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Positivity for Cluster Algebras of Rank 3
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Abstract

We prove the positivity conjecture for skew-symmetric coefficient-free cluster algebras of
rank 3.
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§1. Introduction

Cluster algebras have been introduced by Fomin and Zelevinsky in [13] in the

context of total positivity and canonical bases in Lie theory. Since then cluster

algebras have been shown to be related to various fields in mathematics including

representation theory of finite-dimensional algebras, Teichmüller theory, Poisson

geometry, combinatorics, Lie theory, tropical geometry and mathematical physics.

A cluster algebra is a subalgebra of a field of rational functions in n variables

x1, . . . , xn, given by specifying a set of generators, the so-called cluster variables.

These generators are constructed in a recursive way, starting from the initial vari-

ables x1, . . . , xn, by a procedure called mutation, which is determined by the choice

of a skew symmetric n × n integer matrix B or, equivalently, by a quiver Q. Al-

though each mutation is an elementary operation, it is very difficult to compute

cluster variables in general, because of the recursive character of the construction.

Finding explicit computable direct formulas for the cluster variables is one of

the main open problems in the theory of cluster algebras and has been studied
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by many mathematicians. In 2002, Fomin and Zelevinsky showed that every clus-

ter variable is a Laurent polynomial in the initial variables x1, . . . , xn, and they

conjectured that this Laurent polynomial has positive coefficients [13].

This positivity conjecture has been proved in the following special cases

• Acyclic cluster algebras. These are cluster algebras given by a quiver that is

mutation equivalent to a quiver without oriented cycles. In this case, positivity

has been shown in [17] building on [5, 16, 23, 24] using monoidal categorifications

of quantum cluster algebras and perverse sheaves over graded quiver varieties.

If the initial seed itself is acyclic, the conjecture has also been shown in [9] using

Donaldson–Thomas theory.

• Cluster algebras from surfaces. In this case, positivity has been shown in [22]

building on [27, 28, 26], using the fact that each cluster variable in such a cluster

algebra corresponds to a curve in an oriented Riemann surface and the Laurent

expansion of the cluster variable is determined by the crossing pattern of the

curve with a fixed triangulation of the surface [11, 12]. The construction and the

proof of the positivity conjecture have been generalized to non-skew-symmetric

cluster algebras from orbifolds in [10].

Our approach in this paper is different. We prove positivity almost exclusively

by elementary algebraic computation. The advantage of this approach is that we

do not need to restrict to a special type of cluster algebras but can work in the

setting of an arbitrary cluster algebra. The drawback of our approach is that

because of the sheer complexity of the computation, we need to restrict ourselves

in this paper to rank three. Rank three is crucial since it is the smallest rank in

which nonacyclic cluster algebras exist. Our main result is the following.

Theorem 1.1. The positivity conjecture holds in every skew-symmetric coefficient-

free cluster algebra of rank 3.

Our argument provides a method for the computation of the Laurent expan-

sions of cluster variables, and we include some examples of explicit calculation. We

point out that direct formulas for the Laurent polynomials have been obtained in

several special cases. The most general results are the following:

• A formula involving the Euler–Poincaré characteristic of quiver Grassmannians

obtained in [15, 8] using categorification and generalizing results in [6, 7]. While

this formula shows a very interesting connection between cluster algebras and

geometry, it is of limited computational use, since the Euler–Poincaré character-

istics of quiver Grassmannians are hard to compute. In particular, this formula

does not show positivity. On the other hand, the positivity result in this paper
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proves the positivity of the Euler–Poincaré characteristics of the quiver Grass-

mannians involved.

• An elementary combinatorial formula for cluster algebras from surfaces given

in [22].

• A formula for cluster variables corresponding to string modules as a product of

2× 2 matrices obtained in [1], generalizing a result in [2].

The main tools of the proof are modified versions of two formulas for the

rank two case, one obtained by the first author in [18] and the other obtained

by both authors in [20]. These formulas allow for the computation of the Laurent

expansions of a given cluster variable with respect to any seed which is close

enough to the variable in the sense that there is a sequence of mutations in only

two vertices which links seed and variable. The general result then follows by

inductive reasoning.

If the cluster algebra is not skew-symmetric, it is shown in [25, 19] that (an

adaptation of) the second rank two formula still holds. We therefore expect that

our argument can be generalized to prove the positivity conjecture for non-skew-

symmetric cluster algebras of rank 3.

The article is organized as follows. We start by recalling some definitions and

results from the theory of cluster algebras in Section 2. In Section 3, we present

several formulas for the rank 2 case when considered inside a cluster algebra of

rank 3. We use each of these formulas in the proof of the positivity conjecture for

rank 3 in Section 4. An example is given in Section 5.

§2. Cluster algebras

In this section, we review some notions from the theory of cluster algebras.

§2.1. Definition and Laurent phenomenon

We begin by reviewing the definition of cluster algebra, first introduced by Fomin

and Zelevinsky [13]. Our definition follows the exposition in [14].

To define a cluster algebra A we must first fix its ground ring. Let (P,⊕, ·) be

a semifield, i.e., an abelian multiplicative group endowed with a binary operation

of (auxiliary) addition ⊕ which is commutative, associative, and distributive with

respect to the multiplication in P. The group ring ZP will be used as a ground ring

for A.

As an ambient field for A, we take a field F isomorphic to the field of rational

functions in n independent variables (here n is the rank of A), with coefficients

in QP. Note that the definition of F does not involve the auxiliary addition in P.
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Definition 2.1. A labeled seed in F is a triple (x,y, B), where

• x = (x1, . . . , xn) is an n-tuple from F forming a free generating set over QP,

• y = (y1, . . . , yn) is an n-tuple from P, and

• B = (bij) is an n×n integer matrix which is skew-symmetrizable.

That is, x1, . . . , xn are algebraically independent over QP, and F=QP(x1, . . . , xn).

We refer to x as the (labeled) cluster of a labeled seed (x,y, B), to the tuple y as

the coefficient tuple, and to the matrix B as the exchange matrix.

We use the notation [x]+ = max(x, 0), [1, n] = {1, . . . , n}, and

sgn(x) =


−1 if x < 0,

0 if x = 0,

1 if x > 0.

Definition 2.2. Let (x,y, B) be a labeled seed in F , and let k ∈ [1, n]. The seed

mutation µk in direction k transforms (x,y, B) into the labeled seed µk(x,y, B) =

(x′,y′, B′) defined as follows:

• The entries of B′ = (b′ij) are given by

(1) b′ij =

−bij if i = k or j = k,

bij + sgn(bik) [bikbkj ]+ otherwise.

• The coefficient tuple y′ = (y′1, . . . , y
′
n) is given by

(2) y′j =

y
−1
k if j = k,

yjy
[bkj ]+
k (yk ⊕ 1)−bkj if j 6= k.

• The cluster x′ = (x′1, . . . , x
′
n) is given by x′j = xj for j 6= k, whereas x′k ∈ F is

determined by the exchange relation

(3) x′k =
yk
∏
x

[bik]+
i +

∏
x

[−bik]+
i

(yk ⊕ 1)xk
.

We say that two exchange matrices B and B′ are mutation-equivalent if one

can get from B to B′ by a sequence of mutations.

Definition 2.3. Consider the n-regular tree Tn whose edges are labeled by the

numbers 1, . . . , n, so that the n edges emanating from each vertex receive different

labels. A cluster pattern is an assignment of a labeled seed Σt = (xt,yt, Bt) to

every vertex t ∈ Tn, such that the seeds assigned to the endpoints of any edge t k t′

are obtained from each other by the seed mutation in direction k. The components
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of Σt are written as

(4) xt = (x1;t, . . . , xn;t), yt = (y1;t, . . . , yn;t), Bt = (btij).

Clearly, a cluster pattern is uniquely determined by an arbitrary seed.

Definition 2.4. Given a cluster pattern, we denote

(5) X =
⋃
t∈Tn

xt = {xi,t : t ∈ Tn, 1 ≤ i ≤ n},

the union of clusters of all the seeds in the pattern. The elements xi,t ∈ X are called

cluster variables. The cluster algebra A associated with a given pattern is the ZP-

subalgebra of the ambient field F generated by all cluster variables: A = ZP[X ].

We denote A = A(x,y, B), where (x,y, B) is any seed in the underlying cluster

pattern.

The cluster algebra is called skew-symmetric if the matrix B is skew-sym-

metric. In this case, it is often convenient to represent the n × n matrix B by a

quiver QB with vertices 1, . . . , n and [bij ]+ arrows from vertex i to vertex j.

If P = 1 then the cluster algebra is said to be coefficient-free.

The main result in this paper is on coefficient-free cluster algebras. However,

we need cluster algebras with coefficients in Section 3.

In [13], Fomin and Zelevinsky proved the remarkable Laurent phenomenon

and posed the following positivity conjecture.

Theorem 2.5 (Laurent Phenomenon). For any cluster algebra A and any

seed Σt, each cluster variable x is a Laurent polynomial over ZP in the cluster

variables from xt = (x1;t, . . . , xn;t).

Conjecture 2.6 (Positivity Conjecture). For any cluster algebra A, any seed Σ,

and any cluster variable x, the Laurent polynomial has coefficients which are non-

negative integer linear combinations of elements in P.

§2.2. Cluster algebras with principal coefficients

One important choice for P is the tropical semifield; in this case we say that the

corresponding cluster algebra is of geometric type.

Definition 2.7. Let Trop(u1, . . . , um) be an abelian group (written multiplica-

tively) freely generated by the uj . We define ⊕ in Trop(u1, . . . , um) by∏
j

u
aj
j ⊕

∏
j

u
bj
j =

∏
j

u
min(aj ,bj)
j ,

and call (Trop(u1, . . . , um),⊕, ·) a tropical semifield.
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Remark 2.8. In cluster algebras whose ground ring is Trop(u1, . . . , um) (the trop-

ical semifield), it is convenient to replace the matrix B by an (n+m)× n matrix

B̃ = (bij) whose upper part is the n × n matrix B and whose lower part is an

m× n matrix that encodes the coefficient tuple via

(6) yk =

m∏
i=1

u
b(n+i)k

i .

Then the mutation of the coefficient tuple in (2) is determined by the mutation of

the matrix B̃ in equation (1) and the formula (6); and the exchange relation (3)

becomes

(7) x′k = x−1
k

( n∏
i=1

x
[bik]+
i

m∏
i=1

u
[b(n+i)k]+
i +

n∏
i=1

x
[−bik]+
i

m∏
i=1

u
[−b(n+i)k]+
i

)
.

Recall from [14] that a cluster algebra A is said to have principal coefficients

at a vertex t if P = Trop(y1, . . . , yn) and yt = (y1, . . . , yn).

Definition 2.9. Let A be the cluster algebra with principal coefficients at t, de-

fined by the initial seed (xt,ytBt) with

xt = (x1, . . . , xn), yt = (y1, . . . , yn).

• Let X`;t be the Laurent expansion of the cluster variable x`;t in x1, . . . , xn,

y1, . . . , yn.

• The F-polynomial of the cluster variable x`,t is defined as F`;t =

X`;t(1, . . . , 1; y1, . . . , yn).

• The g-vector g`;t of the cluster variable x`,t is defined as the degree vector of

the monomial X`;t(x1, . . . , xn; 0, . . . , 0).

The following theorem shows that expansion formulas in principal coefficients

can be used to compute expansions in arbitrary coefficient systems.

Theorem 2.10 ([14, Theorem 3.7]). Let A be a cluster algebra over an arbitrary

semifield P with initial seed

((x1, . . . , xn), (ŷ1, . . . , ŷn), B).

Then the cluster variables in A can be expressed as follows:

(8) x`;t =
X`;t(x1, . . . , xn; ŷ1, . . . , ŷn)

F`;t|P(ŷ1, . . . , ŷn)
.

where F`;t|P(ŷ1, . . . , ŷn) is the F -polynomial evaluated at ŷ1, . . . , ŷn inside the semi-

field P.
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§3. Rank 2 considerations

In this section, we use the rank 2 formula from [20] (in the parametrization of [19])

to compute in a nonacyclic cluster algebra of rank three the Laurent expansions

of those cluster variables which are obtained from the initial cluster by a mutation

sequence involving only two vertices.

§3.1. Rank 2 formula

We start by recalling from [19] the formula for the Laurent expansion of an arbi-

trary cluster variable in the cluster algebra of rank 2 given by the initial quiver

with r arrows

1
r // 2

where r ≥ 2 is a positive integer. The cluster variables xn in this cluster algebra

are defined by the following recursion:

xn+1 = (xrn + 1)/xn−1 for any integer n.

Let {c[r]n }n∈Z be the sequence defined by the recurrence relation

c[r]n = rc
[r]
n−1 − c

[r]
n−2,

with the initial condition c
[r]
1 = 0, c

[r]
2 = 1. The c

[r]
n are Chebyshev polynomials.

For example, if r = 2 then c
[r]
n = n − 1; if r = 3, the sequence c

[r]
n takes the

following values:

. . . ,−3,−1, 0, 1, 3, 8, 21, 55, 144, . . . .

The pair of the absolute values of the integers (c
[r]
n−1, c

[r]
n−2) is the degree of the

denominator of the cluster variable xn.

If the value of r is clear from the context, we usually write cn instead of c
[r]
n .

Lemma 3.1. Let n ≥ 3. Then cn−1cn+k−3 − cn+k−2cn−2 = ck for k ∈ Z. In

particular, c2n−1 − cncn−2 = 1.

Proof. The result holds for n = 3. Suppose that n ≥ 4. Then

cn+k−2cn−2 = rcn+k−3cn−2 − cn+k−4cn−2
∗
= rcn+k−3cn−2 − (ck + cn+k−3cn−3)

= cn+k−3(rcn−2 − cn−3)− ck = cn+k−3cn−1 − ck,

where ∗ holds by induction.

Let (a1, a2) be a pair of nonnegative integers. A Dyck path of type a1 × a2

is a lattice path from (0, 0) to (a1, a2) that never goes above the main diagonal

joining (0, 0) and (a1, a2). Among the Dyck paths of a given type a1 × a2, there
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is a (unique) maximal one denoted by D = Da1×a2 . It is defined by the property

that any lattice point strictly above D is also strictly above the main diagonal.

