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A Construction of Finite Index C∗-algebra
Inclusions from Free Actions of

Compact Quantum Groups

by

Kenny De Commer and Makoto Yamashita

Abstract

Given an action of a compact quantum group on a unital C∗-algebra, one can consider
the associated Wassermann-type C∗-algebra inclusions. One amplifies the original action
with the adjoint action associated with a finite-dimensional unitary representation, and
considers the induced inclusion of fixed point algebras. We show that this inclusion is a
finite index inclusion of C∗-algebras when the quantum group acts freely. Along the way,
two natural definitions of freeness for a compact quantum group action, due respectively
to D. Ellwood and M. Rieffel, are shown to be equivalent.
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§1. Introduction

One of the fundamental concepts in the study of locally compact quantum groups
is the notion of ‘noncommutative principal bundles’, or free and proper actions on
‘noncommutative spaces’, the noncommutative spaces being represented by various
algebraic structures. In the C∗-algebraic study of such principal bundles, it turned
out that there can be two different ways to formulate freeness of an action.

The first is a certain density condition on the coaction map, called the Ellwood
condition, introduced by D. A. Ellwood [6]. If the algebra is commutative, so that
we are back in the classical case of a locally compact group acting continuously
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on a locally compact space, this condition is equivalent to freeness in the ordinary
sense. In the purely algebraic setting, the Ellwood condition corresponds to the
notion of a Hopf–Galois extension.

The second is the notion of a saturated action, which is more suited for the
study of K-theory of operator algebras. It was introduced by M. Rieffel [14, 17]
in the setting of actions of compact groups on C∗-algebras. Since it is stated as a
condition on the structure of the crossed product algebra, there is a straightforward
generalization to the case of compact quantum group actions. For example, the
case of finite quantum groups was studied by W. Szymański and C. Peligrad [23].

It has been known that these conditions are closely related to each other. For
example, when G is a compact Lie group, C. Wahl [25, Proposition 9.8] showed
that they are equivalent.

Our first main result is that the above two notions actually coincide in the
setting of compact quantum group actions.

Theorem 1.1. Let G be a compact quantum group acting continuously on a C∗-
algebra A. Then the following conditions are equivalent:

(1) The action satisfies the Ellwood condition.
(2) The action is saturated.

Our next result relates freeness of a compact quantum group action to certain
ring-theoretical properties of the associated isotypical components.

Let π be a finite-dimensional unitary representation of a compact quantum
group G, A a unital C∗-algebra acted upon freely by G, and Aπ the isotypical
component of A associated to π. In particular, the isotypical component for the
trivial representation is the fixed point subalgebra AG. Each Aπ becomes an AG-
bimodule thanks to the algebra structure of A.

The spaces Aπ can be interpreted as sections of a direct sum of copies of the
vector bundle induced by the representation π. In the classical case of compact
group actions on compact Hausdorff spaces, they are known to be finitely generated
projective over the algebra of the base space. In our C∗-algebraic setting, we obtain
the same result from a combination of a technique used in the proof of Theorem 1.1
and Kasparov’s stabilization theorem for Hilbert C∗-modules.

Theorem 1.2. Let A be a unital C∗-algebra endowed with a free action of G.
Then each isotypical component Aπ is finitely generated projective as a right AG-
module.

We note that, for actions of discrete group duals on general C∗-algebras, this
was proven by W. Szymański in an unpublished work. But even for compact groups
acting on general unital C∗-algebras, our result seems to be new.
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Note that the conclusion in Theorem 1.2 also holds for ergodic actions of G,
i.e. actions for which AG = C. See [7] for the case of compact groups, and [4] for the
general case of compact quantum groups. Our proof of Theorem 1.2 was inspired
by the short argument for this result which appears in [16], as well as by [26] and
the first sections of [3]. Our arguments will cover both the free and ergodic cases at
once. We stress that, since we work in the C∗-algebraic setting, we need to refine
some of the von Neumann algebraic techniques which appear in the above papers.

The conclusion of Theorem 1.2 is not valid for an arbitrary action: one can
check for example that the isotypical components for the action of the circle group
on the closed unit disc are not finitely generated over the fixed point algebra,
except for the fixed point algebra itself. The problem is essentially that the field
of stabilizer groups is not continuous.

Subsequent to Jones’ initial subfactor paper [8], a lot of effort has gone into
constructing von Neumann algebraic subfactors, starting from more classical sym-
metries and building up further to quantum symmetries (see e.g. [27, 29, 19, 1, 2,
12]). Motivated by this celebrated theory, Y. Watatani [28] introduced the notion
of finite index inclusion of C∗-algebras. We will show that, also in the C∗-algebraic
setting, the Wassermann type inclusion associated with finite-dimensional unitary
representations of quantum groups provides an example of such an inclusion. This
generalizes the case of finite groups in [28, Section 2.8] and finite quantum groups
in [23]. The key is that the above structure theorem on Aπ gives a finite quasi-basis
for this inclusion.

Theorem 1.3. Let G act freely on a unital C∗-algebra A, and let π be a finite-
dimensional unitary representation of G. Consider A ⊗ B(Hπ) with its induced
action by G. Then

AG ⊆ (A⊗B(Hπ))G

is a finite index inclusion of C∗-algebras. When π is irreducible, the index of the
natural conditional expectation is equal to the square of the quantum dimension
of Hπ.

The paper is organized as follows. We gather basic facts about compact quan-
tum groups and their representations in Section 2, where we also prove a cru-
cial Pimsner–Popa type estimate on the complete boundedness of projections onto
spectral subspaces. The most technical part of this paper occupies Section 3, where
we study the adjointability of Galois maps in terms of various Hilbert C∗-bimodule
structures of isotypical components. The first two of our main theorems are proved
in Section 4, based on the results of Section 3. Finally, we study the C∗-algebraic
index for the Wassermann type inclusion associated with a free action and an
irreducible representation in Section 5.
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General notations. We denote the identity maps of various objects by ι. If X is
a Banach space and E ⊆ X is a subset, we denote by [E] the closed linear span
of E inside X. Following the convention of right Hilbert C∗-modules, the scalar
product of Hilbert spaces is taken to be conjugate linear in the first argument. The
complex conjugate of a Hilbert space H will be identified with the dual of H by
means of the inner product and denoted by H ∗. The multiplier C∗-algebra of a
C∗-algebra C is denoted by M(C). When E is a right Hilbert C∗-module over a
C∗-algebra A, the algebra of (adjointable) A-endomorphisms is denoted by L(E)A
and that of compact A-endomorphisms by K(E)A. If there is no risk of confusion
we also write L(E) and K(E).

§2. Isotypical components of quantum group actions and
associated Hilbert modules

§2.1. Compact quantum groups

In this section, we review the theory of compact quantum groups. A compact
quantum group G is represented by a unital C∗-algebra C(G), together with a
unital ∗-homomorphism

∆: C(G)→ C(G)⊗min C(G)

satisfying the coassociativity and the cancellation properties [30, 11]. We will de-
note by P (G) ⊆ C(G) the Hopf algebra of matrix coefficients associated with G,
by S its antipode, and by ϕ : C(G)→ C the invariant Haar state on C(G).

