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Integral Formulas for
Quantum Isomonodromic Systems

by

Hajime Nagoya

Abstract

We present integral formulas for particular solutions of quantum isomonodromic sys-
tems, which are time-dependent Schrödinger systems and quantizations of isomonodromic
deformations for certain Fuchsian systems. The functions given by these integral formulas
are generalizations of the generalized hypergeometric function LFL−1.
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§1. Introduction

Fix integers L ≥ 2 and N ≥ 1. We consider the time-dependent Schrödinger system

(1.1) κ
∂

∂zi
Ψ(q, z) = Hi

(
q,

∂

∂q
, z

)
Ψ(q, z) (1 ≤ i ≤ N)

where κ ∈ C and Ψ(q, z) is an unknown function of

q = (q
(1)
1 , . . . , q

(1)
L−1, q

(2)
1 , . . . , q

(2)
L−1, . . . , q

(N)
1 , . . . , q

(N)
L−1)

and z = (z1, . . . , zN ). The Hamiltonians Hi are defined in Definition 2.1.

The Schrödinger system (1.1) is a quantization of the classical Hamiltonian

system HL,N obtained from a similarity reduction of the Drinfeld–Sokolov hierar-

chy by K. Fuji and T. Suzuki [3] (L = 3, N = 1), T. Suzuki [14] (L ≥ 2, N = 1),

and a similarity reduction of the UC hierarchy by T. Tsuda [18] (L ≥ 2, N ≥ 1), in-

dependently. In [18], T. Tsuda showed that the classical Hamiltonian system HL,N
is equivalent to a Schlesinger system governing isomonodromic deformations for a

certain Fuchsian system.
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On the other hand, Y. Yamada conjectured in the context of the so-called

AGT relation that the instanton partition function, in the presence of the full

surface operator in N = 2 SU(L) gauge theory, is determined by the Schrödinger

system (1.1) for N = 1 [19]. In the case of L = 2, the Schrödinger system (1.1)

is a quantization of the Garnier systems [4], [6], which has appeared in conformal

field theory [16].

In this paper, we present a family of hypergeometric integrals as particular

solutions to the Schr̈odinger system (1.1). These solutions are polynomials in q

of degree M ∈ Z≥1 and their coefficients are integral representations of hypergeo-

metric type.

A key to finding special solutions to quantum isomonodromic systems is to ob-

serve special solutions to the corresponding classical isomonodromic systems. For

example, both the classical and quantum sixth Painlevé equation have a particular

solution expressed in terms of the Gauss hypergeometric function [9].

It is known that the classical Hamiltonian system HL,N has a particular solu-

tion expressed in terms of a generalization of the Gauss hypergeometric function

by K. Okamoto and H. Kimura [11] (L = 2, N ≥ 1), T. Suzuki [15] (L ≥ 2, N = 1),

T. Tsuda [17] (L ≥ 2, N ≥ 1). Observing the linear Pfaffian system derived from

this generalization of the Gauss hypergeometric function, we see indeed that hy-

pergeometric integrals given in [17] yield a particular solution to the Schrödinger

system (1.1):

Theorem 1.1 (see Theorem 4.1). The hypergeometric integral

(1.2)

∫
∆

L−1∏
n=1

tαn/κ
n

N∏
i=1

(1− zitL−1)−βi/κ
L−1∏
n=1

(tn−1 − tn)−γn/κ

×
(
ϕ0(t)−

N∑
i=1

L−1∑
n=1

ϕ(i)
n (t)q(i)

n

)
,

which is a polynomial in q of degree 1, is a particular solution to the Schrödinger

system (1.1). Here ∆ is a twist cycle and ϕ0(t), ϕ
(i)
n (t) are certain rational (L−1)-

forms defined by (4.1) and (4.2).

In order to generalize the hypergeometric integral (1.2) for particular solutions

to the case of polynomials in q of degree M ∈ Z≥2, let us recall the equivalence

between the Knizhnik–Zamolodchikov equation in conformal field theory and a

quantization of a Schlesinger system [5], [12]. The KZ equations for the simple Lie

algebra g have integral representations of solutions taking values in tensor products

of Verma modules of g (see, for example, [1], [13]). From the point of view that the

integral representation (1.2) may give a solution to the KZ equation, one should



Integral Formulas for Quantum Isomonodromic Systems 653

view the integral variables as corresponding to the simple roots of slL. For the case

of L = 2 and N = 1, it is known that the Schrödinger system (1.1), the quantum

sixth Painlevé equation, has hypergeometric solutions [9]:∫
∆

∏
1≤a<b≤M

(t(a) − t(b))2/κ
M∏
a=1

(t(a))α/κ(1− zt(a))−β/κ(1− t(a))−γ/κ

× (ϕ0(t(a))− ϕ(1)
1 (t(a))q

(1)
1 ).

Note that the integrand above consists of M -copies of the integrand of (1.2) mul-

tiplied by the coupled term
∏

1≤a<b≤M (t(a) − t(b))2/κ.

Considering the above, we arrive at

Theorem 1.2 (see Theorem 4.3). The hypergeometric integral∫
∆

∏
1≤a<b≤M,
1≤n≤L−1

(t(a)
n − t(b)n )2/κ

∏
1≤a,b≤M
1≤n≤L−2

(t(a)
n − t

(b)
n+1)−1/κ

×
M∏
a=1

{L−1∏
n=1

(t(a)
n )αn/κ

N∏
i=1

(1− zit(a)
L−1)−βi/κ(1− t(a)

1 )−γ/κ

×
(
ϕ0(t(a))−

N∑
i=1

L−1∑
n=1

ϕ(i)
n (t(a))q(i)

n

)}
,

which is a polynomial in q of degree M , is a particular solution to the Schrödinger

system (1.1). Here ∆ is a skew-symmetric twist cycle.

The remainder of this paper is organized as follows. In Section 2, we intro-

duce quantizations of the classical Hamiltonians of HL,N and show that those

quantum Hamiltonians are mutually commutative. In Section 3, we introduce our

Schrödinger systems and discuss their properties. In Section 4, we give integral

formulas for solutions.

Remark 1.3. As mentioned above, the classical Hamiltonian system HL,N de-

scribes isomonodromic deformations for an L× L Fuchsian system

∂

∂u
Φ(u) =

N+1∑
i=0

Ai
u− ui

Φ(u),

where u0 = 1, ui = 1/zi (1 ≤ i ≤ N), and uN+1 = 0, whose spectral type is given

by the (N + 3)-tuple

(1, 1, . . . , 1), (1, 1, . . . , 1), (L− 1, 1), . . . , (L− 1, 1)

of partitions of L. The spectral type defines multiplicities of the eigenvalues of
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each residue matrix Ai. Consequently, L − 1 parameters are associated with the

singular points 0 and∞, and one parameter is associated with each singular point

ui for i = 0, . . . , N . Notice that in the integrand given in the theorems above,

L − 1 parameters are associated with the singular point 0, and one parameter is

associated with each singular point 1, 1/zi (1 ≤ i ≤ N).

§2. Hamiltonian

Let us define a non-commutative associative algebra WL,N over C with generators

q(i)
m , p(i)

m (1 ≤ m ≤ L− 1, 1 ≤ i ≤ N),

en, κn, θj , ~ (0 ≤ n ≤ L− 1, 0 ≤ j ≤ N)

and commutation relations

(2.1) [p(j)
m , q(i)

n ] = δn,mδi,j~ (1 ≤ n,m ≤ L− 1, 1 ≤ i, j ≤ N),

where δi,j is Kronecker’s delta, and the other commutation relations are zero, and

relations
L−1∑
m=0

em =
L− 1

2
,

L−1∑
m=0

κm =

N∑
i=0

θi.

The non-commutative associative algebra WL,N is an Ore domain, so that we

can define its skew field KL,N (see, for example, [2, Chapter 1, Section 8]).

Definition 2.1. We introduce Hamiltonians Hi (i = 1, . . . , N) in the rational

function field WL,N (z1, . . . , zN ) in variables z1, . . . , zN by

(2.2) ziHi

=

L−1∑
n=0

enq
(i)
n p(i)

n +

N∑
j=0

∑
0≤m<n≤L−1

q(i)
m p(j)

m q(j)
n p(i)

n +
1

zi − 1

L−1∑
m,n=0

q(i)
m p(0)

m q(0)
n p(i)

n

+

N∑
j=1
j 6=i

zj
zi − zj

L−1∑
m,n=0

q(i)
m p(i)

n q(j)
n p(j)

m + θi

(
e0 + κ0 −

N∑
j=1

θj −
N∑
j=1
j 6=i

θjzj
zi − zj

)
,

where

q
(i)
0 = θi +

L−1∑
m=1

q(i)
m p(i)

m , p
(i)
0 = −1 (1 ≤ i ≤ N),

q(0)
m = −1, p(0)

m = κm +

N∑
i=1

q(i)
m p(i)

m (1 ≤ m ≤ L− 1),

q
(0)
0 = κ0 −

N∑
i=1

θi −
N∑
i=1

L−1∑
m=1

q(i)
m p(i)

m , p
(0)
0 = −1.
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The Hamiltonians Hi (i = 1, . . . , N) are the canonical quantizations of the

polynomial Hamiltonians in [18, Appendix A]. By canonical quantization we mean

replacing the Poisson bracket with the commutator.

