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Lévy Measure Density Corresponding to
Inverse Local Time

by

Tomoko TAKEMURA and Matsuyo TOMISAKI

Abstract

We are concerned with the Lévy measure density corresponding to the inverse local time
at the regular end point for a harmonic transform of a one-dimensional diffusion process.
We show that the Lévy measure density is represented as the Laplace transform of the
spectral measure corresponding to the original diffusion process, where the absorbing
boundary condition is posed at the end point whenever it is regular.
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81. Introduction

Let s be a continuous increasing function on an open interval I = (Iy,ls), where
—00 < l; < ly < o0, let m be a right continuous increasing function on I, and
let k& be a right continuous nondecreasing function on I. Let G; ,, r be a one-
dimensional diffusion operator on I with scale function s, speed measure m, and
killing measure k. We denote by Ds ,, = [X(¢), P;] the one-dimensional diffusion
process on I with generator Gs ,,; and with end point /; where the absorbing
boundary condition is posed whenever [; is (s, m, k)-regular (i = 1,2). For g > 0,
let Hsm ks be the set of all positive functions h satisfying G . xh = Bh. For
h € Hgm kg, We set

(1.1) sn(z) = /( ) sty

Communicated by T. Kumagai. Received July 21, 2012. Revised February 4, 2013.

T. Takemura: Department of Mathematics, Nara Women’s University, Kita-Uoya Nishimachi,
Nara, 630-8506 Japan;

e-mail: sm18031@cc.nara-wu.ac. jp

M. Tomisaki: Department of Mathematics, Nara Women’s University, Kita-Uoya Nishimachi,
Nara, 630-8506 Japan;

e-mail: tomisaki@cc.nara-wu.ac.jp

© 2013 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.



564 T. TAKEMURA AND M. TOMISAKI

(1.2) mi(z) = /( ) dm(y),

where ¢, € I is fixed arbitrarily. The diffusion operator Gs, , 0 with scale function
Sh, speed measure my, and the null killing measure is the harmonic transform of
Gs.m,; basedon h € Hs 1y 1 . Let D, 1, 0 be the one-dimensional diffusion process
on I with generator Gs, ,, 0 and with the end point /; being absorbing whenever
it is (sp, mp, 0)-regular (i = 1,2).

When [; is (sp, mp,0)-regular, it is possible to pose the reflecting boundary
condition at /. We denote by D . o = [X(t),Péh*)] such a diffusion process
on I. Namely, the scale function and the speed measure are given by s, and my,
respectively, the killing measure is null, and [y is (s, my, 0)-regular and reflecting.
We consider the local time 1("*)(t,¢) for D* that is,

Sh,mp,00

/ F(X () du = /l(h*)(t,g) dmp (&), t>0,
0 I

for bounded continuous functions f on I. Since [("*) (¢, &) is continuous and non-
decreasing in t Péh*)—a.s., the right continuous inverse function l(h*)_l(t, §) exists.
In particular, we denote by 7("*)(¢) the inverse local time l(h*)_l(t, l1) at the end
point ;. Employing some results due to It6 and McKean (see [5, Section 6.2]), we
find that, if sy, (l2) = oo, then [r("*)(¢),t > 0] is a Lévy process and there is a Lévy
measure density n("*)(£) such that

El(lh*)[e—)\q—(h*)(t)] — exp{—t/ (1 _ e—k{)n(h*) (g) df},
0

where El(lh*) stands for the expectation with respect to Pl(lh*). The aim of this
paper is to give a representation of n(h*)(g) in terms of data corresponding to the
diffusion process Ds ,, . We state our results in Section 3 (see Theorem 3.2).

Applying our results, we find some interesting facts. Let us consider the fol-
lowing diffusion generators on (0, 00):

2 da? 2z K, (28 dx
w (na?)
1 d2 1 _ B vl vl d
14 o _ 49 2= T2 53 _
(1.4) 2 2d:v2+{ 2z+ KJ(ELL7£ vt1 v("‘wz)}dﬂ”,
2n+ 2 02
w’ (k?)
1 g2 1 _ B _vt1 vl d
15 Lo— = _ - 419 2k 2 13 —_
(1.5) 3 2dx2+{ oz © mj”_ﬁ_@ w(me)}dx’
2K 2 02

where —1 < v < 1, kK > 0 and 8 > 0. K;(z) and Wy (z) are the modified
Bessel function and the Whittaker function, respectively (see Section 4 for their
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definitions). Let Df be the diffusion process on (0,00) with generator £; (i =
1,2,3). The end point 0 is regular for all Df. Therefore the inverse local time 7*(¢)
at the end point 0 with reflecting boundary condition exists. Noting that £ is a
harmonic transform of a Bessel operator, and £o and L3 are harmonic transforms
of radial Ornstein—Uhlenbeck operators, by means of Theorem 3.2 below, we find
that the Lévy measure densities n}(€) of 7*(¢) corresponding to D} are

(1.6) nt (&) = e WD e=h¢,
K [v]+1
: = [ — {x(+1)-B}
(1.7) n(&) = C(sinh(n§)> plr(v+1 3
(1.8) ni(€) =0 —2 ‘V|+le{—f€('/+1)—l3}£
. 335777\ sinh(k€) ’

where C' = 2= (M+DD(|y|+1). In Section 2, we show a simple convergence theorem
for a sequence of Lévy measure densities under the assumption that the scale
functions and speed measures are convergent (see Theorem 2.4). Since the scale
functions and speed measures of Lo and L3 converge to the scale function and
speed measure of L1 as k — 0, respectively, Theorem 2.4 leads to

n1(§) = lim n5(¢) = lim n5(¢).

k—0 r—0
This also directly follows from (1.6)—(1.8).
We next consider the following diffusion operator on (0, a):
1 42 62\/270’4—62‘/279:(1
T2 dr2 o2V2Ba _ o228z dx’

(1.9) L4

where a > 0 and 8 > 0. Let D} be the diffusion process on (0, a) with generator L.
The end point 0 is regular and the inverse local time 7*(¢) at the end point 0
with reflecting boundary condition exists. Since £, is a harmonic transform of
Brownian motion on (0, a), by using Theorem 3.2 we find that the Lévy measure
density of 7*(t) is

1.10 nk 5 = a_3e—65 ni 26—(n27r2/2a2)5.
4
n=1

It is easy to see that L4 converges to L4 = %% — \/25% as a — 00, in t%le
sense that the scale function and the speed measure of £4 converge to those of Ly.
Therefore by Theorem 2.4, we find that

(1.11) lim n}(§) = #5(€) = /m/2e P72,

a— o0
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where 1} is the Lévy measure density of the inverse local time corresponding to Ly.
(1.11) also follows from (1.10).

In [2] and [3], C. Donati-Martin and M. Yor considered the diffusion pro-
cesses Df (i = 1,2), and showed (1.6), and (1.7) with —1 < v < 0. Their method
is based on various transforms of Bessel processes. In [12] the second author gave
an analytical proof for the representation (1.7) by using a harmonic transform. In
this paper we generalize the analytical method used in [12] to obtain Theorem 3.2.

In Section 2 we summarize some definitions and facts needed below. Then we
prove a convergence theorem for a sequence of Lévy measure densities. In Section 3
we state our main results and prove them. In Section 4 we present some interesting
diffusion operators including the £;’s given by (1.3)—(1.5) and (1.9).

§2. Preliminaries

Let s, m, and k be the functions given at the beginning of the previous section. We
sometimes use the same symbols s, m and k for the respective induced measures
ds(z), dm(x) and dk(z). For a function u on I, we set u(l;) = limg_;, zer u(z) if
the limit exists, for ¢ = 1, 2. We denote by Dsu(x) the right derivative with respect
to s(z), that is, Dyu(z) = lim. jo{u(z +€) — u(z)}/{s(z + ) — s(x)}, provided it
exists. Let us fix a point ¢, € I arbitrarily and set

Jup(x) = /( | du(y)/( ]dV(Z) forz € 1,
Co,T Co,yY

where p and v are Borel measures on I, and the integral |, (a,y) 18 Tead as — i) (b.a if

a > b. Following [4], we call the boundary point I;

o (s,m,k)-regular if Jgmar(l;) < oo and Jpprs(li) < o0,
e an (s, m,k)-exit point if Jgmar(l;) < oo and Jpyps(li) = o0,
e an (s, m, k)-entrance point if Jg pmir(l;) = 00 and Jpqr,s(li) < 00,
e (s,m,k)-natural if Jsman(l;) =00 and Jqk,s(l;) = oco.

§2.1. One-dimensional diffusion process D; ., i

Let D(Gs m k) be the space of all functions u € L?(I,m) which have a continuous
version u (we use the same symbol) satisfying the following conditions:

(G-i) There exist constants A, B and a function f, € L*(I,m) such that

(2.1) u(z) = A+ Bs(r) + / {s(z) = s(y)Hfuly) dm(y)

(Covm]

+[ @) - swh k). st
(corz]
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(G-ii) If I; is (s,m, k)-regular, then u(l;) = 0 for each ¢ = 1, 2.

By (2.1), f. is uniquely determined as a function in L2?(I,m) if it exists. The
operator Gs .k from D(Gg k) into L*(1,m) is defined by G, xu = fu, and it
is called the one-dimensional generalized diffusion operator with scale function s,
speed measure m, and killing measure k. The condition (G-ii) implies that the
absorbing boundary condition is posed at the regular boundary.

