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Lévy Measure Density Corresponding to
Inverse Local Time

by

Tomoko Takemura and Matsuyo Tomisaki

Abstract

We are concerned with the Lévy measure density corresponding to the inverse local time
at the regular end point for a harmonic transform of a one-dimensional diffusion process.
We show that the Lévy measure density is represented as the Laplace transform of the
spectral measure corresponding to the original diffusion process, where the absorbing
boundary condition is posed at the end point whenever it is regular.
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§1. Introduction

Let s be a continuous increasing function on an open interval I = (l1, l2), where

−∞ ≤ l1 < l2 ≤ ∞, let m be a right continuous increasing function on I, and

let k be a right continuous nondecreasing function on I. Let Gs,m,k be a one-

dimensional diffusion operator on I with scale function s, speed measure m, and

killing measure k. We denote by Ds,m,k = [X(t), Px] the one-dimensional diffusion

process on I with generator Gs,m,k and with end point li where the absorbing

boundary condition is posed whenever li is (s,m, k)-regular (i = 1, 2). For β ≥ 0,

let Hs,m,k,β be the set of all positive functions h satisfying Gs,m,kh = βh. For

h ∈ Hs,m,k,β , we set

sh(x) =

∫
(co,x]

h(y)−2 ds(y),(1.1)
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mh(x) =

∫
(co,x]

h(y)2 dm(y),(1.2)

where co ∈ I is fixed arbitrarily. The diffusion operator Gsh,mh,0 with scale function

sh, speed measure mh, and the null killing measure is the harmonic transform of

Gs,m,k based on h ∈ Hs,m,k,β . Let Dsh,mh,0 be the one-dimensional diffusion process

on I with generator Gsh,mh,0 and with the end point li being absorbing whenever

it is (sh,mh, 0)-regular (i = 1, 2).

When l1 is (sh,mh, 0)-regular, it is possible to pose the reflecting boundary

condition at l1. We denote by D∗sh,mh,0 = [X(t), P
(h∗)
x ] such a diffusion process

on I. Namely, the scale function and the speed measure are given by sh and mh,

respectively, the killing measure is null, and l1 is (sh,mh, 0)-regular and reflecting.

We consider the local time l(h∗)(t, ξ) for D∗sh,mh,0, that is,∫ t

0

f(X(u)) du =

∫
I

l(h∗)(t, ξ) dmh(ξ), t > 0,

for bounded continuous functions f on I. Since l(h∗)(t, ξ) is continuous and non-

decreasing in t P
(h∗)
x -a.s., the right continuous inverse function l(h∗)

−1
(t, ξ) exists.

In particular, we denote by τ (h∗)(t) the inverse local time l(h∗)
−1

(t, l1) at the end

point l1. Employing some results due to Itô and McKean (see [5, Section 6.2]), we

find that, if sh(l2) =∞, then [τ (h∗)(t), t ≥ 0] is a Lévy process and there is a Lévy

measure density n(h∗)(ξ) such that

E
(h∗)
l1

[e−λτ
(h∗)(t)] = exp

{
−t
∫ ∞

0

(1− e−λξ)n(h∗)(ξ) dξ

}
,

where E
(h∗)
l1

stands for the expectation with respect to P
(h∗)
l1

. The aim of this

paper is to give a representation of n(h∗)(ξ) in terms of data corresponding to the

diffusion process Ds,m,k. We state our results in Section 3 (see Theorem 3.2).

Applying our results, we find some interesting facts. Let us consider the fol-

lowing diffusion generators on (0,∞):

L1 =
1

2

d2

dx2
+

{
1

2x
+
√

2β
K ′ν(
√

2β x)

Kν(
√

2β x)

}
d

dx
,(1.3)

L2 =
1

2

d2

dx2
+

{
− 1

2x
+ 2κx

W ′
− β

2κ+ ν+1
2 ,
|ν|
2

(κx2)

W− β
2κ+ ν+1

2 ,
|ν|
2

(κx2)

}
d

dx
,(1.4)

L3 =
1

2

d2

dx2
+

{
− 1

2x
+ 2κx

W ′
− β

2κ−
ν+1
2 ,
|ν|
2

(κx2)

W− β
2κ−

ν+1
2 ,
|ν|
2

(κx2)

}
d

dx
,(1.5)

where −1 < ν < 1, κ > 0 and β > 0. Kl(x) and Wk,l(x) are the modified

Bessel function and the Whittaker function, respectively (see Section 4 for their
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definitions). Let D∗i be the diffusion process on (0,∞) with generator Li (i =

1, 2, 3). The end point 0 is regular for all D∗i . Therefore the inverse local time τ∗(t)

at the end point 0 with reflecting boundary condition exists. Noting that L1 is a

harmonic transform of a Bessel operator, and L2 and L3 are harmonic transforms

of radial Ornstein–Uhlenbeck operators, by means of Theorem 3.2 below, we find

that the Lévy measure densities n∗i (ξ) of τ∗(t) corresponding to D∗i are

n∗1(ξ) = Cξ−(|ν|+1)e−βξ,(1.6)

n∗2(ξ) = C

(
κ

sinh(κξ)

)|ν|+1

e{κ(ν+1)−β}ξ,(1.7)

n∗3(ξ) =C

(
κ

sinh(κξ)

)|ν|+1

e{−κ(ν+1)−β}ξ,(1.8)

where C = 2−(|ν|+1)Γ(|ν|+1). In Section 2, we show a simple convergence theorem

for a sequence of Lévy measure densities under the assumption that the scale

functions and speed measures are convergent (see Theorem 2.4). Since the scale

functions and speed measures of L2 and L3 converge to the scale function and

speed measure of L1 as κ→ 0, respectively, Theorem 2.4 leads to

n∗1(ξ) = lim
κ→0

n∗2(ξ) = lim
κ→0

n∗3(ξ).

This also directly follows from (1.6)–(1.8).

We next consider the following diffusion operator on (0, a):

(1.9) L4 =
1

2

d2

dx2
−
√

2β
e2
√

2β a + e2
√

2β x

e2
√

2β a − e2
√

2β x

d

dx
,

where a > 0 and β > 0. Let D∗4 be the diffusion process on (0, a) with generator L4.

The end point 0 is regular and the inverse local time τ∗(t) at the end point 0

with reflecting boundary condition exists. Since L4 is a harmonic transform of

Brownian motion on (0, a), by using Theorem 3.2 we find that the Lévy measure

density of τ∗(t) is

(1.10) n∗4(ξ) = a−3e−βξ
∞∑
n=1

(nπ)2e−(n2π2/2a2)ξ.

It is easy to see that L4 converges to L̃4 = 1
2
d2

dx2 −
√

2β d
dx as a → ∞, in the

sense that the scale function and the speed measure of L4 converge to those of L̃4.

Therefore by Theorem 2.4, we find that

lim
a→∞

n∗4(ξ) = ñ∗4(ξ) =
√
π/2 e−βξξ−3/2,(1.11)
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where ñ∗4 is the Lévy measure density of the inverse local time corresponding to L̃4.

(1.11) also follows from (1.10).

In [2] and [3], C. Donati-Martin and M. Yor considered the diffusion pro-

cesses D∗i (i = 1, 2), and showed (1.6), and (1.7) with −1 < ν < 0. Their method

is based on various transforms of Bessel processes. In [12] the second author gave

an analytical proof for the representation (1.7) by using a harmonic transform. In

this paper we generalize the analytical method used in [12] to obtain Theorem 3.2.

In Section 2 we summarize some definitions and facts needed below. Then we

prove a convergence theorem for a sequence of Lévy measure densities. In Section 3

we state our main results and prove them. In Section 4 we present some interesting

diffusion operators including the Li’s given by (1.3)–(1.5) and (1.9).

§2. Preliminaries

Let s, m, and k be the functions given at the beginning of the previous section. We

sometimes use the same symbols s, m and k for the respective induced measures

ds(x), dm(x) and dk(x). For a function u on I, we set u(li) = limx→li, x∈I u(x) if

the limit exists, for i = 1, 2. We denote by Dsu(x) the right derivative with respect

to s(x), that is, Dsu(x) = limε↓0{u(x+ ε)− u(x)}/{s(x+ ε)− s(x)}, provided it

exists. Let us fix a point co ∈ I arbitrarily and set

Jµ,ν(x) =

∫
(co,x]

dµ(y)

∫
(co,y]

dν(z) for x ∈ I,

where µ and ν are Borel measures on I, and the integral
∫

(a,b]
is read as −

∫
(b,a]

if

a > b. Following [4], we call the boundary point li

• (s,m, k)-regular if Js,m+k(li) <∞ and Jm+k,s(li) <∞,
• an (s,m, k)-exit point if Js,m+k(li) <∞ and Jm+k,s(li) =∞,
• an (s,m, k)-entrance point if Js,m+k(li) =∞ and Jm+k,s(li) <∞,
• (s,m, k)-natural if Js,m+k(li) =∞ and Jm+k,s(li) =∞.

§2.1. One-dimensional diffusion process Ds,m,k

Let D(Gs,m,k) be the space of all functions u ∈ L2(I,m) which have a continuous

version u (we use the same symbol) satisfying the following conditions:

(G-i) There exist constants A, B and a function fu ∈ L2(I,m) such that

u(x) = A+Bs(x) +

∫
(co,x]

{s(x)− s(y)}fu(y) dm(y)(2.1)

+

∫
(co,x]

{s(x)− s(y)}u(y) dk(y), x ∈ I.
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(G-ii) If li is (s,m, k)-regular, then u(li) = 0 for each i = 1, 2.

By (2.1), fu is uniquely determined as a function in L2(I,m) if it exists. The

operator Gs,m,k from D(Gs,m,k) into L2(I,m) is defined by Gs,m,ku = fu, and it

is called the one-dimensional generalized diffusion operator with scale function s,

speed measure m, and killing measure k. The condition (G-ii) implies that the

absorbing boundary condition is posed at the regular boundary.

We denote by Ds,m,k = [X(t), Px] the one-dimensional diffusion process on I

whose generator is Gs,m,k with domain D(Gs,m,k), that is, the end point li is

absorbing whenever it is (s,m, k)-regular (i = 1, 2). Further we denote by p(t, x, y)

the transition probability density with respect to dm for Ds,m,k, that is,

Px(X(t) ∈ E) =

∫
E

p(t, x, y) dm(y), t > 0, x ∈ I, E ∈ B(I),

where B(I) stands for the set of all Borel subsets of I. If l1 is (s,m, k)-regular,

p(t, x, y) is represented as

p(t, x, y) =

∫
[0,∞)

e−λtψo(x, λ)ψo(y, λ) dσ(λ), t > 0, x, y ∈ I,(2.2)

where dσ(λ) is a Borel measure on [0,∞) satisfying∫
[0,∞)

e−λt dσ(λ) <∞, t > 0,(2.3)

and ψo(x, λ), x ∈ I, λ ≥ 0, is the solution of the integral equation

(2.4) ψo(x, λ) = s(x)− s(l1) +

∫
(l1,x]

{s(x)− s(y)}ψo(y, λ){−λ dm(y) + dk(y)}.

It is well known that (2.4) has a unique solution. If l1 is not (s,m, k)-regular,

p(t, x, y) is not always representable as in (2.2) with dσ(λ) satisfying (2.3) and

ψo(x, λ) the solution of an integral equation. If l1 is an (s,m, k)-entrance point, we

give a sufficient condition for p(t, x, y) to have a representation (2.2). Let ψ(x, λ),

x ∈ I, λ ≥ 0, be the solution of the integral equation

(2.5) ψ(x, λ) = 1 +

∫
(l1,x]

{s(x)− s(y)}ψ(y, λ){−λ dm(y) + dk(y)}.

Proposition 2.1. Assume that l1 is an (s,m, k)-entrance point and

(2.6)

∫
(l1,co]

{s(co)− s(x)}2 dm(x) <∞.

Then p(t, x, y) can be represented as in (2.2) with dσ(λ) satisfying (2.3) and

ψo(x, λ) replaced by ψ(x, λ) which is the solution of the integral equation (2.5).
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We show Proposition 2.1 in Section 2.4.

We next record some estimates for the solution of (2.4) or (2.5). If l1 is

(s,m, k)-regular or an (s,m, k)-exit point, and ψo(x, λ) is the solution of (2.4),

then

|ψo(x, λ)| ≤ {s(x)− s(l1)} exp

{∫
(l1,x]

ds(y)

∫
(y,x]

(λdm(z) + dk(z))

}
,(2.7)

|Dsψo(x, λ)| ≤ exp

{∫
(l1,x]

ds(y)

∫
(y,x]

(λdm(z) + dk(z))

}
.(2.8)

If l1 is an (s,m, k)-entrance point, and ψ(x, λ) is the solution of (2.5), then

|ψ(x, λ)| ≤ exp

{∫
(l1,x]

(λdm(y) + dk(y))

∫
(y,x]

ds(z)

}
,(2.9)

|Dsψ(x, λ)| ≤
∫

(l1,x]

(λdm(y) + dk(y)) exp

{∫
(l1,x]

(λdm(y) + dk(y))

∫
(y,x]

ds(z)

}
.

