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Towards Transversality of Singular Varieties:
Splayed Divisors
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Abstract

We study a natural generalization of transversally intersecting smooth hypersurfaces in
a complex manifold: hypersurfaces whose components intersect in a transversal way but
may be themselves singular. Such hypersurfaces will be called splayed1 divisors. A splayed
divisor is characterized by a property of its Jacobian ideal. This yields an effective test
for splayedness. Two further characterizations of a splayed divisor are shown, one reflect-
ing the geometry of the intersection of its components, the other one using K. Saito’s
logarithmic derivations. As an application we prove that a union of smooth hypersurfaces
has normal crossings if and only if it is a free divisor and has a radical Jacobian ideal.
Further it is shown that the Hilbert–Samuel polynomials of splayed divisors have the
natural additivity property.
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§1. Introduction

Let M1,M2 be two submanifolds of a complex manifold S. Then M1 and M2

intersect transversally at a point p ∈ S if their respective tangent spaces add up

to the tangent space of S at p, that is,

(1.1) TpM1 + TpM2 = TpS.

Transversality is a fundamental concept in algebraic geometry as well as in

differential geometry. However, in many applications (e.g., embedded resolution of
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1The term “splayed” means “spread out” or “made oblique”. So being “splayed” for a hyper-
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singularities, Hodge structures) one needs a notion of transversality for more than

two subspaces. This leads to the notion of normal crossings, which means that

several smooth components cross in a transversal way. Another way to phrase this

is that the union of several smooth subspaces is isomorphic to a union of coordinate

subspaces.

In this article we study a natural generalization of the concept of transversal

intersection of two hypersurfaces in complex manifolds allowing singular compo-

nents. The geometric idea is that two singular hypersurfaces D1 and D2 in a

complex manifold S intersect transversally at a point p if their “tangent spaces”

fill out the whole space and the ideal of their intersection is reduced. The notion of

tangent space for singular hypersurfaces can be made precise by means of logarith-

mic derivations. In algebraic terms this means: one can find local coordinates at p

such that the defining equations of the Di can be chosen in separated variables. We

call a union of such transversally intersecting hypersurfaces a splayed divisor. This

concept has already appeared in different contexts under different names, for ex-

ample, J. Damon [Dam96] called germs of the form (V1×Cm)∪(Cn×V2) ⊆ Cn+m,

where V1 ⊆ Cn and V2 ⊆ Cm, a product union (see also Remark 2.5 below). For

an example of a splayed divisor in a three-dimensional S, see Figure 1.

Figure 1. D = {x(y2 − z3) = 0} (left) is splayed and D′ = {x(x + y2 − z3) = 0}
(right) is not splayed.

In the first part of this work three different characterizations of splayed di-

visors are shown. Suppose that a divisor D ⊆ S is given by (D, p) = (D1, p) ∪
(D2, p) = {gh = 0}. First we consider the Jacobian ideal Jgh (the ideal generated

by the partial derivatives of gh) of D at p. It is clear that for a splayed D, the

Jacobian ideal satisfies

Jgh = gJh + hJg,

when the defining equations g and h are chosen in separated variables. We show

(Proposition 3.3) that this property already characterizes splayed divisors.
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Further, for a splayed divisor D, the ideal ((gh) + Jgh) defining its singular

locus can be written as the intersection of the ideals defining the singular loci of

the Di and of the ideal defining the intersection D1 ∩D2:

((gh) + Jgh) = (g, h) ∩ ((g) + Jg) ∩ ((h) + Jh).

In Proposition 3.5 the sufficiency of this condition is proved.

Finally, equation (1.1) can be directly translated to singular subspaces via

K. Saito’s logarithmic derivations [Sai80], namely, D is splayed at p if and only if

DerS,p(logD1) + DerS,p(logD2) = DerS,p .

This is shown in Proposition 3.10.

In the second part, two applications are considered. First the relationship be-

tween splayed divisors and free divisors is studied. Free divisors are a generalization

of normal crossing divisors and appear frequently in different areas of mathematics,

for example, in deformation theory as discriminants or in combinatorics as free hy-

perplane arrangements; see [Ale86, OT92, BEvB09, MS10, BM06, Sai81] for more

examples. Then we give a partial answer to a question of H. Hauser about the

characterization of normal crossing divisors by their Jacobian ideals: it is shown

that if D =
⋃n
i=1Di is locally the union of smooth irreducible components then

D has normal crossings if and only if D is locally free and its Jacobian ideal is

radical.

The computation of singularity invariants of splayed divisors is very interest-

ing, in particular one should be able to deduce them from singularity invariants of

their splayed components. We start by computing the Hilbert–Samuel polynomial

χD,p of a splayed divisor (D, p) = (D1, p) ∪ (D2, p) and find that it satisfies an

additivity relation: from the exact sequence

0→ OD,p → OD1,p ⊕OD2,p → OD1∩D2,p → 0

we deduce

χD,p(t) + χD1∩D2,p(t) = χD1,p(t) + χD2,p(t).

This additivity relation does not characterize splayed divisors, an example there-

fore is given at the end.

