IY ⊗ U(g)) ⊂ i−1IY ⊗ U(g) in the algebra i−1U(g̃X), the algebra

structure of A induces that of A, and OY ⊗i−1OX i−1U(g̃X) becomes a left A-

module.

We give a left A-module structure on VY in the following way. We view a

local section of VY as a V -valued regular function on a subset of K and define a

(1⊗ i−1H)-action and an (OY ⊗ 1)-action by

((1⊗ ξ)v)(k) = ξ(i(k))v(k), (f ⊗ 1)v = fv

for ξ ∈ i−1H, v ∈ VY , f ∈ OY , and k ∈ K; define a (1 ⊗ k)-action on VY by

differentiating the K-action on VY . These actions are compatible in the following

sense: if fi ∈ i−1OX , ηi ∈ k and ξ ∈ i−1H satisfy∑
i

(fi ⊗ ηi)− ξ ∈ i−1IY ⊗ g,

then we have

(5.1)
∑
i

(fi|Y ⊗ 1)((1⊗ ηi)v) = (1⊗ ξ)v

for v ∈ VY . In the proposition below, we will see that these actions give a well-

defined A-module structure.

Let V := HomA(OY ⊗i−1OX i
−1U(g̃X), VY ), namely, V consists of the sections

v ∈ HomC(OY ⊗i−1OX i
−1U(g̃X),VY ) satisfying

v((1⊗ ξ)(f ⊗D)) = (1⊗ ξ)(v(f ⊗D)),

v((1⊗ η)(f ⊗D)) = (1⊗ η)(v(f ⊗D)), and

v(f ′f ⊗D) = (f ′ ⊗ 1)(v(f ⊗D))
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for f, f ′ ∈ OY , D ∈ U(g), η ∈ k, and ξ ∈ i−1H. We endow V with an i−1g̃X -module

structure by defining (f ⊗D) · v as

((f ⊗D) · v)(f ′ ⊗D′) = v(f ′ ⊗ (1⊗D′)(f ⊗D))

for v ∈ V, f ∈ i−1OX , f ′ ∈ OY , and D,D′ ∈ U(g).

Proposition 5.1. Let V be an (h,M)-module. Then the left A-action on VY given

above is well-defined, and the i−1g̃X-module

V := HomA(OY ⊗i−1OX U(g̃X), VY )

is associated with V in the sense of Definition 3.3.

Proof. Let k0 ∈ K and y0 := k0M ∈ Y . We fix a trivialization near y0 in the

following way. Take sections ξ1, . . . , ξn ∈ i−1H on a neighborhood U of y0 in Y

such that the map

(i−1OX)⊕n|U → (i−1H)|U , (f1, . . . , fn) 7→
n∑
i=1

fiξi,

is an isomorphism. Take elements η1, . . . , ηm ∈ k that form a basis of the quotient

space k/Ad(k0)(m) and take ζ1, . . . , ζl ∈ g such that η1, . . . , ηm, ζ1, . . . , ζl form

a basis of the quotient space g/Ad(i(k0))h. Modifying U if necessary, we get an

isomorphism

(i−1OX)⊕n+m+l|U → (i−1OX ⊗C g)|U ,(5.2)

(f1, . . . , fn, g1, . . . , gm, h1, . . . , hl) 7→
n∑
i=1

fiξi +

m∑
i=1

(gi ⊗ ηi) +

l∑
i=1

(hi ⊗ ζi).

For integers s, t ≥ 0, let

Is,t := {i = (i(1), . . . , i(s)) : 1 ≤ i(1) ≤ · · · ≤ i(s) ≤ t}, It :=

∞∐
s=0

Is,t.

If s = 0, the set I0,t consists of one element (). For i = (i(1), . . . , i(s)) ∈ Is,l, we

put ζi := 1⊗ζi(1) · · · ζi(s) ∈ i−1OX⊗U(g). If s = 0 and i = () then put ζi := 1⊗1.