We denote by D 1 = [X(t), P;] the one-dimensional diffusion process on I
whose generator is Gs ., , with domain D(Gs k), that is, the end point [; is
absorbing whenever it is (s, m, k)-regular (i = 1, 2). Further we denote by p(t, x,y)
the transition probability density with respect to dm for Dy, , that is,

Pw(X(t)EE):/p(t,:z:,y)dm(y), t>0,z€l, EcB(I),
E

where B(I) stands for the set of all Borel subsets of I. If I; is (s, m, k)-regular,
p(t, z,y) is represented as

22)  pltay) = / e Mo (2, Nbo(y, A do(N),  t>0, 2,y €1,
[0,00)
where do()) is a Borel measure on [0, 00) satisfying
(2.3) / e Mdo(\) < oo, t>0,
[0,00)
and ¥,(z,\), € I, A > 0, is the solution of the integral equation
(24) tho(x,A) = s(x) = s(lr) + /(l ]{8(90) = s(y)}to(y, M{—=Adm(y) + dk(y)}.
1,2
It is well known that (2.4) has a unique solution. If [; is not (s,m,k)-regular,
p(t,z,y) is not always representable as in (2.2) with do()) satisfying (2.3) and
¥o(x, \) the solution of an integral equation. If I; is an (s, m, k)-entrance point, we

give a sufficient condition for p(¢, z,y) to have a representation (2.2). Let ¥ (x, A),
x €I, A >0, be the solution of the integral equation

25) g =1+ / {s(2) — s(9) (g, N {—Adm(y) + dk(y)}.

(llrz]

Proposition 2.1. Assume that Iy is an (s, m, k)-entrance point and
(2.6) / {5(co) — s(x)}? dm(z) < oco.
(ll>CO]

Then p(t,xz,y) can be represented as in (2.2) with do(X\) satisfying (2.3) and
Yo(x, X) replaced by ¥(x, X) which is the solution of the integral equation (2.5).
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We show Proposition 2.1 in Section 2.4.

We next record some estimates for the solution of (2.4) or (2.5). If Iy is
(s, m, k)-regular or an (s, m,k)-exit point, and 1,(z, A) is the solution of (2.4),
then

(27) Iwo(x,A)<{S(w)—8(ll)}exp{ /( () /( ](Adm@)wk(z))}
28) |Dabole, )| < exp{ /(

ll,x]

as(y) /( i)+ i)}

If Iy is an (s,m, k)-entrance point, and 1 (x, A) is the solution of (2.5), then

2.9 z,\)| < ex Adm dk ds(z) ¢,

(2.9) (e, )] < p{/w< W) + (y»/(w] <>}

(2.10)

Dutb(z, V)] < /( () + k() exp{ /( () + k() /( y ds<z>}.

It is easy to get (2.7) with (2.10), so we omit the proof.

For « > 0 and ¢ = 1,2, let ¢;(-,a) be a function on I with the following
properties:
gi(z, a) is positive and continuous in z,

is nondecreasing in x,

Q

1(z,
(

2\,

)
«) is nonincreasing in x,

N /N /N /N
[\
—_
w

= L D O -
el

gi(li,a) = 0if |s(l;)] < o0,
(z, ) = gi(co, @) + Dsgi(co, a){s(z) — s(co)}

+ /( {6) — sy ) {edm(u) + dkw), €T

gi\T,

Here D,g;(x, o) = lim.jo{gi(x + ¢, ) — gi(z, @) }/{s(z +¢) — s(x)}, i =1,2. It is
known that there exist functions with the above properties (see [5, Section 4.6]).

Combining some properties of g;(x, &) given in [5, Section 4.6] with Lemma 3.2
of [11], we obtain the following,.

Proposition 2.2. Assume that k is not a null measure or a > 0. Then

(2.16) / gi(z, ) 2 ds(x)| = oo,
(li’co]

< 00,

(217) | [ wtre st

where i,7 =1,2 and i # j.
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Now we set W (a) = Dyg1(x, @)ge(z, o) — g1(z, &) Dsga(z, ). Note that W (a)
is a positive number independent of x € I. We put

G(aa z, y) - G(Oé’ Y, iL’) = W(a)ilgl (.’t, Q)QQ(ya a)
for >0, z,y € I, < y. Then G(a, z,y) is the a-Green function corresponding

to Dy, x and

Gla,x,y) = / e “p(t,z,y)dt, a>0,z,ycl.
0
Tt is easy to see that, if k # 0, then G(0, x,y) exists and is given by
G(Oaxay) = G(Oa y,ll') = Wﬁlgl(x)QZ(y% T,y € Ia xz S Y,

where g;(x) = g;(x,0), i = 1,2, and W = D;g1(x)ga(x) — g1(x)Dsga(x), which is
a positive constant independent of x € I. In the case k = 0, G(0,z,y) € (0,00)
exists if and only if |s(l;)| < oo for i =1 or 2.

§2.2. Inverse local time

We next consider the case that the end point I; is reflecting whenever it is (s, m, k)-

*
s,m,k

u € L*(I,m) which have a continuous version u (we use the same symbol) satis-
fying (G-i) and

(G-iii) If I; is (s, m, k)-regular, then Dgu(l;) = 0 for each i = 1,2.

regular (¢ = 1,2). More precisely, let D( ) be the space of all functions

(2.1) implies that f, is uniquely determined as a function in L?(I,m) if it exists,
from D(G* ) into L%(I,m) is defined by

s,m,k

Gs m .kt = fu. The condition (G-iii) implies that the reflecting boundary condition

in this case, too. The operator G .

is posed at the regular boundary.

Let D, = [X(t), P;] be the one-dimensional diffusion process on I whose

generator is g;‘m x With domain D(G?*

s,m,k
whenever it is (s, m, k)-regular (i = 1, 2).

), that is, the end point I; is reflecting

Now we assume that the killing measure is null, and [ is (s, m, 0)-regular. We
consider the local time I(t, ), that is,

/0 F(X () du = / (t,€)dm(e), >0,

for bounded continuous functions f on I. Since I(¢,€) is continuous and non-
decreasing in t P;-a.s., the right continuous inverse function [71(¢,¢) exists. In
particular, we denote by 7*(t) the inverse local time [~1(¢,11) at the end point I;.
The following result was obtained by It6 and McKean (see [5, Section 6.2]).
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Proposition 2.3 ([5]). Assume the following conditions hold:

(2.18) The killing measure is null.
(2.19) Iy is (s, m,0)-reqular and reflecting.
(2.20) s(ly) =00, or lyis (s,m,0)-regular and reflecting.

Then [T*(t), t > 0] is a Lévy process and there is a Lévy measure density n*(§)
such that

(2.21) B e O et [T - 9w ac),
(222) W (©) = lim 4" (€ )/{s(x) — s()},

where Ej stands for the expectation with respect to P,

t
(2.23) [ a€ode=rio <0, weri>o
0

and oy, is the first hitting time for ly. In particular, if s(l3) = co, then

(2.24) n*(€) = lim Dy Dayp(& 2, y) = /[ )e‘AE do(N),
0,00

z,y—l1

where p(t, z,y) is the transition probability density with respect to dm for Dg m, i,
and do(X) is the Borel measure appearing in the representation (2.2) satisfying
(2.3).

Proof. In Section 6.2 of [5], (2.21) with (2.22) is obtained under the assumption
(2.25) Pi(o, <o0)=1, =zel.

In view of Problem 4.6.6 of [5], (2.25) holds true if and only if (2.18) and (2.20)
are satisfied. Thus we obtain (2.21) and (2.22).
Assume s(la) = co. Then

(2.26) q (t,x) = Zlgrlllp(t, z,x)/{s(z) —s(l1)}, t>0,xzel.

Since p(t, z,y) has the representation (2.2) and ,(x, \) is the solution of (2.4),
we have
lim Dy, (z,A) =1,

$—>l1

[Dstho(; A)] < exp{A(s(x) — s(ln))(m(x) — m(lh))},
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by means of (2.8). Therefore we obtain (2.24) by virtue of (2.22), (2.26), and the
dominated convergence theorem. O

We next give a simple convergence theorem for a sequence of Lévy measure
densities. For j = 0,1,2,..., let D*J be the diffusion process on IV = (I{, I3) with
scale function s?, speed measure m? and no killing.

Theorem 2.4. Assume the following conditions hold:

lim =19 i=1,2,

Jj—o0

lim s/(z) =s%(z), xel°

j—o00

lim m?(z) = m®(z), = e€c(m?),
j—o0

where C(mP) stands for the set of continuity points of m°. Further for j=0,1,2,...,
assume that

l{ is (s7,m7,0)-regular and reflecting, sj(l%) = 0.

Let n* be the Lévy measure density corresponding to the inverse local time at l{
for D*7. Then

(2.27) lim n*(€) =n*0(¢), €>0.
j—)OO
Proof. For j =0,1,2,..., let D’/ be the diffusion process on I’ with scale function

s/, speed measure m? and no killing, and with l{ being absorbing. The transition
probability density p(t,z,y) with respect to dm? is represented as

pj(t,:my):/ e Ml (@, Ny, ) do?(N), t>0,z,yel,
[0,00)

where do’ () satisfies (2.3) with o replaced by o7, and 17 is the solution of (2.4)
with s = 87, m = m/, and k = 0. By Proposition 2.3, n*/ is represented as (2.24),
that is,

n*i(€) = /[0 ) e M dod(N).

In the same way as in the proof of Lemma 5.3 of [8], we obtain

lim e MdoI(\) = / e M dod(N),

J=0 J[0,00) [0,00)

which implies (2.27). O
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§2.3. Harmonic transform of G, ,, i

For 5 > 0, let hg(-) be a positive continuous function on I satisfying
(2.28) hg(x) = hg(co) + Dshp(co){s(x) — s(co)}
b ) s s (o) k), el

Such a function exists. Indeed, it can be represented as a linear combination of
9i(+.B),i=12.

Let Hgmkp be the set of all positive functions hg satisfying (2.28). For
h € Mg mk 3, we consider s, and my, defined by (1.1) and (1.2), respectively.
Let Gs,, m, .0 be the diffusion operator with scale function sj, speed measure my,,
and null killing measure, which is the harmonic transform of G, based on
h € Hsm k- Let Dy, m, o be the one-dimensional diffusion process on I with gen-
erator Gs,, m, o and with the end point /; being absorbing whenever it is (s, my, 0)-
regular (i = 1,2). Further we denote by p"(¢,2,y) the transition probability
density with respect to dmy, for D, m, 0. By Proposition 2.2 of [11],

(2.29) pM) (t,z,y) = e_ﬁtp(tx,y)/h(x)h(y), t>0,xz,y€l.

