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Hodge Theory of the Middle Convolution

by

Michael Dettweiler and Claude Sabbah

Abstract

We compute the behaviour of Hodge data under tensor product with a unitary rank-one
local system and middle convolution with a Kummer unitary rank-one local system for
an irreducible variation of polarized complex Hodge structure on a punctured complex
affine line.

2010 Mathematics Subject Classification: 14D07, 32G20, 32S40, 34M99.
Keywords: middle convolution, rigid local system, Katz algorithm, Hodge theory, `-adic
representation.

Introduction

Given an irreducible local system on a punctured projective line (over the field of

complex numbers), the Katz algorithm [12] provides a criterion for testing whether

this local system is physically rigid: this algorithm should terminate with a rank-

one local system (cf. §1.5). This procedure is a successive application of tensor

product with a rank-one local system and middle convolution with a Kummer

local system. If the local monodromies of the rigid local system we start with

have absolute value one, then so do the eigenvalues of the terminal rank-one local

system, which is then a unitary local system. Going the other direction in the algo-

rithm, we conclude that the original local system underlies a variation of polarized

complex Hodge structure (see also Theorem 2.4.1 due to C. Simpson for a more

general argument). According to a general result of Deligne [4] (cf. Prop. 2.4.2),

any irreducible local system underlies at most one such variation, up to a shift of

the filtration.
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Our purpose in this article is to complement the Katz algorithm with the

behaviour of various Hodge numerical data, when they are present, in order to be

able to compute these Hodge data after each step of the algorithm. There are data

of a local nature (Hodge numbers of the variation, Hodge numbers of vanishing

cycles) and of a global nature (degrees of some Hodge bundles), and this set of

data is enough to compute the same set of data after each step of the algorithm.

One of the main tools is a general Thom–Sebastiani formula due to M. Saito

[19].

As an application we compute the length of the Hodge filtration and the degree

of the Hodge bundles of some local systems with G2-monodromy. A restricted set

of possible lengths may be obtained from [10, Chap. IV] and, on a given example,

the actual length may be deduced by eliminating various possibilities, as in [13,

§9], which treats an example of [7]. Here we do not use this a priori knowledge.

On the one hand, by a direct application of the Katz algorithm with Hodge

data, we compute the Hodge data of a physically rigid G2-local system G on

P1 r {x1, x2, x3, x4} whose existence is proved in [7, Th. 1.3.2]. We find a Hodge

filtration of length three, which is the minimal possible length for an irreducible

local system with G2-monodromy.

On the other hand, we compute the Hodge data for one of the orthogonally

rigid local systems with G2-monodromy classified in [8]. Since this local system is

not physically rigid, we cannot directly apply our formulas, as in the previous case,

and a supplementary computation is needed. The result is that the Hodge filtration

has maximal length, equal to the rank (seven) of the local system. By applying

the recent generalization of the potential automorphy criteria of [2] by Patrikis

and Taylor [15] we are able to produce potentially automorphic representations

Gal(Q/Q)→ GL7(Q`) for each prime number `.

§1. Preliminary results

§1.1. A quick review of middle convolution for holonomic modules

on the affine line

We review the notions and results introduced by Katz [12], in the frame of holo-

nomic D-modules (cf. [1]).

Let A1 be the affine line and let M,N be holonomic D(A1)-modules. The

external product M �N is a holonomic D(A1×A1)-module. The (internal) tensor

product M⊗LN is the pull-back δ+(M�N) of the external product by the diagonal

embedding δ : A1 ↪→ A1×A1. It is an object of Db(D(A1)). If N is O(A1)-flat, then

M ⊗L N = M ⊗N is a holonomic D(A1)-module.
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Convolutions. Consider the map s : A1
x × A1

y → A1
t (where the index is the

name of the corresponding variable) defined by t = s(x, y) = x + y. The (usual)

∗-convolution M ?∗ N of M and N is the object s+(M �N) of Db(C[t]〈∂t〉). The

∗-convolution is associative. On the other hand, the !-convolution is defined as the

adjoint by duality of the ∗-convolution: M ?!N = D(DM ?∗DN), where D is the

duality functor Db,op
hol (D(A1)) → Db

hol(D(A1)). It is also expressed as s†(M � N),

if s† := Ds+D denotes the adjoint by duality of s+. Similarly, ?! is associative.

Let us choose a projectivization s̃ : X → A1
t of s, and let j : A1

x×A1
y ↪→ X de-

note the open inclusion. Since s̃ naturally commutes with duality, we have s̃† = s̃+

and s† = s̃+ ◦ j†. Since there is a natural morphism j† → j+ in Db
hol(DX), we get

a functorial morphism s†(M � N) → s+(M � N), that is, M ?! N → M ?∗ N , in

Db
hol(D(A1)).

Remark 1.1.1. If M and N have only regular singularities, then so do the coho-

mology modules of M ?! N and M ?∗ N .

Convolutions and Fourier transform. Let τ be the variable which is Fourier

dual to t. The Fourier transform (with kernel e−tτ ) of a C[t]〈∂t〉-module M is

denoted by FM . It is equal to the C-vector space M on which C[τ ]〈∂τ 〉 acts as

follows: τ acts as ∂t, and ∂τ acts as −t. If p̂ : A1
t×A1

τ → A1
τ denotes the projection,

it is also expressed as p̂+(M [τ ]e−tτ ) = H0p̂+(M [τ ]e−tτ ).

Due to the character property of the Fourier kernel, we have

(1.1.2) F(M ?∗ N) = FM ⊗L FN.

Recall (cf. [14, pp. 86 & 224]) that Fourier transform is compatible with duality

up to a sign ι : τ 7→ −τ , that is, DFM ' ι+FDM . It follows that

(1.1.3) F(M ?! N) = D(DFM ⊗LDFN).

Denote by δ0 = C[t]〈∂t〉/C[t]〈∂t〉 · t the Dirac (at 0) D(A1)-module, which

satisfies Fδ0 = C[τ ]. Then, clearly, δ0 is a unit for both ?∗ and ?!.

Middle convolution with P. We introduce the full subcategory P of

Modhol(C[t]〈∂t〉) consisting of holonomic C[t]〈∂t〉-modules N such that FN and
FDN (equivalently, DFN) are C[τ ]-flat. Clearly, P is a full subcategory of

Modhol(C[t]〈∂t〉) which is stable by duality.

From (1.1.2) and (1.1.3) it follows that, for N in P and any holonomic M

(resp. for M in P), both M ?∗ N and M ?! N are holonomic D(A1)-modules

(resp. belong to P). Clearly, δ0 belongs to P.

Definition 1.1.4. For N in P and M holonomic, the middle convolution M?midN

is defined as the image of M ?! N →M ?∗ N in Modhol(D(A1)).
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Lemma 1.1.5. For N ∈ P, ?∗N and ?!N are exact functors on Modhol(C[t]〈∂t〉).

On the other hand, ?midN preserves injective morphisms as well as surjective

morphisms.

Proof. The first assertion follows from the exactness of F and of D on

Modhol(C[t]〈∂t〉), and the exactness of ⊗FN on Modhol(C[τ ]〈∂τ 〉). The second one

is then obvious.

Middle convolution with Kummer modules. For χ ∈ C∗ r {1}, choose

α ∈ C r Z such that exp(−2πiα) = χ and let Lχ (or Lχ(t) to make pre-

cise the variable t) denote the Kummer C[t]〈∂t〉-module (C[t, t−1],d + α dt/t) =

C[t]〈∂t〉/C[t]〈∂t〉 · (t∂t − α). It does not depend on the choice of α up to iso-

morphism. The second representation makes it clear that DLχ = Lχ−1 and
F(Lχ(t)) = Lχ−1(τ). It will also be convenient to set L1 = δ0. From (1.1.2) and

(1.1.3) we conclude that Lχ belongs to P and, for any of the three ?-products,

(1.1.6) Lχ ? Lχ′ = Lχχ′ if χχ′ 6= 1.

We also deduce that Lχ ?mid Lχ−1 = L1. If M is a holonomic C[t]〈∂t〉-module, we

set

(1.1.7) MCχ(M) := M ?mid Lχ.

Proposition 1.1.8. If χ 6= 1, then FMCχ(M) is the minimal extension at the

origin of FM ⊗ Lχ−1 .

Proof. By construction, FMCχ(M) ⊂ FM ⊗ Lχ−1 , hence it has no submodule

supported at the origin. Since DFLχ = Lχ, DFM ⊗DFLχ has the same property,

and thus its dual module has no quotient module supported at the origin. As

a consequence, FMCχ(M) does not have any quotient module supported at the

origin. It remains therefore to show that FMCχ(M) ⊗ C[τ, τ−1] = FM ⊗ Lχ−1 ,

i.e., FMCχ(M) and FM ⊗ Lχ−1 have the same generic rank. We will restrict to a

non-empty Zariski open subset not containing the singularities of FM and Lχ(τ).

It is then a matter of showing that, on this open subset, D(DFM⊗Lχ(τ)) has the

same rank as FM (or FM⊗Lχ−1(τ)). On such an open set, the dual as a D-module

coincides with the dual as a bundle with connection, so the assertion is clear.

Proposition 1.1.9. The middle convolution functor MCχ : Modhol(C[t]〈∂t〉) →
Modhol(C[t]〈∂t〉) satisfies MCχχ′ ' MCχ′ ◦MCχ if χχ′ 6= 1 and MC1 = Id. It sat-

isfies MCχ−1 ◦MCχ = Id on non-constant irreducible holonomic modules. In par-

ticular, it sends non-constant irreducible holonomic modules to non-constant irre-

ducible holonomic modules.
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Proof. That MC1 = Id is clear by Fourier transform and can also be seen as

follows: since M � L1 is nothing but the push-forward i+M by the inclusion i :

A1
x × {0} ↪→ A1

x × A1
y, we have s!(M � L1) = s+(M � L1) = M since s ◦ i = Id;

then the image of s!(M � L1) into s+(M � L1) is also equal to M .