In the same way, for i′ = (i′(1), . . . , i′(s)) ∈ Is,n and i′′ = (i′′(1), . . . , i′′(s)) ∈ Is,m,

put ξi′ := ξi′(1) · · · ξi′(s) and ηi′′ := 1⊗ηi′′(1) · · · ηi′′(s). From the isomorphism (5.2)

and the Poincaré–Birkhoff–Witt theorem, we see that a section of i−1U(g̃X)|U is

uniquely written as ∑
i∈Il, i′∈In, i′′∈Im

fi,i′,i′′ξi′ηi′′ζi,
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where fi,i′,i′′ ∈ i−1OX , and fi,i′,i′′ = 0 except for finitely many (i, i′, i′′).

Hence a section of (OY ⊗i−1OX i−1U(g̃X))|U is uniquely written as a finite sum∑
i,i′,i′′ fi,i′,i′′ξi′ηi′′ζi for fi,i′,i′′ ∈ OY .

Lemma 5.2. The subsheaf A|U of OY ⊗i−1OX i
−1U(g̃X) consists of the sections

written as a finite sum ∑
i′∈In, i′′∈Im

fi′,i′′ ⊗ ξi′ηi′′

for fi′,i′′ ∈ OY .

Proof. It is enough to prove that for any section a ∈ A|U there exist functions

fi′,i′′ ∈ i−1OX such that

(5.3) a−
∑
i′,i′′

fi′,i′′ξi′ηi′′ ∈ i−1IY ⊗ U(g).

For this we consider relations in the algebra i−1U(g̃X). By our choice of ξ1, . . . , ξn
and η1, . . . , ηm, we can find fi, gi ∈ i−1OX for each η ∈ k such that

(1⊗ η)−
( n∑
i=1

fiξi +

m∑
i=1

gi ⊗ ηi
)
∈ i−1IY ⊗ U(g).

We also have

[ξi, f ⊗ 1] = 0, [1⊗ η, 1⊗ η′] = 1⊗ [η, η′], [1⊗ η, f ⊗ 1] = (ηX(f))⊗ 1

for f ∈ i−1OX , η, η′ ∈ k. Further [ξi, ξj ], [1 ⊗ ηi, ξj ] ∈ i−1H and hence there exist

fi,j,k, gi,j,k ∈ i−1OX such that

[ξi, ξj ] =

n∑
k=1

fi,j,kξk, [1⊗ ηi, ξj ] =

n∑
k=1

gi,j,kξk.

Since A is generated by i−1H, 1⊗ k and i−1OX ⊗ 1, we can prove (5.3) by using

these relations iteratively and using A(i−1IY ⊗ U(g)) ⊂ i−1IY ⊗ U(g).

From the lemma above and its proof, we see that the algebra A is generated

by OY ⊗ 1, 1⊗ ξ1, . . . , 1⊗ ξn, and 1⊗ k with the relations:

1⊗ η =

n∑
i=1

fi ⊗ ξi +

m∑
i=1

gi ⊗ ηi,

[1⊗ ξi, f ⊗ 1] = 0, [1⊗ η, 1⊗ η′] = 1⊗ [η, η′], [1⊗ η, f ⊗ 1] = (ηY (f))⊗ 1,

[1⊗ ξi, 1⊗ ξj ] =

n∑
k=1

fi,j,k ⊗ ξk, [1⊗ ηi, 1⊗ ξj ] =

n∑
k=1

gi,j,k ⊗ ξk,
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where fi, gi, fi,j,k, gi,j,k are the restrictions to Y of the corresponding functions in

the proof of Lemma 5.2 and f ∈ OY , η, η′ ∈ k. We can check that these relations

are compatible with the action on VY (see (5.1)) and hence the A-action on VY is

well-defined.

By Lemma 5.2, (OY ⊗i−1OX i−1U(g̃X))|U is a free A|U -algebra with basis

1⊗ ζi. Therefore, the map

φ : V|U →
∏
i∈Il

VY |U

given by φ(v) = (v(1⊗ ζi))i is bijective.