If 1y is (sp,mn, 0)-regular, p™ (¢, ,y) is represented as

(2.30)  pM(t,2,y) = / e MY (2, N (y, ) de™(N), t>0, 2,y €,
[0,00)

where do(")()\) is a Borel measure on [0, c0) satisfying

(2.31) / e Mdo™(\) < oo, t>0,
[0,00)

and z/)éh) (x,\), z € I, A > 3, is the solution of the integral equation (2.4) with
s, m, k replaced by s, mp, 0, respectively.

Remark 2.5. We can show do™(\) = 0 on [0, 3). The proof is the same as the
proof of Proposition 2.1 below, so we omit it.

§2.4. Proof of Proposition 2.1
First we note the following.

Lemma 2.6. Assume that l; is an (s, m,k)-entrance point. Then the following
conditions are equivalent:

(i) (2.6) holds true.
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(ii) There exists a B > 0 such that
2
| 02w dma) < .
(l1,¢0]

(iii) For any B > 0,
| a5 dmia) < .
(11,¢0]

(iv) There exist 8> 0 and h € Hsm g such that h(ly) = co and |myp(l1)] < oo.
(v) Imn(l1)| < 0o for any >0 and h € Hs m k3

Proof. Since 1y is an (s, m, k)-entrance point, |my(l1)| < oo and |Dsga(l1,8)| €
(0,00) for B > 0 (see [5, Section 4.6]). Therefore (i)<(ii)<(iii) follows.

Let h € Hsm,kp3- Since h can be represented as a linear combination of
gi(+,B),1=1,2, and g2(l1, B) = o0,

h(ly) =00 & h(z) = Crgi(x, B) + Cag2(x, 8) with C; > 0 and Cy > 0.
Therefore (ii)< (iv)<(v) follows. O

Remark 2.7. If kK # 0 or g > 0, then
/ g1z, B2 dm(z) < 0o, ga(11, ) = 00, [ Dagalln, B)] € (0,00).
(llvco]

If k=0 and 8 =0, then

02 if S(lz) = 00,

g1(2,0) =C1,  g2(2,0) = {02{8(12) —s(z)} if s(ly) < oo,

where Cy and Cy are positive constants (see [5, Section 4.6]; see also [10, Proposi-
tion 2.1]). Therefore the lemma holds true with § > 0 in place of 8 > 0 in (iii)—(v).
In particular, if k£ # 0 or s(l2) < oo, the lemma holds true with S > 0 in place of

B>0in (ii)-(v).

Proof of Proposition 2.1. Assume that [ is an (s, m, k)-entrance point, and (2.6)
holds. By Lemma 2.6, there exist § > 0 and h € Mg,k such that h(l;) = oo
and |myp(l1)] < co. Then Iy is (sp, mp, 0)-regular by Theorem 1.1 of [9]. Therefore
p"M(t, 2, y) is represented as (2.30) with do® (\) satisfying (2.31) and P (x,N),
x € I, A > 0, the solution of the integral equation (2.4) with s, m,k replaced by
Sn, mp, 0, respectively. First we note that

(2.32) / do™(X) =0.
[0,8)
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Indeed, if [, 5 do™ (A) > 0, then by (2.29),

p(t, x, x) = ePth(z)?pM (t, x, )

> h(m)Q/ BN (1 N2 doM(N) = 00 as t — 0.
[0,8)

This contradicts the existence of lim;_, » p(t, z, ) € [0, 00).
By (2.30) and (2.32), we have

(2.33) p(t, 2, ) = /[ I ) 450,

where (2, \) = h(z)p (z, A + B) and d5()) = dyo™ (A + B). By (2.4) and
Lemma 5.1 of [10],

(2.34) Uy, A) = — 1/Dsh(ly) € (0,00),
(2.35) Dy(ly,\) = 0.

Since h(z) satisfies (2.28) and wéh) (&, A+ B) satisfies (2.4) with s, m, k, A replaced
by sp, mp,0, A + 3, respectively, we have

(2.36) Dy(y, \) — Dyp(x, \) = B(€,N) {—Xdm(€) + dk(€)}

(z,y]

for i < x < y < ls. Noting f[o 00) e M ds()\) < oo and putting ¥(z,\) =

—Dsh(l1)(x,A) and do(N\) = {Dsh(l1)}~2da()), we obtain the conclusion from
(2.33)(2.36). O

*

§3. Inverse local time for D7, .

Let D 1 be the diffusion process on I with generator G, ., 1 and with the end
point [; being absorbing whenever it is (s, m, k)-regular (i = 1,2). We denote by
p(t, x,y) the transition probability density with respect to dm.

Let h € Hsm kg and let G, m, o be the harmonic transform of G, ,, 1 based
on h. Let D, rm, 0 be the diffusion process on I with generator Gs, ;0 and with
the end point I; being absorbing whenever it is (sp, mp,0)-regular (i = 1,2). We
denote by p" (¢, z,%) the transition probability density with respect to dmy.

When I; is (sp, mp,0)-regular, it is possible to pose the reflecting boundary
condition at I; (i = 1,2). Let D}, ., o= [X(t), ngh*)] be the diffusion process on I

whose generator is G, ,,, o with domain D(G, ,,, o), that is, the end point [; is

reflecting whenever it is (sp, mp, 0)-regular (i = 1,2).
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Now we assume that Iy is (sp, mp,0)-regular. We consider the local time
1M (8, €), that is,

/ tf(X(u))du = / 1M (¢, ) dmy(€), t>0,
0 I

for bounded continuous functions f on I. We denote by 7("*)(¢) the inverse local
time (I™)~1(¢,1;) at the end point ;.
The following result is an immediate consequence of Proposition 2.3.

Proposition 3.1. Assume the following conditions hold:

(3.1) ly is (sn,mp,0)-regular and reflecting.

(3.2) sp(le) =00, or lgis (sp, mp,0)-reqular and reflecting.

Then [t (t), t > 0] is a Lévy process and there is a Lévy measure density n("*) (¢)
such that

(33) El(lh*)[e—/\T(h*)(t)] — exp{—t /00(1 _ e—)\ﬁ)n(h*)(f) d§}7
0

a9 (€) = Tim g (€,2)/{sn () — s ()},
where El(lh*) stands for the expectation with respect to Pl(lh*), and

t
/ ¢" (& a)dg = PM(on, <t), >0,z €l
0

In particular, if sp(ls) = oo, then

(3.4) ) () = / e~ do ) (3)
[0,00)
(35) = a:lyigll Dsh(z)Dsh,(y)p(h) (§7l‘7y)a f > 0.

Note that p"(¢,2,%) has the representation (2.30) and do®()) satisfies
(2.31).

Now we give a representation of n"*)(€) in terms of data corresponding to
the diffusion process D ;, k. By Theorem 1.1 of [9], Iy is (sp,, my, 0)-regular if and
only if one of the following conditions is satisfied:

(3.6) l1 is (s, m, k)-regular and h(l1) € (0, 00).
(3.7) Iy is an (s, m, k)-entrance point, h(l1) = oo, and |mp(11)] < oo.

(3.8) l1 is (s,m, k)-natural, h(l1) = oo, and |my(11)] < .
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In the case (3.6), we have the representation (2.2) with do()) satisfying (2.3). In
the case (3.7), we also have the representation (2.2) with do () satisfying (2.3) and
Yo(x, \) replaced by ¢ (x, \), which is the solution of the integral equation (2.5),
by Proposition 2.1, Lemma 2.6, and Remark 2.7.

Theorem 3.2. Let h € Hy k3. Assume one of (3.6)—(3.8) holds. Further as-
sume that 1y is reflecting and s (ly) = oo. Then (3.3) holds true, and n"*) (&) is
given by (3.4) and (3.5). In particular, if (3.6) is satisfied, then

(3.9) n")(¢) :h(zl)%*ﬂﬁ/ e~ do(N)
[0,00)

(3.10) =h(l1)?¢ P Um Dy)Dygp(E 7, y).
z,y—l1

If (3.7) is satisfied, then

(3.11) nh*)(€) :Dsh(ll)%—ﬁf/ e~ do(N)
[0700)

(3.12) :Dsh(ll)Qe_Bf lim p(& z,y).
z,y—l1

Proof. Since one of (3.6)—(3.8) holds, (3.1) is satisfied. Therefore by Proposition
3.1, (3.3) holds true, and n("*)(¢) is given by (3.4) and (3.5).

Assume (3.6) holds. Then we have (2.29), and by (5.14) of [10], do(™()) is a
Borel measure on [3,00) and do™ () = h(l;)?dyo (X — 3). Therefore (3.9) follows
from (3.4). (3.10) follows from (2.2), (2.4), (2.8), and the dominated convergence
theorem.

Assume (3.7) holds. Then we have (2.29), and by (5.18) of [10], do® ()
is a Borel measure on [,00) and do™(\) = {D,h(l1)}?dro(X — ). Therefore
(3.11) follows from (3.4). (3.12) follows from (2.2), (2.5), (2.9), and the dominated
convergence theorem.

Thus the proof is complete. O

Finally we consider the conditions of Theorem 3.2. The following result shows
that h € Hs i, satisfying the conditions of Theorem 3.2 must be g2 (x, 3) when-
ever [y is (s, m, k)-regular or an (s, m, k)-entrance point.

Proposition 3.3. Suppose that 1y is (s,m,k)-regular or an (s, m,k)-entrance
point, and k # 0 or B > 0. Let h € Hsmk,p. Then the following conditions
are equivalent:

(1) (2.6) is satisfied and h(x) = Cgz(x, B) for some positive constant C.
(i) (3.6) or (3.7) is satisfied, and sp(l2) = oc.
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Proof. Since the statement is obvious when [; is regular, we only prove it when [y
is an entrance point.