We are reduced to proving an associativity property.1 Indeed,

MCχχ′(M) = M ?mid (Lχ ?mid Lχ′),

MCχ′ ◦MCχ(M) = (M ?mid Lχ) ?mid Lχ′ .

On the one hand, let us consider the following diagram:

M ?! Lχ ?! Lχ′ // //

����

(M ?mid Lχ) ?! Lχ′

����

� � // (M ?∗ Lχ) ?! Lχ′

����

(M ?! Lχ) ?mid Lχ′ // //
� _

��

(M ?mid Lχ) ?mid Lχ′
� � //

� _

��

(M ?∗ Lχ) ?mid Lχ′
� _

��

(M ?! Lχ) ?∗ Lχ′ // // (M ?mid Lχ) ?∗ Lχ′
� � // M ?∗ Lχ ?∗ Lχ′

Lemma 1.1.5 shows that the horizontal arrows have the indicated surjectivity/in-

jectivity property. The vertical arrows of the first line are onto and those of the

second column are injective by definition of ?mid. It follows that (M?midLχ)?midLχ′

is also identified with the image of M ?! Lχ ?! Lχ′ →M ?∗ Lχ ?∗ Lχ′ .

On the other hand, if χχ′ 6= 1, then M ?mid (Lχ ?midLχ′) = M ?mid (Lχ ?Lχ′)

(any ?), so

M ?mid (Lχ ? Lχ′) = image[M ?! (Lχ ?! Lχ′)→M ?∗ (Lχ ?∗ Lχ′)].

If χ′ = χ−1, we consider the diagram

M ?! (Lχ ?! Lχ−1) //

��

M ?∗ (Lχ ?∗ Lχ−1)

M ?! L1 M ?mid L1 M ?∗ L1

OO

where in the lower line, all terms are nothing but M , and we are reduced to prov-

ing that the left vertical morphism is onto and the right one is injective if M

is irreducible and non-constant. Since F(Lχ ?∗ Lχ−1) = C[τ, τ−1] and FM and

1We present a proof not relying on Fourier transform for further use in the proof of Theorem
3.1.2. Using Fourier transform, one can argue as follows if χχ′ 6= 1. By Proposition 1.1.8, it is
enough to check the equality of the localization at the origin of the Fourier transforms of both
terms, which is then straightforward.
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FDM have no τ -torsion by our assumption, the morphism M →M ?∗ Lχ ?∗ Lχ−1

is injective and therefore so is DM → DM ?∗ Lχ ?∗ Lχ−1 , hence by duality

M ?! Lχ ?! Lχ−1 →M is onto.

Let us decompose A1
x × A1

y as A1
x × A1

t so that s becomes the second projec-

tion p, and let us choose s̃ : P1
x × A1

t → A1
t as being the second projection. Since

j : A1
x × A1

t ↪→ P1
x × A1

t is affine, j†(M � Lχ), j+(M � Lχ), j†+(M � Lχ) are holo-

nomic DP1
x×A1t-modules, as is the kernel K of j†(M �Lχ)→ j†+(M �Lχ) and the

cokernel C of j†+(M � Lχ) → j+(M � Lχ), and we denote the middle extension

j†+(M � Lχ) by Mχ. If M is irreducible, Mχ is irreducible since M � Lχ is an

irreducible DA1x×A1t-module.

Proposition 1.1.10. We have MCχ(M) = s̃+Mχ.

Proof. Since Lχ belongs to P, we have s†(M�Lχ) = H0s†(M�Lχ) and s+(M�Lχ)

= H0s+(M � Lχ), so that

MCχ(M) = image
[
H0s†(M � Lχ)→ H0s+(M � Lχ)

]
= image

[
H0s̃+j†(M � Lχ)→ H0s̃+j+(M � Lχ)

]
.

On the other hand, since s̃ is the identity when restricted to {xr+1}×A1
t, both s̃+K

and s̃+C have cohomology in degree zero only. It follows that H0s̃+j†(M �Lχ)→
H0s̃+j†+(M �Lχ) is onto and H0s̃+j†+(M �Lχ)→ H0s̃+j+(M �Lχ) is injective,

which proves the equality MCχ(M) = H0s̃+Mχ. That Hks̃+Mχ = 0 for k 6= 0 is

proved similarly.

By Remark 1.1.1, MCχ(M) has only regular singularities if and only if M

does.

From now on, we will only consider holonomic D(A1)-modules with regular

singularities.

§1.2. Local data of a regular holonomic D(A1)-module

Let M be a regular holonomic C[t]〈∂t〉-module and let x = {x1, . . . , xr} ⊆ A1

denote the finite set of its singular points at finite distance. We will also consider

xr+1 =∞ as a singular point of M . Let xi be a singular point and let x be a local

coordinate at xi (e.g., x = t− xi if i = 1, . . . , r and x = 1/t if i = r + 1). We set

Mxi =

{
C{x} ⊗C[t] M if i = 1, . . . , r,

C({x})⊗C[t] M if i = r + 1.
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These are holonomic C{x}〈∂x〉-modules. Let h(M) = dimC(t) ⊗C[t] M denote

the generic rank of M and hxi(M) = dimC({x})⊗C[t] M denote the generic rank

of Mxi . We have hxi(M) = h(M) for each i = 1, . . . , r + 1.

On the other hand, a C({x})-vector space with a regular connection (R,∇) is

canonically equipped with a decreasing filtration V a (resp. V >a) indexed by a ∈ R,

where V a is the free C{x}-module on which the residue of∇ has eigenvalues α with

real part in [a, a+1) (resp. (a, a+1]). The α-eigenspace of the residue on V a/V a+1

is denoted by ψλ(R), with λ = exp(−2πiα), and the corresponding nilpotent part

of the residue is denoted by N. Giving (R,∇) is then equivalent to giving the finite

family of C-vector spaces ψλ(R) (λ in a finite subset of C∗), called the moderate

nearby cycle spaces, equipped with a nilpotent endomorphism N.

Therefore, Mxr+1 is completely determined by (ψxr+1,λ(M),N)λ∈C∗ . At finite

distance, (ψxi,λ(M),N)λ∈C∗ only determines C({x})⊗C{x}Mxi a priori. However,

if we assume that M is a minimal (or intermediate) extension at xi, that is,

has neither a submodule nor a quotient module supported at xi, then the family

(ψxi,λ(M),N)λ∈C∗ does determine Mxi . It is however useful to emphasize then the

C-vector space with nilpotent endomorphism of moderate vanishing cycles for the

eigenvalue one of monodromy,

(φxi,1(M),N) :=
(
image[N : ψxi,1(M)→ ψxi,1(M)], induced N

)
.

We then denote by can and var the natural morphisms

ψxi,1(M)
can−−→ φxi,1(M)

var−−→ ψxi,1(M).

It is sometimes useful to set φxi,λM = ψxi,λM if λ 6= 1 and also φxiM =⊕
λ∈C∗ φxi,λM . In order to ensure the minimality property, we will use the follow-

ing criterion:

Lemma 1.2.1. Assume that M is an irreducible (or semisimple) holonomic

C[t]〈∂t〉-module. Then M is a minimal extension at each of its singular points.

Assumption 1.2.2. (1) In what follows, we always assume that M is an irre-

ducible regular holonomic D(A1)-module, not isomorphic to (C[t],d) and not

supported on a point.

(2) We will sometimes assume that the monodromy of DRanM around xr+1 is

scalar and 6= Id, that is, of the form λo Id with λo 6= 1 (with the notation

below, this means that νxr+1,λ,`(M) = 0 unless λ = λo and ` = 0).

Local numerical data attached to a regular holonomic module. The

“monodromy filtration” attached to the nilpotent endomorphism N allows one



768 M. Dettweiler and C. Sabbah

to define, for each ` ∈ N, the space P`ψxi,λ(M) of primitive vectors, whose dimen-

sion is the number of Jordan blocks of size ` + 1 for N acting on ψxi,λ(M). We

define the nearby cycle local data (i = 1, . . . , r + 1, λ ∈ C∗) as

(1.2.3)



νxi,λ,`(M) = dim P`ψxi,λ(M) (` ≥ 0),

νxi,λ,prim(M) =
∑
`≥0

νxi,λ,`(M),

νxi,λ(M) = dimψxi,λ(M) =
∑
`≥0

(`+ 1)νxi,λ,`(M),

and we have

(1.2.4)

h(M) = hxi(M) =
∑
λ

νxi,λ(M) (generic rank of M , independent of i).

On the other hand, we define the vanishing cycle local data by setting

(1.2.5) µxi,λ,`(M) = νxi,λ,`(M),

except if i 6= r + 1 and λ = 1, in which case we consider the values for Im N and

we set

(1.2.6)



µxi,1,`(M) = νxi,1,`+1,

µxi,1,prim(M) =
∑
`≥0

µxi,1,`(M) = νxi,1,prim(M)− νxi,1,0,

µxi,1(M) =
∑
`≥0

(`+ 1)µxi,1,`(M)

=
∑
`≥0

` νxi,1,`(M) = νxi,1 − νxi,1,prim(M).

We then set

(1.2.7) µxi(M) =
∑
λ

µxi,λ(M).

Definition 1.2.8 (Local numerical data). Let M be an irreducible regular holo-

nomic D(A1)-module with singular points x1, . . . , xr, xr+1 =∞. The local numer-

ical data of M consist of

(1) the generic rank h(M),

(2) the nearby cycle local data νxr+1,λ,`(M) (λ ∈ C∗, ` ∈ N),

(3) the vanishing cycle local data µxi,λ,`(M) (i = 1, . . . , r, λ ∈ C∗, ` ∈ N).
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Remark 1.2.9. The formula for the missing νxi,1,`(M)’s, i = 1, . . . , r, is

νxi,1,`(M) =

{
µxi,1,`−1(M) if ` ≥ 1,

h(M)− µxi(M)− µxi,1,prim(M) if ` = 0.