(2.10)

It is easy to get (2.7) with (2.10), so we omit the proof.

For α ≥ 0 and i = 1, 2, let gi(·, α) be a function on I with the following

properties:

gi(x, α) is positive and continuous in x,(2.11)

g1(x, α) is nondecreasing in x,(2.12)

g2(x, α) is nonincreasing in x,(2.13)

gi(li, α) = 0 if |s(li)| <∞,(2.14)

gi(x, α) = gi(co, α) +Dsgi(co, α){s(x)− s(co)}(2.15)

+

∫
(co,x]

{s(x)− s(y)}gi(y, α){αdm(y) + dk(y)}, x ∈ I.

Here Dsgi(x, α) = limε↓0{gi(x+ ε, α)− gi(x, α)}/{s(x+ ε)− s(x)}, i = 1, 2. It is

known that there exist functions with the above properties (see [5, Section 4.6]).

Combining some properties of gi(x, α) given in [5, Section 4.6] with Lemma 3.2

of [11], we obtain the following.

Proposition 2.2. Assume that k is not a null measure or α > 0. Then∣∣∣∣∫
(li,co]

gi(x, α)−2 ds(x)

∣∣∣∣ =∞,(2.16) ∣∣∣∣∫
(li,co]

gj(x, α)−2 ds(x)

∣∣∣∣ <∞,(2.17)

where i, j = 1, 2 and i 6= j.
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Now we set W (α) = Dsg1(x, α)g2(x, α)−g1(x, α)Dsg2(x, α). Note that W (α)

is a positive number independent of x ∈ I. We put

G(α, x, y) = G(α, y, x) = W (α)−1g1(x, α)g2(y, α)

for α > 0, x, y ∈ I, x ≤ y. Then G(α, x, y) is the α-Green function corresponding

to Ds,m,k and

G(α, x, y) =

∫ ∞
0

e−αtp(t, x, y) dt, α > 0, x, y ∈ I.

It is easy to see that, if k 6= 0, then G(0, x, y) exists and is given by

G(0, x, y) = G(0, y, x) = W−1g1(x)g2(y), x, y ∈ I, x ≤ y,

where gi(x) = gi(x, 0), i = 1, 2, and W = Dsg1(x)g2(x)− g1(x)Dsg2(x), which is

a positive constant independent of x ∈ I. In the case k = 0, G(0, x, y) ∈ (0,∞)

exists if and only if |s(li)| <∞ for i = 1 or 2.

§2.2. Inverse local time

We next consider the case that the end point li is reflecting whenever it is (s,m, k)-

regular (i = 1, 2). More precisely, let D(G∗s,m,k) be the space of all functions

u ∈ L2(I,m) which have a continuous version u (we use the same symbol) satis-

fying (G-i) and

(G-iii) If li is (s,m, k)-regular, then Dsu(li) = 0 for each i = 1, 2.

(2.1) implies that fu is uniquely determined as a function in L2(I,m) if it exists,

in this case, too. The operator G∗s,m,k from D(G∗s,m,k) into L2(I,m) is defined by

G∗s,m,ku = fu. The condition (G-iii) implies that the reflecting boundary condition

is posed at the regular boundary.

Let D∗s,m,k = [X(t), P ∗x ] be the one-dimensional diffusion process on I whose

generator is G∗s,m,k with domain D(G∗s,m,k), that is, the end point li is reflecting

whenever it is (s,m, k)-regular (i = 1, 2).

Now we assume that the killing measure is null, and l1 is (s,m, 0)-regular. We

consider the local time l(t, ξ), that is,∫ t

0

f(X(u)) du =

∫
I

l(t, ξ) dm(ξ), t > 0,

for bounded continuous functions f on I. Since l(t, ξ) is continuous and non-

decreasing in t P ∗x -a.s., the right continuous inverse function l−1(t, ξ) exists. In

particular, we denote by τ∗(t) the inverse local time l−1(t, l1) at the end point l1.

The following result was obtained by Itô and McKean (see [5, Section 6.2]).
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Proposition 2.3 ([5]). Assume the following conditions hold:

The killing measure is null.(2.18)

l1 is (s,m, 0)-regular and reflecting.(2.19)

s(l2) =∞, or l2 is (s,m, 0)-regular and reflecting.(2.20)

Then [τ∗(t), t ≥ 0] is a Lévy process and there is a Lévy measure density n∗(ξ)

such that

E∗l1 [e−λτ
∗(t)] = exp

{
−t
∫ ∞

0

(1− e−λξ)n∗(ξ) d ξ
}
,(2.21)

n∗(ξ) = lim
x→l1

q∗(ξ, x)/{s(x)− s(l1)},(2.22)

where E∗l1 stands for the expectation with respect to P ∗l1 ,

(2.23)

∫ t

0

q∗(ξ, x) dξ = P ∗x (σl1 < t), x ∈ I, t > 0,

and σl1 is the first hitting time for l1. In particular, if s(l2) =∞, then

(2.24) n∗(ξ) = lim
x,y→l1

Ds(x)Ds(y)p(ξ, x, y) =

∫
[0,∞)

e−λξ dσ(λ),

where p(t, x, y) is the transition probability density with respect to dm for Ds,m,k,

and dσ(λ) is the Borel measure appearing in the representation (2.2) satisfying

(2.3).

Proof. In Section 6.2 of [5], (2.21) with (2.22) is obtained under the assumption

(2.25) P ∗x (σl1 <∞) = 1, x ∈ I.

In view of Problem 4.6.6 of [5], (2.25) holds true if and only if (2.18) and (2.20)

are satisfied. Thus we obtain (2.21) and (2.22).

Assume s(l2) =∞. Then

(2.26) q∗(t, x) = lim
z→l1

p(t, z, x)/{s(z)− s(l1)}, t > 0, x ∈ I.

Since p(t, x, y) has the representation (2.2) and ψo(x, λ) is the solution of (2.4),

we have

lim
x→l1

Dsψo(x, λ) = 1,

|Dsψo(x, λ)| ≤ exp{λ(s(x)− s(l1))(m(x)−m(l1))},
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by means of (2.8). Therefore we obtain (2.24) by virtue of (2.22), (2.26), and the

dominated convergence theorem.

We next give a simple convergence theorem for a sequence of Lévy measure

densities. For j = 0, 1, 2, . . . , let D∗j be the diffusion process on Ij = (lj1, l
j
2) with

scale function sj , speed measure mj and no killing.

Theorem 2.4. Assume the following conditions hold:

lim
j→∞

lji = l0i , i = 1, 2,

lim
j→∞

sj(x) = s0(x), x ∈ I0,

lim
j→∞

mj(x) = m0(x), x ∈ C(m0),

where C(m0) stands for the set of continuity points of m0. Further for j=0, 1, 2, . . . ,

assume that

lj1 is (sj ,mj , 0)-regular and reflecting, sj(lj2) =∞.

Let n∗j be the Lévy measure density corresponding to the inverse local time at lj1
for D∗j. Then

(2.27) lim
j→∞

n∗j(ξ) = n∗0(ξ), ξ > 0.

Proof. For j = 0, 1, 2, . . . , let Dj be the diffusion process on Ij with scale function

sj , speed measure mj and no killing, and with lj1 being absorbing. The transition

probability density pj(t, x, y) with respect to dmj is represented as

pj(t, x, y) =

∫
[0,∞)

e−λtψjo(x, λ)ψjo(y, λ) dσj(λ), t > 0, x, y ∈ Ij ,

where dσj(λ) satisfies (2.3) with σ replaced by σj , and ψjo is the solution of (2.4)

with s = sj , m = mj , and k = 0. By Proposition 2.3, n∗j is represented as (2.24),

that is,

n∗j(ξ) =

∫
[0,∞)

e−λξ dσj(λ).

In the same way as in the proof of Lemma 5.3 of [8], we obtain

lim
j→∞

∫
[0,∞)

e−λξ dσj(λ) =

∫
[0,∞)

e−λξ dσ0(λ),

which implies (2.27).
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§2.3. Harmonic transform of Gs,m,k

For β ≥ 0, let hβ( · ) be a positive continuous function on I satisfying

hβ(x) = hβ(co) +Dshβ(co){s(x)− s(co)}(2.28)

+

∫
(co,x]

{s(x)− s(y)}hβ(y){βdm(y) + dk(y)}, x ∈ I.

Such a function exists. Indeed, it can be represented as a linear combination of

gi( · , β), i = 1, 2.

Let Hs,m,k,β be the set of all positive functions hβ satisfying (2.28). For

h ∈ Hs,m,k,β , we consider sh and mh defined by (1.1) and (1.2), respectively.

Let Gsh,mh,0 be the diffusion operator with scale function sh, speed measure mh,

and null killing measure, which is the harmonic transform of Gs,m,k based on

h ∈ Hs,m,k,β . Let Dsh,mh,0 be the one-dimensional diffusion process on I with gen-

erator Gsh,mh,0 and with the end point li being absorbing whenever it is (sh,mh, 0)-

regular (i = 1, 2). Further we denote by p(h)(t, x, y) the transition probability

density with respect to dmh for Dsh,mh,0. By Proposition 2.2 of [11],

(2.29) p(h)(t, x, y) = e−βtp(t, x, y)/h(x)h(y), t > 0, x, y ∈ I.

If l1 is (sh,mh, 0)-regular, p(h)(t, x, y) is represented as

(2.30) p(h)(t, x, y) =

∫
[0,∞)

e−λtψ(h)
o (x, λ)ψ(h)

o (y, λ) dσ(h)(λ), t > 0, x, y ∈ I,

where dσ(h)(λ) is a Borel measure on [0,∞) satisfying

(2.31)

∫
[0,∞)

e−λt dσ(h)(λ) <∞, t > 0,

and ψ
(h)
o (x, λ), x ∈ I, λ ≥ β, is the solution of the integral equation (2.4) with

s,m, k replaced by sh,mh, 0, respectively.

Remark 2.5. We can show dσ(h)(λ) = 0 on [0, β). The proof is the same as the

proof of Proposition 2.1 below, so we omit it.

§2.4. Proof of Proposition 2.1

First we note the following.

Lemma 2.6. Assume that l1 is an (s,m, k)-entrance point. Then the following

conditions are equivalent:

(i) (2.6) holds true.
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(ii) There exists a β > 0 such that∫
(l1,co]

g2(x, β)2 dm(x) <∞.

(iii) For any β > 0, ∫
(l1,co]

g2(x, β)2 dm(x) <∞.

(iv) There exist β > 0 and h ∈ Hs,m,k,β such that h(l1) =∞ and |mh(l1)| <∞.

(v) |mh(l1)| <∞ for any β > 0 and h ∈ Hs,m,k,β.

Proof. Since l1 is an (s,m, k)-entrance point, |mh(l1)| < ∞ and |Dsg2(l1, β)| ∈
(0,∞) for β > 0 (see [5, Section 4.6]). Therefore (i)⇔(ii)⇔(iii) follows.

Let h ∈ Hs,m,k,β . Since h can be represented as a linear combination of

gi( · , β), i = 1, 2, and g2(l1, β) =∞,

h(l1) =∞ ⇔ h(x) = C1g1(x, β) + C2g2(x, β) with C1 ≥ 0 and C2 > 0.

Therefore (ii)⇔(iv)⇔(v) follows.

Remark 2.7. If k 6= 0 or β > 0, then∫
(l1,co]

g1(x, β)2 dm(x) <∞, g2(l1, β) =∞, |Dsg2(l1, β)| ∈ (0,∞).

If k = 0 and β = 0, then

g1(x, 0) = C1, g2(x, 0) =

{
C2 if s(l2) =∞,
C2{s(l2)− s(x)} if s(l2) <∞,

where C1 and C2 are positive constants (see [5, Section 4.6]; see also [10, Proposi-

tion 2.1]). Therefore the lemma holds true with β ≥ 0 in place of β > 0 in (iii)–(v).

In particular, if k 6= 0 or s(l2) < ∞, the lemma holds true with β ≥ 0 in place of

β > 0 in (ii)–(v).

Proof of Proposition 2.1. Assume that l1 is an (s,m, k)-entrance point, and (2.6)

holds. By Lemma 2.6, there exist β > 0 and h ∈ Hs,m,k,β such that h(l1) = ∞
and |mh(l1)| <∞. Then l1 is (sh,mh, 0)-regular by Theorem 1.1 of [9]. Therefore

p(h)(t, x, y) is represented as (2.30) with dσ(h)(λ) satisfying (2.31) and ψ
(h)
o (x, λ),

x ∈ I, λ ≥ 0, the solution of the integral equation (2.4) with s,m, k replaced by

sh,mh, 0, respectively. First we note that

(2.32)

∫
[0,β)

dσ(h)(λ) = 0.
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Indeed, if
∫

[0,β)
dσ(h)(λ) > 0, then by (2.29),

p(t, x, x) = eβth(x)2p(h)(t, x, x)

≥ h(x)2

∫
[0,β)

e(β−λ)tψ(h)
o (x, λ)2 dσ(h)(λ)→∞ as t→∞.