Let D = Da1×a2 . Let D1 = {u1, . . . , ua1} be the set of horizontal edges of D
indexed from left to right, and D2 = {v1, . . . , va2} the set of vertical edges of D
indexed from bottom to top. Given any points A and B on D, let AB be the

subpath starting from A, and going in the northeast direction until it reaches B

(if we reach (a1, a2) first, we continue from (0, 0)). By convention, if A = B, then

AA is the subpath that starts from A, then passes (a1, a2) and ends at A. If we

represent a subpath of D by its set of edges, then for A = (i, j) and B = (i′, j′),

we have

AB =

{
{uk, v` : i < k ≤ i′, j < ` ≤ j′} if B is to the northeast of A,

D − {uk, v` : i′ < k ≤ i, j′ < ` ≤ j} otherwise.

We denote by (AB)1 the set of horizontal edges in AB, and by (AB)2 the set of

vertical edges in AB. Also let AB◦ denote the set of lattice points on the subpath

AB excluding the endpoints A and B (here (0, 0) and (a1, a2) are regarded as the

same point).

Here is an example for (a1, a2) = (6, 4).

u1 u2

u3

u4 u5

u6

v4

v3

v2

v1

A

B

C

Figure 1. A maximal Dyck path.

Let A = (2, 1), B = (3, 2) and C = (5, 3). Then

(AB)1 = {u3}, (AB)2 = {v2}, (BA)1 = {u4, u5, u6, u1, u2}, (BA)2 = {v3, v4, v1}.

The point C is in BA◦ but not in AB◦. The subpath AA has length 10 (not 0).

Definition 3.2. For S1 ⊆ D1, S2 ⊆ D2, we say that the pair (S1, S2) is compatible

if for every u ∈ S1 and v ∈ S2, denoting by E the left endpoint of u and F the

upper endpoint of v, there exists a lattice point A ∈ EF ◦ such that

(9) |(AF )1| = r|(AF )2 ∩ S2| or |(EA)2| = r|(EA)1 ∩ S1|.
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With all this terminology in place we are ready to present the combinatorial

expression for greedy elements. The following has been proved in [21, 19].

Theorem 3.3. For n ≥ 3, we have

xn = x
−cn−1

1 x
−cn−2

2

∑
(S1,S2)

x
r|S2|
1 x

r|S1|
2 ,(10)

x3−n = x
−cn−1

2 x
−cn−2

1

∑
(S1,S2)

x
r|S2|
2 x

r|S1|
1 ,(11)

where the sums are over all compatible pairs (S1, S2) in Dcn−1×cn−2 .

Remark 3.4. For n = 2, the formula is consistent if we impose the additional

convention that Dc1×c0 is the empty set.

Example 3.5. Let r = 3 and n = 5. Then D8×3 is the following path:

The illustrations below show the possible configurations for compatible pairs

in D8×3. If the edge ui is marked , then ui can occur in S1.

∑
S1⊂{u1,...,u8},S2=∅ x

r|S2|
1 x

r|S1|
2

= (1 + x3
2)8

∑
S1⊂{u4,...,u8},S2={v1} x

r|S2|
1 x

r|S1|
2

= x3
1(1 + x3

2)5

∑
S1⊂{u7,u8},S2={v1,v2} x

r|S2|
1 x

r|S1|
2

= x6
1(1 + x3

2)2
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∑
S1=∅,S2={v1,v2,v3} x

r|S2|
1 x

r|S1|
2

= x9
1

∑
S1⊂{u1,u2,u3,u7,u8},S2={v2} x

r|S2|
1 x

r|S1|
2

= x3
1(1 + x3

2)5

∑
S1⊂{u1,u2},S2={v2,v3} x

r|S2|
1 x

r|S1|
2

= x6
1(1 + x3

2)2

∑
S1⊂{u1,u2,u3,u4,u5},S2={v3} x

r|S2|
1 x

r|S1|
2

= x3
1(1 + x3

2)5

∑
S1⊂{u4,u5},S2={v1,v3} x

r|S2|
1 x

r|S1|
2

= x6
1(1 + x3

2)2

Adding the above eight polynomials together gives

(12) x24
2 + 8x21

2 + 3x3
1x

15
2 + 28x18

2 + 15x3
1x

12
2 + 56x15

2 + 3x6
1x

6
2

+ 30x3
1x

9
2 + 70x12

2 + x9
1 + 6x6

1x
3
2 + 30x3

1x
6
2

+ 56x9
2 + 3x6

1 + 15x3
1x

3
2 + 28x6

2 + 3x3
1 + 8x3

2 + 1.

Then x5 is obtained by dividing (12) by x8
1x

3
2.

The following corollary can be adapted from results of [20]. Let g` be the

g-vector and let F` be the F -polynomial of x`, for all integers `. Then g3 =

(−1, r), g0 = (0,−1), F3 = y1 + 1 and F0 = y2 + 1, and all other cases are

described in the following result.

Corollary 3.6. Let n ≥ 3. Then

gn = (−cn−1, cn), g3−n = (−cn−2, cn−3),

Fn =
∑

(S1,S2)

y
cn−1−|S1|
1 y

|S2|
2 , F3−n =

∑
(S1,S2)

y
cn−2−|S2|
1 y

|S1|
2 ,

where the sum is over all compatible pairs (S1, S2) in Dcn−1×cn−2 .
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Recall from Definition 2.9 that Xn is the Laurent polynomial in x1, x2, y1, y2

corresponding to the expansion of xn in the cluster algebra with principal coeffi-

cients in the seed ((x1, x2), (y1, y2), Q).

Corollary 3.7. Let n ≥ 3. Then

Xn = x
−cn−1

1 x
−cn−2

2

∑
(S1,S2)

x
r|S2|
1 x

r|S1|
2 y

cn−1−|S1|
1 y

|S2|
2 .

Proof. This follows directly from Theorem 3.3 and Corollary 3.6.

§3.2. A preliminary lemma

Let A(Q) be a coefficient-free cluster algebra of rank 3 with initial quiver Q equal

to

1
r // 2

t����������

3

s

^^>>>>>>>>

where r, s, t denote the numbers of arrows.

Let xn be the cluster variable obtained from the seed ((x1, x2, z3), Q) by the

sequence of n− 2 mutations 1, 2, 1, 2, 1, . . . .

From Theorem 2.10, we have

xn =
Xn(x1, x2, ŷ1, ŷ2)

Fn|P̂(ŷ1, ŷ2)
,

where Xn is as in Corollary 3.7, (ŷ1, ŷ2) = (zs3, z
−t
3 ), and the denominator is the

F -polynomial evaluated in ŷ and with tropical addition. Thus, by Corollary 3.6,

the denominator is
∑⊕
β z

s(cn−1−|S1|)−t|S2|
3 , which is equal to zm3 where m is the

smallest power occurring in this sum. Therefore we get

(13) xn = x
−cn−1

1 x
−cn−2

2

∑
(S1,S2)

x
r|S2|
1 x

r|S1|
2 z

s(cn−1−|S1|)−t|S2|−m
3

where m = min(S1,S2)(s(cn−1 − |S1|)− t|S2|).
We shall need a precise value for m. As a first step, we determine which

compatible pair (S1, S2) in Dcn−1×cn−2 can realize the minimum m.

Lemma 3.8. Let s and t be nonzero integers such that there are nonzero arrows

between all pairs of the three vertices in any seed between the initial and terminal

seeds inclusive. Then there is a unique compatible pair (S1, S2) in Dcn−1×cn−2

which achieves s(cn−1 − |S1|) − t|S2| = m. Such an (S1, S2) is either (D1, ∅),
(∅,D2), or (∅, ∅). Moreover, if s and t are positive, then (S1, S2) is either (D1, ∅)
or (∅,D2).
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Proof. We use induction on n. Consider first the case n = 3. Since Dc2×c1 =

D1×0, there are exactly two compatible pairs (∅,D2) = (∅, ∅) and (D1, ∅). Thus

s(cn−1 − |S1|) − t|S2| = −s|S1| achieves its minimum at (S1, S2) = (D1, ∅) if s is

positive, and at (S1, S2) = (∅,D2) if s is negative.

Suppose now that n ≥ 3. Consider the expression given in (13). By induction,

there is a unique (S̄1, S̄2) in Dcn−1×cn−2 such that s(cn−1 − |S1|)− t|S2| = m.

Suppose first that (S̄1, S̄2) = (D1, ∅). Then the term in (13) that is not divis-

ible by z3 is

(14) x
−cn−1

1 x
−cn−2

2 x
rcn−1

2 = x
−cn−1

1 xcn2 .

If t > 0 then xn+1 is obtained from xn by substituting

x1 7→ x2, x2 7→
xr2 + zt3
x1

.

So (14) becomes

x
−cn−1

2

(
xr2 + zt3
x1

)cn
= x−cn1 x

−cn−1

2 x0
1x
rcn
2 z0

3 + terms divisible by z3.

Thus the term in the expression for xn+1 that is not divisible by z3 corresponds

to a compatible pair (S1, S2) in Dcn×cn−1 with |S1| = cn, so (S1, S2) = (D1, ∅).
On the other hand, if t < 0 then we substitute

x1 7→ x2, x2 7→
xr2z
−t
3 + 1

x1
,

so (14) becomes

x
−cn−1

2

(
xr2z
−t
3 + 1

x1

)cn
= x−cn1 x

−cn−1

2 x0
1x

0
2z

0
3 + terms divisible by z3.

Thus the term in the expression for xn+1 that is not divisible by z3 corresponds

to a compatible pair (S1, S2) in Dcn×cn−1 with |S1| = 0 and |S2| = 0, so (S1, S2)

= (∅, ∅).
Next suppose that (S̄1, S̄2) = (∅, ∅). Then cn−1 − |S̄1| = cn−1, |S̄2| = 0,

m = scn−1 and t < 0 since (∅, ∅) realizes the minimum. Then∑
(S1,S2): |S1|=0

x
−cn−1

1 x
−cn−2

2 x
r|S2|
1 x

r|S1|
2 z

s(cn−1−|S1|)−t|S2|−m
3

=
∑

(S1,S2): |S1|=0

x
−cn−1

1 x
−cn−2

2 x
r|S2|
1 z

−t|S2|
3 = x

−cn−1

1

(
xr1z
−t
3 + 1

x2

)cn−2

,

where the last identity holds because the condition |S1| = 0 means that every

subset S2 of {1, . . . , cn−2} is compatible with S1.
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Applying the map

x1 7→ x2, x2 7→
xr2z
−t
3 + 1

x1

yields x
−cn−1

2 x
cn−2

1 = x−cn1 x
−cn−1

2 x
rcn−1

1 x0
2, which corresponds to a compatible pair

(S1, S2) in Dcn×cn−1 with |S1| = 0 and |S2| = cn−1, thus (S1, S2) = (∅,D2).

Finally, if (S̄1, S̄2) = (∅,D2), then |S̄1| = 0, |S̄2| = cn−2, m = scn−1 − tcn−2

and t must be positive since (∅,D2) realizes the minimum. Then∑
(S1,S2): |S1|=0

x
−cn−1

1 x
−cn−2

2 x
r|S2|
1 x

r|S1|
2 z

s(cn−1−|S1|)−t|S2|−m
3

=
∑

(S1,S2): |S1|=0

x
−cn−1

1 x
−cn−2

2 x
r|S2|
1 z

tcn−2−t|S2|
3 = x

−cn−1

1

(
xr1 + zt3
x2

)cn−2

and applying the map

x1 7→ x2, x2 7→
xr2 + zt3
x1

yields x
−cn−1

2 x
cn−2

1 = x−cn1 x
−cn−1

2 x
rcn−1

1 x0
2, which corresponds to a compatible pair

(S1, S2) in Dcn×cn−1 with |S1| = 0 and |S2| = cn−1, thus (S1, S2) = (∅,D2).

§3.3. Rank 2 inside rank 3: Dyck path formula

Let A(Q) be a nonacyclic coefficient-free cluster algebra of rank 3 with initial

quiver Q equal to

1
r // 2

t����������

3

s

^^>>>>>>>>

where r, s, t denote the numbers of arrows. Now suppose that r, s and t are such

that the cluster algebra A(Q) is nonacyclic. Then we can show that m is always

zero.

Corollary 3.9. If the cluster algebra is nonacyclic then there is a unique com-

patible pair (S1, S2) in Dcn−1×cn−2 , which achieves s(cn−1 − |S1|) − t|S2| = m.

Moreover (S1, S2) = (D1, ∅) and m = 0.

Proof. We use induction on n. For n = 3 and n = 4, computing xn directly by

mutation yields

x3 = (xr2 + zs3)/x1, x4 = (xr3 + zrs−t3 )/x2,

and hence the term in the expression for x4 that is not divisible by z3 is xr
2

2 x
−r
1 x−1

2 ,

which corresponds to a compatible pair (S1, S2) in Dcn−1×cn−2 such that |S2| =

cn−1 − |S1| = 0, thus (S1, S2) = (D1, ∅).
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Now the result follows by the same argument as in the proof of Lemma 3.8

using the fact that t > 0.

We have proved the following theorem.

Theorem 3.10. For n ≥ 3,

xn = x
−cn−1

1 x
−cn−2

2

∑
(S1,S2)

x
r|S2|
1 x

r|S1|
2 z

s(cn−1−|S1|)−t|S2|
3 ,

where the sum is over all compatible pairs (S1, S2) in Dcn−1×cn−2 .

Remark 3.11. It follows from results of [25] and [19] that an adapted version of

this theorem still holds if the cluster algebra is not skew-symmetric.

Our next goal is to describe cluster monomials of the form xpn+1x
q
n with p, q ≥

0. In order to simplify the notation we define Ai = pci+1+qci. The following lemma

is a straightforward consequence of Lemma 3.1.

Lemma 3.12. For any i, we have

(a) Ai = rAi−1 −Ai−2,

(b) A2
i −Ai+1Ai−1 = p2 + q2 + rpq.