§1.3. Behaviour of local data under various operations

Twist by a rank-one local system. Let us fix a singular point xi of M with

local coordinate x as above, and let us focus on local data at xi. For λi ∈ C∗r{1},
let Lxi,λi denote the C({x})-vector space C({x}) equipped with the connection

d+αi dx/x, where αi is chosen so that exp(−2πiαi) = λi. A standard computation

(see a more precise computation in (2.2.11)) shows that, for each λ ∈ C∗, we have

(ψλ(Mxi ⊗ Lxi,λi),N) ' (ψλ/λi(Mxi),N).

We thus get

νλ,`((Mxi ⊗ Lxi,λi)min) = νλ,`(Mxi ⊗ Lxi,λi) = νλ/λi,`(Mxi).

The formulas (1.2.6) also allow one to compute the missing local data µ• of the

minimal extension at xi of Mxi ⊗ Lxi,λi from νxi,1/λi,`(Mxi):

µ1,`((Mxi ⊗ Lxi,λi)min) = ν1/λi,`+1(Mxi).

As a conclusion:

(1.3.1) h((Mxi ⊗ Lxi,λi)min) = h(Mxi),

(1.3.2) νλ,`(Mxr+1 ⊗ Lxr+1,λr+1) = νλ/λr+1,`(Mxr+1),

(1.3.3) µλ,`((Mxi ⊗ Lxi,λi)min) (i = 1, . . . , r)

=


µλ/λi,`(Mxi) if λ 6= 1, λi,

µ1/λi,`+1(Mxi) if λ = 1,

µ1,`−1(Mxi) if λ = λi and ` ≥ 1,

h(Mxi)− µ(Mxi)− µ1,prim(Mxi) if λ = λi and ` = 0.

A straightforward computation then gives (i = 1, . . . , r)

(1.3.4) µ((Mxi ⊗ Lxi,λi)min) = h(Mxi)− µ1/λi,prim(Mxi).

Behaviour of the local numerical data by MCχ

Proposition 1.3.5. If M satisfies 1.2.2(1) and χ 6= 1, we have

µxi,λ,`(MCχ(M)) = µxi,λ/χ,`(M) ∀ i = 1, . . . , r, ∀λ ∈ C∗, ∀ ` ≥ 0,
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νxr+1,λ,`(MCχ(M)) =


νxr+1,λχ,`(M) if λ 6= 1, χ−1,

νxr+1,χ,`+1(M) if λ = 1,

νxr+1,1,`−1(M) if λ = χ−1, ` ≥ 1,

dimH1(P1,DRM) if λ = χ−1, ` = 0,

h(MCχ(M)) = h(M) + dimH1(P1,DRM) + νxr+1,1,prim(M)− νxr+1,χ,prim(M).

Proof. It is similar to that of [12, Chap. 6]. Working with the Fourier transform
FM of M , which has a regular singularity at the origin, an irregular one at infinity

and no other singularity, leads one to extend a little the meaning of the invariants

ν, µ in order to keep the relations (1.3.1), (1.3.2) and (1.3.3). Their behaviour

under Fourier transform is governed by the stationary phase formula.

One could also derive the formulas for µ, ν from the Thom–Sebastiani formulas

proved in [19]. We will be more explicit in the Hodge case (Theorem 3.1.2).

The computation of h(MCχ(M)) relies on Lemma 1.3.6 below.

Lemma 1.3.6. Under Assumption 1.2.2(1), we have (setting y1 = 0)

νy1,1,0(FM) = dimH1(P1,DRM).

Proof. Let M̃ denote the localization of M at xr+1 =∞, so that Hk(P1,DR M̃) =

Hk(DRM). We have an exact sequence 0 → M → M̃ → N → 0, where N is

supported at∞. Note that Hk(DRM) is the cohomology of the complex M
∂t−→M ,

which we can write FM
τ−→ FM . Standard results on the V -filtration of holonomic

modules show that this complex is quasi-isomorphic to φy1,1(FM)
var−−→ ψy1,1(FM).

Since FM is irreducible, it is a minimal extension at y1 (cf. Lemma 1.2.1), and

therefore its var is injective and its can is onto. As a consequence, Hk(DRM) = 0

for k 6= 1 and dimH1(DRM) = dim Coker var = dim Coker N = νy1,1,prim(FM).

The exact sequence

0→ φxr+1,1(M)→ φxr+1,1(M̃) ' ψxr+1,1(M̃)→ φxr+1,1(N)→ 0

shows that dimφxr+1,1(N) = νxr+1,1,prim(M̃) = νxr+1,1,prim(M). Since N is sup-

ported at xr+1, we obtain Hk(P1,DRN) = 0 for k 6= 1 and dimH1(P1,DRN) =

νxr+1,1,prim(M). Moreover, H2(P1,DRM) ' H0(P1,DRDM) = 0 since M

(hence DM) satisfies 1.2.2(1). The exact sequence

0→ H1(P1,DRM)→ H1(P1,DR M̃)→ H1(P1,DRN)→ 0,

together with the previous considerations, gives

dimH1(P1,DRM) = dimH1(DRM)− νxr+1,1,prim(M)

= νy1,1,prim(FM)− µy1,1,prim(FM) = νy1,1,0(FM).
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§1.4. The case of scalar monodromy at infinity

Together with Assumption 1.2.2(1), we moreover assume 1.2.2(2) and we choose

χ = λo.

Corollary 1.4.1. Under these assumptions, MCχ(M) also fulfills Assumptions

1.2.2(1) and (2), with scalar monodromy at infinity equal to λ−1
o Id. Moreover,

(1.4.1∗) h(MCχ(M)) = dimH1(P1,DRM) = dimH1(DRM).

Proof. The first statement directly follows from the formulas in Proposition 1.3.5.

Since νxr+1,1(M) = 0 and νxr+1,χ,prim(M) = νxr+1,χ(M) = νxr+1(M) = h(M), we

also get from that proposition

h(MCχ(M)) = dimH1(P1,DRM) = dimH1(DRM),

where the last equality follows from the equality M = M̃, by our supplementary

assumption and the choice of χ.

We get a topological expression of h(MCχ(M)) in terms of the perverse sheaf

DRanM :

(1.4.2) h(MCχ(M)) =

r∑
i=1

µxi DRanM − h(M),

where µxi DRanM is the dimension of the vanishing cycle space of DRanM at xi,

which is equal to µxiM since M has a regular singularity at xi.

Remark 1.4.3 (Degree of V 0). We keep the same setting as above. Then the

locally defined C{x}-modules V a at each singularity (cf. §1.2) are the formalization

of some OP1-modules that we simply denote by V a(M) and V a(MCχ(M)), which

are locally free if a > −1. We will be mostly interested in V 0 and its degree,

which is non-positive, according to the definition of V 0 and the residue formula.

The residue formula, together with Proposition 1.3.5 (in the regular case), and

with Assumptions 1.2.2(1), (2), gives, for χ = λo 6= 1 and αo ∈ (0, 1) such that

exp(−2πiαo) = λo,

deg V 0(MCχ(M)) = deg V 0(M) + h(M)−
r∑
i=1

∑
α∈[0,1−αo)

µxi,exp(−2πiα)(M).

§1.5. A quick review of Katz’ existence algorithm

for rigid local systems

Let V be an irreducible local system on A1 r x, and let (V,∇) be the associated

holomorphic bundle with connection. Its Deligne meromorphic extension on P1



772 M. Dettweiler and C. Sabbah

is a regular holonomic DP1 -module. Let M̃ denote its minimal extension at each

singularity at finite distance, and set M = Γ(P1, M̃). This is an irreducible regular

holonomic D(A1)-module, and any such module is obtained in this way.2

Let j : A1 r x ↪→ P1 denote the open inclusion. We say (cf. [12]) that V is

cohomologically rigid if its index of rigidity χ(P1, j∗ End(V )) is equal to 2. Recall

(cf. [12, §1.1]) that this index is computed as

χ(P1, j∗ End(V )) = (1− r)(rk V )2 +

r+1∑
i=1

dimC(Ai),

where C(Ai) is the centralizer of the local monodromy Ai at xi. With the notation

(1.2.3), we have

dimC(Ai) =
∑
λ∈C∗

∑
k,`≥0

νxi,λ,`νxi,λ,k min{k + 1, `+ 1}

≤
∑
λ∈C∗

∑
k,`≥0

νxi,λ,kνxi,λ,`(`+ 1) =
∑
λ

νxi,λ,prim · νxi,λ.

It follows from [12, Th. 3.3.3] (in the `-adic setting) and from [3, Th. 4.3]

(in the present complex setting) that if M (that is, V ) is rigid, then MCχ(M) is

rigid for any non-trivial χ. Moreover, as obviously follows from the formula above,

if Lλ1,...,λr denotes the rank-one local system on A1 r x having monodromy λi
around xi (and hence λr+1 = (λ1 · · ·λr)−1 around xr+1), then V is rigid if and

only if V ⊗L is.

A celebrated theorem of Katz asserts that V is rigid if and only if it can be

brought, after an initial homography, by successive tensor products with suitable

rank-one local systems and middle convolutions with suitable Kummer sheaves, to

a rank-one local system. We will quickly review this algorithm.

We consider the category consisting of local systems on A1 rx satisfying As-

sumption 1.2.2(2) (i.e., the associated regular holonomic D(A1)-module M satisfies

this assumption). Given such a local system V , we will only consider tensor prod-

ucts with rank-one local systems and middle convolutions with Kummer sheaves

which preserve the property of being in this category. We will call these operations

(or rank-one local systems) “allowed”. Proposition 1.3.5 shows that, if V satisfies

Assumption 1.2.2(2), the only allowed MCχ is for χ = λo (where λo Id is the local

monodromy of V at xr+1).