This contradicts the existence of limt→∞ p(t, x, x) ∈ [0,∞).

By (2.30) and (2.32), we have

(2.33) p(t, x, y) =

∫
[0,∞)

e−λtψ̃(x, λ)ψ̃(y, λ) dσ̃(λ),

where ψ̃(x, λ) = h(x)ψ
(h)
o (x, λ + β) and dσ̃(λ) = dλσ

(h)(λ + β). By (2.4) and

Lemma 5.1 of [10],

ψ̃(l1, λ) = − 1/Dsh(l1) ∈ (0,∞),(2.34)

Dsψ̃(l1, λ) = 0.(2.35)

Since h(x) satisfies (2.28) and ψ
(h)
o (ξ, λ+ β) satisfies (2.4) with s,m, k, λ replaced

by sh,mh, 0, λ+ β, respectively, we have

(2.36) Dsψ̃(y, λ)−Dsψ̃(x, λ) =

∫
(x,y]

ψ̃(ξ, λ) {−λdm(ξ) + dk(ξ)}

for l1 < x ≤ y < l2. Noting
∫

[0,∞)
e−λt dσ̃(λ) < ∞ and putting ψ(x, λ) =

−Dsh(l1)ψ̃(x, λ) and dσ(λ) = {Dsh(l1)}−2 dσ̃(λ), we obtain the conclusion from

(2.33)–(2.36).

§3. Inverse local time for D∗sh,mh,0

Let Ds,m,k be the diffusion process on I with generator Gs,m,k and with the end

point li being absorbing whenever it is (s,m, k)-regular (i = 1, 2). We denote by

p(t, x, y) the transition probability density with respect to dm.

Let h ∈ Hs,m,k,β and let Gsh,mh,0 be the harmonic transform of Gs,m,k based

on h. Let Dsh,mh,0 be the diffusion process on I with generator Gsh,mh,0 and with

the end point li being absorbing whenever it is (sh,mh, 0)-regular (i = 1, 2). We

denote by p(h)(t, x, y) the transition probability density with respect to dmh.

When li is (sh,mh, 0)-regular, it is possible to pose the reflecting boundary

condition at li (i = 1, 2). Let D∗sh,mh,0 = [X(t), P
(h∗)
x ] be the diffusion process on I

whose generator is G∗sh,mh,0 with domain D(G∗sh,mh,0), that is, the end point li is

reflecting whenever it is (sh,mh, 0)-regular (i = 1, 2).
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Now we assume that l1 is (sh,mh, 0)-regular. We consider the local time

l(h)(t, ξ), that is, ∫ t

0

f(X(u)) du =

∫
I

l(h)(t, ξ) dmh(ξ), t > 0,

for bounded continuous functions f on I. We denote by τ (h∗)(t) the inverse local

time (l(h))−1(t, l1) at the end point l1.

The following result is an immediate consequence of Proposition 2.3.

Proposition 3.1. Assume the following conditions hold:

l1 is (sh,mh, 0)-regular and reflecting.(3.1)

sh(l2) =∞, or l2 is (sh,mh, 0)-regular and reflecting.(3.2)

Then [τ (h∗)(t), t ≥ 0] is a Lévy process and there is a Lévy measure density n(h∗)(ξ)

such that

E
(h∗)
l1

[e−λτ
(h∗)(t)] = exp

{
−t
∫ ∞

0

(1− e−λξ)n(h∗)(ξ) dξ

}
,(3.3)

n(h∗)(ξ) = lim
x→l1

q(h∗)(ξ, x)/{sh(x)− sh(l1)},

where E
(h∗)
l1

stands for the expectation with respect to P
(h∗)
l1

, and∫ t

0

q(h∗)(ξ, x) dξ = P (h∗)
x (σl1 < t), t > 0, x ∈ I.

In particular, if sh(l2) =∞, then

n(h∗)(ξ) =

∫
[0,∞)

e−ξλ dσ(h)(λ)(3.4)

= lim
x,y→l1

Dsh(x)Dsh(y)p
(h)(ξ, x, y), ξ > 0.(3.5)

Note that p(h)(t, x, y) has the representation (2.30) and dσ(h)(λ) satisfies

(2.31).

Now we give a representation of n(h∗)(ξ) in terms of data corresponding to

the diffusion process Ds,m,k. By Theorem 1.1 of [9], l1 is (sh,mh, 0)-regular if and

only if one of the following conditions is satisfied:

l1 is (s,m, k)-regular and h(l1) ∈ (0,∞).(3.6)

l1 is an (s,m, k)-entrance point, h(l1) =∞, and |mh(l1)| <∞.(3.7)

l1 is (s,m, k)-natural, h(l1) =∞, and |mh(l1)| <∞.(3.8)
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In the case (3.6), we have the representation (2.2) with dσ(λ) satisfying (2.3). In

the case (3.7), we also have the representation (2.2) with dσ(λ) satisfying (2.3) and

ψo(x, λ) replaced by ψ(x, λ), which is the solution of the integral equation (2.5),

by Proposition 2.1, Lemma 2.6, and Remark 2.7.

Theorem 3.2. Let h ∈ Hs,m,k,β. Assume one of (3.6)–(3.8) holds. Further as-

sume that l1 is reflecting and sh(l2) = ∞. Then (3.3) holds true, and n(h∗)(ξ) is

given by (3.4) and (3.5). In particular, if (3.6) is satisfied, then

n(h∗)(ξ) = h(l1)2e−βξ
∫

[0,∞)

e−ξλ dσ(λ)(3.9)

= h(l1)2e−βξ lim
x,y→l1

Ds(x)Ds(y)p(ξ, x, y).(3.10)

If (3.7) is satisfied, then

n(h∗)(ξ) =Dsh(l1)2e−βξ
∫

[0,∞)

e−ξλ dσ(λ)(3.11)

= Dsh(l1)2e−βξ lim
x,y→l1

p(ξ, x, y).(3.12)

Proof. Since one of (3.6)–(3.8) holds, (3.1) is satisfied. Therefore by Proposition

3.1, (3.3) holds true, and n(h∗)(ξ) is given by (3.4) and (3.5).

Assume (3.6) holds. Then we have (2.29), and by (5.14) of [10], dσ(h)(λ) is a

Borel measure on [β,∞) and dσ(h)(λ) = h(l1)2dλσ(λ− β). Therefore (3.9) follows

from (3.4). (3.10) follows from (2.2), (2.4), (2.8), and the dominated convergence

theorem.

Assume (3.7) holds. Then we have (2.29), and by (5.18) of [10], dσ(h)(λ)

is a Borel measure on [β,∞) and dσ(h)(λ) = {Dsh(l1)}2dλσ(λ − β). Therefore

(3.11) follows from (3.4). (3.12) follows from (2.2), (2.5), (2.9), and the dominated

convergence theorem.

Thus the proof is complete.

Finally we consider the conditions of Theorem 3.2. The following result shows

that h ∈ Hs,m,k,β satisfying the conditions of Theorem 3.2 must be g2(x, β) when-

ever l1 is (s,m, k)-regular or an (s,m, k)-entrance point.

Proposition 3.3. Suppose that l1 is (s,m, k)-regular or an (s,m, k)-entrance

point, and k 6= 0 or β > 0. Let h ∈ Hs,m,k,β. Then the following conditions

are equivalent:

(i) (2.6) is satisfied and h(x) = Cg2(x, β) for some positive constant C.

(ii) (3.6) or (3.7) is satisfied, and sh(l2) =∞.
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Proof. Since the statement is obvious when l1 is regular, we only prove it when l1
is an entrance point.

(i)⇒(ii). By Proposition 2.2, we get sh(l2) = ∞. By Lemma 2.6 and Re-

mark 2.7, (2.6) is equivalent to
∫

(l1,co]
g2(x, β)2 dm(x) <∞. Thus we obtain (3.7).

(ii)⇒(i). By Lemma 2.6 and Remark 2.7, (3.7) implies (2.6).

We note that h(x) = C1g1(x, β) +C2g2(x, β). If C1 > 0, by using Lemma 2.2

we have ∫
(co,l2)

h(x)−2 ds(x) ≤ C−2
1

∫
(co,l2)

g1(x, β)−2 ds(x) <∞.

This contradicts sh(l2) =∞. Therefore C1 = 0 and C2 > 0.

Noting Remark 2.7, we easily obtain the following result, so we omit the proof.

Proposition 3.4. Assume that the killing measure is null, l1 is (s,m, 0)-regular

or an (s,m, 0)-entrance point, (2.6) is satisfied, and s(l2) < ∞. Take h(x) =

C{s(l2) − s(x)} (∈ Hs,m,0,0), where C is a positive constant. Then (3.6) or (3.7)

is satisfied, and sh(l2) =∞.

§4. Examples

In this section, we present some interesting diffusion operators including the Li’s
given by (1.3)–(1.5) and (1.9). Then, using Proposition 2.3 and Theorem 3.2,

we deduce the corresponding Lévy measure densities. Here we use the following

functions.

The Bessel function Jν(x):

(4.1) Jν(x) =

(
x

2

)ν ∞∑
n=0

(−1)n(x/2)2n

n! Γ(ν + n+ 1)
.

The modified Bessel functions Iν(x) and Kν(x):

(4.2) Iν(x) =

(
x

2

)ν ∞∑
n=0

(x/2)2n

n! Γ(ν + n+ 1)
, ν > −1;

for n an integer,

Kn(x) = K−n(x) = (−1)n+1In(x){γ + log(x/2)}

+
(−1)n

2

∞∑
k=0

(x/2)n+2k

k!(n+ k)!

[ k∑
m=1

1

m
+

k+n∑
m=1

1

m

]

+
1

2

n−1∑
r=0

(−1)r
(n− r − 1)!

r!

(
x

2

)2r−n

,
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where γ is Euler’s constant, i.e. γ = 0.57721 . . . ; in case ν is not an integer,

Kν(x) =
π

2

I−ν(x)− Iν(x)

sin νπ
.

The Whittaker functions Mk,l(x) and Wk,l(x):

Mk,l(x) = xl+1/2e−x/2M(l − k + 1/2, 2l + 1, x)

= xl+1/2e−x/2
∞∑
n=0

Γ(2l + 1)Γ(l − k + n+ 1/2)

Γ(2l + n+ 1)Γ(l − k + 1/2)

xn

n!
,

Wk,l(x) = xl+1/2e−x/2U(l − k + 1/2, 2l + 1, x)

=
Γ(−2l)

Γ(1/2− l − k)
Mk,l(x) +

Γ(2l)

Γ(1/2 + l − k)
Mk,−l(x),

where

M(a, b, x) = 1 +

∞∑
k=1

a(a+ 1) · · · (a+ k − 1)xk

b(b+ 1) · · · (b+ k − 1)k!
,

U(a, b, x) =
π

sin(πb)

[
M(a, b, x)

Γ(1 + a− b)Γ(b)
− x1−bM(1 + a− b, 2− b, x)

Γ(a)Γ(2− b)

]
.

Example 4.1 (Bessel process). Let us consider the following diffusion operator

on I = (0,∞):

G(ν)
1 =

1

2

d2

dx2
+

2ν + 1

2x

d

dx
,

where −∞ < ν <∞. This is the Bessel operator, and the scale function s
(ν)
1 and

the speed measure m
(ν)
1 are given by

ds
(ν)
1 (x) = x−2ν−1 dx, dm

(ν)
1 (x) = 2x2ν+1 dx.

The killing measure is null. The end point 0 is:

• an (s
(ν)
1 ,m

(ν)
1 , 0)-entrance point if ν ≥ 0,

• (s
(ν)
1 ,m

(ν)
1 , 0)-regular if −1 < ν < 0,

• an (s
(ν)
1 ,m

(ν)
1 , 0)-exit point if ν ≤ −1.

Further

(4.3)

∫ 1

0

{s(ν)
1 (1)− s(ν)

1 (x)}2 dm(ν)
1 (x) <∞ ⇔ |ν| < 1.

The end point ∞ is (s
(ν)
1 ,m

(ν)
1 , 0)-natural for all ν, and in particular,

(4.4) s
(ν)
1 (∞) =∞ ⇔ ν ≤ 0.
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Let D(ν)
1 be the diffusion process on I with generator G(ν)

1 , and with the end

point 0 being absorbing if −1 < ν < 0. We denote by p
(ν)
1 (t, x, y) the transition

probability density with respect to dm
(ν)
1 . It is known (see [1, p. 134]) that

p
(ν)
1 (t, x, y) =

1

2t
exp

{
−x

2 + y2

2t

}
(xy)−νI|ν|

(
xy

t

)
,

which is represented as the Laplace transform of Bessel functions,

p
(ν)
1 (t, x, y) =

∫ ∞
0

e−λtψ
(ν)
1 (x, λ)ψ

(ν)
1 (y, λ)σ

(ν)
1 (λ) dλ,

where

ψ
(ν)
1 (x, λ) =

{
Γ(ν + 1)(2/λ)ν/2x−νJν(

√
2λx), ν ≥ 0,

Γ(|ν|)2−1(2/λ)|ν|/2x|ν|J|ν|(
√

2λx), ν < 0,

σ
(ν)
1 (λ) =

{
2−ν−1Γ(ν + 1)−2λν , ν ≥ 0,

21−|ν|Γ(|ν|)−2λ|ν|, ν < 0,

(see [6, p. 200]). For α > 0 we denote by g
(ν)
1,i (x, α), i = 1, 2, the functions satisfying

(2.11)–(2.15) with s = s
(ν)
1 , m = m

(ν)
1 and k = 0. It is known (see [1, p. 133]) that

g
(ν)
1,1 (x, α) = x−νI|ν|(

√
2αx), g

(ν)
1,2 (x, α) = x−νK|ν|(

√
2αx).