Since the canonical variables in the classical Hamiltonians are not separated,

quantization of the Hamiltonians is not unique. In the following, we show that

the Hamiltonians Hi are mutually commutative and the Schrödinger equations

associated with the Hamiltonians Hi have integral formulas.

Example 2.2. We give an example of the Hamiltonian Hi in the case of L = 2.

Set (qi, pi) = (q
(i)
1 , p

(i)
1 ). The Hamiltonian Hi is expressed as follows:

zi(zi − 1)Hi = qi

(
κ1 − θ0 +

N∑
j=1

qjpj

)(
κ1 +

N∑
j=1

qjpj

)
+ zi(θi + qipi)pi

−
N∑
j=1
j 6=i

zj
zi − zj

(θj + qjpj)qipj −
N∑
j=1
j 6=i

zi
zi − zj

(θi + qipi)qjpi

−
N∑
j=1
j 6=i

zi(zj − 1)

zj − zi
(θi + qipi)qjpj −

N∑
j=1
j 6=i

zi(zj − 1)

zj − zi
(θj + qjpj)qipi

− (zi + 1)(θi + qipi)qipi

− ((e1 − e0)zi + e0 − e1 − ~ + κ1 − κ0)qipi

plus some function of (z1, . . . , zN ) only. These Hamiltonians are quantizations of

the polynomial Hamiltonians for the Garnier system [6].

Example 2.3. We give an example of the Hamiltonian H1 in the case of N = 1.

Set (qm, pm) = (q
(1)
m , p

(1)
m ), H = H1, and z = z1. The Hamiltonian H is written in

a coupled form as follows:

z(z − 1)H =

L−1∑
m=1

HVI

(L−1∑
n=0

α2n+1 − α2m−1 − η,
m−1∑
n=0

α2n,

L−1∑
n=m

α2n, α2n−1η; qm, pm

)
+ 1

4

∑
1≤m<n≤L−1

{(
(qm − 1)pmqm + qmpm(qm − 1) + 2α2m−1(qm − 1)

)
× (pn(qn − z) + (qn − z)pn)

+
(
(qn − z)pnqn + qnpn(qn − z) + 2α2n−1(qn − z)

)
× (pm(qm − 1) + (qm − 1)pm)

}
plus some function of (z1, . . . , zN ) only, where
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HVI(a0, a1, az, a; q, p)

= 1
6

(
qp(q − 1)p(q − z) + (q − 1)p(q − z)pq + (q − z)pqp(q − 1)

+ (q − z)p(q − 1)pq + (q − 1)pqp(q − z) + qp(q − z)p(q − 1)
)

− 1
2

(
a0((q − 1)p(q − z) + (q − z)p(q − 1)) + a1(qp(q − z) + (q − z)pq)

+ (az − 1)(qp(q − 1) + (q − 1)pq)
)

+ aq.

Here,

α2m−1 = κn − ~ (1 ≤ m ≤ L− 1),

α2m = em − em+1 − κm + ~ (1 ≤ m ≤ L− 2),

α0 = e0 − e1, α2L−1 = −κ0 + (L− 2)~,
2L−1∑
m=0

αm = κ,

η = −κ0 + θ1 −
L− 2

2
~.

HVI is the Hamiltonian of the quantum sixth Painlevé equation with affine

Weyl group symmetry of type D
(1)
4 introduced in [8]. The affine Weyl group sym-

metry of type D
(1)
4 enables us to construct integral representations of particular

solutions of the quantum sixth Painlevé equation [10].

The Hamiltonian H is a quantization of the Hamiltonian obtained by K. Fuji

and T. Suzuki [3] (L = 3) and T. Suzuki [14] (L ≥ 3). The classical Hamiltonian

system associated with H has affine Weyl group symmetry of type A
(1)
2L−1, as

Bäcklund transformations. Quantization of this symmetry as in [7], [8] will be

discussed in the near future.

§2.1. Commutativity

The Hamiltonians Hi (i = 1, . . . , N) are expressed as follows:

−z2
iHi =

N+1∑
j=0
j 6=i

Ωi,j
ui − uj

− ziC,

where Ωi,j , C are elements in WL,N and C is a center, and u0 = 1, ui = 1/zi
(i = 1, . . . , n) and uN+1 = 0.

For i, j = 1, . . . , N , the forms Ωi,j are given by

(2.3) Ωi,j = tr(Â(i)Â(j)),

where Â(i) is an L× L matrix defined as

(2.4) (Â(i))m,n = q(i)
m p(i)

n
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for m,n = 0, 1, . . . , L − 1, where (Â(i))m,n is the (m,n) entry of the matrix Â(i).

The entries of Â(i) satisfy the following commutation relations.

Lemma 2.4. We have

(2.5)
1

~
[(Âi)m,n, (Â

j)m′,n′ ] = δi,j(δn,m′(Â
i)m,n′ − δn′,m(Âi)m′,n)

for 0 ≤ m,n,m′, n′ ≤ L− 1 and 1 ≤ i, j ≤ N .

The proof is by straightforward calculation.

Recall the definition of Gaudin Hamiltonians (see, for example, [5, Section 2]).

The Gaudin Hamiltonians Gi (i = 1, . . . , N) for glL are defined as

Gi =

N∑
j=1
j 6=i

tr(B(i)B(j))

ui − uj
,

where B(i) (i = 1, . . . , N) are L×L matrices whose entries satisfy the commutation

relations (2.5). Since the commutativity of the Gaudin Hamiltonians amounts to

the so-called infinitesimal braid relations, Lemma 2.4 yields

[Ωi,j ,Ωk,l] = 0 (i, j, k, l distinct),

[Ωi,j ,Ωi,k + Ωk,j ] = 0 (i, j, k distinct)

for i, j, k, l = 1, . . . , N .

The other elements Ωi,0 and Ωi,N+1 (i = 1, . . . , N) cannot be expressed

in a similar way to (2.3) and (2.4). However, we can check by straightforward

calculation that the infinitesimal braid relations above hold even if i, j, k, l =

0, 1, . . . , N + 1. Therefore, we have

Proposition 2.5. The Hamiltonians Hi (i = 1, . . . , N) are mutually commuta-

tive.

The proof is omitted since the calculation is lengthy.

§3. Schrödinger system

Denote by

Hi

(
q,

∂

∂q
, z

)
for i = 1, . . . , N the Hamiltonians obtained by identifying q

(i)
m and p

(i)
m with q

(i)
m

and ∂/∂q
(i)
m , respectively, of the Hamiltonians Hi defined in Definition 2.1.
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We consider the following Schrödinger system:

(3.1) κ
∂

∂zi
Ψ(q, z) = Hi

(
q,

∂

∂q
, z

)
Ψ(q, z),

where κ ∈ C, and Ψ(q, z) is an unknown function of

q = (q
(1)
1 , . . . , q

(1)
L−1, q

(2)
1 , . . . , q

(2)
L−1, . . . , q

(N)
1 , . . . , q

(N)
L−1)

and of z = (z1, . . . , zN ). Here, we regard en, κn, θi as complex parameters.

Proposition 3.1. The Schrödinger system (3.1) is completely integrable in the

sense of Frobenius, that is,[
κ
∂

∂zi
−Hi

(
q,

∂

∂q
, z

)
, κ

∂

∂zj
−Hj

(
q,

∂

∂q
, z

)]
= 0

for i, j = 1, . . . , N .

Proof. Thanks to Proposition 2.5, we have only to show

∂

∂zi
Hj

(
q,

∂

∂q
, z

)
=

∂

∂zj
Hi

(
q,

∂

∂q
, z

)
.

This is easily calculated as follows. For i 6= j, we have

∂

∂zi
Hj

(
q,

∂

∂q
, z

)
=

∂

∂zi

(
zi

zj(zj − zi)

( L−1∑
m,n=0

q(j)
m p(j)

n q(i)
n p(i)

m − θiθj
))

=
1

(zi − zj)2

( L−1∑
m,n=0

q(j)
m p(j)

n q(i)
n p(i)

m − θiθj
)
.

From Lemma 2.4, the last line is symmetrical with respect to i and j, which finishes

the proof.

