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We realize certain graded Nakajima varieties of finite Dynkin type as orbit closures of
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sheaves introduced by Nakajima to describe irreducible characters of quantum loop al-
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§1. Introduction

Let Uq(Lg) be the quantum loop algebra of a simple Lie algebra g of Dynkin

type A,D or E, introduced by Drinfeld and Jimbo. This is a C-algebra, and we

assume that the quantum parameter q ∈ C∗ is not a root of unity. The category

of finite-dimensional representations of Uq(Lg) has been studied by many authors

[1, 5, 6, 7, 9, 17].

In type A, a geometric construction of standard and irreducible Uq(Lg)-

modules was given by Ginzburg and Vasserot [7, 22]. In particular, they showed

that the composition multiplicities of standard modules can be expressed in terms

of the local intersection cohomology of graded nilpotent orbit closures. This the-

ory was extended by Nakajima to all simply-laced types. To do so, he replaced

the graded nilpotent orbit closures by certain graded versions M•0(V,W ) of the

quiver varieties M0(V,W ) previously introduced in his geometric construction of

irreducible finite-dimensional g-modules. Nakajima varieties are defined as quo-

tients in geometric invariant theory, and in general they do not have any other

more explicit description.

Let Q be a Dynkin quiver of the same type as g. It was recently observed [11]

that the orbit closures of Q are isomorphic to some particular Nakajima graded

quiver varieties M•0(V,W ). In this paper we generalize this observation and show

that all the orbit closures of the repetitive algebra [12] of the path algebra CQ are

isomorphic to certain varieties M•0(V,W ). The repetitive algebra Â of an algebra A,

first introduced by Hughes and Waschbüsch, is a selfinjective infinite-dimensional

algebra, defined as a kind of infinite matrix algebra (its precise definition is recalled

in §3.1). It was shown by Happel that, if A has finite global dimension, the stable

module category of Â is equivalent to the derived category ofA. WhenQ is a linearly

oriented Dynkin quiver of type A, the orbit closures of the repetitive algebra ĈQ
coincide with the graded nilpotent orbit closures of Ginzburg and Vasserot. Our

result may thus be regarded as an explicit description, similar to that of Ginzburg

and Vasserot, of a large collection of graded Nakajima varieties M•0(V,W ).

Although we only realize in this way varieties corresponding to some particular

W ’s, we get enough of them to express all the irreducible characters of Uq(Lg) in

terms of the local intersection cohomology of the orbit closures of ĈQ. Recall

that the perverse sheaves used by Lusztig [15] in his geometric construction of

the canonical basis of U+
q (g) are precisely the intersection cohomology sheaves

of the orbit closures of Q. This description of the canonical basis was inspired

by Ringel’s theorem [20] stating that U+
q (g) is isomorphic to the Hall algebra

of Q. Similarly our result shows that the perverse sheaves used by Nakajima in his

geometric construction of the canonical basis of the Grothendieck ring of Uq(Lg)
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are essentially the intersection cohomology sheaves of the orbit closures of ĈQ. This

was inspired by the recent result of [11], stating that the t-deformed Grothendieck

ring is isomorphic to Töen’s Hall algebra of the derived category of Q, which, by

Happel’s theorem, is isomorphic to Töen’s algebra of the stable category of ĈQ.

Another interesting application of our results is that we can apply Nakajima’s

well-developed theory to get new information on the orbit closures of repetitive

algebras of Dynkin type. For instance we obtain desingularizations of these orbit

closures with favorable properties, like the vanishing of odd cohomology groups

of fibers. Also, using Nakajima’s algorithm to compute the irreducible characters

of Uq(Lg) [18], we can in principle calculate the local intersection cohomology of

these orbit closures.

Our paper is structured as follows. In §2, we recall the definition of the graded

Nakajima varieties M•0(V,W ) and M•0(W ), as well as the stratification of M•0(W )

by the strata M•reg
0 (V,W ). We then show that the variety M•0(W ) is isomor-

phic to the variety of representations with dimension vector d of a certain finite-

dimensional algebra eΣΛeΣ obtained by projectivization (Theorem 2.4). Here d is

the graded dimension of W . If W is arbitrary, eΣΛeΣ looks rather complicated. But

we show in §3 that for certain special choices of W , the algebra eΣΛeΣ is isomorphic

to the repetitive algebra Â ofA = CQ (Lemma 3.6). Moreover, in this case, we show

(Theorem 3.14) that Nakajima’s stratification of M•0(W ) is identical to the usual

orbit stratification of repd(Â) (recall that since Q is of Dynkin type, Â is locally

of finite representation type). The precise correspondence between isoclasses N of

Â-modules of dimension d and strata M•reg
0 (V,W ) is described in Corollary 3.15.

Finally in §4, we apply our results to the representation theory of quantum loop

algebras Uq(Lg). We start by recalling the definition of the tensor category CZ
of finite-dimensional Uq(Lg)-modules, and we state Nakajima’s theorem giving a

geometric description of the composition multiplicities of standard modules of CZ.

Then we deduce from Theorem 3.14 that there is a natural one-to-one correspon-

dence between the isomorphism classes of objects in the stable category mod Â

and the isomorphism classes of simple objects in CZ (Proposition 4.2). We con-

clude with a description of the composition multiplicities of standard modules in

terms of the intersection cohomology of the Â-orbit closures.

§2. Nakajima varieties and representations of algebras

§2.1. Varieties of representations

We will work over the field C of complex numbers. Let Q = (Q0, Q1) be a quiver

with vertex set Q0 and arrow set Q1. Let s, t : Q1 → Q0 be maps taking each arrow

a to its source s(a) or its target t(a). The number of vertices may be infinite, but
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we will assume that the number of arrows incident with any given vertex is finite.

Let A := CQ/R be the quotient of the path algebra of Q by an ideal R. We will

always assume that R is contained in the two-sided ideal generated by the arrows

of Q. Then A is an associative algebra which has no unit if the number of vertices

of Q is infinite. For any vertex i of Q, let ei be the trivial path at i.

A representation of (Q,R) is a pair
(
(Vi)i∈Q0

, (ϕa)a∈Q1

)
, where each Vi is

a vector space over C and each ϕa is a linear map from Vs(a) to Vt(a) such that

all polynomials in the ϕa corresponding to elements in R vanish. The representa-

tions of (Q,R) form a category. This category is equivalent to the category of left

modules M over CQ which have the property that M =
⊕

i∈Q0
eiM .

Let d ∈ NQ0 be a finite dimension vector, that is, such that the sum of its

entries di for i ∈ Q0 is finite. The variety of representations of A of dimension

vector d is the closed subset repd(A) of⊕
a∈Q1

HomC(Cds(a) ,Cdt(a))

which vanishes on all polynomials defined by the relations R. Its points are in

bijection with the representations of A with dimension vector d and underlying

vector space
∏
i∈Q0

Cdi . It is a finite-dimensional affine algebraic variety.

The affine algebraic group

Gd :=
∏
i∈Q0

GL(Cdi)

acts on repd(A) by base change at every vertex. The Gd-orbits are in bijection

with the isomorphism classes of A-modules with dimension vector d.