Now we consider the Lévy measure densities corresponding to the inverse local

time at the end point 0.

(1) Let −1 < ν < 0. Then the end point 0 is (s
(ν)
1 ,m

(ν)
1 , 0)-regular. We pose the

reflecting boundary condition at 0. We denote by D(ν,∗)
1 the diffusion process with

generator G(ν)
1 and with the end point 0 being reflecting. We denote by n

(ν,∗)
1 the

corresponding Lévy measure density. Since s
(ν)
1 (∞) =∞ by (4.4), from (2.24) we

deduce

n
(ν,∗)
1 (ξ) = lim

x,y→0
D
s
(ν)
1 (x)

D
s
(ν)
1 (y)

p
(ν)
1 (ξ, x, y)(4.5)

=

∫ ∞
0

e−ξλσ
(ν)
1 (λ) dλ = 2−|ν|+1 |ν|

Γ(|ν|)
ξ−(|ν|+1).

(2) Let −1 < ν < 1. Then the end point 0 is (s
(ν)
1 ,m

(ν)
1 , 0)-regular or an

(s
(ν)
1 ,m

(ν)
1 , 0)-entrance point, and (2.6) is satisfied in view of (4.3). For β > 0 we

put h
(ν,β)
1 (x) = (β/2)|ν|/2g

(ν)
1,2 (x, β) and denote by G(ν,β)

1 the harmonic transform

of G(ν)
1 based on h

(ν,β)
1 ∈ H

s
(ν)
1 ,m

(ν)
1 ,0,β

, that is,

G(ν,β)
1 =

1

2

d2

dx2
+

{
1

2x
+
√

2β
K ′ν(
√

2β x)

Kν(
√

2β x)

}
d

dx
,
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which is (1.3). Note that G(ν,β)
1 = G(−ν,β)

1 . The scale function s
(ν,β)
1 and the speed

measure m
(ν,β)
1 are given by

ds
(ν,β)
1 (x) = h

(ν,β)
1 (x)−2 ds

(ν)
1 (x), dm

(ν,β)
1 (x) = h

(ν,β)
1 (x)2 dm

(ν)
2 (x).

By Proposition 3.3, (3.6) or (3.7) is satisfied, and s
(ν,β)
1 (∞) =∞. The end point 0 is

(s
(ν,β)
1 ,m

(ν,β)
1 , 0)-regular. We consider the diffusion process D(ν,β,∗)

1 with generator

G(ν,β)
1 and with the end point 0 being reflecting. Let n

(ν,β,∗)
1 be the corresponding

Lévy measure density.

(2-i) Assume ν = 0. Since D
s
(0)
1
h

(0,β)
1 (0) = −1, (3.11) implies

(4.6) n
(0,β,∗)
1 (ξ) = e−βξ

∫ ∞
0

e−ξλσ
(0)
1 (λ) dλ =

1

2ξ
e−βξ.

(2-ii) Assume −1 < ν < 0. Since h
(ν,β)
1 (0) = Γ(|ν|)/2 ∈ (0,∞), (3.9) leads to

n
(ν,β,∗)
1 (ξ) = h

(ν,β)
1 (0)2e−βξ

∫ ∞
0

e−ξλσ
(ν)
1 (λ) dλ(4.7)

= 2−|ν|−1Γ(|ν|+ 1)ξ−(|ν|+1)e−βξ.

(2-iii) Assume 0 < ν < 1. Since G(ν,β)
1 = G(−ν,β)

1 , by using (4.7) we get

(4.8) n
(ν,β,∗)
1 (ξ) = n

(−ν,β,∗)
1 (ξ) = 2−ν−1Γ(ν + 1)ξ−(ν+1)e−βξ.

(4.6)–(4.8) show (1.6). As mentioned in Section 1, (1.6) was obtained by C. Donati-

Martin and M. Yor [2] (see also [11]).

(3) Let 0 < ν < 1. Then s
(ν)
1 (∞) <∞ by (4.4). Therefore Proposition 3.4 leads to

a special case corresponding to β = 0.

We put h
(ν,0)
1 (x) = {s(ν)

1 (∞) − s(ν)
1 (x)}/{s(ν)

1 (∞) − s(ν)
1 (1)} = x−2ν . Denote

by G(ν,0)
1 the harmonic transform of G(ν)

1 based on h
(ν,0)
1 ∈ H

s
(ν)
1 ,m

(ν)
1 ,0,0

, that is,

G(ν,0)
1 =

1

2

d2

dx2
+
−2ν + 1

2x

d

dx
.

We note that this coincides with G(−ν)
1 . The scale function s

(ν,0)
1 and the speed

measure m
(ν,0)
1 are given by

ds
(ν,0)
1 (x) = h

(ν,0)
1 (x)−2 ds

(ν)
1 (x) = x2ν−1 dx,

dm
(ν,0)
1 (x) = h

(ν,0)
1 (x)2 dm

(ν)
1 (x) = 2x−2ν+1 dx.

By Proposition 3.4, (3.7) is satisfied, and s
(ν,0)
1 (∞) = ∞. The end point 0 is

(s
(ν,0)
1 ,m

(ν,0)
1 , 0)-regular. We consider the diffusion process D(ν,0,∗)

1 with generator
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G(ν,0)
1 and with the end point 0 being reflecting. Let n

(ν,0,∗)
1 be the corresponding

Lévy measure density. Since G(ν,0)
1 = G(−ν)

1 , (4.5) yields

n
(ν,0,∗)
1 (ξ) = 2−|−ν|+1|−ν|Γ(|−ν|)−1ξ−(|−ν|+1) = 2−ν+1 ν

Γ(ν)
ξ−ν−1,

which coincides with n
(−ν,∗)
1 .

Example 4.2 (Radial Ornstein–Uhlenbeck process). Let us consider the follow-

ing diffusion operator on I = (0,∞):

G(ν,κ)
2 =

1

2

d2

dx2
+

(
2ν + 1

2x
− κx

)
d

dx
,

where −∞ < ν < ∞ and κ > 0. This is a radial Ornstein–Uhlenbeck operator,

and the scale function s
(ν,κ)
2 and the speed measure m

(ν,κ)
2 are given by

ds
(ν,κ)
2 (x) = x−2ν−1eκx

2

dx, dm
(ν,κ)
2 (x) = 2x2ν+1e−κx

2

dx.

The killing measure is null. The end point 0 is:

• an (s
(ν,κ)
2 ,m

(ν,κ)
2 , 0)-entrance point if ν ≥ 0,

• (s
(ν,κ)
2 ,m

(ν,κ)
2 , 0)-regular if −1 < ν < 0,

• an (s
(ν,κ)
2 ,m

(ν,κ)
2 , 0)-exit point if ν ≤ −1.

Further

(4.9)

∫ 1

0

{s(ν,κ)
2 (1)− s(ν,κ)

2 (x)}2 dm(ν,κ)
2 (x) <∞ ⇔ |ν| < 1.

The end point ∞ is always (s
(ν,κ)
2 ,m

(ν,κ)
2 , 0)-natural for all ν, and

(4.10) s
(ν,κ)
2 (∞) =∞.

Let D(ν,κ)
2 be the diffusion process on I with generator G(ν,κ)

2 , and with the end

point 0 being absorbing if −1 < ν < 0. We denote by p
(ν,κ)
2 (t, x, y) the transition

probability density with respect to dm
(ν,κ)
2 . It is known (see [1, pp. 139–140]) that

(4.11) p
(ν,κ)
2 (t, x, y)

=
κ

2xνyν sinh(κt)
exp

{
κ(ν + 1)t− κe−κt(x2 + y2)

2 sinh(κt)

}
I|ν|

(
κxy

sinh(κt)

)
.

By (4.11), we see that

(4.12) lim
κ→0

p
(ν,κ)
2 (t, x, y) = p

(ν)
1 (t, x, y).
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Since limκ→0 s
(ν,κ)
2 (x) = s

(ν)
1 (x) and limκ→0m

(ν,κ)
2 (x) = m

(ν)
1 (x) for x ∈ I, (4.12)

also follows from Lemma 5.2 of [8]. Further we note the following: if −1 < ν < 0,

(4.13) lim
x,y→0

D
s
(ν,κ)
2 (x)

D
s
(ν,κ)
2 (y)

p
(ν,κ)
2 (ξ, x, y)

= 2−|ν|+1 |ν|
Γ(|ν|)

(
κ

sinh(κξ)

)|ν|+1

eκ(ν+1)ξ,

while if ν ≥ 0,

(4.14) lim
x,y→0

p
(ν,κ)
2 (ξ, x, y) = 2−ν−1 1

Γ(ν + 1)

(
κ

sinh(κξ)

)ν+1

eκ(ν+1)ξ.

For α > 0, we denote by g
(ν,κ)
2,i (x, α), i = 1, 2, the functions satisfying (2.11)–(2.15)

with s = s
(ν,κ)
2 , m = m

(ν,κ)
2 and k = 0. It is known (see [1, p. 139]) that

g
(ν,κ)
2,1 (x, α) =

α|ν|/2

2|ν|/2κ(|ν|+1)/2Γ(|ν|+ 1)
x−ν−1eκx

2/2M− α
2κ+ ν+1

2 ,
|ν|
2

(κx2),

g
(ν,κ)
2,2 (x, α) =

κ|ν|/2−1/2

21−|ν|/2α|ν|/2
Γ

(
|ν|
2
− ν

2
+

α

2κ

)
x−ν−1eκx

2/2W− α
2κ+ ν+1

2 ,
|ν|
2

(κx2).

Now we consider the Lévy measure densities corresponding to the inverse local

time at the end point 0.

(1) Let −1 < ν < 0. Then the end point 0 is (s
(ν,κ)
2 ,m

(ν,κ)
2 , 0)-regular. We pose

the reflecting boundary condition at 0. We denote by D(ν,κ,∗)
2 the diffusion process

with generator G(ν,κ)
2 and with the end point 0 being reflecting. We denote by

n
(ν,κ,∗)
2 the corresponding Lévy measure density. Since s

(ν,κ)
2 (∞) = ∞ by (4.10),

from (2.24) and (4.13) we derive

n
(ν,κ,∗)
2 (ξ) = lim

x,y→0
D
s
(ν,κ)
2 (x)

D
s
(ν,κ)
2 (y)

p
(ν,κ)
2 (ξ, x, y)(4.15)

= 2−|ν|+1 |ν|
Γ(|ν|)

(
κ

sinh(κξ)

)|ν|+1

eκ(ν+1)ξ.

In view of Theorem 2.4 we get

lim
κ→0

n
(ν,κ,∗)
2 (ξ) = n

(ν,∗)
1 (ξ).

We also note that this can be directly obtained from (4.5) and (4.15).

(2) Let −1 < ν < 1. Then 0 is (s
(ν,κ)
2 ,m

(ν,κ)
2 , 0)-regular or an (s

(ν,κ)
2 ,m

(ν,κ)
2 , 0)-

entrance point, and (2.6) is satisfied in view of (4.9). For β > 0 we put h
(ν,κ,β)
2 (x) =
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(β/2)|ν|/2g
(ν,κ)
2,2 (x, β) and denote by G(ν,κ,β)

2 the harmonic transform of G(ν,κ)
2 based

on h
(ν,κ,β)
2 ∈ H

s
(ν,κ)
2 ,m

(ν,κ)
2 ,0,β

, that is,

G(ν,κ,β)
2 =

1

2

d2

dx2
+

{
− 1

2x
+ 2κx

W ′
− β

2κ+ ν+1
2 ,
|ν|
2

(κx2)

W− β
2κ+ ν+1

2 ,
|ν|
2

(κx2)

}
d

dx
,

which is (1.4). The scale function s
(ν,κ,β)
2 and the speed measure m

(ν,κ,β)
2 are given

by

ds
(ν,κ,β)
2 (x) = h

(ν,κ,β)
2 (x)−2 ds

(ν,κ)
2 (x), dm

(ν,κ,β)
2 (x) = h

(ν,κ,β)
2 (x)2 dm

(ν,κ)
2 (x).

By Proposition 3.3, (3.6) or (3.7) is satisfied, and s
(ν,κ,β)
2 (∞) = ∞. The end

point 0 is (s
(ν,κ,β)
2 ,m

(ν,κ,β)
2 , 0)-regular. We consider the diffusion process D(ν,κ,β,∗)

2

with generator G(ν,κ,β)
2 and with the end point 0 being reflecting. Let n

(ν,κ,β,∗)
2 be

the corresponding Lévy measure density.

