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Abstract

We discuss certain arithmetic invariants arising from the monodromy representation in
fundamental groups of a family of once punctured elliptic curves of characteristic zero. An
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§1. Introduction

In this paper, we study certain invariants arising from (geometrically meta-abelian)

arithmetic fundamental groups of once punctured elliptic curves. Suppose we are

given an elliptic curve E over a number field k with Weierstrass equation

(1.1) E : y2 = 4x3 − g2x− g3

with discriminant ∆ = ∆(E, dx/y) = g3
2 − 27g2

3 ∈ k×. The local coordinate t :=

−2x/y at the infinity point O of E \ {O} := Spec(k[x, y]/(4x3 − g2x − g3 − y2))

gives rise to a tangential base point
−→
w and a split exact sequence of profinite

fundamental groups

(1.2) 1→ π1(Ek̄ \ {O},
−→
w)→ π1(E \ {O},−→w)

x−→ Gk = Gal(k̄/k)→ 1.

It is well known that the geometric fundamental group π1(Ek̄ \ {O},
−→
w) has a

presentation with generators x1,x2, z and relation [x1,x2]z = x1x2x
−1
1 x−1

2 z = 1

so that z generates an inertia subgroup over the missing infinity point O.

Let l be a rational prime and π the maximal pro-l quotient of π1(Ek̄\{O},
−→
w).

Write ϕ−→w : Gk → Aut(π) for the Galois representation induced from (1.2). In

[Bl84], S. Bloch considered an elliptic analog of Ihara’s construction of the univer-

sal power series for Jacobi sums [Ih86a], and proposed a new power series repre-

sentation

(1.3) E : Gk(El∞ ) → Zl[[T1, T2]] ∼= Zl[[πab]] (σ 7→ Eσ)

from the meta-abelian reduction of ϕ−→w in π/π′′. Here k(El∞) is the field obtained

by adjoining the coordinates of all l-power torsion points of E, and Zl[[πab]] is the

l-adic complete group algebra of the abelianization πab of π identified with the

commutative ring of two-variable formal power series in Ti := ‘the image of xi’−1

(i = 1, 2). This construction was first applied by H. Tsunogai [Tsu95a] to deduce a

result of anabelian geometry. Subsequently, an explicit formula for the coefficients

of Eσ using Kummer properties of special values of the fundamental theta function

θ(z, τ) = ∆(τ)e−6η(z,τ)zσ(z, τ)12 at z = x1τ + x2 ((x1, x2) ∈ Q2 \Z2) was given in

[N95]. The main motivation of the present paper is to generalize these results to

more general σ ∈ Gk not necessarily contained in Gk(El∞ ).

In [Tsu95a], Tsunogai also derived an equation (see Remark 3.4.4 below)

suggesting a naive difficulty of extending Bloch’s construction of Eσ to general

σ ∈ Gk, which makes the elliptic case more complicated than Ihara’s case of

π1(P1−{0, 1,∞}). In fact, Ihara’s universal power series for Jacobi sums is natu-

rally defined on GQ, whereas Bloch’s power series Eσ is not on Gk. In this paper, we
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propose a way to bypass the difficulty in the elliptic case by still extending Tsuno-

gai’s treatment but in a somewhat twisted way. Consequently, for each l-power m,

we will construct a certain continuous mapping

(1.4) Em : Gk × Z2
l → Zl

((
σ,
(
u
v

))
7→ Em(σ;u, v

))
from the meta-abelian reduction Gk → Aut(π/π′′) of ϕ−→w . The value Em(σ;u, v)

is not periodic in u, v modulo m for general σ ∈ Gk, but turns out to be periodic

for σ ∈ Gk(El∞ ) so that it determines an element Em(σ) of the finite group ring

Zl[(Z/mZ)2]. Then Eσ can be recovered as the limit measure on Z2
l :

(1.5) Eσ = lim←−
m

(
Em(σ) + 1

12ρ∆(E,mdx/y)(σ)em
)

(σ ∈ Gk(El∞ )),

where ρ∆(E,mdx/y) means a Kummer 1-cocycle along (a specified sequence of)

l-power roots of ∆(E,mdx/y) = m−12(g3
2 − 27g2

3), and em ∈ Zl[(Z/mZ)2] desig-

nates the group element sum (cf. §6.10 for details).

In this paper, we work in a slightly more general setting of pro-C versions,

namely we allow π to be the maximal pro-C quotient of the geometric funda-

mental group for any full class C of finite groups closed under formation of sub-

groups, quotients and extensions. Moreover, we consider elliptic curves in the

Weierstrass form (1.1) for k being regular algebras B over Q, which naturally

fits in the language of Γ(1)-test objects in the sense of N. Katz [K76]. One can

leave the role of Gk to π1(S, b̄) for S = Spec(B) with a chosen base point b̄

on S, and start the same group-theoretical construction from the monodromy

representation ϕ−→w : π1(S, b̄) → Aut(π). Writing |C| := {m ∈ N | Z/mZ ∈ C},
ZC := lim←−M∈|C|(Z/MZ), we then obtain the invariants (as continuous mappings in

profinite topology)

(1.6) Em : π1(S, b̄)× Z2
C → ZC (m ∈ |C|).

These invariants, collected over all m ∈ |C|, will turn out to recover the meta-

abelian reduction of ϕ−→w in π/π′′ (Proposition 3.4.5(ii)). Meanwhile, Eσ is defined

on the pro-C congruence kernel π1(SC , b̄C), the kernel of the monodromy repre-

sentation ρC : π1(S, b̄) → Aut(πab) ∼= GL2(ZC) in the abelianization πab of π.

One then also gets a generalization of the above formula (1.5) on π1(SC , b̄C) (cf.

Theorem 6.10.3).

At this stage, enters the anabelian geometry of the moduli space Mω
1,1

(= Spec(Q[g2, g3, 1/∆])) and the universal once punctured elliptic curve Mω
1,2

over it: In the geometric fundamental group of the punctured Tate elliptic curve

Tate(q) \ {O}, we can specify a standard generator system x1,x2, z with relation

[x1,x2]z = 1 by the van Kampen gluing of π1(P1 − {0, 1,∞}) along Néron poly-
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gons as considered in [IN97], [N99-02, §4]. Then, choosing such a generator system

in the geometric fiber of an arbitrary elliptic curve E\{O} → S over b̄ corresponds

to choosing a specific path on Mω
1,1 from the representing point of b̄ to the locus

of the Tate elliptic curve Tate(q)/Q((q)). In §5, we will discuss location of several

significant tangential base points on Mω
1,2 and Mω

1,1 in the spirit of our collabo-

ration with L. Schneps [NS00] and H. Tsunogai–S. Yasuda [NT03-06, NTY10] on

the “Galois–Teichmüller theory” of Grothendieck’s programme [G84].

Our first main theorem is an explicit formula for the values of Em(σ;u, v) in

approximation modulo arbitrarily higher modulus in ZC :

Theorem A (Modular unit formula, Theorem 6.2.1). Let σ ∈ π1(S, b̄). For any

M ∈ |C| and (u, v) ∈ Z2
C \ (mZC)2, pick two pairs of rational integers r = (r1, r2),

s = (s1, s2) such that r ≡ (u, v) mod mM22ε (where ε = 0, 1 according as 2 - M ,

2 |M respectively) and
(
s1
s2

)
≡ ρC(σ)

(
r1
r2

)
mod m2M2eC, where eC = 1, 3, 4, or 12

according as C contains both, either or none of Z/3Z, Z/2Z (cf. §5.10). Then

Em(σ;u, v) ≡ 1
12

(
κm,m

2M2

r/m→s/m(σ)− ρ∆(E,mdx/y)(σ)
)

mod M2,

where κm,m
2M2

r/m→s/m(σ) ∈ ẐC is defined by certain Kummer properties of power roots

of modular units “σ( ∗
√
θr/m)/( ∗

√
θs/m)” for rational pairs r/m = (r1/m, r2/m),

s/m = (s1/m, s2/m) with specified branches of ∗
√
�’s introduced in §5.

Here we also note that by definition, Em(σ; 0, 0) = 0 and that Em(σ;u, v) for

(u, v) ∈ (mZC)2 can be evaluated from Em(σ;u + 1, v), Em(σ; 1, 0) together with

an elementary arithmetic term (cf. Proposition 3.4.8).

Application of the above theorem to the complex analytic case of the universal

(once punctured) elliptic curve provides us with exact integer values of Em(σ;u, v)

for σ ∈ B3 (3-strand braids) and (u, v) ∈ Z2, as the congruence assumptions

modulo mM22ε, m2M2eC turn out to be void (or hold true for M = ∞) when

s is obtained from r = (u, v) by multiplication with a matrix in SL2(Z). In §7,

we are led to evaluation of the quantity κm,m
2∞

r/m→s/m(σ) through examining specific

choices of logarithms of Siegel units. It turns out that the main periodic term

can be described in terms of the generalized Rademacher function of weight two

studied by B. Schoeneberg [Sch74] and G. Stevens [St82, St85, St87], which is, for

x = (x1, x2) ∈ Q2 and A =
(
a
c
b
d

)
∈ SL2(Z), given explicitly by

Φx(A) (= Φx(−A))

=


−P2(x1)

2

b

d
(c = 0),

−P2(x1)

2

a

c
− P2(ax1 + cx2)

2

d

c
+

c−1∑
i=0

P1

(
x1 + i

c

)
P1

(
x2 + a

x1 + i

c

)
(c > 0),
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where P1 and P2 denote the fist and second periodic Bernoulli functions respec-

tively. We shall also deduce an explicit formula evaluating the complementary

non-periodic term “Kx(A) ∈ Q” by comparing the infinite product expansions of

Siegel units and generalized Dedekind functions. Our main assertion in this setting

is then summarized as follows:

Theorem B (Generalized Dedekind sum formula, Theorem 7.2.3). Let B3 =

〈τ1, τ2〉 be the braid group of three strands with relation τ1τ2τ1 = τ2τ1τ2, and let

ρ∆ : B3 → Z be the abelianization homomorphism given by τ1, τ2 7→ −1. For each

σ ∈ B3, let Aσ ∈ SL2(Z) denote the transposed matrix of the image of σ in the

homomorphism B3 → SL2(Z) determined by τ1 7→
(

1
−1

0
1

)
, τ2 7→

(
1
0

1
1

)
. Let m ≥ 1,

and for (r1, r2) ∈ Z2 \ (mZ)2, set x = (x1, x2) = (r1/m, r2/m). Then, for σ ∈ B3,

Em(σ; r1, r2) = Kx(Aσ)− Φx(Aσ)− 1
12ρ∆(σ).

Since each of the above three terms 1
12ρ∆(σ), Φx(Aσ) and Kx(Aσ) gener-

ally has a rational value with denominator, it would be of interest to find how

the integer value Em(σ; r1, r2) can be composed of those three rational values in

the above right hand side, say, in computer calculations (see Example 7.2.4). We

will also obtain an explicit formula to compute Em(σ;mk1,mk2) from elementary

arithmetic functions (see Proposition 7.5.1).

As mentioned above, our main motivation is to construct an elliptic analogue

of Ihara’s universal power series for Jacobi sums [Ih86a] hoping to discuss analogs

of deep arithmetic phenomena in π1(P1−{0, 1,∞}) studied by Deligne, Ihara and

other authors (cf. e.g., [De89], [Ih90, Ih02], [MS03] etc.) Our approach basically

follows the combinatorial group-theoretical line of S. Bloch [Bl84] and H. Tsunogai

[Tsu95a], and the principal idea of our proof of Theorem A is, generalizing [N95],

to closely observe monodromy permutations of inertia subsets in π1(E \ {O})
distinguished by punctures on a certain family of meta-abelian coverings of E\{O}.
Along with our early work [N95, N99] together with subsequent complementary

results of [N01, N02j, N03j], the author realized that the main obstruction to

integration of his results in a uniform theory lies in the problem of descending

the field of definition of Eσ from Gk(El∞ ) to Gk. This obstruction is, as suggested

in the equation derived by Tsunogai (Remark 3.4.4), an essential feature which

distinguishes the treatment of Galois representations in π1(E−{O}) from those in

π1(P1 − {0, 1,∞}). We hope that our innovation of the bypass object Em(σ;u, v)

could provide one possible solution to the problem. It is probably good to stress

that, in our approach here, the extension is constructed so as to keep integrality

of values of invariants even after extension to Gk. In topological higher genus

mapping class groups, this sort of extension problem was successfully treated by
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S. Morita [Mor93] by introducing the “extended Johnson homomorphism” which

keeps the cocycle property but allows denominators. In the genus one case, we

should still leave it for future studies to investigate an unknown extension in

Morita’s direction.

Connections of Eσ to Eisenstein series of weight > 2, especially to Eichler–

Shimura type periods of them have been studied to some extent in [N01, N02j,

N03j]. In future work, we hope to discuss them in more detail. More investigation

of anabelian geometry of moduli spaces of pointed elliptic curves should also be

pursued from the viewpoint of [NT03-06], [NTY10].

Before closing this introduction, we should like to mention some related work

suggesting further hopeful directions. The good reduction criterion of Oda–Tama-

gawa (cf. [Od90-95], [Ta97]) ensures that one can think about the pro-l version of

Em(σ;u, v), say, at Frobenius elements σ for primes (not equal to l, bad primes),

in which we might expect some newtype arithmetic nature of elliptic curves. The

fundamental groups of once punctured elliptic curves have also been studied in

depth by M. Asada [As01], B. Enriquez [E10], R. Hain [Ha97], M. Kim [Ki07],

S. Mochizuki [Moc02], J. Stix [Sti08] and H. Tsunogai [Tsu95b, Tsu03], which

enlarges (and enriches) our perspective on these fundamental objects. Z. Woj-

tkowiak [Woj04] studied Galois actions on torsors of paths on once punctured

elliptic curves from a viewpoint close to [N95]. It would certainly be interesting

to investigate this direction from the point of view of the present paper. It seems

apparently relevant to the motivic aspects of elliptic polylogarithms studied by

several authors, e.g., Beilinson–Levin [BL94] and Bannai–Kobayashi [BK10]. At

the time of writing this paper, however, the author does not see explicit links

between their work and ours. We hope to see relations to their work in future

studies.

The construction of this paper is as follows. In §2, we prepare some terminol-

ogy on elliptic curves and our basic objects, especially recalling some language of

Γ(N)-test objects in the sense of N. Katz. In §3, we introduce and discuss our main

object Em mainly from the combinatorial group-theoretical viewpoint. In §4, we

review basic modular forms, especially, Siegel units and Eisenstein series and their

behaviors under the GL2-action. In §5, we focus on the universal once punctured

elliptic curves Mω
1,2 over the moduli space Mω

1,1 and discuss their anabelian geom-

etry from the viewpoint of Galois–Teichmüller theory in the sense of Grothendieck

[G84], Drinfeld [Dr90] and Ihara [Ih90]. In §6, we present our first main theorem

(Theorem A, modular unit formula), and the most part of that section is devoted

to its proof. In §7, we apply the modular unit formula to the complex analytic

model, and deduce our second main theorem (Theorem B, generalized Dedekind

sum formula).



420 H. Nakamura

§2. Some terminology on elliptic curves

In this section, we shall prepare some notation and terminology on elliptic curves

and their moduli space, following mainly the paper by N. Katz [K76]. Since we

will only be concerned with the Galois theory of fundamental groups of algebraic

varieties of characteristic zero, we restrict ourselves to treating schemes over Q-

algebras.

§2.1. Γ(1)-test objects

An elliptic curve over a Q-algebra B is a smooth family of elliptic curves over S =

Spec(B) with a fixed 0-section O : S → E of the structure morphism f : E → S.

The direct image sheaf of the relative differentials ωE/S := f∗(ΩE/S) is a locally

free sheaf over OS ; suppose that we are given a global basis ω of ωE/S (“nowhere

vanishing invariant differential”). Following [K76], we shall call the triple (E,O, ω)

a Γ(1)-test object defined over B. If IO denotes the ideal sheaf of the (image of

the) zero section O, then, for each n ≥ 2, the direct image sheaf f∗(I
−n
O ) is locally

free of rank n on S (cf. [KM85, Chap. 2]). Thus, everywhere locally, one has an

affine neighborhood Spec(A) ⊂ S such that the restriction EA = E ⊗B A has a

formal parameter t near the zero section O and a unique basis {1, x, y} of f∗(I
−3
O )

such that

(1) the formal completion (EA/O)∧ is isomorphic to Spf(A[[t]]);

(2) ω|EA is of the form (1 +O(t))dt;

(3) x ∼ t−2, y ∼ −2t−3 (∼ means “up to a factor of 1 +O(t)”);

(4) the affine ring H0(EA \ {O},O) = lim−→n
H0(EA, I

−n
O ) is of the form

A[x, y]/(y2 = 4x3 − g2x− g3) for some g2, g3 ∈ A.

The above x, y and g2, g3 are uniquely determined on each Spec(A) independently

of the choice of t’s. Moreover, g3
2 − 27g2

3 ∈ A×.

§2.2. The moduli space Mω
1,1 and associated parameters

The universal Γ(1)-test object is defined over the affine variety

Mω
1,1 := Spec

(
Q
[
g2, g3,

1

g3
2 − 27g2

3

])
where g2, g3 are indeterminates. We understand the superscript ω of Mω

1,1 here

as only a symbol (not indicating a particular differential form etc.) Note that,

over Mω
1,1, there is a canonical family of elliptic curves E ⊂ P2

Mω
1,1

defined by
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the equation y2z = 4x3 − g2xz
2 − g3z

3 with a specific zero section O given by

(x : y : z) = (0 : 1 : 0).

To see the universal property of (E/Mω
1,1, O, ω = dx/y) for the moduli problem

of (E/B,O, ω) (in characteristic zero), suppose we are given any Γ(1)-test object

(E/B,O, ω). Pick any Zariski open covering U = {Spec(Ai)}i∈I of S = Spec(B)

as in §2.1, and consider the family of representative morphisms fAi : Spec(Ai)→
Mω

1,1. By the uniqueness of x, y and g2, g3 for each EAi , one sees that the fAi patch

together to yield a (canonical) morphism S →Mω
1,1.

It is obvious from the construction that any Γ(1)-test object (E/B,O, ω)

can be realized as the pull-back of (E/Mω
1,1, O, ω = dx/y) by a unique morphism

S = Spec(B) → Mω
1,1. Through the pull-back morphisms, we in particular find

specific elements g2, g3 ∈ B and x, y ∈ H0(E, I−3
O ) satisfying

E \ {O} = Spec(B[x, y]/(y2 = 4x3 − g2x− g3)).

Then it turns out that ω = dx/y and the function t = −2x/y could play the role

of t of §2.1 globally over B. We shall call the tuple (x, y, g2, g3, t) the associated

parameter for the Γ(1)-test object (E/B,O, ω).

§2.3. Weierstrass tangential base point

Let (E/B,O, ω) be a Γ(1)-test object with the associated parameter (x, y, g2, g3, t).

In this and the following subsections, we assume that B is a regular domain (⊃ Q).

Note that the formal power series ring B[[t]] is then also a regular domain, hence

in particular is a noetherian normal domain (cf. [Mh86, Th. 19.4, 19.5]).

Suppose we are given a geometric point b̄ : Spec(Ω) → S = Spec(B) (Ω an

algebraically closed field) which is defined by a ring homomorphism B → Ω. We

shall define a tangential base point
−→
w b̄ on E \ {O} near the origin lying over b̄ as

follows, and call it the Weierstrass tangential base point over b̄. Observe first that

the coefficientwise application of the above ring homomorphism B → Ω induces

a homomorphism of B[[t]] into the (algebraically closed) field of Puiseux power

series, Ω{{t}} :=
⋃∞
n=1 Ω((t1/n)), which gives a base point for πO1 ((E/O)∧), the

fundamental group of the formal completion (E/O)∧ = Spf(B[[t]]) with ramifica-

tions allowed only along the regular divisor O in the sense of Grothendieck–Murre

[GM71]. Obviously this tangential base point naturally lies in the geometric fiber

Eb̄ = E ⊗B Ω over b̄ minus O; denote it and its natural images on Eb̄ \ {O},
(E/O)∧ by the same symbol

−→
w b̄ for simplicity. Also let

−→
w ′
b̄
, b̄′ be their natural

images in the universal family E/Mω
1,1. Then, applying the Grothendieck–Murre

theory ([GM71]), we obtain a commutative diagram of exact sequences of funda-

mental groups:
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1 // Ẑ(1) //

��

πO1 ((E/O)∧,
−→
w b̄)

��

// π1(S, b̄) // 1

1 // π1(Eb̄ \ {O},
−→
w b̄) // π1(E \ {O},−→w b̄)

��

//

��

π1(S, b̄) //

��

1

1 // π1(Eb̄′ \ {O},
−→
w ′
b̄
) // π1(E \ {O},−→w ′

b̄
) // π1(Mω

1,1, b̄
′) // 1

In fact, the exactness of the bottom sequence follows from the fact that Mω
1,1(C)

is K(π, 1) and from the center-triviality of π1(Eb̄ \{O}). The injectivity of the left

horizontal arrow follows from this observation (and from the GAGA interpretation

of Ẑ(1)), since the upper left vertical arrow (hence the upper middle vertical one

too) is injective (it is an embedding of Ẑ(1) into a free profinite group of rank 2).

This explains the exactness of the above three lines.

§2.4. Weierstrass tangential section

We keep our assumption that B is a regular domain ⊃ Q. We shall write R(∗) to

denote the total quotient ring of ∗ (the fraction field when ∗ is a domain).

In the above diagram, we would also like to have a canonical section π1(S, b̄)→
π1(E \ {O},−→w b̄) (depending only on the choice of t and its power root system

{t1/n}), which we shall call the Weierstrass tangential section. The following ar-

gument to construct such a section may be viewed as a simple digest of (a special

case of) “tangential morphism” explained in [Ma97] or in a more thorough for-

mulation using log geometry [Moc99], [Ho09]. Here we shall argue in the classical

context using the device of Grothendieck–Murre [GM71] to construct an exact

functor of Galois categories Φ : RevO((E/O)∧) → Rev(S) (in the sense of SGA1

[GR71, Exp. V]) which produces a section π1(Spec(B), b̄) → πO1 (Spf(B[[t]]),
−→
w b̄)

as follows.

First, we interpret the top exact sequence in the diagram of §2.3 under

the assumption that b̄ is a generic geometric point, i.e., Ω includes the regular

domain B. Let Bur ⊂ Ω be the universal etale cover of B. The structure of

πO1 ((E/O)∧,
−→
w b̄) as an extension of π1(B, b̄) by Ẑ(1) implies that any connected

object of RevO((E/O)∧), i.e., a finite connected cover of (E/O)∧ = Spf(B[[t]])

with ramification only over {t = 0}, is dominated by Spf(Bur[[t1/n]]) for some

multiplicatively large enough n.

Given any Y = Spf(C) of RevO((E/O)∧), take a multiplicatively large

enough n so that each component of Y is dominated by Spf(Bur[[t1/n]]). Form

the B[[t1/n]]-algebra C ⊗B[[t]] B[[t1/n]] and denote by C̃ the integral closure of

B[[t1/n]] in R(C ⊗B[[t]] B[[t1/n]]). Then, by Abhyankar’s lemma and the Zariski–
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Nagata purity theorem, C̃ is etale over B[[t1/n]] in the category of schemes

(cf. [GM71, 4.3.4 a])). Let Ĉ denote the formal completion of C̃ along t = 0,

which is etale over Spf(B[[t1/n]]) in the category of formal schemes ([GM71,

Prop. 3.2.3]). But since the category of finite etale covers over Spf(B[[t1/n]]) (for

fixed n) is equivalent to the category of those over Spec(B) ([GM71, 3.2.4]; in-

deed, only its easy direction suffices here), there corresponds to Ĉ a finite etale

cover Φ(Y ) over S = Spec(B) which turns out to be determined independently

of n.

This construction gives an exact functor Φ : RevO((E/O)∧) → Rev(S). In-

deed, for a given diagram Spf(C)→ Spf(D)← Spf(C ′) in RevO((E/O)∧), pick n

multiplicatively large enough so that Spf(Bur[[t1/n]]) dominates each component

of Spf(C)∪ Spf(C ′)∪ Spf(D). Then we have (by use of [B-1, Chap. 2, §3, Prop. 8]

(twice) and [B-1, §5, Prop. 3] (once))

(C ⊗B[[t]] B[[t1/n]])⊗D⊗B[[t1/n]] (C ′ ⊗B[[t]] B[[t1/n]])

= (C ⊗D C ′)⊗B[[t]] B[[t1/n]].

Through the LHS above, C̃⊗D̃ C̃ ′ sits in the total quotient ringR
((
C⊗DC ′

)
⊗B[[t]]

B[[t1/n]]
)

of the RHS as an etale cover over B[[t1/n]] which is itself normal and

has the same total quotient ring (EGA I, 3.4.9). From this observation it follows

that the functor Φ preserves fiber products. That Φ preserves finite sums follows

immediately from a basic property of integral closures in products of rings ([B-2,

Chap. 5, §1, Prop. 9]). It is also obvious from the construction that a non-empty Y

gives rise to a non-empty Φ(Y ). Thus, by [GR71, Exp. V, Prop. 6.1], we conclude

that Φ gives an exact functor of Galois categories.

Conversely, if a connected finite etale cover Spec(B′) over Spec(B) is given

(B ⊂ B′ ⊂ Bur), then the above Φ turns Y = Spf(B′[[t]]) back to Spec(B′) itself.

Thus, the functor Y 7→ Φ(Y ) inverts the canonical pull-back functor Rev(S) →
RevO((E/O)∧).

Once the functor Φ is obtained, it is not difficult to check that, for any base

point b̄ on S, the fiber functor
−→
w b̄ : RevO((E/O)∧) → Sets is the composite

of Φ with b̄ : Rev(S) → Sets. Slightly more generally, for any two base points

b̄, b̄′ on S, there arises a natural mapping of etale homotopy classes of chains

π1(S; b̄, b̄′)→ π1(E \ {O};−→w b̄,
−→
w b̄′). It is also a rather routine task to see that this

gives a section of the canonical projection π1(E \ {O};−→w b̄,
−→
w b̄′)→ π1(S; b̄, b̄′). We

shall write the constructed section associated with the parameter t = −2x/y as

s−→w : π1(S; b̄, b̄′)→ π1(E \ {O};−→w b̄,
−→
w b̄′)

and call it the Weierstrass tangential section (in π1).
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§2.5. Pro-C monodromy representation

Below, we suppose that any full class C of finite groups is given and denote the

maximal pro-C quotient of Π1,1 by Π1,1(C). Denote by |C| the set of positive inte-

gers N with Z/NZ ∈ C, and write ZC = lim←−N∈|C|(Z/NZ).

We continue our discussion of a Γ(1)-test object (E,O, ω) over a regular al-

gebra B(⊃ Q) which gives rise to the exact sequence discussed in §2.3:

1→ Π1,1 = π1(Eb̄ \ {O},
−→
w b̄)→ π1(E \ {O},−→w b̄)→ π1(S, b̄)→ 1

with the Weierstrass section s−→w (§2.4). Conjugation with s−→w induces a monodromy

representation

ϕC−→
w

: π1(S, b̄)→ Aut(Π1,1(C)).

We shall call it the pro-C monodromy representation arising from the Γ(1)-test ob-

ject (E/B,O, ω). By the comparison theorem ([GR71]), the geometric fundamental

group π1(Eb̄ \ {O},
−→
w b̄) may be identified with a free profinite group presented as

Π1,1 = 〈x1,x2, z | [x1,x2]z = 1〉 so that z generates an inertia subgroup over O.