In the simplest case, namely, the case of L = 2 and N = 1, the Schrödinger

system (3.1) is the quantum sixth Painlevé equation. In the previous work [9],

we showed that the quantum sixth Painlevé equation has polynomial solutions in

terms of q.

In the general case, the Schrödinger system (3.1) also has polynomial solutions

in terms of q due to the following propositions.

For an L− 1×N matrix A whose entries are non-negative integers, let qA be

the monomial defined by

qA =

L−1∏
m=1

N∏
i=1

(q(i)
m )Am,i ,

where Am,i is the (m, i) entry of the matrix A. Set d(A) =
∑L−1
m=1

∑N
i=1Am,i.
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Proposition 3.2. The Hamiltonians Hi(q, ∂/∂q, z) (i = 1, . . . , N) act on qA as

follows:

(3.2) ziHi(q
A) =

{L−1∑
n=1

An,i

(
en − e0 − θi −

n∑
m=1

Am,i

)
+ θi

(
κ0 −

N∑
j=1

θj

)

+
1

zi − 1

(
θi +

L−1∑
n=1

An,i

)(
κ0 −

N∑
j=1

θj −
N∑
j=1

L−1∑
n=1

An,j

)

− 1

zi − 1

L−1∑
n=1

An,i

(
κn +

N∑
j=1

An,j − 1
)

+
∑
j=1
j 6=i

zj
zi − zj

L−1∑
n=1

(
An,i

(L−1∑
m=1

Am,j +An,j + θj

)
+ θiAn,j

)}
qA

− 1

zi − 1

(
κ0 −

N∑
j=1

θj −
N∑
j=1

L−1∑
m=1

Am,j

) L−1∑
n=1

(
κn +

N∑
j=1

An,j

)
q(An,i+1)

+
zi

zi − 1

(
θi +

L−1∑
m=1

Am,i − 1
) L−1∑
n=1

An,iq
(An,i−1)

− 1

zi − 1

L−1∑
n=1

(
κn +

N∑
j=1

An,j

)(n−1∑
m=1

Am,iq
(An,i+1,Am,i−1)

+ zi

L−1∑
m=n+1

Am,iq
(An,i+1,Am,i−1)

)
+

N∑
j=1
j 6=i

1

zi − zj

L−1∑
n=1

An,j

(
zj

n−1∑
m=1

Am,iq
(Am,j+1,Am,i−1,An,i+1,An,j−1)

+ zi

n−1∑
m=1

Am,iq
(Am,j+1,Am,i−1,An,i+1,An,j−1)

)
−

N∑
j=1
j 6=i

zi
zi − zj

(
θi +

L−1∑
m=1

Am,i − 1
) L−1∑
n=1

An,iq
(An,j+1,An,i−1)

−
N∑
j=1
j 6=i

zj
zi − zj

(
θj +

L−1∑
m=1

Am,j − 1
) L−1∑
n=1

An,jq
(An,i+1,An,j−1),

where

q(An,i+1) = qAq(i)
n , q(An,i−1) =

qA

q
(i)
n

, q(An,i+1,Am,j−1) =
qAq

(i)
n

q
(j)
m

,
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q(Am,j+1,Am,i−1,An,i+1,An,j−1) =
qAq

(j)
m q

(i)
n

q
(i)
m q

(j)
n

for 1 ≤ n,m ≤ L− 1, 1 ≤ i, j ≤ N .

Proof. Note that the Hamiltonian Hi defined in (2.2) consists of five terms. The

actions of the first and last terms on qA are trivial. The action of the second term

divided by zi on qA is computed as follows. First, divide it into four parts:

N∑
j=0

∑
0≤m<n≤L−1

q(i)
m p(j)

m q(j)
n p(i)

n =

N∑
j=1

∑
1≤m<n≤L−1

q(i)
m p(j)

m q(j)
n p(i)

n

−
N∑
j=1

L−1∑
n=1

q
(i)
0 q(j)

n p(i)
n −

∑
1≤m<n≤L−1

q(i)
m p(0)

m p(i)
n +

L−1∑
n=1

q
(i)
0 p(i)

n .

By Definition 2.1, we have

N∑
j=0

∑
0≤m<n≤L−1

q(i)
m p(j)

m q(j)
n p(i)

n (qA)

=

N∑
j=1

∑
1≤m<n≤L−1

Am,jAn,iq
(An,j+1,An,i−1,Am,i+1,Am,j−1)

−
N∑
j=1

(
θi +

L−1∑
m=1

Am,i − 1
) L−1∑
n=1

An,iq
(An,j+1,An,i−1)

−
∑

1≤m<n≤L−1

(
κm +

N∑
j=1

Am,j

)
An,iq

(Am,i+1,An,i−1)

+
(
θi +

L−1∑
m=1

Am,i − 1
) L−1∑
n=1

An,iq
(An,i−1).

We omit the calculation of the actions of the third and fourth terms on qA

since they are computed similarly. Summing up the results of the actions of all

terms on qA, we obtain (3.2).

Let V (M) (M ∈ Z≥0) be the subspace of the polynomial ring C[q] defined by

V (M) =
⊕

A CqA, where the summation is taken over all L − 1 × N matrices A

such that d(A) ≤M .

Proposition 3.3. For each i = 1, . . . , N , the Hamiltonian Hi(q, ∂/∂q, z) acts on

V (M) if κ0 −
∑N
i=1 θi = M .

Proof. We compute the action of the Hamiltonian Hi(q, ∂/∂q, z) on qA such that

d(A) = M as follows. From Proposition 3.2, we have
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(3.3) zi(zi − 1)Hi

(
q,

∂

∂q
, z

)
(qA)

= −
(
κ0 −

N∑
i=1

θi −M
) L−1∑
n=1

(
κn +

N∑
j=1

An,j

)
q(i)
n qA + f(q).

Here f(q) is a polynomial of degree at most M . Hence, if κ0−
∑N
i=1 θi = M , then

the first term of (3.3) vanishes, which finishes the proof.

By Proposition 3.3, for the Schrödinger equation (3.1), we can consider poly-

nomial solutions

Ψ(q, z) =
∑

A∈AM

cA(z)qA,

where

(3.4) AM = {A = (Am,i) | Am,i ∈ Z≥0, d(A) ≤M}

and cA(z) is a function of z. In the next section, we present integral formulas for

polynomial solutions taking values in V (M).

The Hamiltonians Hi also act on other subspaces of the polynomial ring C[q].

Let F (T1, . . . , TL−1) (T1, . . . , TL−1 ∈ Z≥0) be the subspace of the polynomial ring

C[q] defined as F (T1, . . . , TL−1) =
⊕

A CqA, where the summation is taken over

all L− 1×N matrices A such that the entries of A are non-negative integers and∑N
i=1An,i ≤ Tn (n = 1, . . . , L− 1). Set dn(A) =

∑N
i=1An,i.

Proposition 3.4. For each i = 1, . . . , N , the Hamiltonian Hi(q, ∂/∂q, z) acts on

F (T1, . . . , TL−1) if κn = −Tn for n = 1, . . . , L− 1.

Proof. Take an L − 1 × N matrix A such that the entries of A are non-negative

integers and dn(A) = Tn for any n ∈ {1, . . . , L− 1}. We compute the action of the

Hamiltonian Hi(q, ∂/∂q, z) on qA as follows. From Proposition 3.2, we have

(3.5) zi(1− zi)Hi

(
q,

∂

∂q
, z

)
(qA)

=
(
κ0 −

N∑
j=1

θj −
L−1∑
m=1

Tm

) L−1∑
n=1

(κn + Tn)q(An,i+1)

+

L−1∑
n=1

(κn + Tn)
(n−1∑
m=1

Am,iq
(An,i+1,Am,i−1) + zi

L−1∑
m=n+1

Am,iq
(An,i+1,Am,i−1)

)
+ f(q).

Here, f(q) is a polynomial such that for each n ∈ {1, . . . , L−1}, the degree of f(q)

as a polynomial in q
(1)
n , . . . , q

(N)
n is less than or equal to dn(A). Thus, if κn = −Tn
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for n = 1, . . . , L−1, then the first and second terms of (3.5) vanish, which finishes

the proof.

Consequently, we can also consider polynomial solutions taking values in

F (T1, . . . , TL−1).

§4. Integral formulas

In this section, we construct integral formulas for polynomial solutions of the

Schrödinger systems (3.1).

Recall that the Gauss hypergeometric function is a particular solution to both

the classical and quantum sixth Painlevé equation [9]. Hypergeometric solutions

to the classical Hamiltonian systems HL,N were given by T. Suzuki [15] (L ≥ 2,

N = 1) and T. Tsuda [17] (L ≥ 2, N ≥ 1) independently, under the condition

κ0 −
∑N
i=1 θi = 0.

These hypergeometric solutions are the generalized hypergeometric functions

(Thomae’s hypergeometric functions) LFL−1 in the case of (L ≥ 2, N = 1) and

their generalizations in the case of (L ≥ 2, N ≥ 1).