Our choice of ζ1, . . . , ζl implies that they form a basis of the normal tangent

bundle of U in X. Since φ is bijective, we see that

φ((i−1IY )pV|U ) =

∞∏
s=p

∏
i∈Is,l

VY |U ,

and hence

(V/(i−1IY )pV)|U '
p−1∏
s=0

∏
i∈Is,l

VY |U .

If we endow the right side of the last isomorphism with an OYp -module structure

via this isomorphism, it is written as follows. Let f ∈ i−1OX and v = (vi)i. For

a subset A ⊂ {1, . . . , s} with A = {a(1), . . . , a(t)}, a(1) < · · · < a(t), and for

i = (i(1), . . . , i(s)) ∈ Is,l, let {b(1), . . . , b(s− t)} = {1, . . . , s} \A with b(1) < · · · <
b(s− t) and put i′ := (i(b(1)), . . . , i(b(s− t))) ∈ Is−t,l. Then the i-term of f · v is

(5.4) (f · v)i =
∑

A⊂{1,...,s}

((ζi(a(1)))X · · · (ζi(a(t)))Xf)|U · vi′ .

On the right side here, we use the OY -action on VY . This i−1OX -action on∏p−1
s=0

∏
i∈Is,l VY |U induces an OYp -action.

We now show that V/(i−1IY )pV is a quasi-coherent and flat OYp -module.

Suppose first that VY |U is a free OU -module on U so there exist sections vj ∈
Γ(U,VY ), j ∈ J , such that the map O⊕JU → VY |U , (fj)j∈J 7→

∑
j∈J fjvj , is

bijective. We define the map

ψ : (OYp |U )⊕J →
p−1∏
s=0

∏
i∈Is,l

VY |U

by letting the i-term of ψ(f) for i = (i(1), . . . , i(s)) ∈ Is,l and f = (fj)j∈J be

ψ(f)i =
∑
j∈J

((ζi(1))X · · · (ζi(s))Xfj)|U · vj .
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Then ψ is an isomorphism of OYp |U -modules and hence (V/(i−1IY )pV)|U is a free

OYp |U -module.

For the general case, we write V as a union of finite-dimensional M -submod-

ules: V =
⋃
α V

α. Then the K-equivariant quasi-coherent OY -module VαY with

fiber V α is locally free. If we define theOYp -module structure on
∏p−1
s=0

∏
i∈Is,l V

α
Y |U

as in (5.4), then the preceding argument proves that it is a locally free OYp |U -

module. Since VY is the union of VαY , we see that (V/(i−1IY )pV)|U is isomorphic

to the union of
∏p−1
s=0

∏
i∈Is,l V

α
Y |U as an OYp |U -module. Hence V/(i−1IY )pV is a

quasi-coherent and flat OYp -module.

We define a K-action on V by

(k · v)(f ⊗D) = k ·
(
v((k−1 · f)⊗Ad(i(k)−1)D)

)
for k ∈ K, v ∈ V, f ∈ OY , and D ∈ U(g). This action descends to a K-action on

V/(i−1IY )pV and makes it a K-equivariant OYp -module. From this definition, it

immediately follows that the maps V/(i−1IY )pV → V/(i−1IY )p−1V and i−1g̃X ⊗
V/(i−1IY )pV → V/(i−1IY )p−1V commute with K-actions for all p > 0.

We have checked conditions (1), (2) and (3) of Definition 3.3. We can verify

condition (4) by computing the k-action as

(η · v)(f ⊗D) = v(f ⊗Dη)

= −v(f ⊗ [η,D]) + v((1⊗ η)(f ⊗D))− v((ηY (f))⊗D)

= −v(f ⊗ [η,D]) + (1⊗ η)(v(f ⊗D))− v((ηY (f))⊗D)

for η ∈ k, v ∈ V, f ∈ OY , and D ∈ U(g).

For condition (5), we get an isomorphism of vector spaces ι : V/(i−1Io)V ' V
by taking the fiber of the isomorphism φ : V/(i−1IY )V ' VY at o. The map ι is

written as ι(v) = (v(1⊗1))(e) for v ∈ V. For ξ ∈ h, there exists a section ξ′ ∈ i−1H
near the base point o such that 1⊗ ξ − ξ′ ∈ i−1Io ⊗ g, or equivalently, ξ′(e) = ξ.