2We use the Zariski topology when working with D-modules, while we use the analytic
topology when working with holomorphic bundles, local systems or perverse sheaves. For vector
bundles on P1 or holonomic DP1 -modules, we implicitly use a GAGA argument to compare both
kinds of objects. Although we should distinguish them by a superscript “alg” or “an”, we will
leave this to the reader.
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Given any local system V on P1 rD for some finite set D, then up to adding

a fake singular point, tensoring with a rank-one local system and pulling back by

a homography, we can assume that V belongs to the category above. For the Katz

algorithm, we can therefore start from a rigid irreducible local system V whose

monodromy at xr+1 is λo Id with λo 6= 1. In such a case, we have

2 = χ(P1, j∗ End(V )) = (2− r)(rk V )2 +

r∑
i=1

dimC(Ai).

The main step of the algorithm consists therefore in the following lemma.

Lemma 1.5.1. Let V be such a local system of rank ≥ 2. For each i = 1, . . . , r,

let λi ∈ C∗ be such that νxi,λi,prim = maxλ∈C∗ νxi,λ,prim and let L be the rank-one

local system with monodromy 1/λi at xi. Then L is allowed for V and the rank

of the unique allowed MCχ(L ⊗ V ) is < rk V .

Proof. We have µxi(L⊗V ) = (rk V −νxi,λi,prim) and dimC(Ai) ≤ νxi,λi,prim rk V ,

hence

(r − 2)(rk V )2 + 2 ≤
r∑
i=1

νxi,λi,prim rk V = r(rk V )2 − rk V
r∑
i=1

µxi(L ⊗ V ),

by the rigidity assumption, and therefore
∑r
i=1 µxi(L ⊗ V ) < 2 rk V . Once we

know that L is allowed, (1.4.2) gives

rk MCχ(L ⊗ V ) =

r∑
i=1

µxi(L ⊗ V )− rk V < rk V .

If L were not allowed, then the monodromy of L ⊗ V at xr+1 would be the

identity since that of V is already scalar, and a formula similar to (1.4.2) would give

dimH1(P1, j∗(L ⊗ V )) =
∑r
i=1 µxi(L ⊗ V )− 2 rk V , hence

∑r
i=1 µxi(L ⊗ V ) ≥

2 rk V , in contradiction with the inequality given by rigidity.

§2. Basics on Hodge theory

§2.1. Variations of complex Hodge structure

Let X a complex manifold. A variation of polarized complex Hodge structure of

weight w ∈ Z on X is a C∞ vector bundle H on X equipped with

• a grading H =
⊕

p∈ZH
p,

• a flat connection D, and

• a D-flat sesquilinear pairing k,
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such that the decomposition is k-orthogonal, the pairing k is (−1)w-Hermitian,

the connection satisfies

D′Hp ⊂ (Hp ⊕Hp−1)⊗A 1,0
X , D′′Hp ⊂ (Hp ⊕Hp+1)⊗A 0,1

X ,

and the Hermitian pairing h defined by the properties that the decomposition is

h-orthogonal and h|Hp = i−w(−1)pk|Hp , is positive definite.

As a consequence, the filtration F pH :=
⊕

q≥pH
q satisfies D′′F pH ⊂

F pH⊗A 0,1
X and D′F pH ⊂ F p−1H⊗A 1,0

X . The holomorphic bundle V := KerD′′

is equipped with a flat holomorphic connection ∇ := D′KerD′′ and a filtration

F pV = V ∩ F pH by holomorphic subbundles (i.e., such that each grpF V is a

holomorphic bundle) which satisfies ∇F pV ⊂ F p−1V ⊗ Ω1
X for all p. We will

also denote by (V, F •V,∇, k) such a variation, since these data together with the

corresponding conditions allow one to recover the data (H,
⊕
H•, D, k).

If (H,
⊕
H•, D, k) is a variation of polarized complex Hodge structure of

weight w, then (H,
⊕
H•, D, i−wk) has weight 0. In this way, one can reduce to

weight 0. If we do not care much about the precise polarization, which will be the

case below, we can assume that the weight is zero. We will therefore not mention

the weight by considering variations of polarizable complex Hodge structure.

More generally, given a polarizable complex Hodge structure (Ho,
⊕
H•o , ko),

the tensor product H ⊗Ho is naturally equipped with the structure of a variation

of polarizable complex Hodge structure.

Definition 2.1.1 (The local invariant hp). Given a filtered holomorphic bundle

(V, F •V ) on a connected complex manifold X, we will set hp(V ) = hp(V, F •V ) =

rk grpF V .

For a variation of (polarizable) complex Hodge structure, we thus have

hp(V ) = rkHp.

§2.2. Local Hodge theory at a singular point and local invariants

Let ∆ be a disc with coordinate t and let (V, F •V,∇, k) be a variation of polarizable

complex Hodge structure on the punctured disc ∆∗. Let j : ∆∗ ↪→ ∆ be the open

inclusion.

Extension across the origin. We have the various extensions V a ⊂ V −∞ ⊂
j∗V , where V −∞ is Deligne’s meromorphic extension and V a (resp. V >a) (a ∈ R)

is the free O∆-module on which the residue of ∇ has eigenvalues in [a, a + 1)

(resp. (a, a + 1]). Here, the property that the eigenvalues λ = exp(−2πia) of the

monodromy have absolute value one follows from the similar property for variations
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of real Hodge structure (cf. [23, §11]) and the standard trick of making a real

variation from a complex variation by adding its complex conjugate (cf. §3.2).

For each a ∈ R, the Hodge bundle F pV a is defined as j∗F
pV ∩ V a. We have

tmV a = V a+m in V −∞ for each m ∈ Z. Since clearly tmj∗F
pV = j∗F

pV for each

m ∈ Z, we conclude that for each a ∈ R and m ∈ Z, tmF pV a = F pV a+m.

We now denote by M = V −∞min ⊂ V −∞ the D∆-submodule generated by

V >−1: M = V >−1 +∇∂tV >−1 + · · · ⊂ V −∞. Recall that, if j : ∆∗ ↪→ ∆ denotes

the inclusion and V = V ∇ is the locally constant sheaf of horizontal sections, we

have DRV −∞ = Rj∗V while DRM = j∗V. We have a V -filtration of M :

V aM = V a for a > −1, V −1M = ∇∂tV 0 + V >−1, etc.

The D∆-module M is equipped with a filtration:

(2.2.1) F pM = F pV >−1+∇∂tF p+1V >−1+· · ·+∇k∂tF
p+kV >−1+· · · ⊂ F pV −∞.

That F pV a is a vector bundle follows from the nilpotent orbit theorem

[20, (4.9)], and one deduces that F •M is a good filtration of M (cf. also [16,

Prop. 3.10]). Moreover, it follows from Theorem 2.2.2 below (by computing the

dimension of the fibre at the origin) that each grpF V
a is a vector bundle.

Nearby cycles. The nearby cycles at the origin are defined as follows: for a ∈
(−1, 0] and λ = exp(−2πia),

ψλ(M) = ψλ(V −∞) = graV = V a/V >a.

This set is equipped with the nilpotent endomorphism N = −(t∂t−a). The Hodge

filtration

F pψλ(M) := F pV a/F pV >a = F pψλ(V −∞)

satisfies NF pψλ(M) ⊂ F p−1ψλ(M).

Theorem 2.2.2 (Schmid [20]). If (V, F pV,∇) is part of a variation of polarizable

complex Hodge structure, then (ψλ(M), F •ψλ(M),N) is part of a nilpotent orbit.

Moreover,

(2.2.2∗) rkF pV =
∑
λ∈S1

dimF pψλ(M),

hence

(2.2.2∗∗) hp(V ) =
∑
λ∈S1

hpψλ(M).
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In the following, we will set νpλ(V ) = hpψλ(M) = hpψλ(V −∞) for λ ∈ C∗

(in fact λ ∈ S1). Note that the associated graded nilpotent orbit (graded with re-

spect to the monodromy filtration W of N) has the same numbers hp(grW ψλ(M))

= hp(ψλ(M)). The Hodge filtration on grW ψλ(M) = grW ψλ(V −∞) splits with

respect to the Lefschetz decomposition associated with N. The primitive part

P`ψλ(M), equipped with the filtration induced by that on grW` ψλ(M) and a suit-

able polarization, is a polarizable complex Hodge structure ([20]). We can thus

define the numbers

νpλ,`(M) = νpλ,`(V
−∞) := hp(P`ψλ(M)) = dim grpF P`ψλ(M),

which are a refinement of the numbers νλ,`(M) considered in §1.2. According to

the F -strictness of N and the Lefschetz decomposition of grW ψλ(M), we have

(2.2.3) νpλ(M) =
∑
`≥0

∑̀
k=0

νp+kλ,` (M),

and we set

(2.2.4) νpλ,prim(M) =
∑
`≥0

νpλ,`(M), νpλ,coprim(M) =
∑
`≥0

νp+`λ,` (M).

We have

νpλ(M)− νp−1
λ (M) = νpλ,coprim(M)− νp−1

λ,prim(M).

Vanishing cycles. For λ 6= 1, we consider φλ(M) = ψλ(M), together with the

monodromy, N and the filtration F p. If we set µpλ,`(M) = dim grpF P`φλ(M), we

thus have by definition, for λ 6= 1,

µpλ,`(M) = νpλ,`(M) ∀ p.

Let us now focus on λ = 1. We have by definition

φ1(M) = gr−1
V (M).

On the other hand, the filtration F •φ1(M) is defined so that we have natural

morphisms

(ψ1(M),N, F
•
)

can−→→ (φ1(M),N, F
•
) ↪

var−−→ (ψ1(M),N, F
•
)(−1),

where the Tate twist by −1 means the shift of the Hodge filtration by −1, so

that the object (ψ1(M),N, F •)(−1) is also a mixed Hodge structure. Since can is

strictly onto and var is injective, (φ1(M),N, F •) is identified with Im N together
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with the filtration F p Im N = N(F p). We also have, by definition of the Hodge

filtration on M ,

F pφ1(M) =
F p−1M ∩ V −1M

F p−1M ∩ V >−1M
.

For ` ≥ 0, we thus have

F pP`φ1(M) = N(F pP`+1ψ1(M)),

and therefore

µp1,`(M) = νp1,`+1(M).