(i)=(ii). By Proposition 2.2, we get sp(l2) = oo. By Lemma 2.6 and Re-
mark 2.7, (2.6) is equivalent to f(ll,co] g2(x, B)? dm(x) < oo. Thus we obtain (3.7).

(ii)=(i). By Lemma 2.6 and Remark 2.7, (3.7) implies (2.6).

We note that h(x) = C1g1(x, 8) + Caga(z, 8). If C1 > 0, by using Lemma 2.2
we have

/ h(x) 2 ds(x) < 01_2/ g1(z, B) "2 ds(x) < oo.
(Co,l2) (cosl2)

This contradicts sp,(l2) = 0o. Therefore C; = 0 and Cy > 0. O

Noting Remark 2.7, we easily obtain the following result, so we omit the proof.

Proposition 3.4. Assume that the killing measure is null, 11 is (s, m,0)-reqular
or an (s,m,0)-entrance point, (2.6) is satisfied, and s(ly) < oo. Take h(z) =
C{s(le) — s(z)} (€ Hs,m,0,0), where C is a positive constant. Then (3.6) or (3.7)
is satisfied, and sp(ly) = oo.

84. Examples

In this section, we present some interesting diffusion operators including the £;’s
given by (1.3)—(1.5) and (1.9). Then, using Proposition 2.3 and Theorem 3.2,
we deduce the corresponding Lévy measure densities. Here we use the following
functions.

The Bessel function J, (z):

_ (=)'~ (=DM (/2
(4.1) J,(x) = (2) ;m

The modified Bessel functions I, (z) and K, (z):

v o0

z (z/2)"
4.2 1, == _ —1;
for n an integer,

Ko(a) = Kn(2) = (~1)" () {7 + log(x/2)}
(~1)" = (/2)" 2 (S
e D SR T O
1« n—r—l) ren
N ()
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where v is Fuler’s constant, i.e. v = 0.57721...; in case v is not an integer,
I -1
Kyfe) = T @) = @)
2 sin v

The Whittaker functions My, ;(z) and Wy, ;(x):

My (x) = 2 2e 2 M (1 -k +1/2,21 + 1, )

LH1/2 —x/ZZ Fl+)Ii-—k+n+1/2) =
T2l +n+ (1 —k+1/2) n!’

W@Ax):x”dpe’sz(4—k+l/z2l+1¢@

N(=2) My (z) + &Mkﬁl(w%

TT/2-1—k) r(1/2+1—k)
where
(a+k—1)2F
M(a,b, ) HE:bb+1 b+ k— 1Dk’
o M(a,b, x) _xfbM(l—&-a—b,Q—b,x)
Ula,b2) = S0 {m Ta—b(b) 1 T(a)T(2 —b)

Example 4.1 (Bessel process). Let us consider the following diffusion operator
on I = (0,00):

1 & 2v+14d

2 da? 2 da’

where —oo < v < oco. This is the Bessel operator, and the scale function sgy) and

the speed measure mgy) are given by

glu) =

dsgy) (z) = 22" du, dm(V)( ) = 222t da.

The killing measure is null. The end point 0 is:
e an (s; ) mgl’), 0)-entrance point if v > 0,

o (s, m{"),0)-regular if —1 < v <0,

e an (sgl’) m&”), 0)-exit point if v < —1.

Further

(4.3) /‘{ﬁ? — s @2 dmP (@) < 00 & |v] < 1.
The end point oo is (sgy), mly), 0)-natural for all v, and in particular,

(4.4) sgy)(oo) =00 & r<0.
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Let ID)(”) be the diffusion process on I with generator g ), and with the end

point 0 being absorbing if —1 < v < O We denote by p(V) (t,z,y) the transition

probability density with respect to dm1 ") Tt is known (see [1, p. 134]) that

) 1 z® +y° .y zy
o 0) = gy oxo{ =T b ()

which is represented as the Laplace transform of Bessel functions,

Pt 2, y) = / ) (2, N (y, Mol (M) A,

0

where

N, \) = T(v+1)(2/N)" 2" J,(V2Az), v >0,
LT T2 /)2 g, (VX e), v <o,

S9(3) = 2710 (v + 1)72\", v >0,
217 (w) =AM, v <o,

(see [6, p. 200]). For @ > 0 we denote by g(yl)(x a), i = 1,2, the functions satisfying
(2.11)—(2.15) with s = slu) m= m( ") and k = 0. Tt is known (see [1, p. 133]) that

ggyl) (v, ) =27 "1, (V2auwm), g Q)(x, a)=x""K),|(V2ax).
Now we consider the Lévy measure densities corresponding to the inverse local
time at the end point 0.

(1) Let —1 < v < 0. Then the end point 0 is (sgy),mgy),())—regular. We pose the
reflecting boundary condition at 0. We denote by ]D)(l”’*) the diffusion process with
generator g§”) and with the end point 0 being reflecting. We denote by ngy’*) the
corresponding Lévy measure density. Since s(ly)(oo) = 00 by (4.4), from (2.24) we
deduce

(4.5) (€)= tim Doy D, o 2,y)

z,y—0

_ [T e Oyar =2t P Loty
= e o =
/0 ! (\VI)

2) Let —1 < v < 1. Then the end point 0 is s (”),0 -regular or an

v g
s(”),m v) ,0)-entrance point, and (2.6) is satisfied in view of 4.3). For 8 > 0 we
1 1
put h(V’B = (8/2)"1/2¢) (x, B) and denote by G\"? the harmonic transform
91,2\Z Y Y1

of 91 based on hly A ¢ Hs§“>,m§“>,o,ﬁ7 that is,

wpy L& (1 KL(\/Tx)}d
9 2dx2+{2x+mfg(mx) dz’
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which is (1.3). Note that G\"”) = G{™"") The scale function s and the speed

(V7ﬁ)

measure m, are given by

dsgy’ﬁ)(x) = h(”’ﬁ)(;zc)_2 ds(u) (x), dm(”’ﬁ)(x) = hgy’ﬁ) (z)? dmé’/) (x).

By Proposition 3.3, (3.6) or (3.7) is satisfied, and s (8) ( ) = 0o. The end point 0 is

(sgy’ﬁ), mgy’ﬁ), 0)-regular. We consider the diffusion process Dﬁ”’ﬂ’*)

g§”’ﬁ) and with the end point 0 being reflecting. Let n§”’ﬁ’*) be the corresponding

with generator

Lévy measure density.

(2-1) Assume v = 0. Since Ds(mhgo’m(O) = —1, (3.11) implies
1
(4.6) ngo‘ﬁ’*)(f) = e_’Bg/ e_é)‘a§())()\) d\ = —e P8,
0
(2-ii) Assume —1 < v < 0. Since h&”ﬁ)(o) =T(|v|)/2 € (0,00), (3.9) leads to

(4.7) n{"P(€) = h{"7 (0)%e P / e~ ot (A) dA
0

= 27 VI=IP([y| 4 1)~ (WD =BE,
(2-iif) Assume 0 < v < 1. Since G\"?) = GI™"?) by using (4.7) we get
(48) n{" P (&) = n{T (&) = 27T (v 1) e

(4.6)—(4.8) show (1.6). As mentioned in Section 1, (1.6) was obtained by C. Donati-
Martin and M. Yor [2] (see also [11]).

(3) Let 0 < v < 1. Then sgy)(oo) < 00 by (4.4). Therefore Proposition 3.4 leads to
a special case corresponding to 8 = 0.
We put hgu,o) (x) = {sgu)(oo) - sgy) (m)}/{sgy)(oo) - sgu)(l)} = 72", Denote

by g§”'°> the harmonic transform of g§”) based on hgy’o) €EH o, » 0.0° that is,
1 1 %
(1/ 0 df —2V + 1 i
91 dz? + 2¢  dx’

1
2
g (v,

We note that this coincides with . The scale function s; 9 and the speed

measure mg 0 are given by

ds(lu’o) (x) hg »0) (z)2 dsgu) (z) = 2* 1 du,
dmgu’o) (x) = hg »0) (z)? dmlu) (z) = 2272 da.

By Proposition 3.4, (3.7) is satisfied, and sgy’o)(oo) = 00. The end point 0 is

(S(V,O)7 mgu,O)’ 0) (v,0,%)

1 -regular. We consider the diffusion process Dy with generator
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Qi”’o) and with the end point 0 being reflecting. Let n(ly’o’*) be the corresponding
Lévy measure density. Since g§”’0) = §_,,)7 (4.5) yields

v,0,% —|—v —1¢—(]—v —v v —v—
0(E) = 211 D () <o g,

which coincides with n{™*.
Example 4.2 (Radial Ornstein-Uhlenbeck process). Let us consider the follow-
ing diffusion operator on I = (0, 00):

(V’H)—lﬁ—i— 2V+1 i
27T 9 da? 2z B

where —0o < v < oo and xk > 0. This is a radial Ornstein—Uhlenbeck operator,

(v:k) ~)
2

and the scale function s and the speed measure my " are given by

dsg”n)(a:) =z~ lere’ gy dmgj’”)(x) = 2t o
The killing measure is null. The end point 0 is:
o an (s, m{"™ 0)-entrance point if v > 0,
o (58" m{"" 0)-regular if —1 < v <0,
e an (sgy’n),mgy’n),O)—exit point if v < —1.

Further
o () (%)
(4.9) /0 {557"(1) — 55" (2)}2 dmy""™ () < 00 & |v] < 1.

The end point co is always (5(2”"@), m(QV’K), 0)-natural for all v, and

(4.10) s (00) = o0.