We expect that these generalized hypergeometric functions are also solutions

to a quantization of the classical Hamiltonian systems HL,N , the Schrödinger

systems (3.1). Indeed, this is true if we consider polynomial solutions to the

Schrödinger systems (3.1) with κ0 −
∑N
i=1 θi = 1.

Set κ0 −
∑N
i=1 θi = M ∈ Z≥0. We begin with the case M = 1 and later we

deal with the general case.

§4.1. The case of M = 1

Consider the multivalued function

U(t) =

L−1∏
n=1

tαn/κ
n

N∏
i=1

(1− zitL−1)−βi/κ
L−1∏
n=1

(tn−1 − tn)−γn/κ

with t0 = 1 defined on the complement T ⊂ CL−1 of the singular locus D given

by

D =
⋃

1≤n≤L−1

{tn−1 = tn} ∪
⋃

1≤n≤L−1

{tn = 0} ∪
⋃

1≤i≤N

{tL−1 = 1/zi}.

Let S be the rank one local system determined by U(t), and S∗ the dual local

system of S. The hypergeometric pairing between the twisted homology group and

the twisted de Rham cohomology group is

HL−1(T,S∗)×HL−1(T,∇)→ C, (∆, ϕ) 7→
∫

∆

U(t)ϕ,



Integral Formulas for Quantum Isomonodromic Systems 663

where ϕ is a rational (L− 1)-form holomorphic outside D, and ∇ is the covariant

differential operator given by ∇ = d+ d log(U(t))∧.

According to [17], the rational (L− 1)-forms

ϕ0(t) =
dt1 ∧ · · · ∧ dtL−1

tL−1

L−1∏
n=1

1

tn−1 − tn
,(4.1)

ϕ(i)
n (t) =

dt1 ∧ · · · ∧ dtL−1

(1− zitL−1)tL−1

L−1∏
m=1
m 6=n

1

tm−1 − tm
(4.2)

represent a basis of HL−1(T,∇).

Define Ψ1(q, z) by

Ψ1(q, z) =

∫
∆

U(t)
(
ϕ0(t)−

N∑
i=1

L−1∑
n=1

ϕ(i)
n (t)q(i)

n

)
with ∆ ∈ HL−1(T,S∗). From Proposition 3.3, when κ0 −

∑N
i=1 θi = 1, the action

of the Hamiltonian Hi (i = 1, . . . , N) on Ψ1, HiΨ1(q, z), is also a polynomial of

degree ≤ 1, and the constant term and the coefficient of q
(j)
n (1 ≤ n ≤ L− 1, 1 ≤

j ≤ N) of HiΨ1(q, z) are linear combinations of
∫

∆
U(t)ϕ0(t) and

∫
∆
U(t)ϕ

(j)
n (t)

(1 ≤ n ≤ L − 1, 1 ≤ j ≤ N). Remarkably they coincide with κ∂ϕ0(t)/∂zi and

κ∂ϕ
(j)
n (t)/∂zi with appropriate correspondence between parameters. Namely, we

have

Theorem 4.1. If κ0−
∑N
i=1 θi = 1, then Ψ1(q, z) is a solution to the Schrödinger

system (3.1) with

αn = en+1 − en + κn+1, βi = −θi, γn = κn,

for 1 ≤ n ≤ L− 1 and 1 ≤ i ≤ N , where eL = e0 and κL = 1.

§4.2. The case of M ≥ 2

Fix M ∈ Z≥2. We consider the multivalued function

U(t) =
∏

1≤a<b≤M,
1≤n≤L−1

(t(a)
n − t(b)n )2/κ

∏
1≤a,b≤M
1≤n≤L−2

(t(a)
n − t

(b)
n+1)−1/κ

×
M∏
a=1

{L−1∏
n=1

(t(a)
n )αn/κ

N∏
i=1

(1− zit(a)
L−1)−βi/κ(1− t(a)

1 )−γ/κ
}
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defined on the complement T ⊂ C(L−1)M of the singular locus D given by

D =
⋃

1≤a<b≤M
1≤n≤L−1

{t(a)
n = t(b)n } ∪

⋃
1≤a,b≤M
1≤n≤L−2

{t(a)
n = t

(b)
n+1} ∪

⋃
1≤a≤M

1≤n≤L−1

{t(a)
n = 0}

∪
⋃

1≤a≤M
1≤i≤N

{t(a)
L−1 = 1/zi} ∪

⋃
1≤a≤M

{t(a)
1 = 1}.

Let S be the rank one local system determined by U(t), and S∗ the dual local

system of S. The hypergeometric pairing between the twisted homology group and

the twisted de Rham cohomology group is

H(L−1)M (T,S∗)×H(L−1)M (T,∇)→ C, (∆, ϕ) 7→
∫

∆

U(t)ϕ,

where ϕ is a rational (L−1)M -form holomorphic outside D, and ∇ is the covariant

differential operator given by ∇ = d+ d log(U(t))∧.

Denote by SL−1
M the (L − 1)-th product of the symmetric group of degree

M . Let SL−1
M act on a rational function f(t) of variables t = (t

(1)
1 , . . . , t

(1)
L−1, . . . ,

t
(M)
1 , . . . , t

(M)
L−1) by

(4.3) σ(f(t)) = f(t
(σ1(1))
1 , . . . , t

(σL−1(1))
L−1 , . . . , t

(σ1(M))
1 , . . . , t

(σL−1(M))
L−1 )

for σ = (σ1, . . . , σL−1) ∈ SL−1
M . Let Sym[f(t)] be the symmetrization of f(t), given

by Sym[f(t)] =
∑
σ∈SL−1

M
σ(f(t)).

Definition 4.2. For M ∈ Z≥2, we define

ΨM (q, z) =

∫
∆

U(t) · Sym

[ M∏
a=1

1

t
(a)
L−1

(
f0(t(a))−

N∑
i=1

L−1∑
n=1

f (i)
n (t(a))q(i)

n

)]
dt,

where ∆ ∈ H(L−1)M (T,S∗) and

f0(t(a)) =
L−1∏
m=1

1

t
(a)
m−1 − t

(a)
m

, f (i)
n (t(a)) =

1

1− zit(a)
L−1

L−1∏
m=1
m 6=n

1

t
(a)
m−1 − t

(a)
m

, t
(a)
0 = 1,

dt = dt
(1)
1 ∧ · · · ∧ dt

(1)
L−1 ∧ dt

(2)
1 ∧ · · · ∧ dt

(2)
L−1 ∧ · · · ∧ dt

(M)
1 ∧ · · · ∧ dt(M)

L−1.

Theorem 4.3. If κ0 −
∑N
i=1 θi = M and κn = 1 (2 ≤ n ≤ L− 1), then ΨM (q, z)

is a solution to the Schrödinger system (3.1) with

αn = en+1 − en + 1, βi = −θi, γ = κ1 +M − 1,

for 1 ≤ n ≤ L− 1 and 1 ≤ i ≤ N , where eL = e0.
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Note that the hypergeometric integral ΨM (q, z) is also a polynomial in V (M)

defined in the previous section, namely, it can be expressed as

ΨM (q, z) =
∑

A∈AM

qA
∫

∆

U(t)ϕA(t)

with some rational (L− 1)M -forms ϕA(t).

Because ϕA(t) is the sum of the products of
∏M
a=1 1/t

(a)
L−1,

f0(t(a
0
1)), . . . , f0(t(a

0
A0

)),−f (i)
n (t(a

n,j
1 )), . . . ,−f (i)

n (t
(an,j

An,i
)
)

for a0
1, a

n,i
j = 1, . . . ,M such that a0

i 6= an,ij and an,ij 6= am,k` if (n, i, j) 6= (m, k, `),

since qA =
∏L−1
n=1

∏N
i=1(q

(i)
n )An,i , we have the following expression:

ϕA(t) = Sym

[
(−1)M−A0

(
M

A

) N∏
i=1

L−1∏
n=1

S(i)
n∏

a=S
(i)
n−1+1

f (i)
n (t(a))

×
M∏

a=M−A0+1

f0(t(a))

M∏
a=1

1

t
(a)
L−1

]
dt,

where

A0 = M −
∑

1≤i≤N,
1≤n≤L−1

An,i,

(
M

A

)
=

M !

A0!
∏

1≤i≤N,
1≤n≤L−1

An,i!
,

S(i)
n =

i−1∑
j=1

L−1∑
m=1

Am,j +

n∑
m=1

Am,i.