§2. Setting and triviality lemma

We work in the complex analytic category. The main objects of our study are

divisors (= hypersurfaces) in complex manifolds. We write (S,D) for a fixed di-

visor D in an n-dimensional complex manifold S. Denote by p a point in S and



396 E. Faber

by x = (x1, . . . , xn) the complex coordinates of S around p. The divisor (D, p)

will then be defined locally by an equation hp(x1, . . . , xn) = 0 where hp ∈ OS,p ∼=
C{x1, . . . , xn} (if the context is clear we omit the subscript p). Note that we will

always assume that h is reduced! To simplify the notation regarding splayed di-

visors, sometimes the coordinates are denoted by (x1, . . . , xk, yk+1, . . . , yn) and

h(x, y) ∈ C{x, y}. The divisor D has normal crossings at a point p if one can find

complex coordinates (x1, . . . , xn) at p such that the defining equation h of D is

h = x1 · · ·xk for k ≤ n. We also say that (D, p) is a normal crossing divisor. The

Jacobian ideal of h is denoted by Jh = (∂x1
h, . . . , ∂xnh) ⊆ OS,p. The image of Jh

under the canonical epimorphism that sends OS,p to OD,p = OS,p/(h) is denoted

by J̃h. The associated analytic coherent ideal sheaves are denoted by J ⊆ OS and

J̃ in OD. The singular locus SingD of D is defined by the ideal sheaf J̃ ⊆ OD. The

singular locus (SingD, p) is defined by the local ring OSingD,p = OS,p/((h) + Jh).

The next lemma yields an ideal-theoretic characterization of Cartesian prod-

uct structure. It is used frequently and can be found in various different formula-

tions in the literature (for example in [dJP00, Sai80, GH85, CNM96]).

Lemma 2.1 (Triviality lemma). Let (S, p) locally be isomorphic to (Cn+m, 0) and

denote OS,p = C{x1, . . . , xn, y1, . . . , ym} and let h(x1, . . . , xn, y1, . . . , ym) be an

element of OS,p. Then the following are equivalent:

(a) The ideal (∂y1h, . . . , ∂ymh) is contained in the ideal (h, ∂x1h, . . . , ∂xnh).

(b) There exists a local biholomorphic map ϕ : (Cn+m, 0) → (Cn+m, 0) and a

holomorphic v(x, y) ∈ O∗S,p such that

ϕ(x, y) = (ϕ1(x, y), . . . , ϕn(x, y), y1, . . . , ym),

ϕ(x, 0) = (x, 0), v(x, 0) ≡ 1 and h ◦ ϕ(x, y) = v(x, y)h(x, 0).

This means that D = {h(x, y) = 0} is locally at p isomorphic to some

(D′ × Cm, (0, 0)) where D′ is locally contained in Cn.

Remark 2.2. This lemma is called the “triviality lemma” because a stronger

form of it characterizes local analytic triviality: if in (a) all partial derivatives ∂yih

are even contained in (x1, . . . , xn, y1, . . . , ym)(∂x1
h, . . . , ∂xnh), then one can show

that (D, p) ∼= (D0 × Cm, (p′, 0)) where D0 = {h(x, 0) = 0} is the “fibre” at the

origin.

Proof. See for example [Sai80].

The objects of our studies are divisors that are unions of Cartesian products.

We call them splayed because they fill out the whole space.
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Definition 2.3. Let D be a divisor in a complex manifold S with dimS = n. The

divisor D is called splayed at a point p ∈ S (or (D, p) is splayed) if one can find

coordinates (x1, . . . , xn) at p such that (D, p) = (D1, p) ∪ (D2, p) is defined by

h(x) = h1(x1, . . . , xk)h2(xk+1, . . . , xn),

for some k with 1 ≤ k ≤ n − 1, where hi is the defining reduced equation of Di.

Note that the hi are not necessarily irreducible. The splayed components D1 and

D2 are not unique. Splayed means that D is the union of two products: since h1 is

independent of xk+1, . . . , xn, the divisor D1 is locally at p isomorphic to a product

(D′1, 0)× (Cn−k, 0), where (D′1, 0) ⊆ (Ck, 0) (and similarly for D2).

Example 2.4. (1) Let (D, 0) be the divisor in (C2, 0) defined by h1h2 = x(y−x2).

Since D has normal crossings at the origin, D is splayed.

(2) The divisor D = {(x−y2)zw = 0} is splayed in (C4, 0) but its splayed compo-

nents are not unique, for example h1 = x− y2 and h2 = zw or h1 = (x− y2)w

and h2 = z.

(3) The divisor D = {(xz(x+ z − y2) = 0} is not splayed in (C3, 0).

Remark 2.5. The concept of splayed divisors was also introduced by J. Damon

in the context of free divisors under the name of product union (see [Dam96]). In

the theory of hyperplane arrangements one studies the analogous concept, under

various names: e.g., in [OT92] splayed arrangements are called reducible and in

[Bud12] they are referred to as decomposable.

§3. Criteria for splayed divisors

Let (D, p) be a divisor in (S, p). If the decomposition into irreducible components

of D is known, then there are effective methods to test whether D has normal

crossings at p (see [Bod04]). The idea here is to find linearly independent tangent

vectors, that is, to linearize the problem and thus reduce it to linear algebra. The

algorithm of Bodnár does not work in order to test whether (D, p) is splayed, since

the irreducible components may be singular themselves at p.

In Proposition 3.3 it is shown that D = D1 ∪D2 = {gh = 0} is splayed at p

if and only if, up to multiplying g, h with units, the Jacobian ideal Jgh of (D, p)

is equal to gJh + hJg. This property can be tested in computer algebra systems

like Singular. The second characterization is more geometrical. In Proposition

3.5 we show that for a splayed divisor SingD is the scheme-theoretic union of the

intersection of D1 and D2, and of the singular loci SingD1 and SingD2. The third

criterion (Proposition 3.10) is nearer to Bodnár’s normal crossings test. Therefore
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we use the notion of logarithmic derivations and differential forms (in the sense of

K. Saito [Sai80]), which will be the main ingredient in the section about freeness

of splayed divisors.

§3.1. Jacobian ideal characterization 1—algebra

Here a characterization of splayedness by Jacobian ideals is shown, which can be

easily checked in concrete examples.

Definition 3.1. Let D1 = {g = 0}, D2 = {h = 0} and D = {gh = 0} at p be

defined as above. We say that Jgh has the Leibniz property if

Jgh = gJh + hJg.

If D is splayed then it is clear that its Jacobian ideal has the Leibniz property.

