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Abstract

We define higher homotopy commutativity of H-spaces using the cyclohedra {Wn}n≥1

constructed by Bott and Taubes. An H-space whose multiplication is homotopy com-
mutative of the n-th order is called a Bn-space. We also give combinatorial decompo-
sitions of the permuto-associahedra {KPn}n≥1 introduced by Kapranov into unions of
product spaces of cyclohedra. From the decomposition, we have a relation between the
Bn-structures and another notion of higher homotopy commutativity represented by the
permuto-associahedra.
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§1. Introduction

The concept of higher homotopy commutativity was introduced by Sugawara [26]

and Williams [28] in the case of topological monoids. In the definition, Williams

used permutohedra, which were introduced by Milgram [20] to construct approxi-

mations to iterated loop spaces. The homotopy commutativity of the third order

in the sense of Williams is illustrated by the left hexagon in Figure 1.

Later Hemmi–Kawamoto [11] considered another type of higher homotopy

commutativity of topological monoids using the resultohedra {Nm,n}m,n≥1 con-

structed by Gel’fand–Kapranov–Zelevinsky [7]. In particular, we have higher ho-

motopy commutativity represented by the simplices {∆m}m≥1 since Nm,1 ∼= ∆m
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Figure 1. Homotopy commutativity of the third order.

for m ≥ 1. A C(n)-space is a topological monoid with homotopy commutativity

of the n-th order (see Section 4). From the definition, a topological monoid is a

C(2)-space if and only if the multiplication is homotopy commutative. The C(3)-

structure is illustrated in Figure 11. By Proposition 4.3, X is a C(∞)-space if and

only if the classifying space BX is a T -space in the sense of Aguadé [1].

In this paper, we show that the C(n)-structures can be defined only assuming

that multiplication is homotopy associative of the n-th order.

According to Sugawara [25], there is a criterion for an H-space to have the

homotopy type of a topological monoid. His criterion is higher homotopy asso-

ciativity for multiplication. Later Stasheff [22] expanded the theory of Sugawara,

and introduced the concept of An-spaces. An An-space is an H-space whose mul-

tiplication is homotopy associative of the n-th order. When defining An-spaces, he

constructed special polytopes {Kn}n≥1 called associahedra.

Bott–Taubes [4] introduced another family {Wn}n≥1 of special polytopes

called cyclohedra to study topological descriptions of self-linking invariants of

knots. Since the cyclohedra are constructed by combining simplices and associ-

ahedra, we can use these polytopes to generalize the C(n)-structures to the case

of An-spaces.

An An-space with homotopy commutativity of the n-th order is called a

Bn-space (see Section 4). From the definition, a B2-space is the same as a ho-

motopy commutative H-space. Let X be an A3-space with a B2-structure. Us-

ing the associating homotopy µ3 : K3 × X3 → X and the commuting homo-

topy ϕ2 : W2 × X2 → X, we can define ϕ̃3 : ∂W3 × X3 → X illustrated by the

left hexagon in Figure 2. Then X is a B3-space if and only if ϕ̃3 extends to

ϕ3 : W3 ×X3 → X. We note that the above hexagon is similar to the one of Mac

Lane [16, p. 38, (4.5)]. In this manner, X is called a Bn-space if there is a family

{ϕi : Wi × Xi → X}1≤i≤n of maps with the relations stated in Definition 4.4.

When X is a topological monoid, X is a Bn-space if and only if X is a C(n)-space.
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Figure 2. The B3-structure on X and the decomposition of KP3.

In [9], we also generalized higher homotopy commutativity in the sense of

Williams to the case of An-spaces (see the right dodecagon in Figure 1). In the

definition, we used the permuto-associahedra {KPn}n≥1 originally constructed by

Kapranov [13] (see Section 3). An An-space with higher homotopy commutativity

of this type is called an ACn-space.

May [18] introduced the concept of En-space to give a criterion for a space

to have the homotopy type of an n-fold loop space. The types of higher homo-

topy commutativity we are considering in this paper are just truncations of E2-

structures, just as An-spaces are truncated versions of E1-spaces.

According to Hemmi [8, p. 108, (5.1)] and Kapranov–Voevodsky [14, Theorem

6.5], permutohedra can be combinatorially decomposed into unions of product

spaces of simplices (see [14, p. 245, Figures 14 and 15]). To describe a relation

between Bn-structures and ACn-structures, we generalize their result to the case

of permuto-associahedra.

We now recall some notation and terminology. Put n = (1, . . . , n) ∈ Nn and

Tm[n] =
{

(t1, . . . , tm) ∈ Nm
∣∣ t1 + · · ·+ tm = n

}
for m,n ≥ 1.

A subsequence of n of length t is written as α = (α(1), . . . , α(t)) with α(1) <

· · · < α(t). A partition of n of type (t1, . . . , tm) ∈ Tm[n] is an ordered sequence

(α1, . . . , αm) consisting of disjoint subsequences αi of n of length ti for 1 ≤
i ≤ m with α1 ∪ · · · ∪ αm = n as sets. Let A(t1,...,tm)

n denote the set of all

partitions of n of type (t1, . . . , tm) ∈ Tm[n]. For example, A(2)
2 = {((1, 2))},

A(3)
3 = {((1, 2, 3))}, A(1,2)

3 = {((1), (2, 3)), ((2), (1, 3)), ((3), (1, 2))} and A(2,1)
3 =

{((1, 2), (3)), ((1, 3), (2)), ((2, 3), (1))}. Moreover, we see that

A(1,...,1)
n = {((σ(1)), . . . , (σ(n))) | σ ∈ Sn} for n ≥ 1,

where Sn denotes the symmetric group on n letters. Put

An = {(α1, . . . , αm) ∈ A(t1,...,tm)
n | (t1, . . . , tm) ∈ Tm[n] with m ≥ 1}.
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Our result is as follows:

Theorem A. Let n ≥ 2. There is a family

{D(α1, . . . , αm)}(α1,...,αm)∈An−1

of subspaces of KPn with the following properties:

(1) If (α1, . . . , αm) ∈ A(t1,...,tm)
n−1 , then we have an isomorphism

ι(α1,...,αm) : Wm+1 ×KPt1 × · · · ×KPtm → D(α1, . . . , αm).

(2) KPn decomposes as

KPn =
⋃

(α1,...,αm)∈An−1

D(α1, . . . , αm).

In the above theorem, isomorphism of polytopes means affine homeo-

morphism. The decomposition of KP3 is illustrated by the right dodecagon in

Figure 2 (see Figure 10 for the decomposition of KP4). Then D((1, 2)) ∼= W2×KP2

via ι((1,2)) and D((σ(1)), (σ(2))) ∼= W3 × KP1 × KP1 by means of ι((σ(1)),(σ(2)))

for σ ∈ S2. It is remarkable that the decomposition of KP3 also appears in Mac

Lane [16, p. 40] and Bar-Natan [2, p. 171, Figure 6].