We will take z to be a unique generator of the image of πO1 ((Eb̄/O)∧,
−→
w b̄) (§2.4)

having the monodromy property t1/n|az
= ζ−1

n t1/n (n ≥ 1) in our later terminol-

ogy of §6.1. It is then easy to see that ϕC−→
w

(π1(S, b̄)) stabilizes 〈z〉 and acts on it by

the C-adic cyclotomic character.

The monodromy representation in the maximal abelian quotient of Π1,1(C)
gives the action on the first etale homology group of the corresponding elliptic

curve. It can be described in a more concrete way by matrices as follows. The

abelianization of Π1,1(C) is nothing but πC1 (Eb̄) (∼= Z2
C), which is canonically identi-

fied with the C-adic Tate module lim←−N∈|C|Eb̄[N ]. Reduction of ϕC−→
w

to this quotient

gives the representation

ρC : π1(S, b̄)→ GL(Z2
C) = GL2(ZC).

§2.6. Isogeny cover by multiplication by N

For convenience of illustrations, we suppose that an identification of the geometric

fundamental group π1(Eb̄ \ {O},
−→
w b̄) with a free profinite group Π1,1 = 〈x1,x2, z |

[x1,x2]z = 1〉 is given and fixed, so that z generates the (specific) inertia group

over O as in the previous subsection.

Let N ∈ |C|. Then there is a canonical isomorphism between the set Eb̄[N ] of

N -division points of Eb̄ and the quotient π1(Eb̄)/Nπ1(Eb̄), and after selecting the

generators x1,x2 of π1(Eb̄ \ {O},
−→
w b̄)
∼= Π1,1, we may identify the latter quotient

with (Z/NZ)2 by x1 7→ (1, 0), x2 7→ (0, 1). Let ρN : π1(S, b̄) → GL2(Z/NZ) be

the monodromy representation obtained as the N -th component of ρC under this
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identification, and let (SN = Spec(BN ), b̄N ) be a pointed etale cover of (S, b̄)

corresponding to the kernel of ρN . If EN denotes the pull-backed elliptic curve

over BN , then the group scheme EN [N ], the kernel of the isogeny EN → EN

given by multiplication by N , is a finite etale cover of BN with trivial monodromy,

hence is the disjoint union of N2 copies of BN which bijectively corresponds to

the set Eb̄[N ]. Through this identification, the elliptic curve EN/BN has BN -

rational sections of N -division points labeled by (Z/NZ)2. This, together with

the nowhere vanishing differential ωN inherited from ω, defines a Γ(N)-test object

(EN/BN , α : (Z/NZ)2 ∼−→ EN [N ], ωN ) in the sense of [K76].

The ring BN necessarily contains µN , the N -th roots of unity. Indeed, there

is a morphism of flat commutative group schemes eN : EN [N ] × EN [N ] → µN
over BN called the Weil pairing. This canonically defines a primitive N -th root of

unity ζN = eN (α(1, 0), α(0, 1)) ∈ BN .

One can choose a sequence of pointed covers (SN , b̄N ) of (S, b̄) to be multi-

plicatively compatible for allN ∈ |C| so that their inverse limit (SC= Spec(BC), b̄C)

forms a pro-etale cover of (S, b̄). The associated elliptic curve EC/BC has the ratio-

nal C-torsion sections whose “Tate module” is denoted by Z2
C . Under this setting,

the fundamental group π1(SC , b̄C) is, as a subgroup of π1(S, b̄), nothing but the

kernel of the representation ρC : π1(S, b̄) → GL(Z2
C). We shall call it the pro-C

congruence kernel of π1(S, b̄). Note that the restriction of ϕC−→
w

to the pro-C con-

gruence kernel is the same as the monodromy representation of π1(SC , b̄C) on

πC1 ((EC)b̄C \ {O},
−→
w b̄C ) for the Γ(1)-test object (EC/BC , O, ωC).

§2.7. Anti-homomorphism a : π1(S, b̄)→ Aut(SN/S)

The covering transformation group Aut(SN/S) acts on SN from the left. The

elements of Aut(SN/S) bijectively correspond to the image of ρN : π1(S, b̄) →
GL2(Z/NZ) as follows. Let SN (b̄) be the geometric fiber of SN → S over b̄ which

contains the above selected particular point b̄N . Then the fundamental group

π1(S, b̄) acts on SN (b̄) from the left. The action of Aut(SN/S) on SN (b̄) commutes

with that of π1(S, b̄) and is simply transitive. Therefore, for each σ ∈ π1(S, b̄), there

is a unique aσ ∈ Aut(SN/S) such that σ(b̄N ) = aσ(b̄N ). This mapping satisfies

(2.7.1) aσσ′ = aσ′aσ (σ, σ′ ∈ π1(S, b̄))

and induces an anti-isomorphism

(2.7.2) aN : Im(ρN )
∼−→ Aut(SN/S).

By the anti-functoriality of Spec(∗), each a ∈ Aut(SN/S) comes from a unique

automorphism of the ring BN which we shall write as b 7→ b|a (b ∈ BN ). Note that
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the mapping σ 7→ ( |aσ ) gives a (non-canonical) isomorphism Im(ρ) ∼= Aut(BN/B).

If we change the choice of b̄N in SN (b̄), then the above anti-homomorphism differs

by conjugation by an element of Aut(SN/S).

With each morphism φ : T = Spec(R) → SN there is associated a Γ(N)-test

object (Eφ/R, αφ : (Z/NZ)2 ∼−→ Eφ[N ], ωφ) by natural fiber product formation.

Given an automorphism a ∈ Aut(SN/S), we obtain another morphism φ′ = a ◦ φ
and the induced Γ(N)-test object (Eφ′ , αφ′ : (Z/NZ)2 ∼−→ Eφ′ [N ], ωφ′). Suppose

that the morphisms φ, φ′ correspond to ring homomorphisms φR, φ
′
R : BN → R

respectively. Then the values of the “functions” b and b|a ∈ BN at those T -valued

points φ, φ′ are related by

(2.7.3) φ′R(b) = φR(b|a) (b ∈ BN , φ′ = a ◦ φ).

[For example, if s ∈ SN (C) is any complex point, then b(as) = (b|a)(s).] Since the

two morphisms T → S through φ, φ′ are the same, we may canonically identify

Eφ = Eφ′ . Thus, we have

(2.7.4) αφ′ = αφ ◦ ρN (σ) (φ′ = aσ ◦ φ).

Using this and a standard argument on the Weil pairing, one sees that

(2.7.5) (ζN |aσ ) = ζ
det(ρN (σ))
N = ζ

χ(σ)
N (N ∈ |C|, σ ∈ π1(S, b̄)),

where χ : π1(S, b̄)→ Z×C the C-adic cyclotomic character.

§2.8. Relation of ρN (σ) and aN (σ) on M1,1[N ]

Now we shall consider the moduli stack M1,1 of elliptic curves. The relative moduli

problem of naive level N structures for N ≥ 3 over elliptic curves is known to

be relatively representable by a scheme M1,1[N ] which is etale over the stack

M1,1 with Galois group GL2(Z/NZ). Write (E,O) for the universal family of

elliptic curves over M1,1, and (EN , O) for its pull-back over M1,1[N ] which has the

(universal) level N -structure αN : (Z/NZ)2 ∼−→ EN [N ]. Pick any base point b̄ on

M1,1 and its lift b̄N onM1,1[N ]. Then we obtain the identification αb̄N : (Z/NZ)2 ∼=
EN
b̄N

[N ] ∼= Eb̄[N ]. This gives us the monodromy representation ρN : π1(M1,1, b̄)→
GL2(Z/NZ). On the other hand, for each σ ∈ π1(M1,1, b̄), let aσ be the unique

automorphism of M1,1[N ] over M1,1 determined by σ(b̄N ) = aσ(b̄N ). Given a

morphism φ : T = Spec(R)→ M1,1[N ], we obtain a pull-backed elliptic curve Eφ
over R with a level N -structure αφ : (Z/NZ)2 ∼−→ Eφ[N ]. The composition φ′ =

aσ ◦ φ induces another elliptic curve Eφ′ with level N -structure αφ′ : (Z/NZ)2 ∼−→
Eφ′ [N ]. Similar to (2.7.3)–(2.7.4), the two morphisms T →M1,1 through φ, φ′ are
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the same, so that after identifying Eφ = Eφ′ , we have

(2.8.1) αφ′ = αφ ◦ ρN (σ) (φ′ = aσ ◦ φ).

§2.9. Complex modular curves

The complex model of the “universal elliptic curve E/{±1}” over the “j-line”

Y1(C) := SL2(Z)\H is given as the quotient space of C×H modulo the left action

of Z2 o SL2(Z) by (cf. [Mum83, §9])

(2.9.1) (z, τ) 7→
(
z + (2πi)(mτ + n)

cτ + d
,
aτ + b

cτ + d

) ((
a
c
b
d

)
∈ SL2(Z), (m,n) ∈ Z2

)
.

Fix an embedding Q(µN ) ↪→ C. Then there arises a commutative diagram

(2.9.2)

EN ⊗ C //

��

Z2 o Γ(N)\C× H

��
M1,1[N ]⊗ C // Y (N)⊗ C = Γ(N)\H

where ⊗C are taken over Q(µN ), in such a way that the section αN (x, y) :

M1,1[N ]→ EN (x, y ∈ Z/NZ) is mapped to the image of {((2πi)( τN x+ 1
N y), τ) |

τ ∈ H}.
Since the natural morphism of M1,1[N ] to the modular curve Y (N)/Q(µN ) of

level N is the quotient by {±1} ⊂ GL2(Z/NZ), each aσ (σ ∈ π1(M1,1, b̄)) induces

also an automorphism a∗σ of Y (N). Suppose aσ fixes µN . Then a∗σ gives a Q(µN )-

automorphism of Y (N) which naturally comes from an element of Aut(Y (N)/Y (1)

⊗Q(µN )) ∼= PSL2(Z/NZ). Now, we realize that there arise two matrices in our

discussions so far. One is the image ρN (σ) ∈ SL2(Z/NZ), where ρN : π1(S, b̄) →
GL2(Z/NZ) is the monodromy representation in the N -division points (§2.6). The

other is the covering transformation A ∈ PSL2(Z) of H lifting a∗σ. We then claim

(2.9.3) ρN (σ) ≡ tA in PSL2(Z/NZ).

Proof. Let τ0 designate the image of a small segment τ = iy (R 3 y � 0) on

Y (N)(C) and let A =
(
a
c
b
d

)
∈ PSL2(Z/NZ) act on it as an automorphism of the

modular curve. Then, as explained in (2.9.2), the level structures on elliptic curves

on the images of τ0 and A(τ0) = aτ0+b
cτ0+d are given by the images of αφ : (x, y) 7→

(2πi( τ0N x + 1
N y), τ0) and αφ′ : (x, y) 7→ (2πi(A(τ0)

N x + 1
N y), A(τ0)) modulo the

action of Z2 o Γ(N) respectively. Let us compute the latter, taking into account
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the equivalences under the action of Z2 o SL2(Z) on C× H. It then follows that(
2πi

(
x

N

aτ0 + b

cτ0 + d
+

y

N

)
,
aτ0 + b

cτ0 + d

)
=

(
2πi

( aτ0+b
N x+ cτ0+d

N y

cτ0 + d

)
,
aτ0 + b

cτ0 + d

)
∼
(

2πi

(
τ0
N

(ax+ cy) +
1

N
(bx+ dy)

)
, τ0

)
.

The interpretation is that the point represented by the elliptic curve Eτ0 with level

structure αφ : (x, y) 7→ 2πi
(
τ0
N x+ 1

N y
)

is transformed to the point represented by

the same elliptic curve but with level structure αφ′ : (x, y) 7→ 2πi( τ0N (ax + cy) +
1
N (bx+ dy)) under the automorphism of Y (N) induced by the matrix A. Namely,

the corresponding action of ρN (σ)/±1 on E [N ] must come from
(
x
y

)
7→
(
a
b
c
d

)
(xy).

Hence αφ′ = ±αφ ◦
(
a
b
c
d

)
, which implies ρN (σ) = ±

(
a
b
c
d

)
by (2.7.3).

§3. Monodromy invariants of Eisenstein type

§3.1. Setting

In this section, we fix a full class C of finite groups and a Γ(1)-test object (E,O, ω)

over a connected regular affine scheme S = Spec(B) of characteristic zero with

associated parameter (x, y, g2, g3, t) as in §2.2. Pick a geometric basepoint b̄ on S

which induces the Weierstrass tangential basepoint
−→
w b̄ on the once punctured el-

liptic curve Eb̄\{O}. We then consider the pro-C monodromy representation ϕC−→
w b̄

:

π1(S, b̄)→ Aut(π1(Eb̄ \{O},
−→
w b̄)(C)) as in §2.5. Set π := π1(Eb̄ \{O},

−→
w b̄)(C), and

write π′ := [π, π] (resp. π′′ := [π′, π′]) for the commutator (resp. double commu-

tator) subgroup of π in the sense of profinite groups. Denote by πab := π/π′ the

abelianization of π. The abelianization map extends to a natural projection of the

complete group algebra of π to that of πab:

(∗)ab : ZC [[π]]→ ZC [[πab]].

The purpose of this section is to extract a sequence of arithmetic representations

of π1(S, b̄), which we wish to call of Eisenstein type, from the action of π1(S, b̄) on

the meta-abelian quotient π/π′′ in a combinatorial group-theoretical way.

§3.2. Pro-C free differential calculus

Suppose we are given a free generator system x1,x2 of π so that z := [x1,x2]−1

generates an inertia subgroup over the puncture on Eb̄ \{O}. The pro-C free differ-

ential operator ∂
∂xi

: ZC [[π]]→ ZC [[π]] (i = 1, 2) is well defined and is characterized

by the formula

(3.2.1) λ = ε(λ) +
∂λ

∂x1
(x1 − 1) +

∂λ

∂x2
(x2 − 1),
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where ε : ZC [[π]] → ZC is the augmentation map. Concerning the abelianiza-

tion images of the terms in the above formula, we have a pro-C version of the

Blanchfield–Lyndon exact sequence of ZC [[πab]]-modules:

(3.2.2) 0→ π′/π′′
∂−→ ZC [[πab]]⊕2 d−→ ZC [[πab]]→ 0,

where ∂(s) :=
(
∂s
∂x1

)ab ⊕
(
∂s
∂x2

)ab
and d(µ1 ⊕ µ2) := µ1(x̄1 − 1) + µ2(x̄2 − 1)

for x̄i := (xi)
ab (i = 1, 2). It is known by [Ih86a, Ih99-00] that π′/π′′ is a free

Ẑ[[πab]]-cyclic module generated by the image z̄ of z ∈ π′ in π′/π′′. In view of this

fact, we can write each element s̄ ∈ π′/π′′ uniquely as µ · z̄ (µ ∈ ZC [[πab]]). The

embedding ∂ of π′/π′′ in (3.2.2) is often useful to calculate the “coordinate” µ of s̄.

In fact, since ∂(z̄) = (x̄2 − 1, 1− x̄1), we have

(3.2.3) µ =

(
∂s

∂x1

)ab

/(x̄2 − 1) =

(
∂s

∂x2

)ab

/(1− x̄1)

for s̄ = µ · z̄ ∈ π′/π′′ given as the image of s ∈ π′.

§3.3. Guv-invariants

For simplicity below, we shall write the action of σ ∈ π1(S, b̄) via ϕC−→
w b̄

just as

(3.3.1) σ(x) := ϕC−→
w b̄

(σ)(x) (σ ∈ π1(S, b̄), x ∈ π = π1(Eb̄ \ {O},
−→
w b̄)(C)).

As explained in §2.5, the monodromy action on the abelianization πab = ZCx̄1 ⊕
ZCx̄2 can be expressed by 2 by 2 matrices: we shall write

(3.3.2) ρ(σ) = ρC(σ) =

(
a(σ) b(σ)

c(σ) d(σ)

)
(σ ∈ π1(S, b̄)),

so that σ(x1) ≡ x
a(σ)
1 x

c(σ)
2 and σ(x2) ≡ x

b(σ)
1 x

d(σ)
2 mod π′. Observe that, for each

pair (u, v) ∈ Z2
C , the quotient

(3.3.3) Suv(σ) := σ(x−v2 x−u1 ) · (xa(σ)u+b(σ)v
1 x

c(σ)u+d(σ)v
2 )

lies in π′, which gives us a unique element Guv(σ) ∈ ZC [[πab]] determined by the

equation

(3.3.4) Suv(σ) ≡ Guv(σ) · z̄

in π′/π′′.

§3.4. Integral invariant ECm(σ)

Let m ∈ |C|. The above element Guv(σ) ∈ ZC [[πab]] can be regarded as a ZC-
valued measure (written dGuv(σ)) on the profinite space πab ∼= Z2

C . So one can

think about the volume of the subspace (mZC)2 ⊂ Z2
C under this measure:
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Definition 3.4.1. For m ∈ |C|, σ ∈ π1(Sb̄) and (u, v) ∈ Z2
C , we define

ECm(σ;u, v) :=

∫
(mZC)2

dGuv(σ).

Note that, by definition, S00(σ) = 1, G00(σ) = 0, hence ECm(σ; 0, 0) = 0. For

readers unfamiliar with measure interpretation of Iwasawa algebras, we shall here

quickly rephrase the above definition of ECm(σ;u, v) in more elementary terms:

Recalling that ZC [[πab]] = lim←−n∈C ZC [x̄1, x̄2]/(x̄n1 −1, x̄n2 −1) (where the projective

system is formed over n ∈ C multiplicatively), for m ∈ C, take the m-th component

of Guv(σ) ∈ ZC [[πab]] and write

Guv(σ) ≡
m−1∑
i=0

m−1∑
j=0

aijx̄
i
1x̄
j
2 mod (x̄m1 − 1, x̄m2 − 1)

in the group ring ZC [(Z/mZ)2] = ZC [x̄1, x̄2]/(x̄m1 − 1, x̄m2 − 1). The volume of

Definition 3.4.1 is then nothing but the principal coefficient a00 ∈ ZC of this

expression: ECm(σ;u, v) = a00.

One of our principal concerns in this and the following subsections is to ex-

amine the dependence of ECm(σ;u, v) on (u, v) ∈ Z2
C modulo m. Let us first express

Guv by G10 and G01.

Proposition 3.4.2. For each σ ∈ π1(S, b̄), we have

Guv(σ) =
(x̄−b1 x̄−d2 )v − 1

x̄−b1 x̄−d2 − 1
G01(σ) + (x̄−b1 x̄−d2 )v

(x̄−a1 x̄−c2 )u − 1

x̄−a1 x̄−c2 − 1
G10(σ)

− Rest
(
a
c
b
d

)
.
(
u
v

)
.

Here,
(
a
c
b
d

)
= ρC(σ) ∈ GL2(ZC) and Rest

(
a
c
b
d

)
.(uv ) is an explicit element in x̄1, x̄2

defined by

Rest
(
a
c
b
d

)
.
(
u
v

)
:= Rvb,d + (x̄−b1 x̄−d2 )vRua,c +

x̄−bv1 − 1

x̄1 − 1

x̄−cu2 − 1

x̄2 − 1
x̄−dv2 ,

where, for any α, β, γ ∈ ZC,

Rγα,β :=
1

x̄1 − 1

(
(x̄−α1 x̄−β2 )γ − 1

x̄−α1 x̄−β2 − 1
· x̄
−β
2 − 1

x̄2 − 1
− x̄−βγ2 − 1

x̄2 − 1

)
.

Note. In the above notation Rest
(
a
c
b
d

)
.
(
u
v

)
, the dot between

(
a
c
b
d

)
and (uv ) sepa-

rates the matrix component and the vector component. Namely, Rest gives a map

from SL2(ZC)× Z2
C to ZC .
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Proof. What we need to do is to evaluate (3.3.3) in π′/π′′. We may decompose

Suv into three factors lying in π′ as follows:

Suv =
(
(S01x

−d
2 x−b1 )vxbv1 xdv2

)
· x−dv2 x−bv1

(
(S10x

−c
2 x−a1 )uxau1 xcu2

)
xbv1 xdv2

· (x−dv2 x−bv1 x−cu2 xbv1 xcu+dv
2 ).

Then, apply (3.2.2)–(3.2.3) to each of the three factors. Note that in free differential

calculus, we can make use of basic laws of Leibniz type as shown in [Ih86b, p. 440].

Only one non-trivial point is to show a formula like(
∂(x−d2 x−b1 )vxbv1 xdv2

∂x2

)ab

=
(x̄−b1 x̄−d2 )v − 1

x̄−b1 x̄−d2 − 1
· x̄
−d
2 − 1

x̄2 − 1
− x̄−dv2 − 1

x̄2 − 1
,

which, however, follows easily by induction for non-negative integers v, and then

by the standard continuity argument. (Alternatively, one may skip induction by

using the general formula ∂fv

∂xi
= fv−1

f−1
∂f
∂xi

from [Ih86b, p. 440 (iv)].)

Remark 3.4.3. In general, there are no reasons to expect periodicity of the values

ECm(σ;u, v) in (u, v) with any modulus. But we will see later (see Corollary 6.9.8)

that ECm(σ;u, v) mod M2 (M ∈ |C|) is determined by the residue class of (u, v) in

(Z/mM22εZ)2, where ε = 0, 1 according as 2 - M , 2|M respectively. Namely, we

have a well defined mapping

Em,M2 : π1(S, b̄)→ (Z/M2Z)[(Z/mM22ε)2].

In fact, one can refine Em,M2 more minutely by replacing M2 with M , which

amounts to examining elementary arithmetic divisibility of
∫

(mẐ)2 dR
mM2ε

α,β . We

discuss it in a separate article [N12].

Remark 3.4.4. In [Tsu95a, Prop. 1.12], H. Tsunogai derived, by applying σ to

the relation [x1,x2]z = 1, an equation satisfied by G−1,0 := G−1,0(σ) and G0,−1 :=

G0,−1(σ):

(x̄b1x̄
d
2 − 1)G−1,0 − (x̄a1x̄c2 − 1)G0,−1

= (ad− bc)− (x̄d2 − 1)(x̄a1x̄c2 − 1)− (x̄c2 − 1)(x̄b1x̄
d
2 − 1)

(x̄1 − 1)(x̄2 − 1)

in the notation of the above proposition. Since (x̄a1x̄c2 − 1), (x̄b1x̄
d
2 − 1) are not

zero-divisors in ZC [[Z2
C ]] as shown in [Ih99-00, Part I, Prop. 2.1.1(i)], the above

Tsunogai’s equation implies that G−1,0 determines G0,−1 and vice versa.

Proposition 3.4.5. Let σ ∈ π1(S, b̄) with ρC(σ) =
(
a
c
b
d

)
. For (u, v) ∈ (ZC)2,

denote by Cm(u, v) ⊂ Z2
C the coset modulo (mZC)2 represented by

(
a
c
b
d

)
.
(
u
v

)
=

u
(
a
c

)
+ v
(
b
d

)
.
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(i) We have∫
Cm(u,v)

dG10(σ) = ECm(σ;u+ 1, v)− ECm(σ;u, v)

+

⌊
au+ bv

m

⌋
·
(⌊

c(u+ 1) + dv

m

⌋
−
⌊
cu+ dv

m

⌋)
,

where
⌊
α
m

⌋
:= −

∫
mZC d

(
x−α−1
x−1

)
for α ∈ ZC.

(ii) The values of {ECm(σ;u, v) | (u, v) ∈ Z2
C , m ∈ |C|} determine the action of σ

on π/π′′.

Proof. By a simple calculation from the definition, it follows that

Guv(σ) = Gu+1,v(σ)− (x̄−a1 x̄−c2 )u(x̄−b1 x̄−d2 )vG10(σ)(3.4.6)

+ Rest
(
a
c
b
d

)
.(u+1
v )− Rest

(
a
c
b
d

)(
u
v

)
= Gu+1,v(σ)− (x̄−a1 x̄−c2 )u(x̄−b1 x̄−d2 )vG10(σ)

+ x̄−cu−dv2

x̄−c2 − 1

x̄2 − 1

x̄−au−bv1 − 1

x̄1 − 1
.

Integrating measures represented by the above terms over the subspace (mZC)2 ⊂
Z2
C enables us to find

∫
Cm(u,v)

dG10(σ)− ECm(σ;u+ 1, v) + ECm(σ;u, v) equal to∫
mZC

d

(
x̄−au−bv1 − 1

x̄1 − 1

)
·
∫
mZC

d

(
x̄−cu−dv−c2 − x̄−cu−dv2

x̄2 − 1

)
,

from which (i) follows immediately. The formula (i) determines the measure G10(σ)

∈ ZC [[Z2
C ]] from the collection of values ECm(σ;u, v) ((u, v) ∈ Z2

C , m ∈ |C|). If we

put u = −1, v = 0, then we find that it also determines

G−1,0(σ) = −x̄a1x̄c2G1,0(σ)− x̄a1 − 1

x̄1 − 1

x̄c2 − 1

x̄2 − 1
.

Tsunogai’s equation (Remark 3.4.4) then also determines G0,−1(σ). Thus, both

S−1,0(σ) = σ(x̄1)x̄−a1 x̄−c2 and S0,−1(σ) = σ(x̄2)x̄−b1 x̄−d2 are determined modulo π′′.

The assertion (ii) follows since π is generated by x1, x2.

Remark 3.4.7. We may use the notation⌊
α

m

⌋
:= −

∫
mZC

d

(
x−α − 1

x− 1

) (
resp.

⌈
α

m

⌉
:=

∫
mZC

d

(
xα − 1

x− 1

))
for m ∈ |C|, α ∈ ZC to designate the pro-C floor (resp. ceiling) function. Obviously,

d−α/me = −bα/mc. In fact, it is not difficult to verify the following: If α = mβ,

then dα/me = β. When m - α, writing α ≡ 〈α〉m mod m with 〈α〉m ∈ [0,m) ⊂ N,

it follows that dα/me = 1 + (α− 〈α〉m)/m.
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The following proposition allows us to compute ECm(σ;u, v) with both u and

v divisible by m in ZC from the values of ECm(σ; 1, 0), ECm(σ;u + 1, v) and an

arithmetically elementary term.

Proposition 3.4.8. If (u, v) ∈ (mZC)2, then, for each σ ∈ π1(S, b̄) with ρC(σ) =(
a
c
b
d

)
,

ECm(σ;u, v) = ECm(σ;u+ 1, v)− ECm(σ; 1, 0) +

⌊
au+ bv

m

⌋
·
⌊
c

m

⌋
.

Proof. Considering terms on the RHS of (3.4.6) as measures on the space Z2
C , we

find that the multiplications by (x̄−a1 x̄−c2 )u(x̄−b1 x̄−d2 )v, x̄−cu−dv2 in the second and

third terms turn out to have no effect upon integration over (mZC)2 under the

assumption (u, v) ∈ (mZC)2. This observation proves the proposition.

§3.5. Twisted invariants and their composition rule

Let σ ∈ π1(S, b̄) and regard σ as acting on πab through ρ(σ) ∈ GL2(ZC). Noting

that the Guv-invariant may be rewritten as

(3.5.1) Guv(σ) = σ

(
x̄−v2 − 1

x̄−1
2 − 1

)
G01(σ)+σ

(
x̄−v2

x̄−u1 − 1

x̄−1
1 − 1

)
G10(σ)−Rest ρ(σ).

(
u
v

)
,

we shall introduce its twist by a matrix ε ∈ GL2(ZC) as follows:

Gε(uv )(σ) :=

[
(σε)

(
x̄−v2 − 1

x̄−1
2 − 1

)]
·Gε(0

1)(σ) +

[
(σε)

(
x̄−v2

x̄−u1 − 1

x̄−1
1 − 1

)]
·Gε(1

0)(σ)

(3.5.2)

−
[
Rest ρ(σ)ε.

(
u
v

)]
+ χ(σ) · σ

[
Rest ε.

(
u
v

)]
.