Let π be a finite-dimensional unitary representation of G, by which we mean a
finite-dimensional Hilbert space Hπ together with a left C(G)-comodule structure

δπ : Hπ → C(G)⊗Hπ

satisfying 1⊗ v∗w = δπ(v)∗δπ(w) for all v, w ∈Hπ, having interpreted Hπ as lin-
ear operators between the Hilbert spaces C and Hπ. Choosing an orthogonal ba-
sis {ei} of Hπ, and writing δπ(ei) =

∑
j uij⊗ej , this means that

∑
k u
∗
ikujk = δij .

Consequently,
∑
k ukiu

∗
kj = δij , as u is invertible. We let IrrG denote a complete

representative system of irreducible finite-dimensional unitary representations of G
up to unitary equivalence.

If π is a unitary representation of G, we denote by π the associated contragre-
dient representation. It is implemented on H ∗

π with the dual comodule structure,
but we equip it with a new Hilbert space structure averaged out by means of ϕ.
More precisely, choosing an orthonormal basis ei of Hπ with δπ(ei) =

∑
j uij ⊗ ej ,
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and writing e∗i = 〈ei, · 〉, we define a new scalar product on H ∗
π by

〈〈e∗i , e∗j 〉〉 =
∑
k,l

ϕ(uiku
∗
jl)〈e∗k, e∗l 〉 =

∑
k

ϕ(uiku
∗
jk).

By Woronowicz’s theory [30], we obtain an invertible positive matrix Qπ ∈
B(Hπ) for each π ∈ IrrG satisfying Tr(Qπ) = Tr(Q−1

π ) and

(1) ϕ(u∗ijukl) = δik
〈el, Qπej〉
Tr(Qπ)

, ϕ(uiju
∗
kl) = δjl

〈ek, Q−1
π ei〉

Tr(Q−1
π )

, for all i, j, k, l.

The number Tr(Qπ) is known as the quantum dimension of Hπ,

dimq(Hπ) = Tr(Qπ).

One can then define the quantum dimension of any representation of G by linearity.
See e.g. [18] for a detailed exposition.

§2.2. Actions of compact quantum groups

An action of G on a possibly non-unital C∗-algebra A is given by a non-degenerate
injective ∗-homomorphism α : A→ A⊗min C(G), satisfying the coaction property
(α⊗ ι) ◦ α = (ι⊗∆) ◦ α and the density condition

[α(A)(1⊗ C(G))] = A⊗min C(G).

We denote by B = AG the C∗-algebra of G-invariant elements, i.e. elements x ∈ A
satisfying α(x) = x⊗ 1. Then the map EB defined by

EB(x) = (ι⊗ ϕ)α(x), x ∈ A,

is a faithful conditional expectation from A onto B, that is, a faithful c.c.p. idem-
potent map onto B [5, Lemma 3], [22, Section 5].

When π is a finite-dimensional unitary representation of G, we can consider
the vector space of ‘equivariant functions’

A2Hπ = {z ∈ A⊗Hπ | (α⊗ ι)z = (ι⊗ δπ)z}.

It has a natural B-bimodule structure, as well as a right B-valued Hermitian inner
product which is characterized by the following identity in B ∼= B ⊗ C:

〈w, z〉B = w∗z, w, z ∈ A2Hπ.

We further put

Aπ = linear span of {(ι⊗ ω)z | z ∈ A2Hπ, ω ∈H ∗
π } ⊆ A,
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which we call the π-isotypical component of A. These Aπ have natural B-bimodule
structures where the right B-Hermitian inner product is defined by

〈x, y〉B = EB(x∗y).

They carry an (algebraic) right P (G)-comodule structure. Note that for the trivial
representation π = triv, we have Atriv = B. The involution on A and the conjugate
operation on the unitary representations of G are related by

Aπ = {x∗ | x ∈ Aπ}.

We denote by P (A) the ∗-algebra
∑⊕
π∈IrrGAπ.

If π1 and π2 are two finite-dimensional unitary representations of G, we denote
their tensor product representation on Hπ1

⊗Hπ2
by π1 × π2. One then has the

inclusion Aπ1 ·Aπ2 ⊆ Aπ1×π2 .
In the following lemma, we endow H ∗

π with its modified Hilbert space struc-
ture 〈〈−,−〉〉.

Lemma 2.1. Let π be an irreducible representation of G of classical dimension n.
Then the map

φπ : (A2Hπ)⊗H ∗
π → Aπ, z ⊗ ω 7→

√
n(ι⊗ ωQ−1

π )z,

is an isomorphism of B-bimodules which is compatible with the B-valued inner
product.

Proof. By definition of Aπ, this map is surjective. Thus we only need to verify
that it is compatible with the B-valued inner products of both sides.

Let z =
∑
i ai ⊗ ei and w =

∑
i bi ⊗ ei be elements of A2Hπ. Then, for

arbitrary k and l, we have

(2) 〈φπ(z ⊗ e∗k), φπ(w ⊗ e∗l )〉B = n
∑
i,j

EB(a∗i bj)〈Q−1
π ei, ek〉〈el, Q−1

π ej〉.

By the assumption z, w ∈ A2Hπ, one has∑
i,j

EB(a∗i bj)⊗ e∗i ⊗ ej =
∑

i,j,m,n

φ(u∗imujn)a∗i bj ⊗ e∗m ⊗ en.

Using the first half of (1), Q−1
π QπQ

−1
π = Q−1

π , and Tr(Qπ) = Tr(Q−1
π ), the right

hand side of (2) can be computed as

n〈el, Q−1
π ek〉

Tr(Q−1
π )

∑
a∗i bi.

By the second half of (1), this is indeed the inner product of z⊗e∗k and w⊗e∗l .
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§2.3. Hilbert module structures

The above right B-modules Aπ and A2Hπ are complete with respect to their B-
valued inner products. To see this, we first introduce the following special elements.

Definition 2.2. Let π be an irreducible representation of G. We define the quan-
tum character of π to be the unique element χπ ∈ P (G) satisfying

(ϕ(χπ · )⊗ ι)δρ =

{
0 if ρ ∈ IrrG and ρ � π,

ιHρ
if ρ ∼= π.

We will also use the shorthand notation

ωπ = χ̂π = ϕ(χπ · ) ∈ C(G)∗.

For an arbitrary representation π, we write χπ for the sum of the quantum char-
acters of those irreducible representations which appear in π with non-zero multi-
plicity.

We note that χπ is well-defined by the Peter–Weyl theory for compact quan-
tum groups. We record the following facts about χπ.

Lemma 2.3. For each representation π of G, we have

S2(χπ) = χπ, S(χπ)∗ = χπ, and χ∗π ∈ C(G)π.

Consider now the bounded map

Eπ : A→ A, a 7→ (ι⊗ ωπ)α(a).

The following lemma is a reformulation of (part of) [15, Theorem 1.5] (which holds
regardless of any unitality assumption on A).

Lemma 2.4. The map Eπ is an idempotent onto Aπ.

The following Pimsner–Popa type inequality will be crucial in what follows.

Lemma 2.5. For each finite-dimensional unitary representation π of G, there
exists cπ > 0 such that for all n ∈ N0 and a ∈Mn(C)⊗A, we have

(ι⊗ Eπ)(a)∗(ι⊗ Eπ)(a) ≤ c2π(ι⊗ EB)(a∗a).