From Theorem A and an inductive argument, we see that KPn can be de-

composed into a union of product spaces of {Wi}1≤i≤n in a combinatorial way.

Then Wn can be regarded as a subspace of KPn via ι((1),...,(n−1)) : Wn ×KP1 ×
· · · ×KP1 → D((1), . . . , (n− 1)) ⊂ KPn.

From Theorem A, we have the following result:

Theorem B. If X is a Bn-space, then X is an ACn-space for n ≥ 1.

The above result generalizes [11, Proposition 4.5] to the case of An-spaces.

By Example 4.12, the converse of Theorem B is not true.

This paper is organized as follows: In Section 2, we recall combinatorial prop-

erties of the associahedra {Kn}n≥1 and the cyclohedra {Wn}n≥1. In order to prove

Theorem A in Section 3, we define a poset (Fn,�f ) describing the faces of Wn.

Then we study the face operators and degeneracy operators of Wn. In Section 3,

we recall the permuto-associahedra {KPn}n≥1, and give a proof of Theorem A.

It is also shown that the degeneracy operators of KPn can be reconstructed from

those of Wn using Theorem A. Section 4 is devoted to studying higher homotopy

commutativity of An-spaces. In the case of topological monoids, we first recall the

definition of C(n)-spaces (see Definition 4.1 and Remark 4.2). Using cyclohedra

instead of simplices, we define Bn-spaces (see Definition 4.4 and Remark 4.5). It
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is shown that the property of being a Bn-space is preserved by covering spaces.

We also give some examples of Bn-spaces (see Examples 4.7, 4.8 and 4.12). Then

we recall the definition of ACn-spaces, and prove Theorem B using Theorem A.

§2. Cyclohedra

We first recall the associahedra {Kn}n≥1 and the cyclohedra {Wn}n≥1 constructed

by Stasheff [22] and Bott–Taubes [4], respectively.

Stasheff [22, I, Section 6] constructed the associahedra {Kn}n≥1 in order to

define An-spaces (see Section 3). From the construction, the associahedron Kn is

a polytope of dimension n − 2 whose faces correspond to meaningful bracketings

of the word x1 · · ·xn for n ≥ 2. More precisely, a codimension t face of Kn is

represented by inserting t pairs of brackets in a meaningful way into the word

x1 · · ·xn so that any pair of brackets includes at least two elements each of which is

xi or a bracketed sequence for t ≥ 1. In particular, each vertex of Kn is represented

by one of the meaningful complete ways of bracketing the word x1 · · ·xn. For

convenience, we also put K1 = {∗}.
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Figure 3. The associahedra K3 and K4.

Denote the set of all meaningful bracketings of the word x1 · · ·xn by Kn.

Then (Kn,�k) is a poset (partially ordered set) ordered by defining ξ �k ξ′ if ξ′

is obtained from ξ by removing some pairs of brackets or ξ′ = ξ. Let Kk(r, s) be

the facet (codimension-one face) of Kn represented by

x1 · · ·xk−1(xk · · ·xk+s−1)xk+s · · ·xn ∈ Kn for (r, s, k) ∈ Kn,

where

Kn = {(r, s, k) ∈ N3 | r, s ≥ 2 with r + s = n+ 1 and k ≤ r}.

Then the boundary ∂Kn is given by

∂Kn =
⋃

(r,s,k)∈Kn

Kk(r, s).
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According to Stasheff [22, I, Section 2], Kk(r, s) ∼= Kr×Ks via a face operator

∂k(r, s) : Kr ×Ks → Kk(r, s) for (r, s, k) ∈ Kn and there is a family of degeneracy

operators {θj : Kn → Kn−1}1≤j≤n.

Later Bott–Taubes [4, Section 1] introduced another family {Wn}n≥1 of spe-

cial complexes closely related to the associahedra. According to Stasheff [24, p. 58],

Wn is called a cyclohedron for n ≥ 1.

Stasheff [24, Section 10] and Markl [17, Section 1] reconstructed Wn as the

convex hull of a finite set of points in Rn, and gave a poset representing all the faces

of Wn. By their results, Wn is a polytope of dimension n−1 whose faces correspond

to meaningful bracketings of the string x1 · · ·xn arranged on a circle for n ≥ 1

(see also Devadoss [6, Section 1]). Such bracketings are called cyclic bracketings.

In particular, Wn is represented by the string x1 · · ·xn without brackets, and

a codimension t face of Wn is represented by a cyclic bracketing of the string

x1 · · ·xn including just t pairs of brackets for t ≥ 1. In this manner, the vertices

of Wn correspond to all complete ways of cyclic bracketings of the string x1 · · ·xn.
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Figure 4. The cyclic bracketings of the strings x1x2 and x1x2x3.
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Figure 5. The cyclic bracketings of the string x1x2x3x4.

We denote the set of all cyclic bracketings of the string x1 · · ·xn by Wn. Then

(Wn,�w) is a poset, where the poset structure �w is defined in a similar way to
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the one of (Kn,�k). Put

Wn = {(r, s, k) ∈ N3 | r, s ≥ 2 with r + s = n+ 1 and k ≤ r − 1},
W′n = {(r, s, k) ∈ N3 | r ≥ 2 with r + s = n+ 1 and k ≤ r}.

Let Wk(r, s) and W ′k(r, s) denote the facets of Wn represented by

x1 · · ·xk−1(xk · · ·xk+s−1)xk+s · · ·xn ∈ Wn for (r, s, k) ∈Wn,(2.1)

x1 · · ·xk−1)xk · · ·xk+s−2(xk+s−1 · · ·xn ∈ Wn for (r, s, k) ∈W′n,(2.2)

respectively. Then the boundary ∂Wn is given by

∂Wn =
⋃

(r,s,k)∈Wn

Wk(r, s) ∪
⋃

(r,s,k)∈W′n

W ′k(r, s).

Remark 2.1. We have a simple proof of the well-known result that |vert(Kn)| =
1
n

(
2n−2
n−1

)
using Wn, where vert(Q) denotes the set of all vertices of a polytope Q

and |S| is the number of elements of a set S. Let v be a vertex of Wn. Then

v is represented by one of the complete ways of cyclic bracketing of the string

x1 · · ·xn. Replacing xi with • for 1 ≤ i ≤ n − 1 and removing xn and all the

closing brackets “)” from v, we have a bijection between vert(Wn) and the set of all

permutations of {
n−1︷ ︸︸ ︷

(, . . . , (,

n−1︷ ︸︸ ︷
•, . . . , •}. For example, the vertices of W4 represented by

(x1x2)))(x3(x4 and x1)x2))(x3((x4 correspond to (•• (•( and •• (•((, respectively.

Then |vert(Wn)| =
(
2n−2
n−1

)
, which implies the required result since |vert(Wn)| =

n|vert(Kn)|.

We next give an alternative description of the poset (Wn,�w) to be used in

the proof of Theorem A in Section 3.