Since Rest I.
(
u
v

)
= 0 for the unit matrix I =

(
1
0

0
1

)
, it turns out that GI(uv )(σ) =

Guv(σ).

The merit of introducing the ε-twisted invariants is the following composition

rule:

Proposition 3.5.3. For σ, τ ∈ π1(S, b̄) and ε ∈ GL2(ZC), we have

Gε(uv )(στ) = G
ρ(τ)ε
(uv ) (σ) + χ(σ) · σ(Gε(uv )(τ)).

Proof. We start by studying composition rules for G10 and G01. Let ρ(σ) =
(
a
c
b
d

)
,

ρ(τ) =
(
α
γ
β
δ

)
so that ρ(στ) =

(aα+bγ
cα+dγ

aβ+bδ
cβ+dδ

)
. Then in π′/π′′ we have

G10(στ) · z̄ ≡ S10(στ) = (στ)(x−1
1 )xaα+bγ

1 xcα+dγ
2 .

As (στ)(x−1
1 ) = σ

(
(G10(τ) · z̄χ(σ))x−γ2 x−α1

)
, one can decompose the RHS as the

product of two factors G10(τ)(σx̄1, σx̄2)·z̄χ(σ) and σ(x2)−γσ(x1)−αxaα+bγ
1 xcα+dγ

2 ,
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where in the former factor G10(τ)(σx̄1, σx̄2) means the element obtained from

G10(τ) = G10(τ)(x̄1, x̄2) ∈ ZC [[πab]] by substituting (σx̄1, σx̄2) = (x̄a1x̄c2, x̄
b
1x̄
d
2)

for (x̄1, x̄2), and the latter factor is equivalent to Gαγ(σ) · z̄ mod π′′ with Gαγ
given as in §3.4. Applying the parallel argument to G01, we obtain

G10(στ) = χ(σ)G10(τ)(σx̄1, σx̄2) +Gαγ(σ),(3.5.4)

G01(στ) = χ(σ)G01(τ)(σx̄1, σx̄2) +Gβδ(σ).(3.5.5)

Putting these together into Guv(στ) developed by the formula (3.5.1) and collect-

ing terms according to the definition (3.5.2), we obtain

(3.5.6) Guv(στ) = χ(σ) · σ(Guv(τ)) +G
ρ(τ)
(uv ) (σ) (σ, τ ∈ π1(S, b̄)).

Now, if f : S → Mω
1,1 is the representing morphism, then the monodromy repre-

sentation from π1(S, b̄) factors through π1(Mω
1,1, f(b̄)) and the above formula can

hold true for all elements σ, τ ∈ π1(Mω
1,1, f(b̄)). Because of the surjectivity of ρ in

the universal elliptic curves, any given ε ∈ GL2(ZC) is realized as the image under

ρ of some τ ∈ π1(Mω
1,1, f(b̄)). Applying then (3.5.6) to σ = σ1σ2, one gets

Gε(uv )(σ) = Guv(σ1σ2τ)− χ(σ1σ2) · σ1σ2(Guv(τ))

=
{
χ(σ1) · σ1(Guv(σ2τ)) +G

ρ(σ2τ)
(uv ) (σ1)

}
− χ(σ1) · σ1

(
χ(σ2) · σ2(Guv(τ))

)
= χ(σ1) · σ1(G

ρ(τ)
(uv ) (σ2)) +G

ρ(σ2)ε
(uv ) (σ1).

This concludes the proof.

As in §3.4, for each m ∈ |C|, one can consider the volume of the subspace

(mZC)2 ⊂ Z2
C under the measure dGε(uv )(σ), i.e.,

(3.5.7) Eεm(σ;u, v) (= EC,εm (σ;u, v)) :=

∫
(mZC)2

dGε(uv )(σ).

Concerning the composition, noticing that the subspace (mZC)2 is invariant under

the GL2(ZC)-action on Z2
C , one derives easily from Proposition 3.5.3 that

Eεm(στ ;u, v) = Eρ(τ)ε
m (σ;u, v) + χ(σ)Eεm(τ ;u, v)

(σ, τ ∈ π1(S, b̄), (u, v) ∈ Z2
C).

§3.6. Measure ECσ on the congruence kernel

In our argument so far, we have not allowed m to vary over the integers m ∈ |C|,
as our invariant ECm(σ;u, v) does not directly provide a coherent sequence in the

projective system of the group ring ZC [(Z/mZ)2] in general. However, this is the

case if σ lies in the congruence kernel π1(SC , b̄C) = ker(π1(S, b̄)→ GL2(ZC)), i.e.,
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ρC(σ) = I. In fact, in this case, Tsunogai’s equation (Remark 3.4.4) reduces to the

equation (originally observed by S. Bloch [Bl84])

(3.6.1) (x̄2 − 1)G−1,0(σ)− (x̄1 − 1)G0,−1(σ) = 0,

from which it follows that there exists a unique measure ECσ ∈ ZC [[πab]] such that

G−1,0(σ) = (x̄1− 1)ECσ and G0,−1(σ) = (x̄2− 1)ECσ . On the other hand, by (3.4.6),

we have G−1,0(σ) = −x̄1G10(σ) and by Proposition 3.4.2, we see

(3.6.2) Guv(σ) =
x̄−v2 − 1

x̄−1
2 − 1

G01(σ) + x̄−v2

x̄−u1 − 1

x̄−1
1 − 1

G10(σ)

when ρC(σ) = I. Applying u = 0, v = −1 in the latter gives also G0,−1(σ) =

−x̄2G01(σ). Thus, putting the above equations together we conclude

(3.6.3) Guv(σ) = (x̄−u1 x̄−v2 − 1) · ECσ (σ ∈ π1(SC , b̄C)).

This equation implies that the image of Guv(σ) in ZC [(Z/mZ)2], hence that of

ECm(σ;u, v), depends only on (u, v) modulo m: for σ ∈ π1(SC , b̄C), it defines

ECm(σ) ∈ ZC [(Z/mZ)2].

Now, write the image of ECσ in ZC [(Z/mZ)2] as
∑

a∈(Z/mZ)2 ECm(σ,a)ea, where

ea denotes the image of x̄u1 x̄v2 under the projection ZC [[πab]]→ ZC [x̄1, x̄2]/(x̄m1 −1,

x̄m2 − 1) = ZC [(Z/mZ)2] for any representative (u, v) ∈ Z2
C of the class a ∈

(Z/mZ)2. Then (3.6.3) allows us to express

(3.6.4) ECm(σ,a) = ECm(σ,a)− ECm(σ; 0, 0).

From this, for any fixed σ ∈ π1(SC , b̄C), the incoherence of ECm(σ) ∈ ZC [(Z/mZ)2]

with respect m, in other words, the main reason for the sequence {ECm(σ)}m to

fail to form a measure on Z2
C , turns out to amount to the “error term” sequence

{ECm(σ; 0, 0)}. In §6.10, we will relate ECm(σ) and ECσ by estimating exactly this

error term to be 1
12 of the Kummer cocycle along power roots of “∆(E,mω)”,

which will be introduced in the next section.

Remark 3.6.5. If two full classes C, C′ of finite groups satisfy C ⊂ C′, the natural

projection Π1,1(C′)→ Π1,1(C) induces ZC′ [[Π1,1(C′)ab]]→ ZC [[Π1,1(C)ab]]. Then it

is easily seen that EC′m is mapped to ECm. This means that our pro-C formulation

of ECm is somehow superfluous, i.e., one can say that the full profinite version is

essentially enough. However, this is not the case when considering ECσ , as it is

defined only on the congruence kernel π1(SC , b̄C)—depending on the set of primes

in |C| as a subgroup of π1(S, b̄) with respect to C.
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Proposition 3.6.6. The mapping EC : π1(SC , b̄C)→ ZC [[πab]] (σ 7→ EC(σ) = ECσ )

is an additive homomorphism, i.e.,

EC(στ) = EC(σ) + EC(τ) (σ, τ ∈ π1(SC , b̄C)).

Moreover, it is “det⊗GL2”-equivariant in the sense that

EC(στσ−1) = det(ρ(σ)) · σ(EC(τ)) (σ ∈ π1(S, b̄), τ ∈ π1(SC , b̄C)).

This assertion can be proven in the same way as [N95, (4.8)]. We will give an

alternative proof in §6.10 using (3.5.8).

§4. Review of algebraic modular forms

In this section, we review special families of modular functions and forms—so

called the modular units and Eisenstein series—in an algebraic style convenient

for our later discussions.

§4.1. Fundamental theta functions

We begin by introducing the fundamental theta function θ(z,L) (z ∈ C) for a

lattice L ⊂ C. Let ℘(z) = ℘(z,L) be the Weierstrass ℘-function. As is well known,

the associated parameters for the Γ(1)-test object (C/L, dz) are given by x = ℘(z),

y = ℘′(z), g2 := 60
∑′
ω ω
−4 and g3 = 140

∑′
ω ω
−6 (

∑′
ω means the sum over

ω ∈ L′ = L \ {0}). Then we define

(4.1.1) θ(z,L) := ∆(L)e−6η(z,L)zσ(z,L)12.

Here ∆(L) = g3
2 − 27g2

3 , σ(z,L) is the Weierstrass σ-function of L:

(4.1.2) σ(z,L) = z
∏
ω∈L′

(
1− z

ω

)
exp

(
z

ω
+

1

2

(
z

ω

)2)
,

and η : C → C is the R-linear extension of the period function L → C (ω 7→
−
∫ ∗+ω
∗ ℘(z) dz). Note here that ℘(z)dz = xdx/y is a meromorphic differential

form of the second kind, i.e., without residues; hence the integral is well defined.

It is easy to see that

(4.1.3) θ(z,L) = θ(λz, λL) (λ ∈ C×, z ∈ C).

According to the above definition of η(z,L), the function θ(z,L) is not holomorphic

in z. When z lies in QL, one can show from [KL81, (K2), p. 28] that θ(z,L) behaves
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like an “almost” periodic function with respect to L, i.e.,

(4.1.4)

{
θ(z + ω,L) = ζθ(z,L) (z ∈ 1

NL, ω ∈ L, ζ ∈ µN ),

θ(z + ω,L) = θ(z,L) (z ∈ 1
NL, ω ∈ NL).

The following distribution relations are also essential in our later applications.

Proposition 4.1.5. Let m, n, d, and r be integers such that n = md and r =

l.c.m.(m, d). Then

θ(ω0,mL) = ζ
∏

ω∈mL/nL

θ(ω0 + ω, nL) (ω0 ∈ L \ nL, ∃ ζ ∈ µr);(1)

d12 = ζ
∏

ω∈mL/nL, ω 6∈nL

θ(ω, nL) (∃ ζ ∈ µd).(2)

Proof. These are special forms of the distribution relations due to Ramachandra–

Robert (cf. [KL81, p. 43]).

Now, let us restrict the lattices L to those in the form Lτ = Zτ +Z1 (τ ∈ H),

and write σ(z, τ) = σ(z,Lτ ) and θ(z, τ) = θ(z,Lτ ). The infinite product expan-

sions of the first two holomorphic functions in qz = e2πiz, qτ = e2πiτ are well

known (see e.g. [L87]):

∆(Lτ ) = (2πi)12qτ

∞∏
n=1

(1− qnτ )24,

σ(z, τ) =
eη(1)z2/2

(2πi)
(q1/2
z − q−1/2

z )

∞∏
n=1

(1− qnτ qz)(1− qnτ q−1
z )

(1− qnτ )2
.

As remarked above, the fundamental theta function θ(z, τ) is not holomorphic

in z, but it is holomorphic in τ . Writing z = x1τ +x2 (x1, x2 ∈ R), from the above

expansions we obtain

(4.1.6) θ(z, τ) = q6B2(x1)
τ e12πix2(x1−1)

[
(1− qz)

∏
n≥1

(1− qnτ qz)(1− qnτ q−1
z )
]12

,

where B2(T ) = T 2−T+ 1
6 is the second Bernoulli polynomial. (Here, we use η(z) =

x1η(τ) + x2η(1) and the Legendre relation η(1)τ − η(τ)1 = 2πi.) Comparing this

with the classical expansion of Jacobi’s theta function ϑ1(z, τ), we also see that

θ(z, τ) = e12πix1z

[
ϑ1(z, τ)

η(τ)

]12

(z = x1τ + x2, x1, x2 ∈ R),

where η(τ) := e2πiτ/24
∏∞
n=1(1− qnτ ) is the Dedekind η-function.
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§4.2. Siegel units

In the book [KL81] by D. Kubert and S. Lang, a 12-th power root of θ(z, τ) is

introduced and intensively studied via the Klein form

(4.2a) `(z;L) := e−η(z,L)z/2σ(z,L)

that is defined for a lattice L ⊂ C. Given x = (x1, x2) ∈ R2, it gives a function on

τ ∈ H (also called the Klein form) defined by

(4.2b) `x(τ) := `(x1τ + x2,Lτ )

where Lτ = Zτ + Z (τ ∈ H). Note that, in [KL81, p. 29], their “Dedekind η2” is

the 2πi-multiple of our η2. In fact, since `(z;L) is homogeneous of degree 1 (cf.

[KL81, p. 27, (K0)]), we have 2πi`(z,Lτ ) = `(2πiz, 2πiLτ ).

For x = (x1, x2) ∈ R2, let us define the Siegel function gx(τ) by

(4.2c) gx(τ) = 2πiη(τ)2`x(τ),

which, after computation similar to (4.1.6) above, turns out to have the following

product form:

(4.2d) gx(τ) = −qB2(x1)/2
τ eπix2(x1−1)

[
(1− qz)

∏
n≥1

(1− qnτ qz)(1− qnτ q−1
z )
]

with z = x1τ +x2. From this it follows immediately that gx(τ)12 = θ(z, τ). Again,

this function has a non-holomorphic factor q
B2(x1)/2
τ eπix2(x1−1) with respect to the

complex variable z = x1τ + x2. Observe also that gx(τ) = 0 if and only if x ∈ Z2.

Here, we shall collect several properties of Siegel functions for later use. Let

m ≥ 1 and assume x = (r1/N, r2/N) (r1, r2 ∈ Z, N ≥ 1). We consider the condi-

tion

Q(x,N,m) :

{
If N is odd, then mr2

1 ≡ mr2
2 ≡ mr1r2 ≡ 0 mod N.

If N is even, then mr2
1 ≡ mr2

2 ≡ 0 mod 2N , mr1r2 ≡ 0 mod N .

Proposition 4.2.1. Notations being as above, the following statements hold:

(i) The function θx(τ)m = gx(τ)12m is modular of level Γ(N) if and only if the

condition Q(x,N, 12m) holds. In particular, θ(x1τ +x2, τ) is modular of level

Γ(N2).

(ii) When g.c.d.(N, 12) = 3, the function gx(τ)4m is modular of level Γ(N) iff the

condition Q(x,N, 4m) holds. In particular, gx(τ)4 is modular of level Γ(3N2).

(iii) When g.c.d.(N, 12) = 4, the function gx(τ)3m is modular of level Γ(N) iff the

condition Q(x,N, 3m) holds. In particular, gx(τ)3 is modular of level Γ(4N2).
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Proof. The first claims of (i)–(iii) are only special cases of [KL81, Chap. 3,

Ths. 5.2 and 5.3]. To see the latter claim of (i), apply Q(x,N2, 12) to x =

(Nr1/N
2, Nr2/N

2). The latter claims of (ii), (iii) follow similarly by applying

Q(x, 3N2, 4), Q(x, 4N2, 3) respectively.

Proposition 4.2.2. For x = (x1, x2) ∈ R2, put θx(τ) := θ(x1τ + x2, τ). Let

A =
(
a
c
b
d

)
∈ SL2(Z). Then

θx(Aτ) = θxA(τ) (τ ∈ H).

In particular, θx(τ) = θ−x(τ).

Proof. By [KL81, (K1)], we know `x(Aτ) = (cτ + d)−1`xA(τ). This together with

the well known formula ∆(Aτ) = (cτ + d)12∆(τ) proves the desired formula. (In

[L87, Chap. 19, §2, (S2)], a similar formula is claimed to hold at the level of gx.

But this is false, as the transformation formula of η(τ) involves another nontrivial

“Dedekind sum factor” ∈ µ24 besides cτ + d.)

Before stepping forward, let us review similar behaviors to Proposition 4.2.1

for certain powers of the Dedekind η-function η(τ).

Proposition 4.2.3. (i) η(τ)24 is a modular form of weight 12 and level Γ(1).

(ii) η(τ)8 is a modular form of weight 4 and level Γ(3).

(iii) η(τ)6 is a modular form of weight 3 and level Γ(4).

Proof. This is essentially included in [KL81, Chap. 3, Lemma 5.1] (where Γ(3)

should read Γ(4)). We reproduce the proof for the reader’s convenience. The gen-

eral transformation formula of η is

η

(
aτ + b

cτ + d

)
= ε(a, b, c, d)

√
cτ + d

i
η(τ)

((
a
c
b
d

)
∈ SL2(Z), c > 0

)
,

where ε(a, b, c, d) is a certain 24-th root of 1 given by a precise formula (cf. [Rad73,

(74.93)]). (i) follows immediately. For (ii), observe that

ε(a, b, c, d)8 =

{
exp
(

2
3πi(bd(1− c2) + c(a+ d))

)
(c odd),

exp
(

2
3πi(ac(1− d

2) + d(b− c))
)

(d odd),

and that in either case ε(a, b, c, d)8 = 1 when 3 | b, c. For (iii), we also calculate in

the case of d odd that

ε(a, b, c, d)6 = exp
(

3
2πid

)
exp
(
πi
2 (ac(1− d2) + d(b− c))

)
.

Since 8 | (1 − d2) for d odd, when 4 | b, c we have ε(a, b, c, d)6 = exp
(

3
2πid

)
. Given

A =
(
a
c
b
d

)
∈ Γ(4), if c > 0, we may apply the above transformation formula
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directly, and then d ≡ 1 (4) implies ε6 = i−1. Hence η(Aτ) = (cτ + d)3η(τ). If

c < 0, we apply the formula for −A. Then ε(−a,−b,−c,−d)6 = i. But this time,

the factor from
√
∗ is (−cτ − d)3/i3. Hence, we obtain again η(Aτ) = η((−A)τ) =

(cτ + d)3η(τ) as desired.

We shall sometimes write ∆(τ) for η(τ)24 = ∆(2πiLτ ). The following propo-

sition will be applied later in §6.5.

Proposition 4.2.4. Let x = (x1, x2) = (r1/ml, r2/ml) ∈ Q2 for m, l ∈ N,

r1, r2 ∈ Z.

(i) ∆(τ)
( θx(τ)l

2

θlx(τ)

)
= η(τ)24 gx(τ)12l2

glx(τ)l2
is a modular form of weight 12 and level

Γ(lm).

(ii) When l = 3, η(τ)8 (gx(τ)4)9

g3x(τ)4 is a modular form of weight 4 and level Γ(3m).

(iii) When l = 2, η(τ)6 (gx(τ)3)4

g2x(τ)3 is a modular form of weight 3 and level Γ(2m).

Proof. The claims on weights are obvious, so only levels should be discussed. We

shall intensively make use of [KL81, Chap. 3, Theorem 4.1] by rewriting

∆
θl

2

x

θlx
= (2πi)12(l2−1)η24l2 `

12l2

x

`12
lx

, η8 (g4
x)9

g4
3x

= (2πi)32η72 `
36
x

`43x
,

η6 (g3
x)4

g3
2x

= (2πi)9η24 `
12
x

`32x
.

It is easy to see that the factors `12l2

x /`12
lx , `36

x /`
4
3x (for l = 3) and `12

x /`
3
2x (for

l = 2) satisfy the Kubert–Lang condition QUAD(ml), QUAD(3m), QUAD(2m)

of [KL81] respectively (no matter if m, l are even or odd). Since η24 is a full level

modular form, the proof is complete.

§4.3. Eisenstein series

Next, we review the Eisenstein series G
(amodN)
k and E

(x)
k . Our main reference here

is [Sch74]. Let k ≥ 2, N ≥ 1 be integers and let a = (a1, a2) ∈ (Z/NZ)2. We first

define

G
(amodN)
k (τ) := lim

s→0+

∑′

amodN

1

(m1τ +m2)k
1

|m1τ +m2|s
(τ ∈ H),

where the sum is taken over all (m1,m2) ∈ Z2 \ {(0, 0)} with m1 ≡ a1, m2 ≡ a2

(mod N). Note that, in the above formula, if k ≥ 3 then we do not need lims

and the factor | . . . |s, because
∑′
m1,m2

1/(m1τ +m2)k converges absolutely and

uniformly on each compact set. The trick of lims→0+ (Hecke) works essentially
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when k = 2 (and k = 1). The function G
(amodN)
2 is not holomorphic as seen from

the following “q-expansion” formula:

(4.3.1) G
(amodN)
k (τ) =


−2πi

N2(τ − τ̄)
+
∑
ν≥0

αν(N, 2,a)qντ (k = 2),∑
ν≥0

αν(N, k,a)qντ (k ≥ 3),

where

αν(N, k,a) =


δ

(
a1

N

) ∑′

m2≡a2 (N)

1

mk
2

(ν = 0),

(−2πi)k

Nk(k − 1)!

∑
m|ν, νm≡a1 (N)

mk−1 sgn(m)ζa2m
N (ν ≥ 1).

For applications, more important are certain linear combinations of the Eisenstein

series of the above type: Given a pair x = (x1, x2) ∈ (Q/Z)2, choose any (large)

N such that x ∈ ( 1
NZ/Z)2. Then define

E
(x)
k (τ) :=

(k − 1)!

(2πi)k

∑
ā∈(Z/NZ)2

e2πi(x1a2−x2a1)G
(amodN)
k (τ).

It turns out that E
(x)
k (τ) is independent of the choice of N with x ∈

(
1
NZ/Z

)2
and is holomorphic unless k = 2,x = (0, 0). We have the following “q-expansion”

formula:

E
(x)
k (τ) = −Pk(x1)

k
+

∑
0<s∈x1+Z

∞∑
l=1

sk−1e2πil(x2+sτ)(4.3.2)

+
∑

0<s∈−x1+Z

∞∑
l=1

sk−1e2πil(−x2+sτ),

for k ≥ 3 or x 6= 0, while in the exceptional case of k = 2 and x = (0, 0), one

should add to the above right hand side the non-holomorphic term i/(2π(τ − τ̄)).

Here, Pk : R/Z → R is the periodic Bernoulli function defined as follows. First,

the k-th Bernoulli polynomial Bk(X) ∈ Q[X] is defined by the generating function∑
k Bk(X)tk/k! = tetX/(et−1). Then, using the floor function b∗c := max{n ∈ Z |

n ≤ ∗}, define Pk(t mod Z) to be Bk(t− btc) for k ≥ 2. Note that since Bk(0) =

Bk(1) for k ≥ 2, Pk (k ≥ 2) are continuous functions. Meanwhile, P1 (defined

similarly as t − btc − 1/2 on R/Z − {0}) is discontinuous at 0 so that we set

P1(0) = 0 as the mean of P1(0+) and P1(0−). From the definitions of G
(amodN)
k
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and E
(x)
k , we get the transformation formulae

G
(amodN)
k (Aτ) = (cτ + d)kG

(aAmodN)
k ,(4.3.3)

E
(x)
k (Aτ) = (cτ + d)kE

(xA)
k

for A =
(
a
c
b
d

)
∈ SL2(Z). It then follows that both G

(amodN)
k and E

(x)
k are modular

forms of weight k of level Γ(N). Finally, comparing the q-expansion formula, we

may relate the Siegel function gx(τ) and the Eisenstein series E
(x)
2 (τ) as follows:

(4.3.4)
d

dτ
log gx(τ) = −2πiE

(x)
2 (τ) (x = x mod Z ∈ (Q/Z)2, x ∈ Q2 \ Z2).

Indeed, for x = (x1, x2) = (m1/N,m2/N) ∈ Q2, write z = x1τ + x2 so that

qz = ζm2

N q
m1/N
τ , and set

Π := (1− qz)
∞∏
n=1

(1− qnτ qz)(1− qnτ q−1
z ),

Π+ :=
∏

0<s∈x1+Z
(1− e2πix2e2πisτ ) ·

∏
0<s∈−x1+Z

(1− e−2πix2e2πisτ ).

Formula (4.3.4) above follows immediately after applying Lemma 4.3.5 below.

Lemma 4.3.5. For x = (x1, x2) ∈ R2, we have

Π = Π+ · (−1)bx1ce−2πix2bx1ceπiτ(P2(x1)−B2(x1))(1− e2πix2)δx1∈Z ,

where we understand δx1∈Z =
{

1 (x1∈Z)
0 (x1 6∈Z) and 00 = 1.

Proof. When x ∈ Z2, we have both Π = 0 and (1 − e2πix2)δx1∈Z = 0, so that

the above equation is trivially true. So we shall assume x ∈ R2 \ Z2. If x1 = 0,

then qz = e2πix2 , hence Π = (1 − qz)Π
+, which gives us the desired equation.

For the case x1 6= 0, we shall compare factors appearing in Π and Π+, and apply

consecutively (1− e2πiβqατ )/(1− e−2πiβq−ατ ) = (−1)e2πiβqατ . Suppose first x1 > 0.

Then

Π = Π+ · (1− e2πix2)δx1∈Z

bx1c−1∏
i=0

1− e−2πix2q
−i−{x1}
τ

1− e2πix2q
i+{x1}
τ

= Π+ · (1− e2πix2)δx1∈Z

bx1c−1∏
i=0

(
−e2πix2qi+{x1}

τ

)−1

= Π+ · (−1)bx1c
(
e2πix2bx1cq

1
2 bx1c(2x1−bx1c−1)
τ

)−1
(1− e2πix2)δx1∈Z .

But since P2(x)−B2(x) = bxc(bxc+1−2x), the RHS is found to be of the desired

form. Next, suppose x1 < 0. Then
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Π = Π+ · (1− e2πix2)δx1∈Z

d−x1e∏
i=1

1− e2πix2q
−i+{x1}
τ

1− e−2πix2q
i−{x1}
τ

= Π+ · (1− e2πix2)δx1∈Z

d−x1e∏
i=1

(
−e2πix2q−i+{x1}

τ

)
= Π+ · (−1)d−x1ee2πix2d−x1eq

1
2 d−x1e(2{x1}−d−x1e−1)
τ · (1− e2πix2)δx1∈Z

= Π+ · (−1)bx1ce−2πix2bx1cq
− 1

2 bx1c(2x1−bx1c−1)
τ · (1− e2πix2)δx1∈Z ,

which again turns out to be of the desired form.

In §7.3, we will discuss a standard lift of the logarithmic derivative equation

(4.3.4), which will play a crucial role in our proof of Theorem B stated in the

Introduction.

§4.4. Algebraic modular forms

Let f(τ) be a holomorphic modular form of weight k and level Γ(N), and suppose

that its q1/N -expansion has coefficients in a subring R ⊂ C. Then it is known

(see [K76, 2.1.1 and 2.4.1]) that there is an algebraic modular form F over R

which assigns, to each tuple (E, β :Z/NZ× µN
∼−→ E[N ], ω) over an R-algebra B

(i.e., a Γ(N)arith-test object over B in the sense of [K76] consisting of a Γ(1)-

test object (E,O, ω) over B together with a B-isomorphism of group schemes

β : Z/NZ× µN
∼−→ E[N ]), a value F (E, β, ω) ∈ B in such a way that

(1) F (E, β, ω) depends only on the B-isomorphism class of the test object;

(2) F (E, β, λω) = λ−kF (E, β, ω) for each λ ∈ B×;

(3) if (E′/B′, β′, ω′) is the scalar extension of (E, β, ω) by the R-homomorphism

φ : B → B′, then φ(F (E, β, ω)) = F (E′, β′, ω′);

(4) for any complex point s ∈ Spec(B)(C) given by φs : B → C with the fiber

(Es/C, βs, ωs) over s,

φs(F (Es, βs, ωs)) =

(
2πi

$2

)k
f(τ),

where τ = $1/$2 ∈ H is given as the quotient of a Z-basis ($1, $2) of the

lattice obtained as the collection of period integrals of ωs along loops on Es
so that 1

N$1 mod L = β((1, 1)), 1
N$2 mod L = β((0, e2πi/N )).