(2-i) Assume ν = 0. Since D
s
(0,κ)
2

h
(0,κ,β)
2 (0) = −1 by [7, Problem 17, p. 279] and

recursion (see [6, p. 73]), (3.12) and (4.14) imply

n
(0,κ,β,∗)
2 (ξ) = D

s
(0,κ)
2

h
(0,κ,β)
2 (0)2e−βξ lim

x,y→0
p

(ν,κ)
2 (ξ, x, y)(4.16)

=
κ

2 sinh(κξ)
e(κ−β)ξ.

(2-ii) Assume −1 < ν < 0. Since h
(ν,κ,β)
2 (0) = Γ(|ν|)/2, (3.10) and (4.13) imply

(4.17) n
(ν,κ,β,∗)
2 (ξ) = 2−|ν|−1Γ(|ν|+ 1)

(
κ

sinh(κξ)

)|ν|+1

e{κ(ν+1)−β}ξ.

(2-iii) Assume 0 < ν < 1. Since D
s
(ν,κ)
2

h
(ν,κ,β)
2 (0) = −Γ(ν + 1) by recursion (see

[6, p. 73]), (3.12) and (4.14) imply

n
(ν,κ,β,∗)
2 (ξ) = D

s
(0,κ)
2

h
(0,κ,β)
2 (0)2e−βξ lim

x,y→0
p

(ν,κ)
2 (ξ, x, y)(4.18)

= 2−ν−1Γ(ν + 1)

(
κ

sinh(κξ)

)ν+1

e{κ(ν+1)−β}ξ.

(4.16)–(4.18) show (1.7). As mentioned in Section 1, (1.7) was obtained by

C. Donati-Martin and M. Yor [3] in the case −1 < ν < 0.

By using one of the limit theorems of [1, p. 640], we see that limκ→0 g
(ν,κ)
2,2 (x, β)

=g
(ν)
1,2 (x, β), and hence limκ→0 h

(ν,κ,β)
2 (x)=h

(ν,β)
1 (x), limκ→0 s

(ν,κ,β)
2 (x)=s

(ν,β)
1 (x)

and limκ→0m
(ν,κ,β)
2 (x) = m

(ν,β)
1 (x). Theorem 2.4 yields

(4.19) lim
κ→0

n
(ν,κ,β,∗)
2 (ξ) = n

(ν,β,∗)
1 (ξ).

(4.19) also follows from (4.6)–(4.8) and (4.16)–(4.18).
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We finally consider the special case β = κ(ν + 1) > 0. Then G(ν,κ,β)
2 reduces

to

G(ν,κ,κ(ν+1))
2 =

1

2

d2

dx2
+

{
− 1

2x
+ 2κx

W ′0,|ν|/2(κx2)

W0,|ν|/2(κx2)

}
d

dx

=
1

2

d2

dx2
+

{
1

2x
+ κx

K ′|ν|/2(κx2/2)

K|ν|/2(κx2/2)

}
d

dx
,

where we used [7, Problem 19 in p. 279]. By (4.16)–(4.18), the Lévy measure

density corresponding to the inverse local time at 0 for D(ν,κ,κ(ν+1),∗)
2 is

n
(ν,κ,κ(ν+1),∗)
2 (ξ) = 2−|ν|−1Γ(|ν|+ 1)

(
κ

sinh(κξ)

)|ν|+1

.

Example 4.3 (Radial Ornstein–Uhlenbeck process). Let us consider the follow-

ing diffusion operator on I = (0,∞):

G(ν,κ)
3 =

1

2

d2

dx2
+

(
2ν + 1

2x
+ κx

)
d

dx
,

where −∞ < ν <∞ and κ > 0. This is also a radial Ornstein–Uhlenbeck operator,

and the scale function s
(ν,κ)
3 and the speed measure m

(ν,κ)
3 are given by

ds
(ν,κ)
3 (x) = x−2ν−1e−κx

2

dx, dm
(ν,κ)
3 (x) = 2x2ν+1eκx

2

dx.

The killing measure is null. The end point 0 is:

• an (s
(ν,κ)
3 ,m

(ν,κ)
3 , 0)-entrance point if ν ≥ 0,

• (s
(ν,κ)
3 ,m

(ν,κ)
3 , 0)-regular if −1 < ν < 0,

• an (s
(ν,κ)
3 ,m

(ν,κ)
3 , 0)-exit point if ν ≤ −1.

Further

(4.20)

∫ 1

0

{s(ν,κ)
3 (1)− s(ν,κ)

3 (x)}2 dm(ν,κ)
3 (x) <∞ ⇔ |ν| < 1.

The end point ∞ is always (s
(ν,κ)
3 ,m

(ν,κ)
3 , 0)-natural for all ν, and

(4.21) s
(ν,κ)
3 (∞) <∞.

Let D(ν,κ)
3 be the diffusion process on I with generator G(ν,κ)

3 , and with the end

point 0 being absorbing if −1 < ν < 0. We denote by p
(ν,κ)
3 (t, x, y) the transition

probability density with respect to dm
(ν,κ)
3 . It is known (see [1, pp. 139–140]) that

p
(ν,κ)
3 (t, x, y)(4.22)

=
κ

2xνyν sinh(κt)
exp

{
−κ(ν + 1)t− κeκt(x2 + y2)

2 sinh(κt)

}
I|ν|

(
κxy

sinh(κt)

)
.
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By (4.22),

(4.23) lim
κ→0

p
(ν,κ)
3 (t, x, y) = p

(ν)
1 (t, x, y).

Since limκ→0 s
(ν,κ)
3 (x) = s

(ν)
1 (x) and limκ→0m

(ν,κ)
3 (x) = m

(ν)
1 (x) for x ∈ I, (4.23)

also follows from Lemma 5.2 of [8]. In the same way as for (4.13) and (4.14), we

find that if −1 < ν < 0,

(4.24) lim
x,y→0

D
s
(ν,κ)
3 (x)

D
s
(ν,κ)
3 (y)

p
(ν,κ)
3 (ξ, x, y)

= 2−|ν|+1 |ν|
Γ(|ν|)

(
κ

sinh(κξ)

)|ν|+1

e−κ(ν+1)ξ,

while if ν ≥ 0,

(4.25) lim
x,y→0

p
(ν,κ)
3 (ξ, x, y) = 2−ν−1 1

Γ(ν + 1)

(
κ

sinh(κξ)

)ν+1

e−κ(ν+1)ξ.

For α > 0 we denote by g
(ν,κ)
3,i (x, α), i = 1, 2, the functions satisfying (2.11)–(2.15)

with s = s
(ν,κ)
3 , m = m

(ν,κ)
3 and k = 0. It is known (see [1, p. 140]1) that

g
(ν,κ)
3,1 (x, α) =

α|ν|/2

2|ν|/2κ(|ν|+1)/2Γ(|ν|+ 1)
x−ν−1e−κx

2/2M− α
2κ−

ν+1
2 ,
|ν|
2

(κx2),

g
(ν,κ)
3,2 (x, α)

=
κ|ν|/2−1/2

21−|ν|/2α|ν|/2
Γ

(
|ν|
2

+
ν

2
+

α

2κ
+ 1

)
x−ν−1e−κx

2/2W− α
2κ−

ν+1
2 ,
|ν|
2

(κx2).

Now we consider the Lévy measure densities corresponding to the inverse lo-

cal time at the end point 0. We assume −1 < ν < 1. Then the end point 0 is

(s
(ν,κ)
3 ,m

(ν,κ)
3 , 0)-regular or an (s

(ν,κ)
3 ,m

(ν,κ)
3 , 0)–entrance point, and (2.6) is satis-

fied by (4.20).

(1) For β > 0 we put h
(ν,κ,β)
3 (x) = (β/2)|ν|/2g

(ν,κ)
3,2 (x, β) and denote by G(ν,κ,β)

3 the

harmonic transform of G(ν,κ)
3 based on h

(ν,κ,β)
3 ∈ H

s
(ν,κ)
3 ,m

(ν,κ)
3 ,0,β

, that is,

G(ν,κ,β)
3 =

1

2

d2

dx2
+

{
− 1

2x
+ 2κx

W ′
− β

2κ−
ν+1
2 ,
|ν|
2

(κx2)

W− β
2κ−

ν+1
2 ,
|ν|
2

(κx2)

}
d

dx
,

which is (1.5). The scale function s
(ν,κ,β)
3 and the speed measure m

(ν,κ,β)
3 are given

by

ds
(ν,κ,β)
3 (x) = h

(ν,κ,β)
3 (x)−2 ds

(ν,κ)
3 (x), dm

(ν,κ,β)
3 (x) = h

(ν,κ,β)
3 (x)2 dm

(ν,κ)
3 (x).

1Misprints in [1, p. 140]: minus signs are missing from exponents of Green functions in the
case γ < 0.
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By Proposition 3.3, (3.6) or (3.7) is satisfied, and s
(ν,κ,β)
3 (∞) = ∞. The end

point 0 is (s
(ν,κ,β)
3 ,m

(ν,κ,β)
3 , 0)-regular. We consider the diffusion process D(ν,κ,β,∗)

3

with generator G(ν,κ,β)
3 and with the end point 0 being reflecting. Let n

(ν,κ,β,∗)
3 be

the corresponding Lévy measure density.

(1-i) Assume ν = 0. Since D
s
(0,κ)
3

h
(0,κ,β)
3 (0) = −1 by [7, Problem 17, p. 279] and

recursion (see [6, p. 73]), (3.12) and (4.25) imply

n
(0,κ,β,∗)
3 (ξ) = D

s
(0,κ)
3

h
(0,κ,β)
3 (0)2e−βξ lim

x,y→0
p

(ν,κ)
3 (ξ, x, y)(4.26)

=
κ

2 sinh(κξ)
e(−κ−β)ξ.

(1-ii) Assume −1 < ν < 0. Since h
(ν,κ,β)
3 (0) = Γ(|ν|)/2, (3.10) and (4.24) imply

(4.27) n
(ν,κ,β,∗)
3 (ξ) = 2−|ν|−1Γ(|ν|+ 1)

(
κ

sinh(κξ)

)|ν|+1

e{−κ(ν+1)−β}ξ.

(1-iii) Assume 0 < ν < 1. Since D
s
(ν,κ)
3

h
(ν,κ,β)
3 (0) = −Γ(ν + 1) by recursion (see

[6, p. 73]), (3.12) and (4.25) imply

n
(ν,κ,β,∗)
3 (ξ) = D

s
(0,κ)
3

h
(0,κ,β)
3 (0)2e−βξ lim

x,y→0
p

(ν,κ)
3 (ξ, x, y)(4.28)

= 2−ν−1Γ(ν + 1)

(
κ

sinh(κξ)

)ν+1

e{−κ(ν+1)−β}ξ.

By one of the limit theorems of [1, p. 640], we get limκ→0 g
(ν,κ)
3,2 (x, β) =

g
(ν)
1,2 (x, β), and hence limκ→0 s

(ν,κ,β)
3 (x) = s

(ν,β)
1 (x) and limκ→0m

(ν,κ,β)
3 (x) =

m
(ν,β)
1 (x). Theorem 2.4 yields

lim
κ→0

n
(ν,κ,β,∗)
3 (ξ) = n

(ν,β,∗)
1 (ξ).

This also follows from (4.6)–(4.8) and (4.26)–(4.28).

(2) Since s
(ν,κ)
3 (∞) < ∞ by (4.21), Proposition 3.4 leads to a special case corre-

sponding to β = 0. Put h
(ν,κ,0)
3 (x) = {s(ν,κ)

3 (∞)−s(ν,κ)
3 (x)}/{s(ν,κ)

3 (∞)−s(ν,κ)
3 (1)}.

Denote by G(ν,κ,0)
3 the harmonic transform of G(ν,κ)

3 based on h
(ν,κ,0)
3 ∈

H
s
(ν,κ)
3 ,m

(ν,κ)
3 ,0,0

, that is,

G(ν,κ,0)
3 =

1

2

d2

dx2
+

{
2ν + 1

2x
+ κx− x−(2ν+1)e−κx

2∫∞
x
y−(2ν+1)e−κy2 dy

}
d

dx
.

The scale function s
(ν,κ,0)
3 and the speed measure m

(ν,κ,0)
3 are given by

ds
(ν,κ,0)
3 (x) = h

(ν,κ,0)
3 (x)−2 ds

(ν,κ)
3 (x), dm

(ν,κ,0)
3 (x) = h

(ν,κ,0)
3 (x)2 dm

(ν,κ)
3 (x).
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By Proposition 3.4, (3.6) or (3.7) is satisfied, and s
(ν,κ,0)
3 (∞) =∞. The end point

0 is (s
(ν,κ,0)
3 ,m

(ν,κ,0)
3 , 0)-regular. We consider the diffusion process D(ν,κ,0,∗)

3 with

generator G(ν,κ,0)
3 and with the end point 0 being reflecting. Let n

(ν,κ,0,∗)
3 be the

corresponding Lévy measure density.