Proof. Because of the form of the assertion, it is enough to prove it for n = 1. The
general case can be obtained from it by replacing α with the amplified coaction
ι ⊗ α : Mn(C) ⊗ A → Mn(C) ⊗ A ⊗ C(G), because Eπ for the latter coaction is
precisely equal to ι⊗ Eπ appearing in the assertion.
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Now, since ι ⊗ ϕ is a c.c.p. map of A ⊗min C(G) onto A ⊗ C, and using the
inequality φ(x)∗φ(x) ≤ φ(x∗x) for a general c.c.p. map φ, we find

Eπ(a)∗Eπ(a) = (ι⊗ ϕ)((1⊗ χπ)(α(a)))∗(ι⊗ ϕ)((1⊗ χπ)α(a))

≤ (ι⊗ ϕ)
(
((1⊗ χπ)α(a))∗((1⊗ χπ)α(a))

)
.

By the positivity of ι⊗ φ, the right hand side is bounded from above by

‖χπ‖2(ι⊗ ϕ)(α(a∗a)) = ‖χπ‖2EB(a∗a).

Setting cπ = ‖χπ‖, we obtain the assertion.

Corollary 2.6. (1) The right B-module Aπ is complete with respect to its B-
valued inner product, that is, Aπ is a right Hilbert B-bimodule.

(2) We have [Aπ · B] = Aπ and [A · B] = A, where the closure is with respect to
the C∗-norm.

(3) For each representation π, the space A2Hπ is a right Hilbert B-bimodule.

By a right Hilbert B-bimodule, we mean a right Hilbert B-module E together
with a non-degenerate ∗-representation of B as adjointable operators on E .

Proof. By the previous lemmas, we have the Pimsner–Popa type inequalities

‖〈a, a〉B‖1/2 ≤ ‖a‖ ≤ cπ‖〈a, a〉B‖1/2

for a ∈ Aπ. As Aπ is closed in the C∗-algebra norm (being the image of a norm-
bounded projection), this proves the first part of the corollary.

One also easily shows that if bi is an approximate unit for B, then for each
a ∈ A, we have abi → a in the Hilbert module norm, and hence also in the C∗-
norm. Since the linear span P (A) of all the isotypical components is norm-dense
in A by [15, Theorem 1.5], which holds regardless of the unitality of A, the second
part of the corollary is proven.

The third part then follows for π irreducible because A2Hπ is an orthogo-
nally complemented summand of Aπ by Lemma 2.1. The general case follows since
A2− preserves finite direct sums.

Notation 2.7. To distinguish the two different norms on Aπ, we will write

Aπ for Aπ endowed with the restriction of the C∗-norm of A,

Aπ for Aπ endowed with the right Hilbert B-module structure.

The natural identification map Aπ → Aπ will be denoted by ΛA : Aπ → Aπ.
We will also denote by A the right Hilbert B-module completion of A with

respect to 〈 · , · 〉B . We then have natural inclusions Aπ ⊆ A.
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We can also put a right Hilbert B-K(Aπ)-bimodule structure on each Aπ
by means of the ordinary left B-module structure and the K(Aπ)-valued inner
product

〈x, y〉K(Aπ) = ΛA(x∗)ΛA(y∗)∗.

Then we have ‖〈x, x〉K(Aπ)‖ = ‖EB(xx∗)‖, which is the norm squared obtained
by considering Aπ as a left Hilbert B-module by means of the inner product
B〈x, y〉 = EB(xy∗). Hence we can extend our previous notation as follows.

Notation 2.8. We write

Aπ for Aπ endowed with the right K(Aπ)-Hilbert module structure.

We denote the natural identification map Aπ → Aπ by ΛA : Aπ → Aπ. In the
same way, one defines the right Hilbert K(A)-module completion of A by A .

Note that ‖x‖Aπ
= ‖x∗‖Aπ .

Lemma 2.9. The maps ΛA, ΛA are completely bounded. Similarly, when ρ is a
finite-dimensional unitary representation of G, the identity map on Aρ is com-
pletely bounded with respect to the Aρ-norm or Aρ-norm on the domain and the
Aρ-norm on the codomain.

Proof. The boundedness for the first two maps follows from a standard calculation
using the fact that EB is c.c.p. Furthermore, Lemma 2.5 shows that ι is completely
bounded for the Aρ-norm on the domain, with norm bounded from above by cπ.
By the above remark and the general equality ‖x∗x‖ = ‖xx∗‖ for C∗-norms, we
obtain an analogous cb-norm estimate of ι from above by cπ for the Aπ-norm on
the domain.

§2.4. Crossed product and its corners

Let us put ĥ = φ(h ·) ∈ C(G)∗ for h ∈ P (G), and consider the space

P̂ (G) = {ĥ | h ∈ P (G)} ⊆ C(G)∗.

It is a (generally non-unital) ∗-algebra with the convolution product and the ∗-
operation which is determined by

ω∗(x) = ω(S(x)∗), x ∈ P (G).

This ∗-algebra admits a (non-unital) universal C∗-envelope C∗(G), which is a C∗-
algebraic direct sum of matrix algebras, the components of which are labelled
by IrrG.
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It is easily seen that we can extend α to a unitary comodule structure on A,

αA : A → A⊗min C(G),

where we view the right hand side as a right Hilbert B ⊗min C(G)-module in
a natural way. Then to the coaction αA, we can associate the (non-degenerate)
∗-representation

π̂α : C∗(G)→ L(A),

where L(A) denotes the space of adjointable linear endomorphisms of A. The map
π̂α is uniquely determined by

π̂α(ω)ΛA(x) = ΛA((ι⊗ ω)α(x)) for x ∈ A, ω ∈ P̂ (G).

Moreover,
pπ = π̂α(χ̂π)

is the projection of A onto Aπ. In particular, Aπ is complemented in A.
If we perform this construction for the particular case of (A,α) = (C(G),∆),

the space A becomes a Hilbert space, which we denote by L 2(G). It is the com-
pletion of C(G) with respect to the inner product 〈x, y〉 = ϕ(x∗y). In this case,
we denote the associated GNS-map by Λϕ : C(G) → L 2(G), and we also write
L 2(G)π = Λϕ(C(G)π) for the finite-dimensional Hilbert space of the matrix coef-
ficients for π. The associated representation π̂∆ is then faithful, and we will in the
following treat π̂∆ as the identity map, so that C∗(G) ⊆ B(L 2(G)).

Consider now the right Hilbert B-module A⊗L 2(G). It carries a natural non-
degenerate ∗-representation of A⊗min C(G) as B-endomorphisms (cf. [10, p. 34]).
By means of the homomorphism α, we obtain a representation of A on A⊗L 2(G)

as well. Note that this representation might not be faithful as we do not assume
C(G) to be reduced. The space A⊗L 2(G) also carries a ∗-representation of C∗(G),
acting by the ordinary convolution on the second leg.

The crossed product of A by G for the action α is defined as

AoG = [α(A)(1⊗ C∗(G))] ⊂ L(A⊗L 2(G)),

which will be a C∗-algebra. One could also use the right Hilbert A-module A ⊗
L 2(G) in the above construction, and this would give the same C∗-algebra. We
define

(AoG)π = [(AoG)(1⊗ χ̂π)],

which is a closed left ideal in AoG. We similarly define

π(AoG) = (AoG)∗π, ρ(AoG)π = [(AoG)∗ρ(AoG)π].