Theorem 3.13.

xpn+1x
q
n = x

−An−1

1 x
−An−2

2

∑
(S1,S2)

x
r|S2|
1 x

r|S1|
2 z

s(cn−1−|S1|)−t|S2|
3 ,

where the sum is over all (S1 =
⋃p+q
i=1 Si1, S2 =

⋃p+q
i=1 Si2) such that

(Si1, S
i
2) is a compatible pair in

{
Dcn−1×cn−2 if 1 ≤ i ≤ q,
Dcn×cn−1 if q + 1 ≤ i ≤ p+ q.

Proof. This follows immediately from Theorem 3.10.

Remark 3.14. It can be shown that the summation on the right hand side in The-

orem 3.13 can be taken over all compatible pairs in DAn−1×An−2 instead, without

changing the sum (see [19, Theorem 1.11]).

§3.4. Rank 2 inside rank 3: Mixed formula

We keep the setup of the previous subsection. In particular, A(Q) is nonacyclic.

We present another formula for the Laurent expansion of the cluster monomial

xpn+1x
q
n, which is parametrized by a certain sequence of integers τ0, τ1, . . . , τn−2.

This formula is a generalization of a formula given in [18, Theorem 2.1]. Com-
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bining it with the formula of Theorem 3.13 yields the mixed formula of Theorem

3.21 below, which is a key ingredient for the proof of the positivity conjecture in

Section 4.

For arbitrary (possibly negative) integers A,B, we define the modified bino-

mial coefficient as follows:

[
A

B

]
:=


A−B−1∏
i=0

A− i
A−B − i

if A > B,

1 if A = B,

0 if A < B.

If A ≥ 0 then
[
cA
B

]
=
[
cA
A−B

]
is just the usual binomial coefficient. In partic-

ular
[
cA
B

]
= 0 if A ≥ 0 and B < 0.

For a sequence (τj) (respectively (τ ′j)) of integers, we define a sequence (si)

(respectively (s′i)) of weighted partial sums as follows:

s0 = 0, si =

i−1∑
j=0

ci−j+1τj = ci+1τ0 + ciτ1 + · · ·+ c2τi−1,

s′0 = 0, s′i =

i−1∑
j=0

ci−j+1τ
′
j = ci+1τ

′
0 + ciτ

′
1 + · · ·+ c2τ

′
i−1.

For example, s1 = c2τ0 = τ0, s2 = c3τ0 + c2τ1 = rτ0 + τ1.

Lemma 3.15. sn = rsn−1 − sn−2 + τn−1.

Proof. Since cn−j+1 = rcn−j − cn−j−1, we see that sn is equal to

n−1∑
j=0

(rcn−j − cn−j−1)τj

= r
(n−2∑
j=0

cn−jτj

)
+ rc1τn−1 −

(n−3∑
j=0

cn−j−1τj

)
− c1τn−2 − c0τn−1

= rsn−1 − sn−2 + τn−1,

where the last identity holds because c1 = 0, c0 = −1.

Definition 3.16. Let L(τ0, τ1, . . . , τn−2) denote the set of all (τ ′0, τ
′
1, . . . , τ

′
n−2)

∈ Zn−1 satisfying the conditions

• 0 ≤ τ ′i ≤ τi for 0 ≤ i ≤ n− 3,

• s′n−2 = kcn−1 and s′n−1 = kcn for some integer 0 ≤ k ≤ p.

We define a partial order on L(τ0, τ1, . . . , τn−2) by

(τ ′0, τ
′
1, . . . , τ

′
n−2) ≤L (τ ′′0 , τ

′′
1 , . . . , τ

′′
n−2) if and only if τ ′i ≤ τ ′′i for 0 ≤ i ≤ n− 3.
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Let Lmax(τ0, τ1, . . . , τn−2) be the set of maximal elements of L(τ0, τ1, . . . , τn−2)

with respect to ≤L.

We are ready to state the main result of this subsection.

Theorem 3.17. Let n ≥ 3. Then

(15) xpn+1x
q
n =

x
−An−1

1 x
−An−2

2

∑
τ0,τ1,...,τn−2

(n−2∏
i=0

[
Ai+1 − rsi

τi

])
x
rsn−2

1 x
r(An−1−sn−1)
2 z

ssn−1−tsn−2

3 ,

where the summation runs over all integers τ0, . . . , τn−2 satisfying

(16)


0 ≤ τi ≤ Ai+1 − rsi (0 ≤ i ≤ n− 3),

τn−2 ≤ An−1 − rsn−2,

(sn−1 − s′n−1)An−2 ≥ (sn−2 − s′n−2)An−1

for any (τ ′0, . . . , τ
′
n−2) ∈ Lmax(τ0, . . . , τn−2).

Proof. The theorem is proved in Section 3.5.

Example 3.18. Let Q be the quiver

1
2 // 2

2����������

3

2

^^>>>>>>>>

and let n = 5, p = 1, q = 0. Thus our formula computes the cluster variable

obtained from the initial cluster by mutating in directions 1, 2, 1 and 2.

First note that in this case ci = i− 1, Ai = i and si = iτ0 + (i− 1)τ1 + · · ·+
2τi−2 + τi−1. The first condition in (16) is 0 ≤ τi ≤ i + 1 − 2si. From this we see

that τ0 is either 0 or 1. If τ0 = 1, then s1 = 1, hence τ1 = 0 by (16), whence s2 = 2

and 0 ≤ τ2 ≤ (2 + 1) − 2(2), again by (16), a contradiction. Thus τ0 = 0 and the

conditions on τi in (16) become

τ0 = 0 0 ≤ τ1 ≤ 2 0 ≤ τ2 ≤ 3− 2τ1 τ3 ≤ 4− 4τ1 − 2τ2,

From this we conclude that there are the following 11 possibilities for (τ0, τ1, τ2, τ3):

(0, 0, 0, 0) (0, 0, 0, 1) (0, 0, 0, 2) (0, 0, 0, 3) (0, 0, 0, 4) (0, 0, 1, 0)

(0, 0, 1, 1) (0, 0, 1, 2) (0, 0, 2, 0) (0, 0, 3,−2) (0, 1, 0, 0)

Observe that each of these tuples satisfies the second condition in (16). Indeed,

the integer k ∈ {0, 1} in Definition 3.16 must satisfy

3k = 2τ ′1 + τ ′2 and 4k = 3τ ′1 + 2τ ′2 + τ ′3,
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so for example, if (τ0, τ1, τ2, τ3) = (0, 0, 1, 1) then τ ′0 = τ ′1 = 0, 0 ≤ τ ′2 ≤ 1, τ ′3 ≤ 1

and

3k = τ ′2 ≤ 1 and 4k = 2τ ′2 + τ ′3.

Thus k = 0, L(0, 0, 1, 1) = {(0, 0, 0, 0)}, and the second condition in (16) becomes

(s4 − s′4)A3 ≥ (s3 − s′3)A4 ⇔ (2 + 1− 0)3 ≥ (1− 0)4 ⇔ 9 ≥ 4.

On the other hand, the eleven 4-tuples above are the only ones that satisfy all

conditions in (16). For example, for the tuple (0, 1, 1,−2), we get k = 1, τ ′ =

(0, 1, 1,−1) ∈ Lmax(0, 1, 1,−2) and the condition

(s4−s′4)A3 ≥ (s3−s′3)A4 ⇔ (3+2−2−3−2+1)3 ≥ (2+1−2−1)4 ⇔ −3 ≥ 0

is not satisfied. Therefore Theorem 3.17 yields

x6 = (x8
2 + 4x6

2z
2
3 + 6x4

2z
4
3 + 4x2

2z
6
3 + z8

3 + 3x2
1x

4
2z

2
3

+ 6x2
1x

2
2z

4
3 + 3x2

1z
6
3 + 3x4

1z
4
3 + x6

1z
2
3 + 2x4

1x
2
2z

2
3)/x4

1x
3
2.

Remark 3.19. When comparing the formula of Theorem 3.17 with the Dyck path

formula of Theorem 3.13, we have the following interpretation for the integer k

in Definition 3.16. Let D2 be the set of all vertical edges in Dcn×cn−1 , and fix a

pair (S1, S2) as in Theorem 3.13. Then k in Definition 3.15 is equal to the number

of times D2 appears in S2. Moreover, if (τ ′0, τ
′
1, . . . , τ

′
n−2) ∈ Lmax is such that∏n−2

i=0

[
cAi+1−rsi

τi

]
6= 0 then

k = min

(⌊
sn−2

cn−1

⌋
, p

)
.

Corollary 3.20. Let x3 = (xr2 + zs3)/x1 and let t′ = s and s′ = rs − t be the

numbers of arrows from 1 to 3 and from 3 to 2 respectively, in the quiver obtained

from Q by mutating at vertex 1. Then

(17) xpn+1x
q
n =

x
−An−2

2 x
−An−3

3

∑
τ0,τ1,...,τn−3

(n−3∏
i=0

[
Ai+1 − rsi

τi

])
x
rsn−3

2 x
r(An−2−sn−2)
3 z

s′sn−2−t′sn−3

3 ,

where the summation runs over all integers τ0, . . . , τn−3 satisfying

(18)


0 ≤ τi ≤ Ai+1 − rsi (0 ≤ i ≤ n− 4), τn−3 ≤ An−2 − rsn−3,

(sn−2 − s′n−2)An−3 ≥ (sn−3 − s′n−3)An−2

for any (τ ′0, . . . , τ
′
n−3) ∈ Lmax(τ0, . . . , τn−3).

Proof. This follows directly from Theorem 3.17.
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Combining Theorem 3.17 with Theorem 3.13 we get the following mixed for-

mula.

Theorem 3.21. Let n ≥ 3. Then

(19) xpn+1x
q
n

=
∑

τ0,τ1,...,τn−3

sn−2≤An−1/r

(n−3∏
i=0

(
Ai+1 − rsi

τi

))
x3
An−1−rsn−2x

rsn−3−An−2

2 z
s′sn−2−t′sn−3

3

+
∑

(S1,S2)
r|S2|−An−1>0

x
r|S2|−An−1

1 x
r|S1|−An−2

2 z
s(cn−1−|S1|)−t|S2|
3 .

Remark 3.22. The exponents of x3, x1 and z3 are nonnegative, which is im-

portant for the proof of Theorem 4.3. The modified binomial coefficients can be

replaced by the usual binomial coefficients, because the condition sn−2 ≤ An−1/r

implies that An−2 − rsn−3 is nonnegative (see Lemma 3.24 below).

Proof. The first sum of the statement is obtained from Corollary 3.20 using Lemma

3.12(a) for the exponent of x3. Observe that the new condition sn−2 ≤ An−1/r

in the summation precisely means that the exponent of x3 is nonnegative. On

the other hand, the sum of all terms in which the exponent of x3 is negative in

the expression in Corollary 3.20 is equal to the second sum in the statement of

Theorem 3.21. This follows from the formula of Theorem 3.13.

In [4] the upper cluster algebra was defined as the intersection of the rings

of Laurent polynomials in the n + 1 clusters consisting of the initial cluster and

all clusters obtained from it by a single mutation. The following corollary gives a

different “upper bound” for the cluster monomials in the rank 2 direction. This

new upper bound is defined as the semi-ring of polynomials in the variables in the

initial cluster, the first mutation of one initial variable and the inverse of another

initial cluster variable.

Corollary 3.23. Let x̃1 denote the cluster variable obtained from the initial seed

by mutating in x1. Then
xpn+1x

q
n ∈ Z≥0[x1, x̃1, z3, x

±1
2 ].

Proof. This follows from Theorem 3.21 because x̃1 = x3.

§3.5. Proof of Theorem 3.17

We use induction on n. Suppose first that n = 3. Since x3 = (xr2 + zs3)/x1, we have

xa3 = x−a1

a∑
τ1=0

(
a

τ1

)
x
r(a−τ1)
2 zsτ13 ,
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and since x4 = (xr3 + zrs−t3 )/x2, we have

xp4 = x−p2

p∑
τ0=0

(
p

τ0

)
x
r(p−τ0)
3 z

(rs−t)τ0
3 .

Therefore

xp4x
q
3 = x−p2

p∑
τ0=0

(
p

τ0

)
x
r(p−τ0)+q
3 z

(rs−t)τ0
3

= x−p2

p∑
τ0=0

(
p

τ0

) r(p−τ0)+q∑
τ1=0

(
r(p−τ0)+q

τ1

)
x
−r(p−τ0)−q
1 x

r(r(p−τ0)+q−τ1)
2 zsτ13 z

(rs−t)τ0
3

= x−rp−q1 x−p2

p∑
τ0=0

r(p−τ0)+q∑
τ1=0

(
p

τ0

)(
r(p−τ0)+q

τ1

)
xrτ01 x

r(r(p−τ0)+q−τ1)
2 z

sτ1+(rs−t)τ0
3 ,

and the statement follows from A1 = p, A2 = rp+q, s0 = 0, s1 = τ0, s2 = rτ0 +τ1.

Suppose now that n ≥ 4, and assume that the statement holds for n or less.

Then by the obvious shift, we have

xpn+2x
q
n+1

= x
−An−1

2 x
−An−2

3

∑
τ0,τ1,...,τn−2

[(n−2∏
i=0

[
Ai+1 − rsi

τi

])
x
rsn−2

2 x
r(An−1−sn−1)
3 zT3

]
,

where the summation runs over all integers τ0, . . . , τn−2 satisfying (16) and

T = s′sn−1 − t′sn−2 = (rs− t)sn−1 − ssn−2.

Using Lemma 3.12(a), we see that the exponent of x3 is equal to An− rsn−1.

Then substituting (xr2 + zs3)/x1 for x3, we get

xpn+2x
q
n+1

= x
−An−1

2

∑
τ0,τ1,...,τn−2

[(n−2∏
i=0

[
Ai+1 − rsi

τi

])
x
rsn−2

2

(
xr2 + zs

x 1

)An−rsn−1

zT3

]
.