Here, we used the following relations:

Sym[g(t(a), t(b))f (i)
n (t(a))f (j)

m (t(b))] = Sym[g(t(b), t(a))f (i)
n (t(b))f (j)

m (t(a))],(4.4)

Sym[g(t(a), t(b))f (i)
n (t(a))f0(t(b))] = Sym[g(t(b), t(a))f (i)

n (t(b))f0(t(a))](4.5)

for 1 ≤ n,m ≤ L − 1, 1 ≤ i, j ≤ N , 1 ≤ a, b ≤ M , and a rational function

g(t(a), t(b)).

We introduce a linear operator ∇i (i = 1, . . . , N) acting on ϕ via

∇iϕ =
1

U

∂U

∂zi
ϕ+

∂ϕ

∂zi
,

since in general, for an (L− 1)M -form ϕ,

∂

∂zi

∫
∆

Uϕ =

∫
∆

U

(
1

U

∂U

∂zi
ϕ+

∂ϕ

∂zi

)
.

Let us explain our proof of Theorem 4.3 briefly. We compute κ∇iϕA(t) and

obtain the linear Pfaffian system for {
∫

∆
UϕA(t) | A ∈ AM}. On the other hand,

we compute the action of the Hamiltonians Hi on qA and obtain the coefficient of
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qA in HiΨM (q, z) as a linear combination of elements of {
∫

∆
UϕA(t) | A ∈ AM}.

Finally, comparing both results, we obtain Theorem 4.3.

Proof of Theorem 4.3. Fix i ∈ {1, . . . , N} and A ∈ AM . We compute ∇iϕA(t) as

follows. First,

κ∇iϕA(t) = Sym

[(
βi

M∑
a=1

t
(a)
L−1

1− zit(a)
L−1

+ κ

S
(i)
L−1∑

a=S
(i)
0 +1

t
(a)
L−1

1− zit(a)
L−1

)
ϕ̄A(t)

]
dt,

where ϕ̄A(t) is defined by

ϕ̄A(t) = (−1)M−A0

(
M

A

) N∏
i=1

L−1∏
n=1

S(i)
n∏

a=S
(i)
n−1+1

f (i)
n (t(a))

M∏
a=M−A0+1

f0(t(a))

M∏
a=1

1

t
(a)
L−1

.

Using the relations (4.4) and (4.5), we obtain

(4.6) κ∇iϕA(t) = Sym

[(
βi

N∑
j=1
j 6=i

L−1∑
n=1

An,jt
(S(j)

n )
L−1

1− zit(S
(j)
n )

L−1

+ βi
A0t

(M−A0+1)
L−1

1− zit(M−A0+1)
L−1

+ (βi + κ)

L−1∑
n=1

An,it
(S(i)

n )
L−1

1− zit(S
(i)
n )

L−1

)
ϕ̄A(t)

]
dt.

Since

(4.7)
t

1− zit
=

1− zjt
zi − zj

(
1

1− zit
− 1

1− zjt

)
,

the first term of (4.6) equals

βi

N∑
j=1
j 6=i

L−1∑
n=1

1

zi − zj
(
(An,i + 1)ϕ(An,j−1,An,i+1)(t)−An,jϕA(t)

)
,

where ϕ(An,j−1,An,i+1)(t) is the rational (L− 1)M -form defined for the matrix in

AM whose (n, j) entry is An,j − 1 and (n, i) entry is An,i + 1, and the other (m, k)

entries are Am,k.

As for the second term of (4.6), since

(4.8)
tL−1

1− zitL−1
=

1

(zi − 1)f0(t)

(
−f0(t) +

L−1∑
n=1

f (i)
n (t)

)
the second term of (4.6) equals

−βi
zi − 1

(
A0ϕA(t) +

L−1∑
n=1

(An,i + 1)ϕ(An,i+1)(t)
)
,
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where ϕ(An,i+1)(t) is the rational (L − 1)M -form defined for the matrix in AM
whose (n, i) entry is An,i + 1, and the other (m, k) entries are Am,k.

In order to calculate the third term of (4.6), we compute the coboundaries

X
(i)
n (n = 1, . . . , L− 1) defined by

(4.9) X(i)
n = κ

L−1∑
m=n

∇
( ∑
σ∈SL−1

M

σ(t
(S(i)

n )
m ϕ̄A(t))∗dt(σm(S(i)

n ))
m

)
,

where ∗dt(a)
m is defined by

∗dt(a)
m = (−1)(L−1)(a−1)+m−1dt

(1)
1 ∧ · · · ∧ d̂t

(a)
m ∧ · · · ∧ t(M)

L−1,

so that dt
(a)
m ∧ ∗dt(a)

m = dt.

For m 6= n, denote by ϕ(An,i−1,Am,i+1)(t) the rational (L− 1)M -form defined

for the matrix in AM whose (n, i) entry is An,i−1 and (m, i) entry is Am,i+1, and

the other (l, k) entries are Al,k, and denote by ϕ(An,i−1)(t) the rational (L− 1)M -

form defined for the matrix in AM whose (n, i) entry is An,i − 1, and the other

(l, k) entries are Al,k.

By the definition of the covariant differential operator ∇, we have

X(i)
n = κ

L−1∑
m=n

Sym

[
∂

∂t
(S

(i)
n )

m

(t
(S(i)

n )
m ϕ̄A(t)) +

∂

∂t
(S

(i)
n )

m

(logU(t))t
(S(i)

n )
m ϕ̄A(t)

]
dt,

because logU(t) is invariant under the action of SL−1
M .

Using the relations (4.7) and (4.8), we obtain by straightforward calculations

X(i)
n = Sym

[
(βi + κ)zi

t
(S(i)

n )
L−1

1− zit(S
(i)
n )

L−1

ϕ̄A(t)

]
dt

+
(L−1∑
m=n

αm − (L− 1− n)
)
ϕA(t)

+ (1 + δn,1(γ − 1))

L−1∑
m=n+1

Am,i + 1

An,i
ϕ(Am,i+1,An,i−1)(t)

+ (1 + δn,1(γ − 1))
1

zi − 1

(
A0 + 1

An,i
ϕ(An,i−1)(t) + ϕA(t).

+

L−1∑
m=1
m 6=n

Am,i + 1

An,i
ϕ(Am,i+1,An,i−1)(t)

)

+

N∑
j=1
j 6=i

βjzj
zi − zj

(
ϕA(t)− An,j + 1

An,i
ϕ(An,i−1,An,j+1)(t)

)
+ Y (i)

n ,
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where

(4.10) Y (i)
n = Sym

[L−1∑
m=n

t
(S(i)

n )
m W (i)

n,mϕ̄A(t)
]
dt

with

W (i)
n,m =

M∑
a=1
a6=S(i)

n

(
−1

t
(S

(i)
n )

m − t(a)
m−1

+
2

t
(S

(i)
n )

m − t(a)
m

+
−1

t
(S

(i)
n )

m − t(a)
m+1

+ δm,1
1

t
(S

(i)
n )

1 − 1

)
.

We compute Y
(i)
n in Lemmas 4.4, 4.5, 4.6 and 4.7. Owing to those lemmas,

we obtain

(4.11) κzi∇iϕA(t)−
L−1∑
n=1

An,iX
(i)
n

=

{
−
L−1∑
n=1

An,i

(L−1∑
m=n

αm − L+ n− βi +

n∑
m=1

Am,i

)
−Mβi +

1

zi − 1

(
A0

(L−1∑
n=1

An,i − βi
)
−

N∑
j=1

L−1∑
n=1

An,iAn,j +A1,i(M − γ)
)

+

N∑
j=1
j 6=i

zj
zi − zj

L−1∑
n=1

(
An,i

(L−1∑
m=1

Am,j +An,j − βj
)
− βiAn,j

)}
ϕA(t)

− A0 + 1

zi − 1

L−1∑
n=1

( N∑
j=1

An,j + δn,1(γ −M)
)
ϕ(An,i−1)(t)

+
zi

zi − 1

(L−1∑
m=1

Am,i − βi
) L−1∑
n=1

(An,i + 1)ϕ(An,i+1)(t)

− 1

zi − 1

L−1∑
n=1

( N∑
j=1

An,j + δn,1(γ −M)
)

×
(n−1∑
m=1

(Am,i + 1)ϕ(Am,i+1,An,i−1)(t) + zi

L−1∑
m=n+1

(Am,i + 1)ϕ(Am,i+1,An,i−1)(t)
)

+

N∑
j=1
j 6=i

An,j + 1

zi − zj

(
zj

n−1∑
m=1

(Am,i + 1)ϕ(Am,j−1,Am,i+1,An,i−1,An,j+1)(t)

+ zi

L−1∑
m=n+1

(Am,i + 1)ϕ(Am,j−1,Am,i+1,An,i−1,An,j+1)(t)
)
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+

N∑
j=1
j 6=i

zi
zi − zj

(
βi −

L−1∑
m=1

Am,i

) L−1∑
n=1

(An,i + 1)ϕ(An,j−1,An,i+1)(t)

+

N∑
j=1
j 6=i

zj
zi − zj

(
βj −

L−1∑
m=1

Am,j

) L−1∑
n=1

(An,j + 1)ϕ(An,i−1,An,j+1)(t),

where the rational (L − 1)M -form ϕ(Am,j−1,Am,i+1,An,i−1,An,j+1)(t) is defined for

the matrix in AM whose (m, j), (m, i), (n, i), (n, j) entries are Am,j − 1, Am,i + 1,

An,i−1, and An,j + 1, respectively, and the other (l, k) entries are Al,k. Hence, for

A ∈ AM , as an element in the twisted de Rham cohomology group H(L−1)M (T,∇),

κ∇iϕA(t) is expressed in terms of elements of {ϕB(t) | B ∈ AM}.
On the other hand, from Proposition 3.2, it is easy to see that the coefficient

in qA of HiΨM (q, z) is equal to the hypergeometric pairing between the cycle ∆ ∈
H(L−1)M (T,S∗) and the right hand side of (4.11). This completes the proof.