Proposition 2.2.5 (cf. [11, Prop. 2.1.3]). (φ1(M),N, F •) is part of a nilpotent

orbit. Moreover,

(2.2.5∗) µp1(M) = νp1 (M)− νp1,coprim(M) = νp−1
1 (M)− νp−1

1,prim(M).

Note that, using the Lefschetz decomposition for the graded pieces of the

monodromy filtration of (φ1(M),N), we also have

(2.2.6) µpλ(M) =
∑
`≥0

∑̀
k=0

µp+kλ,` .

We will set, similarly to (2.2.4),

(2.2.7) µpλ,prim(M) =
∑
`≥0

µpλ,`(M), µpλ,coprim(M) =
∑
`≥0

µp+`λ,` (M).

Comparison between M and V −∞. Let us denote by N the cokernel of M ↪→
V −∞ equipped with the filtration induced by that of V −∞. It is supported at the

origin.

Lemma 2.2.8. The sequence

0→ (M,F
•
M)→ (V −∞, F

•
V −∞)→ (N,F

•
N)→ 0

is exact and strict. Moreover, (N,F •N) is identified with the cokernel of the mor-

phism var : φ1(M)→ ψ1(M)(−1) of mixed Hodge structures. In particular,

hp(N) = 0, µp1(N) = dim grpF (N) = νp−1
1,prim(M).

Local Hodge numerical data. The various numerical data that we already

introduced can be recovered from the following Hodge numerical data. We use the

notation (V −∞, F •V −∞) and (M,F •M) as above.
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Definition 2.2.9 (Local Hodge data). For λ∈S1, p∈Z and `∈N, we set:

(Local Hodge data for V −∞)

• νpλ,`(V
−∞) = dim grpF P`ψλ(V −∞), where P`ψλ(V −∞) denotes the primitive

part of grW` ψλ(V −∞) (a polarizable Hodge structure of weight w + `),

• νpλ(V −∞) given by (2.2.3),

• νp(V −∞) =
∑
λ ν

p
λ(V −∞), so that νp(V −∞) = hp(V ) by (2.2.2∗∗),

(Local Hodge data for M)

• hp(V ),

• µp1,`(M) = dim grpF P`φ1(M), where P`φ1(M) denotes the primitive part of

grW` φ1(M), and µpλ,`(M) = νpλ,`(M) if λ 6= 1,

• µpλ(M) given by (2.2.6) and µp(M) =
∑
λ µ

p
λ(M).

Remark 2.2.10. When considering a minimal extension M , we only deal with

the data µp• . Then the data νp1 are recovered from the data µp• together with hp(V ):

νp1,`(M) =

{
µp1,`−1(M) if ` ≥ 1,

hp(V )− µp(M)− µp+1
1,coprim(M) if ` = 0.

Twist with a unitary rank-one local system. Let L be a non-trivial unitary

rank-one local system on ∆∗, determined by its monodromy λo ∈ S1 r {1}, and

let (L,∇) be the associated bundle with connection. We simply denote by L• the

various Deligne extensions of (L,∇). It will be easier to work with L0. We set

λo = exp(−2πiαo) with αo ∈ (0, 1). Then L0 = Lαo and, for each a ∈ R,

V a ⊗ L0 = (V −∞ ⊗ L−∞)a+αo ⊂ (V −∞ ⊗ L−∞)a.

On the other hand, the Hodge bundles on V ⊗L are F pV ⊗L so that, by Schmid’s

procedure, for each a,

F p(V −∞ ⊗ L−∞)a := j∗(F
pV ⊗ L) ∩ (V −∞ ⊗ L−∞)a

(intersection taken in V −∞ ⊗ L−∞) is a bundle, and we have a mixed Hodge

structure by inducing F p(V −∞ ⊗ L−∞)a on graV (V −∞ ⊗ L−∞). We claim that

(2.2.11) F pV a ⊗ L0 = F p(V −∞ ⊗ L−∞)a+αo .

This amounts to showing

(j∗F
p ∩ V a)⊗ L0 = j∗(F

pV ⊗ L) ∩ (V −∞ ⊗ L−∞)a+αo ,

intersection taken in V −∞ ⊗ L−∞. The inclusion ⊂ is clear, and the equality is

shown by working with a local basis of L0, which can also serve as a basis for L

and L−∞.
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We deduce that, in a way analogous to (1.3.1)–(1.3.3),

(2.2.12) hp(V ⊗ L) = hp(V ),

(2.2.13) νpλ,`(V
−∞ ⊗ L−∞) = νpλ/λo,`(V

−∞),

(2.2.14) µpλ,`((V
−∞ ⊗ L−∞)min) =



µpλ/λo,`(M) if λ 6= 1, λo,

µp1/λo,`+1(M) if λ = 1,

µp1,`−1(M) if λ = λo and ` ≥ 1,

hp(V )− µp(M)− µp+1
1,coprim(M)

if λ = λo and ` = 0.

§2.3. Hodge numerical data for a variation on A1 r x

Let x = {x1, . . . , xr} (r ≥ 1) be a finite set of points in A1 and set xr+1 =∞ ∈ P1.

Let (V, F •V,∇, k) be a variation of polarizable complex Hodge structure on U =

A1 rx. Together with the local Hodge numerical data at each xi (i = 1, . . . , r+ 1)

we consider the following global numerical data. We consider the Hodge bundles

grpF V
0, whose ranks are the hp(V ).

Definition 2.3.1 (Global Hodge numerical data). For each p, we set

δp(V ) = deg grpF V
0.

Global Hodge numerical data of a tensor product. Let (L,∇) be the holo-

morphic bundle with connection associated to a unitary rank-one local system on

U = A1 r x. We denote by αi ∈ [0, 1) the residue of the connection (L0,∇) at xi
(i = 1, . . . , r+1), so that degL0 = −

∑r+1
i=1 αi. We now denote by νpxi,λ(V ) etc. the

local Hodge numerical data of V at xi whenever λ 6= 1, and for a = (a1, . . . , ar+1)

we denote by V a the extension of V equal to V ai near xi.

Proposition 2.3.2. With the notation above, we have

δp(V ⊗ L) = δp(V ) + hp(V ) degL0 +

r+1∑
i=1

∑
α∈[1−αi,1)

λ=exp(−2πiα)

νpxi,λ(V ).

Proof. We deduce from (2.2.11) (at each xi) that

δp(V ⊗ L) = deg grpF (V ⊗ L)0 = deg
[
(grpF V

−α)⊗ L0
]

by (2.2.11)

= deg grpF V
−α + hp(V ) degL0

= δp(V ) + hp(V ) degL0 +

r+1∑
i=1

∑
β∈[−αi,0)

λ=exp(−2πiβ)

νpxi,λ(V ).
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Hodge data on de Rham cohomology. Let M denote the minimal extension

of V −∞ at each of the singular points xi (i = 1, . . . , r + 1) and let F •M be the

extended Hodge filtration as in §2.2. The de Rham complex DRM = {0 → M →
Ω1

P1 ⊗M→ 0} is filtered by

F p DRM = {0→ F pM→ Ω1
P1 ⊗ F p−1M→ 0},

and this induces a filtration on the hypercohomology H
•
(P1,DRM)=H•(P1, j∗V),

where j : A1 r x ↪→ P1 denotes the open inclusion. It is known (by applying

the results of [23] to the variation of polarized real Hodge structure obtained by

taking the direct sum of the original complex variation with its complex conjugate,

cf. §3.2) that F •Hm(P1, j∗V) underlies a polarizable complex Hodge structure.

Note that, if V is irreducible and non-constant (as in Assumption 1.2.2(1), in the

present case with regular singularities), then Hm(P1, j∗V) = 0 for m 6= 1.

Proposition 2.3.3. Assume that (V, F •V,∇, k) has an underlying irreducible and

non-constant local system V. Then

(2.3.3∗) hp(H1(P1, j∗V))

= δp−1(V )− δp(V )− hp(V )− νp−1
xr+1,1,prim(V ) +

r∑
i=1

(
νp−1
xi,6=1(V ) + µpxi,1(M)

)
.

Remark 2.3.4. In the case of a unitary rank-one local system, this result was

already obtained in [5, (2.20.1-2)].

Proof. It follows from [16, Prop. 3.10(iib)] that the inclusion of the filtered sub-

complex

F
•
V 0 DRM := {0→ F

•
V 0M→ Ω1

P1 ⊗ F •−1V −1M→ 0}

into the filtered de Rham complex is a filtered quasi-isomorphism. By the degen-

eration at E1 of the Hodge de Rham spectral sequence, we conclude that

−hp(H1(P1, j∗V)) = χ
(
grpF H

•
(P1,DRM)

)
(irreducibility and non-triviality of V)

= χ
(
H
•
(P1, grpF DRM)

)
(degeneration at E1)

= χ
(
H
•
(P1, grpF V

0 DRM)
)

(as indicated above)

= χ
(
H
•
(P1, grpF V

0M)
)
− χ

(
H
•
(P1,Ω1

P1 ⊗ grp−1
F V −1M)

)
(O-linearity of the differential)

= δp(V ) + hp(V )− deg(Ω1
P1 ⊗ grp−1

F V −1M)− hp−1(V )

(Riemann–Roch)

= δp(V ) + hp(V )− deg(grp−1
F V −1M) + hp−1(V ).
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We now have

deg(grp−1
F V −1M) = δp−1(V ) + dim grp−1

F (V −1M/V 0M)

= δp−1(V ) +
∑

a∈[−1,0)

dim grp−1
F (graV M)

= δp−1(V ) +

r+1∑
i=1

(
νp−1
xi,6=1(V ) + µpxi,1(M)

)
,

from which one deduces the formula in the proposition, according to (2.2.2∗∗) and

(2.2.5∗).

Remark 2.3.5. Let us keep the assumptions of Proposition 2.3.3. We also clearly

have H0(P1, j∗V) = 0, and also H2(P1, j∗V) = H0(P1, j∗V
∨) = 0 since the dual

local system V∨ satisfies the same assumptions.