Expanding (xr2 + zs)An−rsn−1 yields

x−An1 x
−An−1

2

∑
τ0,...,τn−2

(n−2∏
i=0

[
Ai+1 − rsi

τi

])

× xrsn−2

2

∑
τn−1∈Z

[
An − rsn−1

τn−1

]
x
rsn−1

1 (xr2)An−rsn−1−τn−1z
T+sτn−1

3 .
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Note that T + sτn−1 = ssn − tsn−1, by Lemma 3.15. Combining the sums, we get

x−An1 x
−An−1

2

∑
τ0,τ1,...,τn−2; τn−1∈Z

(n−1∏
i=0

[
Ai+1 − rsi

τi

])
× xrsn−1

1 x
rsn−2

2 (xr2)An−rsn−1−τn−1z
ssn−tsn−1

3

and, by Lemma 3.15, this is equal to

(20)

x−An1 x
−An−1

2

∑
τ0,τ1,...,τn−2; τn−1∈Z

(n−1∏
i=0

[
Ai+1 − rsi

τi

])
x
rsn−1

1 x
r(An−sn)
2 z

ssn−tsn−1

3 .

Remember that τ0, . . . , τn−2 satisfy (16).

Proposition 3.25 below implies that even if we impose the additional condition

on τn−2 and τn−1 that

(21) (sn − s′n)An−1 − (sn−1 − s′n−1)An ≥ 0

for all (τ ′0, . . . , τ
′
n−1) ∈ Lmax(τ0, . . . , τn−2),

the value of the expression for xpn+2x
q
n+1 in (20) does not change. From now on

we impose the condition (21). On the other hand, in order to prove that Theo-

rem 3.17 holds for n + 1, we only need to show that τn−2 can be limited to run

over 0 ≤ τn−2 ≤ An−1 − rsn−2. So we want to show that, for a fixed sequence

(τ ′0, . . . , τ
′
n−2, τ

′
n−1),

(22)
∑

τ0,τ1,...,τn−1

[(n−1∏
i=0

[
Ai+1 − rsi

τi

])
x
rsn−1

1 x
r(An−sn)
2

]
= 0,

where the summation runs over all integers τ0, . . . , τn−1 satisfying

(23)



(a) (τ ′0, . . . , τ
′
n−2) ∈ Lmax(τ0, . . . , τn−2),

(b) 0 ≤ τi ≤ Ai+1 − rsi (0 ≤ i ≤ n− 3),

(c) (sn−1 − s′n−1)An−2 − (sn−2 − s′n−2)An−1 ≥ 0,

(d) (τ ′0, . . . , τ
′
n−1) ∈ Lmax(τ0, . . . , τn−1),

(e) τn−2 ≤ An−1 − rsn−2 < 0, and

(f) (sn − s′n)An−1 − (sn−1 − s′n−1)An ≥ 0.

To do so, it is sufficient to show that
[
cAn−rsn−1

τn−1

]
= 0 for every τn−1, be-

cause then each summand in (22) is zero. This purely algebraic result is proved in

Lemma 3.24 below.
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Assuming Lemma 3.24 and Proposition 3.25, we have proved that

xpn+2x
q
n+1

= x−An1 x
−An−1

2

∑
τ0,τ1,...,τn−1

[(n−1∏
i=0

[
Ai+1 − rsi

τi

])
x
rsn−1

1 x
r(An−sn)
2 z

ssn−tsn−1

3

]
,

where the summation runs over all integers τ0, . . . , τn−1 satisfying

(24)


0 ≤ τi ≤ Ai+1 − rsi (0 ≤ i ≤ n− 2),

(sn−1 − s′n−1)An−2 − (sn−2 − s′n−2)An−1 ≥ 0,

(sn − s′n)An−1 − (sn−1 − s′n−1)An ≥ 0,

for all (τ ′0, . . . , τ
′
n−1) ∈ Lmax(τ0, . . . , τn−2). Therefore it only remains to show that

we do not need to require the second condition in (24). Using Lemmas 3.15 and

3.12(a), we see that

sn−1An−2 − sn−2An−1
3.15
= (rsn−2 − sn−3 + τn−2)An−2 − sn−2An−1

3.12
= (sn−2An−3 − sn−3An−2) + τn−2An−2.

Iterating this argument, we get

sn−1An−2 − sn−2An−1 = (s2A1 − s1A2) +

n−2∑
i=2

τiAi,

which means

τ1p− τ0q +

n−2∑
i=1

τiAi ≥ τ1p− τ0q,

because s1 = τ0, s2 = rτ0 + τ1, A1 = p and A2 = rp+ q. Thus

(25) sn−1An−2 − sn−2An−1 ≥ τ1p− τ0q.

Our next goal is to estimate −s′n−1An−2 + s′n−2An−1. Let k be as in Definition

3.16, so that 0 ≤ k ≤ p and s′n−1 = kcn and s′n−2 = kcn−1. Then

− s′n−1An−2 + s′n−2An−1 = k(−cnAn−2 + cn−1An−1)(26)

= k(−pcncn−1 − qcncn−2 + pcncn−1 + qc2n−1)

= kq(−cncn−2 + c2n−1) = kq,

where the second equality follows from the definition Ai = pci+1 + qci, and the

last equality holds by Lemma 3.1. On the other hand, s′n−2 is defined as s′n−2 =

cn−1τ
′
0 +

∑n−3
j=1 cn−1−jτ

′
j , which implies that kcn−1 = s′n−2 ≥ cn−1τ

′
0, and thus

k ≥ τ ′0. Moreover, τ0 = τ ′0 by definition of Lmax(τ0, τ1, . . . , τn−2), and thus (26)

implies

−s′n−1An−2 + s′n−2An−1 ≥ τ0q.
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Adding this to (25) we get

(sn−1 − s′n−1)An−2 − (sn−2 − s′n−2)An−1 ≥ 0,

hence the second condition in (24) is always satisfied.

This completes the proof of Theorem 3.17 modulo Lemma 3.24 and Proposi-

tion 3.25 below.

Lemma 3.24. Assume conditions (23). Then[
An − rsn−1

τn−1

]
= 0.

Proof. By definition of the modified binomial coefficient, it suffices to show that

An − rsn−1 < τn−1.

On the one hand, we have

(27) An−3(sn−2 − s′n−2)−An−2(An−1 − sn−1 + s′n−1)

3.12(a)
= rAn−2(sn−2 − s′n−2)−An−1(sn−2 − s′n−2)−An−2(An−1 − sn−1 + s′n−1)

= An−2rsn−2 − rAn−2s
′
n−2 −An−1(sn−2 − s′n−2)−An−2(An−1 − sn−1 + s′n−1)

> An−2An−1 − rAn−2s
′
n−2 −An−1(sn−2 − s′n−2)−An−2(An−1 − sn−1 + s′n−1)

(since An−1 − rsn−2 < 0)

= − rAn−2s
′
n−2 + (sn−1 − s′n−1)An−2 − (sn−2 − s′n−2)An−1

(23)(c)

≥ − rAn−2s
′
n−2.

Thus

(28) sn−2 − s′n−2 > (An−2(An−1 − sn−1 + s′n−1)− rAn−2s
′
n−2)/An−3.

Then

(29) An−2(sn−1 − s′n−1)−An−1(sn−2 − s′n−2)

(28)
< An−2(sn−1−s′n−1)−An−1

An−2(An−1−sn−1 +s′n−1)−rAn−2s
′
n−2

An−3

= An−2

(
sn−1−s′n−1−

An−1

An−3
(An−1−sn−1 +s′n−1)

)
+
rAn−1An−2s

′
n−2

An−3

= An−2

(
An−1−

(
1+

An−1

An−3

)
(An−1−sn−1 +s′n−1)

)
+
rAn−1An−2s

′
n−2

An−3

3.12(a)
= An−2

(
An−1−

(
1+

An−1

An−3

)
An−2 +An−rsn−1 +rs′n−1

r

)
+
rAn−1An−2s

′
n−2

An−3
.



Positivity for Cluster Algebras of Rank 3 623

Now, aiming for contradiction, suppose that An − rsn−1 ≥ 0. Then

(30) RHS(29)

≤ An−2

(
An−1−

An−3 +An−1

An−3

An−2 +rs′n−1

r

)
+
rAn−1An−2s

′
n−2

An−3

3.12(a)
= An−2

(
An−1−

rAn−2

An−3

An−2 +rs′n−1

r

)
+
rAn−1An−2s

′
n−2

An−3

= An−2

(
An−1−

A2
n−2

An−3

)
−r

A2
n−2

An−3
s′n−1 +

rAn−1An−2s
′
n−2

An−3

=
An−2

An−3

(
An−1An−3−A2

n−2

)
−rAn−2

An−3

(
An−2s

′
n−1−An−1s

′
n−2

)
.

By Lemma 3.12(b) and the definition of Ai, this is equal to

An−2

An−3
(−p2 − q2 − rpq)− rAn−2

An−3

(
(pcn−1 + qcn−2)s′n−1 − (pcn + qcn−1)s′n−2

)
.

Let k be as in Definition 3.16; then kcn = s′n−1 and kcn−1 = s′n−2, and using

Lemma 3.1, we get

An−2

An−3
(−p2 − q2 − rpq) + rkq

An−2

An−3
,

and, since k ≤ p, this is less than or equal to

An−2

An−3
(−p2 − q2 − rpq) + rpq

An−2

An−3
≤ 0,

which contradicts (sn−1 − s′n−1)An−2 − (sn−2 − s′n−2)An−1 ≥ 0. Hence

(31) An − rsn−1 < 0.

Next we show that sn−2 > An − sn. Suppose to the contrary that sn−2 ≤
An − sn. Then

An−1−rsn−2 ≥ An−1−r(An−sn)
(23)(f)

≥ An−1−r
(An−1 − sn−1 + s′n−1)An

An−1
+rs′n

3.12(b)
=

(p2 + q2 + rpq)

An−1
+
AnAn−2

An−1
− r

(An−1 − sn−1 + s′n−1)An

An−1
+ rs′n

3.12(a)
=

(p2 + q2 + rpq)

An−1
+

An
An−1

(
rsn−1 −An − rs′n−1 +

An−1

An
rs′n

)
=
p2 + q2

An−1
+

An
An−1

(rsn−1 −An) +
r

An−1
(pq −Ans′n−1 +An−1s

′
n)

3.16
=

p2 + q2

An−1
+

An
An−1

(rsn−1 −An) +
r

An−1
(pq −Ankcn +An−1kcn+1).
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Now kcnAn − kcn+1An−1 = kcn(pcn+1 + qcn) − kcn+1(pcn + qcn−1) = kq(c2n −
cn+1cn−1) = kq, where the last equation holds because of Lemma 3.1. Thus

An−1 − rsn−2 ≥
p2 + q2

An−1
+

An
An−1

(rsn−1 −An) +
r

An−1
(q(p− k))

3.16 and (23)(d)

≥ p2 + q2

An−1
+

An
An−1

(rsn−1 −An)
(31)
> 0,

which contradicts An−1 − rsn−2 < 0 in (23). Thus sn−2 > An − sn, so we have

An − rsn−1 < sn + sn−2 − rsn−1 = τn−1,

which gives
[
cAn−rsn−1

τn−1

]
= 0.

Proposition 3.25. Let a and b be nonnegative integers satisfying∑
τ0,τ1,...,τn−2

sn−1=a, sn−2=b

n−2∏
i=0

[
Ai+1 − rsi

τi

]
6= 0.

Let τ0, . . . , τn−2 satisfy sn−1 = a, sn−2 = b. Then for any (τ ′0, . . . , τ
′
n−2) ∈

Lmax(τ0, . . . , τn−2), we have

(32) (sn−1 − s′n−1)An−2 − (sn−2 − s′n−2)An−1 ≥ 0.

Proof. We use Theorem 3.13. Let Di,1 (respectively Di,2) be the set of horizontal

(resp. vertical) edges in the i-th Dyck path in (Dcn×cn−1)p × (Dcn−1×cn−2)q.

Choose a collection of compatible pairs

β = (β1, . . . , βp+q)

= ((S1,1, S1,2), . . . , (Sp+q,1, Sp+q,2)) in (Dcn×cn−1)p × (Dcn−1×cn−2)q

such that
∑p+q
i=1 |Si,2| = sn−2 and pcn + qcn−1 −

∑p+q
i=1 |Si,1| = sn−1, and such

that β has the maximal number, say w, of copies of (∅,D2) in Dcn×cn−1 . Say

βi1 = · · · = βiw = (∅,D2) for some 1 ≤ i1 < · · · < iw ≤ p. Since |D2| = cn−1 we

see that

w = min

(⌊
sn−2

cn−1

⌋
, p

)
.

On the other hand, by Definition 3.16 and Remark 3.19, s′n−2 = kcn−1 and s′n−1 =

kcn with k = w because (τ ′0, τ
′
1, . . . , τ

′
n−2) ∈ Lmax. Therefore∑

i∈{1,...,p+q}\{i1,...,iw}

|βi|2 = sn−1 − wcn = sn−1 − s′n−1,∑
i∈{1,...,p+q}\{i1,...,iw}

|βi|1 = sn−2 − wcn−1 = sn−2 − s′n−2,
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where |βi|2 denotes |Di,1| − |Si,1| and |βi|1 denotes |Si,2|. Hence (32) is equivalent

to

(33)
∑

i∈{1,...,p+q}\{i1,...,iw}

(An−2|βi|2 −An−1|βi|1) ≥ 0.

First we show that

p+q∑
i=p+1

(An−2|βi|2 −An−1|βi|1) ≥ 0.

Due to Lemma 3.8, if p < i ≤ p+q then either βi = (Di,1, ∅) or βi = (∅,Di,2) gives

the minimum of An−2|βi|2 − An−1|βi|1. If βi = (Di,1, ∅) then clearly An−2|βi|2 −
An−1|βi|1 = 0. If βi = (∅,Di,2) then

An−2|βi|2 −An−1|βi|1 = An−2cn−1 −An−1cn−2

= (pcn−1 + qcn−2)cn−1 − (pcn + qcn−1)cn−2

= p(c2n−1 − cncn−2) = p ≥ 0.

Next we show that ∑
i∈{1,...,p}\{i1,...,iw}

(An−2|βi|2 −An−1|βi|1) ≥ 0.

If p = 0 then there is nothing to show. Suppose that p ≥ 1. Again using

Lemma 3.8, we see that if 1 ≤ i ≤ p and βi 6= (∅,Di,2) then

cn−2|βi|2 − cn−1|βi|1 > cn−2cn − c2n−1 = −1,

so cn−2|βi|2− cn−1|βi|1 ≥ 0. Also cn−1|βi|2− cn|βi|1 ≥ cn−1cn− cncn−1 = 0. Thus

An−2|βi|2 −An−1|βi|1 = (pcn−1 + qcn−2)|βi|2 − (pcn + qcn−1)|βi|1
= p(cn−1|βi|2 − cn|βi|1) + q(cn−2|βi|2 − cn−1|βi|1) ≥ 0.