Then

ι(ξv) = ((ξv)(1⊗ 1))(e) = (v(1⊗ ξ))(e) = (v(ξ′))(e) = ξ(v(1⊗ 1)(e)) = ξι(v).

Moreover, we have

ι(mv) = ((mv)(1⊗ 1))(e) = (m(v(1⊗ 1)))(e) = m(v(1⊗ 1)(e)) = mι(v)

for m ∈M and hence ι commutes with the (h,M)-actions.

Remark 5.3. The i−1g̃X -module V constructed above in this section has the

following universal property. If V ′ is another i−1g̃X -module associated with V ,

then there exists a canonical map V ′ → V such that the induced map

V ' V ′/(i−1Io)V ′ → V/(i−1Io)V ' V
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is the identity map. Moreover, it also induces an isomorphism

V ′/(i−1IY )pV ′ → V/(i−1IY )pV

for any p ∈ N. Therefore, the tensor product i−1i+L ⊗i−1OX V ′ does not depend

on the choice of V ′ up to canonical isomorphism. We will give another description

of the i−1g̃X -module i−1i+L ⊗i−1OX V in Proposition 6.1.

§6. Twisted D-modules

Retain the notation of the previous sections. Let V be an (h,M)-module and

V an i−1g̃X -module associated with V . Since V/(i−1IY )V is a K-equivariant

quasi-coherent OY -module with typical fiber V , there is a canonical isomorphism

V/(i−1IY )V ' VY . We view H := ker (p : OX ⊗ g→ TX) as a subsheaf of U(g̃X).

SinceH(IY⊗U(g)) ⊂ IY⊗U(g), the i−1H-action on V induces one on V/(i−1IY )V.

By regarding local sections of these equivariant modules as vector-valued regular

functions, this action is written as

(6.1) (ξv)(k) = ξ(i(k))v(k)

for ξ ∈ i−1H, v ∈ V and k ∈ K. Indeed, since the action map i−1H⊗V/(i−1IY )V
→ V/(i−1IY )V commutes with K-actions by Definition 3.3(3), it is enough to

prove (6.1) for k = e. This follows from H(Io ⊗ U(g)) ⊂ Io ⊗ U(g) and Defini-

tion 3.3(5).

The OY -modules L, VY , ΩY , and i∗Ω∨X are K-equivariant with typical fiber∧top
(k/l), V ,

∧top
(k/m)∗, and

∧top
(g/h), respectively. Hence the tensor product

L⊗OY VY ⊗OY ΩY ⊗OY i∗Ω∨X is also K-equivariant and has typical fiber
∧top

(k/l)⊗
V ⊗

∧top
(k/m)∗ ⊗

∧top
(g/h). We define a right i−1H-module structure, a right k-

module structure, and a right OY -module structure on the sheaf L ⊗OY VY ⊗OY
ΩY ⊗OY i∗Ω∨X by

((f ⊗ v ⊗ ω ⊗ ω′)ξ)(k) = −f(k)⊗ (ξ(i(k))v(k))⊗ ω(k)⊗ ω′(k)

− f(k)⊗ v(k)⊗ ω(k)⊗ ad(ξ(i(k)))ω′(k),

(f ⊗ v ⊗ ω ⊗ ω′)η = −(ηf)⊗ v ⊗ ω ⊗ ω′ − f ⊗ (ηv)⊗ ω ⊗ ω′

− f ⊗ v ⊗ (ηω)⊗ ω′ − f ⊗ v ⊗ ω ⊗ (ηω′),

(f ⊗ v ⊗ ω ⊗ ω′)f ′ = f ′f ⊗ v ⊗ ω ⊗ ω′

for f ∈ L, ξ ∈ i−1H, η ∈ k, v ∈ VY , ω ∈ ΩY , ω′ ∈ i∗Ω∨X , f ′ ∈ OY , and k ∈ K.