Let Dé”’k") be the diffusion process on I with generator gg”””, and with the end

(v:)

point 0 being absorbing if —1 < v < 0. We denote by ps "’ (t,z,y) the transition

(v:%)

probability density with respect to dms ™. It is known (see [1, pp. 139-140]) that
(4.11)  pY(t, 2, y)

K ke "t (22 4 y?) KTy
= ——" 1)t — 1 .
2zvyY sinh(kt) exp{/i(y +1) 2sinh(kt) } vl (sinh(,‘it))

By (4.11), we see that

(4.12) iigbpgy"{)(t,%y) = pgu) (t,x,y).
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¢ (@) = s (x) and lim,,_omy"™ (z) = m{")(2) for = € I, (4.12)
also follows from Lemma 5.2 of [8]. Further we note the following: if —1 < v < 0,

Since lim,_,0 S5

(413)  lim D o, D, 05" (€, 2.y)

z,y—r
V41
o VLR N e
F(]) \ sinh(rg) ’

while if v > 0,

1 K v+1
4.14 lim p&® =271 e
( ) 711}11)1010 (& 2,y) T'(v + 1) \ sinh(k¢) ‘

For a > 0, we denote by gg ZK)( a), i = 1,2, the functions satisfying (2.11)—(2.15)
with s = 5(2V ") = méy ) and k& = 0. It is known (see [1, p. 139]) that

lvl/2
(v,k) — o —v—1_krz?/2 2
921 (:0) = G DA )Y © Mg ()
vl/2-1/2
o) _ K L . GRS 2
gog (T,a) = STl ( 5 ~ 3 + 5 )% e W7ﬁ ”'51-,%(’% ).

Now we consider the Lévy measure densities corresponding to the inverse local
time at the end point 0.

(1) Let —1 < v < 0. Then the end point 0 is (ss (r), (V ©) ,0)-regular. We pose

(un*)

the reflecting boundary condition at 0. We denote by ID)2 the diffusion process

with generator Q’é”"{) and with the end point 0 being reflecting. We denote by
ng"“’*) the corresponding Lévy measure density. Since sé”"{)(oo) = oo by (4.10),

from (2.24) and (4.13) we derive

(4.15) n$" () = lim D (9 D e h)(y)p(y (& 2, y)

z,y—0

|V‘ K |v|+1
— 2—\V|+1 v eﬁ(l/-‘rl)&'
(D \smhGeg)

In view of Theorem 2.4 we get

lim n""" (€) = n{"" (€).

k—0

We also note that this can be directly obtained from (4.5) and (4.15).

(2) Let —1 < v < 1. Then 0 is (s, (v:5) mg/ﬁ),O) regular or an (ss ("”) (”N) ,0)-
entrance point, and (2.6) is satisfied in view of (4.9). For 8 > 0 we put h o 5 ( ) =
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(ﬂ/Q)IVI/Qgé’V;) (z,8) and denote by G{""*” the harmonic transform of G§""*) based

on hgj"{’ﬁ) S Hs“*“) that is,
2

m$.0,8°

/ 2
(v,5,8) __ 1 d +{ 1 v - V+17|;(I€LL‘)} d

+
— 49 il
2 de 2z + HxW ﬁ+u 1|L(H$2) dx’
2 02

(v,

(V H7ﬁ)

which is (1.4). The scale function s ) and the speed measure Mg are given

by
dsy""™ ) (x) = by (2)72 dsy " (), dmé”’”’ﬁ)(w):héy’”’ﬁ)(x)Qdmg”’”)(x).

By Proposition 3.3, (3.6) or (3.7) is satisfied, and séy’n’ﬁ)( ) = oo. The end

point 0 is (s m{"*" 0)-regular. We consider the diffusion process D(V w:B%)

with generator Gy~ ﬁ ) and with the end point 0 being reflecting. Let néy " ﬁ *) be

the corresponding Lévy measure density.
(2-1) Assume v = 0. Since D 5O K)h(o ) (0) = —1 by [7, Problem 17, p. 279] and
recursion (see [6, p. 73]), (3. 12) and (4.14) imply
(4.16) néo"{’ﬁ’*)(f) =D 0.x) héo’ﬁ’ﬁ)( 0)%e —Bg hm p (5,:1: Y)
2

I NN )T
2sinh(kE)

(2-1ii) Assume —1 < v < 0. Since hé”"i’ﬁ) (0) =T(|v])/2, (3.10) and (4.13) imply
PN RS
@i g = ) () e
K

(2-iii) Assume 0 < v < 1. Since Ds@,m)héy’ﬁ’ﬂ) (0) = —I'(v + 1) by recursion (see
2
[6, p. 73]), (3.12) and (4.14) imply

(418)  ny (€)= Db (0% lim py (€ )

v+1
K
_ 2—1/—11'\ 1 {H(V"Fl)_ﬁ}f.
v () ¢

(4.16)—(4.18) show (1.7). As mentioned in Section 1, (1.7) was obtained by
C. Donati-Martin and M. Yor [3] in the case —1 < v < 0.

By using one of the limit theorems of [1, p. 640], we see that lim,,_¢ 92 3 (33 B)
—g%VQ)( ,B), and hence lim,;_,¢ héyﬁﬁ)( )—hgy B)( ), im0 sé Hﬁ)( )=s gl’ B)(:r)
and lim,_o m$""™ (z) = m{"”(z). Theorem 2.4 yields

(4.19) lim ny"™" (€) = n{"P ) ().

K—0

(4.19) also follows from (4.6)—(4.8) and (4.16)—(4.18).
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We finally consider the special case 3 = (v + 1) > 0. Then gé”’“’ﬂ) reduces

e 1 & 1 W w252\ d
g£7 ’ ( +1)):77+ _7+2ﬁ:x O)‘ |/2 _
2 da? 2x Wo, v 2(k2?) ) dx

1 { 1 Kfu/z(mfz/?)} d

T2 T\ 3z TR p(ra?)2) f da

to

where we used [7, Problem 19 in p. 279]. By (4.16)—(4.18), the Lévy measure

density corresponding to the inverse local time at 0 for ]D)g”’ﬁ”ﬁ(yﬂ)’*) is

lv|+1
V,K,k(V ¥ e g
R e e N (T 1)<Sinh(f€£)) .

Example 4.3 (Radial Ornstein-Uhlenbeck process). Let us consider the follow-
ing diffusion operator on I = (0, 00):

ey _ L (w41 d
Gs _2dx2+ 2z + ke dz’

where —oo < ¥ < oo and k > 0. This is also a radial Ornstein—Uhlenbeck operator,

and the scale function s$"*) and the speed measure m{"™ are given by

ds{""(x) = 2= Le ™ dx,  dm{" (z) = 202 e da
The killing measure is null. The end point 0 is:
o an (s¢™ m{"™ 0)-entrance point if v > 0,
o (sg”’ﬁ),mg”’ﬁ),O)—regular if -1 <v<0,
e an (sé"’ﬁ),mg/’ﬁ), 0)-exit point if v < —1.
Further
1

(4.20) / (5 (1) = 88 ()12 dm™ (@) < 00 & |y < 1.

0

The end point co is always (sgj’”), mgj’”), 0)

-natural for all v, and
(4.21) s (00) < o0.

Let ]D)i(,)""{) be the diffusion process on I with generator g;””), and with the end

(v,k)

point 0 being absorbing if —1 < v < 0. We denote by p3 (¢, z,y) the transition
probability density with respect to dm:g”’ﬁ). It is known (see [1, pp. 139-140]) that

(4.22)  p{™ (¢, ,y)

K ket (22 4 y?) KTy
- " el )t — I .
2zyY sinh(kt) exp{ Fv+1) 2sinh(kt) } v <sinh(ﬁt)>
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By (4.22),
(4.23) lim pg’"{) (t,z,y) = pgy) (t,x,y).
k—0

Since lim,;_,o séy’n) (x) = sgy)(x) and lim,_,0 m:(,f””)(x) = mgy)(a:) for z € I, (4.23)
also follows from Lemma 5.2 of [8]. In the same way as for (4.13) and (4.14), we
find that if —1 < v <0,

(4.24) lim D ), D o, )pg (& 2,y)

x,y—0
[v]+1
:2—|u\+1ﬂ _ e~ F(r+1)E
T () \ sinh(x€) ’

while if v > 0,

1 K v+1
4.2 li ‘Vv“i) _ 2—1/—1 —K(V—‘rl)f.
(4.25) syso 3 (&2.9) I'(v+1) <sinh(/€§)> ¢

For a > 0 we denote by gél”f)(a:, a), i = 1,2, the functions satisfying (2.11)—(2.15)
with s = s m =m{" and k = 0. It is known (sce [1, p. 140]!) that
vl

(v,K) _ —v—1,_—rz?/2 2
931 (00) = S DR (T ¢ Mes-et i (5T
9537 (x. )

klvl/2—1/2 <V|

= —v—1,—rz?/2 2
T 91-vl/2glvI/2 T3 ++1) e W o v i (k27).

2 2 2

Now we consider the Lévy measure densities corresponding to the inverse lo-
cal time at the end point 0. We assume —1 < v < 1. Then the end point 0 is
(s:(;’"{),mg’"{),O)—regular or an (séy’“),méy’“),O)fentrance point, and (2.6) is satis-

fied by (4.20).
(1) For 8> 0 we put by (z) = (8/2)"/2gy's" (-, B) and denote by G5 the

harmonic transform of Q3V’”) based on hé”’”’ﬁ) € H ) v g g5 that is,
3 s g )

gSVﬁwB) _

1 & 1 W v (k2®)y
2d 2 d.’E’

which is (1.5). The scale function sgu’”’ﬁ)
by

dsy" ) () = WY (@) 2 ds§ ) (@), dm 0 () = WY ()2 dmi ) ().

and the speed measure m:(,:j’“’ﬂ ) are given

I Misprints in [1, p. 140]: minus signs are missing from exponents of Green functions in the
case v < 0.
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By Proposition 3.3, (3.6) or (3.7) is satisfied, and s{"""(c0) = oco. The end

g”’ﬁ”g), mgj’””g), 0)-regular. We consider the diffusion process ID)&V’K’B’*)

:(iVM%wB,*) be

point 0 is (s

v,k B

with generator Q?(, and with the end point 0 being reflecting. Let n

the corresponding Lévy measure density.