To establish the other implication, first an intermediate ideal-theoretic character-

ization of splayedness is proven (Lemma 3.2).

Lemma 3.2. Let dimS = n and at a point p = (x1, . . . , xn) denote by O =

OS,p = C{x1, . . . , xn} the local ring at p. Let D1 = {g(x) = 0}, D2 = {h(x) = 0}
and D = {gh(x) = 0} be divisors, where we assume that g, h ∈ O are reduced and

have no common factors. Then (D, p) = (D1, p) ∪D2, p) is splayed if and only if

(3.1) (g) ∩ ((gh) + Jgh) = g((h) + Jh).

Proof. First note that the inclusion (g) ∩ ((gh) + Jgh) ⊆ g((h) + Jh) always holds

since g and h have no common factors.

If D is splayed, we can suppose without loss of generality that D1 =

{g(x, 0) = 0} and D2 = {h(0, y) = 0} where (x, y) = (x1, . . . , xk, yk+1, . . . , yn).

Then it is easy to see, via the Leibniz property of Jgh, that g((h)+Jh) is contained

in (g) ∩ ((gh) + Jgh).

For the other direction, suppose that (3.1) holds. In this case it is easy to

see that (3.1) is preserved under local isomorphisms of (S, p). One may assume

without loss of generality that h(x1, . . . , yn) = h(0, . . . , 0, yk+1, . . . , yn) and that

(3.2) ∂yih 6∈ (h, ∂yk+1
h, . . . , ∂̂yih, . . . , ∂ynh)

for all i ∈ {k + 1, . . . , n}. (If not so, suppose that e.g. ∂x1
h is contained in

(h, ∂x2
h, . . . , ∂xnh). Then by the triviality lemma there exists a locally biholo-

morphic map ϕ : (S, p) → (S, p) such that h ◦ ϕ(x) = v(x)h(0, x2, . . . , xn), with

v ∈ O∗. Then set h̃ := h(0, x2, . . . , xn) and g̃ := g ◦ ϕ. The divisor defined by g̃ · h̃
is clearly isomorphic to D, and similarly D1 and D2 are defined by g̃ and h̃.)

Now let h(y) = h(0, . . . , 0, yk+1, . . . , yn) be such that (3.2) holds. From (3.1)

it follows that g(∂yih) is contained in ((gh) +Jgh) and by definition g∂yih+h∂yig
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is also contained in this ideal. Hence h(∂yig) ∈ ((gh) + Jgh) for all k + 1 ≤ i ≤ n.

Thus we can write

h(∂yig) = aigh+
∑
j

aij(g∂yjh+ h∂yjg) +
∑
j

bijh∂xjg

where the summation indices run over the valid range. This equation can be rear-

ranged as

(3.3) h
(
∂yig − aig −

∑
j

aij∂yjg −
∑
j

bij∂xjg
)

= g
∑
j

aij(∂yjh).

Since g and h have by assumption no common factors, we conclude from (3.3) that

∂yig − aig −
∑
j aij∂yjg −

∑
j bij∂xjg ∈ (g) and that

∑
j aij(∂yjh) = cih for any

k + 1 ≤ i ≤ n and some ci ∈ O. Then (3.2) implies that any aij ∈ m: if this were

not the case, that is, if some aim is in O∗, then via the equation
∑
j aij(∂yjh) = cih

one can express ∂ymh in terms of h and the other ∂yjh, which contradicts (3.2).

Hence it follows that

∂yig ∈ (g, ∂x1g, . . . , ∂xkg) + m(∂yk+1
g, . . . , ∂yng)

for any k + 1 ≤ i ≤ n. By an application of Nakayama’s lemma we obtain

∂yig ∈ (g, ∂x1
g, . . . , ∂xkg) for all i = k + 1, . . . , n.

By the triviality lemma there exists a locally biholomorphic ψ : (S, p) → (S, p)

with ψ(x, y) = (ψ1(x, y), . . . , ψk(x, y), yk+1, . . . , yn) such that g ◦ ψ is equal to

vg(x1, . . . , xk, 0) for a unit v ∈ O. Set g̃ := v−1(g ◦ ψ) and h̃ := h ◦ ψ = h =

h(0, . . . , 0, yk+1, . . . , yn). By construction g̃h̃ defines a splayed divisor that is iso-

morphic to D.

Proposition 3.3. Let (S,D) be a complex manifold S with dimS = n, together

with a divisor D ⊆ S that is locally at a point defined by gh = 0, where g and h are

reduced elements of OS,p that are not necessarily irreducible but have no common

factor. Then D = {g = 0}∪{h = 0} is splayed at p if Jgh has the Leibniz property

Jgh = gJh + hJg.

Conversely, if D = {gh = 0} is splayed and g and h are chosen in different

variables, then Jgh has the Leibniz property. This means that up to possible mul-

tiplication of g and h with units, Jgh has the Leibniz property.

Proof. As already remarked, if D is splayed then we can choose the defining equa-

tions g and h in separated variables and it is clear that Jgh = gJh+hJg. Conversely,

it is enough to show the equality (g)∩ ((gh)+Jgh) = g((h)+Jh) from Lemma 3.2.
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Since (g)∩ ((gh) + Jgh) is always contained in g((h) + Jh) it remains to check the

other inclusion. Take a β ∈ g((h) + Jh). Then a straightforward calculation shows

that β is also contained in (g) ∩ ((gh) + Jgh).

As pointed out by P. Aluffi, D = {gh = 0} is splayed if and only if

(3.4) (gh) + Jgh = (gh) + gJh + hJg,

regardless of multiplying g and h by units. Equation (3.4) can also easily be shown

with Lemma 3.2. For a different approach to this characterization of splayedness,

see [AF12].

Example 3.4. Let D be the divisor in C3 given at a point p by x(x + y2 − z3).