Then π(AoG)π is a C∗-algebra.
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We state a lemma which lets us realize our Hilbert modules A and A in terms
of this crossed product. We omit the proof which follows from a straightforward
computation. In the lemma, we will denote the unit of C(G) by χtriv for clarity.

Lemma 2.10. There exists a unique right Hilbert B-module structure on
(AoG)triv such that

〈x, y〉B ⊗ χ̂triv = x∗y for all x, y ∈ (AoG)triv,

and we then have a natural isomorphism

A → (AoG)triv, ΛA(a) 7→ α(a)(1⊗ χ̂triv),

of right Hilbert B-bimodules.

By the previous lemma, it follows that we can realize K(A) as a closed 2-sided
ideal inside AoG by means of a ∗-homomorphism

(3) Πα : K(A)→ AoG, ΛA(x)ΛA(y)∗ 7→ α(x)(1⊗ χ̂triv)α(y∗),

which is in general degenerate. We can interpret A as a right B-A o G-Hilbert
bimodule by composing its 〈 · , · 〉K(A)-valued inner product with the map Πα. We
then have an isomorphism of right Hilbert B-AoG-bimodules

A → triv(AoG), ΛA (a) 7→ (1⊗ χ̂triv)α(a).

Note now that we can identify A with the closure of (ΛA ⊗ Λϕ)(α(A)) inside
A⊗L 2(G). In this way A is an AoG-invariant subspace of A⊗L 2(G), and we
denote the resulting ∗-representation of AoG on A by πred. Its restriction to A is
given by left multiplication, while its restriction to C∗(G) is the representation π̂α.
It is also easy to see that πred ◦Πα is the identity map on K(A).

§2.5. Galois maps

We can interpret A itself as a right Hilbert B-A-Hilbert module, the bimod-
ule structure being given by multiplication and the A-valued inner product by
〈x, y〉A = x∗y. Further, for any representation π, we interpret A ⊗L 2(G)π as a
right AoG -Hilbert module by means of the identification map

(4) A ⊗L 2(G)π → π(AoG), ΛA (x)⊗ Λϕ(S(h)) 7→ (1⊗ ĥ)α(x),

for x ∈ A and h ∈ C(G)π. It requires a small argument to show that this Hilbert
module is complete, but we will actually never use this fact.
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Definition-Proposition 2.11. The map

(5) Aπ ⊗alg P (A)→ P (A)⊗ C(G)π, a⊗ a′ 7→ α(a)(a′ ⊗ 1),

induces isometric maps of right Hilbert modules

Gπ : Aπ ⊗B A→ A⊗L 2(G)π, Gπ : Aπ ⊗B A → A⊗L 2(G)π,

Gπ : Aπ ⊗B A → A ⊗L 2(G)π,

which are uniquely determined by (5) on the image of Aπ ⊗alg P (A).
We shall call the above maps the π-localised C∗-, Hilbert C∗- and crossed

product-Galois map, respectively.

Here −⊗B − denotes the interior tensor product over B (see [10]). Also, for
the first two maps, the tensor product on the right is simply an amplification of
the corresponding right Hilbert modules with the Hilbert space L 2(G)π.

Proof. A trivial computation shows that the proposed formula for Gπ and Gπ
respects the A-valued, resp. B-valued inner product on elementary tensors, so
that they descend and complete to maps with domain Aπ ⊗B A, resp. Aπ ⊗B A.
The statement about Gπ follows from the following easily verified identity inside
AoG:

(1⊗ ̂S−1(x(1)))α(x(0)) = α(x)(1⊗ χ̂triv), x ∈ Aπ,

where we used the Sweedler notation α(x) = x(0) ⊗ x(1).

One can show that these Galois maps add up to respective isometries
A⊗B − → −⊗L 2(G) which are C∗(G)-equivariant from the second to the first
leg—we will use this observation only for the cases A and A. Note that the termi-
nology ‘Galois map’ comes from the corresponding Hopf algebraic theory (cf. [20]).

§3. Adjointability of Galois maps

We keep the notational conventions of the previous section. In particular, G is
a compact quantum group acting on a not necessarily unital C∗-algebra A, with
fixed point C∗-algebra B. We first recall a general fact about the amplification of
morphisms of Hilbert C∗-bimodules.

Lemma 3.1. Let C and D be C∗-algebras, and E and E ′ respectively a right
Hilbert C∗-B-C-bimodule and a right Hilbert C∗-B-D-bimodule. If T : E → E ′

is a completely bounded B-module map, then ι ⊗ T descends to a bounded map
ι ⊗B T of norm at most ‖T‖cb from F ⊗B E to F ⊗B E ′ for any right Hilbert
C∗-B-module F .
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Proof. This is shown by a standard argument. Let x1, . . . , xn be elements in E ,
and y1, . . . , yn be in F . Then the matrix Y = (〈yi, yj〉B)i,j in Mn(B) is a positive
element. Hence there exists b = (bi,j)i,j ∈Mn(B) satisfying b∗b = Y . Then〈

ι⊗ T
(∑

i

yi ⊗ xi
)
, ι⊗ T

(∑
j

yj ⊗ xj
)〉

D
=
∑
i,j

〈T (xi), Yi,jT (xj)〉D.

The norm of the above can be written as∥∥∥∑
i,j,k

〈
T (xi), b

∗
k,ibk,jT (xj)

〉
D

∥∥∥ = ‖ι⊗ T (ξ)‖2,

where ξ ∈ Cn ⊗ E is a column vector whose k-th component is equal to
∑
i bk,ixi.

By the complete boundedness of T , we obtain

‖ι⊗ T (ξ)‖2 ≤ ‖T‖2cb‖ξ‖2 = ‖T‖2cb

∥∥∥〈∑
i

yi ⊗ xi,
∑
j

yj ⊗ xj
〉
C

∥∥∥2

,

which implies the desired estimate ‖ι⊗B T‖ ≤ ‖T‖cb.

The adjointability of different Galois maps are in fact equivalent conditions.

Proposition 3.2. Let G be a compact quantum group acting on a unital C∗-
algebra A. Let π be a finite-dimensional unitary representation of G. The following
conditions are equivalent:

(1) The π-localized Hilbert-C∗-Galois map Gπ has an adjoint.
(2) The π-localized C∗-Galois map Gπ has an adjoint.
(3) The π-localized crossed product-Galois map Gπ has an adjoint.

Proof. Each of the implications can be argued along the same pattern: given the
adjoint of one of the Galois maps, we may restrict it to isotypical components
Aρ⊗algC(G)π for ρ ∈ IrrG. Then Lemmas 2.9 and 3.1 imply that those restrictions
are continuous with respect to the other norms. The resulting map on P (A)⊗alg

C(G)π is shown to be a formal adjoint of the Galois map with respect to the
corresponding algebra-valued inner product. By the inner product characterization
of duals for Hilbert C∗-modules, we conclude that this formal adjoint extends to
the actual adjoint. As an illustration, let us prove the implication (1)⇒(2).