§4.3. Lemmas

In the lemmas below, fix 1 ≤ n ≤ L − 1, 1 ≤ i ≤ N and A ∈ AM . For a

triple (n, i, A), the coboundary X
(i)
n is defined by (4.9) and expressed as a linear

combination of elements in {ϕB(t) | B ∈ AM}, and Y
(i)
n . In this subsection, we

compute Y
(i)
n and thus show that they can also be expressed as linear combinations

of elements in {ϕB(t) | B ∈ AM}.
We decompose Y

(i)
n as

Y (i)
n =

∑
1≤j≤N

1≤`≤L−1

(Y (i)
n )`,j + (Y (i)

n )0

and we compute (Y
(i)
n )`,j and (Y

(i)
n )0, where for ` 6= n or j 6= i,

(Y (i)
n )`,j = Sym[A`,jC(n, S(i)

n , S
(j)
` )ϕ̄A(t)] dt,

(Y (i)
n )n,i = Sym[(An,i − 1)C(n, S(i)

n , S(i)
n − 1)ϕ̄A(t)] dt,

(Y (i)
n )0 = Sym[A0C(n, S(i)

n ,M −A0 + 1)ϕ̄A(t)] dt,

with, for 1 ≤ a 6= b ≤M ,

C(n, a, b) =

L−1∑
m=n

t(a)
m

(
−1

t
(a)
m − t(b)m−1

+
2

t
(a)
m − t(b)m

+
−1

t
(a)
m − t(b)m+1

)
+ δn,1

t
(a)
1

t
(a)
1 − 1

.

Let the rational functions f
(j)
`,m(t(a)) be defined by

f
(j)
`,m(t(a)) =

1

1− zjt(a)
L−1

L−1∑
k=1
k 6=`,m

1

t
(a)
k−1 − t

(a)
k

.
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Lemma 4.4. When 1 ≤ ` < n, for 1 ≤ j 6= i ≤ N , we have

(Y (i)
n )`,j = (A`,i + 1)ϕ(A`,j−1,A`,i+1)(t) +

zj
zi − zj

(
(A`,i + 1)ϕ(A`,j−1,A`,i+1)(t)

−A`,jϕA(t)− (A`,i + 1)(An,j + 1)

An,i
ϕ(A`,j−1,A`,i+1,An,i−1,An,j+1)(t)

+
(An,j + 1)A`,j

An,i
ϕ(An,j+1,An,i−1)(t)

)
,

and for j = i, we have
(Y (i)
n )`,i = A`,iϕA(t).

Proof. It suffices to show that

(4.12) Sym

[
C(n, 1, 2)

1

t
(1)
L−1

f (i)
n (t(1))

1

t
(2)
L−1

f
(j)
` (t(2))

]
= Sym

[
1

t
(1)
L−1

f (i)
n (t(1))

1

t
(2)
L−1

f
(i)
` (t(2))

]
+

zj
zi − zj

Sym

[
1

t
(1)
L−1

1

t
(2)
L−1

(f (i)
n (t(1))− f (j)

n (t(1)))(f
(i)
` (t(2))− f (j)

` (t(2)))

]
,

where Sym[f(t)] stands for
∑
σ∈SL−1

2
σ(f(t)) (see (4.3)), the rational functions

f
(i)
n (t(a)) are defined in Definition 4.2, and if j = i, then we understand that the

second line of the right hand side of (4.12) disappears.

Firstly, we claim that for n ≤ k ≤ L− 2,

(4.13)

Sym

[ k∑
m=n

(
−1

t
(1)
m − t(2)

m−1

+
2

t
(1)
m − t(2)

m

+
−1

t
(1)
m − t(2)

m+1

)
t
(1)
m

t
(1)
L−1

f (i)
n (t(1))

1

t
(2)
L−1

f
(j)
` (t(2))

]

= Sym

[
1

t
(1)
k − t

(2)
k+1

1

t
(1)
k+1 − t

(2)
k

t
(1)
k+1

t
(1)
L−1

f (i)
n (t(1))

1

t
(2)
L−1

f
(j)
`,k+1(t(2))

]
.

We show (4.13) by induction. Let k = n. Then

(4.14) Sym

[(
−1

t
(1)
n − t(2)

n−1

+
1

t
(1)
n − t(2)

n

)
t
(1)
n

t
(1)
L−1

f (i)
n (t(1))

1

t
(2)
L−1

f
(j)
` (t(2))

]

= Sym

[
1

t
(2)
n−1 − t

(1)
n

1

t
(1)
n − t(2)

n

t
(1)
n

t
(1)
L−1

f (i)
n (t(1))

1

t
(2)
L−1

f
(j)
`,n(t(2))

]

= Sym

[
−1

t
(1)
n − t(2)

n

1

t
(2)
n − t(1)

n+1

1

t
(1)
n − t(2)

n+1

t
(2)
n

t
(1)
L−1

f
(i)
n,n+1(t(1))

1

t
(2)
L−1

f
(j)
`,n+1(t(2))

]
,

where in the last line, we interchanged t
(1)
n with t

(2)
n and
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(4.15) Sym

[(
1

t
(1)
n − t(2)

n

+
−1

t
(1)
n − t(2)

n+1

)
t
(1)
n

t
(1)
L−1

f (i)
n (t(1))

1

t
(2)
L−1

f
(j)
` (t(2))

]

= Sym

[
1

t
(1)
n − t(2)

n

1

t
(1)
n − t(2)

n+1

t
(1)
n

t
(1)
L−1

f (i)
n (t(1))

1

t
(2)
L−1

f
(j)
`,n+1(t(2))

]
.

Thus, the left hand side of (4.13) for k = n, that is, (4.14) plus (4.15), becomes

the right hand side of (4.13) for k = n.

Suppose (4.13) holds for k − 1. Then

Sym

[( k−1∑
m=n

t(1)
m

(
−1

t
(1)
m − t(2)

m−1

+
2

t
(1)
m − t(2)

m

+
−1

t
(1)
m − t(2)

m+1

)
+ t

(1)
k

(
−1

t
(1)
k − t

(2)
k−1

+
1

t
(1)
k − t

(2)
k

))
1

t
(1)
L−1

f (i)
n (t(1))

1

t
(2)
L−1

f
(j)
` (t(2))

]

= Sym

[
1

t
(1)
k − t

(2)
k

1

t
(2)
k−1 − t

(1)
k

1

t
(1)
k−1 − t

(2)
k

t
(1)
k

t
(1)
L−1

f
(i)
n,k(t(1))

1

t
(2)
L−1

f
(j)
`,k (t(2))

]

= Sym

[
−1

t
(1)
k − t

(2)
k

1

t
(2)
k − t

(1)
k+1

1

t
(1)
k − t

(2)
k+1

t
(2)
k

t
(1)
L−1

f
(i)
n,k+1(t(1))

1

t
(2)
L−1

f
(j)
`,k+1(t(2))

]
,

where in the last line, we interchanged t
(1)
k with t

(2)
k . Since

Sym

[(
1

t
(1)
k − t

(2)
k

+
−1

t
(1)
k − t

(2)
k+1

)
t
(1)
k

t
(1)
L−1

f (i)
n (t(1))

1

t
(2)
L−1

f
(j)
` (t(2))

]

= Sym

[
1

t
(1)
k − t

(2)
k

1

t
(1)
k − t

(2)
k+1

t
(1)
k

t
(1)
L−1

f (i)
n (t(1))

1

t
(2)
L−1

f
(j)
`,k+1(t(2))

]
,

the left hand side of (4.13) for k becomes the right hand side of (4.13) for k.