§2.2. Nakajima’s varieties

Let Q be a quiver of Dynkin type A, D or E. For i, j in Q0, we write i ∼ j if there

is in Q1 an arrow i→ j or an arrow j → i. A height function on Q is a map

ξ : Q0 → Z

such that for any arrow i → j in Q, we have ξj = ξi − 1. Since Q is a tree, there

exists a height function on it.

Define the repetition quiver Q̂ thus:

• the set of vertices of Q̂ is Q̂0 = {(i, p) ∈ Q0 × Z | p− ξi ∈ 2Z};
• for any arrow c : i → j in Q and any (i, n) ∈ Q̂0, there is an arrow (c, n) :

(i, n)→ (j, n− 1) and an arrow (c, n− 1) : (j, n− 1)→ (i, n− 2) in Q̂.



Nakajima Varieties and Repetitive Algebras 535

Now, let Γ̂ be the quiver which contains Q̂ as a full subquiver, and which has

additional vertices and arrows as follows:

• one additional vertex for each element of {(i, p) ∈ Q0 × Z | p− ξi ∈ 1 + 2Z}. In

particular, the set of vertices of Γ̂ is Q0 × Z;

• additional arrows a(i,n+1) : (i, n + 1) → (i, n) and b(i,n) : (i, n) → (i, n − 1) for

every (i, n) ∈ Q̂0.

We will study representations of Γ̂ satisfying the following set of relations:

a(i,n−1)b(i,n) +
∑
c:i→j

(c, n− 1)(c, n)−
∑
c:j→i

(c, n− 1)(c, n) = 0, (i, n) ∈ Q̂0.

Let R be the ideal generated by these relations. Let Λ be the quotient of CΓ̂ by R.

Let d be a finite dimension vector on Γ̂. We will use the following notation:

(1) V =
⊕

(i,n)∈Q̂0

Cd(i,n) , W =
⊕

(i,n)∈Γ̂0\Q̂0

Cd(i,n) ,

where V is a Q̂0-graded vector space, and W is a (Γ̂0 \ Q̂0)-graded vector space.

Then the variety of representations repd(Λ) is a closed subset of the direct sum of

these three vector spaces:

L•(V,W ) =
⊕

(i,n)∈Q̂0

HomC(V(i,n),W(i,n−1)),

L•(W,V ) =
⊕

(i,n)∈Q̂0

HomC(W(i,n+1), V(i,n)),

E•(V ) =
⊕

i→j,(i,n)∈Q̂0

HomC(V(i,n), V(j,n−1))⊕
⊕

i→j,(j,m)∈Q̂0

HomC(V(j,m), V(i,m−1)).

The variety repd(Λ) will also be denoted by Λ•(V,W ) when we want to emphasize

this decomposition.

The affine algebraic group

GV :=
∏

(i,n)∈Q̂0

GL(V(i,n))

acts naturally on Λ•(V,W ) by base change at vertices (i, n) ∈ Q̂0. Define the affine

quotient

M•0(V,W ) := Λ•(V,W )�GV := Spec C[Λ•(V,W )]GV .
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If V ⊂ V ′ as Q̂0-graded vector spaces, then there is a natural closed embedding

M•0(V,W ) ⊂M•0(V ′,W ). Define

M•0(W ) =
⋃
V

M•0(V,W ).

It is an affine variety on which the algebraic group

GW :=
∏

(i,n)∈Γ̂0\Q̂0

GL(W(i,n))

acts by base change at vertices (i, n) ∈ Γ̂0 \ Q̂0. Nakajima proves (see for instance

[19, Section 3]) that there is a stratification

M•0(W ) =
⊔
V

M•reg
0 (V,W ),

where M•reg
0 (V,W ) is the open subset of M•0(V,W ) parametrizing the closed free

GV -orbits. He also proves that a necessary condition for M•reg
0 (V,W ) to be non-

empty is that

dimW(i,n) − dimV(i,n+1) − dimV(i,n−1) +
∑
j∼i

dimV(j,n) ≥ 0,

for all (i, n) ∈ Γ0 \Q0. In that case, the pair (V,W ) is called dominant.

Similarly, we will say that a representationN of Λ is dominant if the associated

pair (V,W ) is dominant. The representation N is stable if any graded subspace of

V stable under the action of all (c, n) and (c, n+1) and vanishing under the action

of all b(i,n) is the zero subspace. In other words, N is stable if it has no non-zero

subrepresentations supported on V .

The stratum M•reg
0 (V,W ) is non-empty if, and only if, there exists a stable

representation N whose underlying graded vector space is (V,W ), and (V,W ) is

dominant.

Example 2.1. Consider the quiver Q of type A4 given by

1

��===
�����

2

�����
4

3

with height function defined by ξ1 = 2, ξ2 = ξ4 = 1 and ξ3 = 0. Then the points

of Λ•(V,W ) are given by collections of morphisms which can be organized as in

the following picture:
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...

��

...

yyrrrrrrrr

�� %%LLLLLLLL
...

��

...

yyrrrrrrrr

��
V(3,2)

&&MMMMM
��

W(2,2)

��

V(1,2)

xxqqqqq
�� &&MMMMM

W(4,2)

��
W(3,1)

��

V(2,1)

&&MMMMM
��xxqqqqq

W(1,1)

��

V(4,1)

xxqqqqq
��

V(3,0)

&&MMMMM
��

W(2,0)

��

V(1,0)

xxqqqqq
�� &&MMMMM

W(4,0)

��
W(3,−1)

��

V(2,−1)

&&NNNNNN
��xxpppppp

W(1,−1)

��

V(4,−1)

xxpppppp
��...

...
...

...

The quiver Q is found in this picture by taking the full subquiver whose vertices

are V(1,2), V(2,1), V(3,0) and V(4,1). The quiver whose arrows and vertices are all the

V ’s and W ’s is Γ̂; the full subquiver whose vertices are the V ’s is Q̂.

§2.3. Projectivization

Let Γ̂, R and Λ be as above. Let Σ be a subset of Γ̂0. Define Γ̂Σ as the full subquiver

of Γ̂ whose vertices are those x in Γ̂0 such that there exist two vertices w and y in

Σ and a path from w to y passing through x. (One may think of Γ̂Σ as a kind of

convex hull of Σ.)

Let RΣ := R ∩ CΓ̂Σ, and define ΛΣ := CΓ̂Σ/RΣ. If d is a dimension vector

supported on Γ̂Σ, then repd(Λ) ∼= repd(ΛΣ). Note that if Σ is finite, then Γ̂Σ only

has a finite number of vertices, and ΛΣ is a finite-dimensional algebra with unit.

For the rest of the section, we will assume that Σ is finite, and that

(2) Σ ⊂ Γ̂0 \ Q̂0.

Define the idempotent

eΣ :=
∑
x∈Σ

ex,

and consider the algebra eΣΛeΣ = eΣΛΣeΣ. We will list here some facts concerning

this algebra, taken mainly from Chapter II.2 of [4].