Let M̃ denote the DP1-module which is the minimal extension of (V,∇) at

all xi (i = 1, . . . , r) and the meromorphic extension V −∞ at xr+1 =∞. The exact

sequence of Lemma 2.2.8 at xr+1 induces an exact sequence of de Rham complexes

0→ (DRM,F
•

DRM)→ (DRV −∞, F
•

DRV −∞)→ (DRN,F
•

DRN)→ 0

where F p DRM = {0 → F pM
∇−→ F p−1M ⊗ Ω1

∆ → 0} etc. and N = Nxr+1
is

defined as in Lemma 2.2.8. Applying the previous results, one can show that the

spectral sequence of hypercohomology of the filtered complex F •DR M̃ degener-

ates at E1, and that we have an exact sequence of complex mixed Hodge structures

0→ F
•
H1(P1, j∗V)→ F

•
H1(A1, j∗V)→ F

•
H1(DRN)→ 0.

It follows that

(2.3.5∗) hp(H1(A1, j∗V))=δp−1(V )−δp(V )−hp(V )+

r∑
i=1

(
νp−1
xi,6=1(V )+µpxi,1(M)

)
.

Remark 2.3.6. Let us keep the assumptions of Proposition 2.3.3 and let us more-

over assume that the monodromy of V around xr+1 = ∞ does not admit 1 as an

eigenvalue (e.g. it takes the form λo Id for some λo ∈ C∗ r {1}, cf. §1.4). Then

Nxr+1 = 0 and F •H1(A1, j∗V) = F •H1(P1, j∗V) is also a pure complex Hodge

structure.

§2.4. Existence of a variation of polarized complex Hodge structure

on a local system

We keep the notation as in §2.3. Given a local system V on U = A1 rx, necessary

conditions on this local system to underlie a variation of polarizable complex Hodge

structure are:
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(1) the local system is semisimple, i.e., direct sum of irreducible local systems,

(2) for each i = 1, . . . , r + 1, the eigenvalues of the local monodromy at xi have

absolute value one.

We now consider the question of whether these conditions are sufficient.

Theorem 2.4.1 ([21, Cor. 8.1]). Assume that the local system V on U is physi-

cally rigid (cf. [12, (1.0.3)]) and semisimple. Then V underlies a variation of po-

larizable complex Hodge structure if and only if condition (2) above is fulfilled.

Since physical rigidity is best understood when V is irreducible (cf. [12,

Th. 1.1.2]), it is simpler to work with irreducible local systems. Reducing to irre-

ducible local systems does not cause trouble when considering variations of Hodge

structure, according to the following result.

Let (V, F •V,∇, k) be a variation of polarized complex Hodge structure of

weight 0 (say) on U . The associated local system V, being semisimple, decom-

poses as V =
⊕

α∈A Vnαα , where Vα are irreducible and pairwise non-isomorphic.

Similarly, (V,∇) =
⊕

α∈A(Vα,∇)nα , and the polarization k, being ∇-horizontal,

decomposes with respect to α ∈ A.

Proposition 2.4.2 ([4, Prop. 1.13]). For each α ∈ A, there exists a unique

(up to a shift of the filtration) variation of polarized complex Hodge struc-

ture (Vα, F
•Vα,∇, kα) of weight 0 and a polarized complex Hodge structure

(Hα,
⊕
H•α, k

o
α) of weight 0 with dimHα = nα such that

(V, F
•
V,∇, k) =

⊕
α∈A

(
(Hα,

⊕
H
•
α, k

o
α)⊗ (Vα, F

•
Vα,∇, kα)

)
.

§3. Hodge properties of the middle convolution

§3.1. Behaviour of Hodge numerical data under middle convolution

Let V be a non-zero irreducible non-constant local system on A1rx which underlies

a variation of polarizable complex Hodge structure (V, F •V,∇), and let (M,F •M)

be the associated complex Hodge module (a notion explained in §3.2 below).

Proposition 3.1.1. With these assumptions, MCχ(M) underlies a natural polar-

izable complex Hodge module and if χ, χ′ 6= 1 and χ = exp(−2πiαo) with α ∈ (0, 1)

(and similarly for χ′),

MCχ′ MCχ(M,F
•
M) '

{
MCχ′χ(M,F •M)(−1) if αo + α′o ∈ (0, 1],

MCχ′χ(M,F •M) if αo + α′o ∈ (1, 2).

Our objective is to prove the following.
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Theorem 3.1.2. Under Assumptions 1.2.2(1), (2) on M , and for χ = λo,

(1) hp(MCχ(M)) = hpH1(DRM) (given by (2.3.5∗)),
(2) Set λo = exp(−2πiαo) with αo ∈ (0, 1). For i= 1, . . . , r, λ= exp(−2πiα) ∈ S1

and ` ∈ N, we have (together with a similar formula without `):

µpxi,λ,`(MCχ(M)) =

{
µp−1
xi,λ/λo,`

(M) if α ∈ (αo, 1) ∪ {0},
µpxi,λ/λo,`(M) if α ∈ (0, αo].

(3) With the same assumptions, we have

δp(MCχ(M)) = δp(M) + hp(M)−
r∑
i=1

(
µpxi,1(M) +

∑
α∈(0,1−αo)

µp−1
xi,λ

(M)
)
.

Remark 3.1.3 (On duality). Given a variation of polarized complex Hodge

structure (V, F •V,∇, k), its dual is of the same kind. If (M,F •M) is the com-

plex Hodge module (in the sense of §3.2 below) corresponding to (V, F •V,∇, k),

we denote by D(M,F •) the complex Hodge module corresponding to the dual

variation. The behaviour of duality under tensor product is clear. Noting that, as

a unitary variation of Hodge structure, the dual of Lχ is Lχ−1 , we conclude, by us-

ing the standard results on the behaviour of duality with respect to push-forward

[17], that the dual of MCχ(M,F •) (as defined by Proposition 3.1.1) is isomorphic

to MCχ−1(D(M,F •M)).

Assume that we are given an isomorphism ω : (V, F •V,∇, k)
∼−→(V, F •V,∇, k)∨,

hence ω : (M,F •M)
∼−→D(M,F •M). Then, setting χ = −1, we obtain an isomor-

phism MC−1(ω) : MC−1(M,F •M)
∼−→D MC−1(M,F •M).

If ω is ±-symmetric, then MC−1(ω) is ∓-symmetric, due to the skew-sym-

metry of the Poincaré duality on H1.

§3.2. Polarizable complex Hodge modules

The theory of pure (or mixed) Hodge modules of M. Saito [17, 18], originally given

for objects with a Q-structure, extends naturally to the case of a R-structure.

Definition 3.2.1. A filtered DX -module (M, F •M) is a polarizable complex Hodge

module on a complex manifold X if it is a direct summand of a filtered DX -module

that underlies a polarizable real Hodge module which is pure of some weight.

We can therefore apply various results of the theory of polarizable real Hodge

modules to the complex case, almost by definition, since most operations (nearby

cycles, vanishing cycles, grading by the weight filtration of the monodromy, push-

forward by a projective morphism) are compatible with taking a direct summand.

Given a variation of polarized complex Hodge structure of weight w as defined

in §2.1, for which we now denote the grading by
⊕

pH
p,w−p, the C∞ complex con-
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jugate bundle H is endowed with the grading
⊕

qH
q,w−q

:=
⊕

qH
w−q,q and with

the flat connection D and adjoint pairing k∗, making it a variation of polarized

complex Hodge structure of weight w. The direct sum H⊕H underlies then a vari-

ation of polarized real Hodge structure of weight w. Therefore, a variation of po-

larizable complex Hodge structure is a smooth polarizable complex Hodge module.

The converse is also true if X is quasi-projective, according to [4, Prop. 1.13]

(cf. Proposition 2.4.2). We will mainly use the case where X = A1 r x.

The theorem of Schmid (Th. 2.2.2), when applied to a real variation, produces

a polarizable real Hodge module on ∆.

Corollary 3.2.2. The filtered D∆-module (2.2.1) is a polarizable complex Hodge

module.

Thom–Sebastiani. We review here the main result of [19] in our particular situa-

tion. We consider the local setup of §2.2. Let (M1, F
•M1), (M2, F

•M2) be complex

Hodge modules on the disc ∆, where the filtrations are defined by (2.2.1), having a

singularity at the origin of the disc at most. We consider the product space ∆×∆

with coordinates (t1, t2) and the sum map s : ∆×∆ → ∆, (t1, t2) 7→ t = t1 + t2.

The moderate vanishing cycle functor φs along the fibre s = 0 is defined by using

the V -filtration of Kashiwara–Malgrange (in dimension two). Since the singular

locus of the external product M1 �M2 is contained in {t1t2 = 0}, the support of

φs(M1 �M2) is reduced to (0, 0).

Note that our definition of the filtration on the nearby/vanishing cycles cor-

responds to that of [17, (0.3), (0.4)].

Given λ ∈ S1, we set λ = exp(−2πiα) with α ∈ [0, 1), according to our

previous convention. With this in mind, we have:

Theorem 3.2.3 ([19, Th. 5.4]).

grpF φs,λ(M1 �M2) =
⊕

(λ1,λ2)
λ1λ2=λ



⊕
j+k=p−1

grjF φt1,λ1
M1 ⊗ grkF φt2,λ2

M2

if α1 + α2 ∈ [0, 1],⊕
j+k=p

grjF φt1,λ1M1 ⊗ grkF φt2,λ2M2

if α1 + α2 ∈ (1, 2).