§3.6. Divisibility in rank 2

We end this section with the following rank 2 result which we will need in Section 4

for the rank 3 case.

Theorem 3.26. Let a ≥ An/r be an integer. Then

∑
τ0,τ1,...,τn−2
sn−1=a

n−2∏
i=0

[
Ai+1 − rsi

τi

]
x
rsn−2−An−1

1 x
r(An−1−a)−An−2

2

is divisible by (1+xr1)ra−An and the resulting quotient has nonnegative coefficients.
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Proof. Using Theorem 3.17 with z3 = 1, we see that xpn+1x
q
n is equal to

∑
τ0,τ1,...,τn−2

(n−2∏
i=0

[
Ai+1 − rsi

τi

])
x
rsn−2−An−1

1 x
An−rsn−1

2 .

On the other hand, using Theorem 3.17 to express xpn+1x
q
n in the cluster (x0 =

(xr1 + 1)/x2, x1), we get∑
τ0,τ1,...,τn−2,τn−1

(n−1∏
i=0

[
Ai+1 − rsi

τi

])(
xr1 + 1

x 2

)rsn−1−An
x
An+1−rsn
1 .

Since the positivity conjecture is known to hold for rank 2, it follows that all the

sums of products of modified binomial coefficients in this expression are positive.

Now the result follows by fixing sn−1 = a.

§4. Rank 3

§4.1. Nonacyclic mutation classes of rank 3

In this subsection we collect some basic results on quivers of rank 3 which are not

mutation equivalent to an acyclic quiver. First let us recall how mutations act on

a rank 3 quiver. Given a quiver

1
r // 2

t����������

3

s

^^>>>>>>>>

where r, s, t ≥ 1 denote the numbers of arrows, its mutation in 1 is the quiver

1

s
��>>>>>>>> 2
roo

3

rs−t

@@��������

where we agree that if rs− t < 0 then there are |rs− t| arrows from 2 to 3.

Lemma 4.1. Let A be a nonacyclic cluster algebra of rank 3 with initial quiver

Q equal to

1
r // 2

t����������

3

s

^^>>>>>>>>

where r, s, t ≥ 1 denote the numbers of arrows. Then
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(i) r, s, t ≥ 2;

(ii) applying to Q a mutation sequence at the vertices 1, 2, 1, 2, 1, 2, . . . consisting

of n mutations yields the quiver

1
r // 2

t̄(n)����������

3

s̄(n)

^^>>>>>>>>

if n is even, 1

t̄(n) ��>>>>>>>> 2
roo

3

s̄(n)

@@��������

if n is odd, where

s̄(n) = c
[r]
n+2s− c

[r]
n+1t and t̄(n) = c

[r]
n+1s− c[r]n t.

(iii) c
[r]
n+1s− c

[r]
n t ≥ 2 for all n ≥ 1.

Proof. (i) This has been shown in [3]1, but we include a proof for convenience.

Suppose that one of r, s, t is less than 2. Without loss of generality, we may suppose

r < 2 and s ≤ t. Since Q is not acyclic, r cannot be zero, whence r = 1. But then

mutating Q at vertex 1 would produce the following acyclic quiver:

1

s
��>>>>>>>> 2

t−s����������
1oo

3

(ii) We proceed by induction on n. For n = 1, the quiver obtained from Q by

mutation at 1 is the following:

1

s
��>>>>>>>> 2
roo

3

rs−t

@@��������

and for n = 2, the quiver obtained from Q by mutation at 1 and 2 is the following:

1
r // 2

rs−t����������

3
(r2−1)s−rt

^^>>>>>>>>

In both cases, the result follows from c
[r]
1 = 0, c

[r]
2 = 1, c

[r]
3 = r, c

[r]
4 = r2 − 1.

1It is shown there that A is nonacyclic if and only if r, s, t ≥ 2 and r2 + s2 + t2 − rst ≤ 4.
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Suppose that n > 2. If n is odd then by induction we know that the quiver

we are considering is obtained by mutating the following quiver at vertex 1:

1
r // 2

t̄(n−1)����������

3

s̄(n−1)

^^>>>>>>>>

and the result follows from t̄(n) = s̄(n− 1) and

rs̄(n− 1)− t̄(n− 1) = rc
[r]
n+1s− rc[r]n t− c[r]n s+ c

[r]
n−1t = c

[r]
n+2s− c

[r]
n+1t = s̄(n).

If n is even then the proof is similar. (iii) follows from (i) and (ii).

§4.2. Positivity

In this section, we prove the positivity conjecture in rank 3.

Theorem 4.2. Let A(Q) be a skew-symmetric coefficient-free cluster algebra of

rank 3 with initial cluster x and let xt0 be any cluster. Then the Laurent expan-

sion of any cluster variable in xt0 with respect to the cluster x has nonnegative

coefficients.

The remainder of this section is devoted to the proof of this theorem.

If A is acyclic then the theorem has been proved by Kimura and Qin [17]. We

therefore assume that A is nonacyclic, but we point out that this is not a necessary

assumption for our argument. Our methods would work also in the acyclic case,

but restricting to the nonacyclic case considerably simplifies the exposition.

Since A is nonacyclic, every quiver Q′ which is mutation equivalent to the

initial quiver Q has at least one oriented cycle. Since Q′ has three vertices and no

2-cycles, this implies that every arrow in Q′ lies in at least one oriented cycle.

Let xt0 be an arbitrary cluster. Choose a finite sequence µ of mutations which

transforms xt0 into the initial cluster x and which is of minimal length among all

such sequences. Each mutation in the sequence µ is a mutation at one of the

three vertices 1, 2 or 3 of the quiver, thus µ induces a finite sequence of vertices

(V1, V2, . . .), where each Vi is 1, 2 or 3. Since µ is of minimal length, it follows that

Vi 6= Vi+1.

Let e0,1 = V1 and e0,2 = V2. Let k1 > 1 be the least integer such that

Vk1 6= e0,1, e0,2, and denote by t1 the seed obtained from t0 after mutating at

V1, . . . , Vk1−1. Then let e1,1 = Vk1−1 and e1,2 = Vk1 . Let k2 > k1 be the least integer

such that Vk2 6= e1,1, e1,2, and denote by t2 the seed obtained from t0 after mutating
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at V1, . . . , Vk2−1. Recursively, we define a sequence of seeds Σt0 ,Σt1 ,Σt2 , . . . ,Σtm
along our sequence µ such that xtm = x is the initial cluster and, for each i, the

subsequence of µ between ti and ti+1 is a sequence of mutations at two vertices.

The sequence of mutations can be visualized in the following diagram:

t0
V1 ///o/o/o • •

Vk1−1 ///o/o/o t1
Vk1 ///o/o/o • •

Vki−1 ///o/o/o ti
Vki ///o/o/o • •

Vkm−1///o/o/o tm

The main idea of our proof is to use our rank 2 formula from the previous

section to compute the Laurent expansion of a cluster variable of t0 in the cluster

at t1, then replace the cluster variables of t1 in this expression by their Laurent

expansions in the cluster t2, which we can compute again because of our rank 2

formulas. Continuing this procedure we obtain, at least theoretically, a Laurent

expansion in the initial cluster.

Fix an arbitrary j ≥ 0, let d = ej,1, e = ej,2, and let f be the integer such

that {d, e, f} = {1, 2, 3}. Thus the sequence µ of mutations around the node tj is

of the form

•
f ///o/o/o/o •

d ///o/o/o/o tj
e ///o/o/o/o •

d ///o/o/o/o •
e ///o/o/o/o •

Let

d

r
��======== e
ξoo

f

ω

@@��������

be the quiver at tj , and use the notation {x1;tj , x2;tj , x3;tj} for the cluster xtj at tj .

Let

x̃d;tj =
xξe;tj + xrf ;tj

xd;tj

and

˜̃xe;tj =
x̃d;tj

ξ
+ xrξ−ωf ;tj

xe;tj
.

Thus x̃d;tj = µd(xd;tj ) is the new cluster variable obtained by mutation of the

cluster at tj in direction d and ˜̃xe;tj = µeµd(xe;tj ) is the new cluster variable

obtained by mutation of the cluster at tj in direction d and then e.

Theorem 4.2 follows easily from the following result.
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Theorem 4.3. For any ti, tj with i < j, the Laurent expansion of the cluster

monomial xpei,1;tix
q
ei,2;ti in the cluster xtj is of the form

∑
u1∈Z, p1,q1≥0

C1; i→j x
u1

f ;tj
x̃d;tj

p1 ˜̃xe;tj q1 +
∑

u2∈Z, p2,q2≥0

C2; i→j x
u2

f ;tj
x̃d;tj

p2xq2e;tj

+
∑

u3∈Z, p3,q3≥0

C3; i→j x
u3

f ;tj
xp3d;tj

xq3e;tj ,

where

C1; i→j = C1(Qtj , Vki , . . . , Vkj−1, p, q;u1, p1, q1),

C2; i→j = C2(Qtj , Vki , . . . , Vkj−1, p, q;u2, p2, q2),

C3; i→j = C3(Qtj , Vki , . . . , Vkj−1, p, q;u3, p3, q3)

are nonnegative integers which depend on Qtj , Vki , . . . , Vkj−1, p, q, u1, u2, u3, p1, p2,

p3, q1, q2, q3.

§4.3. Proof of positivity

Before proving Theorem 4.3, let us show that it implies Theorem 4.2.

Let x be a cluster variable in xt0 . Using Theorem 4.3 with i = 0 and j = m−1,

we get an expression LP (x, tj) for x as a Laurent polynomial with nonnegative

coefficients in which each summand is a quotient of a certain monomial in the

variables xf ;tj , x̃d;tj ,
˜̃xe;tj , xe;tj by a power of xf ;tj . In other words, only the variable

xf ;tj appears in the denominator of LP (x, tj).

Since the seed tj is obtained from the seed tm by a sequence of mutations at

the vertices d and e, we see that xf ;tj = xf ;tm is one of the initial cluster variables

and that the variables xd;tj , xe;tj x̃d;tj ,
˜̃xe;tj are obtained from the initial cluster

xtm by a sequence of mutations at d and e. Therefore, in order to write x as a

Laurent polynomial in the initial cluster xtm , we only need to compute the expan-

sions for the variables xd;tj , xe;tj , x̃d;tj ,
˜̃xe;tj in the cluster xtm and substitute these

expansions into LP (x, tj). But since the exponents pi, qi of these variables are

nonnegative, we know from Theorem 3.10 that these expansions are Laurent poly-

nomials with nonnegative coefficients, and hence, after substitution into LP (x, tj),

we get an expansion for x as a Laurent polynomial with nonnegative coefficients

in the initial cluster xtm .

§4.4. Proof of Theorem 4.3

We use induction on j. Suppose that the statement holds true for j, and we prove

it for j + 1. Note that f = ej+1,2, since the rank is 3. Without loss of generality,
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let d = 1, so the sequence of mutations µ around the node tj+1 is of the form

•
e ///o/o/o/o •

1 ///o/o/o/o tj+1
f ///o/o/o/o •

1 ///o/o/o/o •
f ///o/o/o/o •

We analyze the three sums in the statement of Theorem 4.3 separately. For

the first sum, thanks to Theorem 3.21 with x1 = x1;tj+1 , x2 = xe;tj+1 , x3 = x̃1;tj+1 ,

z3 = xf ;tj+1 , there exist nonnegative coefficients C2; j→j+1 and C3; j→j+1 such that

(34)
∑

u1∈Z, p1,q1≥0

C1; i→j x
u1

f ;tj
x̃1;tj

p1 ˜̃xe;tj q1 =
∑

u1∈Z, p1,q1≥0

C1; i→j x
u1

f ;tj

×


∑

v
(1)
e ∈Z, p(1)2 ,q

(1)
2 ≥0

C2; j→j+1 x
v(1)e
e;tj+1

x̃1;tj+1

p
(1)
2 x

q
(1)
2

f ;tj+1

+
∑

w
(1)
e ∈Z, p(1)3 ,q

(1)
3 ≥0

C3; j→j+1 x
w(1)
e

e;tj+1
x
p
(1)
3

1;tj+1
x
q
(1)
3

f ;tj+1

 ,

where C2; j→j+1 depends on v
(1)
e , p

(1)
2 , q

(1)
2 , while C3; j→j+1 depends on w

(1)
e ,

p
(1)
3 , q

(1)
3 .

We can rewrite (34) as

(35)
∑

C1; i→jC2; j→j+1 x
v(1)e
e;tj+1

x̃1;tj+1

p
(1)
2 x

u1+q
(1)
2

f ;tj+1

+
∑

C1; i→jC3; j→j+1 x
w(1)
e

e;tj+1
x
p
(1)
3

1;tj+1
x
u1+q

(1)
3

f ;tj+1
.

For the second sum, we have

(36)
∑

u2∈Z, p2,q2≥0

C2; i→j x
u2

f ;tj
x̃1;tj

p2xq2e;tj =
∑

u2∈Z, p2,q2≥0

C2; i→j x
u2

f ;tj

×


∑

v
(2)
e ∈Z, p(2)2 ,q

(2)
2 ≥0

C2; j→j+1 x
v(2)e
e;tj+1

x̃1;tj+1

p
(2)
2 x

q
(2)
2

f ;tj+1

+
∑

w
(2)
e ∈Z, p(2)3 ,q

(2)
3 ≥0

C3; j→j+1 x
w(2)
e

e;tj+1
x
p
(2)
3

1;tj+1
x
q
(2)
3

f ;tj+1

 ,

where C2; j→j+1 depends on v
(2)
e , p

(2)
2 , q

(2)
2 , while C3; j→j+1 depends on w

(2)
e ,

p
(2)
3 , q

(2)
3 .