Assume that (1) holds. Take a finite-dimensional unitary representation ρ

of G, h ∈ C(G)π, and a ∈ Aρ. We first claim that G∗π(ΛA(a)⊗Λϕ(h)) is contained
in Aπ ⊗B Aπ×ρ. Observe that we can write

Aπ ⊗B A =
⊕
θ∈IrrG

(Aπ ⊗B Aθ).
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Take an irreducible representation θ which does not appear in π × ρ, and take
x ∈ Aπ, y ∈ Aθ. By a direct calculation, we obtain

〈G∗π(ΛA(a)⊗ Λϕ(h)),ΛA(x)⊗ ΛA(y)〉
= (ι⊗ ϕ⊗ ϕ)

(
(α(a∗)⊗ h∗)((α⊗ ι)α(x))(α(y)⊗ 1)

)
.

But we see that the second factor of the evaluated element only contains matrix
coefficients of the representation ρ × π × θ, which does not contain the trivial
representation by the assumption on θ and Frobenius reciprocity. Hence the above
expression is zero, and the claim follows.

Combining Lemmas 2.9 and 3.1, we obtain a mapAπ⊗BAπ×ρ → Aπ⊗BAπ×ρ.
Composing this with G∗π, we obtain a map from Aρ ⊗alg C(G)π to Aπ ⊗B Aπ×ρ.
Taking linear combinations, we obtain a map F0 from P (A)⊗algC(G)π to Aπ⊗BA.
We want to show that F0 is bounded, and that its closure equals G∗π.

Fix a ∈ Aρ and h ∈ C(G)π, and take elements (xn,i)
Nn
i=1 ∈ Aπ and (yn,i)

Nn
i=1 ∈

Aπ×ρ for n,Nn ∈ N such that

G∗π(ΛA(a)⊗ Λϕ(h)) = lim
n→∞

Nn∑
i=1

ΛA(xn,i)⊗ ΛA(yn,i).

Take x ∈ Aπ and y ∈ P (A). On the one hand, we have the convergence∑
i

EB(y∗n,iEB(x∗n,ix)y) =
∑
i

〈ΛA(xn,i)⊗ ΛA(yn,i),ΛA(x)⊗ ΛA(y)〉

−→
n→∞

〈ΛA(a)⊗ Λϕ(h),Gπ(x⊗ y)〉 = (EB ⊗ ϕ)((a∗ ⊗ h∗)α(x)(y ⊗ 1)).

On the other hand, we also have the convergence

〈F0(a⊗ h),ΛA(x)⊗ y〉 = lim
n→∞

Nn∑
i=1

y∗n,iEB(x∗n,ix)y.

Multiplying on the right with an arbitrary z ∈ P (A), we find that

EB(〈F0(a⊗ h),ΛA(x)⊗ y)〉 · z) = EB
(
〈ΛA(a)⊗ Λϕ(h), Gπ(ΛA(x)⊗ y)〉 · z

)
.

As z was arbitrary, and as 〈 · , · 〉B is non-degenerate on P (A), we find that

〈F0(a⊗ h),ΛA(x)⊗ y〉 = 〈ΛA(a)⊗ Λϕ(h), Gπ(ΛA(x)⊗ y)〉.

From this formula, we deduce that F0 descends to a contractive map F from
A⊗L 2(G)π to A⊗B A, and that F is then precisely the adjoint of Gπ, hence we
obtain (2).
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Elements in the algebra B act on Aπ as left multiplication operators, which
are adjointable endomorphisms for the right Hilbert B-module structure. We let
πL denote the associated embedding of B into L(Aπ)B . The amplification of left
multiplication defines an analogous action of B on A2Hπ. By abuse of notation,
we denote this representation also by πL (see Lemma 2.1).

Theorem 3.3. Let α be an action of G on a C∗-algebra A, and let π be a finite-
dimensional unitary representation of G. Then the following conditions are equiv-
alent:

(1) The π-localized Galois maps are adjointable.
(2) The image of π(AoG) under πred lies in K(A,Aπ).
(3) The image of πL : B → L(Aπ) is contained in K(Aπ).
(3′) The image of πL : B → L(A2Hπ) is contained in K(A2Hπ).

Furthermore, when A is unital, these conditions are equivalent to the following:

(4) Aπ is finitely generated and projective as a right B-module.
(4′) A2Hπ is finitely generated projective as a right B-module.

Proof. (1)⇒(2) Let us identify A ⊗L 2(G)π with π(A o G) as explained above
Proposition 2.11. Let us also identify Aπ⊗BA with the right Hilbert K(A)-module
K(A,Aπ) of compact operators from A to Aπ, by means of the natural map

Υπ : Aπ ⊗B A → K(A,Aπ), ΛA(x)⊗ ΛA (y) 7→ ΛA(x)ΛA(y∗)∗.

Then Gπ becomes the map Πα of (3).
As Gπ is adjointable, we have, for x in π(AoG) ' A ⊗L 2(G)π (see (4)) and

y in K(A,Aπ),
Πα((G ∗π (x))∗y) = x∗Πα(y).

Applying πred, we conclude that (G ∗π (x))∗y = πred(x)∗y for all y ∈ K(A,Aπ), and
hence G ∗π (x) = πred(x) ∈ K(A).

The implication (2)⇒(3) is of course trivial.
(3)⇒(1). Take a ∈ P (A), say a ∈ Aρ for some representation ρ, and h ∈

C(G)π. Since [AρB] = Aρ by Corollary 2.6, the operator π̂α(Ŝ−1(h))a is a compact
operator in K(Aρ×π,Aπ).

Let Υπ,π×ρ : Aπ ⊗B Aπ×ρ → K(Aρ×π,Aπ) be the restriction of Υπ. It is
a complete isometry. Moreover, combining Lemmas 2.9 and 3.1, we obtain an
injective bounded map Sπ,π×ρ from Aπ ⊗B Aπ×ρ to Aπ ⊗B Aπ×ρ.

Define a map F0 from P (A)⊗alg C(G)π to Aπ ⊗B A by

F0(a⊗ h) = (Sπ,π×ρ ◦Υ−1
π,π×ρ)(π̂α(Ŝ−1(h))a).
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Let us choose for each n ∈ N a finite collection of pairs xn,i ∈ Aπ, yn,i ∈ Aπ×ρ
such that

F0(a⊗ h) = lim
n→∞

∑
i

ΛA(xn,i)⊗ ΛA(yn,i).

Then by definition of F0(a⊗ h), we have the equality

lim
n

∑
i

ΛA(xn,i)ΛA(y∗n,i)
∗ = π̂α(Ŝ−1(h))a

as operators from Aρ×π to Aπ. Applying the ∗-operation to both sides, and ap-
plying these expressions to ΛA(x) for some x ∈ Aπ, we see that

lim
n

∑
i

ΛA(y∗n,iEB(x∗n,ix)) = ΛA
(
(ι⊗ ϕ)((a∗ ⊗ h∗)α(x))

)
.

In the above formula, the vectors inside ΛA belong to Aπ×ρ. Since the norms
on Aπ×ρ and Aπ×ρ are equivalent, convergence still holds in Aπ×ρ. Hence if x ∈ Aπ
and y ∈ P (A), we have

〈F0(a⊗ h),ΛA(x)⊗ ΛA(y)〉= lim
n

∑
i

EB(y∗n,iEB(x∗n,ix)y)

=EB
(
a∗(ι⊗ ϕ(h∗ · ))(α(x))y

)
= 〈ΛA(a)⊗ Λϕ(h),Gπ(ΛA(x)⊗ ΛA(y))〉.