These actions are compatible: if fi ∈ i−1OX , ηi ∈ k and ξ ∈ i−1H satisfy∑
i

(fi ⊗ ηi)− ξ ∈ i−1IY ⊗ U(g),
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then we have ∑
i

(
(f ⊗ v ⊗ ω ⊗ ω′)fi|Y

)
ηi = (f ⊗ v ⊗ ω ⊗ ω′)ξ.

Therefore, we can prove in the same way as in Section 5 that these actions define

a right A-module structure on L ⊗OY VY ⊗OY ΩY ⊗OY i∗Ω∨X .

By using this right A-module structure, we consider the sheaf

(L ⊗OY VY ⊗OY ΩY ⊗OY i∗Ω∨X)⊗A (OY ⊗i−1OX i
−1U(g̃X)),

which has a right i−1g̃X -module structure. We view it as a left i−1g̃X -module via

the anti-isomorphism

S : U(g̃X)→ U(g̃X), f ⊗ 1 7→ f ⊗ 1, 1⊗ ξ 7→ −1⊗ ξ,

for f ∈ OX , ξ ∈ g.

Proposition 6.1. Let L be as in Section 4. Let V be an i−1g̃X-module associ-

ated with an (h,M)-module V . Then there exists a K-equivariant isomorphism of

i−1g̃X-modules

i−1i+L ⊗i−1OX V ' (L ⊗OY VY ⊗OY ΩY ⊗OY i∗Ω∨X)⊗A (OY ⊗i−1OX i
−1U(g̃X)).

Proof. Let Fpi
−1i+L be the filtration of i−1i+L as in Section 4. Then F0i

−1i+L
⊗i−1OX V is regarded as a subsheaf of i−1i+L⊗i−1OX V (see Remark 4.2). We have

F0i
−1i+L ⊗i−1OX V ' F0i

−1i+L ⊗OY V/(i−1IY )V
' L ⊗OY ΩY ⊗OY i∗Ω∨X ⊗OY V/(i−1IY )V.

Therefore, we get an isomorphism of K-equivariant OY -modules

ψ0 : L ⊗OY VY ⊗OY ΩY ⊗OY i∗Ω∨X
∼−→ F0i

−1i+L ⊗i−1OX V,(6.2)

f ⊗ v ⊗ ω ⊗ ω′ 7→ (f ⊗ ω ⊗ ω′)⊗ v.

Here v ∈ VY and we choose a section of V that is sent to v ∈ VY ' V/(i−1IY )V
by the quotient map, which we denote by the same letter v ∈ V. Write V ′Y :=

L⊗OY VY ⊗OY ΩY ⊗OY i∗Ω∨X for simplicity. The isomorphism (6.2) extends to the

homomorphism of i−1g̃X -modules

ψ : V ′Y ⊗C (OY ⊗i−1OX i
−1U(g̃X))→ i−1i+L ⊗i−1OX V,

v ⊗ (1⊗ (f ⊗D)) 7→ S(f ⊗D) · ψ0(v).

We can check that the map ψ descends to

ψ : V ′Y ⊗A (OY ⊗i−1OX i
−1U(g̃X))→ i−1i+L ⊗i−1OX V.
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Let

π : V ′Y ⊗C (OY ⊗i−1OX i
−1U(g̃X))→ V ′Y ⊗A (OY ⊗i−1OX i

−1U(g̃X))

be the quotient map and put

Vp := π (V ′Y ⊗C (OY ⊗C Up(g))) ,

where {Up(g)}p∈N is the standard filtration of U(g). We have

ψ(Vp) = ψ(V ′Y ⊗C (OY ⊗C Up(g)) ⊂ Fpi−1i+L ⊗i−1OX V.

Let us take an open set U ⊂ Y and elements ζ1, . . . , ζl ∈ g as in the proof of

Proposition 5.1 and use the same notation. Then by an argument similar to the

proof of Proposition 5.1, we obtain a bijective map of sheaves

p∏
s=0

∏
i∈Is,l

V ′Y |U ' Vp|U , (vi)i 7→
∑
i

π(vi ⊗ (1⊗ ζi)),

and hence ∏
i∈Ip,l

V ′Y |U ' Vp/Vp−1|U .