Then D is the union of two smooth components D1 = {h = x+ y2 − z3 = 0} and

H = {g = x = 0}. The ideal (gh) + Jgh = Jgh = (2x+ y2 − z3, xy, xz2) is strictly

contained in (gh) + gJh +hJg = gJh +hJg = (x, y2− z3). Thus D is not a splayed

divisor (see Figure 1).

§3.2. Jacobian ideal characterization 2—geometry

Now we characterize a splayed divisor D ⊆ S, locally at a point p given by a

gh ∈ OS,p, by OSingD,p = OS,p/((gh) + Jgh). This characterization reflects the

geometry of (D, p), namely the two splayed components meeting transversally.

Proposition 3.5. The divisor D = D1 ∪D2, defined at p as above, is splayed if

and only if

(3.5) ((gh) + Jgh) = (g, h) ∩ ((g) + Jg) ∩ ((h) + Jh).

Proof. Recall here from Lemma 3.2 that a divisor {gh = 0} is splayed if and only

if (3.1) holds. First suppose that (3.5) holds. A straightforward calculation shows

(3.1).

For the other implication we use Grauert’s division theorem (for the nota-

tion and statement see [dJP00, Theorem 7.1.9]): Suppose that D = {gh = 0}
is splayed. Then without loss of generality g(x, y) = g(x) and h(x, y) = h(y) in

C{x1, . . . , xk, yk+1, . . . , yn}. Clearly ((gh)+Jgh) ⊆ (g, h)∩((g)+Jg)∩((h)+Jh). So

let α be an element of the right-hand side, that is, α = ag+ bh = cg+
∑k
i=1 ai∂xig

for some a, b, c, ai ∈ O. Then also α − ag = bh = (c − a)g +
∑k
i=1 ai∂xig is con-

tained in ((g)+Jg). By Grauert’s division theorem there exist some ã, ãi, r, r̃i such

that for all i = 1, . . . , k one has c− a = ãh+ r and ai = ãih+ ri and the leading

monomial L(h) does not divide any monomial of the unique remainders r, ri. Then
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write (
b− ãg −

k∑
i=1

ãi(∂xig)

)
h = rg +

k∑
i=1

ri(∂xig).

Since h only depends on y and g only on x, it follows that L(h) also does not

divide any of the monomials of the right-hand side of the equation. But this is

only possible if (b − ãg −
∑k
i=1 ãi(∂xig))h = 0. It follows that b is contained in

((g) + Jg). Interchanging the roles of g and h yields that a ∈ ((h) + Jh) and thus

α ∈ (gh, gJh+hJg). The Leibniz property of Jgh implies that α ∈ ((gh)+Jgh).

Remark 3.6. Here it can be seen that for splayed divisors the Jacobian ideal is the

intersection of the two ideals defining the singular loci of the splayed components

D1 and D2 plus the intersection of D1 and D2. For two smooth divisors D1 and

D2 this means that D = D1 ∪ D2 is a splayed divisor if and only if the scheme-

theoretical intersection D1 ∩D2 is smooth, which is in turn equivalent to saying

that D1 and D2 intersect transversally (cf. [Li09, FH10]). Note that for varieties

of arbitrary codimension the condition that the scheme-theoretical intersection is

smooth, leads to the notion of clean intersection (see [Li09]).

Example 3.7. Let D ⊆ C3 be given at the origin by gh = x(x + y2 + z3) = 0.

Then D is not splayed at the origin. Here the intersection of the two components

is given by the ideal (g, h) = (x, y2 +z3). Also consider the divisor D′ ⊆ C3 that is

given by g′h′ = x(y2 + z3). Clearly D′ is splayed at the origin and the intersection

of the two components is given by the ideal (g′, h′) = (x, y2 + z3) (see Figure 1).

§3.3. Logarithmic derivation characterization—tangency

As already mentioned in the introduction, two submanifolds of a manifold intersect

transversally at a point if their respective tangent spaces at that point together

generate the tangent space of the ambient manifold. In this section we will translate

this definition to splayed divisors with the help of logarithmic derivations (Propo-

sition 3.10). Logarithmic derivations were introduced by K. Saito in [Sai80] and

are a useful tool in studying tangent behaviour for singular varieties. They lead to

the definition of free divisors, which will be studied in more detail in Section 4.1.

3.3.1. A very brief recap of Saito’s theory of free divisors ([Sai80]). Let

D be a divisor in S defined at p by D = {h = 0}. A logarithmic vector field (or

logarithmic derivation) (along D) is a holomorphic vector field on S, that is, an

element of DerS , satisfying one of the two equivalent conditions:

(i) For any smooth point p of D, the vector δ(p) of p is tangent to D,

(ii) For any point p, where (D, p) is given by h = 0, the germ δ(h) is contained in

the ideal (h) of OS,p.
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The module of germs of logarithmic derivations (along D) at p is denoted by

DerS,p(logD) = {δ : δ ∈ DerS,p such that δh ∈ (h)},

The DerS,p(logD) are the stalks at points p of the sheaf DerS(logD) of OS-

modules. Similarly we define logarithmic differential forms: a meromorphic q-form

ω is logarithmic (along D) at a point p if ωh and hdω are holomorphic in an open

neighbourhood around p. We write

ΩqS,p(logD) = {ω : ω germ of a logarithmic q-form at p},

One can show that DerS,p(logD) and Ω1
S,p(logD) are reflexive OS,p-modules dual

to each other (see [Sai80]). One says that (D, p) is free or that D is free at p if

DerS,p(logD) resp. Ω1
S,p(logD) is a free OS,p-module. In Section 4.1 free divisors

are discussed in more detail and the following theorem is used, which makes it

possible to test whether D is free (cf. [Sai80, Thm. 1.8]):

Theorem 3.8 (Saito’s criterion). Let (S,D), p and h be as defined in the intro-

duction. The OS,p-module DerS,p(logD) is free if and only if there exist n vector

fields δi =
∑n
j=1 aij(x)∂xj in DerS,p(logD), i = 1, . . . , n, such that det(aij(x)) is

equal to h up to an invertible factor. Moreover, the vector fields δ1, . . . , δn then

form a basis for DerS,p(logD).