Conversely, suppose we are given an algebraic modular form F of weight k and

level N over R ⊂ C. Then the corresponding holomorphic modular form f is

given by f(τ) = F (C×/(qτ/N )NZ, ι, ωcan), where qτ/N = e2πiτ/N , ι is the canonical

embedding Z/NZ × µN ↪→ C×/qZτ with (a, e2πib/N ) 7→ (qaτ/N , e
2πib/N ), and ωcan
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is the “canonical differential” coming from dX/X on Gm = Spec Z[X,X−1] (cf.

[KM85, (8.8)]). The value of F at the Tate curve Tate(qN )/R((q)) gives the q

(= e2πiτ/N )-expansion of f .

The above may be applied to the modular units and modular forms of the

previous subsections.

We first consider the case of Eisenstein series. If x ∈ 1
NZ2/Z2 is given, then

the Eisenstein series E
(x)
k (τ) is a holomorphic modular form of weight k and

level Γ(N) unless k = 2 and x = 0. The q-expansion given in (4.3.2) has co-

efficients in Q(µN ). Hence, the corresponding algebraic modular form is defined

over Q(µN ). We may apply it to any Γ(N)arith-test object (E/B, β, ωN ). More-

over, we shall also regard any Γ(N)-test object (E/B,α : (Z/NZ)2 ∼−→ E[N ], ω) as

a Γ(N)arith-test object, defining β : (Z/NZ)× µN
∼−→ E[N ] by β(a, ζbN ) = α(a, b),

where ζN = eN (α(1, 0), α(0, 1)) ∈ B (cf. 2.6). Thus, one can speak about

(4.4.1) E
(x)
k (E/B,α (or β), ω) ∈ B[µN ] (k ≥ 3 or x 6= (0, 0)).

In a similar way, since the modular forms ∆ = η24, η8, η6 which appeared in

Proposition 4.2.3 have rational q-coefficients, they give algebraic modular forms of

the prescribed weight and level over Q.

For example, suppose we are given a Γ(1)-test object (E/B,O, ω) with the

associated parameter (x, y, g2, g3, t) (cf. 2.2). Then one can easily show that

g2 = 10E
(0,0)
4 (E/B,O, ω), g3 = 7

6E
(0,0)
6 (E/B,O, ω);(4.4.2)

g3
2 − 27g2

3 = ∆(E/B,O, ω).

Next, we consider modular units. Assume x = (x1, x2) ∈ 1
NZ2 \ Z2 (hence

N2 ≥ 3). By Proposition 4.2.1, θx(τ) = gx(τ)12 and its inverse are modular func-

tions of level Γ(N2). Observing the q-expansion, we know that there are corre-

sponding algebraic modular forms θ±1
x of weight 0 and level Γ(N2) defined over

Q(µN2). So, we may apply θ±1
x to Γ(N2)arith-test objects and Γ(N2)-test objects.

Thus,

(4.4.3) θx(E/B,α (or β), ω) ∈ B[µN2 ]×

makes sense. In fact, in the case of weight 0, the value is independent of the

change of ω (by multiplication by elements of B×). This means that the value

comes from the representative morphism of Spec(B) to the modular curve Y (N2)

of level Γ(N2) defined over Q(µN2). The space of complex points of Y (N2) is

identified with the Fuchsian model H/Γ(N2). Write O(Γ(N2)) for the ring of holo-

morphic modular functions of level Γ(N2) whose Fourier coefficients with respect

to e2πiτ/N2

lie in Q(µN2), so that Y (N2) = Spec(O(Γ(N2))). Then by [Sh71,
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Prop. 6.9],

(4.4.4) θx(τ) ∈ O(Γ(N2))×.

The conclusion is that the image of θx(τ) under the representative homomorphism

O(Γ(N2))→ B coincides with θx(E/B,α, ω).

For the other cases of Proposition 4.2.1 where each of g12m
x , g4m

x or g3m
x

becomes a modular function of level Γ(N) under suitable conditions, one can talk

about g12m
x (E/B,α, ω) ∈ B[µN ]× as the image of g12m

x (τ) ∈ O(Γ(N)) etc. in

similar ways.

§4.5. Compatibilities of GL2-actions

Before closing this section, we review the (left) action of GL2(Z/NZ)/{±1} on

the function field FN of the modular curve Y (N) given in [Sh71, §6.2]. Decompose

GL2(Z/NZ) as the product of SL2(Z/NZ) and D =
{(

1
0

0
d

)
| d ∈ (Z/NZ)×

}
,

and define the action on FN of each component as follows. Let f(τ) ∈ FN have

Fourier expansion in q
1/N
τ with coefficients in Q(µN ). We define the action of A ∈

SL2(Z/NZ) by f 7→ f |tA. Identify D with the Galois group Gal(Q(µN )/Q) and

define its action on f(τ) by the Galois transformation of the Fourier coefficients.

It follows, in particular, that

(4.5.1) A(ζN ) = ζ
det(A)
N (A ∈ GL2(Z/NZ)/{±1}).

The above action is compatible with the context we developed in §§2.8–2.9 as

follows. With each σ ∈ π1(M1,1, b̄) are associated the matrix A = ρN (σ) ∈
GL2(Z/NZ) and the automorphism aNσ ∈ Aut(M1,1[N ]/M1,1) together with āNσ ∈
Aut(Y (N)/Y (1)). Our compatibility claim is then as follows.

Claim 4.5.2. The automorphism ( |āNσ ) of FN defined by (f |āNσ )(s) = f(āNσ (s))

(where s : Spec(C) → M1,1[N ] → Y (N) is any complex point) coincides with the

above action of the matrix A = tρN (σ) on FN .

Proof. Indeed, when σ fixes µN , the matrix A = ρN (σ) is in SL2(Z/NZ). Then

the claim follows from (2.9.3). So, we have only to consider the case where A =

ρN (σ) is of the form
(

1
0

0
d

)
(d ∈ (Z/NZ)×). Recall that the q1/N -expansion of f is

given as the value at the Tate curve Tate(q)/Q(ζN )((q1/N )) with level N -structure

(1, 0) 7→ q1/N , (0, 1) 7→ ζN (where ζN = exp(2πi/N) ∈ C). We can view it as

the image of f under the homomorphism FN → Q(µN )((q1/N )), which corresponds

to a representative morphism φ : Spec
(
Q(µN )((q1/N ))

)
→ Y (N). By (2.7.3), the

value of f |āNσ at φ is the value of f at φ′ = āNσ ◦φ, but (2.8.1) means that this φ′ is

the representative morphism of Tate(q)/Q(µN )((q1/N )) with the level N -structure
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(1, 0) 7→ q1/N , (0, 1) 7→ ζdN . The resulting value is thus what is obtained from f by

changing all coefficients by the Galois transformation of Q(µN ) with ζN 7→ ζdN .

The above sort of compatibility also extends to the context of Γ(1)-test objects

(§2.6) as follows. Suppose that (E/B,O, ω) is a Γ(1)-test object as in §2.3 and b̄ is

a base point on S = Spec(B). Let (SN , b̄N ) be as in §2.6. Then there is a natural

commutative diagram

SN //

��

M1,1[N ] //

��

Y (N)

S // M1,1

For each σ ∈ π1(S, b̄), there is an associated automorphism aNσ ∈ Aut(SN/S) of

§2.7. On the other hand, the image σ′ of σ in π1(M1,1) induces an automorphism

aNσ′ of M1,1[N ] as in §2.8. The relation between these aNσ and aNσ′ is, a priori,

just a pointwise one, i.e., they convey b̄N on SN and its image on M1,1[N ] to

those points obtained respectively by monodromy transformations by σ, σ′. But

this, together with the fact that SN/S is a connected component of the pull-

back of M1,1[N ]/M1,1 by S → M1,1 which is preserved by the pull-backs of aNσ′

(σ ∈ π1(S, b̄)), ensures the commutativity of

SN //

aNσ
��

M1,1[N ]V

aN
σ′

��
SN // M1,1[N ]

Thus, if ι : O(Γ(N)) → BN designates the ring homomorphism of “functions”

corresponding to the morphism SN → Y (N), we deduce from Claim 4.5.2 that

(4.5.3) ι(f)|aNσ = ι(f |tρN (σ)) (σ ∈ π1(S, b̄)).

§4.6. GL2-action on modular units and its refinements

We are particularly interested in a consequence of the above discussion for the

modular units θx, g4
x, g3

x of level Γ(N2), Γ(3N2), Γ(4N2) respectively. First, from

the Fourier expansion of θx(τ) (x = (x1, x2) ∈ 1
NZ2), we see that the matrix(

1
0

0
d

)
(d ∈ (Z/N2Z)×) maps θx 7→ θ(x1,dx2). This and Proposition 4.2.2 imply the

formula

(4.6.1) θx|tA = θx(tA)

(
x ∈ 1

NZ2, A ∈ GL2(Z/N2Z)
)
.
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Note that the lower equation of (4.1.4) implies

(4.6.2) θx = θy
(
x ≡ y mod N ; x = (x1, x2), y = (y1, y2) ∈

(
1
NZ
)2)

.

In other words, GL2(Z/N2Z) has a well defined action on the indices
(

1
NZ/NZ

)2
of modular units θx. Then, combining (4.5.3) and (4.6.1) we obtain, for any Γ(N2)-

test object (E,α, ω),

(4.6.3) θx(E,α, ω)|aN2
σ

= θx(tρN2 (σ))(E,α, ω)(
x = (x1, x2) ∈

(
1
NZ
)2
, σ ∈ π1(S, b̄)

)
.

In exactly the same way, parallel statements to the above for g4
x, g3

x hold after

replacing N2 by 3N2, 4N2 respectively. But we have to work in a subtler way

using the definition of gx as the product of 2πiη2 and the Klein form `x(τ). As

seen in Propositions 4.2.1 and 4.2.3, the functions g4
x and g3

x can be defined in

the language of lattices with level 3 or 4 basis of torsion points. For Klein forms

`x
(
$1
$2

)
:= `(x1$1 + x2$2,Z$1 + Z$2), the transformation formulas with respect

to x = (r/N, s/N) ∈
(

1
NZ
)2

, y = (b1, b2) ∈ Z2 and A =
(
a
c
b
d

)
∈ Γ(N) in [KL81,

(K2), (K3), p. 28] read:

(4.6.4)

{
`x+y

((
$1
$2

))
= ε(x, y)`x

((
$1
$2

))
,

`x
(
A
(
$1
$2

))
= `xA

((
$1
$2

))
= εx(A)`x

((
$1
$2

))
,

with

ε(x, y) = (−1)b1b2+b1+b2e−2πi
b1s−b2r

2N ,(K2)

εx(A) = −(−1)(
a−1
N r+ c

N s+1)( bN r+
d−1
N s+1)e2πi

br2+(d−a)rs−cs2

2N2 .(K3)

One can then derive invariance of g4
x (resp. g3

x) for x ∈ ( 1
NZ)2 modulo x 7→

x+ (3NZ)2 (resp. x 7→ x+ (4NZ)2), i.e.,

g4
x = g4

y

(
x ≡ y mod 3N ; x = (x1, x2), y = (y1, y2) ∈

(
1
NZ
)2)

,(4.6.5)

g3
x = g3

y

(
x ≡ y mod 4N ; x = (x1, x2), y = (y1, y2) ∈

(
1
NZ
)2)

.(4.6.6)

Concerning the GL2-action, invariance of type (4.6.1) or Proposition 4.2.2 for g4
x,

g6
x is not available, mainly because of the η2-factor of gx = 2πiη2`x. We still find

g4
x|tA = ζ · g4

x(tA)

(
x ∈ 1

NZ2, A ∈ GL2(Z/3N2Z), ζ ∈ µ3

)
,(4.6.7)

g3
x|tA = ζ · g3

x(tA)

(
x ∈ 1

NZ2, A ∈ GL2(Z/4N2Z), ζ ∈ µ4

)
.(4.6.8)

We also obtain statements corresponding to (4.6.2) by replacing N2 by 3N2 (resp.

4N2) for Γ(3N2)-(resp. Γ(4N2)-)test objects modulo µ3 (resp. µ4).
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§5. Universal elliptic curve

§5.1. Quick review of Grothendieck–Teichmüller theory

The starting point of Grothendieck–Teichmüller theory was Bely̆ı’s theorem

[B79] which implies, in particular, that the absolute Galois group GQ is embed-

ded into the (outer) automorphism group of a simplest profinite group F̂2 :=

π1(P1
Q − {0, 1,∞}). We fix an embedding Q ↪→ C, and take x, y to be loops as

illustrated below:

0x y1
01

Figure 1

This enables us to parameterize the elements of GQ in terms of the cyclotomic

character χ : GQ → Ẑ× together with a mysterious parameter f : GQ → F̂ ′2 =

[F̂2, F̂2] (σ 7→ fσ) in such a way that a lift of σ ∈ GQ acts on standard generators

x, y of F̂2 by the formula

(5.1.1) σ(x) = xχ(σ), σ(y) = f−1
σ yχ(σ)fσ.

The above standard lift (Bely̆ı’s lift of GQ into Aut(F̂2)) is understood geometri-

cally via the notion of tangential base point
−→
01 introduced by Deligne [De89].

The collection {(χ(σ), fσ) ∈ Ẑ× × F̂ ′2 | σ ∈ GQ} is thus a copy of GQ mapped

into the “concrete set” Ẑ× × F̂ ′2. One important open problem is to characterize

the copied image. In this direction, the (profinite) Grothendieck–Teichmüller group

ĜT was introduced by Drinfeld [Dr90] and Ihara [Ih90], and some of its refined

versions/variants have been studied by several authors (cf., e.g., [LS06], [F10]).

Besides the fundamental property GQ ↪→ ĜT , important is the reason why

it is called ĜT , namely, as expected by Grothendieck [G84], that it should act

on (a tower of) the profinite Teichmüller groups π1(Mg,n) (2 − 2g − n < 0) in a

certain consistent way in view of “cutting and pasting of Riemann surfaces”. This

second feature has been, to a certain extent, established in [NS00]–[N99-02] by

introducing a group IΓ intermediate between GQ and ĜT .

Thus, theoretically one can write down the action of GQ on those π1(Mg,n)

(2 − 2g − n < 0) in terms of the two parameters χ(σ) and fσ (σ ∈ GQ). One

interesting problem is to find information on the mysterious parameter fσ from the

actions on various subgroups or quotients of π1(Mg,n). Even in the most primitive

case of M0,4 = P1−{0, 1,∞}, deep arithmetic nature was found in a series of works
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by Y. Ihara and his colleagues [Ih86a], [Ih86b], [IKY87], [A89], [C89], [Ih99-00],

[Ih02], [MS03]. Some other studies in this direction have also been performed, e.g.,

in a series of works [NT03-06], [NTY10].

§5.2. Tate elliptic curve

The Weierstrass equation of the Tate elliptic curve Tate(q) over Q((q)) is given by

Tate(q) : Y 2 = 4X3 − g2(q)X − g3(q),

where

g2(q) = 20

(
−B4

8
+
∑
n≥1

σ3(n)qn
)
,(5.2.1)

g3(q) =
7

3

(
−B6

12
+
∑
n≥1

σ5(n)qn
)
.(5.2.2)

(B4 = −1/30, B6 = 1/42 are the Bernoulli numbers, and σd(n) denotes the sum

of the d-powers of the positive divisors of n.) Let q̄ be the generic geometric point

over Sq := Spec
(
Q((q))

)
valued in the Puiseux power series field Q{{q}}, or more

economically in

Ω =

∞⋃
n=1

⋃
[K:Q]<∞

K((q1/n)),

and let
−→
w q̄ be the Weierstrass tangential base point on Tate(q) \ {O}. The fun-

damental group π1(Sq, q̄) is canonically split as the semidirect product GQ n Ẑ(1)

where GQ acts on Ω via the coefficients of each Puiseux series. Therefore, the pro-C
monodromy representation (§2.5) has the form

(5.2.3) ϕC−→
w q̄

: π1(Sq, q̄) = GQ n Ẑ(1)→ Aut
(
π1(Tate(q)⊗ Ω \ {O},−→w q̄)

)
.

Based on the technique studied in [IN97], in [N99] we studied the restriction of

ϕC−→
w q̄

to the GQ-part. Using the formal patching of π1(P1−{0, 1,∞}) along Néron

polygons of Deligne–Rapoport type, we introduced suitable generators x1,x2, z of

Π1,1 := π1((Tate(q)⊗Ω\{O},−→w q̄) with [x1,x2]z = 1 so that z gives the generator

of the inertia group rotating once anticlockwise, and showed

Theorem 5.2.4 ([N99, Th. 3.4]). The Galois representation ϕC−→
w q̄
|GQ is expressed

by the following formulae in terms of (χ(σ), fσ) ∈ ĜT :

(5.2.5)


x1 7→ z(1−χ(σ))/2fσ(x1x2x

−1
1 , z)x1fσ(x−1

2 , z)−1,

x2 7→ fσ(x−1
2 , z)x

χ(σ)
2 fσ(x−1

2 , z)−1,

z 7→ zχ(σ).



450 H. Nakamura

(This theorem was shown for C = {all finite groups}, hence holds for an arbi-

trary full class C of finite groups.) The choice of generators was given in a precise

way using van Kampen type amalgamation of groups devised in a previous paper

[N99-02, Part I]. Naively, those chosen generators may be illustrated as in the fol-

lowing picture, where x2 represents a vanishing cycle. In [N99], we gave an explicit

description of ECσ for the Tate curve with C = (p) the class of all finite p-groups and

σ in the congruence kernel GQ(µp∞). Note that in this case ZC [[πab]] is isomorphic

to the power series ring Zp[[T1, T2]] with Ti = x̄i − 1 (i = 1, 2).

point
base

z x

2

1

x

Figure 2

Theorem 5.2.6 ([N99, Ths. 3.3 and 3.5]). Consider E(p)
σ ∈ Zp[[T1, T2]] for the

Tate curve Tate(q) over Q((q)). Let Ui=log(1+Ti) (i=1, 2). Then, in Qp[[U1, U2]],

we have

E(p)
σ (T1, T2) =

∑
m≥2
even

χm+1(σ)

1− pm
Um2
m!

(σ ∈ GQ(µp∞ )).

Here χm : GQ(µp∞ ) → Zp(m) is the m-th Soulé character defined by the properties( ∏
1≤a<pn
p-a

(1− ζapn)a
m−1

) 1
pn (σ−1)

= ζ
χm(σ)
pn (∀n ≥ 1).

In fact, in [N99] we gave two proofs; one using the explicit formula given in

[N95], and one using the formula of Magnus–Gassner type to reduce the proof to

the explicit formula for Ihara’s power series (cf. [N99, (3.3); (3.5)–(3.6)]). In the

next section, we shall generalize the explicit formula for finite level ECm (m ∈ |C|).

§5.3. Mordell transformation on Mω
1,2

The universal once punctured elliptic curve E\{O} over Mω
1,1 (§2.2) has a profile as

Mω
1,2 which is by definition the fiber product of M1,2 and Mω

1,1 over M1,1. It is the

representative scheme for the moduli problem of the Γ(1)-test objects (E/B,O, ω)

with an extra section P : B → E disjoint from O.
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It is also often useful to consider Mω
1,2 as the moduli space of quartic models

of elliptic curves Y 2 = f(X) = X4 +bX2 +cX+d with distinguished two infinities

(∞+,∞−), where∞± corresponds respectively to (ξ, η) = (0,±1) after the change

of variables ξ = X−1, η = Y X−2. In [NTY10], we introduced the Mordell transfor-

mation M which transforms this quartic model Y 2 = f(X) = X4 + bX2 + cX + d

to the Weierstrass cubic model

(5.3.1) y2 = 4x3 −
(

4
3b

2 + 16d
)
x−

(
− 8

27b
3 + 32

3 bd− 4c2
)

by the variable transformation

(5.3.2)

X =
−3y − 6c

12x+ 8b
,

Y = −x/2 + b/6 +X2,

{
x = 2X2 − 2Y + b/3,

y = 8X(Y −X2 − b/2)− 2c.

The two marked points ∞± on the quartic model Y 2 = f(X) are mapped to the

points on Ef by

(5.3.3)

{
∞+ 7→ Pf := (−2b/3, 2c),

∞− 7→ O.

Conversely, given an elliptic curve with Weierstrass equation E : y2 = 4x3−g2x−g3

with a finite point P = (x0, y0) on it, we can recover the quartic model

(5.3.4) Y 2 = (M−1(E,P ))(X) := X4 +
(
− 3

2x0

)
X2 +

(
1
2y0

)
X + 1

16 (g2 − 3x2
0).

We call this latter mapping M−1 from (E,P ) to the above quartic the inverse

Mordell transformation.

An illustration of usefulness of these transformations was given in [NTY10],

where a modified version of M (written M there) is used, normalized to provide

monic cubic models of elliptic curves. (Cf. also arguments in [N99-02, §7.8].)

§5.4. Cardano–Ferrari mapping of braid configuration space

We are now at the stage of considering braid configuration spaces. Let An
u \ D

denote the space of monic polynomials of degree n in variable u with no multiple

roots (here D is understood to be the discriminant locus), and let (An
u\D)0 denote

its subspace of those with second highest coefficient vanishing.

In [NTY10, (2.10)], we introduced the (Cardano–)Ferrari morphism

F0 : (A4
u \D)0 → (A3

u \D)0

which assigns to a quartic its resolvent cubic in the following way:

F0(u4 + bu2 + cu+ d) = u3 −
(

1
3b

2 + 4d
)
u−

(
2
27b

3 − 8
3bd+ c2

)
.
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(In our normalization, if T1, T2, T3, T4 are the zeros of a given quartic u4 + bu2 +

cu + d, then the resolvent cubic F0(u4 + bu2 + cu + d) has zeros Ui = Si + 2
3b

(i = 1, 2, 3) with Si is given by S1 = −(T1 +T4)(T2 +T3), S2 = −(T1 +T3)(T2 +T4),

S3 = −(T1 + T2)(T3 + T4). (The term “+ 2
3b” is just for parallel transport to

have U1 + U2 + U3 = 0.) The solutions of the original quartic equation are given

by those 1
2 (
√
S1 +

√
S2 +

√
S3) with four choices of signs of

√
Si’s satisfying√

S1

√
S2

√
S3 = −c. (See also loc. cit., (2.6)). Let us now define

4ι : (A3 \D)0 →Mω
1,1, γ(u) 7→ y2 = −4γ(−x),

namely, if γ(u) = u3 − γ2u + γ3, then 4ι(γ) gives an elliptic curve defined by

y2 = 4x3 − 4γ2x− 4γ3. Then we obtain the commutative diagram

(5.4.1)

(A4
u \D)0

M //

F0

��

Mω
1,2V

proj.

��
(A3

u \D)0
4ι // Mω

1,1

where the horizontal arrows give isomorphisms of schemes.

Since there is a well known deformation retraction of Tschirnhaus type be-

tween the spaces An \D and (An
u \D)0, their etale homotopy types do not need

to be distinguished. We shall write “F” to designate any one of the morphisms

A4
u \D → A3

u \D which are parallel transforms of F0 (dropping the “zero sum”

condition) giving the same homomorphism on fundamental groups.

On An
u \D, Ihara–Matsumoto [IM95] introduced a standard tangential base

point b̄n. Let us briefly recall their construction: Let An
v \∆ be the affine n-space

with distinct coordinates v = (v1, . . . , vn) and consider the etale covering map

(An
v \∆)→ (An

u \D) which maps each point v ∈ An
v \∆ to the monic in An

u \D
which has v as ordered zeros. Then b̄n is defined as the image of the tangential

base point v = (0, tn−1, . . . , t2, t) valued in Q{{t}}. The geometric fundamental

group π1((An \D) ⊗ Q, b̄n) can then be presented as the profinite completion of

the Artin braid group Bn which has standard generators τ1, . . . , τn−1 with braid

relations τiτj = τjτi, τiτi+1τi = τi+1τiτi+1 (i = 1, . . . , n−1, i+ 1 < j), and each τi
gives a specific element “interchanging marked points vi and vj positively”. The

base point b̄n supplies a splitting π1(An
u \D, b̄n) = GQ n B̂n with Galois action in

the form of Drinfeld’s formula in terms of (χ(σ), fσ) ∈ ĜT for σ ∈ GQ:

(5.4.2)


σ(τ1) = τ

χ(σ)
1 ,

σ(τ2) = fσ(τ2
1 , τ

2
2 )−1τ

χ(σ)
2 fσ(τ2

1 , τ
2
2 ),

σ(τi) = fσ(ωi, τ
2
i )−1τ

χ(σ)
i fσ(ωi, τ

2
i ) (i ≥ 3),

where ωi = (τ1 · · · τi−1)i.



Arithmetic Monodromy of Eisenstein Type 453

NB. The construction of b̄n and the above formula have been generalized to

higher genus mapping class groups first in [N97], and then extended fully in [NS00],

[N99-02].

Dropping the (superfluous) “zero sum” condition, we calculate the image

of b̄4 represented under (0, t3, t2, t) by the Ferrari morphism as (S1, S2, S3) =

(−t4−t3,−t5−t3,−t4−t5), which is equivalent to (0, t4−t5, t3−t5)∼(0, t4, t3)∼ b̄3.

Here, ∼ means “preserving principal coefficients”, which does not alter coeffi-

cientwise GQ-actions on Puiseux power series; we may identify the tangential

base points F(b̄4) and b̄3 (written F(b̄4) ≈ b̄3) from the Galois-theoretic point

of view (cf. [N99-02, Part II, §5.9]). Thus we obtain a GQ-compatible homo-

morphism

(5.4.3) π1(F) : π1(A4
u \D, b̄4)→ π1(A3

u \D, b̄3)

as remarked in [NTY10, (2.8)]. It is easy to see that the geometric part of this ho-

momorphism is nothing but the surjection B̂4 → B̂3 given by τ1, τ3 7→ τ1, τ2 7→ τ2.

We call ker(π1(F)) the Ferrari kernel, which is a free profinite group of rank 2

generated by

(5.4.4)

x1 := τ−1
1 τ3τ2τ1τ

−1
3 τ−1

2 ,

x2 := τ1τ
−1
3 ,

z := (τ1τ2)6(τ1τ2τ3)−4

with [x1,x2]z = 1. We will see that these generators correspond naturally to the

standard generators of the fundamental group of the Tate elliptic curve over Q((q))

given in Theorem 5.2.4.

NB. The above choice of generators follows [N99] and differs from [NTY10,

(2.9)], [NT03-06, II, (4.2.2)], [N99-02, I, §4] by a ‘90◦-rotation’.

§5.5. Analytic resolution of M−1(E,P )

In this subsection, we shall construct the solutions of the quartic equation of

the inverse Mordell transformation M−1(E,P ) explicitly in any complex model.

Suppose that E is a complex elliptic curve C/(Z$1 + Z$2) and P is a point

(℘(z), ℘′(z)), where ℘ is the Weierstrass ℘-function with respect to the lattice

Z$1 + Z$2 with τ := $1/$2 ∈ H. Set e1 := ℘($1/2), e2 := ℘($2/2) and

e3 := ℘(($1 +$2)/2). It is known that there is a canonical choice of square root

of e2 − e1 given by

(5.5.1)
√
e2 − e1 =

π

$2

∞∏
n=1

(1− q2n)2(1 + q2n−1)4 (q = q1/2
τ = eπiτ ).
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See [Fr16, p. 406]. Let sn(z), cn(z), dn(z) denote the Jacobian elliptic functions

with fundamental parallelogram given by 2K = $2
√
e2 − e1, 2iK ′ = $1

√
e2 − e1.