Consider the rectangle En = [0, n − 1] × I for n ≥ 2. A lattice path in En
is a map ` : [0, n] → En such that `(0) = (0, 0), `(n) = (n − 1, 1) and if we

write `(s) = (`1(s), `2(s)) for s ∈ [0, n], then `(i + t) is either (`1(i) + t, `2(i)) or

(`1(i), `2(i) + t) for 0 ≤ i < n and t ∈ I. We denote the set of all lattice paths in

En by Ln.

In En, we label the interval [i−1, i]×{j} by xi for 1 ≤ i ≤ n−1 and j = 0, 1,

and the interval {i} × I by y for 0 ≤ i ≤ n − 1 as in Figure 6. Then each lattice

x1 x2 x3

y
x3y

- - -6 6

-

r r r
r r

Figure 6. The lattice path ` = x1x2yx3.
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path ` ∈ Ln is labeled by a word x1 · · ·xi−1yxi · · ·xn−1 for some i with 1 ≤ i ≤ n.

In this label of `, the symbol xi means the horizontal unit move from the line

x = i−1 to the line x = i for 1 ≤ i ≤ n−1, and y is the vertical move between the

lines y = 0 and y = 1. For example, the lattice path ` ∈ L4 in Figure 6 is labeled

by x1x2yx3.

Put

Hm[n] = {(h1, . . . , hm) ∈ (Z+)m | h1 + · · ·+ hm = n} for m,n ≥ 1,

where Z+ = {h ∈ Z | h ≥ 0}.
Let ξ ∈ Wn be such that xn is covered by just t pairs of brackets for t ≥ 0.

Then we can write

(2.3) ξ = ξ1)ξ2) · · · )ξt)ξt+1(ξt+2(· · · (ξ2t(ξ2t+1xn,

where ξj is a meaningful bracketing of the word xh1+···+hj−1+1 · · ·xh1+···+hj
for

1 ≤ j ≤ 2t + 1 and (h1, . . . , h2t+1) ∈ H2t+1[n − 1] with hj + h2t+2−j > 0 for

1 ≤ j ≤ t.
We now define Fn = {f(ξ) | ξ ∈ Wn}, where

f(ξ) = (ξ1(ξ2(· · · (ξt[ξt+1|y]ξt+2) · · · )ξ2t)ξ2t+1)

if ξ ∈ Wn is written as in (2.3). Then (Fn,�f ) is a poset ordered by defining

f(ξ) �f f(ξ′) if ξ �w ξ′ for ξ, ξ′ ∈ Wn.

Remark 2.2. Let ξ ∈ Wn be written as in (2.3). From the definition, we have the

following relations:

(1) f(ξ) ≺f (ξ1(· · · (ξiξi+1(· · · (ξt[ξt+1|y]ξt+2) · · · )ξ2t+1−iξ2t+2−i) · · · )ξ2t+1) for

1 ≤ i ≤ t− 1.

(2) f(ξ) ≺f (ξ1(· · · (ξt−1[ξtξt+1ξt+2|y]ξt+3) · · · )ξ2t+1).

(3) If ξ′i is obtained from ξi by removing some pair of brackets or ξ′i = ξi for

1 ≤ i ≤ 2t+ 1, then f(ξ) �f (ξ′1(· · · (ξ′t[ξ′t+1|y]ξ′t+2) · · · )ξ′2t+1).

Since f : (Wn,�w) → (Fn,�f ) is an isomorphism of posets, we can assume

that the faces of Wn are labeled by (Fn,�f ). Recall that Wn is represented by

x1 · · ·xn ∈ Wn. Then it is labeled by f(x1 · · ·xn) = [x1 · · ·xn−1|y] ∈ Fn. By (2.1)

and (2.2), the facets Wk(r, s) and W ′k(r, s) are labeled by

[x1 · · ·xk−1(xk · · ·xk+s−1)xk+s · · ·xn−1|y] ∈ Fn for (r, s, k) ∈Wn

and

(x1 · · ·xk−1[xk · · ·xk+s−2|y]xk+s−1 · · ·xn−1) ∈ Fn for (r, s, k) ∈W′n,
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respectively. In this manner, a vertex of Wn is labeled by a meaningful complete

way of bracketing of some lattice path ` ∈ Ln.

The cyclohedra Wn whose faces are labeled by (Fn,�f ) for n = 2, 3 and 4

are illustrated in Figures 7 and 8. For simplicity, we denote [∅|y] by y, and omit

x1y yx1
[x1|y]r r

x1(yx2) (x1y)x2

(yx1)x2

y(x1x2)(x1x2)y
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T
T
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Figure 7. The cyclohedra W2 and W3.

the outermost pair of brackets. Then W2 labeled by [x1|y] is the left interval in

Figure 7, which represents a commuting homotopy between x1y and yx1.

When n = 3, the cyclohedron W3 labeled by [x1x2|y] is illustrated by the

right hexagon in Figure 7. The bottom edge labeled by [(x1x2)|y] represents a

commuting homotopy between (x1x2)y and y(x1x2), and the next left edge labeled

by x1x2y is an associating homotopy between (x1x2)y and x1(x2y). The next edge

labeled by x1[x2|y] is regarded as a commuting homotopy between x1(x2y) and

x1(yx2).

Remark 2.3. The cyclohedra {Wn}n≥1 realizing the posets {(Fn,�f )}n≥1 are

closely related to the commuto-associahedra {CAn}n≥1 introduced by Bar-Natan

[2, Sections 5 and 6] (see also [3, Section 4] and [6, p. 73, 4.2]). In particular, the

2-skeleton of Wn is a subspace of CAn for n ≥ 1.
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Figure 8. The cyclohedron W4.
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Since the set of all faces of Wk(r, s) is described by the poset (Fr ×Ks,v),

it follows that Wk(r, s) ∼= Wr ×Ks for (r, s, k) ∈Wn, where the poset structure of

Fr ×Ks is given by defining (λ, ξ) v (λ′, ξ′) if λ �f λ′ and ξ �k ξ′. In a similar

way, we see that W ′k(r, s) ∼= Kr × Ws for (r, s, k) ∈ W′n. Define face operators

εk(r, s) : Wr ×Ks → Wk(r, s) and ε′k(r, s) : Kr ×Ws → W ′k(r, s) of Wn by using

these isomorphisms. From the construction, we have the following proposition:

Proposition 2.4. The face operators {εk(r, s)}(r,s,k)∈Wn
, {ε′k(r, s)}(r,s,k)∈W′n and

{∂k(r, s)}(r,s,k)∈Kn
satisfy the following relations:

(2.4) εk(r, s)(εl(p, q)(a, b), c)

=


εl+s−1(p+ s− 1, q)(εk(p, s)(a, c), b) if k ≤ l − 1,

εl(p, q + s− 1)(a, ∂k−l+1(q, s)(b, c)) if l ≤ k ≤ l + q − 1,

εl(p+ s− 1, q)(εk−q+1(p, s)(a, c), b) if k ≥ l + q,

for (r, s, k) ∈Wn and (p, q, l) ∈Wr;

(2.5) εk(r, s)(ε′l(p, q)(a, b), c)

=


ε′l+s−1(p+ s− 1, q)(∂k(p, s)(a, c), b) if k ≤ l − 1,

ε′l(p, q + s− 1)(a, εk−l+1(q, s)(b, c)) if l ≤ k ≤ l + q − 2,

ε′l(p+ s− 1, q)(∂k−q+2(p, s)(a, c), b) if k ≥ l + q − 1,

for (r, s, k) ∈Wn and (p, q, l) ∈W′r;

(2.6) ε′k(r, s)(a, ε′l(p, q)(b, c)) = ε′k+l−1(r + p− 1, q)(∂k(r, p)(a, b), c)

for (r, s, k) ∈W′n and (p, q, l) ∈W′s.