We can rewrite (36) as

(37)
∑

C2; i→jC2; j→j+1 x
v(2)e
e;tj+1

x̃1;tj+1

p
(2)
2 x

u2+q
(2)
2

f ;tj+1

+
∑

C2; i→jC3; j→j+1 x
w(2)
e

e;tj+1
x
p
(2)
3

1;tj+1
x
u2+q

(2)
3

f ;tj+1
.
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Similarly, for the third sum

(38)
∑

u3∈Z, p3,q3≥0

C3; i→jx
u3

f ;tj
xp31;tj

xq3e;tj

=
∑

u3∈Z, p3,q3≥0

C3; i→jx
u3

f ;tj

×


∑

v
(3)
e ∈Z, p(3)2 ,q

(3)
2 ≥0

C2; j→j+1 x
v(3)e
e;tj+1

x̃1;tj+1

p
(3)
2 x

q
(3)
2

f ;tj+1

+
∑

w
(3)
e ∈Z, p(3)3 ,q

(3)
3 ≥0

C3; j→j+1 x
w(3)
e

e;tj+1
x
p
(3)
3

1;tj+1
x
q
(3)
3

f ;tj+1

 ,

where C2; j→j+1 depends on v
(3)
e , p

(3)
2 , q

(3)
2 , while C3; j→j+1 depends on w

(3)
e ,

p
(3)
3 , q

(3)
3 .

We can rewrite (38) as

(39)
∑

C3; i→jC2; j→j+1 x
v(3)e
e;tj+1

x̃1;tj+1

p
(3)
2 x

u3+q
(3)
2

f ;tj+1

+
∑

C3; i→jC3; j→j+1 x
w(3)
e

e;tj+1
x
p
(3)
3

1;tj+1
x
u3+q

(3)
3

f ;tj+1
.

So by induction we have an expression of xpei,1;tix
q
ei,2;ti with respect to the

cluster tj+1, that is,

(40) xp1;ti
xqei+1;ti = (35) + (37) + (39).

This expression allows us to compute the new coefficients C2; i→j+1 and

C3; i→j+1 by collecting terms with nonnegative exponents on xf ;tj+1 ; we have

C2; i→j+1 =
∑

C1; i→jC2; j→j+1 +
∑

C2; i→jC2; j→j+1 +
∑

C3; i→jC2; j→j+1,

where the three sums are over all possible variables satisfying u1 + q
(1)
2 ≥ 0,

u2 + q
(2)
2 ≥ 0, and u3 + q

(3)
2 ≥ 0 respectively, so that the exponent of xf ;tj+1 is

nonnegative.

Similarly,

C3; i→j+1 =
∑

C1; i→jC3; j→j+1 +
∑

C2; i→jC3; j→j+1 +
∑

C3; i→jC3; j→j+1,

where the three sums are over all possible variables satisfying u1 + q
(1)
3 ≥ 0,

u2+q
(2)
3 ≥ 0, and u3+q

(3)
3 ≥ 0 respectively. In particular, this shows that C2; i→j+1

and C3; i→j+1 are nonnegative integers.

Since u1, u2 or u3 can be negative, xf ;tj+1
can have negative exponents. Now

we analyze the terms in which xf ;tj+1 appears with a negative exponent. For every
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positive integer θ, let Pθ be the sum of all terms in (40) with exponent of xf,tj+1

equal to −θ, that is, Pθ = Pθ,2 + Pθ,3, where

Pθ,2 =
∑

C1; i→jC2; j→j+1 x
v(1)e
e;tj+1

x̃1;tj+1

p
(1)
2 x

u1+q
(1)
2

f ;tj+1

+
∑

C2; i→jC2; j→j+1 x
v(2)e
e;tj+1

x̃1;tj+1

p
(2)
2 x

u2+q
(2)
2

f ;tj+1

+
∑

C3; i→jC2; j→j+1 x
v(3)e
e;tj+1

x̃1;tj+1

p
(3)
2 x

u3+q
(3)
2

f ;tj+1
,

Pθ,3 =
∑

C1; i→jC3; j→j+1 x
w(1)
e

e;tj+1
x
p
(1)
3

1;tj+1
x
u1+q

(1)
3

f ;tj+1

+
∑

C2; i→jC3; j→j+1 x
w(2)
e

e;tj+1
x
p
(2)
3

1;tj+1
x
u2+q

(2)
3

f ;tj+1

+
∑

C3; i→jC3; j→j+1 x
w(3)
e

e;tj+1
x
p
(3)
3

1;tj+1
x
u3+q

(3)
3

f ;tj+1
,

where the first sum in the expression for Pθ,h (h = 2, 3) is over all

u1, v
(1)
e , w(1)

e ∈ Z, p1, q1, p
(1)
h , q

(1)
h ≥ 0 satisfying u1 + q

(1)
h = −θ,

the second sum is over all

u2, v
(2)
e , w(2)

e ∈ Z, p2, q2, p
(2)
h , q

(2)
h ≥ 0 satisfying u2 + q

(2)
h = −θ,

and the third sum is over all

u3, v
(3)
e , w(3)

e ∈ Z, p3, q3, p
(3)
h , q

(3)
h ≥ 0 satisfying u3 + q

(3)
h = −θ.

To complete the proof, we shall compute Pθ,2 and Pθ,3 separately. We show

that Pθ,3 = 0 in Lemma 4.10, and thus to complete the proof it suffices to show

the following result on Pθ,2.

Lemma 4.4. Pθ,2 is of the form

˜̃xf ;tj+1

θ ∑
ue∈Z,p1≥0

C1;i→j+1 x
ue
e;tj+1

x̃1;tj+1

p1
,

where

C1;i→j+1 = C1(Btj+1
, Vki , . . . , Vkj+1−1, p, q;ue, p1, θ)

are nonnegative integers.

Proof. Pθ is the sum of all terms in the Laurent expansion of xp1;ti
xqf ;ti

in the

cluster xtj+1 with exponent of xf ;tj+1 equal to −θ. Clearly Pθ,2 = 0, for j = i. We

shall start over and compute Pθ using Corollary 3.20. To keep the notation simple,

we give a detailed proof for j = i+ 1. The case j > i+ 1 uses the same argument.
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Let
Q1 = 1

r1
��======== e
ξ1oo

f

ω1

@@��������

be the quiver at the seed µ1(ti+1), where r1, ω1 and ξ1 are the numbers of arrows.

Applying Corollary 3.20 to xp1;ti
xqf ;ti

, with x2 = xf ;ti+1 , x3 = x̃1;ti+1 , and

z3 = xe;ti+1
, we obtain

(41)
∑

τ0;1,τ1;1,...,τn1−3;1

(n1−3∏
w=0

[
Aw+1;1 − r1sw;1

τw;1

])
× x̃1;ti+1

An1−1;1−r1sn1−2;1
x
r1sn1−3;1−An1−2;1

f ;ti+1
x
ω1sn1−2;1−ξ1sn1−3;1

e;ti+1
.

Let n2 be the number of seeds between µ1(ti+1) and ti+2 inclusive. Suppose

that n2 is an even integer. The case of n2 odd is similar, except that the roles of

x1;ti+1 and xe;t+1 are interchanged. Let

Q2 = 1

ξ2 ��======== e
r2oo

f

ω2

@@��������

be the quiver at the seed µ1(ti+2), where r2, ω2 and ξ2 are the numbers of arrows.

Since the mutation sequence relating the quivers Q1 and Q2 consists of mutations

at the vertices 1 and e, we see from Lemma 4.1 that

r2 = ξ1,

ω2 = c
[r2]
n2−1r1 − c[r2]

n2−2ω1,(42)

ξ2 = c[r2]
n2
r1 − c[r2]

n2−1ω1.

Now let p2 = An1−1;1 − r1sn1−2;1, q2 = ω1sn1−2;1 − ξ1sn1−3;1 be the ex-

ponents of x̃1;ti+1
and xe;ti+1

in (41) respectively. Applying Corollary 3.20 to

x̃1;ti+1

p2
xq2e;ti+1

we see that (41) is equal to

(43)
∑

τ0;1,τ1;1,...,τn1−3;1

(n1−3∏
w=0

[
Aw+1;1 − r1sw;1

τw;1

])
x
r1sn1−3;1−An1−2;1

f ;ti+2

×
∑

τ0;2,τ1;2,...,τn2−3;2

(n2−3∏
w=0

[
Aw+1;2 − r2sw;2

τw;2

])
× x̃1;ti+2

An2−1;2−r2sn2−2;2
x
r2sn2−3;2−An2−2;2

e;ti+2
x
ω2sn2−2;2−ξ2sn2−3;2

f ;ti+2
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=
∑

τ0;1,τ1;1,...,τn1−3;1

(n1−3∏
w=0

[
Aw+1;1 − r1sw;1

τw;1

])

×
∑

τ0;2,τ1;2,...,τn2−3;2

(n2−3∏
w=0

[
Aw+1;2 − r2sw;2

τw;2

])
× x̃1;ti+2

An2−1;2−r2sn2−2;2
x
r2sn2−3;2−An2−2;2

e;ti+2
x
ω2sn2−2;2−ξ2sn2−3;2+r1sn1−3;1−An1−2;1

f ;ti+2

where Ai;2 and si;2 are as defined before Lemma 3.12 and Lemma 3.15 but in

terms of p2, q2, and r2, thus Ai;2 = p2c
[r2]
i+1 + q2c

[r2]
i and si;2 =

∑i−1
j=0 c

[r2]
i−j+1τj;2.

Let θ be a positive integer. We want to compute Pθ, which is the sum of all

terms in the sum above for which the exponent of xf ;ti+2
is equal to −θ, and show

that it is divisible by ˜̃xf ;tj+1

θ

. Thus −θ is equal to

ω2sn2−2;2 − ξ2sn2−3;2 + r1sn1−3;1 −An1−2;1.

It is convenient to introduce ς such that τ0;2 = ς − sn1−3;1. Then

sn2−2;2 = c
[r2]
n2−1(ς − sn1−3;1) +

n2−3∑
j=1

c
[r2]
n2−1−jτj;2,

sn2−3;2 = c
[r2]
n2−2(ς − sn1−3;1) +

n2−4∑
j=1

c
[r2]
n2−2−jτj;2.

Using (42), the expressions for sn2−2;2 and sn2−3;2 and the fact that c
[ξ]
1 = 0,

we have

ω2sn2−2;2 − ξ2sn2−3;2

= (c
[ξ1]
n2−1r1 − c[ξ1]

n2−2ω1)
[
c
[ξ1]
n2−1(ς − sn1−3;1) +

n2−3∑
j=1

c
[ξ1]
n2−1−jτj;2

]

− (c[ξ1]
n2
r1 − c[ξ1]

n2−1ω1)
[
c
[ξ1]
n2−2(ς − sn1−3;1) +

(n2−3∑
j=1

c
[ξ1]
n2−2−jτj;2

)
− c[ξ1]

1 τn2−3;2

]
= (ς − sn1−3;1) r1((c

[ξ1]
n2−1)2 − c[ξ1]

n2
c
[ξ1]
n2−2)

+

n2−3∑
j=1

τj;2[r1(c
[ξ1]
n2−1c

[ξ1]
n2−1−j − c

[ξ1]
n2
c
[ξ1]
n2−2−j) + ω1(−c[ξ1]

n2−2c
[ξ1]
n2−1−j + c

[ξ1]
n2−1c

[ξ1]
n2−2−j)]

3.1
= (ς − sn1−3;1) r1 +

n2−3∑
j=1

τj;2[r1(−c[ξ1]
−j ) + ω1c

[ξ1]
1−j ].
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And since −c[ξ1]
−j = c

[ξ1]
j+2, we get

(44) −θ = r1(ς − sn1−3;1) +

n2−3∑
j=1

τj;2(c
[ξ1]
j+2r1 − c[ξ1]

j+1ω1) + r1sn1−3;1 −An1−2;1

= −An1−2;1 + r1ς +

n2−3∑
j=1

τj;2(c
[ξ1]
j+2r1 − c[ξ1]

j+1ω1).

Also, the exponents of x̃1;ti+2
and xe;ti+2

in (43) can be expressed as follows:

An2−1;2− r2sn2−2;2 = c[ξ1]
n2
p2 + c

[ξ1]
n2−1q2− ξ1

(
c
[ξ1]
n2−1(ς−sn1−3;1) +

n2−3∑
j=1

c
[ξ1]
n2−1−jτj;2

)
= c[ξ1]

n2
(An1−1;1− r1sn1−2;1) + c

[ξ1]
n2−1(ω1sn1−2;1− ξ1sn1−3;1)

− ξ1
(
c
[ξ1]
n2−1(ς−sn1−3;1) +

n2−3∑
j=1

c
[ξ1]
n2−1−jτj;2

)
= c[ξ1]

n2
(An1−1;1− r1sn1−2;1) + c

[ξ1]
n2−1ω1sn1−2;1

− ξ1
(
c
[ξ1]
n2−1ς+

n2−3∑
j=1

c
[ξ1]
n2−1−jτj;2

)
,

and similarly

ξ1sn2−3;2 −An2−2;2 = ξ1

(
c
[ξ1]
n2−2ς +

n2−4∑
j=1

c
[ξ1]
n2−2−jτj;2

)
−
(
c
[ξ1]
n2−1(An1−1;1 − r1sn1−2;1) + c

[ξ1]
n2−2ω1sn1−2;1

)
.