Proposition 5.5.2. Notations being as above, set w =
√
e2 − e1 ·z. Then the four

zeros of the quartic given as the inverse Mordell transformation M−1(E,P ) are:

T1 =

√
e2 − e1

2

(
1 + cn(w) + dn(w)

sn(w)

)
,

T2 =

√
e2 − e1

2

(
cn(w)− 1− dn(w)

sn(w)

)
,

T3 =

√
e2 − e1

2

(
dn(w)− 1− cn(w)

sn(w)

)
,

T4 =

√
e2 − e1

2

(
1− cn(w)− dn(w)

sn(w)

)
.

Proof. We make use of the “Mordell–Ferrari” commutative diagram (5.4.1). Trac-

ing the lower layer, we find that the Ferrari resolvents of the quartic M−1(E,P )

should be given by ι−1(E) = {−e1,−e2,−e3}. Then, if M−1(E,P ) is of the form

u4+bu2+cu+d, the classical formula of Cardano–Ferrari tells us that the resulting

four solutions are obtained as 1
2 (
√
S1 +

√
S2 +

√
S3) for any choice of square roots

of Si := −ei − 2
3b (i = 1, 2, 3) such that

√
S1

√
S2

√
S3 = −c. But now b = − 3

2℘(z)

and c = 1
2℘
′(z), and hence Si = ℘(z) − ei (i = 1, 2, 3). On the other hand, it is

also known (from [Fr16, p. 389]) for w =
√
e2 − e1z that

sn(w) =

√
e2 − e1√
℘(z)− e1

, cn(w) =

√
℘(z)− e2√
℘(z)− e1

, dn(w) =

√
℘(z)− e3√
℘(z)− e1

,

from which it turns out that they give a correct choice of
√
Si =

√
℘(z)− ei’s for

Cardano–Ferrari solutions. Our proposition follows from these equations immedi-

ately after expressing the
√
Si by Jacobian elliptic functions and

√
e2 − e1.

§5.6. Connection between the Tate–Weierstrass point and b̄4

Let us fit the Tate elliptic curve Tate(q)/Q((q)) in Mω
1,2 → Mω

1,1 to obtain a pair

of tangential points (
−→
w q̄, q̄) on (Mω

1,2, Mω
1,1) respectively. We shall connect the

inverse Mordell transformation of
−→
w q̄ to the standard base point b̄4 on A4

u \ D
by using Proposition 5.5.2. Observe that the defining coefficients g2(q), g3(q) of

Tate(q) in (5.2.1)–(5.2.2) are those g2($1, $2), g3($1, $2) applied to the lattice

generated by $1 = (2πi)τ , $2 = (2πi). In this case,
√
e2 − e1 = 1

2i + O(q). We

look at the point (T4, T3, T2, T1) of Proposition 5.5.2 on A4
v \∆, which, by parallel
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transportation, gives an equivalent tangential base point defined by

(0, T3 − T4, T2 − T4, T1 − T4)

=

√
e2 − e1

2

(
0,

2(dn(w)− 1)

sn(w)
,

2(cn(w)− 1)

sn(w)
,

2(cn(w) + dn(w))

sn(w)

)
.

Recalling that the Weierstrass tangential base point (in the analytic case) is defined

by the local coordinate t = −2x/y = −2℘(z)/℘′(z) = z+O(z2), we shall evaluate

the inverse image of the tangential base point M−1(
−→
w q̄) on A4

v \∆, by expanding

the above coordinates near (q, t) = (0, 0). Indeed, the well known Taylor expansions

(cf. [Fr16, p. 399])

sn(w) = w − (1 + k2)
w3

3!
+ · · · , cn(w) = 1− w2

2
+ · · · ,

dn(w) = 1− k2w
2

2
+ · · ·

with

(5.6.1) k2 = λ = 16q

∞∏
n=1

(
1 + q2n

1 + q2n−1

)8

(q = q1/2
τ = eπiτ )

provide the principal terms of the components of (0, T3−T4, T2−T4, T1−T4) above

as Laurent series in ‘k, z’ or ‘q, t’ (denoted ∼):

(0, T3 − T4, T2 − T4, T1 − T4) ∼
(

0,
k2z

8
,
z

8
,

2

z

)
∼
(

0, 2tq,
t

8
,

2

t

)
.

Now, the tangential base point b̄4 can be defined by the following homomorphism

of the coordinate ring of A4
v −∆ into a Puiseux ring:

Q[v1, v2, v3, v4]

[
1

vi − vj

]
1≤i6=j≤4

→
∞⋃
k=1

Q[[t
1/k
1 , t

1/k
2 , t

1/k
3 ]]

[
1

t1
,

1

t2
,

1

t3

]
where t1, t2 ∈ A1−{0, 1} and t3 ∈ A1−{0} are the Ihara–Matsumoto coordinates

(cf. [IM95]) introduced by (v2 − v1, v3 − v1, v4 − v1) = (t1t2t3, t2t3, t3). To connect

b̄4 to M−1(
−→
w q̄), factorize the above homomorphism through an intermediate ring

R̃ :=

( ∞⋃
k=1

Q[[t
1/k
1 , t

1/k
2 ]]

[
1

t1
,

1

t2

])[
t3,

1

t3

]
,

and put

(5.6.2) (0, t1t2t3, t2t3, t3) := (0, T3 − T4, T2 − T4, T1 − T4) ∼
(

0, 2tq,
t

8
,

2

t

)
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so that t1 ∼ 16q, t2 ∼ t2

16 , t3 ∼ 2
t . The induced (

⋃∞
k=1 Q[[t1/k, q1/k]][1/t, 1/q])-

valued point on Spec(R̃) defines (a lift of) the tangential base point M−1(
−→
w q̄).

Arriving at this stage, one can now introduce a triple of natural paths ε1 :
−→
01t1  

1
16

−→
01t1 =

−→
01q, ε2 :

−→
01t2  16 · −→01t2 =

−→
01t2 , and ε3 :

−→
01t3  

1
2

−→
01t3 =

−→∞1t  
−→
01t

on Spec(R̃) along the positive power roots of 2 (and of 16). (Note here that

ε1, ε2 are infinitesimal paths near 0 on A1 − {0, 1} while ε3 is a global path

on A1 − {0}.) Then, taking the projection image of (ε1, ε2, ε3), we obtain a path

ε : b̄4  M−1(
−→
w q̄) on A4

u \D. By construction, we have

(5.6.3)


σ(ε1) = (τ2

1 )4ρ2(σ) · ε1,

σ(ε2) = ((τ1τ2)3)−4ρ2(σ) · ε2,

σ(ε3) = ((τ1τ2τ3)4)ρ2(σ) · ε3

for σ ∈ GQ, where ρ2 : GQ → Ẑ is the Kummer 1-cocycle defined by ζ
ρ2(σ)
n =

σ( n
√

2)/ n
√

2 (n ≥ 1).

Let us also calculate the image F(M−1(
−→
w q̄)) on A3

u \ D. Using the above

(5.6.2), one obtains a triple of Ferrari resolvents (S1, S2, S3) on A3
v \ ∆ having

lower degree terms in t, q as (S1, S2, S3) = (−1/4− 4q + · · · ,−1/4− t2q/4 + · · · ,
−4q − t2q/4 + · · · ). By parallel transportation, its Ihara–Matsumoto coordinates

s1, s2 can be characterized by

(5.6.4) (0, s1s2, s2) := (0, S2 − S1, S3 − S1) ∼ (0, 4q, 1/4)

so that s1 ∼ 16q, s2 ∼ 1/4, where ∼ indicates principal terms as Laurent series in

‘q, t’. We observe that the image F(ε) looks like an infinitesimal segment path

−→
01s1(= 16 · −→01q) 

1

16

−→
01s1(=

−→
01q)

on the s1-line. The appearance of 1
16 in this manner in Grothendieck–Teichmüller

theory has been observed first in [N99-02, §4.10], and this feature has continuously

appeared in our works [N97], [NS00] etc.

§5.7. Standard splittings of π1(Mω
1,2)

Below, we shall switch our working place to the Mω
1,2-side of the Mordell transfor-

mation (5.4.1). We denote by the same symbols the images of the base point b̄4
and of the above path ε on A4

u \ D on Mω
1,2 under M. Let β1(σ) ∈ π1(Mω

1,2, b̄4),

s1(σ) ∈ π1(Mω
1,2,
−→
w q̄) denote the elements corresponding to σ ∈ GQ. Also we

represent the images under M of generator elements of B̂4 by the same symbols,

which are in the first sense loops based at b̄4 but may also be regarded as loops

based at
−→
w q̄ by conjugation by ε. Under this abuse of notation, we may rephrase
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the above formula (5.6.3) as

β1(σ) ε s1(σ)−1 = ε · (τ2
1 )4ρ2(σ)((τ1τ2)3)−4ρ2(σ)((τ1τ2τ3)4)ρ2(σ)(5.7.1)

= (τ2
1 )4ρ2(σ)((τ1τ2)3)−4ρ2(σ)((τ1τ2τ3)4)ρ2(σ) · ε.

Drawing back Drinfeld’s formula (5.4.2) by ε, we obtain Galois actions on τ1, τ2, τ3
at the Tate–Weierstrass base point

−→
w q̄ as follows:

(5.7.2)


s1(σ) τ1 s1(σ)−1 = τ

χ(σ)
1 ,

s1(σ) τ2 s1(σ)−1 = ω
−4ρ2(σ)
2 fσ(τ2

1 , τ
2
2 )−1τ

χ(σ)
2 fσ(τ2

1 , τ
2
2 )ω

4ρ2(σ)
2 ,

s1(σ) τ3 s1(σ)−1 = ω
4ρ2(σ)
3 fσ(ω3, τ

2
3 )−1τ

χ(σ)
3 fσ(ω3, τ

2
3 )ω

−4ρ2(σ)
3 ,

where ω2 = τ2
1 , ω3 = (τ1τ2)3.

Next we shall look at the kernel of the projection π1(Mω
1,2,
−→
w q̄)→ π1(Mω

1,1, q̄)

which is identified with the Ferrari kernel ker(π1(F)) (5.4.3). In [N99-02, §4], we

considered π1(M1,2) = π1(Mω
1,2)/〈ω4〉 as the topological mapping class group of

a torus with two marked points. The images of τ1, τ2, τ3 were then understood to

be the Dehn twists along certain simple closed curves on it. From this discussion,

one could introduce generators x1,x2, z given by combination of Dehn twists as

in (5.4.4). Since the Ferrari kernel has isomorphic image in π1(M1,2), we see that

the GQ-action on these generators x1,x2, z of π1(Tate(q) \ {O}) in Theorem 5.2.4

exactly gives the GQ-action on the Ferrari kernel even in π1(Mω
1,2,
−→
w q̄).

At this stage, it is probably appropriate to show how the above formula (5.7.2)

can consistently imply a key formula of Theorem 5.2.4, namely, the fact that s1(σ)

acts on x2 by conjugation in the following form:

(∗) x2 7→ fσ(x−1
2 , z)x

χ(σ)
2 fσ(x−1

2 , z)−1.

In fact, our substantial ingredient for connecting (5.7.2) to (∗) is what is called

“relation (IV)” satisfied by the image of GQ ↪→ ĜT , which was found in [N99-02,

Theorem 4.16]. It (equivalently) implies (cf. also [NS00, p. 543]) the equation

(IV) fσ(τ2
3 , ω3) = ω

−4ρ2(σ)
3 fσ(τ3, ω

2
3)(τ3ω3)4ρ2(σ)τ

−4ρ2(σ)
3 (σ ∈ GQ).

Proof that (5.7.2) and (IV) imply (∗). As x2 = τ1τ
−1
3 , one easily sees from (5.7.2)

that the conjugate action by s1(σ) gives the mapping

x2 7→ ω
4ρ2(σ)
3 fσ(τ2

3 , ω3)x
χ(σ)
2 fσ(τ2

3 , ω3)−1ω
−4ρ2(σ)
3 .

Applying relation (IV) here and noting that τ3, ω3 commute with x2, the above

expression is equivalent to

x2 7→ fσ(τ3, ω
2
3)x

χ(σ)
2 fσ(τ3, ω

2
3)−1.
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Since fσ is in [F̂2, F̂2], and since the pair {τ1, ω4 = (τ1τ2τ3)4} elementwise commutes

with the pair {τ3 = x−1
2 τ1, ω2

3 = zω4}, it follows that fσ(τ3, ω
2
3) = fσ(x−1

2 , z). Thus,

we conclude that the above (∗) is derived from (5.7.2) and (IV).

Before closing this subsection, we give a statement on how the Weierstrass

tangential section (§2.4) gives a complement of the Ferrari kernel, i.e., a splitting

of π1(Mω
1,2,
−→
w q̄) with it:

Proposition 5.7.3. The image of the Weierstrass section

s−→w : π1(Mω
1,1, q̄)→ π1(Mω

1,2,
−→
w q̄)

coincides with the subgroup 〈τ1, τ2〉 o s1(GQ) so that s−→w (τi) = τi (i = 1, 2). Con-

sequently, the conjugate action on the Ferrari kernel ker(π1(F)) = 〈x1,x2〉 via s−→w
of each split component of π1(Mω

1,1, q̄) = B̂3 o s0(GQ) at q̄ is given by

Int(s−→w (τ1)) :

{
x1 7→ x1x

−1
2 ,

x2 7→ x2,
Int(s−→w (τ2)) :

{
x1 7→ x1,

x2 7→ x2x1,

on B̂3 and by Theorem 5.2.4 on s0(GQ).

We will give the proof of this proposition at the end of §6.

§5.8. Lifting modular forms

As observed in §2.2, the moduli space Mω
1,1 and the universal elliptic curve Mω

1,2

over it are themselves affine schemes. Let Oω1,1 denote the former structure ring

Q[g2, g3, (g
3
2 − 27g2

3)−1], and let Oω1,2 denote the latter structure ring which can be

written as Oω1,1[x, y]/(4x3− g2x− g3− y2). We shall fix a maximal pro-etale cover

(i.e., universal cover) M̃ω
1,2 = Spec(Õω1,2) of Mω

1,2, and a base point w̃q̄ on it that

lifts
−→
w q̄. Note that this determines, at the same time, the universal cover M̃ω

1,1 =

Spec(Õω1,1) of Mω
1,1 together with its base point q̃ as the pointed subobject under

(M̃ω
1,2, w̃q̄). For any pointed Galois etale covers f : (Y, ȳ) → (X, x̄) dominated by

(M̃ω
1,2, w̃q̄), we shall write aY/X : π1(X, x̄)→ Aut(Y/X) for the natural surjective

anti-homomorphism determined by aY/X(σ)(ȳ) = σ(ȳ).

In §5.1, we selected a system of (an embedding Q ↪→ C and) standard genera-

tors x1,x2, z of π1(Tate(q)q̄ \ {O}, q̄) which determines the matrix representation

ρN : π1(Mω
1,1, q̄)→ GL2(Z/NZ).

As in §2.6, we obtain a system of etale coverings Mω
1,1[N ] → Mω

1,1 which

corresponds to the kernels of ρN (N ≥ 1). Also we pick a system of base points q̄N

on Mω
1,1[N ] in multiplicatively compatible way with respect to N ≥ 1. Regard

then the associated Γ(N)-test object (EN/OωN1,1 , α : (Z/NZ)2 ∼−→ EN [N ], ωN )
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with the pair of base points (
−→
w q̄N , q̄

N ) as a pointed subobject of (M̃ω
1,2, w̃q̄), so

that the structure rings of both EN and OωN1,1 become subrings of Õω1,2 and of Õω1,1
respectively. Note also that the Weil pairing gives a compatible system of primitive

roots of unity {ζN} in Õω1,1. It turns out that ζN = exp(2πi/N) under our choice

of Q ↪→ C.

Now, we see how modular units, eta-function and Eisenstein series introduced

in §4 can be lifted to certain elements of Õω1,1. In fact, by Proposition 4.2.1, the

Siegel function gx (x ∈ ( 1
NZ/Z)2) is a modular function of level Γ(12N2) with

q1/N -expansion with coefficients in Q(µ2N2). By Proposition 4.2.3, the square η2

of the eta function is a modular form of weight 1 and level Γ(12) which has Q-

rational q1/12-expansion. By (4.3.2), the Eisenstein series E
(x)
k (x ∈ ( 1

NZ/Z)2) for

k ≥ 3 or x 6= 0 is a modular form of weight k of level Γ(N) with q1/N -expansion

with coefficients in Q(µN ). Thus, forming algebraic modular forms corresponding

to them over suitably large cyclotomic fields (⊂ C) (§4.4), we obtain their val-

ues at (EN/OωN1,1 , α : (Z/NZ)2 ∼−→ EN [N ], ωN ) in Õω1,1. Note that an algebraic

form of level N may also be of level MN , which, however, still gives the same

element in Õω1,1. We shall use the same symbols as modular forms to designate the

corresponding elements in Õω1,1. For example, we have ∆ = (η2)12, θx = g12
x as

elements of Õω1,1. Moreover, their q1/N -expansions can be recovered as the values

at the Tate tangential base point, i.e., as the Puiseux power series images under

Õω1,1 → Ω ⊂ Q{{q}} at q̄.

§5.9. Kummer characters, power roots of ∆

Monodromy characters along power roots of various fundamental quantities play

important roles in our study. Besides the cyclotomic character χ : GQ → Ẑ×

coming from the roots of unity, the most basic character is the Kummer character

(1-cocycle)

ρa : GQ → Ẑ = Ẑ(1)

for a positive rational number a, which is defined with the positive power roots
n
√
a (n ≥ 1) by

ζρa(σ)
n = σ( n

√
a)/ n
√
a (n ≥ 1, σ ∈ GQ).

Note that although the cyclotomic character χ : GQ → Ẑ× does not depend on the

choice of either Q ↪→ C or primitive n-th roots of unity ζn, the Kummer character

ρa : GQ → Ẑ does depend on either choice specified by the properties n
√
a ∈ R∩Q

and ζn = exp(2πi/n) (n ≥ 1). As obvious extension of notations, for any algebraic

variety S = Spec(B) with base point b̄ : Spec(Ω)→ S (given by Q ⊂ B → Ω), we

shall write

χ : π1(S, b̄)→ Ẑ×, χa : π1(S, b̄)→ Ẑ



460 H. Nakamura

to designate the composition of the natural projection π1(S, b̄) → GQ with the

above χ, ρa (a ∈ Q>0) respectively.

Next, we shall introduce a standard monodromy character along power roots

of the modular function ∆. Since η2 is a unit of Õω1,1, its power roots (η2)1/N

also lie in Õω1,1. The choice of their branches can be determined by specifying

their images in Q{{q}}, or more simply by specifying the principal coefficients as

Puiseux power series in q. Since η2 = q1/12
∏

(1 − qn)2, we simply set (η2)1/N to

have leading term q1/12N . Put also ∆1/N := ((η2)1/N )12.

The Kummer character

ρ∆ : π1(Mω
1,1, q̄)→ Ẑ

is defined by

∆1/N |aσ
∆1/N

= ζ
ρ∆(σ)
N (N ≥ 1, σ ∈ π1(Mω

1,1, q̄)).

The following gives a complete description of ρ∆:

Lemma 5.9.1. Let π1(M1,1, q̄) = s0(GQ) n B̂3 be the standard splitting of the

fundamental group of Mω
1,1 at the Tate tangential base point q̄. On s0(GQ), ρ∆

vanishes. On B̂3, ρ∆ is determined by ρ∆(τ1) = ρ∆(τ2) = −1. Consequently,

ρ∆ : π1(Mω
1,1, q̄)→ Ẑ (τ1, τ2 7→ −1, s0(σ) 7→ 0 (σ ∈ GQ)).

Proof. The action from s0(GQ) is defined by coefficientwise Galois action on the

Puiseux series in q. Our choice is given by setting the principal coefficient to be 1, so

ρ∆ vanishes. On the discrete geometric fundamental group B3, we interpret ρ∆ as

the winding number of the function ∆ = g3
2−27g2

3 = 16(e1−e2)2(e1−e3)2(e2−e3)2

along the motion of three points e1, e2, e3 according to braids. The minus sign

comes from our convention of path composition.

§5.10. Power roots of Siegel units

For gx (x = (r1/m, r2/m)), recall that the principal term of the q1/12m2

-expansion

reads by definition (see §4.2){
−eπix2(x1−1) (m - r1),

−eπix2(x1−1)(1− ζr2m ) (m | r1).

In view of this, to determine the standard N -th root of gx (written g
1/N
x ), it suffices

to choose the standard N -th roots of those individual factors. Set

(−1)1/N = ζ2N , (eπix2(x1−1))1/N = ζ
r2(r1−m)
2Nm2
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and let (1−ζr2m )1/N be the principal branch having the least argument as the com-

plex number. Certainly, we shall define g
1/N
x for particular x = (r1/m, r2/m) with

(r1, r2) ∈ [0,m)2−{0} so that the principal coefficient of q1/12m2N is ζ2Nζ
r2(r1−m)
2Nm2 ,

multiplied by (1− ζr2m )1/N when r1 = 0. However, for general x ∈ Q2 \Z2, we take

a slightly more careful process via the real analytic continuity of gx (6= 0) in

x ∈ R2 \ Z2: We consier the complex analytic model discussed in §2.9, where the

universal elliptic curve with level m structure was given as a quotient of C × H

by Z2 o Γ(m). To specify g
1/N
x it suffices to choose its image as an analytic func-

tion on the upper half-plane H. Observe now that the Siegel function gx (x ∈ R2)

varies real analytically with respect to x, and is zero for x ∈ Z2 while non-zero for

x ∈ R2 \Z2. For x = (x1, x2) ∈ [0, 1)2 (x 6= 0), we define g
1/N
x to be the root whose

Fourier expansion at i∞ has principal coefficient eπi(1+x2(x1−1))/N , multiplied by

(1 − e2πix2)1/N when x1 = 0. For general (x1, x2) = (r1/m, r2/m) ∈ Q2 \ Z2,

pick a sufficiently small real number ε/m > 0, and trace the branch of g
1/N
ξ from

ξ = (ε, ε) in the already considered region [0, 1)2 − {0} along the piecewise line

path ξ = (ε, ε)→ (ε, ε+x2)→ (ε+x1, ε+x2), and then take the limit ε→ 0: the

process may be summarized as

(5.10.1) g1/N
x := lim

ε→0
Move
t1:0 1

Move
t2:0 1

(g
1/N
ξ((x1t1,0)+(0,x2t2)+(ε,ε))).

Since the path does not meet a lattice point in Z2, the real analytic continuity

of gx with respect to x ∈ R2 determines a well defined branch of g
1/N
x . Obviously,

g
1/N
x forms a power root system with respect to N , that is, (g

1/MN
x )N = g

1/M
x for

M,N ∈ N. We also define θ
1/N
x := (g

1/N
x )12.

Before closing this section, we shall introduce certain Kummer type quanti-

ties. These will be crucial in our main Theorem A on approximating the ECm(σ)-

invariant, which we will discuss in detail in the next section.

Definition 5.10.2. Let C be a full class of finite groups. Define

eC :=
∏

l prime∈|C|

el

where el = 1, 3, 4 according as l ≥ 5, = 3, = 2 respectively.

Let ρC : π1(Mω
1,1, q̄) → GL2(ZC) be the standard representation on the

abelianization of Π1,1, let m ≥ 1 and pick any σ ∈ π1(Mω
1,1, q̄).

Definition 5.10.3. If two pairs of rational integers r = (r1, r2), s = (s1, s2) ∈ Z2

satisfy (
s1

s2

)
≡ ρC(σ)

(
r1

r2

)
mod m2MeC
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for some M ∈ |C|, then the move of pairs

x =

(
r1

m
,
r2

m

)
→ y =

(
s1

m
,
s2

m

)
∈
(

1

m
Z
)2

is called ρC(σ)-admissible at level m modulo m2M . (Here ρC(σ) is considered as

acting on (Z/(m2MeC)Z)2 through ρm
2MeC (§2.6).)

Note that, in this case, as noted in (4.6.2), (4.6.7)-(4.6.8), (gx)cl |aσ = ζ · (gy)cl

(ζ ∈ µel), where cl = 12, 4, 3 (resp. el = 1, 3, 4) according as l ≥ 5, = 3, = 2.

Definition 5.10.4. Notations being as above, let x → y be a move of pairs of

rational numbers which is ρC(σ)-admissible at level m modulo m2M . (In this case,

by assumption x, y 6∈ Z2.) Define then the value

κm,m
2M

x→y,C (σ) =
(
κm,m

2M
x→y,l (σ)

)
l: prime∈|C| ∈ ZC

by (
(gclx )1/ln |aσ

(gcly )1/ln

)
= ζ

κm,m
2M

x→y,l (σ)

elln
(ln ∈ |C|, l prime).

An easy observation: Each l-component of κm,m
2M

x→y,C (σ) for prime l ∈ |C|
can be interpreted as κm,m

2M
x→y,(l) (σ), i.e., as obtained by replacing C by the full

class of l-groups (denoted (l)). Note here that ρC(σ)-admissibility implies ρ(l)(σ)-

admissibility.

One more crucial remark should be added here: Our move of pairs x → y is

chosen after σ ∈ π1(Mω
1,1, q̄) is given. Therefore κm,m

2M
x→y,C does not form a single

function π1(Mω
1,1, q̄)→ ZC . What we have obtained is, in general, only a “collection

of quantities”, which, however, still turn out to have certain coherence as we will

see in the next section.

In particular, if we restrict the range of σ to the pro-C congruence kernel

where ρC(σ) = 1, then we may fix x = y for all of them, and κm,m
2M

x→x,C gives an

additive character (even independent of M). We will discuss this in more detail

in §6.10.

§6. Modular unit formula

§6.1. Set up

Let C be a full class of finite groups. Suppose we are given a Γ(1)-test object

(E,O, ω) defined over a regular domain B (⊃ Q) whose connected spectrum S =

Spec(B) has a fixed base point b̄ : Spec(Ω)→ S. We have a unique representative

morphism r : S → Mω
1,1 together with rE : E \ {O} → Mω

1,2. Pick any path γ
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from r(b̄) to the standard base point q̄ on M1,1 introduced in the previous section.

Then, through the Weierstrass tangential section (§2.4), we obtain a path γ̃ from

rE(
−→
w b̄) to

−→
w q̄ on Mω

1,2 lifting γ. Note that this uniquely determines a lift rE(
−→
w b̄)

∼

on M̃ω
1,2 connecting to w̃q̄ selected in §5.8.

Let (x, y, g2, g3, t) be the associated parameter for (E/B,O, ω) and let OE
denote the structure ring H0(E \ {O},O) = B[x, y]/(y2 = 4x3 − g2x − g3) of

the affine scheme E \ {O}. Fix a maximal etale extension ÕE whose spectrum

Ẽ \ {O} := Spec(ÕE) serves as an etale universal cover of E \{O} over B. We also

pick and fix a lift w̃b̄ : Spec(Ω{{t}})→ Ẽ \ {O} of the Weierstrass base point
−→
w b̄.

The fiber product P of M̃ω
1,2 and E \ {O} over Mω

1,2 is, in general, not con-

nected. But since there is a canonical bijection between the fiber set M̃ω
1,2(rE(

−→
w b̄))

and the fiber set P (
−→
w b̄), we have a canonical point p0 in the latter set correspond-

ing to rE(
−→
w b̄)

∼. This determines the morphism of pointed schemes

r̃E : (Ẽ \ {O}, w̃b̄)→ (P, p0)→ (M̃ω
1,2, rE(

−→
w b̄)

∼)

which actually factors through the connected component of P carrying the p0.

Correspondingly, we have a canonical ring homomorphism

r̃E
∗

: Õω1,2 → ÕE .