Remark 3.9. The module DerS,p(logD) naturally carries the structure of a Lie

algebra. It was considered under the name of tangent algebra in [HM93], where

also many properties of algebraic and analytic varieties were characterized in terms

of tangent algebras. The Lie algebra structure of logarithmic derivations is also

considered in [GS09, Sek08].

3.3.2. Logarithmic derivations and splayed divisors

Proposition 3.10. Let (D, p) = (D1, p) ∪ (D2, p) ⊆ (S, p) ∼= (Cn, 0) be a divisor

such that (D1, p) = {g = 0} and (D2, p) = {h = 0} for some g, h not necessarily

irreducible but with no common factor. Then D is splayed at p if and only if

(3.6) DerS,p(logD1) + DerS,p(logD2) = DerS,p .

Proof. As above, we denote by (x, y) := (x1, . . . , xk, yk+1, . . . , yn) the coordinates

at p and by O = C{x, y} the corresponding local ring. If D is splayed then without

loss of generality one has g = g(x, 0) and DerS,p(logD1) is generated by some

δ1, . . . , δm, m ≥ k, ∂yk+1
, . . . , ∂yn . Similarly h = h(0, y) and DerS,p(logD2) is

generated by some ∂x1 , . . . , ∂xk , ε1, . . . , εl for some l ≥ n−k. Then clearly we have

DerS,p(logD1) + DerS,p(logD2) = O〈∂x1
, . . . , ∂xk , ∂yk+1

, . . . , ∂yn〉 = DerS,p .
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For the other implication we may assume that g(x, y) = g(x, 0) and

∂xig 6∈ (∂x1
g, . . . , ∂̂xig, . . . , ∂xkg)

for all i ≤ k by a similar argument to Lemma 3.2. Then it is clear that

DerS,p(logD1) can be generated by some δ1, . . . , δm and ∂yk+1
, . . . , ∂yn , where

m ≥ k and the coefficients of the δi only depend on x1, . . . , xk and lie in the

maximal ideal m ⊆ O.

Using ∂xi ∈ O〈ε1, . . . , εl, δ1, . . . , δm, ∂yk+1
, . . . , ∂yn〉 and computing ∂xih we

obtain (similar to the proof of Lemma 3.2) that

(∂x1h, . . . , ∂xkh) ⊆ (h, ∂yk+1
h, . . . , ∂ynh).

An application of the triviality lemma shows that D2 can be chosen independently

of the variables x1, . . . , xk, and thus D is splayed.

In view of Proposition 3.10 and the duality of DerS,p(logD) and Ω1
S,p(logD)

we ask:

Question 3.11. Can one express the splayedness of a divisor (D1 ∪ D2, p) in

terms of Ω1
S,p(logD1), Ω1

S,p(logD2) and Ω1
S,p?

§4. Applications

§4.1. Free divisors and normal crossings

In some sense free divisors are a generalization of normal crossing divisors: their

modules of tangent vector fields are free. However, irreducible (non-smooth) free

divisors are highly singular, that is, they are non-normal and their singular loci

are Cohen–Macaulay of codimension 1 in the divisor (see [Ale90, Sim06]). Here

we consider the relationship between free and splayed divisors and in particular

between splayed and normal crossing divisors. First we show that a splayed divisor

is free if and only if its splayed components are free (Proposition 4.1). Then we turn

to normal crossing divisors, in particular to the problem of characterizing normal

crossing divisors by their Jacobian ideal. This problem was stated by H. Hauser

and considered in [Fab11], where a general answer was found. Here we use the

ideal-theoretic characterizations of splayed divisors in order to show that a divisor

consisting of smooth irreducible components has normal crossings at a point p if

and only if it is free at p and its Jacobian ideal is radical (Corollary 4.7).

First let us describe the structure of DerS,p(logD) for splayed divisors in a

different way. Let S, T be complex manifolds of dimensions n,m and suppose that

(S×T, 0) ∼= (Cn+m, 0), with complex coordinates (x, y) = (x1, . . . , xn, y1, . . . , ym)
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at the origin. Let (Dx
1 , 0) be a divisor in (S, 0), which is defined by a reduced

g′(x) ∈ OS,0 ∼= C{x1, . . . , xn} and which has a logarithmic derivation module over

C{x} denoted by DerS,0(logDx
1 ). Then we may consider the cylinder over Dx

1 in

the T -direction in (S × T, 0), namely the hypersurface D1 defined by g(x, y) =

g(x, 0) := g′(x) ∈ C{x, y}. It is easy to see that

DerS×T,0(logD1) = (DerS,0(logDx
1 )⊗C{x} C{x, y})⊕ (DerT,0⊗C{y}C{x, y}).

Similarly define Dy
2 , D2 with equations h′(y) = h(x, y) and DerS×T,0(logD2).

Thus we define the (splayed) divisor D = D1 ∪D2 in S × T that is given at 0 by

the equation gh = 0. Since g and h have separated variables, there is a natural

splitting of DerS×T,0(logD):

(4.1) DerS×T,0(logD)

= (DerS,0(logDx
1 )⊗C{x} C{x, y})⊕ (DerT,0(logDy

2)⊗C{y} C{x, y}).

Proposition 4.1. Let (D, p) = (D1, p) ∪ (D2, p) be a splayed divisor in S ∼=
Cn+m defined as above. The divisor D = {g(x)h(y) = 0} is free if and only if

D1 = {g(x) = 0} and D2 = {h(y) = 0} are both free.