Secondly, using (4.13) for k = L− 2, we have

Sym

[(L−2∑
m=n

t(1)
m

(
−1

t
(1)
m − t(2)

m−1

+
2

t
(1)
m − t(2)

m

+
−1

t
(1)
m − t(2)

m+1

)
+ t

(1)
L−1

(
−1

t
(1)
L−1 − t

(2)
L−2

+
1

t
(1)
L−1 − t

(2)
L−1

))
1

t
(1)
L−1

f (i)
n (t(1))

1

t
(2)
L−1

f
(j)
` (t(2))

]
= Sym

[
1

t
(1)
L−1 − t

(2)
L−1

1

t
(2)
L−2 − t

(1)
L−1

1

t
(1)
L−2 − t

(2)
L−1

f
(i)
n,L−1(t(1))

1

t
(2)
L−1

f
(j)
`,L−1(t(2))

]
= Sym

[
−1

t
(1)
L−1 − t

(2)
L−1

f (j)
n (t(1))

1

t
(1)
L−1

f
(i)
` (t(2))

]
,

where in the last line, we interchanged t
(1)
L−1 with t

(2)
L−1. Hence, the left hand side
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of (4.12) is equal to

Sym

[
−1

t
(1)
L−1 − t

(2)
L−1

f (j)
n (t(1))

1

t
(1)
L−1

f
(i)
` (t(2)) +

1

t
(1)
L−1 − t

(2)
L−1

f (i)
n (t(1))

1

t
(2)
L−1

f
(j)
` (t(2))

]

= Sym

[
1

t
(1)
L−1

1

t
(2)
L−1

f (i)
n (t(1))f

(i)
` (t(2))

1− zj(t(1)
L−1 + t

(2)
L−1) + zizjt

(1)
L−1t

(2)
L−1

(1− zjt(1)
L−1)(1− zjt(2)

L−1)

]
.

Therefore, the relation (4.12) holds.

Lemma 4.5. When n < ` ≤ L− 1, for 1 ≤ j 6= i ≤ N , we have

(Y (i)
n )`,j = −A`,j

(
δn,1
zi − 1

+
zj

zi − zj

)
ϕA(t) + (A`,i + 1)

zi
zi − zj

ϕ(A`,j−1,A`,i+1)(t)

− (A`,i + 1)(An,j + 1)

An,i

zi
zi − zj

ϕ(A`,j−1,A`,i+1,An,i−1,An,j+1)(t)

+
(An,j + 1)A`,j

An,i

zj
zi − zj

ϕ(An,j+1,An,i−1)(t)

− A`,j
An,i

δn,1
zi − 1

(
(A0 + 1)ϕ(An,i−1)(t) + zi

L−1∑
m=2

(Am,i + 1)ϕ(Am,i+1,A1,i−1)(t)
)
,

and for j = i, we have

(Y (i)
n )`,i = − δn,1A`,i

zi − 1

(
ϕA(t) +

(A0 + 1)

A1,i
ϕ(A1,i−1)(t)

+ zi

L−1∑
m=2

(Am,i + 1)

A1,i
ϕ(Am,i+1,A1,i−1)(t)

)
.

Proof. It suffices to show that for n ≥ 2,

(4.16) Sym

[
C(n, 1, 2)

1

t
(1)
L−1

f (i)
n (t(1))

1

t
(2)
L−1

f
(j)
` (t(2))

]
=

1

zi − zj
Sym

[
1

t
(1)
L−1

1

t
(2)
L−1

(f (i)
n (t(1))− f (j)

n (t(1)))(zif
(i)
` (t(2))− zjf (j)

` (t(2)))

]
,

and for n = 1,

(4.17) Sym

[
C(1, 1, 2)

1

t
(1)
L−1

f
(i)
1 (t(1))

1

t
(2)
L−1

f
(j)
` (t(2))

]
=

1

zi − zj
Sym

[
1

t
(1)
L−1

1

t
(2)
L−1

(f
(i)
1 (t(1))− f (j)

1 (t(1)))(zif
(i)
` (t(2))− zjf (j)

` (t(2)))

]

+
1

zi − 1
Sym

[
1

t
(1)
L−1

(f0(t(1))− f (i)
1 (t(1))− zi

L−1∑
m=2

f (i)
m (t(1)))

1

t
(2)
L−1

f
(j)
` (t(2))

]
,
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where Sym[f(t)] stands for
∑
σ∈SL−1

2
σ(f(t)) (see (4.3)), and if j = i, then we

understand that the right hand side of (4.16) and the first line of the right hand

side of (4.17) are zero.

We shall show (4.16). Firstly, using (4.13) for k = `− 2, we have

(4.18) Sym

[( `−2∑
m=n

t(1)
m

(
−1

t
(1)
m − t(2)

m−1

+
2

t
(1)
m − t(2)

m

+
−1

t
(1)
m − t(2)

m+1

)
+ t

(1)
`−1

(
−1

t
(1)
`−1 − t

(1)
`−2

+
1

t
(1)
`−1 − t

(2)
`−1

))
1

t
(1)
L−1

f (i)
n (t(1))

1

t
(2)
L−1

f
(j)
` (t(2))

]

= Sym

[
1

t
(1)
`−1 − t

(2)
`−1

1

t
(1)
`−2 − t

(2)
`−1

1

t
(2)
`−2 − t

(1)
`−1

t
(1)
`−1

t
(1)
L−1

f
(i)
n,`−1(t(1))

1

t
(2)
L−1

f
(j)
`−1,`(t

(2))

]

= Sym

[
−1

t
(1)
`−1 − t

(2)
`−1

1

t
(2)
`−1 − t

(1)
`

t
(2)
`−1

t
(1)
L−1

f
(i)
n,`(t

(1))
1

t
(2)
L−1

f
(j)
` (t(2))

]
,

where in the last line, we interchanged t
(1)
`−1 with t

(2)
`−1. Thus, (4.18) is equal to

−Sym

[(
t
(1)
`−1

t
(1)
`−1 − t

(2)
`−1

+
−t(1)

`

t
(1)
` − t

(2)
`−1

)
1

t
(1)
L−1

f (i)
n (t(1))

1

t
(2)
L−1

f
(j)
` (t(2))

]
.

Secondly, we claim that for ` ≤ k ≤ L− 2, we have

(4.19)

Sym

[ k∑
m=`

( −t(1)
m+1

t
(1)
m+1 − t

(2)
m

+
2t

(1)
m

t
(1)
m − t(2)

m

+
−t(1)

m−1

t
(1)
m−1 − t

(2)
m

)
1

t
(1)
L−1

f (i)
n (t(1))

1

t
(2)
L−1

f
(j)
` (t(2))

]

= Sym

[
1

t
(1)
k − t

(2)
k+1

1

t
(2)
k − t

(1)
k+1

1

t
(1)
L−1

f
(i)
n,k+1(t(1))

t
(2)
k+1

t
(2)
L−1

f
(j)
` (t(2))

]
.

We can prove (4.19) by induction; we omit the details.

Using (4.19) for k = L− 2, we have

Sym

[(L−2∑
m=`

( −t(1)
m+1

t
(1)
m+1 − t

(2)
m

+
2t

(1)
m

t
(1)
m − t(2)

m

+
−t(1)

m−1

t
(1)
m−1 − t

(2)
m

)

+
t
(1)
L−1

t
(1)
L−1 − t

(2)
L−1

+
−t(1)

L−2

t
(1)
L−2 − t

(2)
L−1

)
1

t
(1)
L−1

f (i)
n (t(1))

1

t
(2)
L−1

f
(j)
` (t(2))

]
= Sym

[
1

t
(1)
L−1 − t

(2)
L−1

1

t
(1)
L−2 − t

(2)
L−1

1

t
(2)
L−2 − t

(1)
L−1

1

t
(1)
L−1

f
(i)
n,L−1(t(1))f

(j)
`,L−1(t(2))

]
= Sym

[
−1

t
(1)
L−1 − t

(2)
L−1

1

t
(2)
L−1

f (j)
n (t(1))f

(i)
` (t(2))

]
,
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where in the last line, we interchanged t
(1)
L−1 with t

(2)
L−1. Hence, the left hand side

of (4.16) is equal to

Sym

[
−1

t
(1)
L−1 − t

(2)
L−1

f (j)
n (t(1))

1

t
(2)
L−1

f
(i)
` (t(2)) +

1

t
(1)
L−1 − t

(2)
L−1

f (i)
n (t(1))

1

t
(2)
L−1

f
(j)
` (t(2))

]
= (zi − zj)Sym

[
1

1− zjt(1)
L−1

f (i)
n (t(1))

1

t
(2)
L−1(1− zit(2)

L−1)
f

(j)
l

]
.

Therefore, the relation (4.16) holds.