The algebra eΣΛΣeΣ is a finite-dimensional algebra with unit eΣ, and the ex,

for x in Σ, form a complete set of pairwise orthogonal primitive idempotents. It is

isomorphic as an algebra to EndΛΣ(ΛΣeΣ)op. From this isomorphism, we see that

we have a functor

HomΛΣ(ΛΣeΣ, ?) : mod ΛΣ → mod eΣΛΣeΣ,
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which is exact since ΛΣeΣ is a projective ΛΣ-module. The process of applying this

functor is called projectivization in [4].

Let pres(ΛΣeΣ) be the full subcategory of mod ΛΣ consisting of modules M

which admit a projective presentation

P1 → P0 →M → 0,

with P1 and P0 in add (ΛΣeΣ).

Proposition 2.2 (Proposition II.2.5 of [4]). The functor HomΛΣ(ΛΣeΣ, ?) re-

stricts to an equivalence of categories

pres(ΛΣeΣ)→ mod eΣΛΣeΣ.

Let M be a ΛΣ-module. The dimension vector of its image in mod eΣΛΣeΣ

is obtained from dimM by forgetting the components which are not in Σ. This is

seen from the isomorphisms

ex HomΛΣ
(ΛΣeΣ,M) ∼= ex HomΛΣ

(ΛΣ,M) ∼= exM.

For any dimension vector d on Γ̂, we write d = dV + dW , where dV is

supported on Q̂0 and dW is supported on Γ̂0 \ Q̂0. The above discussion gives us

the following, which we will use later.

Corollary 2.3. Let M be a module over eΣΛΣeΣ. Then there exists a ΛΣ-module

L such that HomΛΣ
(ΛΣeΣ, L) is isomorphic to M . Its dimension vector d =

dV + dW is such that dW is the dimension vector of M .

§2.4. An isomorphism of varieties

In this section, we prove the following result, which is motivated by Theorem 9.11

of [11]. Let Σ be a finite subset of Γ̂0 satisfying the assumption (2), and let d be

a dimension vector supported on Σ. Define

(3) Wd :=
⊕

(i,n)∈Σ

Cd(i,n) .

Theorem 2.4. There is a GWd-equivariant isomorphism of varieties

Ψ : M•0(Wd)→ repd(eΣΛeΣ).

Proof. We shall write for short e instead of eΣ, and W instead of Wd. We proceed

in two steps. We will first show that there is a closed immersion Ψ, in much the

same way as in Proposition 9.4 of [11]. Then we will prove that Ψ is surjective.

Notice first that eΛe = eΛΣe is a finite-dimensional algebra with unit. Let

{αk}rk=1 be a finite set of generators of eΛe. We assume that each αk lies in some
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exΛey for vertices x and y of Γ̂ \ Q̂. Then repd(eΛe) is a closed subset of the affine

space ⊕
αk∈exΛey

HomC(Wx,Wy).

Its coordinate ring can therefore be expressed as a quotient of a polynomial ring

C[θki,j ]i,j,k, where θki,j should be seen as the function sending a linear map in

HomC(Wx,Wy) to the (i, j)th coordinate of this map written in matrix form for

some fixed bases of Wx and Wy.

Now fix some Q̂0-graded vector space V . Each αk is an element of some exΛey;

it is thus a linear combination of paths in Γ̂ from x to y. For a representation in

Λ•(V,W ), this linear combination of paths corresponds to a linear combination

of compositions of linear maps, each composition going from Wx to Wy. Let ψki,j
be the function in C[Λ•(V,W )]GV corresponding to the (i, j)th coordinate of this

map from Wx to Wy written in matrix form. Define an algebra morphism by

C[repd eΛe]→ C[Λ•(V,W )]GV , θki,j 7→ ψki,j .

According to [19] (see also [14], [16]), the functions ψki,j generate

C[Λ•(V,W )]GV . We have thus defined a surjective morphism between coordinate

rings, which yields a closed immersion ΨV : M•0(V,W )→ repd eΛe. Since M•0(W )

is the union of all M•0(V,W ), we get a closed immersion Ψ : M•0(W )→ repd eΛe.

We now prove that Ψ is surjective. The action of Ψ can be understood using

the following diagram:

Λ•(V,W )

&&MMMMMMMMMMM
ΦV // repd(eΛe)

M•0(V,W ) //M•0(W )

Ψ

88rrrrrrrrrr

Here, ΦV sends a representation M of Λ in Λ•(V,W ) to a representation of eΛe

isomorphic to HomΛΣ(ΛΣe,M). To prove that Ψ is surjective, it is thus sufficient

to prove that for any representation N in repd(eΛe), there exists a V and a rep-

resentation M in Λ•(V,W ) such that N ∼= ΦV (M) ∼= HomΛΣ
(ΛΣe,M). But such

V and M always exist thanks to Corollary 2.3. Thus Ψ is surjective. Finally, the

definition of Ψ makes it GW -equivariant. The theorem is proved.

Remark 2.5. The same result was proved in [11, Proposition 9.8] for a restricted

choice of Σ determined by the representation theory of the quiver Q.

Example 2.6. Consider the quiver Q = 1 → 2 of type A2, with height function

given by ξ1 = 1 and ξ2 = 0. Put W(1,2) = W(2,−1) = C, and set all other W ’s to



540 B. Leclerc and P.-G. Plamondon

zero. We get the picture

W(1,2) = C
��

V(1,1)

))RRRRRRRR

V(2,0)

��
W(2,−1) = C

In that case, the theorem implies that M•0(W ) is isomorphic to the variety of

representations of Q of dimension vector (1, 1).

Example 2.7. Let Q be as in Example 2.6. This time, put

W(1,4) = W(1,2) = W(1,0) = W(2,3) = W(2,1) = W(2,−1) = C.

We get the picture
W(1,4) = C

��
V(1,3)

))RRRRRRRR
��

W(2,3) = C
��

W(1,2) = C
��

V(2,2)

��uullllllll

V(1,1)

))RRRRRRRR
��

W(2,1) = C
��

W(1,0) = C V(2,0)

��
W(2,−1) = C

The theorem states that M•0(W ) is isomorphic to the variety of representations of

dimension vector (1, 1, 1, 1, 1, 1) of the quiver

1

a

��
e

��;;;;;;;;;;;;;;;;;

2

c

��g

�������������������

3

b

��
f

��;;;;;;;;;;;;;;;;;

4

d

��

5

6

subject to the relation fa = −de.
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These examples illustrate the various forms that the algebra eΣΛeΣ can take.

In the next section, we will see that, for a suitable choice of W , this algebra is the

well-studied repetitive algebra.

§3. Orbits and strata

§3.1. Repetitive algebras

Our main source for this section is Chapter II.2 of [8]. Let A be a finite-dimensional

algebra over C. The repetitive algebra Â of A is the infinite-dimensional algebra

(without unit) defined as a vector space by

Â =
⊕
n∈Z

A⊕
⊕
n∈Z

DA,

where D is the duality functor HomC(?,C). An element of Â will be denoted by

(an, ϕn)n, with only finitely many of the an and ϕn being non-zero. The multipli-

cation rule is given by

(an, ϕn)n · (bn, ψn)n = (anbn, an+1ψn + ϕnbn)n.

The repetitive algebra Â can be interpreted as an “infinite matrix algebra” as

follows:

Â =



. . .

. . . A

DA A

DA A
. . .