Proof. If both D1 and D2 are free then there exist bases of DerS×T,p(logD1) and

DerS×T,p(logD2) of the form

δ1 =

n∑
i=1

a1i∂xi , . . . , δn =

n∑
i=1

ani∂xi , δn+1 = ∂y1 , . . . , δn+m = ∂ym

and

ε1 = ∂x1
, . . . , εn = ∂xn , εn+1 =

m∑
i=1

bn+1,i∂yi , . . . , εn+m =

m∑
i=1

bn+m,i∂yi .

It is easy to see that any δi for 1 ≤ i ≤ n and any εj for n + 1 ≤ j ≤ n + m is

also an element of DerS×T,p(logD). By Saito’s criterion (Thm. 3.8) it follows that

δ1, . . . , δn, εn+1, . . . , εn+m form a basis of DerS×T,p(logD).

Conversely, suppose DerS×T,p(logD) is free. Since DerS×T,p(logD) is free, it

follows by (4.1) that DerS,0(logDx
1 )⊗C{x}C{x, y} and DerT,0(logDy

2)⊗C{y}C{x, y}
are projective OS×T,p-modules. Since the notions of projective and free module

over regular local rings coincide, these two modules are even free.

4.1.1. Radical Jacobian ideal—normal crossings. In [Fab11] the following

problem (proposed by H. Hauser) was considered: suppose that D ⊆ S, dimS = n,

is a divisor that is locally at a point p ∈ S given by {h = 0}. Can we determine if

D has normal crossings at p from the knowledge of its Jacobian ideal Jh?
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It was shown that D has normal crossings in case D is free, the Jacobian ideal

is radical and the normalization of D is smooth (see [Fab12, Thm. 2.4]).

Here we use splayed divisors to show this when (D, p) =
⋃m
i=1(Di, p) is a union

of smooth irreducible components Di. Note that in this special case the hypothesis

on the normalization is not needed. Moreover, the problem can be reduced to the

case where (D, p) is irreducible (Proposition 4.6).

Remark 4.2. One can show, using the theorem of Briançon–Skoda, that Jh rad-

ical implies that h is already contained in Jh (see [Fab12]).

Lemma 4.3. Let D = {gh = 0} be splayed at p = (x1, . . . , xk, yk+1, . . . , yn) in

S ∼= Cn and denote by D1 = {g = g(x, 0) = 0} and D2 = {h = h(0, y) = 0}
its splayed components. The Jacobian ideal of D, denoted by Jgh, is radical if and

only if both Jh and Jg are radical.

Proof. Suppose that Jg and Jh are radical. Similarly to the proof of Proposition

3.5 one concludes that the ideals Jgh and (g, h) ∩ Jg ∩ Jh are equal. We compute

the radical√
Jgh =

√
(g, h) ∩ Jg ∩ Jh =

√
(g, h) ∩

√
Jg ∩

√
Jh = (g, h) ∩ Jg ∩ Jh = Jgh,

where the third equality holds because of our assumptions.

Conversely, suppose that Jgh =
√
Jgh. Then gh is an element of Jgh (cf. Re-

mark 4.2). Localization of C{x, y} in g yields (Jgh)g = ((h) + Jh)g, which is

radical, since Jgh is radical. Note that for an ideal I ⊆ C{x, y}, we denote by

Ig the localization of I in g (cf. [Mat86]). Using the fact that ((h) + Jh)g is an

intersection of prime ideals in the localization, a direct computation shows that

any element of
√

((h) + Jh) is already contained in ((h)+Jh). Similarly one proves

((g) + Jg) =
√

((g) + Jg).

Lemma 4.4. Let D ⊆ S be a divisor given at p ∈ S by {gh = 0} with gh ∈ OS,p
reduced and suppose that Jgh is radical. Then

Jgh = gJh + hJg.

In particular, D = D1 ∪D2 defined by D1 = {g = 0} and D2 = {h = 0} is splayed

at p.

Proof. Consider the element g∂xi(gh), which is contained in Jgh for any i =

1, . . . , n. Since Jgh is radical, gh is contained in Jgh, which forces g2(∂xih) to be

in Jgh. Using the fact that Jgh is an intersection of prime ideals pj , j = 1, . . . , k,

one deduces that either g or ∂xih is contained in any pj. Hence g(∂xih) ∈ Jgh. This
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yields

Jgh = (g∂x1
(h), . . . , g∂xn(h), h∂x1

(g), . . . , h∂xn(g)) = gJh + hJg.

By Proposition 3.3, (D, p) is splayed.

Example 4.5. Splayed divisors need not have radical Jacobian ideals, as the fol-

lowing example shows. Let D be the divisor in (C3, 0) with coordinates (x, y, z)

at 0, that is defined by gh = x(y2 + z3). Then clearly (D, 0) is splayed. The Jaco-

bian ideal is Jgh = (y2 + z3, xy, xz2) = (y, z2) ∩ (x, y2 + z3), which is not radical.

Note that D is a free divisor.

Proposition 4.6. Let D = D1 ∪ D2 be a divisor in an n-dimensional complex

manifold S and let D, D1 and D2 at a point p ∈ S be defined by the equations gh,

g and h, respectively. Suppose that Jgh is radical. Then D is splayed and Jh and

Jg are also radical. If moreover D is free at p then also D1 and D2 are free at p.

Proof. This follows from Proposition 3.3, Proposition 4.1 and Lemma 4.4.

Corollary 4.7. Let (S,D) be a complex manifold with dimS = n, together with

a divisor D ⊆ S, and suppose that locally at a point p ∈ S the divisor (D, p) has

a decomposition
⋃m
i=1(Di, p) into irreducible components such that each (Di, p) is

smooth. Let the corresponding equation of D at p be h = h1 · · ·hm. If D is free

at p and Jh =
√
Jh then D has normal crossings at p.