For any connected pointed etale Galois cover f : (Y, ȳ)→ (X, x̄) dominated by

(Ẽ \ {O}, w̃b̄), we write aY/X : π1(X, x̄) → Aut(Y/X) for the natural surjective

anti-homomorphism determined by aY/X(σ)(ȳ) = σ(ȳ) for σ ∈ π1(X, x̄) (which

has monodromy action on ȳ ∈ Y (x̄) = Y ⊗X x̄ on the RHS). In terms of the

corresponding rings OX ⊂ OY ⊂ ÕE , it induces a canonical left action of π1(X, x̄)

on the functions in OY (written f 7→ f |aσ ) characterized by the property

f(aσ(φ)) = (f |aσ )(φ) (φ ∈ Y (R) = Hom(OY , R), f ∈ OY , aσ = aY/X(σ))

for variable rings R. (Note that this use of notation aσ is compatible with that

in §2.7.)

Let Bur be the maximal unramified subextension of B inside the above ÕE .

One observes that then Sur = Spec(Bur) is naturally pointed by b̄, the image of w̃b̄.

Thus, each of the spectra of the rings in the inclusion series

B ⊂ BN ⊂ BC =
⋃

N∈|C|

BN ⊂ Bur

has a standard base point valued in Ω which we will write b̄, b̄N , b̄C , b̄ur respec-

tively. From the anti-isomorphism aSur/S : π1(S, b̄) → Aut(Sur/S), we have a

standard isomorphism π1(S, b̄)
∼−→ Aut(Bur/B) written σ 7→ (∗|aσ). The above
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homomorphism r̃E
∗

induces by restriction a ring homomorphism Õω1,1 → Bur.

This enables us to consider the images in Bur of algebraic modular forms or of

selected power roots of ∆ and Siegel units in the last section (§§5.8–5.10). Accord-

ingly, ρ∆, κm,m
2M,C

x→y make sense on π1(S, b̄) and factor through π1(Mω
1,1, q̄) via the

representative morphism r : S →Mω
1,1 and the selected path γ : r(b̄) q̄.

§6.2. Main approximation theorem

In this subsection, we state our main approximation theorem. The proof will be

given in the last part of this section.

By taking conjugation via the above rE and γ̃, we can also pull back the

standard generators x1,x2 of Π1,1 = π1(Tateq̄\{O},−→w q̄) (§5.2) to π1(Eb̄\{O},
−→
w b̄)

(denoted by the same symbols) so that z = [x1,x2]−1 generates an inertia subgroup

over the missing point O on Eb̄\{O}. Throughout this section, we keep the symbols

x1,x2, z to denote these specified generators of π1(Eb̄ \ {O},
−→
w b̄) and their images

in the maximal pro-C quotient:

π1(Eb̄ \ {O},
−→
w b̄)(C) = 〈x1,x2, z | [x1,x2]z = 1〉pro-C .

Plugging this into the setting of §3, we obtain, for m ∈ |C|, the monodromy

invariants (of Eisenstein type) ECm : π1(S, b̄)× Z2
C → ZC (Definition 3.4.1).

Theorem 6.2.1 (Modular unit formula). Let σ ∈ π1(S, b̄). For any M ∈ |C| and

(u, v) ∈ Z2
C \ (mZC)2, pick two pairs of rational integers r = (r1, r2), s = (s1, s2)

such that r ≡ (u, v) mod mM22ε (where ε = 0, 1 according as 2 - M , 2|M
respectively) and x = (r1/m, r2/m) → y = (s1/m, s2/m) is ρC(σ)-admissible at

level m modulo m2M2. Then

ECm(σ;u, v) ≡ 1
12

(
κm,m

2M2

x→y,C (σ)− ρ∆(σ)
)

+ ρm(σ) mod M2.

Here, ρm is the Kummer character along positive power roots of m in the

sense of §5.9. Since ∆(E,mω) = m−12∆(E,ω), the above right hand side can

be written in the form of Theorem A of the Introduction. We also note that

by definition Em(σ; 0, 0) = 0, and recall from Proposition 3.4.8 that Em(σ;u, v)

for (u, v) ∈ (mZC)2 can be evaluated from Em(σ;u + 1, v), Em(σ; 1, 0) and an

elementary term.

For the proof of the above theorem, observe first that, without loss of general-

ity, we may assume C is the full class of all finite groups (cf. Remark 3.6.5). By the

Chinese Remainder Theorem, we may also assume M = ln for a prime l. Below,

we shall start the proof with these assumptions being supposed. In particular, we

drop C from the notation κm,m
2M2

x→y,C (σ), which means C is supposed to be the class

of all finite groups till the end of §6.9.
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§6.3. Geometrically abelian coverings

Let N be an integer in |C|. The isogeny E
N→ E by multiplication by N gives an

etale B-cover of degree N2. Let us write this covering as ENB → E to distinguish

the copy ENB from E/B. We have specified differential forms both on E/B and

ENB , which will be written ω and ωN respectively. The pull-back of ω to ENB is then

NωN . The associated parameter of ENB is of the form (g2, g3, xN , yN , tN ), where

the last three parameters xN , yN , tN can be explicitly written from the original

ones for E/B by classical well known N -division formulas for elliptic functions. In

particular, tN can be expanded in a power series of the form t
N (1 + tB[[t]]).

The above isogeny by multiplication by N also induces the etale cover

EN0 := ENB \ EN [N ]→ E0 := E \ {O}.

The etale neighborhoods of the zero sections O in both EN0 and E0 are canonically

isomorphic, i.e., RevO((ENB /O)∧) ≈ RevO((E/O)∧). From this we obtain a unique

tangential base point
−→
wN valued in Ω{{t}} near the zero section of EN0 that lifts the

Weierstrass base point
−→
w b̄ on E0. Note that the Weierstrass base point

−→
w
N

b̄ of EN0
valued in Ω{{tN}} itself has to be distinguished from

−→
wN . But since tN ∼ t/N and

since we have a standard power root system { n
√
N > 0}, we can fix an isomorphism

of Puiseux power series

Ω{{tN}}
∼−→ Ω{{t}} (t

1/n
N 7→ t1/n/

n
√
N, n = 1, 2, . . . )

which defines a standard path from
−→
wN to

−→
w
N

b̄ . Through this path
−→
wN  

−→
w
N

b̄ , the

fundamental group π1(EN0 ,
−→
wN ) , which is a subgroup of π1(E0,

−→
w b̄), is isomorphic

to π1(EN0 ,
−→
w
N

b̄ ).

§6.4. Geometrically meta-abelian coverings

Suppose N = ml with l a prime factor of N . We shall construct a sequence of etale

covers of EN0 of degrees ln (n = 1, 2, . . . ) whose geometric fibers form connected

cyclic covers of (EN0 )b̄. As in the previous subsection, let NωN on ENB be the pull-

back of ω and let (g2, g3, XN , YN , tN ) be the associated parameter of (ENB , O, ωN )

(§2.2). Define then

(6.4.1) Θl,N =



∆(ENB , O, ωN )l
2

l12

∏
P∈E[l]\{O}

1

(XN −XN (P ))6
(l ≥ 5),

∆(ENB , O, ωN )3

34

∏
P∈E[3]\{O}

1

(XN −XN (P ))2
(l = 3),

∆(ENB , O, ωN )

(−YN )3
(l = 2).



466 H. Nakamura

Note here that ∆(ENB , O, ωN ) ∈ B×. Also, each P ∈ E[l] (⊂ ENB [N ]⊗Bl) means a

section Sl → ENB ⊗Bl and xN (P ) gives an element of Bl (⊂ BN ). Although each

factor xN − xN (P ) is a function on EN0 ⊗ Bl, the product is easily seen to lie in

the structure ring OENB of EN0 over B. The associated divisor div(Θl,N ) of Θl,N is

given by

(6.4.2) div(Θl,N ) =


12(l2 − 1) · [O]− 12 · (ENB [l] \ {O}) (l ≥ 5),

4 · 8 · [O]− 4 · (ENB [3] \ {O}) (l = 3),

3 · 3 · [O]− 3 · (ENB [2] \ {O}) (l = 2).

Now, consider the function Θl,N = Θl,ml as a B-morphism of ENB \ENB [ml] to

Gm = SpecB[T, 1/T ] (via T 7→ Θl,ml). And further take the pull-back Y ml,l
k

by

the lk-isogeny of Gm = SpecB[U, 1/U ]→ Gm = SpecB[T, 1/T ] (T 7→ U l
k

). Then

we have the commutative diagram

(6.4.3)

Gm

lk

��

Y ml,l
k

��

Θ
1/lk

l,mloo Y ml,l
k

b̄

��

oo Spec(Ω{{t}})
−→
wYoo

( )l
k

��
Gm EmlB \ EmlB [ml]

Θl,mloo

��

Eml
b̄
\ Eml

b̄
[ml]

��

oo Spec(Ω{{t}})
−→
wmloo

E0 = E \ {O}

��

Eb̄ \ {O}

��

oo Spec(Ω{{t}})
−→
w b̄oo

��
S b̄oo Spec(Ω)

where
−→
wY is the induced base point on Y ml,l

k

b̄
. Since the degrees of div(Θl,ml)

at irreducible divisors in E[l] are prime to l, the pull-backed scheme Y ml,l
k

is

geometrically connected over S. One can regard π1(Y ml,l
k

,
−→
wY ) naturally as a

subgroup of π1(Eml0 ,
−→
wml). Moreover, regarding the toroidal type transformation

t 7→ t1/l
k

of Ω{{t}} as equivalence of base points, we see that a unique etale

morphism (Ẽ \ {O}, w̃b̄)→ (Y ml,l
k

,
−→
wY ) is determined as a pointed cover. In this

way, Θ
1/lk

l,ml ∈ O(Y ml,l
k

)× is considered as a specific element of O×E .

§6.5. Inertia classes and theta values

We inherit the notations of the previous section. If we extend the base scheme S to

SN = Spec(BN ) which corresponds to the kernel of the monodromy representation

ρN : π1(S, b̄) → GL2(Z/NZ) (§2.6), the divisor E[N ] ⊗ BN (⊂ ENB ⊗B BN ) is a
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union of N2 copies of SN indexed by the level structure αN : (Z/NZ)2 ∼−→ EN [N ].

The geometric fiber (EN0 )b̄ = EN
b̄
\ EN

b̄
[N ] is an abelian etale cover of (E0)b̄ =

Eb̄ \ {O} with Galois group (Z/NZ)2. The puncture of (EN0 )b̄ corresponding to

αN (a) will be denoted by Pa.

Let αml : (Z/mlZ)2 ∼−→ Eml[ml] be the level ml-structure induced from our

choice of generators x1,x2 of π1(Eb̄ \ {O},
−→
w b̄) in §6.2 (cf. §2.6). For convenience,

we shall use the notation

(Z/mlZ)2
0 :=

{
a = (a1, a2) ∈ (Z/mlZ)2 | la 6= 0

}
.

For a ∈ (Z/mlZ)2
0, since the image of the section αml(a) : Sml → Eml does not

intersect the support of div(Θl,ml), the value Θl,ml(α
ml(a)) lies in (Bml)×. In fact,

the classical formula (cf. [KL81, §10, Th. 2.2]; see also [Fr16, pp. 383–384] for the

case l = 2) gives

(6.5.1) Θl,ml(a) = Θl,ml(α
ml(a)) =


∆ · (θx)l

2

/θlx (l ≥ 5),

η8 · (g9
x)4/g4

3x (l = 3),

η6 · (g4
x)3/g3

2x (l = 2),

for a ∈ (Z/mlZ)2
0, where x = (r1/ml, r2/ml) ∈ Q2 is such that ri ∈ [0,ml]

(i = 1, 2) are integers with ai = ri mod ml. The right hand side of (6.5.1)

is in total an algebraic modular form of level Γ(ml) (Prop. 4.2.4), and can be

evaluated at the Γ(ml)-test object (Eml/Bml, αml, ωml) with value in (Bml)×.

However, in fact, we may evaluate the RHS at our compatible sequence of Γ(N)-

test objects (EN/BN , αN , ωN ) as long as ml |N to obtain a well defined value in⋃∞
N=1(BN )× ⊂ (Bur)×. This observation is crucial to our subsequent arguments

in which, by Proposition 4.2.1, the numerator and denominator of the RHS of

(6.5.1) individually make sense as elements of (B12m2l2)×, or more simply, just as

elements of (Bur)×.

Now, we shall consider distributions of inertia subsets in π1(Y ml,l
k

b̄
,
−→
wY ). Since

the support of the divisor of Θl,ml is in Eml[l], in the (completion of the) cyclic

cover of curves Y ml,l
k

b̄
→ Eml

b̄
\ Eml

b̄
[ml], each Pa ∈ Emlb̄ [l] (a ∈ (mZ/mlZ)2) is

ramified, while each Pa ∈ Emlb̄ [ml]\Eml
b̄

[l] (a ∈ (Z/mlZ)2
0) is unramified and splits

into lk points on the cover. In particular, if (u, v) ∈ (Ẑ)2 \ (mẐ)2, then the inertia

group generated by

zuv := (x−v2 x−u1 )z(xu1xv2)

still lies inside π1(Y ml,l
k

b̄
,
−→
wY ) (⊂ π1(Eb̄ \ {O},

−→
w b̄)). Here, notice that x1,x2

denote the prescribed generators of π1(Eb̄ \ {O},
−→
w b̄) and that zuv is in general

not conjugate to z in the subgroup π1(Y ml,l
k

b̄
,
−→
wY ): As remarked above, the inertia
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groups over Pa (a ∈ (Z/mlZ)2
0) split into a union of lk conjugacy classes of inertia

subgroups in π1(Y ml,l
k

b̄
,
−→
wY ).

Definition 6.5.2. For (u, v) ∈ (Ẑ)2 \ (mẐ)2, define the missing point Qml,l
k

u,v on

Y ml,l
k

b̄
to be the one determined by the inertia group 〈zuv〉. Let Xml,lk be the

integral closure of EmlB \EmlB [l] in Y ml,l
k

. The specific element Θ
1/lk

l,ml is considered as

a unit of the structure ring of Xml,lk . Moreover, the above point Qml,l
k

u,v determines

a Bur-point of Xml,lk/B, which we shall write βml,l
k

u,v : Sur → Xml,lk . Composing

these two, one obtains a unit of Bur which will be written as

(6.5.3) Θ
1/lk

l,ml(u, v) := Θ
1/lk

l,ml(β
ml,lk

u,v (Sur)) ∈ (Bur)×.

On the other hand, the Bur-point βml,l
k

u,v : Sur → Xml,lk of Xml,lk/B lies over

the Bml-point of EmlB \ EmlB [l] induced from the section αml(a) : Sml → Eml for

a = (a1, a2) ∈ (Z/mlZ)2
0 representing the residue class of (u, v) modulo ml.

Lemma 6.5.4. Let cl = 12, 4, 3 according as l ≥ 5,= 3,= 2 respectively. For

(r1, r2) ∈ Z2 \ (mZ)2, set x = (r1/ml, r2/ml) ∈ Q2. Then

Θ
1/lk

l,ml(r1, r2) = (η2cl)1/lk · ((gclx )1/lk)l
2

(gcllx)1/lk
,

where (η2)1/lk , g
1/lk

∗ are the pull-backs by Sur → (Mω
1,1)ur of the corresponding

elements introduced respectively in §5.9 and §5.10.

Proof. Put N = ml. By functoriality of the construction, it suffices to work in the

complex analytic model of Tate form: EN = C/NLτ → E = C/Lτ (Lτ = Zτ + Z,

τ ∈ H) so that, say, ∆(EN , O, 2πidzN ) = ∆(C/NLτ , O, 2πi
dz
N ) = ∆(2πiLτ ) =

∆(C/Lτ , O, 2πidz), which coincides with η(τ)24. Express the elliptic curve EN as

Y 2
N = 4x3

N − g2XN − g3 with

XN = ℘(2πizN , 2πiNLN ) =
1

(2πi)2
℘(zN , NLN ),

YN = ℘′(2πizN , 2πiNLN ) =
1

(2πi)3
℘′(zN , NLN ),

g2 = g2(2πiLτ ) =
1

12

(
1 + 240

∑
n≥1

σ3(n)qnτ

)
,

g3 = g3(2πiLτ ) = − 1

216

(
1− 504

∑
n≥1

σ5(n)qnτ

)
.

Then the fundamental local coordinate at O ∈ EN is given by tN = −2xN/yN =

2πizN (1 + O(zN )). First, we shall see that one of the inertia groups over Pa is
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generated by zuv with (u, v) ∈ Ẑ2 satisfying (u, v) ≡ a mod N . The starting in-

ertia element z = z00 determines the origin puncture O = P0 on EN \ EN [N ]

which is the anchor point of the tangential base point
−→
w
N

represented by (the

image of) a real analytic small segment {zN | 0 < tN < ε}. Note that, for any

u, v ∈ Z with (u, v) ≡ a mod m, the puncture Pa is the anchor point of xu1xv2(
−→
w
N

)

which is obtained by continuously tracing the paths xu1xv2 from
−→
w
N

. The automor-

phism axu1xv2 ∈ Aut(EN \ EN [N ]) is determined by xu1xv2(
−→
w
N

) = axu1xv2 (
−→
w
N

) =

avx2
aux1

(
−→
w
N

). Extend aγ ∈ Aut(EN \EN [N ]) to a unique automorphism aγ of EN .

Observing

ax−v2 x−u1 zxu1x
v
2
axu1xv2 (O) = axv2 axu1 az ax−u1

ax−v2
(axv2 axu1 (O)),

we see that the element zuv := x−v2 x−u1 zxu1xv2 ((u, v) ≡ a mod N) generates an

inertia subgroup over Pa = axu1xv2 (O) = axv2 axu1 (O) in π1(EN \ EN [N ],
−→
w
N

).

Next, recalling N = ml, we consider the Kummer cover Y ml,l
k → Eml \

Eml[ml] by Θ
1/lk

l,ml and its partial compactification Xml,lk → Eml \Eml[l]. Observe

first that the following quotient of Siegel functions with zN = x1τ + x2 (x =

(x1, x2) ∈ R2):

(6.5.5)
gl

2

x

glx

=
(−1)l

2

−1
· q

B2(x1)l2/2
τ

q
B2(lx1)/2
τ

· e
πix2(x1−1)l2

eπilx2(lx1−1)
· (1− qzN )l

2

1− qlzN

∏
n≥1

(1− qnτ qzN )l
2

(1− qnτ q−1
zN )l

2

(1− qnτ qlzN )(1− qnτ q−lzN )

=
(
(−1)l

2−1q
l−l2

2
zN q

l2−1
12

τ

) (1− qzN )l
2

1− qlzN

∏
n≥1

(1− qnτ qzN )l
2

(1− qnτ q−1
zN )l

2

(1− qnτ qlzN )(1− qnτ q−lzN )

turns out to be holomorphic in zN (non-holomorphic factors are canceled) and

that the infinite product factor has an expansion in zN with principal coeffi-

cient (q
−1/24
τ η(τ))2l2−2. Since

(1−qzN )l
2

1−qlzN
= (−2πiz)l

2−1

l (1 + O(zN )), it follows that

Θl,ml(zN ) may be expressed as

(6.5.6) Θl,N (zN ) =



∆(τ)

(
gl

2

x

glx

)12

=
∆l2

l12
(2πizN )12(l2−1)(1 +O(zN )) (l ≥ 5),

η(τ)8

(
g9
x

g3x

)4

=
∆3

34
(2πizN )32(1 +O(zN )) (l = 3),

η(τ)6

(
g4
x

g2x

)3

=
∆

23
(2πizN )9(1 +O(zN )) (l = 2).

Our task is to look closely into a specific branch of Θ
1/lk

l,ml and to evaluate it at
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zN = z
N = r1

mlτ + r2
ml when (r1, r2) ∈ Z2 \ (mZ)2. (Note that Θl,ml = 0,∞

according as (r1, r2) ∈ (mlZ)2 or ∈ (mZ)2 \ (mlZ)2 respectively.) To identify the

branch of Θ
1/lk

l,ml , it suffices to specify lk-th roots of all factors of (6.5.5) on the

infinitesimally small segment 0 < zN � 1, i.e., x1 = 0 and 0 < x2 � 1. For those

factors other than (−1)l
2

−1 ,
(1−qzN )l

2

1−qlzN
, we shall take canonical (principal branch)

lk-th roots on the segment. For the remaining two factors (that contribute to the

principal coordinate 2πizN ), we employ the following argument. By our definition

of
−→
wY lifting

−→
w
ml

(cf. (6.4.3)), the branch Θ
1/lk

l,ml should be taken so that the lk-th

root of the segment 0 < tN < ε in Gm be kept positive real under the pull-back

by the isogeny Gm → Gm of degree lk. Since tN = 2πizN (1 +O(zN )), this means

that the real infinitesimal segment 0 < zN � 1 attached to
−→
w
N

on EN \ EN [l]

should be lifted to a real infinitesimal segment determined by Arg((2πizN )1/lk) =
π

2lk
attached to

−→
wY on Y ml,l

k

. This latter condition is equivalent to choosing

(−1)1/lk := eπi/l
k

and (1−qx)1/lk to be the principal branch for 0 < x� 1 so that

Arg((−1)1/lk) = π
2lk

, Arg((1− qx)1/lk) = − π
4lk

and hence (−1)1/lk · (1− qzN )1/lk =

(2πizN )1/lk(1 + O(zN )), (−1)1/lk · (1 − qlzN )1/lk = (2πilzN )1/lk(1 + O(zN )) on

0 < zN � 1.

Now, for (r1, r2) ∈ Z2 \ (mZ)2, we shall figure out the place Qml,l
k

r1,r2 deter-

mined by the inertia element zr = (x−r22 x−r11 )z(xr11 xr22 ). It must be obtained as a

unique puncture on Y ml,l
k

anchoring the tangential base point xr11 xr22 (
−→
wY ) whose

location is detected by tracing the continuous move of the tangential base point
−→
wY (represented by the above infinitesimal segment on Y ml,l

k

) along the (lifts

of) paths xr22 first and xr11 afterwards. As observed above, our selection of lk-th

power roots of (6.5.5) is given factor by factor, hence it can be separated to lk-th

power roots of its numerator gl
2

x and denominator glx real analytically, each of

which can move continuously along the path xr11 xr22 so as to keep our choice of

branch of power roots of Siegel units (§5.10) from the start
−→
wY . During the trip,

the non-zero continuity of both (gl
2

x )1/lk and (glx)1/lk in x = (x1, x2) along the

path keeps correct determination of lk-th root branches, and hence, upon arrival

at the goal xr11 xr22 (
−→
wY ) anchored at Qml,l

k

r1,r2 , we obtain the desired value as stated

in the lemma.

§6.6. Estimating difference of sections

We now work in the extension of the profinite groups

1→ π1(Eb̄ \ {O},
−→
w b̄) = Π1,1 → π1(E \ {O},−→w b̄)→ π1(S, b̄)→ 1

with the Weierstrass tangential section s−→w : π1(S, b̄) → π1(E \ {O},−→w b̄). Write

σ̄ := s−→w (σ) for each σ ∈ π1(S, b̄).
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Since Θl,ml is defined over B and has zeros of order prime to l, the etale cover

Y ml,l
k → EmlB \ EmlB [ml] is connected, defined over B and total ramified over O.

Taking k →∞, we can consider the subgroup π1(Y ml,l
∞
,
−→
wY ) of π1(E \ {O},−→w b̄)

surjectively mapped onto π1(S, b̄). The above totally-ramifiedness of Y ml,l
k →

EmlB \ EmlB [ml] at O implies triviality of the intersection of the inertia subgroup

〈z〉 ⊂ π1(E \ {O},−→w b̄) with π1(Y ml,l
∞
,
−→
wY ), i.e., π1(Y ml,l

∞
,
−→
wY ) ∩ 〈z〉 = {1}.

Therefore, for each σ ∈ π1(S, b̄), there exists a unique σm ∈ π1(Y ml,l
∞
,
−→
wY )

which normalizes 〈z〉 and is mapped to σ. Let us compare σ̄ and σm. Note that σ̄

is also contained in the normalizer of 〈z〉, and π1(EmlB \EmlB [ml],
−→
wml) contains this

normalizer. The difference σ̄σ−1
m thus belongs to π1(Eml

b̄
\ Eml

b̄
[ml],

−→
wml). Since

π1(Eml
b̄
\Eml

b̄
[ml],

−→
wml)/π1(Y lm,l

∞

b̄
,
−→
wY ) is generated by the image of z, it follows

that there exists a unique l-adic integer ξm(σ) such that zξm(σ)σ̄ is contained

in π1(Y lm,l
∞
,
−→
wY ). So, without loss of generality we may take σm in the form

σm = zξm(σ)σ̄ for a unique ξm(σ) ∈ Zl.

Lemma 6.6.1. We have

ξm(σ) =
l2

12(l2 − 1)
ρ∆(σ)− 1

l2 − 1
ρl(σ)− ρml(σ) (σ ∈ π1(S, b̄)),

where ρl and ρml are the Kummer characters along positive roots of l, ml respec-

tively (§5.9).

Proof. Let tml be the associated parameter “t” for the cover Eml \Eml[ml] (§2.2).

Then, near tml = 0, we have

(6.6.2) Θl,ml ∼



∆l2

l12
(t12
ml)

l2−1 (l ≥ 5),

(η8)9

34
(t4ml)

8 =
∆3

34
(t4ml)

8 (l = 3),

(η6)4

23
(t3ml)

3 =
∆

23
(t3ml)

3 (l = 2),

where ∼ means equality ‘up to a factor of 1 +O(tml)’. Since tml ∼ t/ml, we may

also understand ∼ to designate ‘up to a factor of 1 +O(t)’ and get

Θl,ml ∼
∆l2t12(l2−1)

l12(ml)12(l2−1)
,

∆3t32

34(3m)32
,

∆t9

23(2m)9

in the respective cases l ≥ 5, = 3, = 2. By definition, σm keeps Θ
1/lk

l,ml invariant,

while σ̄ acts on its coefficients in the fractional powers of t. Noticing that t1/l
k |az =

ζ−1
lk
t1/l

k

in our convention, we obtain when l ≥ 5,

ζ
−12(l2−1)ρml(σ)−12ρl(σ)+l2ρ∆(σ)

lk
· ζ−12(l2−1)ξm
lk

= 1.
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From this the desired formula follows. By similar arguments for the cases l = 3, 2,

we also see

ξm(σ) =

{
3
32ρ∆(σ)− 1

8ρ3(σ)− ρ3m(σ) (l = 3),
1
9ρ∆(σ)− 1

3ρ2(σ)− ρ2m(σ) (l = 2),

both cases of which fit into the same formula as the case l ≥ 5.

§6.7. Monodromy permutations of inertia subsets

As explained above, since our Θl,ml gives an S-morphism EmlB \EmlB [l]→ Gm, the

pull-backed scheme Y ml,l
k

still has a canonical model over S. In particular, we

have an exact sequence

(6.7.1) 1→ π1(Y ml,l
k

b̄
,
−→
wY )→ π1(Y ml,l

k

,
−→
wY )→ π1(S, b̄)→ 1

which is our main working place in this subsection.

We shall consider the set of conjugacy unions of inertia subgroups in

π1(Y ml,l
k

b̄
,
−→
wY ) over the missing points Qml,lk of Y ml,l

k

b̄
lying on the integral clo-

sureXml,lk of EmlB \EmlB [l] in Y ml,l
k

(Definition 6.5.2). Denote, for eachQ ∈ Qml,lk ,

by IQ the conjugacy union of the inertia subgroups over Q in π1(Y ml,l
k

,
−→
wY ). We

now realize the following twofold actions.

On one hand, the standard generator z ∈ Π1,1 = π1(E \ {O},−→w b̄) lies in

π1(EmlB \ EmlB [ml],
−→
wml), which contains π1(Y ml,l

k

b̄
,
−→
wY ) as a normal subgroup.