(1-i) Assume v = 0. Since Ds(o,m)hgo"{’ﬁ)(()) = —1 by [7, Problem 17, p. 279] and
3

recursion (see [6, p. 73]), (3.12) and (4.25) imply

(4.26) n§"" P (€) = D 0.0 b (0)27% Tim p§ (€, 2,y)
3 z,y—0
A GO IS
2sinh(k¢)

(1-ii) Assume —1 < v < 0. Since hé”’“’ﬁ)(O) =T(|v])/2, (3.10) and (4.24) imply
R Bx) ey _ 9—v|-1 K e {=r(v+1)-B}¢

4.2 o =277 +1 TR ES

( 7) n3 (5) (|V| )<Slnh(:‘i£)> €

(1-ili) Assume 0 < v < 1. Since D _(.x) hg”n’ﬁ) (0) = —=T'(v + 1) by recursion (see
3

[6, p. 73]), (3.12) and (4.25) imply

(4.28) ng P (€) = D 0.0 by 7 (0)%7P Tim pi™ (€ 2, y)

xT,y—r

v+1
— 9—v-Ip Y A {—r(v+1)-B}¢
v () ¢

By one of the limit theorems of [1, p. 640], we get lim, .o gé’jz’“)(m,ﬁ) =
ng)(x,ﬂ), and hence lim,_q sgu’n’ﬂ)(:z:) = s(ly’ﬁ)(x) and lim,_,q mgy’”’ﬁ)(x) =
mgy’ﬁ)(m). Theorem 2.4 yields

lim n{""" ) (&) = n{"7) (€).

k—0

This also follows from (4.6)—(4.8) and (4.26)—(4.28).

(2) Since sé”’“)(oo) < oo by (4.21), Proposition 3.4 leads to a special case corre-
sponding to 8 = 0. Put héy"{’o)(x) = {séy’ﬁ)(oo)—sé”’n)(x)}/{séu’n)(oo)—sgu"{)(l)}.
Denote by gg””’“’o) the harmonic transform of gg”’“) based on hy"™" €
H ) that is,

s&,

m$,0,0°

gé”#@o) —

2 dx? + +h dr’

1 iz 2v+1 B g~ Qvt1) g—ra? d
2 f;o y—(2V+1)e—K?42 dy

The scale function 55(5”’”’0) and the speed measure mg"’n’o) are given by

dsy " () = h§" O ()2 ds§ " (@), dmi 0 (@) = b0 (@) dmf (a).
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By Proposition 3.4, (3.6) or (3.7) is satisfied, and s{""% (c0) = co. The end point
0 is (sg’j’ﬁ’o), mgy’”’o),O)—regular. We consider the diffusion process ]D)é"’”’o’*) with
generator G and with the end point 0 being reflecting. Let n{""%*) be the
corresponding Lévy measure density.

(2-i) Assume 0 < v < 1. Since Dsgu,n)héy’”’o)(()) = —{s{""(c0) = s (1)}71,
(3.12) implies

v+1
(v,,0,%) . (v,k) (v,k) —20—v—1 1 K —k(v+1)¢
_ _ 1)} 22
g 0(€) = {537 (00) — 537 (1)} T(v+1) (sinh(fsé)) ‘ ’

where we used (4.25). We note that
(4.29) lim n{ 0 (6 =2 vt L

On the other hand,

. (v,k,0) . 2v
tim K0 (2) = 2%,

and hence lim,_¢ séy’ﬁ’o) (z) = s(l_y)(x) and lim,_,q mé”"q”o) (z) = mg_”)(x).
In the case 0 < v < 1, the end point 0 is (sg_”), mg_y), 0)-regular, and hence
by Theorem 2.4,
: V,#,0,% —v%) —v V_oe—v—
G = <
This shows (4.29) with 0 < v < 1.
In the case v = 0, the end point 0 is an (sgo)7 mgo), 0)-entrance point and hence

the local time at 0 does not exist.

(2-ii) Assume —1 < v < 0. Since h:(,f""{’o)(O) € (0,00), by (3.10) and (4.24) we get

[v]|+1

(135,0,%) o\ 7 (1,5,0) (N 26— |v|+1 v K —r(v+1)¢

4. =h 2 _— .
(4.30) 3 (&) 3 (0) ['(Jv]) \ sinh(k¢) ¢

Since limnqohéy’ﬂ’o)(()) = 1, we have limﬁﬁosg"’ﬂ’o)(x) = sgu)(x) and

lim 0 mgy’ﬁ’o)(x) = m(ly)(:n). By Theorem 2.4 and (4.5),
||

. (v,k,0,%) _ (v,%) _ —|v|+1 —|v|-1
lli)%nS (6) ny (5) 2 F(|V|)€ :

This also follows from (4.30).

Example 4.4 (Squared Bessel process). Let us consider the following diffusion
operator on I = (0, c0):

2

W d d
Q4 72xﬁ+(2u+2)%7
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where —oo < v < co. This is the squared Bessel operator, and the scale function

s\ and the speed measure m\"”) are given by

dsflu)(ac) =2 V", dmfly)(x) =272 dx.
The killing measure is null. The end point 0 is:
(v v

e an (s;’/,my ), 0)-entrance point if v > 0,

° (si”),mff),O)—regular if —1<v<0,

e an (sff%mff’% 0)-exit point if v < —1.
Further
1
(4.31) / (901) = s (@2 dm (@) < 00 < || < 1.
0

The end point oo is (sff), mff), 0)-natural for all v, and

(4.32) sflu)(oo) =00 & v<0.

Let DY) be the diffusion process on I with generator G\, and with the end
point 0 being absorbing if —1 < v < 0. We denote by pf;') (t,z,y) the transition

probability density with respect to dmi”). It is known (see [1, p. 136]) that

v 1 r+y . /Ty
pz(; )(tal’»y) = texp{%}(a:y) /2I|u\ <t>

In the same way as for the spectral representation of pgl’) (t,x,y) in Example 4.1,

we get

o0
Pt 2,y) = / M) (@, M) (g, Mol () dA,
0

where

(V)( A) = v+ 1)(2/)\)u/2x—u/2jy(m)’ V>0,
WD = VB, <0

)3 = 27T (v +1)72\, v >0,
) 27 M (p) AL v <.
For a > 0 we denote by gf;fi) (x, ), i = 1,2, the functions satisfying (2.11)—(2.15)

with s = sfly), m = mflu) and k = 0. It is known (see [1, p. 135]) that
gz(l’yl) (z,a) = x*”/sz(\/ 2az), gé(:Q) (z,a) = x*”/2K|V|(\/ 2aur).

Now we consider the Lévy measure densities corresponding to the inverse local
time at the end point 0.
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(1) Let —1 < v < 0. Then the end point 0 is (s, m{”, 0)-regular. We pose the
reflecting boundary condition at 0. We denote by ]D)El”’*) the diffusion process with
generator gi”) and with the end point 0 being reflecting. We denote by nf;”*) the
corresponding Lévy measure density. Since s( )( ) = 0o by (4.32), from (2.24) we

derive
(4.33) n{ (€)= lim Dy Dy 0 (€ 2. )
_ [T e oo yan = 2 M emmen,
/o ! L(|v])

(2) Let =1 < v < 1. Then 0 is (sff),mi ),O)—regular or an (sfly),mff),O)f
entrance point, and (2.6) is satisfied in view of (4.31). For § > 0 we put
hP () = (ﬂ/Q)IV\/nglVQ)( ,3) and denote by G{""? the harmonic transform of

Qil’) based on hi”’ﬁ) € Hsm i) 0,87 that is,
(v.8) _ K’ K, (V2px) d
2914 +/2
4 d a2 { * K, (\/287)

The scale function sff”ﬁ ) and the speed measure mfly’ﬁ ) are given by

ds{"P (@) = h{D (@) 2 ds{ (@), dmlP (@) = B (@) dml ().

By Proposition 3.3, (3.6) or (3.7) is satisfied, and si”’ﬂ)(oo) = 00. The end point 0 is

(sff"ﬁ ), mgjﬁ ), 0)-regular. We consider the diffusion process Dg”ﬁ *)

gi”’ﬁ) and with the end point 0 being reflecting. Let nfly’ﬁ‘*)

with generator
be the corresponding
Lévy measure density.

(2-1) Assume v = 0. Since D§<o>h510’5) (0) = —1/2, (3.11) implies
“4

* 1 1
(4.34) nd0P) (g) = ZemBE / e (N dr = —e P
4 4€
[0,00)
(2-ii) Assume —1 < v < 0. Since h( ”6)( 0) =T (-v)/2, (3.9) leads to
(4.35) n{ P (g) = h{?(0)%e P /0 e o (A) dX

= 2720 (|v| + 1) Le P8,
-11) Assume 0 < v < 1. Since =g, , by using (4. we get
2-iii) A 0 1. Since G = g{™? 1 4.35
(4.36) n{ () =nT () =27 T 1) e

(3) Let 0 < v < 1. Then 551”)(00) < oo by (4.32). Therefore Proposition 3.4
leads to a special case corresponding to § = 0. We put hfl”’o) (x) = {551”)(00) —
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s8(2)}/{sV) (00) = 58 (1)} = 277, Denote by G\"* the harmonic transform of

gﬁ”) based on hfly’o) €H o), oo that is,
4 Ty 75U,
2
(v, 0) d d
— —2 2)—.
Z dx2 + (2w )dx

We note that this coincides with g{”). The scale function sz(ly’o) and the speed

(ZI,O) 1
measure m, ~’ are given by

dsflu’o) (z) = hff’o) (z)~2 dsiu) () =2 Vdo = dsfl_y)(x),
dmi”’()) (x) = hE;”“) (z)? dmff') () =27t ™" dx = dmf{y)(x).