We now explain the proposition in the case of n = 3 and 4.

In the right hexagon of Figure 7, the bottom edge labeled by [(x1x2)|y] is

isomorphic to W2×K2 by means of the face operator ε1(2, 2), and the edge labeled

by x1x2y is isomorphic to K3 × W1 via ε′3(3, 1). The intersection of these two

edges is a vertex which is the image of (ε′2(2, 1)(∗, ∗), ∗) under ε1(2, 2) and of

(∂1(2, 2)(∗, ∗), ∗) under ε′3(3, 1).

The next left vertex is the intersection of the two edges labeled by x1x2y

and x1[x2|y], the image of (∂2(2, 2)(∗, ∗), ∗) in K3 × W1 under ε′3(3, 1) and of

(∗, ε′2(2, 1)(∗, ∗)) in K2 ×W2 under ε′2(2, 2). The next vertex, the intersection of

the two edges x1[x2|y] and x1yx2, is the image of (∗, ε′1(2, 1)(∗, ∗)) in K2 ×W2

under ε′2(2, 2) and of (∂2(2, 2)(∗, ∗), ∗) in K3 ×W1 under ε′2(3, 1).

In the case of W4, the front hexagon, the right rectangle and the top pentagon

of Figure 8 are labeled by [(x1x2)x3|y], [(x1x2x3)|y] and x1x2x3y, respectively.

Then the facet [(x1x2)x3|y] is isomorphic to W3 ×K2 via ε1(3, 2), while the facet
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labeled by [(x1x2x3)|y] is isomorphic to W2 ×K3 via ε1(2, 3). The intersection of

these two facets is an edge which is the image (ε1(2, 2)(a, ∗), ∗) under ε1(3, 2) and

of (a, ∂1(2, 2)(∗, ∗)) under ε1(2, 3) for a ∈W2.

The facet x1x2x3y is isomorphic to K4×W1 via ε′4(4, 1), and the intersection

of [(x1x2)x3|y] and x1x2x3y is an edge which is the image (ε′3(3, 1)(b, ∗), ∗) under

ε1(3, 2) and of (∂1(3, 2)(b, ∗), ∗) under ε′4(4, 1) for b ∈ K3.

In a similar way to the proof of [20, Lemma 4.5], we have the following propo-

sition:

Proposition 2.5. There are degeneracy operators {δj : Wn → Wn−1}1≤j≤n−1
and δn : Wn → Kn−1 with the following relations:

δnε1(2, n− 1)(a, b) = b;(2.7)

δkεk(n− 1, 2)(a, ∗) = δk+1εk(n− 1, 2)(a, ∗) = a for 1 ≤ k ≤ n− 2;(2.8)

δjεk(r, s)(a, b) =


εk−1(r − 1, s)(δj(a), b) if 1 ≤ j ≤ k − 1,

εk(r, s− 1)(a, θj−k+1(b)) if k ≤ j ≤ k + s− 1,

εk(r − 1, s)(δj−s+1(a), b) if k + s ≤ j ≤ n− 1,

∂k(r − 1, s)(δr(a), b) if j = n,

(2.9)

for (r, s, k) ∈Wn excluding (2.7) and (2.8);

δn−1ε
′
1(2, n− 1)(∗, b) = δ1ε

′
2(2, n− 1)(∗, b) = b;(2.10)

δnε
′
k(n, 1)(a, ∗) = θk(a) for 1 ≤ k ≤ n;(2.11)

δnε
′
k(n− 1, 2)(a, b) = a for 1 ≤ k ≤ n− 1;(2.12)

δjε
′
k(r, s)(a, b) =


ε′k−1(r − 1, s)(θj(a), b) if 1 ≤ j ≤ k − 1,

ε′k(r, s− 1)(a, δj−k+1(b)) if k ≤ j ≤ k + s− 2,

ε′k(r − 1, s)(θj−s+2(a), b) if k + s− 1 ≤ j ≤ n− 1,

∂k(r, s− 1)(a, δs(b)) if j = n,

(2.13)

for (r, s, k) ∈W′n excluding (2.10)–(2.12).

Proof. We prove the case of {δj}1≤j≤n−1 by induction on n. When n = 2, we put

δ1(a) = ∗. Let n > 2, and assume inductively that {δj : Wn′ → Wn′−1}1≤j≤n′−1
are constructed for any n′ < n.

We now define {δ̃j : ∂Wn →Wn−1}1≤j≤n−1 by (2.8)–(2.10) and (2.13). Since

Wn is regarded as the cone of ∂Wn, if a ∈ Wn, then we can write a = (b, t)

with b ∈ ∂Wn and t ∈ I. Set δ̃j(b) = (c, u) with c ∈ ∂Wn−1 and u ∈ I. Let

δj : Wn → Wn−1 be defined by δj(a) = (c, tu). Then {δj}1≤j≤n−1 satisfies the

required conditions. In the case of δn : Wn → Kn−1, the proof is similar.
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§3. Permuto-associahedra

We recall the permuto-associahedra {KPn}n≥1 constructed by Kapranov [13] and

Reiner–Ziegler [21].

Kapranov [13, Section 2] constructed a family {KPn}n≥1 of special complexes

such that KPn is homeomorphic to the ball of dimension n − 1 for n ≥ 1. Later

Reiner–Ziegler [21, Theorem 2] reconstructed KPn as the convex hull of a finite

set of points in Rn (see also Ziegler [29, Definition 9.13 and Example 9.14]). The

polytopes {KPn}n≥1 are called permuto-associahedra.

From the construction, there is a natural way of describing all the faces

of KPn. Let KPn = {(α1, . . . , αm) ∈ An | m ≥ 2}. By the above results, a

facet of KPn is represented by (α1, . . . , αm) ∈ KPn, and a codimension-two face

is represented by inserting a pair of brackets in (α1, . . . , αm) ∈ KPn as

(α1, . . . , αk−1, (αk, . . . , αk+s−1), αk+s, . . . , αm) for (m− s+ 1, s, k) ∈ Km.

In general, a codimension t face of KPn is represented by inserting t − 1 pairs

of brackets in a meaningful way into some (α1, . . . , αm) ∈ KPn for t ≥ 1. In

this manner, each vertex of KPn corresponds to a meaningful complete way of

bracketing of some (α1, . . . , αn) ∈ A(1,...,1)
n .