(2-i) Assume 0 ≤ ν < 1. Since D
s
(ν,κ)
3

h
(ν,κ,0)
3 (0) = −{s(ν,κ)

3 (∞) − s
(ν,κ)
3 (1)}−1,

(3.12) implies

n
(ν,κ,0,∗)
3 (ξ) = {s(ν,κ)

3 (∞)− s(ν,κ)
3 (1)}−22−ν−1 1

Γ(ν + 1)

(
κ

sinh(κξ)

)ν+1

e−κ(ν+1)ξ,

where we used (4.25). We note that

(4.29) lim
κ→0

n
(ν,κ,0,∗)
3 (ξ) = 2−ν+1 ν2

Γ(ν + 1)
ξ−ν−1.

On the other hand,

lim
κ→0

h
(ν,κ,0)
3 (x) = x−2ν ,

and hence limκ→0 s
(ν,κ,0)
3 (x) = s

(−ν)
1 (x) and limκ→0m

(ν,κ,0)
3 (x) = m

(−ν)
1 (x).

In the case 0 < ν < 1, the end point 0 is (s
(−ν)
1 ,m

(−ν)
1 , 0)-regular, and hence

by Theorem 2.4,

lim
κ→0

n
(ν,κ,0,∗)
3 (ξ) = n

(−ν,∗)
1 = 2−ν+1 ν

Γ(ν)
ξ−ν−1.

This shows (4.29) with 0 < ν < 1.

In the case ν = 0, the end point 0 is an (s
(0)
1 ,m

(0)
1 , 0)-entrance point and hence

the local time at 0 does not exist.

(2-ii) Assume −1 < ν < 0. Since h
(ν,κ,0)
3 (0) ∈ (0,∞), by (3.10) and (4.24) we get

(4.30) n
(ν,κ,0,∗)
3 (ξ) = h

(ν,κ,0)
3 (0)22−|ν|+1 |ν|

Γ(|ν|)

(
κ

sinh(κξ)

)|ν|+1

e−κ(ν+1)ξ.

Since limκ→0 h
(ν,κ,0)
3 (0) = 1, we have limκ→0 s

(ν,κ,0)
3 (x) = s

(ν)
1 (x) and

limκ→0m
(ν,κ,0)
3 (x) = m

(ν)
1 (x). By Theorem 2.4 and (4.5),

lim
κ→0

n
(ν,κ,0,∗)
3 (ξ) = n

(ν,∗)
1 (ξ) = 2−|ν|+1 |ν|

Γ(|ν|)
ξ−|ν|−1.

This also follows from (4.30).

Example 4.4 (Squared Bessel process). Let us consider the following diffusion

operator on I = (0,∞):

G(ν)
4 = 2x

d2

dx2
+ (2ν + 2)

d

dx
,
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where −∞ < ν < ∞. This is the squared Bessel operator, and the scale function

s
(ν)
4 and the speed measure m

(ν)
4 are given by

ds
(ν)
4 (x) = x−ν−1 dx, dm

(ν)
4 (x) = 2−1xν dx.

The killing measure is null. The end point 0 is:

• an (s
(ν)
4 ,m

(ν)
4 , 0)-entrance point if ν ≥ 0,

• (s
(ν)
4 ,m

(ν)
4 , 0)-regular if −1 < ν < 0,

• an (s
(ν)
4 ,m

(ν)
4 , 0)-exit point if ν ≤ −1.

Further

(4.31)

∫ 1

0

{s(ν)
4 (1)− s(ν)

4 (x)}2 dm(ν)
4 (x) <∞ ⇔ |ν| < 1.

The end point ∞ is (s
(ν)
4 ,m

(ν)
4 , 0)-natural for all ν, and

(4.32) s
(ν)
4 (∞) =∞ ⇔ ν ≤ 0.

Let D(ν)
4 be the diffusion process on I with generator G(ν)

4 , and with the end

point 0 being absorbing if −1 < ν < 0. We denote by p
(ν)
4 (t, x, y) the transition

probability density with respect to dm
(ν)
4 . It is known (see [1, p. 136]) that

p
(ν)
4 (t, x, y) =

1

t
exp

{
−x+ y

2t

}
(xy)−ν/2I|ν|

(√
xy

t

)
.

In the same way as for the spectral representation of p
(ν)
1 (t, x, y) in Example 4.1,

we get

p
(ν)
4 (t, x, y) =

∫ ∞
0

e−λtψ
(ν)
4 (x, λ)ψ

(ν)
4 (y, λ)σ

(ν)
4 (λ) dλ,

where

ψ
(ν)
4 (x, λ) =

{
Γ(ν + 1)(2/λ)ν/2x−ν/2Jν(

√
2λx), ν ≥ 0,

Γ(|ν|)(2/λ)|ν|/2x|ν|/2J|ν|(
√

2λx), ν < 0,

σ
(ν)
4 (λ) =

{
2−νΓ(ν + 1)−2λν , ν ≥ 0,

2−|ν|Γ(|ν|)−2λ|ν|, ν < 0.

For α > 0 we denote by g
(ν)
4,i (x, α), i = 1, 2, the functions satisfying (2.11)–(2.15)

with s = s
(ν)
4 , m = m

(ν)
4 and k = 0. It is known (see [1, p. 135]) that

g
(ν)
4,1 (x, α) = x−ν/2I|ν|(

√
2αx), g

(ν)
4,2 (x, α) = x−ν/2K|ν|(

√
2αx).

Now we consider the Lévy measure densities corresponding to the inverse local

time at the end point 0.
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(1) Let −1 < ν < 0. Then the end point 0 is (s
(ν)
4 ,m

(ν)
4 , 0)-regular. We pose the

reflecting boundary condition at 0. We denote by D(ν,∗)
4 the diffusion process with

generator G(ν)
4 and with the end point 0 being reflecting. We denote by n

(ν,∗)
4 the

corresponding Lévy measure density. Since s
(ν)
4 (∞) =∞ by (4.32), from (2.24) we

derive

n
(ν,∗)
4 (ξ) = lim

x,y→0
D
s
(ν)
4 (x)

D
s
(ν)
4 (y)

p
(ν)
4 (ξ, x, y)(4.33)

=

∫ ∞
0

e−ξλσ
(ν)
4 (λ) dλ = 2−|ν|

|ν|
Γ(|ν|)

ξ−(|ν|+1).

(2) Let −1 < ν < 1. Then 0 is (s
(ν)
4 ,m

(ν)
4 , 0)-regular or an (s

(ν)
4 ,m

(ν)
4 , 0)–

entrance point, and (2.6) is satisfied in view of (4.31). For β > 0 we put

h
(ν,β)
4 (x) = (β/2)|ν|/2g

(ν)
4,2 (x, β) and denote by G(ν,β)

4 the harmonic transform of

G(ν)
4 based on h

(ν,β)
4 ∈ H

s
(ν)
4 ,m

(ν)
4 ,0,β

, that is,

G(ν,β)
4 = 2x

d2

dx2
+ 2

{
1 +

√
2βx

K ′ν(
√

2βx)

Kν(
√

2βx)

}
d

dx
.

The scale function s
(ν,β)
4 and the speed measure m

(ν,β)
4 are given by

ds
(ν,β)
4 (x) = h

(ν,β)
4 (x)−2 ds

(ν)
4 (x), dm

(ν,β)
4 (x) = h

(ν,β)
4 (x)2 dm

(ν)
4 (x).

By Proposition 3.3, (3.6) or (3.7) is satisfied, and s
(ν,β)
4 (∞) =∞. The end point 0 is

(s
(ν,β)
4 ,m

(ν,β)
4 , 0)-regular. We consider the diffusion process D(ν,β,∗)

4 with generator

G(ν,β)
4 and with the end point 0 being reflecting. Let n

(ν,β,∗)
4 be the corresponding

Lévy measure density.

(2-i) Assume ν = 0. Since D
s
(0)
4
h

(0,β)
4 (0) = −1/2, (3.11) implies

(4.34) n
(0,β,∗)
4 (ξ) =

1

4
e−βξ

∫
[0,∞)

e−ξλσ
(0)
4 (λ) dλ =

1

4ξ
e−βξ.

(2-ii) Assume −1 < ν < 0. Since h
(ν,β)
4 (0) = Γ(−ν)/2, (3.9) leads to

n
(ν,β,∗)
4 (ξ) = h

(ν,β)
4 (0)2e−βξ

∫ ∞
0

e−ξλσ
(ν)
4 (λ) dλ(4.35)

= 2ν−2Γ(|ν|+ 1)ξν−1e−βξ.

(2-iii) Assume 0 < ν < 1. Since G(ν,β)
4 = G(−ν,β)

4 , by using (4.35) we get

(4.36) n
(ν,β,∗)
4 (ξ) = n

(−ν,β,∗)
4 (ξ) = 2−ν−2Γ(ν + 1)ξ−ν−1e−βξ.

(3) Let 0 < ν < 1. Then s
(ν)
4 (∞) < ∞ by (4.32). Therefore Proposition 3.4

leads to a special case corresponding to β = 0. We put h
(ν,0)
4 (x) = {s(ν)

4 (∞) −
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s
(ν)
4 (x)}/{s(ν)

4 (∞) − s(ν)
4 (1)} = x−ν . Denote by G(ν,0)

4 the harmonic transform of

G(ν)
4 based on h

(ν,0)
4 ∈ H

s
(ν)
4 ,m

(ν)
4 ,0,0

, that is,

G(ν,0)
4 = 2x

d2

dx2
+ (−2ν + 2)

d

dx
.

We note that this coincides with G(−ν)
4 . The scale function s

(ν,0)
4 and the speed

measure m
(ν,0)
4 are given by

ds
(ν,0)
4 (x) = h

(ν,0)
4 (x)−2 ds

(ν)
4 (x) = xν−1 dx = ds

(−ν)
4 (x),

dm
(ν,0)
4 (x) = h

(ν,0)
4 (x)2 dm

(ν)
4 (x) = 2−1x−ν dx = dm

(−ν)
4 (x).

By Proposition 3.4, (3.7) is satisfied, and s
(ν,0)
4 (∞) = ∞. The end point 0 is

(s
(ν,0)
4 ,m

(ν,0)
4 , 0)-regular. We consider the diffusion process D(ν,0,∗)

4 with generator

G(ν,0)
4 and with the end point 0 being reflecting. Let n

(ν,0,∗)
4 be the corresponding

Lévy measure density. Since G(ν,0)
4 = G(−ν)

4 , (4.33) yields

n
(ν,0,∗)
4 (ξ) = 2−ν

ν

Γ(ν)
ξ−(ν+1) = n

(−ν,∗)
4 (ξ).

Example 4.5 (Squared radial Ornstein–Uhlenbeck process). Let us consider the

following diffusion operator on I = (0,∞):

G(ν,κ)
5 = 2x

d2

dx2
+ (2ν + 2− 2κx)

d

dx
,

where −∞ < ν < ∞ and κ > 0. This is a squared radial Ornstein–Uhlenbeck

operator, and the scale function s
(ν,κ)
5 and the speed measure m

(ν,κ)
5 are

ds
(ν,κ)
5 (x) = x−ν−1eκx dx, dm

(ν,κ)
5 (x) = 2−1xνe−κx dx.

The killing measure is null. The end point 0 is:

• an (s
(ν,κ)
5 ,m

(ν,κ)
5 , 0)-entrance point if ν ≥ 0,

• (s
(ν,κ)
5 ,m

(ν,κ)
5 , 0)-regular if −1 < ν < 0,

• an (s
(ν,κ)
5 ,m

(ν,κ)
5 , 0)-exit point if ν ≤ −1.

Further

(4.37)

∫ 1

0

{s(ν,κ)
5 (1)− s(ν,κ)

5 (x)}2 dm(ν,κ)
5 (x) <∞ ⇔ |ν| < 1.

The end point ∞ is (s
(ν,κ)
5 ,m

(ν,κ)
5 , 0)-natural for all ν and

(4.38) s
(ν,κ)
5 (∞) =∞.
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Let D(ν,κ)
5 be the diffusion process on I with generator G(ν,κ)

5 , and with the end

point 0 being absorbing if −1 < ν < 0. We denote by p
(ν,κ)
5 (t, x, y) the transition

probability density with respect to dm
(ν,κ)
5 . It is known (see [1, p. 142]) that

(4.39) p
(ν,κ)
5 (t, x, y)

=
κ

sinh(κt)
(xy)−ν/2 exp

{
κ(ν + 1)t− κe−κt(x+ y)

2 sinh(κt)

}
I|ν|

(
κ
√
xy

sinh(κt)

)
.

By (4.39),

(4.40) lim
κ→0

p
(ν,κ)
5 (t, x, y) = p

(ν)
4 (t, x, y).