As in the proof of Proposition 3.2, we can conclude that F0 extends to a
bounded map F from A⊗L 2(G)π to Aπ ⊗B A, which is then the adjoint of Gπ.
This way we conclude that π-localized Galois maps are adjointable.

The equivalence between (3) and (3′), and between (4) and (4′), follows from
Lemma 2.1, as those conditions on π are clearly equivalent to having the corre-
sponding ones for each irreducible subrepresentation of π.

Finally, assuming A is unital, we show that (3) and (4) are equivalent. In fact,
if A is unital, so is B, and the third condition simply says that K(Aπ) is unital. In
particular,Aπ must be countably generated as a Hilbert module. By [9, Lemma 6.5]
and Kasparov’s stabilization theorem [10, Corollary 6.3], Aπ ∼= pBn for some
n ∈ N and some self-adjoint projection p ∈Mn(B), and is hence finitely generated
projective. Conversely, if Aπ is finitely generated projective, [9, Lemma 6.5] implies
that K(Aπ) is unital. Since K(Aπ) is an ideal in L(Aπ), this completes the proof.

Remark. 1. Let us assume our action is ergodic, which means B = C1 (and
necessarily A unital). Then A is a Hilbert space, and as the Hilbert C∗-Galois map
is then an isometry between Hilbert spaces, it is necessarily adjointable. Hence the
implication (1)⇒(5) of the previous result captures as a special case the fact that
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the isotypical components of an ergodic action are finite-dimensional (cf. [4]). Of
course, this special case can be proven more directly (whilst obtaining a stronger
conclusion about the minimal number of generators).

2. Let G be a classical compact group acting on some compact space X. One
can prove that the adjointability of the corresponding Galois maps is equivalent
to the following purely topological condition: if Gx ⊆ G is the stabilizer group of
x ∈ X, then the assignment x 7→ Gx is continuous, with respect to the natural
topology known as finite or Vietoris topology on the space of closed subsets of G.

We end this section with the following observation about the range projection
of Galois isometries.

Proposition 3.4. Suppose that π-localized Galois maps are adjointable. Then
GπG ∗π is a central element insideM(π(AoG)π), and

GπG
∗
π = GπG

∗
π = GπG∗π.

Proof. Let us write Pπ = GπG ∗π . Then

Pπ ∈ L(A ⊗Hπ) ∼= L(π(AoG)) ∼=M(π(AoG)π),

whereM means taking the multiplier C∗-algebra. Moreover, as in the proof of the
previous theorem, we can interpret G and its adjoint as the maps Πα and πred
respectively. Hence for x ∈ AoG, we have Pπx = Πα(πred(x)) = Πα(πred(x∗))∗ =

(Pπx
∗)∗ = xPπ, so that Pπ is central.
From the ‘claim’ in the proof of Proposition 3.2, we have the inclusion

GπG∗π
(
ΛA(P (A))⊗ C(G)π

)
⊆ ΛA(P (A))⊗ C(Gπ).

And from the construction of the maps G∗π and G ∗π there, the maps GπG∗π, GπG∗π
and GπG ∗π coincide on P (A)⊗ C(G)π (after applying suitable Λ-maps).

Finally, a simple algebraic computation, coupled with a continuity argument,
allows us to conclude that for x ∈ π(AoG)π and ξ ∈ A⊗L 2(G)π, one has

(ΛA ⊗ ι)(xξ) = x((ΛA ⊗ ι)ξ) and (ΛA ⊗ ι)(xξ) = x((ΛA ⊗ ι)ξ),

where the left π(A o G)π-module structure on A ⊗ L 2(G)π is obtained again
by making first the identification with π(A o G). It follows that GπG∗π = GπG∗π
= Pπ.

§4. Freeness of compact quantum group actions

We keep the same notation as in the previous section, thus α is an action of a
compact quantum group G on a C∗-algebra A.
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The action α is said to satisfy the Ellwood condition, or simply be free, if the
following cancellation property holds:

[α(A)(A⊗ 1)] = A⊗min C(G).

This condition was introduced in [6] in a more general setting of actions of locally
compact quantum groups. It is straightforward to check that if A = C0(X) for
some locally compact space X, and G is an ordinary compact group G, then the
above condition characterizes precisely freeness of the action of G on X.

Since the subspaces Aπ of A for π ∈ IrrG are orthogonal to each other, and
similarly for the supspaces (L 2(G)π)π∈IrrG in L 2(G), the isometries Gπ and Gπ
add up to respective isometries G and G.

Proposition 4.1. The following conditions are equivalent:

(1) The action α is free.
(2) The Hilbert C∗-Galois isometry G is unitary.
(3) The C∗-Galois isometry G is unitary.

Proof. Assume the action is free. Since the natural map (ΛA ⊗ Λϕ) from A ⊗min

C(G) to A ⊗ L 2(G) is contractive, we see that the image of G is dense in its
range. As G is isometric, it then follows that it is bijective, hence unitary (cf. [10,
Theorem 3.5]).

Let us assume that G is unitary. Then all Gπ are unitary operators. Proposi-
tion 3.4 implies that all Gπ are unitary operators as well. It follows that G is a
unitary.

Finally, let us assume G is unitary. Then we have [α(Aπ)(A⊗1)] = A⊗C(G)π
for each representation π of G. As P (A) is dense in A, it follows that the action
of G on A is free.

Corollary 4.2 (Theorem 1.2). Let A be a unital C∗-algebra endowed with a free
action of G, and let π be a finite-dimensional unitary representation of G.

(1) The space Aπ is a finitely generated right Hilbert B-module (and hence a
finitely generated and projective right B-module).

(2) The space A2Hπ is a finitely generated right Hilbert B-module (hence finitely
generated and projective as a right B-module).

Proof. This follows from Theorem 3.3 and the previous proposition.

Following the case of group actions, we make the following definition of satu-
ratedness.
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Definition 4.3. We say that α is saturated if [(AoG)triv · (AoG)∗triv] = AoG.

Note that if A is unital, this simply says that 1⊗ χ̂triv is a full projection in
AoG. In general, this condition says that (AoG)triv is an imprimitivity bimodule
between B and AoG.

We now prove the equivalence between freeness and saturatedness.

Theorem 4.4 (Theorem 1.1). A compact quantum group action of G on a (not
necessarily unital) C∗-algebra A is saturated if and only if it is free.

Proof. Observe first that the saturatedness condition is equivalent to saying that
Πα(K(A,Aπ)) is equal to π(A o G) for each representation π of G. This in turn
is equivalent to all maps Gπ having dense range, i.e. being unitaries. The theorem
then follows from Propositions 3.4 and 4.1.

§5. Finite index inclusions of C∗-algebras

Let B ⊆ C be a unital inclusion of unital C∗-algebras. Following [28], we call this
an inclusion of finite-index type if there exists a conditional expectation E : C → B

and a finite set of pairs (vi, wi) ∈ C × C, called a quasi-basis for E, such that∑
i

viE(wix) = x =
∑
i

E(xvi)wi (x ∈ C).

Such a conditional expectation is itself called a conditional expectation of finite-
index type. Then, the index of E is defined as

(6) Index(E) =
∑
i

viwi.