By fixing ς, τ1;2, . . . , τn2−3;2 in (43), we have

∑
τ0;1,τ1;1,...,τn1−3;1

(n1−3∏
w=0

[
Aw+1;1 − r1sw;1

τw;1

])(n2−3∏
w=0

[
Aw+1;2 − r2sw;2

τw;2

])

× x̃1;ti+2

c[ξ1]
n2

(An1−1;1−r1sn1−2;1)+c
[ξ1]
n2−1ω1sn1−2;1−ξ1(c

[ξ1]
n2−1ς+

∑n2−3
j=1 c

[ξ1]
n2−1−jτj;2)

× x
ξ1(c

[ξ1]
n2−2ς+

∑n2−4
j=1 c

[ξ1]
n2−2−jτj;2)−(c

[ξ1]
n2−1(An1−1;1−r1sn1−2;1)+c

[ξ1]
n2−2ω1sn1−2;1)

e;ti+2

× x−An1−2;1+r1ς+
∑n2−3
j=1 (c

[t1]
j+2r1−c

[t1]
j+1ω1)τj;2

f ;ti+2

and this is equal to a product φϕ where φ is a Laurent monomial in x̃1;ti+2
, xe;ti+2

,
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xf ;ti+2
, while ϕ is equal to

∑
τ0;1,τ1;1,...,τn1−3;1

(n1−3∏
w=0

[
Aw+1;1 − r1sw;1

τw;1

])(n2−3∏
w=0

[
Aw+1;2 − r2sw;2

τw;2

])

×
(
x̃1;ti+2

c[ξ1]
n2

r1−c
[ξ1]
n2−1ω1

x
c
[ξ1]
n2−1r1−c

[ξ1]
n2−2ω1

e;ti+2

)b(An1−1;1−ς)
An1−1;1
An1;1

c−sn1−2;1

and transferring the 0-th term of the second product to an (n1−2)-nd term in the

first product, we get

(45)
∑

τ0;1,τ1;1,...,τn1−2;1

(n1−2∏
w=0

[
Aw+1;1 − r1sw;1

τw;1

])(n2−3∏
w=1

(
Aw+1;2 − r2sw;2

τw;2

))

×
(
x̃1;ti+2

c[ξ1]
n2

r1−c
[ξ1]
n2−1ω1

x
c
[ξ1]
n2−1r1−c

[ξ1]
n2−2ω1

e;ti+2

)b(An1−1;1−ς)
An1−1;1
An1;1

c−sn1−2;1

,

where τn1−2;1 = An1−1;1 − r1sn1−2;1 − τ0;2 = An1−1;1 − r1sn1−2;1 − ς + sn1−3;1.

Moreover, using Lemma 3.15, we observe that

(46) sn1−1;1 = r1sn1−2;1 − sn1−3;1 + τn1−2;1 = An1−1;1 − ς,

and by Theorem 3.26,

∑
τ0;1,τ1;1,...,τn1−2;1

sn1−1;1=An1−1;1−ς

(n1−2∏
w=0

[
Aw+1;1 − r1sw;1

τw;1

])
x
An1−1;1−r1sn1−2;1

1;ti+1

is divisible by (1 + x1;ti+1
r1)r1(An1−1;1−ς)−An1;1 in Z[x±1

1;ti+1
], and the re-

sulting quotient has nonnegative coefficients. Multiplying the sum with

x
r1b(An1−1;1−ς)

An1−1;1
An1;1

c−An1−1;1

1;ti+1
shows that

(47) ∑
τ0;1,τ1;1,...,τn1−2;1

sn1−1;1=An1−1;1−ς

(n1−2∏
w=0

[
Aw+1;1 − r1sw;1

τw;1

])
(x1;ti+1

r1)
b(An1−1;1−ς)

An1−1;1
An1;1

c−sn1−2;1

is also divisible by (1 + xr11;ti+1
)r1(An1−1;1−ς)−An1;1 , and the resulting quotient has

nonnegative coefficients. Moreover, we shall show in Lemma 4.5 below that the

exponents in (47) are nonnegative, which implies that the quotient is a polynomial.
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Note that the statement about the divisibility of (47) also holds when we

replace xr1;ti+1
with any other expression X. We can write (45) as follows:

(45) =
∑∑

m

q(m)p(m)Xb−m,

where

q(m) =

n1−2∏
w=0

[
Aw+1;1 − r1sw;1

τw;1

]
, p(m) =

n2−3∏
w=1

(
Aw+1;2 − r2sw;2

τw;2

)
,

b =

⌊
(An1−1;1 − ς)

An1−1;1

An1;1

⌋
, m = sn1−2;1,

X =
x̃1;ti+2

c[ξ1]
n2

r1−c
[ξ1]
n2−1ω1

x
c
[ξ1]
n2−1r1−c

[ξ1]
n2−2ω1

e;ti+2

.

Then Lemma 4.7 below yields

p(m) =

∑n2−3
w=1 τw;2∑
i=0

di

(b(An1−1;1 − ς)
An1−1;1

An1;1
c − sn1−2;1

i

)
and using Lemma 4.6 with g = r1(An1−1;1 − ς) − An1;1 and h =

∑n2−3
j=1 τj;2, we

find that the expression in (45) is divisible by

(48)

(
1 +

x̃1;ti+2

c[ξ1]
n2

r1−c
[ξ1]
n2−1ω1

x
c
[ξ1]
n2−1r1−c

[ξ1]
n2−2ω1

e;ti+2

)r1(An1−1;1−ς)−An1;1−
∑n2−3
j=1 τj;2

=

(
1 +

x̃1;ti+2

ξ2

xω2
e;ti+2

)An1−2;1−r1ς−
∑n2−3
j=1 τj;2

,

and the resulting quotient has nonnegative coefficients. Finally, dividing (48) by

xθf ;ti+2
and using the fact that

˜̃xf ;ti+2 = (xω2
e;ti+2

+ x̃1;ti+2

ξ2
)/xf ;ti+2

we see that Pθ,2 is divisible by ˜̃xf ;ti+2

θ

.

Lemma 4.5. ⌊
(An1−1;1 − ς)

An1−1;1

An1;1

⌋
− sn1−2;1 ≥ 0.

Proof. We have

sn1−1;1 − s′n1−1;1 ≥ (sn1−2;1 − s′n1−2;1)
An1−1;1

An1−2;1
≥ (sn1−2;1 − s′n1−2;1)

An1;1

An1−1;1
,

where the first inequality follows from (16) and the second from Lemma 3.12(b).



Positivity for Cluster Algebras of Rank 3 639

Hence

(49) (sn1−1;1 − s′n1−1;1)An1−1;1 ≥ (sn1−2;1 − s′n1−2;1)An1;1.

On the other hand, since s′n1−2;1 = kc
[r1]
n1−1;1, s′n1−1;1 = kc

[r1]
n;1 , by Definition

3.16, and Ai;1 = pc
[r1]
i+1;1 + qc

[r1]
i;1 , we have

s′n1−1;1An1−1;1 = kc
[r1]
n;1 (pc

[r1]
n;1 + qc

[r1]
n1−1;1)(50)

≥ kc[r1]
n1−1;1(pc

[r1]
n+1;1 + qc

[r1]
n;1 ) = s′n1−2;1An1;1,

where the inequality follows from Lemma 3.1. Adding (49) and (50) we get

sn1−1;1An1−1;1 ≥ sn1−2;1An1;1.

Therefore (46) yields

(An1−1;1 − ς)An1−1;1 ≥ sn1−2;1An1;1,

and we get

(An1−1;1 − ς)
An1−1;1

An1;1
− sn1−2;1 ≥ sn1−2;1 − sn1−2;1 = 0.

Lemma 4.6. Suppose that a polynomial in x of the form∑
m∈I

q(m)xb−m

is divisible by (1 + x)g and the quotient has nonnegative coefficients. Let

p(m) =

h∑
i=0

di

(
b−m
i

)
be a polynomial in m with di ≥ 0. Then∑

m∈I
p(m)q(m)xb−m

is divisible by (1 + x)g−h and the quotient has nonnegative coefficients.

Proof. This is because xi d
i

dxi

∑
m∈I q(m)xb−m is divisible by (1 + x)g−i and the

quotient has nonnegative coefficients.

Lemma 4.7. With assumptions in the proof of Lemma 4.4, we have

n2−3∏
w=1

(
Aw+1;2 − r2sw;2

τw;2

)
=

∑n2−3
w=1 τw;2∑
i=0

di

(⌊
(An1−1;1 − ς)

An1−1;1

An1;1

⌋
− sn1−2;1

i

)
for some di ∈ N, which are independent of sn1−2;1.
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Proof. Once we know that there are nonnegative integers a and b such that

Aw+1;2−r2sw;2 = a
(⌊

(An1−1;1−ς)
An1−1;1

An1;1

⌋
−sn1−2;1

)
+b, it is clear, by Lemma 4.8,

that (
Aw+1;2 − r2sw;2

τw;2

)
=

τw;2∑
i=0

d′i

(⌊
(An1−1;1 − ς)

An1−1;1

An1;1

⌋
− sn1−2;1

i

)
for some d′i ∈ N, and by Lemma 4.9, for any nonnegative integers j and k,

(⌊
(An1−1;1 − ς)

An1−1;1

An1;1

⌋
− sn1−2;1

j

)(⌊
(An1−1;1 − ς)

An1−1;1

An1;1

⌋
− sn1−2;1

k

)
=

j+k∑
i=0

d′′i

(⌊
(An1−1;1 − ς)

An1−1;1

An1;1

⌋
− sn1−2;1

i

)

for some d′′i ∈ N. Then the desired statement easily follows.

Thus we need to show the existence of the nonnegative integers a and b. Using

the definitions of Aw+1;2 and ς as well as the fact that r2 = ξ1, we get

Aw+1;2 − r2sw;2

= c
[ξ1]
w+2(An1−1;1 − r1sn1−2;1) + c

[ξ1]
w+1ω1sn1−2;1 − ξ1

(
c
[ξ1]
w+1ς +

w−1∑
j=1

c
[ξ1]
w+1−jτj;2

)
,

which can be written as

Aw+1;2−r2sw;2 = (c
[ξ1]
w+2r1− c[ξ1]

w+1ω1)

(⌊
(An1−1;1− ς)

An1−1;1

An1;1

⌋
−sn1−2;1

)
+C(w),

where C(w) is some function of w, which is independent of sn1−2;1. Note that

c
[ξ1]
w+2r1 − c[ξ1]

w+1ω1 > 0,

because, by Lemma 4.1, this is the number of arrows between some pair of ver-

tices in some seed between ti+1 and ti+2. Thus it suffices to show that C(w) is

nonnegative. Indeed,

C(w) = (c
[ξ1]
w+2r1 − c[ξ1]

w+1ω1)

(
(An1−1;1 − ς)

An1−1;1

An1;1
−
⌊

(An1−1;1 − ς)
An1−1;1

An1;1

⌋)
+ C̃(w)θ(w),
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where

C̃(w) = c
[ξ1]
w+2 − (c

[ξ1]
w+2r1 − c[ξ1]

w+1ω1)
An1−1;1

An1;1
,

θ(w) = An1−1;1 −
ξ1c

[ξ1]
w+1 − (c

[ξ1]
w+2r1 − c[ξ1]

w+1ω1)
An1−1;1

An1;1

c
[ξ1]
w+2 − (c

[ξ1]
w+2r1 − c[ξ1]

w+1ω1)
An1−1;1

An1;1

ς

−
w−1∑
j=1

ξ1c
[ξ1]
w+1−j

c
[ξ1]
w+2 − (c

[ξ1]
w+2r1 − c[ξ1]

w+1ω1)
An1−1;1

An1;1

τj;2.

We want to show that C(w) is nonnegative for w ≥ 1, for which it suffices to show

that C̃(w) and θ(w) are nonnegative for w ≥ 1.

First we show that C̃(w) are nonnegative for w ≥ 1. Note that C̃(w) =

ξ1C̃(w − 1) − C̃(w − 2). Moreover ξ1 ≥ 2, by Lemma 4.1. Hence if we show

C̃(1) > 0 ≥ C̃(0) then induction on w will show that C̃(w) is increasing in w. It is

easy to see that C̃(0) = 1− r1
An1−1;1

An1;1
≤ 0. On the other hand,

C̃(1) = ξ1 − (ξ1r1 − ω1)
An1−1;1

An1;1
= ξ1

An1;1 − r1An1−1;1

An1;1
+ ω1

An1−1;1

An1;1

= ξ1
−An1−2;1

An1;1
+ ω1

An1−1;1

An1;1
,

which is positive because

ω1An1−1;1 − ξ1An1−2;1 = ω1(pcn1 + qcn1−1)− ξ1(pcn1−1 + qcn1−2)(51)

= p(ω1cn1
− ξ1cn1−1) + q(ω1cn1−1 − ξ1cn1−2)) > 0,

where the last inequality follows from

{ω1cn1 − ξ1cn1−1, ω1cn1−1 − ξ1cn1−2}

= {the number of arrows between e and 1 in the seed ti,

the number of arrows between e and f in the seed ti}.

Next we show that θ(w) is nonnegative for all w such that 1 ≤ w ≤ n2 − 3.

Recall from (44) that

θ = An1−2;1 − r1ς −
n2−3∑
j=1

(c
[t1]
j+2r1 − c[t1]

j+1ω1)τj;2 > 0,

which implies that

An1−1;1 −
r1An1−1;1

An1−2;1
ς −

w−1∑
j=1

(c
[t1]
j+2r1 − c[t1]

j+1ω1)An1−1;1

An1−2;1
τj;2 > 0.
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So it is enough to show

r1An1−1;1

An1−2;1
>
ξ1c

[ξ1]
w+1 − (c

[ξ1]
w+2r1 − c[ξ1]

w+1ω1)
An1−1;1

An1;1

c
[ξ1]
w+2 − (c

[ξ1]
w+2r1 − c[ξ1]

w+1ω1)
An1−1;1

An1;1

and
(c

[t1]
j+2r1 − c[t1]

j+1ω1)An1−1;1

An1−2;1
>

ξ1c
[ξ1]
w+1−j

c
[ξ1]
w+2 − (c

[ξ1]
w+2r1 − c[ξ1]

w+1ω1)
An1−1;1

An1;1

;

but these inequalities can be proved by induction on w.

Lemma 4.8. Let a, b, c be any nonnegative integers. Then there are nonnegative

integers d0, . . . , dc such that(
aX + b

c

)
=

c∑
i=0

di

(
X

i

)
for all nonnegative integers X.

Proof. The Vandermonde identity shows(
aX + b

c

)
=

∑
w0+w1+···+wa=c, w0,...,wa∈N

(
b

w0

) a∏
v=1

(
X

wv

)
,

and then the statement follows from Lemma 4.9.

Lemma 4.9. Let a, b be any nonnegative integers. Then there are nonnegative

integers e0, . . . , ea+b such that(
X

a

)(
X

b

)
=

a+b∑
i=0

ei

(
X

i

)
for all nonnegative integers X.