Since limκ→0 s
(ν,κ)
5 (x) = s

(ν)
4 (x) and limκ→0m

(ν,κ)
5 (x) = m

(ν)
4 (x) for x ∈ I, (4.40)

also follows from Lemma 5.2 of [8]. Further we note that if −1 < ν < 0,

(4.41) lim
x,y→0

D
s
(ν,κ)
5 (x)

D
s
(ν,κ)
5 (y)

p
(ν,κ)
5 (ξ, x, y)

= 2−|ν|
|ν|

Γ(|ν|)

(
κ

sinh(κξ)

)|ν|+1

eκ(ν+1)ξ,

while if ν ≥ 0,

(4.42) lim
x,y→0

p
(ν,κ)
6 (ξ, x, y) = 2−ν

1

Γ(ν + 1)

(
κ

sinh(κξ)

)ν+1

eκ(ν+1)ξ.

For α > 0 we denote by g
(ν,κ)
5,i (x, α), i = 1, 2, the functions satisfying (2.11)–(2.15)

with s = sν,κ5 , m = mν,κ
5 and k = 0. It is known (see [1, pp. 141–142]) that

g
(ν,κ)
5,1 (x, α) =

α|ν|/2

2|ν|/2Γ(|ν|+ 1)κ(|ν|+1)/2
x−

ν+1
2 eκx/2M− α

2κ+ ν+1
2 ,
|ν|
2

(κx),

g
(ν,κ)
5,2 (x, α) =

2|ν|/2−1κ(|ν|−1)/2

α|ν|/2
Γ

(
α

2κ
+
|ν|
2
− ν

2

)
x−

ν+1
2 eκx/2W− α

2κ+ ν+1
2 ,
|ν|
2

(κx).

Now we consider the Lévy measure densities corresponding to the inverse local

time at the end point 0.

(1) Let −1 < ν < 0. Then the end point 0 is (s
(ν,κ)
5 ,m

(ν,κ)
5 , 0)-regular. We pose

the reflecting boundary condition at 0. We denote by D(ν,κ,∗)
5 the diffusion process

with generator G(ν,κ)
5 and with the end point 0 being reflecting. We denote by

n
(ν,κ,∗)
5 the corresponding Lévy measure density. Since s

(ν,κ)
5 (∞) = ∞ by (4.38),

from (2.24) and (4.41) we derive

n
(ν,κ,∗)
5 (ξ) = lim

x,y→0
D
s
(ν,κ)
5 (x)

D
s
(ν,κ)
5 (y)

p
(ν,κ)
5 (ξ, x, y)

=
2−|ν||ν|
Γ(|ν|)

(
κ

sinh(κξ)

)|ν|+1

eκ(ν+1)ξ.
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(2) Let −1 < ν < 1. Then 0 is (s
(ν,κ)
5 ,m

(ν,κ)
5 , 0)-regular or an (s

(ν,κ)
5 ,m

(ν,κ)
5 , 0)-

entrance point, and (2.6) is satisfied in view of (4.37). For β > 0 we put

h
(ν,κ,β)
5 (x) = (β/2)|ν|/2g

(ν,κ)
5,2 (x, β) and denote by G(ν,κ,β)

5 the harmonic transform

of G(ν,κ)
5 based on h

(ν,κ,β)
5 ∈ H

s
(ν,κ)
5 ,m

(ν,κ)
5 ,0,β

, that is,

G(ν,κ,β)
5 = 2x

d2

dx2
+ 4κx

W ′
− β

2κ+ ν+1
2 ,
|ν|
2

(κx)

W− β
2κ+ ν+1

2 ,
|ν|
2

(κx)

d

dx
.

The scale function s
(ν,κ,β)
5 and the speed measure m

(ν,κ,β)
5 are given by

ds
(ν,κ,β)
5 (x) = h

(ν,κ,β)
5 (x)−2 ds

(ν,κ)
5 (x), dm

(ν,κ,β)
5 (x) = h

(ν,κ,β)
5 (x)2 dm

(ν,κ)
5 (x).

By Proposition 3.3, (3.6) or (3.7) is satisfied, and s
(ν,κ,β)
5 (∞) = ∞. Therefore

the end point 0 is (s
(ν,κ,β)
5 ,m

(ν,κ,β)
5 , 0)-regular. We consider the diffusion process

D(ν,κ,β,∗)
5 with generator G(ν,κ,β)

5 and with the end point 0 being reflecting. Let

n
(ν,κ,β,∗)
5 be the corresponding Lévy measure density.

(2-i) Assume ν = 0. Since D
s
(0,κ)
5

h
(0,κ,β)
5 (0) = −1/2 by [7, Problem 17, p. 279] and

recursion (see [6, p. 73]), (3.12) and (4.42) imply

(4.43) n
(0,κ,β,∗)
5 (ξ) =

κ

4 sinh(κξ)
e(κ−β)ξ.

(2-ii) Assume −1 < ν < 0. Since h
(ν,κ,β)
5 (0) = Γ(|ν|)/2, (3.10) and (4.41) lead to

(4.44) n
(ν,κ,β,∗)
5 (ξ) = 2−|ν|−2Γ(|ν|+ 1)

(
κ

sinh(κξ)

)|ν|+1

e(κ(ν+1)−β)ξ.

(2-iii) Assume 0 < ν < 1. Since D
s
(ν,κ)
5

h
(ν,κ,β)
5 (0) = −Γ(1 + ν)/2 by recursion (see

[6, p. 73]), (3.12) and (4.42) imply

(4.45) n
(ν,κ,β,∗)
5 (ξ) = 2−ν−2Γ(ν + 1)

(
κ

sinh(κξ)

)ν+1

e(κ(ν+1)−β)ξ.

By using one of the limit theorems of [1, p. 640], we see that

limκ→0 g
(ν,κ)
5,2 (x, β) = g

(ν)
4,2 (x, β), and hence limκ→0 h

(ν,κ,β)
5 (x) = h

(ν,β)
4 (x),

limκ→0 s
(ν,κ,β)
5 (x) = s

(ν,β)
4 (x) and limκ→0m

(ν,κ,β)
5 (x) = m

(ν,β)
4 (x). Theorem 2.4

yields

(4.46) lim
κ→0

n
(ν,κ,β,∗)
5 (ξ) = n

(ν,β,∗)
4 (ξ).

(4.46) also follows from (4.34)–(4.36) and (4.43)–(4.45).
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We finally consider the special case β = κ(ν + 1) > 0. Then G(ν,κ,β)
5 reduces

to

G(ν,κ,κ(ν+1))
5 = 2x

d2

dx2
+ 4κx

W ′0,|ν|/2(κx)

W0,|ν|/2(κx)

d

dx

= 2x
d2

dx2
+

{
1 + κx

K ′|ν|/2(κx/2)

K|ν|/2(κx/2)

}
d

dx
,

where we used [7, Problem 19 in p. 279]. By (4.43), (4.44), and (4.45), the Lévy

measure density corresponding to the inverse local time at 0 for D(ν,κ,κ(ν+1),∗)
5 is

(4.47) n
(ν,κ,κ(ν+1),∗)
5 (ξ) = 2−|ν|−2Γ(|ν|+ 1)

(
κ

sinh(κξ)

)|ν|+1

.

Example 4.6 (Squared radial Ornstein–Uhlenbeck process). Let us consider the

following diffusion operator on I = (0,∞):

G(ν,κ)
6 = 2x

d2

dx2
+ (2ν + 2 + 2κx)

d

dx
,

where −∞ < ν <∞ and κ > 0. This is also a squared radial Ornstein–Uhlenbeck

operator, and the scale function s
(ν,κ)
6 and the speed measure m

(ν,κ)
6 are given by

ds
(ν,κ)
6 (x) = x−ν−1e−κx dx, dm

(ν,κ)
6 (x) = 2−1xνeκx dx.

The killing measure is null. The end point 0 is:

• an (s
(ν,κ)
6 ,m

(ν,κ)
6 , 0)-entrance point if ν ≥ 0,

• (s
(ν,κ)
6 ,m

(ν,κ)
6 , 0)-regular if −1 < ν < 0,

• an (s
(ν,κ)
6 ,m

(ν,κ)
6 , 0)-exit point if ν ≤ −1.

Further

(4.48)

∫ 1

0

{s(ν,κ)
6 (1)− s(ν,κ)

6 (x)}2 dm(ν,κ)
6 (x) <∞ ⇔ |ν| < 1.

The end point ∞ is (s
(ν,κ)
6 ,m

(ν,κ)
6 , 0)-natural for all ν and

(4.49) s
(ν,κ)
6 (∞) <∞.

Let D(ν,κ)
6 be the diffusion process on I with generator G(ν,κ)

6 , and with the end

point 0 being absorbing if −1 < ν < 0. We denote by p
(ν,κ)
6 (t, x, y) the transition

probability density with respect to dm
(ν,κ)
6 . It is known (see [1, p. 142]) that

(4.50) p
(ν,κ)
6 (t, x, y)

=
κ

sinh(κt)
(xy)−ν/2 exp

{
−κ(ν + 1)t− κeκt(x+ y)

2 sinh(κt)

}
I|ν|

(
κ
√
xy

sinh(κt)

)
.
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By (4.50),

(4.51) lim
κ→0

p
(ν,κ)
6 (t, x, y) = p

(ν)
4 (t, x, y).

Since limκ→0 s
(ν,κ)
6 (x) = s

(ν)
4 (x) and limκ→0m

(ν,κ)
6 (x) = m

(ν)
4 (x) for x ∈ I, (4.51)

also follows from Lemma 5.2 of [8].

In the same way as for (4.41) and (4.42), we find that if −1 < ν < 0,

(4.52) lim
x,y→0

D
s
(ν,κ)
6 (x)

D
s
(ν,κ)
6 (y)

p
(ν,κ)
6 (ξ, x, y)

= 2−|ν|
|ν|

Γ(|ν|)

(
κ

sinh(κξ)

)|ν|+1

e−κ(ν+1)ξ,

while if ν ≥ 0,

(4.53) lim
x,y→0

p
(ν,κ)
6 (ξ, x, y) = 2−ν

1

Γ(ν + 1)

(
κ

sinh(κξ)

)ν+1

e−κ(ν+1)ξ.

For α > 0 we denote by g
(ν,κ)
6,i (x, α), i = 1, 2, the functions satisfying (2.11)–(2.15)

with s = s
(ν,κ)
6 , m = m

(ν,κ)
6 and k = 0. It is known (see [1, p. 142]2) that

g
(ν,κ)
6,1 (x, α) =

α|ν|/2

2|ν|/2κ(|ν|+1)/2Γ(|ν|+ 1)
x−

ν+1
2 e−κx/2M− α

2κ−
ν+1
2 ,
|ν|
2

(κx),

g
(ν,κ)
6,2 (x, α) =

κ
|ν|−1

2

21− |ν|2 α
|ν|
2

Γ

(
|ν|
2

+
ν

2
+

α

2κ
+ 1

)
x−

ν+1
2 e−κx/2W− α

2κ−
ν+1
2 ,
|ν|
2

(κx).

Now we consider the Lévy measure densities corresponding to the inverse local

time at the end point 0.

In the following we assume −1 < ν < 1. Then the end point 0 is

(s
(ν,κ)
6 ,m

(ν,κ)
6 , 0)-regular or an (s

(ν,κ)
6 ,m

(ν,κ)
6 , 0)-entrance point, and (2.6) is sat-

isfied in view of (4.48).

(1) For β > 0, we put h
(ν,κ,β)
6 (x) = (β/2)|ν|/2g

(ν,κ)
6,2 (x, β) and denote by G(ν,κ,β)

6

the harmonic transform of G(ν,κ)
6 based on h

(ν,κ,β)
6 ∈ H

s
(ν,κ)
6 ,m

(ν,κ)
6 ,0,β

, that is,

G(ν,κ,β)
6 = 2x

d2

dx2
+ 4κx

W ′
− β

2κ−
ν+1
2 ,
|ν|
2

(κx)

W− β
2κ−

ν+1
2 ,
|ν|
2

(κx)

d

dx
.

The scale function s
(ν,κ,β)
6 and the speed measure m

(ν,κ,β)
6 are given by

ds
(ν,κ,β)
6 (x) = h

(ν,κ,β)
6 (x)−2 ds

(ν,κ)
6 (x), dm

(ν,κ,β)
6 (x) = h

(ν,κ,β)
6 (x)2 dm

(ν,κ)
6 (x).

2Misprints in [1, p. 142]: there are unnecessary minus signs in exponents of Green functions
in the case γ < 0.
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By Proposition 3.3, (3.6) or (3.7) is satisfied, and s
(ν,κ,β)
6 (∞) = ∞. The end

point 0 is (s
(ν,κ,β)
6 ,m

(ν,κ,β)
6 , 0)-regular. We consider the diffusion process D(ν,κ,β,∗)

6

with generator G(ν,κ,β)
6 and with the end point 0 being reflecting. Let n

(ν,κ,β,∗)
6 be

the corresponding Lévy measure density.

(1-i) Assume ν = 0. Since D
s
(0,κ)
6

h
(0,κ,β)
6 (0) = −1/2 by [7, Problem 17, p. 279] and

recursion (see [6, p. 73]), (3.12) and (4.53) imply

(4.54) n
(0,κ,β,∗)
6 (ξ) =

κ

4 sinh(κξ)
e(−κ−β)ξ.