Conjugation by z induces a permutation of
⋃
Q IQ, hence of Qml,lk .

On the other hand, we also have the conjugate action by a preimage σm
of σ under the natural surjection π1(Y ml,l

k

,
−→
wY )→ π1(S, b̄). Recall that we have

already specified a particular choice of σm in §6.6. (However, the induced action

on the set Qml,lk does not depend on the choice of σm, as long as it is chosen up

to the kernel π1(Y ml,l
k

b̄
,
−→
wY ).)

Note that the point Qml,l
k

u,v determined by the inertia element zuv (Defini-

tion 6.5.2) also lies in Qml,lk . In the following proposition, we examine the above

twofold conjugate actions on those inertia subsets including those zuv with numer-

ical quantities to evaluate distances of permuted points.

Suppose we are given an element σ ∈ π1(S, b̄) with ρ(σ) =
(
a
c
b
d

)
∈ GL2(Ẑ)

and two pairs of integers r = (r1, r2) and s = (s1, s2) in Z2 \ (mZ)2 so that

s ≡ (ar1 + cr2, br1 + dr2) mod m2lk.

Proposition 6.7.2. Notations being as above, there is a unique ν = νml,l
k

r,s ∈ Zl
determined modulo lk by any of the following equivalent conditions:

(1) σmzrσ
−1
m is conjugate to z−νz

χ(σ)
s zν in π1(Y ml,l

k

b̄
,
−→
wY ).
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(2)
(Θ

1/lk

l,ml(r1, r2))|aσ
Θ

1/lk

l,ml(s1, s2)
= ζ
−cl(l2−1)ν

lk
, where cl = 12, 4, 3 according as l ≥ 5,= 3,= 2

respectively.

(3) ζ
ρ∆(σ)

ellk

(
(g

1/lk

x )cll
2

(g
1/lk

lx )cl

)∣∣∣∣
aσ

= ζ
−cl(l2−1)ν

lk

(
(g

1/lk

y )cll
2

(g
1/lk

ly )cl

)
, where x = (r1/ml, r2/ml),

y = (s1/ml, s2/ml) ∈ Q2, cl is as above and el = 12/cl.

The remaining part of this subsection is devoted to the proof of this propo-

sition. Recall from §6.5 that we write Pa for the point in EmlB [ml] \ EmlB [l] lying

on the component αml(Sml) over b̄. The set Qml,lk is naturally mapped onto the

set Pml := {Pa | a ∈ (Z/mlZ)2
0}. Since the cover (Y ml,l

k → EmlB \ {O})b̄ is totally

ramified in 〈z〉, the conjugate action by z gives a transitive orbit in Qml,lk as the

fiber set at each Pa. Since the action of π1(S, b̄) on Pml is given by the matrix ρml

on the index set, the existence of ν and its uniqueness modulo lk as in (1) is easy

to see. To see the coincidence of ν given by the conditions (1) and (2) needs more

arguments.

Before going further, it is convenient for us to introduce a labeling of the

set Qml,lk . Recall first that Xml,lk is the integral closure of EmlB \ EmlB [l] in

Y ml,l
k

(Definition 6.5.2). The structure ring of Xml,lk is a subring of that of

Y ml,l
k

; both are dominated by Spec(ÕE) = Ẽ0. The partial compactifications

EmlB \ EmlB [l] ⊃ Eml0 = EmlB \ EmlB [ml] and Xml,lk ⊃ Y ml,l
k

give rise to the se-

quence Spec(ÕE) = Ẽ0 → Y ml,l
k

↪→ Xml,lk → EmlB \ EmlB [l] → Sml equipped

with the set of sections αml(a) : Sml → EmlB \ EmlB [l] (a ∈ (Z/mlZ)2
0). Each sec-

tion αml(a) fits in the following cartesian diagram yielding a canonical morphism

Spec(ÕE)→ Sml(Θ
1/lk

l,ml(a)):

(6.7.3) Spec ÕE

|| vv

ss

Gm

lk

��

Xml,lk

��

Θ
1/lk

l,mloo Spec(Bml[U ]/(U l
k−Θl,ml(a)))

��

oo

Gm EmlB \ EmlB [l]
Θl,mloo Sml

αml(a)oo

Namely, we have a specific element Θ
1/lk

l,ml(a) ∈ (Bur)× as the image of U in

Bur ⊂ ÕE . Now, the carriers of the points Qml,lk as schemes over Sur = Spec(Bur)

are of the form
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(6.7.4) (Xml,lk − Y ml,l
k

)⊗B Bur =
⊔

a∈(Z/mlZ)2
0

Spec(Bur[U ]/(U l
k

−Θl(a)))

=
⊔

a∈(Z/mlZ)2
0

lk−1⊔
b=0

Spec(Bur[U ]/(U − ζblkΘl(a)1/lk)).

Each (physical) component Spec(Bur[U ]/(U−ζblkΘl(a)1/lk)) carries a unique miss-

ing point Qa,b (a ∈ (Z/mlZ)2
0, b ∈ [0, lk − 1]) on the algebraic curve Xml,lk

b̄
. Thus,

we have obtained natural labelings of our sets:

(6.7.5)

Qml,lk

��

(Xml,lk − Y ml,lk)b̄

��

{Qa,b | a ∈ (Z/mlZ)2
0, b ∈ [0, lk − 1]}

��
Pml (EmlB [ml]− EmlB [l])b̄ {Pa | a ∈ (Z/mlZ)2

0}

Remark 6.7.6. From a real analytic argument similar to the proof of Lemma

6.5.4, one would also see that Θ
1/lk

l,ml(r1, r2) = Θ
1/lk

l,ml(a) in (Sur)× at least for

(r1, r2) ∈ [0,m)2. This observation, however, will not be used in our proof of

Theorem 6.2.1.

Now, we shall interpret the above two group-theoretic conjugate actions by

z ∈ Π1,1 and σm ∈ π1(S, b̄) on Qml,lk in geometric terms.

On one hand, the standard generator z ∈ Π1,1 = π1(E \ {O},−→w b̄) lies in

π1(EmlB \ EmlB [ml],
−→
wml) and also induces an automorphism az of Y ml,l

k ⊗B Bur,

which extends naturally to an automorphism az of Xml,lk ⊗B Bur. Denote by the

same symbol az the induced permutations of the points Qml,lk := (Xml,lk−Y ml,lk)b̄.

On the other hand, Qml,lk is also regarded as a set of Bur-rational points on

(Xml,lk−Y ml,lk)/B on which there is a natural monodromy action of π1(S, b̄). We

simply write it σm(∗), as it corresponds to a preimage σm of σ under the natural

surjection π1(Y ml,l
k

,
−→
wY ) → π1(S, b̄). In view of diagram (6.7.4), this action is

given by the left action (∗)|aσ in the value ring Bur on the images of U from the

carrier schemes for points in Qml,lk .

Thus, the coincidence of the quantity ν of (1) and (2) amounts to the following

Lemma 6.7.7. For each Q ∈ Qml,lk , Iaz
ν(Q) = z−νIQz

ν .

Proof. This is only a general theory (but needs a careful treatment of conventions

on path compositions). Consider the pointed universal etale cover Ỹ of Eml
b̄
\

Eml
b̄

[ml] dominating Y ml,l
k

b̄
and partial compactification X̃ as the projective limit

of the integral closures of finite layers over Eml
b̄
\ Eml

b̄
[l]. The profinite set Q̃ :=

X̃− Ỹ is regarded as the set of cusps. Then, for each γ ∈ π1(Eml
b̄
\Eml

b̄
[ml],

−→
wml),
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let aγ denote the restriction to Q̃ of the naturally extended action on X̃ from

aγ ∈ Aut(Ỹ ). If γ is contained in the inertia group for Q ∈ Q̃, i.e., aγ(Q) = Q,

then it follows from our convention (cf. (2.7.1)) that

az−1γz(az(Q)) = az·z−1γz(Q) = aγz(Q) = az(aγ(Q)) = az(Q).

The statement is only a reflection of this computation.

Thus, we established the existence of ν = νml,l
k

r,s and their coincidence in the

conditions (1) and (2). The condition (3) is only a restatement of (2) in view of

Lemma 6.5.4 and the Kummer property

(6.7.8) (η2cl)1/lk |aσ = (η2cl)1/lk · ζρ∆(σ)

el lk
.

Thus, the proof of Proposition 6.7.2 is complete.

§6.8. Count character for winding numbers

Now, recalling that Y ml,l
∞

b̄
is given as the Kummer cover over Eml

b̄
\Eml

b̄
[ml], we

have the exact sequence

1→ π1(Y ml,l
∞

b̄
,
−→
wY )→ π1(Emlb̄ \ E

ml
b̄ [ml],

−→
wml)

ϑml−−→ Zl → 1,

where cl · ϑml : π1(Eml
b̄
\ Eml

b̄
[ml],

−→
wml) → Zl (with cl = 12, 4, 3 according to

l ≥ 5,= 3,= 2 respectively) counts winding numbers of the images of paths

by Θl,ml around zero. Now, the fundamental group π1(Eml
b̄
\ Eml

b̄
[ml],

−→
wml) is

normally generated by xml1 , xml2 and the zr (r ∈ [0,ml)2) as a subgroup of π1(Eb̄ \
{O},−→w) = 〈x1,x2, z | [x1,x2]z = 1〉. Indeed, as observed in [N95, (2.6)], we may

characterize ϑml as follows:

Lemma 6.8.1. The above homomorphism ϑml is given by

ϑml(x
ml
1 ) = −l(l − 1)/2,(i)

ϑml(x
ml
2 ) = l(l − 1)/2,(ii)

ϑml(zr) =


(l2 − 1), r ∈ mlZ2,

−1, r ∈ mZ2 \mlZ2,

0, otherwise.

(iii)

Proof. It suffices to show the lemma for a complex elliptic curve E(C) = C/L
given by a lattice L = Zω1 + Zω2 (τ = ω1/ω2 ∈ H) with a tangential base

point of E \ {O} represented by (the image of) a small arrow
−→
w =

−−−−−→
(0, εω2) ⊂ C

(0 < ε � 1). We take the generators x1,x2, z based at
−→
w to be (the images in

C/L of) certain standard paths (along Rω1∪Rω2∪{ω+e2πit−→w |ω ∈ L, 0 ≤ t ≤ 1})
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illustrated by: x1 :
−→
w → −→w − ω1, x2 : eπit

−→
w(t : 0→ 1)→ −→w − ω2 and z : e2πit−→w

(t : 0→ 1) respectively (and their shifts by the elements of L). Observe then that

the composition x1x2x
−1
1 x−1

2 z is contractible on C \ L, hence gives the standard

relation [x1,x2]z = 1 in π1(E \ {O},−→w). Now, the function

f(z) =
∏

P∈(mL/mlL)−{O}

1

(℘(z,mlL)− ℘(P,mlL))6

is a constant multiple of Θ
12/cl
l,ml whose winding number is given by 12ϑml(γ) =

1
2πi

∫
γ
f ′(z)
f(z) dz for any path γ connecting two points in L +

−→
w .

(iii) follows immediately from the fact that f(z) has only zeros of order

12(l2−1) at the points in mlL and only poles of order 12 at the points in mL\mlL.

To show (i), (ii), we shall consider integration surrounding a side of the ml-

magnified fundamental parallelogram. Let δ denote the semicircle path eπit
−→
w

(t : 0 → 1) and its shifts with L, and consider the loop xml1 δ(−x1)mlδ−1 which

negatively surrounds one zero and l− 1 poles. Since f(z) = f(−z), the integral of

f ′(z)/f(z) along x1 is the same as that along −x1, while the periodicity of f(z)

implies the integral along δ and that along δ−1 (= δ−1 at −mlω1) cancel with each

other. Hence, 12(l2−1)−12(l−1) = −2 ·12ϑ(xml1 ), which implies (i). Similarly, we

obtain (ii) by considering integration of f ′(z)/f(z) along xml2 δ(−x2)mlδ−1 which

positively surrounds one zero and l − 1 poles.

Before proceeding with the proof of Theorem 6.2.1, we shall present an imme-

diate application of ϑml concerning the points on Y ml,l
k

determined by the inertia

elements zuv = (xu1xv2)−1z(xu1xv2) ((u, v) ∈ Ẑ2).

We note that this abelian quotient of π1(Eml
b̄
\Eml

b̄
[ml],

−→
wml) is generally not

invariant under the conjugate action of π1(Eb̄ \ {O},
−→
w b̄), in particular we do not

expect a formula like ϑml(xzx
−1) = ϑml(z).

If (u, v), (u′, v′) ∈ Ẑ2 satisfy the congruence (u, v) ≡ (u′, v′) mod ml, then the

quotient of xu1xv2 by xu
′

1 xv
′

2 lies in π1(Eml
b̄
\ Eml

b̄
[ml],

−→
wml). The following lemma

gives an estimate of its value via ϑml.

Lemma 6.8.2. If (u, v), (u′, v′) ∈ Ẑ2 satisfy (u, v) ≡ (u′, v′) mod mlk+1, then

ϑml((x
u′

1 xv
′

2 )−1(xu1xv2)) and ϑml((x
u′

1 xv
′

2 )(xu1xv2)−1) are divisible by lk. If moreover

l ≥ 3, then the assumption may be replaced by (u, v) ≡ (u′, v′) mod mlk.

Proof. By assumption, we may write u′ = u + ε, v′ = v + δ with ε = mlk+1α,

δ = mlk+1β for some α, β ∈ Ẑ. We shall first prove

ϑml(x
−v′
2 x−u

′

1 xu1xv2) = ϑml((x
−δ
2 x−ε1 ) · (xε1x−v2 x−ε1 xv2)) ≡ 0 mod lk.
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One immediately sees that ϑml(x
−δ
2 ) = βlk+1 1−l

2 , ϑml(x
−ε
1 ) = αlk+1 l−1

2 , each of

which vanishes modulo lk. ((∗): When l ≥ 3, even modulo lk+1.) For the second

factor, using free differential calculus, we have in Π′1,1/Π
′′
1,1,

xε1x
−v
2 x−ε1 xv2 ≡ −

(
x̄ε1 − 1

x̄1 − 1
· x̄
−v
2 − 1

x̄2 − 1

)
· z.

Write the RHS as µ · z (µ ∈ Ẑ[[Πab
1,1]]), and consider µ as a measure on Ẑ2 of

separate variable type; we may then compute

ϑml(x
ε
1x
−v
2 x−ε1 xv2) =

∫
mẐ

d

(
x̄ε1 − 1

x̄1 − 1

)∫
mẐ

d

(
x̄−v2 − 1

x̄2 − 1

)
− l2

∫
mlẐ

d

(
x̄ε1 − 1

x̄1 − 1

)∫
mlẐ

d

(
x̄−v2 − 1

x̄2 − 1

)
.

Then, taking into account that ε = mlk+1α, we see that the first factors of the

above two terms vanish modulo lk+1, l2 · lk respectively. When l ≥ 3, the above

remark (∗) gives the refined implication as in the statement.

As for ϑml((x
u′

1 xv
′

2 )(xu1xv2)−1) = ϑml(x
ε
1x
δ
2) + ϑml(x

−δ
2 xu1xδ2x

−u
1 ), we may ar-

gue in a similar way. This completes the proof.

Corollary 6.8.3. If (u, v), (u′, v′) ∈ Ẑ2 \ (mẐ)2 satisfy the congruence (u, v) ≡
(u′, v′) mod mlk+1, then zuv and zu′v′ determine the same cusp on Y ml,l

k

. If

l ≥ 3, then the assumption may be replaced by (u, v) ≡ (u′, v′) mod mlk.

Proof. To prove the proposition in this case, it suffices to show that the difference

of conjugating factors for zuv and zu′v′ to z is mapped to lkZl by ϑml. This is

nothing but the statement of the above lemma.

Consider the above corollary when l ≥ 3 and k = 1. Then all inertia elements

zuv with a fixed residue class of (u, v) modulo ml give the same cusp in Qml,l. From

this remark, one should notice in particular that the points of the form Qml,l
k

uv with

(u, v) ∈ Ẑ2 \ (mẐ)2 do not exhaust all cusps in Qml,lk .

§6.9. End of the proof of Theorem 6.2.1

Given a pair (u, v) ∈ (Ẑ)2 \ (mẐ)2, pick (r1, r2) ∈ Z2 \ (mZ)2 such that (r1, r2) ≡
(u, v) mod ml2n+1. Then, by Lemma 6.8.2, the cusps determined by zuv and zr are

the same on Y ml,l
2n

. Set x = (r1/m, r2/m), y = (s1/m, s2/m), so that x → y is

ρ(σ)-admissible at level m modulo m2l2n (Def. 5.10.3). Then l−1x→ l−1y is ρ(σ)-

admissible at level ml modulo m2l2n−2 (in fact, still modulo m2l2n). Proposition

6.7.2(3) then implies
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Corollary 6.9.1. Notations being as above, in particular el designating 1, 3, 4 ac-

cording as l ≥ 5,=3,=2 respectively, we have

12(l2 − 1)νml,l
2n

r,s (σ) ≡ κm,m
2l2n

x→y (σ)− l2κml,m
2l2n−2

l−1x→l−1y (σ)− ρ∆(σ) mod el · l2n.

Therefore, the following congruence holds with a uniquely determined congruence

class on the right hand side:

νml,l
2n

r,s (σ) ≡
κm,m

2l2n

x→y (σ)− l2κml,m
2l2n−2

l−1x→l−1y (σ)− ρ∆(σ)

12(l2 − 1)
mod l2n.

We now enter the heart of our proof of Theorem 6.2.1. Let t = (t1, t2) ∈ Ẑ2

be such that t1 = a(σ)r1 +c(σ)r2, t2 = b(σ)r1 +d(σ)r2 so that t ≡ s mod m2l2nel,

and put xt = x−t22 x−t11 , xs = x−s22 x−s11 so that zt = xtzx
−1
t , zs = xszx

−1
s . Then

we calculate

(6.9.2) σmzrσ
−1
m = zξm(σ)σ̄zrσ̄

−1z−ξm(σ)

= zξm(σ)Sr(σ)(xtx
−1
s )zχ(σ)

s (xtxs−1)−1Sr(σ)−1z−ξm(σ)

= zξm(σ)w{Gr(σ) · z}(xtx
−1
s )zχ(σ)

s (xsx
−1
t )−1{Gr(σ) · z}−1w−1z−ξm(σ)

for some w ∈ Π′′1,1. By Corollary 6.8.3, the inertia elements zt and zs deter-

mine the same cusp in Y ml
2n

b̄
. Therefore, by Proposition 6.7.2(1), there exists

some h ∈ π1(Y ml,l
2n

b̄
,
−→
wY ) such that σmzrσ

−1
m is of the form hz−νz

χ(σ)
s zνh−1

with ν = νml,l
2n

r,s (σ). Since 〈zr〉 is self-centralizing in π1(Eb̄ \ {O},
−→
w b̄) and since

π1(Y ml,l
∞

b̄
,
−→
wY ) ⊃ 〈zr,Π′′1,1〉, we see that ν = νml,l

2n

r,s (σ) satisfies

(6.9.3) z−ν ≡ zξm(σ){Gr(σ) · z}(xtx
−1
s ) mod π1(Y ml,l

2n

b̄
,
−→
wY ).

Then, apply ϑml mod l2n to both sides of (6.9.3). Noticing that ϑml(xtx
−1
s ) ≡ 0

mod l2n by Lemma 6.8.2, we find

(6.9.4) (1− l2)νml,l
2n

r,s (σ) ≡ ϑml
(
zξm(σ)(Gr1,r2(σ) · z)(xtx

−1
s )
)

= ϑml({ξm(σ) +Gr1,r2(σ)} · z) + ϑml(xtx
−1
s )

≡ ξm(σ)(l2 − 1) + l2
∫

(mlZC)2

dGr1,r2(σ)−
∫

(mZC)2

dGr1,r2(σ)

= ξm(σ)(l2 − 1) + l2 Eml(σ; r1, r2)− Em(σ; r1, r2),

where the congruence is taken modulo l2n.
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Now, let us apply the above (6.9.4) by replacing m, l2n by mli, l2n−2i (i =

0, 1, . . . ) respectively. Then we obtain the following congruence modulo l2n−2i:

(6.9.5)i (1− l2)νml
i+1,l2n−2i

r,s (σ)

≡ (l2 − 1)ξmli(σ) + l2Eml1+i(σ; r1, r2)− Emli(σ; r1, r2).

Taking
∑
i≥0 l

2i × (6.9.5)i, we obtain

(6.9.6) Em(σ; r1, r2) ≡ (l2 − 1)

∞∑
i=0

l2i{ξmli(σ) + νml
i+1,l2n−2i

r,s (σ)} mod l2n,

where
∑∞
i=0 is essentially a finite sum. Combining Lemma 6.6.1 and Corollary

6.9.1, we compute, for 0 ≤ i ≤ n− 1,

ξmli(σ) + νml
i+1,l2n−2i

r,s (σ) =
ρ∆(σ)

12
− ρl(σ)

l2 − 1
− ρmli+1

+
1

12(l2 − 1)

(
κml

i,m2l2n−2i

l−ix→l−iy (σ)− l2κml
i+1,m2l2n−2i−2

l−i−1x→l−i−1 (σ)
)
.

Noting that
∑∞
i=0(i + 1)l2i = (1 − l2)−2 in Zl, we finally obtain the fundamental

equation

(6.9.7) Em(σ; r1, r2) ≡ 1
12κ

m,m2l2n

x→y (σ)− 1
12ρ∆(σ) + ρm(σ) mod l2n.

This completes the proof of Theorem 6.2.1.

Corollary 6.9.8. Let M ∈ |C| and let ε = 0, 1 according as 2 -M , 2|M respec-

tively. Then the value ECm(σ;u, v) modulo M2 is periodic in (u, v) modulo mM22ε.

Consequently, for σ ∈ π1(S, b̄), the values Em(σ;u, v) mod M2 at (u, v) ∈ Z2
C

determine a unique element of the finite group ring (Z/M2Z)[(Z/mM22εZ)2].

Note. From numerical evidence (as in §7), one could immediately observe possibil-

ities to improve the above corollary by refining modulus and period more generally

(e.g., not only for squares M2 ∈ |C|; cf. Remark 3.4.3 and [N12]).

Proof. Suppose first that (u, v), (u′, v′) ∈ Ẑ2\(mẐ)2 satisfy the congruence (u, v) ≡
(u′, v′) mod mM22ε. Then the congruence ECm(σ;u, v) ≡ ECm(σ;u′, v′) mod M2 fol-

lows from the congruence formula (6.9.4) and the determination of νml,l
n

r,s through

the cuspidal point determined by zuv according to Corollary 6.8.3. Suppose next

that (u, v), (u′, v′) ∈ (mẐ)2. Then Proposition 3.4.8 reduces the desired congruence

to the above case and the obvious congruence u− u′ ≡ v− v′ ≡ 0 mod M22ε.
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§6.10. Explicit formula for ECσ

Let C be a full class of finite groups. We shall study behaviors of ECm(σ) and ECσ
introduced in §3.6 on the pro-C congruence kernel π1(SC , b̄C). As ρC(σ) = 1 for

σ ∈ π1(SC , b̄C), for every x ∈ ( 1
mZ)2, the quantity κm,m

2∞
x→x,C (σ) := κm,m

2M
x→x,C (σ) is

well defined (independent of M ∈ |C|). Recalling that the structure ring BC of

SC contains all C-power roots of unity, we find that κm,m
2∞

x→x,C : π1(SC , b̄C) → ZC is

defined by the ordinary Kummer property

(6.10.1) θ1/N
x |aσ = θ1/N

x · ζκ
m,m2∞
x→x (σ)

N (σ ∈ π1(SC , b̄C), N ∈ |C|),

and depends only on the class of x in Q2/Z2. Here, note also that, no matter

whether 2 or 3 belongs to |C|, the above quantity κm,m
2∞

x→x (σ) ∈ ZC for σ ∈
π1(SC , b̄C) is divisible by 12 by Proposition 4.2.1. Define now µµµCm(σ) ∈ ZC [(Z/mZ)2]

(with notations of §3.6) by

(6.10.2)

µµµCm(σ)
(

=
∑

a∈(Z/mZ)2

µµµCm(σ,a)ea

)
:= −ρm(σ)e0 +

∑
mx∈a6=0

1
12κ

m,m2∞
x→x,C (σ) ea.

The distribution law of θx in Proposition 4.1.5 ensures that the sequence

{µµµCm(σ)}m∈|C| forms a measure µµµC ∈ ZC [[Z2
C ]] on Z2

C with no constant term (i.e.,

the image under the augmentation map ε : ZC [[Z2
C ]] → ZC vanishes): ε(µµµC) = 0.

Note also that, by Proposition 4.2.2, µµµCm(σ,a) = µµµCm(σ,−a), i.e., µµµC(σ) is an “even

measure”. Set em :=
∑

a∈(Z/mZ)2 ea.

Theorem 6.10.3. For σ ∈ π1(SC , b̄C), we have

ECσ = 1
12ρ∆(σ) · δ0 +µµµC(σ) = lim←−

m∈|C|

(
ECm(σ) + 1

12ρ∆(E,mdx/y)(σ) em
)
,

where δ0 indicates the unit Dirac measure at 0.

Proof. As observed in §3.6, ECm(σ,a) = ECm(σ,a)−ECm(σ; 0, 0). On the other hand,

by Theorem 6.2.1, it follows that ECm(σ,a) = µµµCm(σ,a) − 1
12ρ∆(σ) + ρm(σ) for

0 6= a ∈ (Z/mZ)2. Combining these, we obtain a formula

(6.10.4) µµµCm(σ,a)− ECm(σ,a) = 1
12ρ∆(σ)− ρm(σ)− ECm(σ; 0, 0) (=: Ym(σ)).

Now, observe that µµµCm(σ,a) − ECm(σ,a) varies coherently with respect to m in

a ∈ (Z/mZ)2 \ {0}, while the RHS, denoted Ym(σ), does not depend on a.

Hence, for any prime power li ∈ |C|, we obtain l2Ymli+1(σ) = Ymli(σ). This means

l∞ | Ym(σ), hence Ym(σ) = 0 (cf. also [N95, p. 220]). This, together with 6.10.4,
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completely determines Em(σ) as

(6.10.5) Em(σ,a) =

{
µµµCm(σ,a) = µµµCm(σ,−a) (a 6= 0),
1
12ρ∆(σ)− ρm(σ) (a = 0).

The statement of the theorem is nothing but the limit case of the above formula

as m→∞ in the language of measures on Z2
C .

Proof of Proposition 3.6.6. By using the composition law (3.5.8) repeatedly, in

general, we have for σ, τ ∈ π1(S, b̄) and ε ∈ GL2(ZC),

Eεm(σ−1) = −χ(σ)−1Eρ(σ
−1)ε

m (σ),(6.10.6)

Eεm(στσ−1) = χ(σ)Eρ(σ)−1ε
m (τ) + Eρ(τσ

−1)ε
m (σ)− χ(τ)Eρ(σ

−1)ε
m (σ).(6.10.7)

Now, in the second formula above, put ρ(τ) = 1 (hence χ(τ) = 1) and ε = 1. Then

(6.10.8) Em(στσ−1) = χ(σ)Eρ(σ)−1

m (τ).

Let us compute the coefficient of ea for a 6= 0. For the left hand side, it turns out

that

Em(στσ−1,a) = Em(στσ−1,a)− χ(σ)Em(τ ; 0, 0)

as Em(∗, 0, 0) is the Kummer 1-cocycle 1
12ρ∆ − ρm. Let us examine the right hand

side of the definition of twisted invariants in §3.5. If ρ(σ)−1 =
(
α
γ
β
δ

)
, then calcu-

lations with (3.5.2) yield

G
ρ(σ)−1

(uv ) (τ) = (x̄−αu−βv1 x̄−γu−δv2 − 1)ECτ .