. . .


.

Then the product in Â of two infinite matrices of this form is the usual product

of matrices, except that the entries of the second subdiagonal in the product are

ignored and set to zero.

As shown in [8], Â is a selfinjective algebra. Thus its stable module category

mod Â is triangulated, and the suspension functor is given by the inverse of the

syzygy functor Ω.

Example 3.1. If A = CQ, where Q is the linearly oriented quiver of type An,

Q = 1→ 2→ · · · → n,

then it is easy to see that Â is isomorphic to the path algebra of a linearly oriented
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quiver Qrepet with vertex set Z and the following relations:

• every path of length > n is equal to 0.

A representation of Â of dimension vector d = (di) is the same as a degree 1

endomorphism x of the graded vector space

Wd =
⊕
i∈Z

Cdi

satisfying xn+1 = 0. The orbits of repd(Â) are therefore identical to the graded

nilpotent orbits of W considered by Ginzburg and Vasserot in [7].

Following J. Schröer [21], we can describe the repetitive algebra ĈQ of any

quiver Q by a quiver Qrepet with relations as follows:

• the vertices of Qrepet are labelled by i[n], where i ∈ Q0 and n ∈ Z;

• for any arrow i→ j of Q and any integer n, there is an arrow

i[n]→ j[n];

• for any maximal path w : i→ j of Q and any integer n, there is an arrow

w∗[n] : j[n]→ i[n+ 1]

(these are called connecting arrows).

Note that in [21], the arrows w∗[n] would go from j[n] to i[n−1]; this is because our

definition for the repetitive algebra, which follows [8], uses different conventions

than those in [21]. The relations are obtained in the following way:

• A full path is a path of the form u[n+ 1]w∗[n]v[n], where w = vu is a maximal

path in Q. Then any path which is not a subpath of a full path is a relation.

• If w1 = x1vu1 and w2 = x2vu2 are two maximal paths in Q, then the element

u1[n+ 1]w∗1 [n]x1[n]− u2[n+ 1]w∗2 [n]x2[n]

is a relation.

Example 3.2. Let Q be the quiver of type A4 given by

1
��===

�����

2
�����

4

3

The quiver Qrepet is
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· · ·
##HHH · · ·

{{vvv

1[1]
a
||yyy c

""EEE

2[1]
b
||yyy

4[1]

c∗

����������

3[1]
(ba)∗

((RRRRRRRRR

1[2]
a
||yyy c

""EEE

2[2]
b
||yyy

4[2]

c∗

����������

3[2]
(ba)∗

((RRRRRRRRR

1[3]

{{vvvv
##HHHH

· · · · · ·
The relations are c(ba)∗ = ac∗ = ba(ba)∗b = 0, (ba)∗ba = c∗c.

Example 3.3. Let Q be the quiver of type D4 given by

1

��
2

�����
��===

3 4

The quiver Qrepet is
· · ·

##HHHH · · ·
{{vvvv

1[1]
a ��
2[1]

b
||yyyy c

""EEEE

3[1]

(ba)∗
""EEEE

4[1]

(ca)∗
||yyyy

1[2]
a ��
2[2]

b
||yyyy c

""EEEE

3[2]

(ba)∗
""EEEE

4[2]

(ca)∗
||yyyy

1[3]
a
��...
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The relations are

ca(ba)∗ = ba(ca)∗ = a(ca)∗ca = a(ba)∗ba = 0, (ba)∗b = (ca)∗c.

We now recall Happel’s theorem:

Theorem 3.4 (Theorem II.4.9 of [8]). Assume that A has finite global dimension.

Then there is an equivalence of triangulated categories Db(modA)→ mod Â.

In view of this theorem, the Auslander–Reiten quiver of mod Â is obtained by

adding vertices (corresponding to indecomposable projective-injective Â-modules)

to the Auslander–Reiten quiver of Db(modA).

Assume now that A is the path algebra of a quiver Q of Dynkin type A, D or E.

Then the Auslander–Reiten quiver of Db(modA) is known to be isomorphic to Q̂op.

In order to picture the Auslander–Reiten quiver of mod Â, we must know which

irreducible morphisms start or end in each indecomposable projective-injective

module.

Let P be an indecomposable projective-injective module. Its socle and top are

simple; thus any submodule and any quotient of P are indecomposable. Moreover,

using for instance Proposition IV.3.5 of [2], we know that the only irreducible

morphisms involving P are the inclusion radP ↪→ P and the surjection P �
P/socP . Therefore P appears in exactly one mesh of the Auslander–Reiten quiver

of mod Â, and this mesh has the form

M

��555555555555

...

radP

EE�����������
//

��2
2222222222 P // P/socP

...

N

DD											

where all modules other than P are non-projective. Thus the Auslander–Reiten

quiver of (mod Â)op is a full subquiver of Γ̂.

Example 3.5. We continue Example 3.2. The Auslander–Reiten quiver of ĈQ
(with arrows going from bottom to top, a convention which will be useful later) is
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· · · · · · · · · · · ·

3[0]

88pppppppppp 2[0]
3[0] 4[0]

1[1]

66lllllllll

hhQQQQQQQQ
OO

3[0] 4[0]
1[1]

88qqqqqqqq

ddIIIIIIIIII
2[0]

3[0]
1[1]

ffNNNNNN

4[0]
1[1]

<<yyyyyyyyyy
3[0]

1[1]

99ssssssssss

eeJJJJJJJJJJJ 2[0]
3[0]

1[1]
2[1]

OO

4[0]
1[1]

4[1]

OO

1[1]

::uuuuuuuuuuuuu

aaCCCCCCCCCCCC 3[0]
1[1]

2[1]

ddIIIIIIIIIII

OO

1[1]
4[1]

=={{{{{{{{{{{{

OO

1[1]
2[1]

::uuuuuuuuuuu

ddIIIIIIIIIIIII 3[0]
1[1]

2[1]
3[1]

OO

1[1]
2[1] 4[1]

99ttttttttttt

bbEEEEEEEEEE
1[1]

2[1]
3[1]

eeKKKKKKKKKK
OO

2[1]

::uuuuuuuuuu 1[1]
2[1] 4[1]

3[1]

88pppppp

ffMMMMMMMM

2[1]
3[1]

99tttttttttt

bbEEEEEEEEEEE 1[1]
2[1] 4[1]

3[1]
1[2]

OO

4[1]

eeKKKKKKKKKKK

3[1]

<<yyyyyyyyyyy 2[1]
3[1] 4[1]

1[2]

99sssssssssss

eeJJJJJJJJJJ
OO

· · · · · ·

66mmmmmmmm

ffNNNNNNNNNN
· · · · · ·

hhRRRRRRRRR

where representations are written as their composition series (each i[r] represents

the simple representation associated to the corresponding vertex), and projective-

injective representations are written inside boxes.
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Let ψ denote a fixed embedding of the Auslander–Reiten quiver of (mod Â)op

as a full subquiver of Γ̂.

Lemma 3.6. Let Σ := ψ(proj Â). Then there is an algebra isomorphism

eΣΛeΣ
∼= Â.