(1), (2) (2), (1)r r
(1, 2), (3)

(1), (2), (3)

(1), (2, 3)

(1), (3), (2)
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(3), (2), (1)

(2, 3), (1)

(2), (3), (1)

(2), (1, 3)

(2), (1), (3)

"
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b
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�
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T
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T
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�
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"
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Figure 9. The permuto-associahedra KP2 and KP3.

Let KP (α1, . . . , αm) denote the facet represented by (α1, . . . , αm) ∈ KPn.

Then the boundary ∂KPn is given by

(3.1) ∂KPn =
⋃

(α1,...,αm)∈KPn

KP (α1, . . . , αm).

By [13, p. 139] and [9, Proposition 2.1], KP (α1, . . . , αm) ∼= Km×KPt1×· · ·×KPtm
via a face operator ε(α1,...,αm) : Km ×KPt1 × · · · ×KPtm → KP (α1, . . . , αm) for

(α1, . . . , αm) ∈ A(t1,...,tm)
n .

To prove Theorem A, we show the following lemma (cf. [22, I, Proposition 25]):
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Lemma 3.1. There is a family {ηm : W3×Km →Wm+1}m≥2 of homeomorphisms

with the following relations:

ηm(ε1(2, 2)(a, ∗), b) = ε1(2,m)(a, b),(3.2)

ηm(a, ∂k(r, s)(b, c)) = εk(r + 1, s)(ηr(a, b), c) for (r, s, k) ∈ Km.(3.3)

Proof. We work by induction on m. When m = 2, we define η2(a, ∗) = a for

a ∈W3. Let m > 2, and assume inductively that {ηj}2≤j<m are constructed.

We now define η̃m : Vm → Wm+1 by (3.2) and (3.3), where Vm = W1(2, 2) ×
Km ∪W3× ∂Km ⊂W3×Km. Then Vm is homeomorphic to the ball of dimension

m− 1, and the image of η̃m is given by

η̃m(Vm) =
⋃

(r,s,k)∈Wm+1

Wk(r, s).

Let ηm : W3 ×Km → Wm+1 be defined by ηm(b, t) = (η̃m(b), t) with b ∈ Vm and

t ∈ I since W3 ×Km and Wm+1 are homeomorphic to Vm × I and η̃m(Vm) × I,

respectively. Then {ηj}2≤j≤m satisfy the required relations.

Proof of Theorem A. We work by induction on n. When n = 2, put D((1)) = W2

and define ι((1)) : W2 ×KP1 → D((1)) by ι((1))(a, ∗) = a. Since KP2 = W2 = I,

the result is clear.

Let n > 2, and assume inductively that the result is proved for any n′ < n.

We first define a complex Un with the properties of Theorem A. Put Un =

W1(2, 2) × KPn−1 ∪ W3 × ∂KPn−1. Then Un is homeomorphic to the ball of

dimension n− 1. Let ι((1,...,n−1)) : W2 ×KPn−1 → D((1, . . . , n− 1)) be defined by

ι((1,...,n−1))(a, b) = (ε1(2, 2)(a, ∗), b), where D((1, . . . , n− 1)) = W1(2, 2)×KPn−1
⊂ Un. If (α1, . . . , αm) ∈ A(t1,...,tm)

n−1 with m ≥ 2, then ι(α1,...,αm) : Wm+1 × KPt1
× · · · ×KPtm → D(α1, . . . , αm) is defined by

(3.4) ι(α1,...,αm)(ηm(a, b), c1, . . . , cm) = (a, ε(α1,...,αm)(b, c1, . . . , cm)),

where D(α1, . . . , αm) = W3×KP (α1, . . . , αm) ⊂ Un and ηm : W3×Km →Wm+1

denotes the homeomorphism of Lemma 3.1. By (3.1), we have

Un =
⋃

(α1,...,αm)∈An−1

D(α1, . . . , αm).

To see Un = KPn, we show that there is a family

{U (α1, . . . , αm)}(α1,...,αm)∈KPn

of subspaces of ∂Un with the following properties:
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(1) If (α1, . . . , αm) ∈ A(t1,...,tm)
n with m ≥ 2, then we have an isomorphism

ε(α1,...,αm) : Km ×KPt1 × · · · ×KPtm → U (α1, . . . , αm).

(2) ∂Un decomposes as

∂Uu =
⋃

(α1,...,αm)∈KPn

U (α1, . . . , αm).

Put

D̃(α1, . . . , αm) = ι(α1,...,αm)
( ⋃
(r,s,k)∈W′m+1

W ′k(r, s)×KPt1 × · · · ×KPtm
)
⊂ ∂Un

for (α1, . . . , αm) ∈ A(t1,...,tm)
n−1 .

Since

ηm

( ⋃
(r,s,k)∈W′3

W ′k(r, s)×Km

)
=

⋃
(r,s,k)∈W′m+1

W ′k(r, s)

by Lemma 3.1, we have

(3.5) ∂Un =
⋃

(α1,...,αm)∈An−1

D̃(α1, . . . , αm).

Given (α1, . . . , αm) ∈ A(t1,...,tm)
n with m ≥ 2, we have αk(tk) = n for some k

with 1 ≤ k ≤ m. When tk = 1, define ε(α1,...,αm) : Km ×KPt1 × · · · ×KPtk−1
×

{∗} ×KPtk+1
× · · · ×KPtm → ∂Un by

ε(α1,...,αm)(a, c1, . . . , ck−1, ∗, ck+1, . . . , cm)

= ι(γ1,...,γm−1)(ε′k(m, 1)(a, ∗), c1, . . . , ck−1, ck+1, . . . , cm),

where (γ1, . . . , γm−1) ∈ A(t1,...,tk−1,tk+1,...,tm)
n−1 is given by

γi(s) =

{
αi(s) if 1 ≤ i ≤ k − 1,

αi+1(s) if k ≤ i ≤ m− 1.

If tk ≥ 2, then

KPtk =
⋃

(β1,...,βr)∈Atk−1

D(β1, . . . , βr)

by inductive hypothesis, where

D(β1, . . . , βr) = ι(β1,...,βr)(Wr+1 ×KPu1 × · · · ×KPur ) ⊂ KPtk
for (β1, . . . , βr) ∈ A(u1,...,ur)

tk−1 .
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Let ε(α1,...,αm) : Km ×KPt1 × · · · ×KPtm → ∂Un be defined by

ε(α1,...,αm)(a, c1, . . . , ck−1, ι
(β1,...,βr)(b, d1, . . . , dr), ck+1, . . . , cm)

= ι(γ1,...,γm+r−1)(ε′k(m, r + 1)(a, b), c1, . . . , ck−1, d1, . . . , dr, ck+1, . . . , cm),

where (γ1, . . . , γm+r−1) ∈ A(t1,...,tk−1,u1,...,ur,tk+1,...,tm)
n−1 is given by

(3.6) γi(s) =


αi(s) if 1 ≤ i ≤ k − 1,

αkβi−k+1(s) if k ≤ i ≤ k + r − 1,

αi−r+1(s) if k + r ≤ i ≤ m+ r − 1.