Therefore, taking the mod m measure at 0, we see that

χ(σ)Eρ(σ)−1

m (τ,a) = χ(σ)(Em(τ ;αu+ βv, γu+ δv)− Em(τ ; 0, 0))

= χ(σ)Em(τ ; a · tρ(σ)−1)− χ(σ)Em(τ ; 0, 0).

Thus, we obtain

Em(στσ−1; a) = χ(σ)Em(τ ; a · tρ(σ)−1),

which turns out to hold for all a ∈ (Z/mZ)2. Noticing that the action of ρ(σ) on

the group ring ZC [(Z/mZ)2] is given by ea 7→ ea·tρ(σ), we conclude the proof.

Proof of Proposition 5.7.3. We have only to show that the restriction of the Weier-

strass tangential section s−→w : π1(Mω
1,1, q̄) → π1(Mω

1,2,
−→
w q̄) to the geometric part

maps τ1, τ2 ∈ B̂3 to those in B̂4 respectively. Since the image of s−→w is in the normal-

izer of 〈z〉, without loss of generality we may set s−→w (τ1) = τ1z
c1 , s−→w (τ2) = τ2z

c2

for some c1, c2 ∈ Ẑ. The commutativity of z = (ω3)2ω−1
4 and the braid rela-

tion τ1τ2τ1 = τ2τ1τ2 allow us to assume c = c1 = c2. Now, consider the element
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σ := (τ1τ2)6, which is in the congruence kernel ker(B̂3 → SL2(Ẑ)). The constant

term of Eσ is then 1
12ρ∆(σ) = −1. On the other hand, the monodromy action ϕ(σ)

on Π̂1,1 is given by the inner action by s−→w (σ) = (τ1τ2)6z6c = z1+6cω4. Taking into

consideration

(6.10.9)

(
∂zx−1

1 z−1x1

∂x1

)ab

= (x̄2 − 1)(1− x̄−1
1 )

with (3.2.3), we see G10(Int(z)) = 1 − x̄−1
1 = (x̄−1

1 − 1) · EIntz. Therefore, by the

definition (§3.6), Eσ = (−1 − 6c)δ0 (δ0 the unit Dirac measure). Thus we obtain

−1 = −1 + 6c in Ẑ. Comparing the l-adic components, we conclude c = 0 and the

proof of Proposition 5.7.3.

§7. Generalized Dedekind sums

§7.1. Elementary characters

In this section, we study our invariant Em on the fundamental group π1(Mω
1,1(C), q̄)

∼= B̂3 in the universal setting introduced in §5. The braid group B3 has a simple

presentation B3 = 〈τ1, τ2 | τ1τ2τ1 = τ2τ1τ2〉, whose generators τ1, τ2 are given

standard identification as elements of π1(Mω
1,1(C), q̄) (§§5.4–5.7). For any given

full class C of finite groups, we have a pair of elementary characters:

(7.1.1) (ρC , ρ∆) : B̂3 → SL2(ZC)× ZC , σ 7→
((

a(σ) b(σ)

c(σ) d(σ)

)
, ρ∆(σ)

)
.

Recall that, with our notational conventions, ρC maps τ1, τ2 to
(

1
−1

0
1

)
,
(

1
0

1
1

)
re-

spectively, and ρ∆ maps both of them to −1. In the pro-C setting, the above

pair of characters never gives an injection, as most of the congruence kernel

π1(Mω,C
1,1 , q̄

C) = ker(ρC) must be annihilated by ρ∆. But if we restrict the range

of σ to the discrete fundamental group B3 = π1(Mω
1,1(C)an, q̄) (⊂ B̂3), then the

discrete group B3 is embedded into SL2(Z)× Z by the elementary characters.

In this section, generically we drop the superscript C to designate objects at

the discrete level. The main purpose of this section is to give an explicit formula

for Em(σ;u, v) where σ ∈ B3 and (u, v) ∈ Z2.

§7.2. Generalized Dedekind sum formula

In the beautiful work [St87], G. Stevens gave an interpretation of the Rademacher

function on GL2(Q)+ and its generalizations by using the Borel–Serre compactifi-

cation of the upper half-plane. The special case of weight 2 had also been studied

intensively in [St82], [St85] as well as in the classic work [Sch74] by B. Schoeneberg.

We quote it in the restricted form on SL2(Z) and with weight 2 in our notation.
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(A generalization to higher weights and its arithmetic properties are also discussed

in [N03], which we hope to continue in future work.)

Definition 7.2.1. The generalized Rademacher function of weight two on SL2(Z)

is defined, for x = (x1, x2) ∈ Q2 and A =
(
a
c
b
d

)
∈ SL2(Z), by

Φx(A) (= Φ(2)
x (A)) =



−P2(x1)

2

b

d
(c = 0),

−P2(x1)

2

a

c
− P2(ax1 + cx2)

2

d

c

+

c−1∑
i=0

P1

(
x1 + i

c

)
P1

(
x2 + a

x1 + i

c

)
(c > 0),

so that it factors through PSL2(Z) for c < 0. Here, P1 and P2 are the periodic

Bernoulli functions as in §4.3. The last term in the above description for c > 0 is

called a generalized Dedekind sum.

It is known that Φx(A) is invariant with respect to x mod Z2. We consider it

only for A ∈ SL2(Z), but still its values generally have denominators. If x ∈ ( 1
NZ)2,

then Φx(A) has integer values for A ∈ Γ(12N2).

Definition 7.2.2 (Correction term). Let [x]o and P`1 (x) denote respectively the

“mild flooring function” and the “right continuous periodic sawtooth function”

defined by

[x]o := x− 1/2− P1(x), P`1 (x) := B1({x}) = x− bxc − 1/2.

For x = (x1, x2) and A ∈ SL2(Z), define

Kx(A) := Cx − CxA, where Cx :=
1

2
+
x2(x1 − 1)

2
− P`1 (x2) · [x1]o.

The main result of this section is the following

Theorem 7.2.3 (Generalized Dedekind sum formula). Let m ≥ 1 and for every

(r1, r2) ∈ Z2 \ (mZ)2, set x = (x1, x2) = (r1/m, r2/m). Then, for each σ ∈ B3,

Em(σ; r1, r2) = Kx(Aσ)− Φ(2)
x (Aσ)− 1

12ρ∆(σ), where Aσ = tρ(σ) ∈ SL2(Z).

Note that by definition Em(σ; 0, 0) = 0, and Em(σ;mk1,mk2) can be evalu-

ated from Em(σ;mk1 + 1,mk2), Em(σ; 1, 0) and an elementary term as remarked

in Proposition 3.4.8. We will also compute it in detail later in Proposition 7.5.1.

Most of this section will be devoted to the proof of the above theorem. Our

basic idea is to apply Theorem 6.2.1 in this discrete situation. Obviously, the con-

gruence condition on (u, v) ≡ r modulo mM22ε and ρC(σ)-admissibility condition

on r/m → s/m modulo m2M2 become void if we put (u, v) = r and s = r tρ(σ).
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The Kummer quantity κm,m
2∞

x→y (σ) turns out then to be a unique rational inte-

ger, and the assertion gives an equality of integers. This allows us to evaluate

Em(σ;u, v) in the complex analytic model of §2.9, §4.5.

Example 7.2.4. Let us here present an example to illustrate how the above The-

orem realizes the integer valued invariant Em(σ; r1, r2) for σ ∈ B3 and (r1, r2) ∈
Z2 \ (mZ)2. Pick any braid σ ∈ B3 so that

tρ(σ) = A :=

(
11 24

5 11

)
∈ SL2(Z).

Such a σ can be given (say, τ−2
1 τ6

2 τ
2
1 τ2(τ1τ2)−3) up to 〈(τ1τ2)6〉, hence 1

12ρ∆(σ)

is determined up to integer values. Set m = 3. Calculation using generalized

Dedekind sums yields the following (3-stride periodic) matrix for (r1, r2) =

(i− 4, j − 4) ∈ [−3, 3]2 (⊂ Z2):

−Φ(A) := (−Φ
(2)
(i−4)/3,(j−4)/3(A))7

i,j=1 =



1
6

2
9

2
9

1
6

2
9

2
9

1
6

1
12

−19
36

2
9

1
12

−19
36

2
9

1
12

1
12

2
9

−19
36

1
12

2
9

−19
36

1
12

1
6

2
9

2
9

1
6

2
9

2
9

1
6

1
12

−19
36

2
9

1
12

−19
36

2
9

1
12

1
12

2
9

−19
36

1
12

2
9

−19
36

1
12

1
6

2
9

2
9

1
6

2
9

2
9

1
6



,

while the correction terms turn out to provide the (non-periodic) matrix

K(A) := (K(i−4)/3,(j−4)/3(A))7
i,j=1

=



−289 −8723
36

−6707
36 −139 −3863

36
−2567

36 −44

−1039
6

−1238
9

−3467
36

−379
6

−383
9

−767
36

−49
6

−523
6

−2243
36

−320
9

−103
6

−263
36

−5
9

−13
6

−30 −587
36

−155
36 0 −47

36
−335

36 −25

−13
6

4
9

−83
36

−73
6

−221
9

−1703
36

−463
6

−25
6

−443
36

−266
9

−325
6

−2783
36

−1031
9

−955
6

−35 −1955
36

−3107
36 −125 −5735

36
−7607

36 −270



.



Arithmetic Monodromy of Eisenstein Type 485

The resulting right hand side in Theorem 7.2.3 on [−3, 3]2 (⊂ Z2) for a σ with
1
12ρ∆(σ) = − 1

12 (such a σ is, in fact, equal to τ−2
1 τ6

2 τ
2
1 τ2(τ1τ2)−3) is then

−Φ(A)+K(A)+ 1
12 [17×7] =



−1155
4 −242 −186 −555

4 −107 −71 −175
4

−173 −138 −96 −63 −43 −21 −8

−87 −62 −36 −17 −7 −1 −2
−119

4 −16 −4 1
4 −1 −9 −99

4

−2 0 −2 −12 −25 −47 −77

−4 −12 −30 −54 −77 −115 −159
−139

4 −54 −86 −499
4 −159 −211 −1079

4


.

By Theorem 7.2.3, we conclude that the components of the above matrix coincide

with those of (E3(σ; i − 4, j − 4))7
i,j=1, except for ∗/4 at (i, j)-components with

i − 1 ≡ j − 1 ≡ 0 mod m = 3. Generally, exceptional gaps between the two

sides of the equality in Theorem 7.2.3 appear at locations of (mZ)2 (⊂ Z2). This

phenomenon essentially signifies the singularity at 0 of the Eisenstein–Dedekind

symbol of G. Stevens [St87] that is reflected in the periodic part Φ
(2)
x (Aσ) for

x ∈ Z2.

§7.3. Siegel units vs. generalized Dedekind functions

To evaluate the left hand side of the congruence in Theorem 6.2.1, we need to

identify the branch of power roots of the Siegel units gx(τ)
(
x = (x1, x2) ∈ Q2\Z2

)
in the complex model. This can be attained by identifying the branch of log gx,

which, in view of (4.3.4), requires determining a suitable constant term for the

indefinite integral of the Eisenstein series E
(x)
2 of weight 2 (x = x mod Z). We

achieve this by comparing gx with the generalized Dedekind function “ηx(τ) =

eψx(τ)” given in the book of B. Schoeneberg [Sch74, Chap. VIII, §1.3], whose

infinite product form is given by

(7.3.1) ηx(τ) := eγ0(x)eπiP2(x1)τ
∏

0<s∈x1+Z
(1−e2πix2qsτ )

∏
0<s∈−x1+Z

(1−e−2πix2qsτ ),

where

(7.3.2) γ0(x) =

{
πiP1(x2) + log(1− e−2πix2), x1 ∈ Z, x2 6∈ Z,
0, otherwise.

Comparing this with the infinite product form of gx (cf. §4, Lemma 4.3.5) (and

noting −e2πix2e−πiP1(x2) = eπiP1(x2) for x2 6∈ Z), we obtain the following relation
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between them:

(7.3.3) gx(τ) = eπieπix2(x1−1)ηx(τ)e−2πibx1c(x2−1/2)[eπiP1(x2)]δx1∈Z

(x ∈ Q2 \ Z2),

where δx1∈Z = 1, 0 according as x1 ∈ Z or 6∈ Z respectively.

A careful examination shows that Schoeneberg’s lift ψx(τ) for ηx(τ) = eψx(τ)

can be identified, in fact, with = eγ0(x)+ψStx (τ) where ψStx (τ) is “half of G. Stevens’

lift” given in his book [St82, Def. 2.3.1]) as follows:

ψStx (τ) = πiP2(x1)τ(7.3.4)

−
∑

0<s∈x1+Z

∞∑
k=1

1

k
e2πix2kqskτ −

∑
0<s∈−x1+Z

∞∑
k=1

1

k
e−2πix2kqskτ

= −2πi

(∫ τ

0

a0(E
(x)
2 ) du+

∫ τ

i∞
Ẽ

(x)
2 (u) du

)
,

where a0(E
(x)
2 ) (resp. Ẽ

(x)
2 (u)) is the constant term (resp. the remaining part) of

the Eisenstein series E
(x)
2 (4.3.2).

In view of (7.3.3), in the home region {x = (x1, x2) | 0 < x1, x2 < 1},
gx(τ) can be written as eπi+πix2(x1−1)ηx(τ), so we choose the branch of log gx
to be πi + πix2(x1 − 1) + ψx(τ). For general x ∈ Q2 \ Z2, we will make it a

principle to fit with our normalization of Kummer characters given in §5.10, which

is compatible with its use in the proof of Lemma 6.5.4, i.e., with our moving rule:

“walk first along xr22 and then along xr11 ”. For this purpose, we shall choose a

branch of log gx(τ) so as to be continuous in the complex plane minus ((−∞, 0)∪
(1,+∞)) × Z with limits from the right (above) in limε→0+ log gx2+ε for x1 6∈ Z,

x2 ∈ Z. For a fixed x2 6∈ Z, if x1 moves continuously from n − ε to n + ε for

some n ∈ Z, then ψStx gets one new term −
∑
k e

2πix2ke2πiεkτ and looses one old

term +
∑
k e
−2πix2ke2πi(−ε)kτ , so that when ε→ 0, the jump of ψStx (τ) is counted

as
−
∑
k

e2πix2k +
∑
k

e−2πix2k = log(1− e2πix2)− log(1− e−2πix2)

= 2πi(x2 − 1/2).

Therefore, to keep continuity of our lift log gx(τ), each time x1 goes up across an

integer value, we need to add an extra −2πi(x2 − 1/2). This explains the term

−2πi(x2 − 1/2)bx1c. The term coming from the inside of [∗]δx1∈Z is to back up

Schoeneberg’s term which intends to take the mean of the upper and lower limits

at every discontinuity point. Finally, after reaching the nearest unit square, one

may want to arrive at a destination with x2 ∈ Z from above. So we substitute
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P`1 (x2) for P1(x2). Consequently, our choice of logarithm of Siegel units can be

summarized as

log gx(τ) = 2πi

(
1

2
+
x2(x1 − 1)

2
− P`1 (x2)[x1]o

)
+ ψx(τ)(7.3.5)

= 2πiCx + ψx(τ) (x = (x1, x2) ∈ Q2 \ Z2),

which uniformizes our choice of g
1/N
x as e

1
N log gx for all N ≥ 1.

§7.4. Completion of proof of Theorem 7.2.3

To finish the proof of Theorem 7.2.3, we only need to identify the Kummer char-

acter κm,m
2∞

x→y (σ) for x = (r1/m, r2/m), y = (s1/m, s2/m) with (s1s2) = ρ(σ)(r1r2),

i.e., (s1, s2) = (r1, r2)A, where A = tρ(σ) ∈ SL2(Z) for a given σ ∈ B3. We now

have

θ
1/N
x |aσ
θ

1/N
y

= ζ
κm,m

2∞
x→y (σ)

N (aσ = A = tρ(σ)).

Recalling Schoeneberg’s formula from [Sch74, Chap. VIII, §3 (30), p. 199]:

(7.4.1) ψx(Aτ)− ψxA(τ) = −2πiΦ(2)
x (A)
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together with our convention of SL2-action on the upper half-plane (cf. §4.6), we

deduce from (7.3.5) that

ζ
κm,m

2∞
x→y (σ)

N

(
exp

(
12
N (2πiCx + ψx(τ))

))∣∣
A

exp
(

12
N (2πiCxA + ψxA(τ))

) = exp

(
24πi(Kx(A)− Φ

(2)
x (A))

N

)
for all N ≥ 1. Thus, κm,m

2∞
x→y (σ) = 12(Kx(A)−Φ

(2)
x (A)). Applying Theorem 6.2.1

to the present situation where ρm(σ) = 0, we complete the proof of Theorem

7.2.3.

§7.5. Explicit formula for Em on B3 × (mZ)2

We shall compute Em(σ;u, v) for σ ∈ B3 in case u, v ∈ Z are divisible by m.

Proposition 7.5.1. Let m ∈ N. For σ ∈ B3 with ρ(σ) =
(
a
c
b
d

)
∈ SL2(Z) and for

(k1, k2) ∈ Z2, we have

Em(σ;mk1,mk2) = −bck1k2 − 1
2{k1(ack1 + a− c− 1) + k2(bdk2 + b− d+ 1)}.

Observe that the term in curly brackets is always an even integer, since a

and c (resp. b and d) have different parity in view of ad− bc = 1.

By using the above proposition, one can “repair” the last matrix in Example

7.2.4 at components of (3Z)2 (⊂ Z2) to get

(E3(σ, i− 4, j − 4))7
i,j=1 =



−289 −242 −186 −139 −107 −71 −44

−173 −138 −96 −63 −43 −21 −8

−87 −62 −36 −17 −7 −1 −2

−30 −16 −4 0 −1 −9 −25

−2 0 −2 −12 −25 −47 −77

−4 −12 −30 −54 −77 −115 −159

−35 −54 −86 −125 −159 −211 −270


.

Proof of Proposition 7.5.1. Applying Theorem 7.2.3 to the RHS in Proposition

3.4.8, we obtain

(7.5.2) Em(σ;u, v) = K((u+1)/m,v/m)(A)−K(1/m,0/m)(A) +

⌊
au+ bv

m

⌋
·
⌊
c

m

⌋
,

where A = tρ(σ) =
(
a
b
c
d

)
. It is easy to see that the terms of K((u+1)/m,v/m)(A)−

K(1/m,0/m)(A) can be classified into three families of terms: a quadratic form in

k1, k2, a linear form in k1 and a linear form in k2. After a simple computation,

we obtain from it those terms of the RHS of the desired formula together with

−(ak1 + bk2)bc/mc which cancels with the last term of (7.5.2).
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§7.6. Examples of special cases

Now, we shall examine, for some simple braids σ ∈ B3, the values Em(σ;u, v) for

(u, v) ∈ Z2 by means of their original definition given in §3. These examples are

also useful to check the validity of the above Theorem 7.2.3 and Proposition 7.5.1.

Case σ = τα1 (α ∈ Z). First, using Proposition 5.7.3 one sees that the action of

the Weierstrass lift s−→w (σ) is given by x1 7→ x1x
−α
2 , x2 7→ x2. Therefore, according

to (3.3.3), Suv(σ) = x−v2 (x1x
−α
2 )−uxu1xu−αv2 . The corresponding Guv(σ) (3.3.4)

can be deduced by the formula (3.2.3) of free differential calculus, and is found to

be

(7.6.1) Guv(τ
α
1 ) =

x̄−u1 x̄αu−v2

x̄2 − 1

(
x̄u1 − 1

x̄1 − 1
− (x̄1x̄

−α
2 )u − 1

x̄1x̄
−α
2 − 1

)
.

Recalling (Definition 3.4.1) that our invariant Em(σ;u, v) is the integral of the

measure dGuv(σ) on (mẐ)2, we find

(7.6.2) Em(τα1 ;u, v) =



∑
1≤k≤u−1

m|k

(⌈
αu− v
m

⌉
−
⌈
αk − v
m

⌉)
(u > 0),

0 (u = 0),∑
0≤k≤−u−1

m|k

(
−
⌈
αu− v
m

⌉
+

⌈
−αk − v

m

⌉)
(u < 0).

In the calculation, we make use of the definition of the (profinite) ceiling function

as an integral (Remark 3.4.7). The following matrix illustrates E3(τ1, u, v) for

(u, v) ∈ [−6, 6]2:

(E3(τ1, i− 7, j − 7))13
i,j=1 =



3 3 3 3 3 3 3 3 3 3 3 3 3

1 3 3 1 3 3 1 3 3 1 3 3 1

1 1 3 1 1 3 1 1 3 1 1 3 1

1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 1 0 1 1 0 1 1 0 1 1 0

0 0 1 0 0 1 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 0 0 1 0 0 1 0 0 1

1 1 0 1 1 0 1 1 0 1 1 0 1

1 1 1 1 1 1 1 1 1 1 1 1 1



.
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Case σ = τα2 (α ∈ Z). In this case, the Weierstrass lift s−→w (σ) acts as x1 7→ x1

and x2 7→ x2x
α
1 , and hence Suv(σ) = (x2x

α
1 )−vxαv1 xv2. It follows that

(7.6.3) Guv(τ
α
2 ) =

(x̄2x̄
α
1 )−v

x̄1 − 1

(
(x̄2x̄

α
1 )v − 1

x̄2x̄α1 − 1
− x̄αv1

x̄v2 − 1

x̄2 − 1

)
.

Integration over (mẐ)2 then yields

(7.6.4) Em(τα2 ;u, v) =



∑
1≤k≤v
m|k

−
⌈
αk

m

⌉
(v > 0),

0 (v = 0),∑
0≤k≤−v−1

m|k

−
⌈
αk

m

⌉
(v < 0).

In this case, it is remarkable that Em(τα2 ;u, v) does not depend on u. The following

matrix illustrates E3(τ2, u, v) for (u, v) ∈ [−6, 6]2:

(E3(τ2, i− 7, j − 7))13
i,j=1

=



−1 −1 −1 0 0 0 0 0 0 −1 −1 −1 −3

−1 −1 −1 0 0 0 0 0 0 −1 −1 −1 −3

−1 −1 −1 0 0 0 0 0 0 −1 −1 −1 −3

−1 −1 −1 0 0 0 0 0 0 −1 −1 −1 −3

−1 −1 −1 0 0 0 0 0 0 −1 −1 −1 −3

−1 −1 −1 0 0 0 0 0 0 −1 −1 −1 −3

−1 −1 −1 0 0 0 0 0 0 −1 −1 −1 −3

−1 −1 −1 0 0 0 0 0 0 −1 −1 −1 −3

−1 −1 −1 0 0 0 0 0 0 −1 −1 −1 −3

−1 −1 −1 0 0 0 0 0 0 −1 −1 −1 −3

−1 −1 −1 0 0 0 0 0 0 −1 −1 −1 −3

−1 −1 −1 0 0 0 0 0 0 −1 −1 −1 −3

−1 −1 −1 0 0 0 0 0 0 −1 −1 −1 −3



.

Case σ = τ1τ2τ1. In this case, the Weierstrass lift s−→w (σ) maps x1 7→ x−1
2 , x2 7→

x2x1x
−1
2 . Then Suv(σ) = x2x

−v
1 xu−1

2 xv1x−u2 , and

(7.6.5) Guv(τ1τ2τ1) =
x̄2 − x̄u2
x̄2 − 1

· x̄
−v
1 − 1

x̄1 − 1
.
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By integration of dGuv(σ) over (mẐ)2, we obtain the formula

(7.6.6) Em(τ1τ2τ1;u, v) =

(
1−

⌈
u

m

⌉)
·
⌈
−v
m

⌉
.

The following matrix illustrates E3(τ1τ2τ1, u, v) for (u, v) ∈ [−6, 6]2:

(E3(τ1τ2τ1, i− 7, j − 7))13
i,j=1

=



6 6 6 3 3 3 0 0 0 −3 −3 −3 −6

4 4 4 2 2 2 0 0 0 −2 −2 −2 −4

4 4 4 2 2 2 0 0 0 −2 −2 −2 −4

4 4 4 2 2 2 0 0 0 −2 −2 −2 −4

2 2 2 1 1 1 0 0 0 −1 −1 −1 −2

2 2 2 1 1 1 0 0 0 −1 −1 −1 −2

2 2 2 1 1 1 0 0 0 −1 −1 −1 −2

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

−2 −2 −2 −1 −1 −1 0 0 0 1 1 1 2

−2 −2 −2 −1 −1 −1 0 0 0 1 1 1 2

−2 −2 −2 −1 −1 −1 0 0 0 1 1 1 2



.

Case σ = τ1τ2. In this case, the Weierstrass lift s−→w (σ) transforms generators as

x1 7→ x−1
2 , x2 7→ x2x1. Therefore, Suv = (x2x1)−vxu2xv1xv−u2 , and it turns out

that

(7.6.7) Guv(τ1τ2) =
(x̄2x̄1)−v

x̄2 − 1

(
x̄u2

x̄v1 − 1

x̄1 − 1
− x̄2

(x̄1x̄2)v − 1

x̄1x̄2 − 1

)
.

By integrating over (mẐ)2, we find

(7.6.8) Em(τ1τ2;u, v) =



∑
1≤k≤v
m|k

(⌈
u− v
m

⌉
−
⌈

1− k
m

⌉)
(v > 0),

0 (v = 0),∑
0≤k≤−v−1

m|k

(
−
⌈
u− v
m

⌉
+

⌈
1 + k

m

⌉)
(v < 0).
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The following matrix illustrates E3(τ1τ2, u, v) for (u, v) ∈ [−6, 6]2:

(E3(τ1τ2, i− 7, j − 7))13
i,j=1

=



3 3 3 2 2 2 0 0 0 −3 −3 −3 −7

1 3 3 1 2 2 0 0 0 −2 −3 −3 −5

1 1 3 1 1 2 0 0 0 −2 −2 −3 −5

1 1 1 1 1 1 0 0 0 −2 −2 −2 −5

−1 1 1 0 1 1 0 0 0 −1 −2 −2 −3

−1 −1 1 0 0 1 0 0 0 −1 −1 −2 −3

−1 −1 −1 0 0 0 0 0 0 −1 −1 −1 −3

−3 −1 −1 −1 0 0 0 0 0 0 −1 −1 −1

−3 −3 −1 −1 −1 0 0 0 0 0 0 −1 −1

−3 −3 −3 −1 −1 −1 0 0 0 0 0 0 −1

−5 −3 −3 −2 −1 −1 0 0 0 1 0 0 1

−5 −5 −3 −2 −2 −1 0 0 0 1 1 0 1

−5 −5 −5 −2 −2 −2 0 0 0 1 1 1 1



.

Errata to [N95]:

P. 205, line 4: order 12(l2 − 1) in lmL and poles of order 12 in lm−1L\lmL.
P. 206, (2.6): ϑm(∗) should be defined by 12-multiples of the RHS.

P. 207, (2.10) Lemma: RHS should read ζ
12(l2−1)νmab(σ)

N .

P. 207, line↑ 5,6: Replace ζ
−ν(l2−1)
N by ζ

−12ν(l2−1)
N .

P. 209, (3.5.1): RHS should read ζ
12µm(a,b;σ)
N .

P. 210, (3.8): RHS should read ζ
12ε(µ(r)(σ))
N .

P. 212, (3.11.4): RHS should read ζ
12κij(σ)

N .

Errata to [N99]:

On p. 204, p. 213 figures should be inserted (same as in §5 of the present

paper).

P. 211: sign of g3(q).

P. 212, (3.3):
χm+1(σ)

1−lm should read
χm+1(σ)

1−pm .

P. 213, line 6: (1− qn)24; line 22: ∞−1
n−1.
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