Proof. There are many proofs. This proof is due to Qiaochu Yuan and Brendan

McKay. It is enough to prove the result for large enough integers X, because both

sides can be regarded as polynomials in X. Now
(
X
a

)(
X
b

)
is the number of ways to

choose a subset of size a and a subset of size b from a set of size X. The union of

these two subsets is a subset of size anywhere from max(a, b) to a+ b, so ei is the

number of different ways a subset of size i can be realized as the union of a subset

of size a and a subset of size b.

This completes the proof of Lemma 4.4.

Lemma 4.10. Pθ,3 = 0.

Proof. In trying to keep the notation simple, we give a detailed proof for j = i+1.

The case j > i+ 1 uses the same argument.
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Let

Q1 = 1

r1
��======== e
ξ1oo

f

ω1

@@��������

be the quiver at the seed µ1(ti+1), where r1, ω1 and ξ1 are the numbers of arrows.

For a compatible pair β = (S1, S2), let |β|2 denote |D1|− |S1| and |β|1 denote |S2|.
Applying Theorem 3.21 to xp1;ti

xqf ;ti
, we obtain

(52)
∑

τ0;1,...,τn1−3;1

An1−1;1−r1sn1−2;1≥0

(n1−3∏
w=0

[
Aw+1;1 − r1sw;1

τw;1

])

× x̃1;ti+1

An1−1;1−r1sn1−2;1
x
r1sn1−3;1−An1−2;1

f ;ti+1
x
ω1sn1−2;1−ξ1sn1−3;1

e;ti+1

(53)

+x
−An1−1;1

1;ti+1
x
−An1−2;1

f ;ti+1

∑
β: r1|β|1−An1−1;1>0

x
r1|β|1
1;ti+1

x
r1(An1−1;1−|β|2)

f ;ti+1
x
ξ1|β|2−(ξ1r1−ω1)|β|1
e;ti+1

,

where the second sum is over all β = (S1 =
⋃p+q
i=1 Si1, S2 =

⋃p+q
i=1 Si2) such that

(Si1, S
i
2) is a compatible pair in

{
Dcn1−1;1×cn1−2;1 if 1 ≤ i ≤ q,
Dcn1;1×cn1−1;1 if q + 1 ≤ i ≤ p+ q.

Let n2 be the number of seeds between µ1(ti+1) and ti+2 inclusive. Suppose that

n2 is an even integer. The case of n2 odd is similar, except that the roles of x1;ti+1

and xe;t+1 are interchanged. Let

Q2 = 1

ξ2 ��======== e
r2oo

f

ω2

@@��������

be the quiver at the seed µ1(ti+2), where r2, ω2 and ξ2 are the numbers of arrows.

Here we show that if C2; i→jC3; j→j+1 6= 0 then u2 + q
(2)
3 (the exponent of xf )

can never be negative, so that the second sum in Pθ,3 is equal to 0. A similar

argument can be applied to show that the other sums are 0.

Let p2 = An1−1;1 − r1sn1−2;1 and q2 = ω1sn1−2;1 − ξ1sn1−3;1 be the exponents

of x̃1;ti+1
and xe;ti+1

in (52), respectively. Applying Theorem 3.13 to x̃1;ti+1

p2
xq2e;ti+1

in (52), we have
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∑
τ0;1,...,τn1−3;1

An1−1;1−r1sn1−2;1≥0

(n1−3∏
w=0

[
Aw+1;1 − r1sw;1

τw;1

])
x
r1sn1−3;1−An1−2;1

f ;ti+1

×
∑
β

x
r2|β|1−An2−1;2

1;ti+2
x
An2;2−r2|β|2
e;ti+2

x
ξ2|β|2−(ξ2r2−ω2)|β|1
f ;ti+2

=
∑

τ0;1,...,τn1−3;1

An1−1;1−r1sn1−2;1≥0

(n1−3∏
w=0

[
Aw+1;1 − r1sw;1

τw;1

])

×
∑
β

x
r2|β|1−An2−1;2

1;ti+2
x
An2;2−r2|β|2
e;ti+2

x
ξ2|β|2−(ξ2r2−ω2)|β|1+r1sn1−3;1−An1−2;1

f ;ti+2
,

where each second sum is over all β = (S1 =
⋃p2+q2
i=1 Si1, S2 =

⋃p2+q2
i=1 Si2) such

that

(Si1, S
i
2) is a compatible pair in

{
Dcn2−1;2×cn2−2;2 if 1 ≤ i ≤ q2,

Dcn2;2×cn2−1;2 if q2 + 1 ≤ i ≤ p2 + q2.

The exponent of x1 is positive by definition of Pθ,3. Therefore An2−1;2 <

r2|β|1, hence An2−1;2/(r2|β|1) < 1 and thus

r1An2−1;2

c
[r2]
n2−1 r2

=
r1|β|1
c
[r2]
n2−1

An2−1;2

r2|β|1
<
r1|β|1
c
[r2]
n2−1

≤ ξ2|β|2 − (ξ2r2 − ω2)|β|1,

where the last inequality is proved in [21, Lemma 4.10] and [19, Proposition 4.1].

Using r2 = ξ1 and the definition of An2−1;2, we get

r1sn1−3;1 −An1−2;1 + ξ2|β|2 − (ξ2r2 − ω2)|β|1
≥ r1sn1−3;1 −An1−2;1

+
r1

(
c
[ξ1]
n2 (An1−1;1 − r1sn1−2;1) + c

[ξ1]
n2−1(ω1sn1−2;1 − ξ1sn1−3;1)

)
c
[ξ1]
n2−1ξ1

= −An1−2;1 +
r1

(
c
[ξ1]
n2 (An1−1;1 − r1sn1−2;1) + c

[ξ1]
n2−1ω1sn1−2;1

)
c
[ξ1]
n2−1ξ1

= −An1−2;1 +
r1

(
c
[ξ1]
n2 An1−1;1 − (c

[ξ1]
n2 r1 − c[ξ1]

n2−1ω1)sn1−2;1

)
c
[ξ1]
n2−1ξ1

(An1−1;1−r1sn1−2;1≥0)

≥ −An1−2;1 +
r1

(
c
[ξ1]
n2 An1−1;1 − (c

[ξ1]
n2 r1 − c[ξ1]

n2−1ω1)
An1−1;1

r1

)
c
[ξ1]
n2−1ξ1

=
1

ξ1
(ω1An1−1;1 − ξ1An1−2;1)

(51)
> 0.
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Thus the exponent of xf ;ti+2
in the expansion of (52) is positive. The proof for the

expansion of (53) uses a similar argument.

§5. Example

Example 5.1. Let Σt0 be a seed connected to the initial seed Σt3 by the following

sequence of mutations:

t0
2 ///o/o/o t′1

1 ///o/o/o t1
3 ///o/o/o t′2

1 ///o/o/o t2
2 ///o/o/o •

1 ///o/o/o • •
2 ///o/o/o •

1 ///o/o/o t3

Suppose that the quivers corresponding to the first 5 seeds are as follows

1
3 // 2

3
���������

1

2
��2

222222 2
3oo 1

3 // 2

3
���������

1

2
��2

222222 2
3oo 1

3 // 2

3
���������

3

7

XX2222222

3

3

FF�������
3

2

XX2222222

3

3

FF�������
3

2

XX2222222

Qt0
2 ///o/o/o/o/o/o/o Qt′1

1 ///o/o/o/o/o/o/o Qt1
3 ///o/o/o/o/o/o/o Qt′2

1 ///o/o/o/o/o/o/o Qt2

We want to illustrate the proof of positivity for x2;t0 .

First, we compute its expansion in the cluster xt1 using Theorem 3.21. The

mutation sequence from t0 to t1 is at the vertices 1 and 2. Thus we have r = 3,

n = 3, p = 1, q = 0. Moreover,

c1 = 0, c2 = 1, c3 = 3, A1 = 1, A2 = 3, s1 = τ0,

and the summation is on τ0 = 0, 1. The condition sn−2 ≤ An−1/r in the first

sum of Theorem 3.21 becomes τ0 ≤ 1, which is always satisfied, so the second

sum in the theorem is empty. Finally, the variables in the theorem are x2 = x2;t1 ,

z3 = x3;t1 and x3 = x1;t′1
= (x2

3;t1 + x3
2;t1)/x1;t1 . Thus x2;t0 is equal to

x−1
2;t1

(
1

0

)(
x2

3;t1 + x3
2;t1

x1;t1

)3

= x−1
2;t1

(
1

0

)
x3

1;t′1
(54)

+ x−1
2;t1

(
1

1

)
x3

3;t1 .(55)

Now we compute the expansion of this expression in the cluster xt2 again

using Theorem 3.21. We treat the two terms (54) and (55) separately. For the first

term, we need to expand x3
1;t′1

which lies in the cluster xt′1 . The mutation sequence

from t′1 to t2 is at the vertices 1 and 3. Thus we have r = 2, n = 4, p = 3, q = 0.
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Moreover,

c1 = 0, c2 = 1, c3 = 2, c4 = 3, A1 = 3, A2 = 6, A3 = 9,

s1 = τ0, s2 = 2τ0 + τ1, s3 = 3τ0 + 2τ1 + τ2.

The two binomial coefficients in the first sum are
(

3
τ0

)
and

(
6−2τ0
τ1

)
, so their product

is zero unless

0 ≤ τ0 ≤ 3, 0 ≤ τ1 ≤ 6− 2τ0.

Finally, the condition sn−2 ≤ An−1/r in the first sum of Theorem 3.21 implies

that τ0 < 3, and that τ1 ≤ 4 if τ0 = 0, τ1 ≤ 2 if τ0 = 1, and τ1 = 0 if τ0 = 2.

Therefore, the first sum is over the following pairs (τ0, τ1)

(0, 0) (0, 1) (0, 2) (0, 3) (0, 4) (1, 0) (1, 1) (1, 2) (2, 0),

and the corresponding terms are

x−1
2;t2

(
1

0

)
x−6

3;t2

(
3

0

)(
6

0

)
x9

1;t′2
(56)

+ x−1
2;t2

(
1

0

)
x−6

3;t2

(
3

0

)(
6

1

)
x7

1;t′2
x3

2;t2(57)

+ x−1
2;t2

(
1

0

)
x−6

3;t2

(
3

0

)(
6

2

)
x5

1;t′2
x6

2;t2(58)

+ x−1
2;t2

(
1

0

)
x−6

3;t2

(
3

0

)(
6

3

)
x3

1;t′2
x9

2;t2(59)

+ x−1
2;t2

(
1

0

)
x−6

3;t2

(
3

0

)(
6

4

)
x1

1;t′2
x12

2;t2(60)

+ x−1
2;t2

(
1

0

)
x−4

3;t2

(
3

1

)(
4

0

)
x5

1;t′2
x3

2;t2(61)

+ x−1
2;t2

(
1

0

)
x−4

3;t2

(
3

1

)(
4

1

)
x3

1;t′2
x6

2;t2(62)

+ x−1
2;t2

(
1

0

)
x−4

3;t2

(
3

1

)(
4

2

)
x1

1;t′2
x9

2;t2(63)

+ x−1
2;t2

(
1

0

)
x−2

3;t2

(
3

2

)(
2

0

)
x1

1;t′2
x6

2;t2 .(64)

The second sum in Theorem 3.21 is over all compatible pairs (S1, S2) in D9×6

such that |S2| > 9/2. The condition |S2| > 9/2 implies that S2 must be equal to

D2 or D2 \ {any single vertical edge}. If S2 = D2 then S1 must be the empty set.

If S2 = D2 \ {v2i−1} for i = 1, 2, 3, then S1 = {u3i−2} or ∅. If S2 = D2 \ {v2i}
for i = 1, 2, 3, then S1 = {u3i} or ∅. Therefore the second sum in Theorem 3.21 is
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equal to

x−1
2;t2

(
1

0

)
6x−6

3;t2
x1;t2x

12
2;t2(65)

+ x−1
2;t2

(
1

0

)
x−6

3;t2
x3

1;t2x
9
2;t2(66)

+ x−1
2;t2

(
1

0

)
6x−4

3;t2
x1;t2x

9
2;t2 .(67)

This shows that (54) is equal to the sum of all terms (56)–(67).

Applying Theorem 3.21 to the expression (55) and using a similar analysis,

we see that (55) is equal to

x−1
2;t2

(
1

1

)
x−3

3;t2

(
3

0

)
x6

1;t′2
(68)

+ x−1
2;t2

(
1

1

)
x−3

3;t2

(
3

1

)
x4

1;t′2
x3

2;t2(69)

+ x−1
2;t2

(
1

1

)
x−3

3;t2

(
3

2

)
x2

1;t′2
x6

2;t2(70)

+ x−1
2;t2

(
1

1

)
x−3

3;t2

(
3

3

)
x9

2;t2 .(71)

So x2;t0 is equal to the sum of all terms (56)–(71). Observe that the powers

of the variables x1;t′2
, x1;t2 in all terms are positive and that the powers of the

variable x2;t2 are positive in all terms except for (56) and (68).

On the other hand,

(56) + (68) = x−6
3;t2

x6
1;t′2

(x3
1;t′2

+ x3
3;t2

x2;t2

)
= x−6

3;t2
x6

1;t′2
x2;t′′2

where xt′′2 = µ2(xt′2) denotes the cluster obtained from xt′2 by mutation at 2.

Thus we obtain an expression for x2;t0 as a Laurent polynomial in the variables

x2;t′′2
, x1;t′2

, x1;t2 , x2;t2 , x3;t2 with nonnegative coefficients and in which only the

variable x3;t2 appears with negative powers. Note that x2;t′′2
= ˜̃x2;t2 and x1;t′2

=

x̃1;t2 , thus the sum (56)+(68) is of the form of the first sum in Theorem 4.3, the

sum of (57)–(64) and (69)–(71) is of the form of the second sum, and the sum of

(65)–(67) is of the form of the third sum in Theorem 4.3.

Since the mutation sequence linking the seeds Σt′′2 ,Σt′2 and Σt2 to the seed

Σt3 consists of mutations at the vertices 1 and 2 only, we see that x3;t2 = x3;t3 and

replacing the other variables with their expansions in the seed Σt3 (which have

nonnegative coefficients by the rank 2 case) produces again a Laurent polynomial

with nonnegative coefficients in the cluster xt3 .
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