We also see that

(Fpi
−1i+L⊗i−1OX V)/(Fp−1i

−1i+L⊗i−1OX V) ' (Fpi
−1i+L/Fp−1i

−1i+L)⊗OY VY

and

Fpi
−1i+L/Fp−1i

−1i+L ' L⊗OY ΩY ⊗OY i∗Ω∨X ⊗OY i−1((IY )p/(IY )p+1)

by [Osh11, Lemma 3.3]. Since ζi for i ∈ Ip,l give a trivialization of

i−1((IY )p/(IY )p+1), we conclude that the map

Vp/Vp−1 → (Fpi
−1i+L ⊗ V)/(Fp−1i

−1i+L ⊗ V)

induced by ψ on the successive quotient is an isomorphism. Therefore the map

ψ is also an isomorphism. We can also see that ψ commutes with the K-action.

Hence the proposition follows.

Let λ ∈ h∗ be such that Ad∗(h)λ = λ for h ∈ H. For a section ξ ∈ H, we

define a function fξ,λ ∈ OX as

fξ,λ(gH) = λ(ξ(g)).

Let Iλ be the two-sided ideal of the sheaf U(g̃X) = OX ⊗ U(g) generated by

ξ − (fξ,λ ⊗ 1) for all ξ ∈ H. We define the ring of twisted differential operators as

DX,λ := U(g̃X)/Iλ.
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Let µ := λ|m and define DY,µ similarly. Then we can define the direct image of a

left DY,µ-module M by

i+M := i∗
(
(M⊗OY ΩY )⊗DY,−µ i∗DX,−λ

)
⊗OX Ω∨X .

Suppose that V is an (h,M)-module and h acts on V by λ ∈ h∗. The K-

equivariant OY -module L ⊗OY VY has a natural structure of left DY,µ-module.

Therefore, we can define the direct image i+(L ⊗OY VY ) as a left DX,λ-module.

Proposition 6.2. Suppose that V is an (h,M)-module and h acts on V by λ ∈ h∗

such that Ad∗(h)λ = λ for h ∈ H. Let V be an i−1g̃X-module associated with V .

Then we have a K-equivariant isomorphism of i−1g̃X-modules

i−1i+L ⊗i−1OX V ' i
−1i+(L ⊗OY VY ).

Proof. We define a filtration Fpi
−1i+(L⊗OY VY ) of i−1i+(L⊗OY VY ) in the same

way as Fpi
−1i+L. Then

F0i
−1i+(L ⊗OY VY ) ' L⊗OY VY ⊗OY ΩY ⊗OY i∗Ω∨X .

By using the same argument as in Proposition 6.1, we define a map of i−1g̃X -

modules

V ′Y ⊗C (OY ⊗i−1OX i
−1U(g̃X))→ i−1i+(L ⊗OY VY )

and we see that it induces an isomorphism

V ′Y ⊗A (OY ⊗i−1OX i
−1U(g̃X)) ' i−1i+(L ⊗OY VY ).

Hence

i−1i+L ⊗i−1OX V ' i
−1i+(L ⊗OY VY )

by Proposition 6.1.

Recall that L is the K-equivariant invertible sheaf on Y = K/M with typical

fiber
∧top

(k/l). We view a one-dimensional vector space
∧top

(k/l)∗ as an (h,M)-

module in the following way: h acts as zero; the Levi component L of M acts as

the coadjoint action
∧

Ad∗; the unipotent radical U of M acts trivially. Let L′ be

an i−1g̃X -module associated with
∧top

(k/l)∗. Then L′/(i−1IY )L′ is isomorphic to

the dual of L. Therefore, by Proposition 6.2 we have

i−1i+L ⊗i−1OX V ⊗i−1OX L
′ ' i−1i+VY .