By Proposition 3.4, (3.7) is satisfied, and sfl"’o)(oo) = 0. The end point 0 is

(sf1 0 mfl" 0) ,0)-regular. We consider the diffusion process D( *)

QYO) and with the end point 0 being reflecting. Let nfly 0%) be the corresponding

with generator

Lévy measure density. Since gi”’o) = Qify), (4.33) yields

v

n{ OO =2 e =i,

Example 4.5 (Squared radial Ornstein—Uhlenbeck process). Let us consider the
following diffusion operator on I = (0, c0):

v,) &? d

Gs —2xﬁ+(2y+2—25x)dx

where —oo < ¥ < oo and k > 0. This is a squared radial Ornstein—Uhlenbeck

operator, and the scale function séy’”) and the speed measure mé”’ﬁ) are

dsgy’n) (z) = 27" e da, dmgy’n) (z) =27 'a¥e " da.
The killing measure is null. The end point 0 is:
e an (séy’m), mgj’ﬁ), 0)-entrance point if v > 0,
o (sé"’ﬁ),méy7”),0)—regular if -1 <v <0,
e an (séy’”),méy’”), 0)-exit point if v < —1.

Further
(4.37) /O{Sg'*”)u) @)V dml) (2) < 00 & v] < 1.

The end point oo is (s, m{"" 0)-natural for all v and

(4.38) 50 (00) = o0.
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Let ID)(”’“) be the diffusion process on I with generator gé” %) and with the end
point 0 being absorbing if —1 < v < 0. We denote by p(l’ (¢, z,y) the transition

probability density with respect to dm{”™. It is known (see [1, p. 142]) that
(439)  p(t,x,y)

—Kt /
r (:vy)—”/Qexp{n(l/—l—l)t— e <m+y)}1y|( ,K Y )

- sinh(kt) 2 sinh(kt) sinh(kt)

By (4.39),
(4.40) lim p( W (t,z,y) =i (t,2,y).

éy’m) (x) = sfly)(x) and lim,_,q mé”’ﬁ)(:c) = miy)(:z:) for x € I, (4.40)
also follows from Lemma 5.2 of [8]. Further we note that if —1 < v <0,

Since lim,_.q s

(441) hm D (u K)( )D (v, »-f)( )p5 (57 ay)

z,y—
pl+1
S L B S R OO
F() \ () ’

while if v > 0,

1 K v+1
4.42 _— — v s HE,
( ) . Lm s (& T,y) T(v+1) <sinh(/€§)> ‘

For o > 0 we denote by géf’i’n)(x, a), i =1, 2, the functions satisfying (2.11)—(2.15)
with s = s, m = mg" and k = 0. It is known (see [1, pp. 141-142]) that

Ivl/2
(v,K) _ o —rtl K /2
951 (3:0) = SR Darzs 0 ¢ Mo e (),
vl/2-1 . (Iv]—1)/2
(v,%) _ 2 K L L I 2 P S S
5.9 (z,a) = NEIE (2/1 5 "3 T2z e W_ﬁ u;17%(ﬁx).

Now we consider the Lévy measure densities corresponding to the inverse local
time at the end point 0.

(1) Let —1 < v < 0. Then the end point 0 is (sé”’”),mé”’”),0)—regular. We pose

the reflecting boundary condition at 0. We denote by D{""**) the diffusion process

with generator gg””*)

(v,,%)
N5

and with the end point 0 being reflecting. We denote by
the corresponding Lévy measure density. Since séy’ﬁ)(oo) = oo by (4.38),
from (2.24) and (4.41) we derive

néu,m*)(g) = lim D N f;)(w)D (v, ﬁ)(u)p5 (f,x Y)

z,y—0

_ 271Vl K |V‘+1en(u+1)§
L'(Jv]) \sinh(x€) '
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(2) Let =1 < v < 1. Then 0 is (s, m" 0)-regular or an (s, m{""* 0)-
entrance point, and (2.6) is satisfied in view of (4.37). For f > 0 we put
hmB) () = (ﬂ/2)|"‘/2gé”2”)(z,ﬁ) and denote by G&*" the harmonic transform

of géu,n) based on hél/ 5,3) c Hséu’m),méuﬂ),o,,@7 that iS,
2 w’, o (k)
(v,k,B) d £+t L d
=2r——= +4 el
5 xd.]?Q + H:L’W £+ N ‘L( ) e
25 2
v.r.) )

The scale function sy and the speed measure my are given by

dsg"" P (@) = B (@) 2 s (@), dm0 (@) = B (@) dmf ) (@),

By Proposition 3.3, (3.6) or (3.7) is satisfied, and sg””/”’ﬁ)(oo) = o0. Therefore

the end point 0 is (s (v.r,8) éy’ﬂ’ﬂ),O)
]D)(V K, B,%)

(e

-regular. We consider the diffusion process

gé”a'ﬁvﬁ)

with generator and with the end point 0 being reflecting. Let

) be the corresponding Lévy measure density.

(2-1) Assume v = 0. Since D 50 h)h(o " ﬁ)( 0) = —1/2 by [7, Problem 17, p. 279] and
recursion (see [6, p. 73]), (3. 12) and (4.42) imply

(4.43) n{ B (¢) = m e(R=B)E

(2-ii) Assume —1 < v < 0. Since b7 (0) = T(|v])/2, (3.10) and (4.41) lead to

Jvl+1
4.44 rB) ey = 9=Ivl=2p nf—"r (k(r+1)=B)E
( ) N5 ) (v +1) Sinh(€) e

(2-iii) Assume 0 < v < 1. Since D N @h vo#,B) (O) = —TI'(1 4+ v)/2 by recursion (see
[6, p- 73]), (3.12) and (4.42) 1mply

v+1
4.4 (v,k,B,%) — 2*V*2F 1 k (N(VJFl)*ﬁ)g.
(4.45) e 9 (v+1) sinh (k&) ¢

By using one of the limit theorems of [I, p. 640], we see that
lim,_,q géuf)(sc,ﬂ) = g42(a: B), and hence lim,_,q héy’ﬁ’ﬁ)(x) = hflu’ﬂ)(x),
lim,; o s(”'iﬁ)( ) = Ef ﬁ)( ) and lim,_,o m( '{B)( ) = mff’ﬁ)(x). Theorem 2.4
yields
(4.46) lim {7 (€) = n{"P(€).

k—0

(4.46) also follows from (4.34)—(4.36) and (4.43)—(4.45).
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We finally consider the special case 3 = k(v + 1) > 0. Then gg”’”’ﬁ) reduces

to
> W 0(h2) d
(v,k,k(v+1)) d 0,lv|/2
=2r— +4drvr—""""———
g5 deZ T Ak WO,|V|/2(HI) dx
d? K\ly|/2(m?/2) d
=2r— 1 ——
e +{ +ImKV|/2(/€x/2)}dx’

where we used [7, Problem 19 in p. 279]. By (4.43), (4.44), and (4.45), the Lévy
(ore (1))
is

5

measure density corresponding to the inverse local time at 0 for D
( (1)) w2 K [v|+1
447 V,R,K(\V 3k — 27 v|— F 1 v .
(a7) © 1+ (g )
Example 4.6 (Squared radial Ornstein—Uhlenbeck process). Let us consider the
following diffusion operator on I = (0, 00):
v & d

gé ):2x@+(2u+2+2/€x)%,

where —0o < v < 0o and k > 0. This is also a squared radial Ornstein—Uhlenbeck

(vsr) )
6

operator, and the scale function s and the speed measure mg "™ are given by

dsé""'{) (z) =2 " te " da, dmé""'{) (z) =27 2" e " da.
The killing measure is null. The end point 0 is:
e an (séu’ﬁ), mé’j’ﬁ), 0)-entrance point if v > 0,
° (sé”’ﬁ),mé”’ﬁ),O)—regular if —1<v<0,
e an (sé”’n),mé”’n),O)—exit point if v < —1.

Further

1
(4.48) /0 {séy’“)(l) - sg’"{) (z)}? dmg’"{)(m) <o & |y <L

The end point oo is (sg”"ﬁ")7 mé”’n)7 0)-natural for all v and
(4.49) s (00) < o0.

Let ID)g/’“) be the diffusion process on I with generator Qé"’ﬁ), and with the end

point 0 being absorbing if —1 < v < 0. We denote by péy’n) (t,2z,y) the transition

probability density with respect to dméy’n). It is known (see [1, p. 142]) that

4.50)  p{""(t, 2, y)

= i (o) esn{ w1 = Sl (V).
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By (4.50),

(4.51) lim pi" " (1, 2,y) = pi” (1,2, y).

Since lim,_, sé”’ﬁ)(x) = 34(1”) (x) and lim,_,o méy’ﬁ) () = mff)(sc) for x € I, (4.51)
also follows from Lemma 5.2 of [8].

In the same way as for (4.41) and (4.42), we find that if -1 < v <0,

(4.52) im D o.m ) D 0 w(y)p@- (€, @,y)

x,y—0 »
v|+1
g M (s o FF1E
T (o)) \ sinh(r€) ’

while if v > 0,

1 e v+1
4.53 li =277 —rHDE,
(4.53) v }onpﬁ V(& y) = T(v+1) (mh(%)) ¢

For a > 0 we denote by gé”f) (z,a), 1 =1, 2, the functions satisfying (2.11)—(2.15)
with s = sé” ) m = mé’j ) and k = 0. It is known (see [1, p. 142]?) that

alvl/2 v+l

(v,k) _ —kz/2
go1 (0:0) = SRR Y s (50,
|v[—1
v,k K2 |V| 1 —KT
9é,2 (@) = 21Z'aZ'F( 2 *3 5 T ? + 1) ¢ /2W—i—”f“,%(m>'

Now we consider the Lévy measure densities corresponding to the inverse local
time at the end point 0.