Proof. The category (mod Â)op is equivalent to the category generated by its

Auslander-Reiten quiver, together with the mesh relations. Let Λ′ be the path al-

gebra of this Auslander–Reiten quiver quotiented by the mesh relations. Then Λ′ is

isomorphic to the endomorphism algebra of the direct sum of all finite-dimensional

indecomposable modules over Â. Thus

eΛ′e ∼= EndÂ

( ⊕
P projective

P
)op ∼= Â.

The quivers of Λ and Λ′ are the same; their relations differ only by some signs.

Consider the following vertex-preserving automorphism of Λ:

a(i,n+1) 7→ a(i,n+1);

b(i,n) 7→ b(i,n);

(c, n) 7→

{
(c, n) if n ≡ 0, 1 mod 4;

−(c, n) else;

(c, n+ 1) 7→

{
(c, n+ 1) if n ≡ 0, 1 mod 4;

−(c, n+ 1) else;

for any (i, n) ∈ Q̂0. Under this automorphism, the relations of Λ become the

mesh relations; thus Λ and Λ′ are isomorphic, and this isomorphism preserves the

idempotents associated to the vertices. So we have eΛe ∼= eΛ′e ∼= Â.

Remark 3.7. The isomorphism Λ ∼= Λ′ defined above induces a GV -equivariant

isomorphism of varieties repd(Λ) ∼= repd(Λ′), for any dimension vector d. Thus we

will often identify the representations of Λ with those of Λ′ and conversely.

Corollary 3.8. Let d be a finite dimension vector supported on ψ(proj Â), and let

Wd be the corresponding graded space defined as in (3). There is a GW -equivariant

isomorphism of varieties

Ψ : M•0(Wd)→ repd Â.

Proof. This follows from Lemma 3.6 and Theorem 2.4.



Nakajima Varieties and Repetitive Algebras 547

§3.2. The Grothendieck group for repetitive algebras

Let A be an essentially small abelian category. Its split Grothendieck group

Ksplit
0 (A) is the free abelian group generated by isomorphism classes of objects

in A, subject to the relations

[X]− [X ⊕ Z] + [Z] = 0 for all objects X and Z of A.

The Grothendieck group of A is the abelian group K0(A) obtained by adding the

relations

[X]− [Y ] + [Z] = 0 for all exact sequences 0→ X → Y → Z → 0.

Let φ : Ksplit
0 (A)→ K0(A) be the canonical surjection. In [3], M. Auslander gave

a basis of Kerφ in the case when A is the category of finite-dimensional modules

over a finite-dimensional k-algebra A that is representation finite. We will give

a similar description of Kerφ for the module category of a repetitive algebra of

Dynkin type. Although the proof follows the lines of [3], we include it here for

completeness.

Let Â be the repetitive algebra of the path algebra of a quiver of Dynkin type.

For any vertex i of the Gabriel quiver Qrepet of Â, let Ŝi be the corresponding

simple Â-module, and let P̂i be its projective cover.

By [12, Lemma 2.5], the category mod Â has almost split sequences. For any

non-projective indecomposable module M in mod Â, there exists an almost split

sequence (unique up to isomorphism)

0→ τM → EM →M → 0.

For any indecomposable module M , let rM be the element of Ksplit
0 (mod Â) defined

by

rM =

{
[M ]− [EM ] + [τM ] if M is not projective,

[M ]− [radM ] if M is projective.

Define a bilinear form h on Ksplit
0 (mod Â) by

h([M ], [N ]) = dimC HomÂ(M,N) for any modules M and N.

We gather in the next lemma the properties of h that we will need.

Lemma 3.9. (i) For any indecomposable module M , we have h([M ], rM ) = 1.

(ii) If M and N are indecomposable and non-isomorphic, then h([M ], rN ) = 0.
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(iii) For any x ∈ Ksplit
0 (mod Â), we have

x =
∑

M indec.

h(x, rM )[M ].

(iv) If x and y are elements of Ksplit
0 (mod Â) such that, for any indecompos-

able module L, we have h(x, [L]) = h(y, [L]), then x = y. The same holds if

h([L], x) = h([L], y) for any indecomposable L.

Proof. We first prove statement (i). Assume that M is indecomposable and is not

projective. Then there is an exact sequence

0→ HomÂ(M, τM)→ HomÂ(M,EM )→ HomÂ(M,M)→ S(M)→ 0

and h([M ], rM ) = dimS(M). Notice that S(M) is isomorphic to the only simple

EndÂ(M)-module, which is one-dimensional. Now, if M is projective, then the

equality h([M ], rM ) = 1 follows from the fact that M/radM is a one-dimensional

simple module.

Statement (ii) follows from the definition of almost split sequences; indeed, if

M and N are indecomposable and non-isomorphic, with N non-projective, then

we have an exact sequence

0→ HomÂ(M, τN)→ HomÂ(M,EN )→ HomÂ(M,N)→ 0.

If N is projective, then any morphism from M to N has its image contained in

radN , so that HomÂ(M,N) = HomÂ(M, radN). The result follows.

The equation of (iii) follows directly from (i) and (ii). To prove (iv), notice

that if h(x, [L]) = 0 for any indecomposable L, then x = 0 by (iii). Thus, if

h(x, [L]) = h(y, [L]) for any indecomposable L, then x − y has to be zero. The

second equality is obtained by applying the first to the opposite algebra Âop and

applying the duality functor.

Proposition 3.10. Let A = CQ for a quiver Q of Dynkin type. Let Â be the

repetitive algebra of A.

(i) For any x ∈ Ksplit
0 (mod Â), we have

x =
∑

M indec.

h([M ], x)rM .

(ii) {rM | M is indecomposable} is a basis for Ksplit
0 (mod Â).

(iii) {rM | M is indecomposable and non-projective} is a basis for Kerφ.
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Proof. To prove (i), notice first that the sum is finite. This follows from the fact

that for a given N , there is a finite number of indecomposable modules M such

that h([M ], [N ]) is non-zero. Thus the sum in (i) is an element of Ksplit
0 (mod Â).

Next, for any indecomposable module L, we have

h
(

[L],
∑

M indec.

h([M ], x)rM

)
=

∑
M indec.

h([M ], x)h([L], rM )

= h([L], x)h([L], rL) = h([L], x).

Here, the second equality follows from Lemma 3.9(ii). Applying Lemma 3.9(iv),

we deduce (i).

It follows from (i) that the set {rM | M is indecomposable} generates the

group Ksplit
0 (mod Â). The fact that its elements are linearly independent follows

from Lemma 3.9(i), (ii): if
∑
M indec. λMrM = 0, then applying h([L], ?) yields the

equality λL = 0, for any indecomposable L. This proves (ii).

To prove (iii), notice that φ(rM ) = 0 for any non-projective indecomposable

M , and that φ(rP̂i
) = [Ŝi]. Thus no non-trivial linear combination of the rP̂i

lies

in the kernel of φ. This finishes the proof.

Corollary 3.11. Let N be a representation of Â of dimension vector d. Then in

Ksplit
0 (mod Â) we have

−[N ] +
∑
i

di[Ŝi] =
∑

M non-proj.

dim(proj(ΩM,N)) rM ,

where proj(A,B) is the space of morphisms from A to B that factor through a

projective representation, and where Ω is the syzygy. In particular, N is completely

determined up to isomorphism by the values of dim(proj(M,N)), as M ranges over

all non-projective indecomposables.