We shall show (4.17). We compute

L.H.S. of (4.17) = Sym

[(
−t(1)

1

t
(1)
1 − 1

+ C(1, 1, 2)

)
1

t
(1)
L−1

f
(i)
1 (t(1))

1

t
(2)
L−1

f
(j)
` (t(2))

]

+ Sym

[
t
(1)
1

t
(1)
1 − 1

1

t
(1)
L−1

f
(i)
1 (t(1))

1

t
(2)
L−1

f`(t
(2))

]
.

The first line of the right hand side becomes the first line of the right hand side of

(4.17) in the same way as in the proof of (4.16). On the other hand,

Sym

[
1

t
(1)
1 − 1

t
(1)
1

t
(1)
L−1

f
(i)
1 (t(1))

1

t
(2)
L−1

f`(t
(2))

]

= Sym

[
t
(1)
L−1 +

∑L−1
m=2(t

(1)
m−1 − t

(1)
m )

t
(1)
1 − 1

1

t
(1)
L−1

f
(i)
1 (t(1))

1

t
(2)
L−1

f`(t
(2))

]

= Sym

[
1

zi − 1

1

t
(1)
L−1

(
f0(t(1))− f1(t(1))− zi

L−1∑
m=2

f (i)
m (t(1))

) 1

t
(2)
L−1

f`(t
(2))

]
.

Therefore, (4.17) holds.

Lemma 4.6. For 1 ≤ j 6= i ≤ L− 1, we have

(Y (i)
n )n,j = An,j

(
1− δn,1
zi − 1

− 2zj
zi − zj

)
ϕA(t) +

1− δn,1
zi − 1

(A0 + 1)An,j
An,i

ϕ(An,i−1)(t)

+
1− δn,1
zi − 1

An,j
An,i

(n−1∑
m=1

(Am,i + 1)ϕ(Am,i+1,An,i−1)(t)

+ zi

L−1∑
m=n+1

(Am,i + 1)ϕ(Am,i+1,An,i−1)(t)
)

+ (An,i + 1)
zi

zi − zj
ϕ(An,j−1,An,i+1)(t)

+
(An,j + 1)An,j

An,i

zj
zi − zj

ϕ(An,j+1,An,i−1)(t),
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and for j = i, we have

(Y (i)
n )n,i = (An,i − 1)

(
zi − δn,1
zi − 1

)
ϕA(t) +

1− δn,1
zi − 1

(A0 + 1)(An,i − 1)

An,i
ϕ(An,i−1)(t)

+
1− δn,1
zi − 1

An,i − 1

An,i

(n−1∑
m=1

(Am,i + 1)ϕ(Am,i+1,An,i−1)(t)

+ zi

L−1∑
m=n+1

(Am,i + 1)ϕ(Am,i+1,An,i−1)(t)
)
.

Proof. It suffices to show that

(4.20) Sym

[
C(n, 1, 2)

1

t
(1)
L−1

f (i)
n (t(1))

1

t
(2)
L−1

f (j)
n (t(2))

]
= Sym

[
1

t
(1)
L−1

f (i)
n (t(1))

1

t
(2)
L−1

f (i)
n (t(2))

]

+
1− δn,1
zi − 1

Sym

[(
−f0(t(1)) +

n∑
m=1

f (i)
m (t(1)) + zi

L−1∑
m=n+1

f (i)
m (t(1))

) f (j)
n (t(2))

t
(1)
L−1t

(2)
L−1

]
+

zj
zi − zj

Sym

[
1

t
(1)
L−1

1

t
(2)
L−1

(f (i)
n (t(1))− f (j)

n (t(1)))(f (i)
n (t(2))− f (j)

n (t(2)))

]
,

where Sym[f(t)] stands for
∑
σ∈SL−1

2
σ(f(t)) (see (4.3)), and if j = i, then we

understand that the third line of the right hand side of (4.20) disappears.

Firstly, we have

Sym

[
−t(1)

n

t
(1)
n − t(2)

n−1

1

t
(1)
L−1

f (i)
n (t(1))

1

t
(2)
L−1

f (j)
n (t(2))

]

= Sym

[
t
(1)
L−1 +

∑L−1
m=n+1(t

(1)
m−1 − t

(1)
m )

t
(1)
n − t(1)

n−1

1

t
(1)
L−1

f (i)
n (t(1))

1

t
(2)
L−1

f (j)
n (t(2))

]

=
1

zi − 1
Sym

[(
−f0(t(1)) +

n∑
m=1

f (i)
m (t(1)) + zi

L−1∑
m=n+1

f (i)
m (t(1))

) f (j)
n (t(2))

t
(1)
L−1t

(2)
L−1

]
.

Secondly, we notice that for n ≤ m ≤ L− 2, we have

Sym

[( −t(1)
m+1

t
(1)
m+1 − t

(2)
m

+
2t

(1)
m

t
(1)
m − t(2)

m

+
−t(1)

m−1

t
(1)
m−1 − t

(2)
m

)
1

t
(1)
L−1

f (i)
n (t(1))

1

t
(2)
L−1

f (j)
n (t(2))

]
= 0.
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Thirdly, we compute the remaining term as follows:

Sym

[
2

t
(1)
L−1 − t

(2)
L−1

f (i)
n (t(1))

1

t
(2)
L−1

f (j)
n (t(2))

]
= Sym

[
−1

t
(1)
L−1− t

(2)
L−1

f (j)
n (t(1))

1

t
(1)
L−1

f (i)
n (t(2))+

1

t
(1)
L−1− t

(2)
L−1

f (i)
n (t(1))

1

t
(2)
L−1

f (j)
n (t(2))

]

= Sym

[
1

t
(1)
L−1

1

t
(2)
L−1

f (i)
n (t(1))f (i)

n (t(2))
1−zj(t(1)

L−1 + t
(2)
L−1)+zizjt

(1)
L−1t

(2)
L−1

(1−zjt(1)
L−1)(1−zjt(2)

L−1)

]
.

Therefore, the relation (4.20) holds.

Lemma 4.7. We have

(Y (i)
n )0 = − 1 + δn,1

zi − 1
A0ϕA(t) +

zi
zi − 1

L−1∑
m=1

(Am,i + 1)ϕ(Am,i+1)(t)

− δn,1
1

zi − 1

A0(A0 + 1)

A1,i
ϕ(A1,i−1)(t)

− δn,1
zi

zi − 1

L−1∑
m=2

A0(Am,i + 1)

A1,i
ϕ(Am,i+1,A1,i−1)(t).

Proof. It suffices to show that

(4.21) Sym

[
C(n, 1, 2)

1

t
(1)
L−1

f (i)
n (t(1))

1

t
(2)
L−1

f0(t(2))

]

= Sym

[
1

(zi − 1)t
(1)
L−1t

(2)
L−1

f (i)
n (t(1))

(
−(1 + δn,1)f0(t(2)) + zi

L−1∑
m=1

f (i)
m (t(2))

)]

+ δn,1Sym

[
1

(zi − 1)t
(1)
L−1t

(2)
L−1

f0(t(2))

(
f0(t(1))− zi

L−1∑
m=2

f (i)
m (t(1))

)]
,

where Sym[f(t)] stands for
∑
σ∈SL−1

2
σ(f(t)) and the rational functions f0(t(a))

are defined in Definition 4.2.

Firstly, using (4.13) for l = 0 and k = L− 2, we have

Sym

[(
C(n, 1, 2) + δn,1

−1

t
(1)
1 − 1

t
(1)
1

t
(1)
L−1

)
1

t
(1)
L−1

f (i)
n (t(1))

1

t
(2)
L−1

f0(t(2))

]

= Sym

[
−1

t
(1)
L−1 − t

(2)
L−1

1− zit(1)
L−1

1− zit(2)
L−1

f (i)
n (t(1))

1

t
(1)
L−1

f0(t(2))

+
1

t
(1)
L−1 − t

(2)
L−1

f (i)
n (t(1))

1

t
(2)
L−1

f0(t(2))

]
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= Sym

[
1

t
(1)
L−1

f (i)
n (t(1))

1

t
(2)
L−1(1− zit(2)

L−1)
f0(t(2))

]
.

Secondly, we have

Sym

[
1

t
(1)
1 − 1

t
(1)
1

t
(1)
L−1

f
(i)
1 (t(1))

1

t
(2)
L−1

f0(t(2))

]

= Sym

[
t
(1)
L−1 +

∑L−1
m=2(t

(1)
m−1 − t

(1)
m )

t
(1)
1 − 1

1

t
(1)
L−1

f
(i)
1 (t(1))

1

t
(2)
L−1

f0(t(2))

]

= Sym

[
1

zi − 1

1

t
(1)
L−1

(
f0(t(1))− f1(t(1))− zi

L−1∑
m=2

f (i)
m (t(1))

) 1

t
(2)
L−1

f0(t(2))

]
.

Therefore, the relation (4.21) holds.
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systems, Funkcial. Ekvac. 53 (2010), 143–167. Zbl 1202.34156 MR 2668518
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