In the following we assume —1 < v < 1. Then the end point 0 is
(séy ") méy H),O)—regular or an (sé”’n),mé”’n),O)

isfied in view of (4.48).
1) For g > 0, we put RB) (1) = B/2 |”V2g(”"€) x,3) and denote by Q(V’K’ﬁ)
6 6,2 6

-entrance point, and (2.6) is sat-

the harmonic transform of gé”’*” based on hé”’ﬂ’ﬂ) IS Hséu,mméu,x)ﬁﬁ, that is,
w’ (kx)
d? _ B _ vl |v| d
g(”“ﬁ) = 20 —— + 4k 2k 2 >
dx? W_2£_UT+1,|V\(KJ$)dx
(v,k,8) (v,k,8)

The scale function sg are given by

ds§"™(x) = h§™ P (@) 2 dsg (@), dmg™ (@) = bGP (2)? dmg™ (a).

and the speed measure m

2Misprints in [1, p. 142]: there are unnecessary minus signs in exponents of Green functions
in the case v < 0.
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By Proposition 3.3, (3.6) or (3.7) is satisfied, and s{"""(c0) = oo. The end

point 0 is (sé”’”’ﬁ), méy’”’ﬁ), 0)-regular. We consider the diffusion process ]D)g"”’ﬁ’*)
with generator Qéy’ﬁ’ﬁ) and with the end point 0 being reflecting. Let ngm’ﬁ’*) be

the corresponding Lévy measure density.

(1-i) Assume v = 0. Since D .0 h§"™? (0) = ~1/2 by [7, Problem 17, p. 279] and
6
recursion (see [6, p. 73]), (3.12) and (4.53) imply
K

(0,1,8,%) (—k—=0)¢
4.54 = .
(4.54) " (€) 4sinh(/<;§)e

(1-ii) Assume —1 < v < 0. Since hé”"i’ﬁ) (0) =T(v])/2, (3.10) and (4.52) lead to

|v]+1
(v, B%) ¢y — 9—Ivl—2p k (—r(r+1)=p)¢
(4.55) ng (6 =2 (|v[+1) (Sinh(fif) e :

(1-iii) Assume 0 < v < 1. Since Ds(u,n)hgj’ﬁ’ﬂ)(O) = —I'(v + 1)/2 by recursion (see
6
[6, p. 73]), (3.12) and (4.53) imply

v+1
4.56 %) () = 277 =2P(y 4 1) [ —— (—r(v+1)-P)E
( ) e (©) (v+1) sinh(k¢) €
By one of the limit theorems of [1, p. 640], we get lim,_, géi’é”) (z,B) = gfll’)(x, B),

é”’”’ﬁ)(ac) = sfly’ﬁ) (x) and lim,_g mg”'{’ﬁ)(m) = mi ’

and hence lim,_,g s
Theorem 2.4,

o (s Bx) oy (,6,%)
ilﬂ% Ng &) =ny (€)-
This also follows from (4.34)—(4.36) and (4.54)—(4.56).

(2) Since sé”’n)(oo) < o0 by (4.49), Proposition 3.4 leads to a special case cor-
responding to § = 0. Put A" (x) = {s§""™(00) — s{""(2)}/{sy"" (00) —
s (1)}. Denote by G the harmonic transform of G{**) based on h""™?) ¢

Hséu,m)7méu,ﬁ,),o707 that is,
2 —V ,—RKT
(v,r,0) i . dz~"e i
9o = 2rgm T {2” TR e dy } &
The scale function 5((3”’“’0) and the speed measure mé”’“’o) are given by

ds" % (@) = b (@) 2 s (@), dmg 0 (@) = b (@) dmi ™ ().

By Proposition 3.4, (3.6) or (3.7) is satisfied, and sgj’ﬁ’o)(oo) = 00. The end point
0 is (séy’n’o), mé’j’ﬁ’o),O)—regular. We consider the diffusion process Dg/’ﬁ’o’*) with
generator Qé”"{’o) and with the end point 0 being reflecting. Let ng/’ﬁ’o’*) be the

corresponding Lévy measure density.
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(2-i) Assume 0 < v < 1. Since Dséy,whé”’”’o)(o) = —{s""(c0) — s (1)},
(3.12) implies

v,K,0,% V,K v,k 9y 1 K v+1 o
06 = G o0) = s O s () <

where we used (4.52). We note that
2

3 (’4”707*) — 7DV7 —v—1
(4.57) gulgb Ng &) =2 T(v+ 1)§ '
On the other hand,
. v,Kk,0 —v
fim kg™ () = 27,
and hence lim,_, sé”’n’o) S si_v) and lim,_,q mé"’”’o) = mz(x_u)'

In the case 0 < v < 1, the end point 0 is (s(_”), mi_l’), 0)-regular, and hence

1/2

. (v,k,0,%) _(—v,) -V —v—1

This shows (4.57) with 0 < v < 1.
In the case v = 0, the end point 0 is an (31(10)7 mflo), 0)-entrance point and hence

the local time at the end point 0 does not exist.

(2-ii) Assume —1 < v < 0. Since b (0) € (0, 00), by (3.10) and (4.52) we get

lv|+1
4. (v,K,0,%) — h(”7"i70) 0 227|l/| |V| K 7/<c(u+1)£.
( 58) Ng (5) 6 ( ) F(|l/|) Sinh(/if) €
As lim,_, hé"’ﬁ’o)(z) =1, we have lim,_, sé”’”’o) ()= sff) and lim,_,o mé”’”’o)(z)
=m\”). By Theorem 2.4 and (4.33),
v|

. (v,.,0,%) _(v*) —_ o—lv| —|v|-1
1 - = .
lim ng &) =n,"7 (=2 F(|I/|)£

This also follows from (4.58).

Example 4.7 (Brownian motion). Let us consider the following diffusion opera-
tor on I = (0,a), where 0 < a < oo:
g _ 1 &
T 2 dx?
This is the generator of Brownian motion on (0,a), and the scale function s(7a) and

(a)
7

the speed measure m- "’ are given by

ds(7a) (x) = dx, dmga) (x) = 2dx.

The killing measure is null. The end points 0 and a are both (s(7a), m(7a), 0)-regular.
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Let ]D)ga) be the Brownian motion on I with generator géa), and with the
end points 0 and a being both absorbing. We denote by pga)(t, x,y) the transition

probability density with respect to dmga). It is known (see [1, p. 122]) that

1 :
p;@ (t,z,y)=— Z et/ (20%) sin(nma/a) sin(nmy/a)
a

n=1

u41 N el 0 ok ),
0,00

where

a a . a o nm?
¢§ )(van) = ESIH(HTHIJ/G), do'g )()‘) = Z a3 A, (dA),

n=1
A = n?m?/(2a?), and §,(d)) is the unit measure concentrated at p. For a > 0, we
denote by g%) (z,a), i = 1,2, the function satisfying (2.11)—(2.15) with s = s(7a),

m=m\" and k = 0. It is easy to see that

9%

)

Viaxr _ —V2ax

(];704) =e e , g%lg)(m,a) — e\/ﬁ(a—z) _ e—\/ﬂ(a—z).

Now we consider the Lévy measure densities corresponding to the inverse
local time at the end point 0. For 8 > 0 we put h(7a)(x) = ng?g(x,ﬁ), where
C = g§a2) (0,8)~! and denote by g§“ﬁ> the harmonic transform of Qéa) based on

h;a’ﬂ) S Hsga)7mga),oﬁ, that is,
(a,8) 1 d? e2V2Bla=2) L 1 ¢
T rue VP ames 1

which is (1.9). The scale function sga,,g) and the speed measure mga’ﬁ) are given

by
dsy (@) = W0 (@) dsi (2), dm® () = W0 (@) dm{ ().

Since A (0) = 1, by Proposition 3.3, (3.6) is satisfied, and s*”(a) = co. The
(3(711»@ m(7<1,3) 1B,%)

with generator G{**”

,0)-regular. We consider the diffusion process D(7a

and with the end point 0 being reflecting. Let n{"”*) be the

end point 0 is

corresponding Lévy measure density. By (3.9),

w9 = e

o0 2.2
e daga)()\) =e P8 Z e LT 731' .
(0,00) n=1 a

This shows (1.10).
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We note that

(4.59) lim ™" (&) = \/r/2e Pee3/2,
a—r o0
Indeed, for A > 0,
2 2 Ao 2
1 1 1
dol” () = = 2 TNz T (e Lye Ly

2v/2
— —\[Ag/2 as a — 00,
3
where Ag indicates the integral part of v/2A a/7. Thus we have (4.59). We can also
show (4.59) by using Theorem 2.4. Here is a proof. Let us consider the diffusion
operator
2
e _1d d
= - — 2 _
Gr 2 da? p

dz’
(1.8) :
and the speed measure m, "’ are given by

The scale function sg’ﬁ )

dsg’ﬁ)(m) = 2V?Pe 4y, dmgT’ﬁ) (z) = 2e2V?P% 4y,

(1.8,%)

g’ﬁ)7 mg’ﬁ), 0)-regular. Let D

B)

The killing measure is null. The end point 0 is (s

be the diffusion process on (0, c0) with generator gﬁ* , and with the end point 0

being reflecting. We denote by n(f’ﬁ ’*)(f ) the corresponding Lévy measure density.

By using [10, Example 6.1] and (2.24), we have
W = [ e o) ir = TR e

As limg_ oo hga’ﬂ)(x) =e V28T Yim, o sga’ﬁ)(x) :sg’ﬁ) (x), and limg o0 mga’ﬁ)(:v)
= mg’ﬁ) (x), by Theorem 2.4 we obtain

lim nf"%*) () = n{™(g).

a—r o0
This shows (4.59).
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