Proof. The element −[N ] +
∑
i di[Ŝi] lies in the kernel of φ. Thus, by Proposition

3.10, it can be written in a unique way as a linear combination of some rM , for M

indecomposable non-projective, and the coefficient of rM is

h
(

[M ],−[N ] +
∑
i

di[Ŝi]
)
.

Now let PM be a minimal projective cover of M , so that we have a short exact

sequence

0→ ΩM → PM →M → 0

and an exact sequence

0→ Hom(M,N)→ Hom(PM , N)→ Hom(ΩM,N).
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From this we see that proj(ΩM,N) ∼= Hom(PM , N)/Hom(M,N). Moreover, since

Hom(PM , N) only depends on the dimension vector of N , it is isomorphic to

Hom(PM ,
⊕

i Ŝ
di
i ), which in turn is isomorphic to Hom(M,

⊕
i Ŝ

di
i ), since PM is

a minimal projective cover of M . Thus

dim proj(ΩM,N) = dim Hom(PM , N)− dim Hom(M,N)

= dim Hom
(
M,
⊕
i

Ŝdii

)
− dim Hom(M,N)

= h
(

[M ], −[N ] +
∑
i

di[Ŝi]
)
.

This proves the first claim. Since the rM form a basis of the kernel of φ, a moduleN ′

not isomorphic to N will give rise to different values for the h([M ], [N ′]). This

proves the second claim.

§3.3. A bijection between strata and orbits

Recall the algebra

Λ′ = EndÂ

( ⊕
M indec.

M
)op

,

where the sum is taken over all isomorphism classes M of indecomposable repre-

sentations of Â.

Lemma 3.12. Let d be a finite dimension vector supported on ψ(proj Â). Let N

be a representation of Â of dimension d. Consider the left Λ′-module

N = proj
( ⊕
M indec.

M, N
)
.

Then N , regarded as a point of Λ•(V,Wd) for some V , is stable and dominant.

Proof. To prove that N is stable, notice that if L is an indecomposable non-

projective representation of Â and if f ∈ Vψ(L) = proj(L,N) is non-zero, then any

projective cover g : P → L is such that the composition f ◦ g does not vanish,

since g is surjective. Thus g, viewed as an element of Λ′, sends f to a non-zero

element of Wψ(P ) = proj(P,N). Therefore the subrepresentation of N generated

by f is not supported on V .

To prove that N is dominant, we must prove the inequality

dimW(i,n) − dimV(i,n+1) − dimV(i,n−1) +
∑
j∼i

dimV(j,n) ≥ 0
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for all (i, n) ∈ Γ̂0 \ Q̂0. All these spaces lie in a “mesh” of the form

V(i,n+1)

�� $$IIIIIIIII

))SSSSSSSSSSSSSSSSSS

++WWWWWWWWWWWWWWWWWWWWWWWWWW

W(i,n)

��

V(j1,n)

zzuuuuuuuuu
· · ·

uukkkkkkkkkkkkkkkkkk V(jr,n)

ssgggggggggggggggggggggggggg

V(i,n−1)

whose preimage under ψ corresponds to an almost split sequence

0→ τM →
⊕
k

Ek →M → 0.

Notice that the middle term has a projective summand P if, and only if, (i, n) =

ψ(P ). Thus, since Vψ(L) = proj(L,N), the above inequality becomes

−dim proj(M,N)− dim proj(τM,N) +
∑
k

dim proj(Ek, N) ≥ 0,

where the counterpart of dimW(i,n) is included in the sum and corresponds to

the possible projective summand P . Since projectives are injectives, if a morphism

τM → N factors through a projective, then it factors through E =
⊕

k Ek. Thus

we get a sequence

proj(M,N)→ proj(E,N)→ proj(τM,N),

which is not exact, but whose first map is injective and second map is surjective,

and such that their composition vanishes. Thus

dim proj(E,N) ≥ dim proj(M,N) + proj(τM,N),

and N is dominant.

Remark 3.13. One can show that the GV -orbit of N is always closed. This result,

in a more general context, is proved in a work of Bernhard Keller and Sarah

Scherotzke [13]. We are grateful to them for kindly explaining their result to us

prior to its appearance on the arXiv.

Theorem 3.14. Let d be a finite dimension vector supported on ψ(proj Â). Then

the isomorphism

Ψ : M•0(Wd)→ repd(Â)
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of Corollary 3.8 induces a bijection between the following sets:

(i) the set of isomorphism classes of representations of Â with dimension vec-

tor d;

(ii) the set of dominant pairs (V,Wd);

(iii) the set of non-empty strata M•reg
0 (V,Wd).

Proof. Lemma 3.12 gives a map from set (i) to set (ii), sending a representation

N to the dominant pair (V,Wd) associated to N . This map is injective since, by

Corollary 3.11, N is completely determined by the values of dim(proj(L,N)) for all

non-projective indecomposable Â-modules L, and these give the graded dimension

of V .

Assume now that (V,Wd) is a dominant pair. Consider the element∑
i

di[Ŝi]−
∑
M

dimVψ(ΩM) rM ∈ Ksplit
0 (Â).

If L is an indecomposable non-projective representation, then the coefficient of [L]

in this element is given by∑
i

diδŜi,L
− dimVψ(ΩL) − dimVψ(Ωτ−1L) +

∑
ΩL→N

dimVψ(N).

This corresponds to the almost split sequence ending in Ωτ−1L. (Note that if L

is simple, then ΩL is the radical of a projective module, and the corresponding

projective appears in the middle of this almost split sequence). Since (V,Wd) is

dominant, this quantity is non-negative. On the other hand, if P is an indecom-

posable projective, then the coefficient of [P ] is non-negative, since it appears only

with non-negative coefficients in all the elements rM .

Therefore
∑
i di[Ŝi]−

∑
M (dimVψΩM )rM = [N ] for some representation N of

Â with dimension vector d. This defines an injective map from set (ii) to set (i).

Since they are finite sets, they are in bijection. Note that the two maps that we

defined are inverse to each other.

Now, we know from Lemma 3.12 that any representation N gives rise to a rep-

resentation N of Λ′ that is both stable and dominant. Therefore the corresponding

stratum M•reg
0 (V,Wd) is non-empty. This gives an injective map from set (i) to set

(iii). Finally, if M•reg
0 (V,Wd) is non-empty, then (V,Wd) is dominant; this gives

an injective map from set (iii) to set (ii), and we have a bijection.

The proof of Theorem 3.14 gives us a description of the space V in the dom-

inant pair (V,W ) associated to a representation N of Â.
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Corollary 3.15. Let N be a representation of Â of dimension vector d, and let

M•reg
0 (V,Wd) be the corresponding non-empty stratum. Then the following integers

are equal for any indecomposable non-projective Â-module M :

(i) dimVψM ;

(ii) dim proj(M,N);

(iii) dim HomÂ(Ω−1M,
⊕

i Ŝ
di
i )− dim HomÂ(Ω−1M,N);

(iv) the coefficient of rΩ−1M in the equality

−[N ] +
∑
i

di[Ŝi] =
∑

M non-proj.