(1-ii) Assume −1 < ν < 0. Since h
(ν,κ,β)
6 (0) = Γ(|ν|)/2, (3.10) and (4.52) lead to

(4.55) n
(ν,κ,β,∗)
6 (ξ) = 2−|ν|−2Γ(|ν|+ 1)

(
κ

sinh(κξ)

)|ν|+1

e(−κ(ν+1)−β)ξ.

(1-iii) Assume 0 < ν < 1. Since D
s
(ν,κ)
6

h
(ν,κ,β)
6 (0) = −Γ(ν + 1)/2 by recursion (see

[6, p. 73]), (3.12) and (4.53) imply

(4.56) n
(ν,κ,β,∗)
6 (ξ) = 2−ν−2Γ(ν + 1)

(
κ

sinh(κξ)

)ν+1

e(−κ(ν+1)−β)ξ.

By one of the limit theorems of [1, p. 640], we get limκ→0 g
(ν,κ)
6,2 (x, β) = g

(ν)
4,2 (x, β),

and hence limκ→0 s
(ν,κ,β)
6 (x) = s

(ν,β)
4 (x) and limκ→0m

(ν,κ,β)
6 (x) = m

(ν,β)
4 (x). By

Theorem 2.4,

lim
κ→0

n
(ν,κ,β,∗)
6 (ξ) = n

(ν,β,∗)
4 (ξ).

This also follows from (4.34)–(4.36) and (4.54)–(4.56).

(2) Since s
(ν,κ)
6 (∞) < ∞ by (4.49), Proposition 3.4 leads to a special case cor-

responding to β = 0. Put h
(ν,κ,0)
6 (x) = {s(ν,κ)

6 (∞) − s
(ν,κ)
6 (x)}/{s(ν,κ)

6 (∞) −
s

(ν,κ)
6 (1)}. Denote by G(ν,κ,0)

6 the harmonic transform of G(ν,κ)
6 based on h

(ν,κ,0)
6 ∈

H
s
(ν,κ)
6 ,m

(ν,κ)
6 ,0,0

, that is,

G(ν,κ,0)
6 = 2x

d2

dx2
+

{
2ν + 2 + 2κx− 4x−νe−κx∫∞

x
y−(ν+1)e−κy dy

}
d

dx
.

The scale function s
(ν,κ,0)
6 and the speed measure m

(ν,κ,0)
6 are given by

ds
(ν,κ,0)
6 (x) = h

(ν,κ,0)
6 (x)−2 ds

(ν,κ)
6 (x), dm

(ν,κ,0)
6 (x) = h

(ν,κ,0)
6 (x)2 dm

(ν,κ)
6 (x).

By Proposition 3.4, (3.6) or (3.7) is satisfied, and s
(ν,κ,0)
6 (∞) =∞. The end point

0 is (s
(ν,κ,0)
6 ,m

(ν,κ,0)
6 , 0)-regular. We consider the diffusion process D(ν,κ,0,∗)

6 with

generator G(ν,κ,0)
6 and with the end point 0 being reflecting. Let n

(ν,κ,0,∗)
6 be the

corresponding Lévy measure density.
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(2-i) Assume 0 ≤ ν < 1. Since D
s
(ν,κ)
6

h
(ν,κ,0)
6 (0) = −{s(ν,κ)

6 (∞) − s
(ν,κ)
6 (1)}−1,

(3.12) implies

n
(ν,κ,0,∗)
6 (ξ) = {s(ν,κ)

6 (∞)− s(ν,κ)
6 (1)}−22−ν

1

Γ(ν + 1)

(
κ

sinh(κξ)

)ν+1

e−κ(ν+1)ξ,

where we used (4.52). We note that

(4.57) lim
κ→0

n
(ν,κ,0,∗)
6 (ξ) = 2−ν

ν2

Γ(ν + 1)
ξ−ν−1.

On the other hand,

lim
κ→0

h
(ν,κ,0)
6 (x) = x−ν ,

and hence limκ→0 s
(ν,κ,0)
6 = s

(−ν)
4 and limκ→0m

(ν,κ,0)
6 = m

(−ν)
4 .

In the case 0 < ν < 1, the end point 0 is (s
(−ν)
4 ,m

(−ν)
4 , 0)-regular, and hence

lim
κ→0

n
(ν,κ,0,∗)
6 (ξ) = n

(−ν,∗)
4 (ξ) = 2−ν

ν2

Γ(ν + 1)
ξ−ν−1.

This shows (4.57) with 0 < ν < 1.

In the case ν = 0, the end point 0 is an (s
(0)
4 ,m

(0)
4 , 0)-entrance point and hence

the local time at the end point 0 does not exist.

(2-ii) Assume −1 < ν < 0. Since h
(ν,κ,0)
6 (0) ∈ (0,∞), by (3.10) and (4.52) we get

(4.58) n
(ν,κ,0,∗)
6 (ξ) = h

(ν,κ,0)
6 (0)22−|ν|

|ν|
Γ(|ν|)

(
κ

sinh(κξ)

)|ν|+1

e−κ(ν+1)ξ.

As limκ→0 h
(ν,κ,0)
6 (x) = 1, we have limκ→0 s

(ν,κ,0)
6 (x) = s

(ν)
4 and limκ→0m

(ν,κ,0)
6 (x)

= m
(ν)
4 . By Theorem 2.4 and (4.33),

lim
κ→0

n
(ν,κ,0,∗)
6 (ξ) = n

(ν,∗)
4 (ξ) = 2−|ν|

|ν|
Γ(|ν|)

ξ−|ν|−1.

This also follows from (4.58).

Example 4.7 (Brownian motion). Let us consider the following diffusion opera-

tor on I = (0, a), where 0 < a <∞:

G(a)
7 =

1

2

d2

dx2
.

This is the generator of Brownian motion on (0, a), and the scale function s
(a)
7 and

the speed measure m
(a)
7 are given by

ds
(a)
7 (x) = dx, dm

(a)
7 (x) = 2 dx.

The killing measure is null. The end points 0 and a are both (s
(a)
7 ,m

(a)
7 , 0)-regular.
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Let D(a)
7 be the Brownian motion on I with generator G(a)

7 , and with the

end points 0 and a being both absorbing. We denote by p
(a)
7 (t, x, y) the transition

probability density with respect to dm
(a)
7 . It is known (see [1, p. 122]) that

p
(a)
7 (t, x, y) =

1

a

∞∑
n=1

e−n
2π2t/(2a2) sin(nπx/a) sin(nπy/a)

=

∫
(0,∞)

e−λtψ
(a)
7 (x, λ)ψ

(a)
7 (y, λ) dσ

(a)
7 (λ),

where

ψ
(a)
7 (x, λn) =

a

nπ
sin(nπx/a), dσ

(a)
7 (λ) =

∞∑
n=1

n2π2

a3
δλn(dλ),

λn = n2π2/(2a2), and δp(dλ) is the unit measure concentrated at p. For α > 0, we

denote by g
(a)
7,i (x, α), i = 1, 2, the function satisfying (2.11)–(2.15) with s = s

(a)
7 ,

m = m
(a)
7 and k = 0. It is easy to see that

g
(a)
7,1(x, α) = e

√
2αx − e−

√
2αx, g

(a)
7,2(x, α) = e

√
2α(a−x) − e−

√
2α(a−x).

Now we consider the Lévy measure densities corresponding to the inverse

local time at the end point 0. For β > 0 we put h
(a)
7 (x) = Cg

(a)
7,2(x, β), where

C = g
(a)
7,2(0, β)−1 and denote by G(a,β)

7 the harmonic transform of G(a)
7 based on

h
(a,β)
7 ∈ H

s
(a)
7 ,m

(a)
7 ,0,β

, that is,

G(a,β)
7 =

1

2

d2

dx2
−
√

2β
e2
√

2β(a−x) + 1

e2
√

2β(a−x) − 1

d

dx
,

which is (1.9). The scale function s
(a,β)
7 and the speed measure m

(a,β)
7 are given

by

ds
(a,β)
7 (x) = h

(a,β)
7 (x)−2 ds

(a)
7 (x), dm

(a,β)
7 (x) = h

(a,β)
7 (x)2 dm

(a)
7 (x).

Since h
(a)
7 (0) = 1, by Proposition 3.3, (3.6) is satisfied, and s

(a,β)
7 (a) = ∞. The

end point 0 is (s
(a,β)
7 ,m

(a,β)
7 , 0)-regular. We consider the diffusion process D(a,β,∗)

7

with generator G(a,β)
7 and with the end point 0 being reflecting. Let n

(a,β,∗)
7 be the

corresponding Lévy measure density. By (3.9),

n
(a,β,∗)
7 (ξ) = e−βξ

∫
(0,∞)

e−ξλ dσ
(a)
7 (λ) = e−βξ

∞∑
n=1

e−ξλn
n2π2

a3
.

This shows (1.10).
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We note that

(4.59) lim
a→∞

n
(a,β,∗)
7 (ξ) =

√
π/2 e−βξξ−3/2.

Indeed, for Λ > 0,∫
(0,Λ]

dσ
(a)
7 (λ) =

π2

a3

∑
n:λn≤Λ

n2 =
π2

a3

Λ0∑
n=1

n2 =
π2

a3

(
1

3
Λ3

0 +
1

2
Λ2

0 +
1

6
Λ0

)

→ 2
√

2

3π
Λ3/2 as a→∞,

where Λ0 indicates the integral part of
√

2Λ a/π. Thus we have (4.59). We can also

show (4.59) by using Theorem 2.4. Here is a proof. Let us consider the diffusion

operator

G(↑,β)
7 =

1

2

d2

dx2
−
√

2β
d

dx
.

The scale function s
(↑,β)
7 and the speed measure m

(↑,β)
7 are given by

ds
(↑,β)
7 (x) = e2

√
2βx dx, dm

(↑,β)
7 (x) = 2e−2

√
2βx dx.

The killing measure is null. The end point 0 is (s
(↑,β)
7 ,m

(↑,β)
7 , 0)-regular. Let D(↑,β,∗)

7

be the diffusion process on (0,∞) with generator G(↑,β)
7 , and with the end point 0

being reflecting. We denote by n
(↑,β,∗)
7 (ξ) the corresponding Lévy measure density.

By using [10, Example 6.1] and (2.24), we have

n
(↑,β,∗)
7 (ξ) =

∫ ∞
β

e−λξσ
(↑,β)
7 (λ) dλ =

√
π/2 e−βξξ−3/2.

As lima→∞ h
(a,β)
7 (x)=e−

√
2βx, lima→∞ s

(a,β)
7 (x)=s

(↑,β)
7 (x), and lima→∞m

(a,β)
7 (x)

= m
(↑,β)
7 (x), by Theorem 2.4 we obtain

lim
a→∞

n
(a,β,∗)
7 (ξ) = n

(↑,β,∗)
7 (ξ).

This shows (4.59).
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[5] K. Itô and H. P. McKean, Jr., Diffusion processes and their sample paths, Springer, New
York, 1974. Zbl 0285.60063 MR 0345224

[6] S. Moriguchi, K. Udagawa and S. Hitotsumatsu, Mathematical formulas. III, Iwanami, 1960
(in Japanese).

[7] N. N. Lebedev, Spectral functions and their applications, Dover Publ., New York, 1972.

[8] Y. Ogura, One-dimensional bi-generalized diffusion processes, J. Math. Soc. Japan 41
(1989), 213–242. Zbl 0701.60078 MR 0984748

[9] T. Takemura, State of boundaries for harmonic transforms of one-dimensional generalized
diffusion processes, Annual Reports Grad. School Humanities Sci. Nara Women’s Univ. 25
(2019), 285–294.

[10] T. Takemura and M. Tomisaki, h transform of one-dimensional generalized diffusion opera-
tors, Kyushu J. Math. 66 (2012), 171–191. Zbl pre06135998 MR 2962397

[11] M. Tomisaki, Intrinsic ultracontractivity and small perturbation for one-dimensional
generalized diffusion operators, J. Funct. Anal. 251 (2007), 289–324. Zbl 1135.47044
MR 2353708

[12] M. Tomisaki, Inverse local times of harmonic transformed Bessel processes, Annual Reports
Grad. School Humanities Sci. Nara Women’s Univ. 22 (2011), 269–279.

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1123.60028&format=complete
http://www.ams.org/mathscinet-getitem?mr=2289152
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1129.60042&format=complete
http://www.ams.org/mathscinet-getitem?mr=2341013
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0047.09303&format=complete
http://www.ams.org/mathscinet-getitem?mr=0047886
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0285.60063&format=complete
http://www.ams.org/mathscinet-getitem?mr=0345224
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0701.60078&format=complete
http://www.ams.org/mathscinet-getitem?mr=0984748
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:pre06135998&format=complete
http://www.ams.org/mathscinet-getitem?mr=2962397
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1135.47044&format=complete
http://www.ams.org/mathscinet-getitem?mr=2353708

	Introduction
	Preliminaries
	One-dimensional diffusion process Ds,m,k
	Inverse local time
	Harmonic transform of Gs,m,k 
	Proof of Proposition 2.1

	Inverse local time for D*sh,mh,0
	Examples
	References