Proof. We use induction on n. If n = 2, then an explicit computation or an

application of the theorem of Mather–Yau ([MY82]) shows the assertion. Now

suppose the assertion is true for divisors in manifolds of dimension n − 1. For a

smooth component D1 of D, one can find local coordinates (x1, . . . , xn) such that

D1 = {x1 = 0}. Proposition 4.6 shows that the divisor (D \ D1) := h2 · · ·hm is

also free and has a radical Jacobian ideal. Moreover, D is locally splayed, that is,

D \D1 is locally isomorphic to some divisor depending only on the last n−1 coor-

dinates. Thus by induction hypothesis D \D1 is isomorphic to a normal crossing

divisor y2 · · · ym = 0, where the yi are the result of a coordinate transformation of

(x1, . . . , xn) such that x1 = y1. This implies that m ≤ n−1. Hence D is isomorphic

to the normal crossing divisor x1y2 · · · ym.

§4.2. Hilbert–Samuel polynomials

Splayed divisors are particularly interesting for computational reasons. We start

here a study of properties of splayed divisors by considering their Hilbert–Samuel

polynomials. We find that multiplicities behave the same for splayed as for non-

splayed divisors but that the Hilbert–Samuel polynomials for splayed divisors are
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additive, which means the following: Let (D, p) = (D1, p) ∪ (D2, p) be a splayed

divisor at a point p in a complex manifold. Then from the exact sequence

0→ OD,p → OD1,p ⊕OD2,p → OD1∩D2,p → 0

it follows that

χD,p + χD1∩D2,p = χD1,p + χD2,p,

where χD,p denotes the Hilbert–Samuel polynomial of D at p. Since one can com-

pute the Hilbert–Samuel polynomials of divisors in an easy way ([dJP00, Lemma

4.2.20]), this yields a method to compute χD1∩D2,p.

The Hilbert–Samuel function and the Hilbert–Samuel polynomial do not only

depend on the module one is considering but also on a chosen filtration. However,

the degree and leading coefficient of the Hilbert–Samuel polynomial are indepen-

dent of the filtration. We use notation from [Mat86] and [dJP00].

Let R be a noetherian local ring with maximal ideal m. Let I ⊆ R be an ideal

and let M be a module over R. A set {Mn}n≥0 of submodules of M is called an

I-filtration of M if M = M0 ⊃M1 ⊃M2 ⊃ · · · and IMn ⊆Mn+1 for all n ≥ 0.

In the following we will always suppose that M is a finitely generated R-

module. Let q be an m-primary ideal of R and let {Mi} be a q-filtration. Then the

Hilbert–Samuel function of the filtration {Mi} is

HS{Mi} : N→ N, d 7→ lengthR/mM/Md.

If Mi = miM then we simply write HSM . One can show that there exists a

polynomial χ{Mi} with rational coefficients such that HS{Mi}(d) = χ{Mi}(d) for d

sufficiently large. We call χq
M := χ{qnM}n≥0

the Hilbert–Samuel polynomial of M

with respect to q. The degree d of χq
M (k) =

∑d
i=0 aik

i only depends on M and not

on q.

When considering Hilbert–Samuel polynomials of modules over a local ring

O = C{x1, . . . , xn} with respect to the maximal ideal m, one can use standard

bases to simplify computations. For definitions and notation about standard bases

we refer to [dJP00]. Here we only need the following facts:

Fact (i). Take the degree lexicographical ordering <. Then for an ideal I ⊆ O one

has

HSO/I(k) = HSO/L(I)(k),

where L(I) denotes the leading ideal of I. In particular, O/I and O/L(I) have the

same Hilbert–Samuel polynomial with respect to m.

Fact (ii). Let f, g ∈ O and assume that L(f) and L(g) are coprime. Then

L((f, g)) = (L(f), L(g)), that is, f, g are a standard basis of the ideal (f, g).
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In contrast to the graded case, the Hilbert–Samuel polynomial is not addi-

tive on exact sequences: one has a certain error polynomial, whose degree can be

determined with a theorem of Flenner and Vogel (see [FV93]):

Theorem 4.8 (Flenner–Vogel). Let (R,m) be a noetherian local ring, 0→M ′ →
M → M ′′ → 0 an exact sequence of finitely generated R-modules and q an

m-primary ideal. Denote further

Grq(N) =

∞⊕
i=0

qiN/qi+1N

the associated graded module of a finite R-module N . Then

(a) supp ker(Grq(M ′)→ Grq(M)) = supp ker(Grq(M)/Grq(M ′)→ Grq(M ′′)).

(b) Denote by d the dimension of these supports. Then there is a polynomial S of

degree d− 1 such that for n� 0 we have

S(n) := χq
M ′(n) + χq

M ′′(n)− χq
M (n).

In particular, if d = 0, then S = 0.

Before turning to splayed divisors, consider the additivity problem of the

Hilbert–Samuel polynomial for arbitrary finitely generated modules over a local

ring (R,m). If

0→ N →M →M/N → 0

is an exact sequence of finitely generated R-modules and q an m-primary ideal,

then

(4.2) 0→ N/(qnM ∩N)→M/qnM → (M/N)/qn(M/N)→ 0

is an exact sequence, which implies

χq
M = χq

M/N + χ{qnM∩N}.

Here χ{qnM∩N} denotes the Hilbert–Samuel polynomial with respect to the filtra-

tion N/(qnM ∩ N) and in general one has χq
N 6= χ{qnM∩N}. However, for split

exact sequences the Hilbert–Samuel polynomial is always additive:

Lemma 4.9. Let (R,m) be a local ring and let M,N be finitely generated R-mod-

ules. Consider the exact sequence

0→ N → N ⊕M →M → 0.

Then χq
N⊕M = χq

M + χq
N for any m-primary ideal q.
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Proof. A direct computation shows that N ∩ qn(N ⊕M) = qnN for any n. Using

the exact sequence (4.2) the assertion follows.