Particular cases of this result have been obtained in [6, Cor. 6.2.3]. We will

be mostly interested in the case where M2 = Lχ (χ = λo 6= 1) with its filtration

making it of weight 0, in which case the formula of [6] makes precise the monodromy

weight filtration in a simple way:

(3.2.4) grpF P`φs,λ(M � Lχ) =

grp−1
F P`φt,λ/λoM if α ∈ (αo, 1) ∪ {0},

grpF P`φt,λ/λoM if α ∈ (0, αo).
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§3.3. Proofs

Proof of Proposition 3.1.1. We regard Lχ (trivial filtration F pLχ = Lχ for p ≤ 0

and 0 otherwise) as a polarizable complex Hodge module. We first notice that

(M,F •M) � Lχ is a polarizable complex Hodge module on A1
x × A1

y, according

to [18, Th. 3.28]. With the notation of §1.1 and Proposition 1.1.10, Mχ underlies

a polarizable complex Hodge module with filtration F •Mχ defined by a formula

similar to (2.2.1) along ∞ × A1
t. We now define (MCχ(M), F •MCχ(M)) as the

pushforward H 0s̃+(Mχ, F
•Mχ). By [17, Th. 5.3.1], it is a polarizable complex

Hodge module, and so, as remarked above, it corresponds to a variation of polar-

izable complex Hodge structure on A1 r x.

Before proving the second statement, let us compute Lχ ? Lχ′ (χ, χ′ 6= 1,

? = ?!, ?∗, ?mid) as a polarizable complex Hodge module. Assume first that χχ′ 6= 1.

Then the underlying holonomic module is Lχχ′ , according to (1.1.6). On the

other hand, for to 6= 0, Lχ ⊗ Lχ′,to has a non-trivial monodromy at infinity,

where Lχ′,to denotes the Kummer module Lχ′ translated so that its singulari-

ties are at to and ∞, so its various extensions (!, ∗,mid) all coincide, and so do

the various Lχ ? Lχ′ as complex Hodge modules. The fibre of Lχ ? Lχ′ at to is

H1(P1,DR(Lχ⊗Lχ′,to)min) together with its Hodge filtration. Now Lχ⊗Lχ′,to is

a unitary rank-one local system with singular points 0, to,∞ and respective mon-

odromies χ, χ′, (χχ′)−1. Formula (2.3.3∗) then gives (with the notation as in the

statement)

(Lχ ? Lχ′ , F
•
(Lχ ? Lχ′)) =

{
(Lχχ′ , F

•Lχχ′)(−1) if αo + α′o ∈ (0, 1),

(Lχχ′ , F
•Lχχ′) if αo + α′o ∈ (1, 2).

Assume now that χχ′ = 1. Then Lχ ? Lχ−1 = L1 = δ0 is supported at the origin,

and we wish to compare the filtrations. The comparison, together with the twist

by −1, directly follows from the first formula in Theorem 3.2.3, with α1 +α2 = 1.

The second statement, which holds in a more general setting, is proved by

considering the category of complex mixed Hodge modules. As above, we can

reduce to considering real mixed Hodge modules. Then the framework of [18] allows

us to apply the arguments of Proposition 1.1.9 by considering this abelian category

instead of that of holonomic modules, since the functors ?∗Lχ, ?!Lχ, ?midLχ are

endo-functors of this category. In all cases we obtain the associativity property in

this category: (M ?mid Lχ) ?mid Lχ′ = M ?mid (Lχ ?mid Lχ′). For the statement

when χχ′ = 1, we use that if a morphism in the category of mixed Hodge modules

is epi (resp. mono) in the category of holonomic module, it is also epi (resp. mono)

in the category of mixed Hodge modules.

Our previous computation of Lχ ?mid Lχ′ concludes the proof.
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Proof of Theorem 3.1.2(1). For to ∈ A1 r x, the fibre of (MCχ(M), F •MCχ(M))

at to is equal to H1(P1,DR((M ⊗ Lχ,to)min)) together with its Hodge filtration,

where Lχ,to denotes the Kummer module Lχ translated so that its singularities are

at to and xr+1. We notice that the variation of polarized complex Hodge structure

that V ⊗ Lχ,to underlies has the same characteristic numbers as the one that

V underlies, except that it has singularities x ∪ {to} instead of x ∪ {xr+1}: the

assertion is clear for the local characteristic numbers, and for the δp’s one uses

Proposition 2.3.2. Then, according to (2.3.3∗), we have

hp(MCχ(M)) = hpH1
(
P1,DR((M ⊗ Lχ,to)min)

)
= hpH1(P1,DRM) = hpH1(DRM).

Proof of Theorem 3.1.2(2). Recall that the nearby cycle functor is compatible with

projective push-forward, as follows from [17, Prop. 3.3.17]. Moreover, φs̃−xiMχ is

supported at (xi, xi) ∈ A1
x × A1

t. Therefore, φxi(MCχ(M), F •MCχ(M)) can be

computed as φs̃−xi(Mχ, F
•Mχ) (see §1.2 for the notation). We will use the analytic

topology locally at (xi, xi) to do this computation, and we will assume that xi = 0

to simplify the notation. Then the result is given by (3.2.4).

Proof of Theorem 3.1.2(3). Set γp = δp − δp−1. By 3.1.2(1)–(2) and (2.3.5∗), we

get

hp(MCχ(M)) + hp(M) = −γp(M) +

r∑
i=1

[µp−1
xi,6=1(M) + µpxi,1(M)]

hp(MCχ(M)) + hp−1(M) = −γp(MCχ(M)) +

r∑
i=1

[µp−1
xi, 6=1(MCχ(M))

+ µpxi,1(MCχ(M))]

= −γp(MCχ(M)) +

r∑
i=1

( ∑
α∈(0,1−αo]

µp−2
xi,λ

(M) +
∑

α∈(1−αo,1)∪{0}

µp−1
xi,λ

(M)
)
.

Hence

γp(MCχ(M)) = γp(M) + hp(M)− hp−1(M)

−
r∑
i=1

(
[µpxi,1(M)− µp−1

xi,1
(M)

]
+

∑
α∈(0,1−αo)

[µp−1
xi,λ

(M)− µp−2
xi,λ

(M)]
)
.

Summing these equalities for p′ ≤ p gives the desired formula.

§4. Examples

In the following examples (except in Lemma 4.2.2), we will consider local systems

on the punctured Riemann sphere P1 r {x1, . . . , x4}. We will set x4 =∞, and we
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will assume that x1, x2, x3 are distinct points at finite distance, so that we have

here r = 3. A rank-one local system L on P1r{x1, . . . , x4} will simply be denoted

by (λ1, λ2, λ3, λ4), where the λj ’s are the local monodromies. For a local system

of higher rank, we use the following notation for the local monodromy matrices:

a unipotent Jordan block of length m is denoted J(m), then λJ(m) denotes the

length-m Jordan block with eigenvalue λ (we will write −J(m) if λ = −1), and

λ1J(m1) ⊕ λ2J(m2) denotes a matrix in Jordan canonical form consisting the

corresponding two Jordan blocks, etc. Lastly, the identity matrix in GLm(C) is

denoted 1m.

§4.1. A physically rigid G2-local system with minimal Hodge filtration

Set ϕ = exp(2πi/3) ∈ C be the third root of unity in the upper half-plane. It

follows from [7, Theorem 1.3.2] that there exists a physically rigid G2-local sys-

tem G on P1 r {x1, x2, x3, x4} with the following local monodromy at x1, . . . , x4

(respectively):

(4.1.1) −14 ⊕ 13, J(2)⊕ J(3)⊕ J(2), ϕJ(3)⊕ 1⊕ ϕJ(3), 17.

This local system can be constructed using the following sequence of middle con-

volutions and tensor products: Set

L0 := (−1,−ϕ,−ϕ,−ϕ), L1 := (1,−1,−1, 1), L2 := L (−1, 1,−ϕ,ϕ),

L3 := (1,−ϕ,−ϕ, 1), L4 := (−1, 1,−ϕ,ϕ), L5 := (1,−ϕ,−ϕ, 1),

L6 := (−1, 1, ϕ,−ϕ).

Then G is isomorphic to

L6⊗MC−ϕ(L5⊗MC−ϕ(L4⊗MC−1(L3⊗MC−1(L2⊗MC−ϕ(L1⊗MC−ϕ(L0)))))).

(That the local monodromy of G defined by the formula above is given by (4.1.1)

will be a byproduct of the proof of Theorem 4.1.2.) If Li denotes the unitary

rank-one-variation of complex Hodge structure (trivial filtration) underlying Li

(i = 0, . . . , 6), then one constructs a variation of polarized complex Hodge struc-

ture G underlying G as

L6⊗MC−ϕ(L5⊗MC−ϕ(L4⊗MC−1(L3⊗MC−1(L2⊗MC−ϕ(L1⊗MC−ϕ(L0)))))).

We note that this variation is real: indeed, the local monodromies being defined

over R by the formula above, the local real structures G
∼−→ G come from a unique

global isomorphism, which is a real structure on G . By Proposition 2.4.2, it is

compatible with the Hodge filtration up to a shift, hence giving rise to a variation

of real Hodge structure.
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Theorem 4.1.2. The Hodge data of G are as follows:

p hp µpx1,−1,0 µpx2,1,1
µpx2,1,0

µpx3,ϕ,2
µpx3,ϕ,2

δp

2 2 1 0 0 0 0 −2

3 3 2 0 1 0 0 −2

4 2 1 1 1 1 1 −1

Proof. We will use (2.2.12)–(2.2.14), Proposition 2.3.2, (2.3.5∗) and Theorem 3.1.2.

Let us make explicit the first steps.

The Hodge data of L0 are as follows:

h0 = 1; µ0
x1,−1,0 = µ0

x2,−ϕ,0 = µ0
x3,−ϕ,0 = 1; δ0 = −3.

The degree is computed with the residue formula: The residue ai of the canonical

extension of the connection ∇0 underlying L0 = (−1,−ϕ,−ϕ,−ϕ) at x1, . . . , x4

respectively is given by (recall the convention that αi = exp(−2πiai)):

a1 =
1

2
, a2 =

5

6
, a3 =

5

6
, a4 =

5

6
,

so δ0 = −
∑
i ai = −3. It follows from Proposition 1.3.5 that the middle convo-

lution MC−ϕ(L0) has rank 2 and the following local monodromy at x1, x2, x3, x4

(respectively):

ϕ⊕ 1, ϕ⊕ 1, ϕ⊕ 1, −ϕ · 12.