Put

U (α1, . . . , αm) = ε(α1,...,αm)(Km ×KPt1 × · · · ×KPtm) ⊂ ∂Un

for (α1, . . . , αm) ∈ A(t1,...,tm)
n .

Then

∂Un =
⋃

(α1,...,αm)∈KPn

U (α1, . . . , αm)

by (3.5). This completes the proof of Theorem A.
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Figure 10. The decomposition of KP4.

Remark 3.2. Assume that (α1, . . . , αm) ∈ A(t1,...,tm)
n−1 with m ≥ 2 and (β1, . . . , βr)

∈ A(u1,...,ur)
tk

with r ≥ 2. Then by (3.4) and [9, Proposition 2.1], we have the
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following relations:

(3.7) ι(α1,...,αm)(a, c1, . . . , ck−1, ε
(β1,...,βr)(b, d1, . . . , dr), ck+1, . . . , cm)

= ι(γ1,...,γm+r−1)(εk(m+ 1, r)(a, b), c1, . . . , ck−1, d1, . . . , dr, ck+1, . . . , cm),

where (γ1, . . . , γm+r−1) ∈ A(t1,...,tk−1,u1,...,ur,tk+1,...,tm)
n−1 is defined by (3.6).

According to Hemmi–Kawamoto [9, Proposition 2.3], there is a family

{ωj : KPn → KPn−1}1≤j≤n of degeneracy operators of KPn. From Theorem A

and an inductive argument, we can reconstruct {ωj}1≤j≤n using the degeneracy

operators {δj}1≤j≤n of Wn.

When n = 2, we put ωj(a) = ∗ for j = 1, 2. Assume inductively that

{ωj : KPn′ → KPn′−1}1≤j≤n′ are constructed for any n′ < n. Let (α1, . . . , αm) ∈
A(t1,...,tm)
n−1 .

We first consider the case of 1 ≤ j ≤ n− 1. Then αk(t) = j for some k, t with

1 ≤ k ≤ m and 1 ≤ t ≤ tk. If tk ≥ 2, then ωj : KPn → KPn−1 is defined by

ωjι
(α1,...,αm)(a, c1, . . . , cm) = ι(α̃1,...,α̃m)(a, c1, . . . , ck−1, ωt(ck), ck+1, . . . , cm),

where (α̃1, . . . , α̃m) ∈ A(t1,...,tk−1,tk−1,tk+1,...,tm)
n−1 is given by

α̃k(s) =

{
αk(s) if αk(s) < j,

αk(s+ 1)− 1 if αk(s) ≥ j,
and

(3.8) α̃i(s) =

{
αi(s) if αi(s) < j,

αi(s)− 1 if αi(s) > j,
for 1 ≤ i ≤ m with i 6= k.

When tk = 1, we put

ωjι
(α1,...,αm)(a, c1, . . . , cm)

= ι(α̃1,...,α̃k−1,α̃k+1,...,α̃m)(δk(a), c1, . . . , ck−1, ck+1, . . . , cm),

where (α̃1, . . . , α̃k−1, α̃k+1, . . . , α̃m) ∈ A(t1,...,tk−1,tk+1,...,tm)
n−1 is given by (3.8).

In the case of ωn : KPn → KPn−1, we define ωnι
((1,...,n−1))(a, c) = c and

ωnι
(α1,...,αm)(a, c1, . . . , cm) = ε(α1,...,αm)(δm+1(a), c1, . . . , cm) for m ≥ 2.

§4. Higher homotopy commutativity

Let ∆m denote the m-simplex

∆m =
{

(t0, . . . , tm) ∈ (R+)m+1 | t0 + · · ·+ tm = 1
}

for m ≥ 0,

where R+ = {t ∈ R | t ≥ 0}. Then we have face operators {∂k : ∆m−1 →
∆m}0≤k≤m and degeneracy operators {σj : ∆m → ∆m−1}1≤j≤m (cf. [8, p. 109]).
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Definition 4.1. Let n ≥ 1. A topological monoid X is called a C(n)-space if there

is a family {ψi : ∆i−1 ×Xi → X}1≤i≤n of maps with the following relations:

ψ1(∗, y) = y;(4.1)

ψi(∂k(a), x1, . . . , xi−1, y)(4.2)

=


x1ψi−1(a, x2, . . . , xi−1, y) if k = 0,

ψi−1(a, x1, . . . , (xkxk+1), . . . , xi−1, y) if 0 < k < i− 1,

ψi−1(a, x1, . . . , xi−2, y)xi−1 if k = i− 1;

ψi(a, x1, . . . , xj−1, ∗, xj+1, . . . , xi−1, y)(4.3)

= ψi−1(σj(a), x1, . . . , xj−1, xj+1, . . . , xi−1, y) for 1 ≤ j ≤ i− 1;

ψi(a, x1, . . . , xi−1, ∗) = x1 · · ·xi−1.(4.4)

x1x2y

yx1x2 x1yx2

ψ2(t, (x1x2), y)

ψ2(t, x1, y)x2

x1ψ2(t, x2, y)

t0 t1

t2

6

H
HHH

HHHHj

�
���

�����
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Figure 11. The C(3)-structure on X.

Remark 4.2. By Definition 4.1, a C(n)-space is the same as a C1(n)-space in the

sense of Hemmi–Kawamoto [11, Definition 4.3] for n ≥ 1.

A C(1)-space is just a topological monoid. Since ψ2(∂0(1), x, y) = xy and

ψ2(∂1(1), x, y) = yx for x, y ∈ X, a topological monoid X is a C(2)-space if and

only if the multiplication of X is homotopy commutative. Any abelian topological

monoid is a C(∞)-space whose C(∞)-structure {ψi}i≥1 is given by

ψi(a, x1, . . . , xi−1, y) = x1 · · ·xi−1y for i ≥ 1.

In particular, Eilenberg–Mac Lane spaces are C(∞)-spaces (cf. [23, Corollary

13.10]).

According to Aguadé [1, p. 939], a space Y is called a T -space if

ΩY → Map(S1, Y )
e−→ Y

is fiber homotopy equivalent to the trivial fibration, where ΩY is the based loop
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space of Y and e : Map(S1, Y ) → Y denotes evaluation at the base point. While

an H-space is always a T -space, the converse is not true.

Let Ω̃Y denote the based loop space of Y in the sense of Moore defined by

Ω̃Y = {α : [0, r]→ Y | r ∈ R+ and α(0) = α(r) = ∗}

(cf. [23, Definition 4.1]).

By Remark 4.2, we have the following proposition:

Proposition 4.3 ([11, Corollary 1.1]). A connected topological monoid X is a

C(∞)-space if and only if the classifying space BX is a T -space. In particular,

if Y is an H-space, then Ω̃Y is a C(∞)-space.

Stasheff [22, I, Section 2] defined An-spaces using the associahedra {Ki}1≤i≤n.