Let now D = D1 ∪ D2 ⊆ Cn be a not necessarily splayed divisor that is

locally at a point p = (x) defined by h1(x)h2(x) ∈ O = C{x}, with components

(D1, p) = {h1(x) = 0} and D2 = {h2(x) = 0}. The multiplicities of Di at p are

denoted by mp(Di) := e(OS,p/(hi),m). The Hilbert–Samuel polynomial of Di at p

is denoted by χDi,p := χm
O/(hi), and similarly the multiplicity and Hilbert–Samuel

polynomial for D.

Remark 4.10. In order to compute the Hilbert–Samuel polynomial of O/I for

any ideal I ⊆ O, we can consider O/I either as a ring or as an O-module. This does

not make a difference for the Hilbert–Samuel functions, since they only depend on

the graded structure of O/I.

It is well-known that multiplicities of divisors are additive, more precisely one

can show that for D and Di defined as above, mp(D) = mp(D1) + mp(D2) (see

e.g. [dJP00]). For splayed divisors the additivity also holds for Hilbert–Samuel

polynomials:

Proposition 4.11. Let (D, p) = (D1, p) ∪ (D2, p) be splayed at p ∈ S, where

(S, p) ∼= (Cn, 0). Then the Hilbert–Samuel polynomials of the components D1 and

D2 are additive, that is,

χD,p(t) + χD1∩D2,p(t) = χD1,p(t) + χD2,p(t).

Proof. Denote by O := C{x, y} = C{x1, . . . , xk, yk+1, . . . , yn} the coordinate ring

of (Cn, 0). There is an exact sequence (see e.g. [GP08])

(4.3) 0→ O/(h1h2)→ O/(h1)⊕O/(h2)→ O/(h1, h2)→ 0.

With Facts (i) and (ii) above, the question can be reduced to leading ideals because

(4.3) remains exact if we just consider the leading ideals. The divisor D is splayed,

so we can assume that it is defined by g(x)h(y). Choosing any valid monomial

ordering, one finds L(g) = xα, L(h) = yβ , L((gh)) = xαyβ , and Fact (ii) yields

L((g, h)) = (xα, yβ). From Lemma 4.9 it follows that

χm
O/(xα) + χm

O/(yβ) = χm
O/(xα)⊕O/(yβ).

Thus it remains to prove that the Hilbert–Samuel polynomials with respect to m

of the exact sequence

0→ O/(xα · yβ)→ O/(xα)⊕O/(yβ)→ O/(xα, yβ)→ 0
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are additive. In order to apply the theorem of Flenner–Vogel we show that the

map

Grm(O/(xαyβ))
ϕ−→ Grm(O/(xα)⊕O/(yβ))

is injective. The map ϕ clearly preserves the degree, so it is enough to show

the assertion for a homogeneous element of degree d. Therefore take some a ∈
md(O/(xαyβ))/md+1(O/(xαyβ)). Consider a as an element in O; from Grauert’s

division theorem it follows that a can be written as r + α1x
α + α2y

β , where r

is the unique remainder from the division through xα and yβ , and α1 ∈ O is

not divisible by yβ and α2 is not divisible by xα. Suppose that ϕ(a) = (0, 0).

Then write ϕ(a) = (r + α2y
β , r + α1x

α) in O/(xα) ⊕ O/(yβ). In O this reads as

r + α2y
β = cxα and r + α1x

α = c′yβ for some c, c′ ∈ O with the right order. It

follows that r ∈ (xα, yβ). But r is the unique remainder from the division through

the standard basis (xα, yβ), so r = 0 in O. Since xα, yβ are clearly a regular se-

quence in O, their syzygies are trivial and from the conditions on α1, α2 it follows

that α1 = α2 = 0. This implies the injectivity of ϕ. Hence by the theorem of

Flenner–Vogel, the remainder polynomial S is zero and the assertion follows.

In general the Hilbert–Samuel polynomial of a divisor (D, p) = (D1, p) ∪
(D2, p) is not additive, as is seen in the following example.

Example 4.12. By Lemma 4.2.20 of [dJP00] one can explicitly compute the

Hilbert–Samuel polynomial of O/(f), where O = C{x1, . . . , xn} and ord(f) = m,

namely

(4.4) χm
O/(f)(d) =

m∑
j=1

(
n+ d− j − 1

n− 1

)
.

Consider now (C2, 0) with coordinate ring O = C{x, y} and with h1 = x2 − y and

h2 = y. Then the germ of the divisor (D, 0) = (D1, 0) ∪ (D2, 0) that is locally

given by {y(x2 − y) = 0} with (D1, 0) = {x2 − y = 0} and (D2, 0) = {y = 0}
is not splayed. The intersection (D1 ∩ D2, 0) is locally given by the ideal (x2, y)

and coordinate ring O/(x2, y) = C{x}/(x2). By formula (4.4) we can compute the

Hilbert–Samuel polynomials of D,D1, D2 and D1∩D2 and obtain χD,p(t) = 2t−1,

which is clearly not equal to χD1,p(t) + χD2,p(t)− χD1∩D2,p(t) = t+ t− 2.

One might ask if the additivity of the Hilbert–Samuel polynomials character-

izes splayed divisors. However, here is a counterexample:

Example 4.13. Consider D ⊆ C3 locally defined by gh = (x2 − y3)(y2 − x2z).
Then (D, p) is the union of the cylinder over a cusp (D1, p) and of the Whitney
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umbrella (D2, p). Clearly (D, p) is not splayed (use for example the Leibniz prop-

erty). However, L(g) = x2 and L(h) = y2, so the leading monomials of g and h are

coprime and one can repeat the argument in the proof of the preceding proposition

to find that

χD,p + χD1∩D2,p = χD1,p + χD2,p.
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