λMrM .

Proof. The equality of (i) and (ii) follows from the bijection given in Theorem 3.14

and from the definition of N . The equality of (ii) and (iii) was given at the end

of the proof of Corollary 3.11. The equality of (ii) and (iv) follows from Corollary

3.11.

Remark 3.16. We are grateful to Christof Geiss for sharing with us his obser-

vation of the equality of (i) and (iii) in Corollary 3.15. Note that by Nakajima’s

theory, the stratum M•reg
0 (V,Wd) contains the stratum M•reg

0 (V ′,Wd) in its clo-

sure if and only if dimV(i,n) ≥ dimV ′(i,n) for every (i, n) ∈ Q̂0. Thus, using the

equality of (i) and (iii), we find that a d-dimensional Â-module N ′ lies in the

closure of the orbit of N if and only if dim HomÂ(M,N) ≤ dim HomÂ(M,N ′)

for every indecomposable Â-module M . Hence we recover that for the repetitive

algebra of a Dynkin quiver, which is locally of finite representation type, the de-

generation order and the Hom order coincide [23].

Remark 3.17. In caseW is supported on the image by ψ of projectives associated

to vertices 1[r], 2[r], . . . , n[r] for some integer r, Theorem 3.14 recovers Theorem

9.11 of [11]. In that paper, the place of the W ’s corresponds to the place of the

simple modules in modCQ. Our place for the W ’s is the place of the projective in-

decomposable modules in mod Q̂. To see that the two choices give the same pattern

for the placing of the W ’s, notice that the syzygy Ω (which is an autoequivalence

of the triangulated category mod Â) sends any simple S to the radical radP of a

projective module P , and that radP is the start of an almost split sequence having

P in its middle term.

Proposition 3.18. Let N be a representation of Â of dimension vector d, and

write

N =
⊕

M indec.

MaM .
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Then, if M is not projective, we have

aΩ−1τM = −dim proj(M,N)− dim proj(τM,N) +
∑
k

dim proj(Ek, N),

where 0→ τM →
⊕

k Ek →M → 0 is an almost split sequence.

Proof. Three cases arise:

• the almost split sequences ending in M and in Ω−1M have no projective sum-

mands in their middle terms;

• the almost split sequence ending in M has a projective summand P̂ (this is

equivalent to M being isomorphic to P̂ /soc(P̂ ));

• the almost split sequence ending in Ω−1M has a projective summand Q̂ (this is

equivalent to Ω−1M being isomorphic to Q̂/soc(Q̂)).

Let δ (resp. ε) be equal to 1 if M (resp. Ω−1M) is isomorphic to P̂ /soc(P̂ ) (resp.

Q̂/soc(Q̂)), and 0 otherwise. We can therefore write the almost split sequences as

0→ τM → P̂ δ ⊕
⊕

Ek non-proj.

Ek →M → 0,

resp.

0→ Ω−1τM → Q̂ε ⊕
⊕

Ek non-proj.

Ω−1Ek → Ω−1M → 0.

Then, using Corollary 3.15, we get

− dim proj(M,N)− dim proj(τM,N) +
∑
k

dim proj(Ek, N)

= −dim proj(M ⊕ τM,N) +
∑

Ek non-proj.

dim proj(Ek, N) + δ dim proj(P̂ , N)

= −dim proj(M ⊕ τM,N) +
∑

Ek non-proj.

dim proj(Ek, N) + δdψ(P̂ )

= h
(
−rΩ−1M − ε[Q̂],

∑
i

diŜi − [N ]
)

+ δdψ(P̂ )

= aΩ−1τM −
∑
i

diδΩ−1τM,Ŝi
+ δdψ(P̂ ) = aΩ−1τM − δdψ(P̂ ) + δdψ(P̂ ) = aΩ−1τM .

Here we have used the fact that, since Q̂ is projective-injective,

h
(

[Q̂],
∑
i

diŜi − [N ]
)

= 0.

Example 3.19. We continue Example 3.5. Put W(3,8) = W(1,4) = W(3,0) = C;

these spaces correspond to the images of some projectives under some inclusion ψ

of mod Â into Γ̂, so that Theorem 3.14 applies.
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W(3,8)

��
V(3,7)

%%JJJJ

V(2,6)

%%JJJJ

V(1,5)

�� %%JJJJ

W(1,4)

��

V(4,4)

yytttt

V(1,3)

yytttt

V(2,2)

yytttt

V(3,1)

��
W(3,0)

There are four isomorphism classes of representations of Â of the corresponding

dimension vector, which is supported on the following subquiver of Qrepet:

4[0]

||zzzz

1[1]

""EEEE

4[1]

Corollary 3.15 gives the dominant pair (V,W ) associated to each isomorphism

class. The table below describes the bijection explicitly.

4[0] ⊕ 1[1] ⊕ 4[1]
4[0]

1[1] ⊕ 4[1] 4[0] ⊕ 1[1]
4[1]

4[0]
1[1]

4[1]

dimV(3,7) 0 1 0 1

dimV(2,6) 0 1 0 1

dimV(1,5) 0 1 0 1

dimV(4,4) 0 0 0 1

dimV(1,3) 0 0 1 1

dimV(2,2) 0 0 1 1

dimV(3,1) 0 0 1 1
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Example 3.20. The bijection of Theorem 3.14 does not hold for a general W .

Indeed, let Q be the quiver 1→ 2 of type A2. Put W(1,3) = W(1,1) = W(2,0) = C.

W(1,3)

��
V(1,2)

�� %%KKKK

W(1,1) V(2,1)

��
W(2,0)

Then Theorem 2.4 gives an isomorphism between M•reg
0 (W ) and the variety of

representations of dimension vector (1, 1, 1) of the quiver

3

�� ��===

4 5

Then there are three dominant pairs for Wd, given by

(dimV(1,2),dimV(2,1)) ∈ {(0, 0), (1, 0), (1, 1)},

while there are four orbits for this dimension vector, namely those of

3 ⊕ 4 ⊕ 5 , 3
4 ⊕ 5 , 3

5 ⊕ 4 , 3
4 5 .

§4. Composition multiplicities for quantum loop algebras

§4.1. Quantum loop algebras and q-characters

Let g be a complex simple Lie algebra of type A, D or E. Let Q be an arbitrary

orientation of the Dynkin diagram of g, that is, a Dynkin quiver of the same type

as g. Let Lg be the loop algebra attached to g, and let Uq(Lg) be the associated

quantum enveloping algebra. We assume that the deformation parameter q ∈ C∗

is not a root of unity.

By [6], every finite-dimensional Uq(Lg)-moduleM (of type 1) has a q-character

χq(M), which is a Laurent polynomial in

Y := Z[Y ±1
i,a | i ∈ Q0, a ∈ C∗]

encoding the dimensions of its loop weight spaces. These q-characters generate a

commutative subalgebra of Y isomorphic to the Grothendieck ring of the cat-

egory of finite-dimensional irreducible Uq(Lg)-modules. In other words, finite-

dimensional simple Uq(Lg)-modules are characterized by their q-characters up to

isomorphism.
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As in many other representation theories, the q-characters of simple modules

do not have a simple description and they are calculated via the q-characters of

more accessible modules called standard modules. As in [11], we will label simple

modules L(m) and standard modules M(m) by the unique monomial m of their

q-characters corresponding to their highest weight vectors. These highest weight

monomials m are called dominant because they only involve nonnegative powers

of the variables Yi,a.