An An-form on a space X is a family of maps {µi : Ki ×Xi → X}1≤i≤n with the

following relations:

(4.5) µ1(∗, x) = x;

(4.6) µi(∂k(r, s)(a, b), x1, . . . , xi)

=µr(a, x1, . . . , xk−1, µs(b, xk, . . . , xk+s−1), xk+s, . . . , xi) for (r, s, k) ∈Ki;
(4.7) µi(a, x1, . . . , xj−1, ∗, xj+1, . . . , xi)

= µi−1(θj(a), x1, . . . , xj−1, xj+1, . . . , xi) for 1 ≤ j ≤ i.

A space with an An-form is called an An-space for n ≥ 1. From the defini-

tion, an A1-space is just a space. Since µ2(∗, x, ∗) = µ2(∗, ∗, x) = x for x ∈ X,

µ3(∂1(2, 2)(∗, ∗), x1, x2, x3) = (x1x2)x3 and µ3(∂2(2, 2)(∗, ∗), x1, x2, x3) = x1(x2x3)

for x1, x2, x3 ∈ X, we see that an A2-space and an A3-space are the same as an

H-space and a homotopy associative H-space, respectively.

If there is a family {µi}i≥1 of maps such that {µi}1≤i≤n is an An-form on

X for any n ≥ 1, then X is called an A∞-space. By [23, Theorem 11.4], X is an

A∞-space if and only if X ' Ω̃(BX).

Using the cyclohedra {Wi}1≤i≤n, we generalize Definition 4.1 to the case of

An-spaces.

Definition 4.4. Let n ≥ 1. Assume that X is an An-space with an An-form

{µi}1≤i≤n. Then X is called a Bn-space if there is a family of maps {ϕi : Wi×Xi →
X}1≤i≤n with the following relations:

(4.8) ϕ1(∗, y) = y;

(4.9) ϕi(εk(r, s)(a, b), x1, . . . , xi−1, y)

= ϕr(a, x1, . . . , xk−1, µs(b, xk, . . . , xk+s−1), xk+s, . . . , xi−1, y)

for (r, s, k) ∈Wi;
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(4.10) ϕi(ε
′
k(r, s)(a, b), x1, . . . , xi−1, y)

= µr(a, x1, . . . , xk−1, ϕs(b, xk, . . . , xk+s−2, y), xk+s−1, . . . , xi−1)

for (r, s, k) ∈W′i;
(4.11) ϕi(a, x1, . . . , xj−1, ∗, xj+1, . . . , xi−1, y)

= ϕi−1(δj(a), x1, . . . , xj−1, xj+1, . . . , xi−1, y) for 1 ≤ j ≤ i− 1;

(4.12) ϕi(a, x1, . . . , xi−1, ∗) = µi−1(δn(a), x1, . . . , xi−1).

Remark 4.5. (1) A B1-space is just a space. Since ϕ2(ε′2(2, 1)(∗, ∗), x, y) = xy

and ϕ2(ε′1(2, 1)(∗, ∗), x, y) = yx for x, y ∈ X, a B2-space is the same as a homotopy

commutative H-space.

(2) When X is a topological monoid, X is a Bn-space if and only if X is a

C(n)-space.

Let X and Y be An-spaces. According to Stasheff [22, II, Definition 4.1], a map

f : X → Y is called an An-homomorphism if fµXi = µYi (1Ki
× f i) for 1 ≤ i ≤ n,

where {µXi }1≤i≤n and {µYi }1≤i≤n are An-forms on X and Y , respectively.

Definition 4.6. Let n ≥ 1. Assume that X and Y are Bn-spaces with

Bn-structures {ϕXi }1≤i≤n and {ϕYi }1≤i≤n, respectively. An An-homomorphism

f : X → Y is called a Bn-homomorphism if fϕXi = ϕYi (1Wi
× f i) for 1 ≤ i ≤ n.

Example 4.7. Let (X̃, ρ,X) be a covering space. If X is a Bn-space, then X̃

is also a Bn-space so that the projection ρ : X̃ → X is a Bn-homomorphism for

n ≥ 1.

Proof. We give an outline of the proof. Since the result is clear for n = 1, we

assume n > 1. Let {µi}1≤i≤n and {ϕi}1≤i≤n be an An-form and a Bn-structure

on X, respectively.

Put gi = µi(1Ki
× ρi) for 1 ≤ i ≤ n. Let α ∈ π1(Ki × X̃i). Since π1(Ki × X̃i)

∼= π1(X̃)i, we can write α = (a1, . . . , ai) with aj ∈ π1(X̃) for 1 ≤ j ≤ i. Let

µ′i : Ki × Xi → X be defined by µ′i(b, x1, . . . , xi) = (· · · ((x1x2)x3) · · · )xi. Since

X is an H-space and µi ' µ′i, we have gi#(α) = ρ#(a1) + · · · + ρ#(ai) =

ρ#(a1 ∗ · · · ∗ ai) ∈ ρ#(π1(X̃)), where + and ∗ denote the multiplications of π1(X)

and π1(X̃), respectively. Then gi#(π1(Ki × X̃i)) ⊂ ρ#(π1(X̃)), and so we have

a lifting µ̃i : Ki × X̃i → X̃ with ρµ̃i = gi for 1 ≤ i ≤ n (cf. [12, Chapter III,

Section 16, Theorem 16.2]).

In a similar way, we have a map ϕ̃i : Wi × X̃i → X̃ with ρϕ̃i = ϕi(1Wi
× ρi)

for 1 ≤ i ≤ n. From the uniqueness of lifting, {µ̃i}1≤i≤n and {ϕ̃i}1≤i≤n are an

An-form and a Bn-structure on X̃, respectively.
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Consider the double suspension Σ2 : (S2m−1)∧p → Ω̃2(S2m+1)∧p which is the

double adjoint of the identity 1(S2m+1)∧p
on (S2m+1)∧p ' Σ2(S2m−1)∧p for m ≥ 1,

where p is a prime and Y ∧p denotes the p-completion of the space Y in the sense

of Bousfield–Kan [5, Chapter VI, Section 6]. By Proposition 4.3 and Remark 4.5,

we deduce that Ω̃2(S2m+1)∧p is a B∞-space.

According to Stasheff [22, I, Theorem 17], (S2m−1)∧p is an Ap−1-space such

that Σ2 : (S2m−1)∧p → Ω̃2(S2m+1)∧p is an Ap−1-homomorphism.

Example 4.8. Let p be a prime. Then (S2m−1)∧p is a Bp−1-space such that the

double suspension Σ2 : (S2m−1)∧p → Ω̃2(S2m+1)∧p is a Bp−1-homomorphism for

m ≥ 1.

Proof. Since the result is clear for p = 2, we consider the case of p > 2. As in the

proof of [22, I, Theorem 17], we assume that (S2m−1)∧p is a subspace of Ω̃2(S2m+1)∧p
and Σ2 : (S2m−1)∧p → Ω̃2(S2m+1)∧p is the inclusion.