This does not depend on the choice of quasi-basis, and belongs to the centre of C.
An equivalent characterization of a conditional expectation of finite-index type

is the following.

Lemma 5.1. Let B ⊆ C be as above, and E : C → B a conditional expectation.
Then E is of finite-index type if and only if the right B-module C, together with
the B-valued inner product 〈x, y〉B = E(x∗y), is a finitely generated right Hilbert
B-module.

Proof. If C is a finitely generated right Hilbert B-module in the way prescribed
above, it follows from [28, Corollary 3.1.4] and the remark following it that E is
of finite-index type.

Conversely, assume that E is of finite-index type. We know that C is finitely
generated as a right B-module, and, by [28, Proposition 2.1.5], that there exists a
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constant c > 0 such that

‖E(x∗x)‖ ≤ ‖x∗x‖ ≤ c‖E(x∗x)‖.

Hence C with its B-valued inner product is complete, and becomes a finitely
generated right Hilbert B-module. This concludes the proof.

Assume now again that A is a unital C∗-algebra with an action of a compact
quantum group G, with B denoting the C∗-algebra of G-fixed elements. Let us
fix a representation π of G with a fixed orthogonal basis {ei} for Hπ, and write
δπ(ei) =

∑
j uij ⊗ ej with uij ∈ C(G).

On the one hand, we can twist the coaction α with the representation π to
obtain the coaction

απ : A⊗B(Hπ)→ (A⊗B(Hπ))⊗min C(G),

which, using the Sweedler notation α(a) = a(0) ⊗ a(1), is given by the formula

απ(a⊗ eie∗j ) =
∑
k,l

a(0) ⊗ eke∗l ⊗ u∗kia(1)ulj .

On the other hand, we can also consider the following left coaction of C(G)

on B(Hπ):

Adπ : B(Hπ)→ C(G)⊗B(Hπ), eie
∗
j 7→

∑
k,l

uiku
∗
jl ⊗ eke∗l .

We let A2B(Hπ) denote the space {x ∈ A⊗B(Hπ) : (α⊗ ι)(x) = (ι⊗Adπ)(x)}.
The following lemma follows from a straightforward computation, which we

omit.

Lemma 5.2. The C∗-subalgebras (A⊗B(Hπ))G and A2B(Hπ) of A⊗B(Hπ)

coincide.

Theorem 5.3 (Theorem 1.3, first part). Let A be a unital C∗-algebra endowed
with a free action of G. Then the inclusion B = AG ⊆ (A⊗B(Hπ))G is a finite-
index type inclusion.

Proof. By the previous lemma, it is equivalent to show that B ⊆ A2B(Hπ) is
an inclusion of finite-index type. Let us choose a faithful Adπ-invariant state θπ
on B(Hπ). Then we can view B(Hπ) as a Hilbert space with the inner product
〈x, y〉 = θπ(x∗y), and it is immediate that this turns Adπ into a representation
of G.

Consider the map

E : A2B(Hπ)→ A, x 7→ (ι⊗ θπ)x.
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First, it is faithful, being a restriction of the faithful map ι⊗ θπ. Next, its image is
the intersection A⊗C∩A2B(Hπ) = B. Moreover, the E-induced inner product
〈x, y〉B = E(x∗y) on A2B(Hπ) coincides precisely with the one we defined in
Section 2 (viewing B(Hπ) as a Hilbert space as above). Hence, by Corollary 4.2,
A2B(Hπ) is a finitely generated right Hilbert B-module. The theorem now fol-
lows from Lemma 5.1.

We remark that, by the same proof, the theorem holds more generally for
any coaction whose associated C∗-Galois map is adjointable (or indeed just its
π ⊗ π̄-localization is adjointable).

To end, let us show that, when π is irreducible, the index of the above inclusion
is in fact a scalar, equal to the square of the quantum dimension of Hπ. This
should not be surprising: it is the quantum analogue of the fact that if V is a
representation of a compact group G, and X a compact space with a free action
of G, the pullback of V to X by means of the action gives a vector bundle of
constant rank the dimension of V . For more on this in a von Neumann algebraic
context, see e.g. [27], [2] and [24].

Note that the formula (6) still makes sense in case E is just a B-bimodular
map from C to B and the ‘inclusion map’ map B → C is not injective. We will
make use of the following lemma, whose proof is very similar to the one for the
statement that finite index is stable under the Jones tower construction (cf. [28,
Proposition 1.6.6]). It will later on allow us to tune down half of an argument
of [27].

Lemma 5.4. Let B be a unital C∗-algebra, and E a right Hilbert B-bimodule
which is finitely generated as a left and as a right B-module. Assume that E has
a left B-valued inner product B〈 · , · 〉 such that E becomes also a left Hilbert B-
bimodule (with respect to the given B-bimodule structure on E). Then the map

E : K(E)B → B, ξη∗ 7→ B〈ξ, η〉,

is well-defined and B-bimodular (with respect to the natural map B → K(E)B).
Choosing further a finite set of elements ξj , ηj , ξ̃i, η̃i ∈ E such that∑

j

ξj〈ηj , ξ〉B = ξ =
∑
i

B〈ξ, ξ̃i〉η̃i for all ξ ∈ E ,

the elements
vij = ξj η̃

∗
i , wij = ξ̃iη

∗
j

form a quasi-basis for E, and hence the index of E is given by

Index(E) =
∑
j

ξj

(∑
i

〈η̃i, ξ̃i〉B
)
η∗j .
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To be clear, the adjoint operation is taken with respect to the right Hilbert
module structure. Note that, if the sum

∑
i〈η̃i, ξ̃i〉B equals c1 for some scalar c,

then Index(E) = c1.

Proof. We will only verify that half of the quasi-basis property with respect to
E is satisfied for the pairs (vij , wij). Note that we can restrict ourselves to the
verification of the identity T =

∑
i,j vi,jE(wi,jT ) for rank 1 endomorphisms T

of E , as we can obtain the same formula for arbitrary T ∈ K(E) by linearity.
Suppose T = ξη∗ for some vectors ξ, η in E . Then wijT = ξ̃i〈ηj , ξ〉Bη∗. Hence

we can compute∑
i,j

vijE(wijT ) =
∑
i,j

ξj η̃
∗
i B

〈
ξ̃i〈ηj , ξ〉B , η

〉
=
∑
i,j

ξj
(
B〈ξ̃i〈ηj , ξ〉B , η〉∗η̃i

)∗
.

Note that the inner product satisfies the symmetry B〈x, y〉∗ = B〈y, x〉, and the
compatibility B〈x, ya〉 = B〈xa∗, y〉 with the bimodule structure. Using these, we
may further transform the right hand side above to∑

i,j

ξj
(
B〈η〈ηj , ξ〉∗B , ξ̃i〉η̃i

)∗
=
∑
j

ξj (η〈ηj , ξ〉∗B)
∗

=
∑
j

ξj〈ηj , ξ〉Bη∗ = ξη∗,

which proves
∑
i,j vijE(wijT ) = T .

Let us now fix a free action of G on a unital C∗-algebra A. We also fix an
irreducible finite-dimensional unitary representation π of G. Let us also recall here
the following strong left invariance property for ϕ: if g, h ∈ P (G), then

ϕ(gh(2))h(1) = ϕ(g(2)h)S(g(1)).