Hence, a basic question is to calculate, for every pair (m,m′) of dominant

monomials, the composition multiplicities ζm,m′ appearing in the expansions

χq(M(m′)) =
∑
m

ζm,m′ χq(L(m)).

§4.2. Nakajima varieties and composition multiplicities

By a classical reduction procedure (see e.g. [10]), it is enough to determine the

multiplicities ζm,m′ corresponding to pairs (m,m′) of dominant monomials in the

variables of the set

Z := {Yi,qn | (i, n) ∈ Γ̂0 \ Q̂0},

where Γ̂0 and Q̂0 have been defined in §2.1. The modules L(m) where m ranges

over all dominant monomials in the variables of Z generate a tensor subcategory

CZ of the category of finite-dimensional Uq(Lg)-modules.

From now on, we shall only consider monomials in the variables of Z, and

write for short Yi,n instead of Yi,qn . In particular, we define for (i, n) ∈ Q̂0 the

Laurent monomial

Ai,n := Yi,n−1Yi,n+1

∏
j∼i

Y −1
j,n .

Given a finite dimension vector d on Γ̂ and the two corresponding graded vector

spaces V and W as in (1), we define two monomials

AV :=
∏

(i,n)∈Q̂0

A
−di,n
i,n , YW :=

∏
(i,n)∈Γ̂0\Q̂0

Y
di,n
i,n .

It is easy to check that the pair (V,W ) is dominant in the sense of §2.2 if and

only if the monomial md := YWAV is dominant, that is, every variable Yi,n has a

non-negative exponent in md.

Given a dominant pair (V,W ) such that M• reg
0 (V,W ) 6= ∅, denote by ICW (V )

the intersection cohomology complex of the closure of the stratum M• reg
0 (V,W ).

Let Hi(ICW (V )) be its ith cohomology sheaf, and Hi(ICW (V ))V ′ be the stalk of

this sheaf at a point of M• reg
0 (V ′,W ). We can now state one of the main results

of Nakajima’s geometric approach to the representation theory of Uq(Lg).
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Theorem 4.1 ([18, §8]). Let m and m′ be two dominant monomials in the vari-

ables of Z. The multiplicity of the simple module L(m) as a composition factor of

the standard module M(m′) is given by

(4) ζm,m′ =
∑
i≥0

dimHi(ICW (V ))V ′

for any pair of strata M• reg
0 (V,W ) and M• reg

0 (V ′,W ) such that m = YWAV and

m′ = YWAV
′
.

§4.3. Parametrization of irreducible modules

Let N be a representation of Â of dimension d. By Theorem 3.14, N corresponds

to a unique dominant pair (V,Wd). This allows us to attach to N a dominant

monomial

mN := YW
d

AV

in the variables of Z.

Let N ′ be another Â-module of dimension d′. Suppose that N ' N ′ ⊕ P ,

where P is a projective Â-module. Let (V ′,Wd′) and (V ′′,W ′′) be the dominant

pairs associated with N ′ and P by Theorem 3.14. Then we have the following

isomorphisms of graded vector spaces:

Wd 'Wd′ ⊕W ′′, V ' V ′ ⊕ V ′′.

The second isomorphism follows from the fact that, by Corollary 3.15, the dimen-

sions of the graded components of V are equal to the dimensions of the spaces

proj(M,N) for the indecomposable non-projective Â-modules M , and these di-

mensions are additive with respect to N . Moreover, since P is projective-injective,

dim proj(M,P ) = dim HomÂ(M,P ),

which is additive on the almost split sequences τM → E → M of the proof of

Lemma 3.12. It follows that

dimW ′′(i,n) − dimV ′′(i,n+1) − dimV ′′(i,n−1) +
∑
j∼i

dimV ′′(j,n) = 0

for every (i, n) ∈ Γ̂0 \ Q̂0. Therefore YW
′′
AV

′′
= 1, and

mN = YW
d

AV = YW
d′

AV
′

= mN ′ .

Hence the monomial mN depends only on the isomorphism class of N in the stable

category mod Â.
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So we can assume that N has no projective indecomposable summand and

write

N =
⊕

M indec. nonproj.

MaM .

Let us write the dominant monomial mN as

mN =
∏

(i,n)∈Γ̂0\Q̂0

Y
bi,n
i,n ,

and let us express the exponents bi,n in terms of the multiplicities aM . By definition

of mN , we have

bi,n = dimWd
(i,n) − dimV(i,n+1) − dimV(i,n−1) +

∑
j∼i

dimV(j,n).

Now, arguing as in the proof of Lemma 3.12, we get

bi,n = −dim proj(M,N)− dim proj(τM,N) +
∑
k

dim proj(Ek, N)

where the almost split sequence

0→ τM →
⊕
k

Ek →M → 0

corresponds under ψ to the mesh containing the spaces Wd
i,n, Vi,n+1, Vi,n−1, and

Vj,n for j ∼ i. In other words, M = ψ−1(i, n+ 1). Now, applying Proposition 3.18,

we get

bi,n = aΩ−1τψ−1(i,n+1).

In particular we see that the indecomposable non-projective Â-modules N have

their corresponding monomials mN equal to the variables Yi,n of Z. Thus, sum-

marizing the above discussion, we have proved:

Proposition 4.2. The map N 7→ L(mN ) induces a bijection between the isomor-

phism classes of objects in the stable category mod Â and the simple objects of CZ.

§4.4. Composition multiplicities

Let M(m′) be a standard module in the subcategory CZ, and let N ′ be a module

over the repetitive algebra Â such that m′ = mN ′ . By Proposition 4.2, N ′ exists

and its isoclass is completely determined by m′, up to projective summands. Let

d be the dimension vector of N ′. We can now state the main result of this section.
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Theorem 4.3. The multiplicities of the composition factors of M(m′) are equal

to

ζmN ,m′ =
∑
i≥0

dimHi(IC(ON ))N ′ .

Here ON denotes the orbit of a module N in repd Â containing N ′ in its clo-

sure, IC(ON ) is the intersection cohomology complex of the closure of ON , and

Hi(IC(ON ))N ′ is the stalk of the ith cohomology sheaf of IC(ON ) at N ′.

Proof. Let (V ′,Wd) be the dominant pair corresponding to N ′. It is well known

that if ζm,m′ 6= 0 we must have m = m′AV
′′

for some Q̂0-graded space V ′′. Hence,

putting V := V ′ ⊕ V ′′, we have m = YW
d

AV = mN for some Â-module N of

dimension d. By Corollary 3.8, the Nakajima variety M•0(Wd) is isomorphic to

repd(Â). By Theorem 3.14, the strata M•reg
0 (V,Wd) and M•reg

0 (V ′,Wd) are non-

empty and isomorphic to the orbits ON and ON ′ . The theorem then follows from

Theorem 4.1.
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