For simplicity, we write X = (S2m−1)∧p and Y = Ω̃2(S2m+1)∧p . Let {κi}i≥1
be a B∞-structure on Y . By induction on i, we construct a Bp−1-structure

{ϕi}1≤i≤p−1 on X with Σ2ϕi = κi(1Wi
× (Σ2)i) for 1 ≤ i ≤ p− 1.

Put ϕ1(∗, x) = x for x ∈ X. Assume inductively that {ϕj}1≤j<i is constructed.

Let Fi = ∂Wi ×Xi ∪Wi ×X [i], where Z [i] denotes the i-fold fat wedge of a space

Z given by

Z [i] =
{

(z1, . . . , zi) ∈ Zi | zj = ∗ for some j with 1 ≤ j ≤ i
}

for i ≥ 1.

Then we have (Wi ×Xi)/Fi ' (S2mi−1)∧p .

Define ϕ̃i : Wi ×Xi → Y by ϕ̃i = κi(1Wi
× (Σ2)i). By inductive hypothesis,

we have ϕ̃i(Fi) ⊂ X. Then the obstructions to obtain ϕi : Wi × Xi → X with

Σ2ϕi ' ϕ̃i rel Fi appear in the following cohomology groups:

(4.13) Hk(Wi ×Xi, Fi;πk(Y,X)) ∼= H̃k((S2mi−1)∧p ;πk(Y,X)) for k ≥ 1

(cf. [12, p. 197, E.6]). Now, (4.13) is non-trivial only if k = 2mi−1 ≤ 2mp−2m−1 ≤
2mp−3. On the other hand, πk(Y,X) = 0 for k ≤ 2mp−3 by Toda [27, Proposition

13.1]. This implies that (4.13) is trivial for any k, and we have a map ϕi. From the

homotopy extension property, we have a map κ̃i : Wi × Y i → Y with κ̃i ' κi rel

∂Wi × Y i ∪Wi × Y [i] and Σ2ϕi = κ̃i(1Wi
× (Σ2)i). This completes the induction,

and we have a Bp−1-structure {ϕi}1≤i≤p−1 on X.

Hemmi–Kawamoto [9, Definition 3.1] introduced another type of higher ho-

motopy commutativity of An-spaces using the permuto-associahedra {KPi}1≤i≤n.

Let X be an An-space with an An-form {µi}1≤i≤n for n ≥ 1. Then X is called
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an ACn-space if there is a family {νi : KPi × Xi → X}1≤i≤n of maps with the

following relations:

(4.14) ν1(∗, x) = x;

(4.15) νi(ε
(α1,...,αm)(a, b1, . . . , bm), x1, . . . , xi)

=µm(a, νt1(b1, xα1(1), . . . , xα1(t1)), . . . , νtm(bm, xαm(1), . . . , xαm(tm)))

for (α1, . . . , αm) ∈ A(t1,...,tm)
i with m ≥ 2;

(4.16) νi(a, x1, . . . , xj−1, ∗, xj+1, . . . , xi)

= νi−1(ωj(a), x1, . . . , xj−1, xj+1, . . . , xi) for 1 ≤ j ≤ i.

Remark 4.9. (1) An AC1-space is just a space. Since ν2(ε((1),(2))(∗, ∗, ∗), x1, x2)

= x1x2 and ν2(ε((2),(1))(∗, ∗, ∗), x1, x2) = x2x1 for x1, x2 ∈ X, an AC2-space is the

same as a homotopy commutative H-space.

(2) When X is a topological monoid, X is an ACn-space if and only if it is a

Cn-space in the sense of Williams [28, Definition 5].

Proof of Theorem B. We work by induction on n. The result is clear for n = 1.

Assume inductively that the result is proved for any n′ < n.

Let X be a Bn-space with a Bn-structure {ϕi}1≤i≤n. By inductive hypothesis,

X is an ACn−1-space with an ACn−1-structure {νi}1≤i≤n−1. From Theorem A and

Remark 3.2, we can define νn : KPn ×Xn → X by

νn(ι(α1,...,αm)(a, b1, . . . , bm), x1, . . . , xn)

= ϕm(a, νt1(b1, xα1(1), . . . , xα1(t1)), . . . , νtm(bm, xαm(1), . . . , xαm(tm)), xn)

for (α1, . . . , αm) ∈ A(t1,...,tm)
n−1 with m ≥ 1
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Figure 12. The B3-structure on X.

(see Figure 12). From the proof of Theorem A, we see that {νi}1≤i≤n is an ACn-

structure on X.



758 Y. Kawamoto

Let p be a prime. An H-space X is called p-Postnikov if there is an integer

lX ≥ 1 such that πj(X) is finitely generated over the p-adic integers Z∧p for 1 ≤
j ≤ lX and πj(X) = 0 for j > lX . For example, Eilenberg–Mac Lane spaces

K(Z∧p ,m) and K(Z/pi,m) are p-Postnikov H-spaces for i,m ≥ 1.

Remark 4.10. By the result of McGibbon–Neisendorfer [19, Theorem 1], if X

is a connected p-Postnikov H-space whose cohomology H∗(X;Fp) is finite-dimen-

sional, then X is homotopy equivalent to a p-completed torus.

Let (CP∞)∧p denote the p-completion of the infinite-dimensional complex pro-

jective space. Its cohomology is given by H∗((CP∞)∧p ;Fp) ∼= Fp[u] with deg u = 2.

Denote the homotopy fiber of the map ft : (CP∞)∧p → K(Z/p, 2t) corresponding

to the class ut ∈ H2t((CP∞)∧p ;Fp) by Yt for t ≥ 1. Put Xt = Ω̃Yt.

Remark 4.11. (1) Xt is a p-Postnikov H-space.

(2) Yt is an H-space if and only if t = pi for some i ≥ 1.

By Remarks 4.5 and 4.9, we have the following example:

Example 4.12 ([11, Propositions 5.3 and 5.5]). (1) If t = 1 or t ≡ 0 mod p, then

Xt is a B∞-space.

(2) If 1 < t < p, then Xt is a Bt−1-space, but not an ACt-space.

(3) If t > p with t 6≡ 0 mod p, then Xt is an AC∞-space, which is also a

Bt−1-space, but not a Bt-space.

From Theorem B, all results stated for ACn-spaces also hold for Bn-spaces

(cf. [9], [10] and [15]).

For example, if X is a connected Bp-space whose cohomology H∗(X;Fp) is

finitely generated as an algebra over the Steenrod algebra A ∗p , then X∧p is a p-

PostnikovH-space by [15, Theorem B]. Moreover, ifH∗(X;Fp) is finitely generated

as an algebra over Fp, then X∧p is homotopy equivalent to a finite product of

(S1)∧p s, (CP∞)∧p s and BZ/pis with i ≥ 1 using [9, Theorem B]. On the other hand,

(S2m−1)∧p is a Bp−1-space which is not p-Postnikov for any m > 1 by Example 4.8

and Remark 4.10.
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