Example 3.6 shows that the i−1g̃X -module V ⊗i−1OX L′ is associated with V ⊗∧top
(k/l)∗.
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Theorem 6.3. In Setting 3.2, assume that K is reductive. Suppose that V is an

(h,M)-module and h acts on V by λ ∈ h∗ such that Ad∗(h)λ = λ for h ∈ H. Let

M = Ln U be a Levi decomposition. Then

Hs(Y, i−1i+VY ) ' (P g,K
h,L )u−s

(
V ⊗

∧top
(k/l)∗ ⊗

∧top
(g/h)

)
' (Ig,Kg,L )y+sP g,L

h,L

(
V ⊗

∧top
(g/h)

)
for s ∈ N, u = dimU , and y = dimY .

Proof. The first isomorphism follows from Theorem 4.1 and the argument above.

Since the functor P g,L
h,L is exact, (P g,K

h,L )u−s ' (P g,K
g,L )u−s ◦P g,L

h,L . Hence the duality

([KV95, Theorem 3.5])

(P g,K
g,L )dim(K/L)−s

(
· ⊗
∧top

(k/l)∗
)
' (Ig,Kg,L )s(·)

and dimK/L = dimU + dimY give the second isomorphism.

By Theorem 6.3 we obtain the convergence of the spectral sequence

Hs(X,Rti+VY )⇒ (P g,K
h,L )u−s−t

(
V ⊗

∧top
(k/l)∗ ⊗

∧top
(g/h)

)
(6.3)

' (Ig,Kg,L )y+s+tP g,L
h,L

(
V ⊗

∧top
(g/h)

)
.

Here Rti+ is the higher direct image functor for a twisted left D-module.

We will now see that this spectral sequence implies results of [HMSW87] and

[Kit10].

Example 6.4. Let GR be a connected real semisimple Lie group with a maximal

compact subgroup KR and the complexified Lie algebra g. Let K be the complex-

ification of KR and G the inner automorphism group of g. There is a canonical

homomorphism i : K → G, which has finite kernel. Suppose that H is a Borel sub-

group of G. Let us apply Setting 3.2. Then X = G/H is the full flag variety of g.

Since L is abelian and K is connected, L acts trivially on
∧top

(k/l)∗. Moreover in

this case it is known that Y is affinely embedded in X. Therefore, Rti+ ' 0 for

t > 0 and the spectral sequence (6.3) collapses. We thus get (1.1) and hence the

duality theorem (Theorem 1.1).

Example 6.5. Let GR be a connected real semisimple Lie group with a maximal

compact subgroup KR. We define K, G, and i : K → G as in the previous example.

Suppose that H is a parabolic subgroup of G and apply Setting 3.2. Then X =

G/H is a partial flag variety of g. In this case Y is not necessarily affinely embedded

in X. Let X̃ be the full flag variety of g and let p : X̃ → X be the natural

surjective map. Then we have an isomorphism Hs(X̃, p∗M) ' Hs(X,M) for any
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OX -module M. Hence (6.3) becomes

Hs(X̃, p∗Rti+VY )⇒ (Ig,Kg,L )y+s+tP g,L
h,L

(
V ⊗

∧top
(g/h)

)
,

which is [Kit10, Theorem 25 (6.6)].

Let V be any (h,M)-module and V an i−1g̃X -module associated with V . Since

i−1i+L ⊗i−1OX L′ ' i−1i+OY , we have

i−1i+L ⊗i−1OX L
′ ⊗i−1OX V ' i

−1i+OY ⊗i−1OX V.

We can thus rewrite Theorem 4.1 as

Theorem 6.6. In Setting 3.2, assume that K is reductive. Let M = L n U be a

Levi decomposition. Suppose that V is an (h,M)-module and V is an i−1g̃X-module

associated with V (Definition 3.3). Then

Hs(Y, i−1i+OY ⊗i−1OX V) ' (P g,K
h,L )u−s

(
V ⊗

∧top
(k/l)∗ ⊗

∧top
(g/h)

)
' (Ig,Kg,L )y+sP g,L

h,L

(
V ⊗

∧top
(g/h)

)
for s ∈ N, u = dimU , y = dimY .
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