Lemma 5.5. The natural representation of A2B(Hπ) on A2Hπ is faithful.

Proof. Note first that we can realize K(A2Hπ) as an ideal inside A2B(Hπ),
formed by the span of the elements of the form

∑
i,j xiy

∗
j ⊗eie∗j with

∑
xi⊗ei and∑

yi ⊗ ei inside A2Hπ. The faithfulness of our representation is then equivalent
to this ideal being the whole of A2B(Hπ).

Now choose an orthonormal basis ei ∈ Hπ, and write δπ(ei) =
∑
j uij ⊗ ej .

Take x ∈ P (A). Then, using that S(u∗ij) = uji together with strong left invariance,
one finds that

∑
j ϕ(u∗jix(1))x(0)⊗ej lies in A2Hπ, where we have used again the

Sweedler notation for the coaction α. Hence K(A2Hπ) contains all elements of
the form

(7)
∑
k,l

ϕ(u∗kix(1))ϕ(y∗(1)ulj)x(0)y
∗
(0) ⊗ eke

∗
l .
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But we can write this in the form∑
k,l

ϕ(u∗kix(2))ϕ
(
S−1(x(1))(x(0)y

∗)(1)ulj
)
(x(0)y

∗)(0) ⊗ eke∗l .

Now from the proof of Propositions 3.2 and 4.1, it follows that we can express any
a ⊗ h with a ∈ P (A) and h ∈ P (G) as a linear combination of elements of the
form α(x)(y∗⊗1). Hence, taking the particular case a = 1, we see that K(A2Hπ)

contains all elements of the form∑
k,l

ϕ(u∗kih(2))ϕ(S−1(h(1))ulj) 1⊗ eke∗l .

Rewriting this slightly by means of strong left invariance, this becomes

(8)
∑
k,l,p

ϕ(u∗pih)ϕ(u∗kpulj) 1⊗ eke∗l .

Using the matrices Qπ from Section 2.1, the above simplifies to

dimq(Hπ)−1
(∑

p

〈ej , Qπep〉ϕ(u∗pih)
)

1⊗ 1.

It is clear that the sum does not vanish for some combination of i, j and h, proving
that K(A2Hπ) contains the unit of A2B(Hπ), and is thus equal to the latter
algebra.

Note that the above proof, with a slightly modified last step, works just as
well for representations which are not irreducible. Although we will not really need
it, let us make at this point the link with the theory of eigenmatrices.

Let π be a representation of G, and choose an orthonormal basis (ei) for Hπ.
As before, put δ(ei) =

∑
j uij ⊗ ej , and consider the space

A(π) =
{
x =

∑
ij

xij ⊗ eji ∈Mn(A)
∣∣∣ α(xij) =

∑
k

xik ⊗ ukj
}
⊆ A⊗B(Hπ),

which we call the space of π-eigenmatrices.

Corollary 5.6. In the above notation, we have

(9) A(π)A(π)∗ = (A⊗B(Hπ))G.

Proof. It is easily verified that we have an isomorphism of vector spaces

(A2Hπ)⊗H ∗
π → A(π),

(∑
i

ai ⊗ ei
)
⊗ e∗j 7→

∑
i

ai ⊗ eie∗j .
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It follows immediately that

A(π)A(π)∗ = (A2Hπ)(A2Hπ)∗,

from which the corollary follows by the previous lemma.

Peligrad [13, Corollary 3.5] showed that, for compact group actions, the con-
dition (9) is equivalent to the saturatedness of the action. These results are also
closely related to the strong monoidality of the operation A2−.

Assume now again π irreducible, and consider on A2Hπ the left Hilbert
B-module structure via

B〈ξ, η〉 = (ι⊗ θπ)ξη∗,

where θπ is the unique Adπ-invariant state on B(Hπ). It is easy to see that the
conditional expectation E : A2B(Hπ) ∼= K(A2Hπ) → B from Theorem 5.3
corresponds precisely to the one from Lemma 5.4.

Theorem 5.7 (Theorem 1.3, second part). The index of the conditional expecta-
tion (ι⊗ θπ) for B ⊆ (A⊗B(Hπ))G equals dimq(Hπ)2, the square of the quantum
dimension of Hπ.

Proof. As in Section 2.1, we identify Hπ with H ∗
π endowed with the modified

inner product 〈〈e∗i , e∗j 〉〉 = θπ(eie
∗
j ).

Choose an orthonormal basis (ei)i (resp. (fi)i) of Hπ (resp. of Hπ), and write
δ(ei) =

∑
j uij ⊗ ej (resp. δπ(fi) =

∑
j vij ⊗ fj . Let h and g be the elements of

P (G) satisfying

(10) ϕ(u∗ijh) = δij , ϕ(v∗ijg) = δij .

Finally, let us choose a finite collection of xk, yk, wl, zl ∈ P (A) such that∑
k

α(xk)(y∗k ⊗ 1) = 1⊗ h,
∑
l

α(wl)(z
∗
l ⊗ 1) = 1⊗ g.

Then xk, yk ∈ Aπ and zl, wl ∈ AπA∗π.
Consider the vectors of A2Hπ (see the proof of Lemma 5.5) defined by

ξi,k =
∑
p

ϕ(u∗pixk(1))xk(0) ⊗ ep, ηi,k =
∑
p

ϕ(u∗piyk(1)) yk(0) ⊗ ep.

Going through the argument from (7) to (8) and then applying (10), we deduce
that

∑
i,k ξi,kη

∗
i,k represents the identity operator on A2Hπ.

When
∑
i xi ⊗ ei,

∑
j yj ⊗ ej , and

∑
k zk ⊗ ek in A2Hπ, we calculate(

B

〈∑
i

xi⊗ ei,
∑
j

yj ⊗ ej
〉∑

k

zk⊗ ek
)∗

=
∑
k

z∗k ⊗ e∗k
〈∑

j

y∗j ⊗ e∗j ,
∑
i

x∗i ⊗ e∗i
〉
B
.
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Here, the B-valued inner product on the right hand side is defined on the right
B-module A2Hπ, and it makes sense because

∑
i x
∗
i ⊗ e∗i is in A2Hπ, etc. From

this, we find that the elements ξi,k, ηi,k and

ξ̃i,l =
∑
p

ϕ(z∗l(1)vpi) z
∗
l(0) ⊗ f

∗
p , η̃i,l =

∑
p

ϕ(w∗l(1)vpi)w
∗
l(0) ⊗ f

∗
p

satisfy the hypotheses of Lemma 5.4. More precisely, when v =
∑
i cie

∗
i ∈ Hπ

= H ∗
π , then v∗ denotes the vector

∑
i ciei in Hπ.

Now the same computation as in Lemma 5.5 shows that∑
i,k

〈
η̃i,k, ξ̃i,k

〉
B

=
(∑

i

fif
∗
i

)
1.

Therefore Index(E) = (
∑
i fif

∗
i ) 1. From the way 〈〈·, ·〉〉 was defined and (1), we

see that a possible choice of (fi)i is

fi = dimq(Hπ)1/2
∑
k

〈ei, Q1/2
π ek〉e∗k.

For this choice we can compute
∑
i fif

∗
i = dimq(Hπ)Tr(Qπ) = dimq(Hπ)2, finish-

ing the proof.
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