By Theorem 3.1.2(1) and (2.3.5∗), the Hodge number h0 of MC−ϕ(L0) is

h0(MC−ϕ(L0)) = −δ0(L0)− h0(L0) = −(−3)− 1 = 2.

This implies that all other Hodge numbers hp(MC−ϕ(L0)) vanish. Hence, we obtain

the following local Hodge data µ0
xi,α,`

for MC−ϕ(L0):

µ0
x1,ϕ,0 = µ0

x2,ϕ,0 = µ0
x3,ϕ,0 = 1

and all other µpxi,α,`’s vanish. By Theorem 3.1.2(3), the degree δ0 of MC−ϕ(L0) is

δ0 = δ0(L0) + h0(L)−
3∑
i=1

(
µ0
xi,1 +

∑
α∈(0,1/6)

µ−1
xi,exp(−2πiα)(L0)

)
= −3 + 1 = −2.

Let us now consider L1 ⊗MC−ϕ(L0). Its local monodromy is

ϕ⊕ 1, −ϕ⊕−1, −ϕ⊕−1, −ϕ · 12.
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This implies that the nonvanishing local Hodge data of L1 ⊗MC−ϕ(L0) are

h0 = 2; µ0
x1,ϕ,0 = µ0

x2,−ϕ,0 = µ0
x2,−1,0 = µ0

x3,ϕ,0 = µ0
x3,−1,0 = 1.

By Proposition 2.3.2, the only nonvanishing Hodge degree of L1 ⊗MC−ϕ(L0) is

δ0(L1 ⊗MC−ϕ(L0)) = δ0(MC−ϕ(L0))− h0(MC−ϕ(L0))

+
∑
i=2,3

∑
β∈[−1/2,0)

µ0
xi,exp(−2πiβ)

= −2− 2 + (1 + 1) = −2.

It follows from Proposition 1.3.5 that MC−ϕ(L1⊗MC−ϕ(L0)) has rank 3 and the

following local monodromy at x1, x2, x3, x4 (respectively):

−1⊕ 12, ϕ⊕ ϕ⊕ 1, ϕ⊕ ϕ⊕ 1, −ϕ · 13.

Using Theorem 3.1.2(1), we have

h1(MC−ϕ(L1 ⊗MC−ϕ(L0))) = δ0 − δ1 − h1 +

3∑
i=1

(µ0
xi, 6=1 + µ1

xi,1)

= −2− 0− 0 + (1 + 2 + 2) = 3,

where we use the convention that the Hodge data on the right hand side are those

of the convolutant H1 := L1 ⊗MC−ϕ(L0). Consequently, the other local Hodge

data of MC−ϕ(H1) are

µ1
x1,−1,0 = µ1

x2,ϕ,0 = µ1
x2,ϕ,0 = µ1

x3,ϕ,0 = µ1
x3,ϕ,0 = 1.

By Theorem 3.1.2(3),

δ1(MC−ϕ(H1)) = δ1 + h1 −
3∑
i=1

(
µ1
xi,1 +

∑
α∈(0,1−α0), α0=1/6

µ0
xi,exp(−2πiα)

)
= 0 + 0− (1 + 2 + 2) = −5

(again, we use the convention that the Hodge data on the right hand side are those

of H1).

The local monodromy of H2 := L2 ⊗MC−ϕ(H1) is

1⊕−12, ϕ⊕ ϕ⊕ 1, −ϕ⊕−1⊕−ϕ, −13.

Consequently, the local Hodge data of H2 are

h1 = 3; µ1
x1,−1,0 = 2, µ1

x2,ϕ,0 = µ1
x2,ϕ,0 = µ1

x3,−ϕ,0 = µ1
x3,−1,0 = µ1

x3,−ϕ,0 = 1.



790 M. Dettweiler and C. Sabbah

By Proposition 2.3.2, the only nonvanishing global Hodge number of H2 is (with

α1 = 1
2 , α2 = 0, α3 = 5

6 , α4 = 4
6 ):

δ1(H2) = −5 + 3 · (−2) +
∑

i=1,3,4

∑
α∈[1−αi,1)

µpxi,exp(−2πiα)

= −11 + (1 + 2 + 3) = −5.

In the following, we only list the Hodge data for the sheaves involved in the con-

struction of H. Each value can be immediately verified from the preceding Hodge

data, using Proposition 1.3.5 for the local monodromy, Proposition 2.3.2 and equa-

tions (2.2.12)–(2.2.14) for the tensor product, and Theorem 3.1.2 for the middle

convolution.

MC−1(H2):

J(2)⊕ J(2), −ϕ⊕−ϕ⊕ 12, ϕ⊕ J(2)⊕ ϕ, −14

p hp µpx1,1,0
µpx2,−ϕ,0 µpx2,−ϕ,0 µpx3,ϕ,0

µpx3,1,0
µpx3,ϕ,0

δp

1 2 0 0 1 0 0 1 −2

2 2 2 1 0 1 1 0 −2

H3 := L3 ⊗MC−1(H2):

J(2)⊕ J(2), ϕ⊕ 1⊕−ϕ12, −ϕ⊕−ϕJ(2)⊕−1, −14

p hp µpx1,1,0
µpx2,ϕ,0

µpx2,−ϕ,0 µpx3,−ϕ,0 µpx3,−ϕ,1 µpx3,−1,0 δp

1 2 0 0 1 0 0 1 −3

2 2 2 1 1 1 1 0 −3

MC−1(H3):

−12 ⊕ 13, 12 ⊕−ϕ⊕ ϕ12, ϕ⊕ ϕJ(2)⊕ J(2), −15

p hp µpx1,−1,0 µpx2,−ϕ,0 µpx2,ϕ,0
µpx3,ϕ,0

µpx3,ϕ,1
µpx3,1,0

δp

1 1 0 0 1 0 0 0 −1

2 3 2 1 1 1 0 1 −4

3 1 0 0 0 0 1 0 −1
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H4 := L4 ⊗MC−1(H3):

−12 ⊕ 13, 12 ⊕−ϕ⊕ ϕ12, −1⊕−ϕJ(2)⊕−ϕJ(2), −ϕ · 15

p hp µpx1,−1,0 µpx2,−ϕ,0 µpx2,ϕ,0
µpx3,−1,0 µpx3,−ϕ,1 µpx3,−ϕ,1 δp

1 1 1 0 1 0 0 0 −2

2 3 1 1 1 1 0 1 −5

3 1 1 0 0 0 1 0 −2

MC−ϕ(H4):

13 ⊕ ϕ13, J(2)⊕−ϕ12 ⊕ 12, ϕ⊕ ϕJ(2)⊕ J(3), −ϕ · 16

p hp µpx1,ϕ,0
µpx2,−1,0 µpx2,−ϕ,0 µpx3,ϕ,0

µpx3,ϕ,1
µpx3,1,1

δp

1 1 1 0 1 0 0 0 −1

2 3 1 0 1 1 0 0 −2

3 2 1 1 0 0 1 1 −1

H5 := L5 ⊗MC−ϕ(H4):

13 ⊕ ϕ13, −ϕJ(2)⊕ 12 ⊕−ϕ12, −1⊕−ϕJ(2)⊕−ϕJ(3), −ϕ · 16

p hp µpx1,ϕ,0
µpx2,−ϕ,1 µpx2,−ϕ,0 µpx3,−1,0 µpx3,−ϕ,1 µpx3,−ϕ,2 δp

1 1 1 0 0 0 0 0 −1

2 3 1 0 1 1 0 0 −4

3 2 1 1 1 0 1 1 −3

MC−ϕ(H5):

14 ⊕−13, J(3)⊕ J(2)⊕ J(2), ϕ⊕ J(3)⊕ ϕJ(3), −ϕ · 17

p hp µpx1,−1,0 µpx2,1,1
µpx2,1,0

µpx3,ϕ,0
µpx3,1,1

µpx3,ϕ,2
δp

2 2 1 0 0 0 0 0 −3

3 3 1 0 1 1 0 0 −4

4 2 1 1 1 0 1 1 −2
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G := L6 ⊗MC−ϕ(H5):

−14 ⊕ 13, J(3)⊕ J(2)⊕ J(2), ϕJ(3)⊕ 1⊕ ϕJ(3), 17

p hp µpx1,−1,0 µpx2,1,1
µpx2,1,0

µpx3,ϕ,2
µpx3,ϕ,2

δp

2 2 1 0 0 0 0 −2

3 3 2 0 1 0 0 −2

4 2 1 1 1 1 1 −1

We remark that the Hodge filtration of G has minimal length among the

irreducible rank-7 local systems with G2-monodromy which underlie a variation

of polarized real Hodge structure, according to [10, Ch. IV] (cf. also [13, §9]).

§4.2. An orthogonally rigid G2-local system

with maximal Hodge filtration

By the classification of orthogonally rigid local systems with G2-monodromy given

in [8] there exists, up to tensor products with rank-one local systems, a unique

Z-local system H on a 4-punctured sphere P1r{x1, . . . , x4} which is orthogonally

rigid of rank 7 and which satisfies the following properties (this is the case P3, 6

in [8]):

• The monodromy of H is Zariski dense in the exceptional algebraic group G2.

• The underlying motive is defined over Q (i.e., we use only convolutions with

quadratic Kummer sheaves and the tensor operations use motivic sheaves defined

over Q).

• The local system H does not have indecomposable local monodromy at any

singular point.

The construction of H is as follows. Start with a rank-one local system L0 on

A1r{x1, x2, x3} with monodromy tuple (−1,−1,−1,−1). Similarly, we define local

systems of rank one L1,L2,L3 on A1r{x1, x2, x3} given by the monodromy tuples

(1, 1,−1,−1), (−1, 1, 1,−1), (−1, 1,−1, 1), respectively. Let −1 : π1(Gm(C))→C×

be the unique quadratic character. Then define

H = MC−1(L3 ⊗MC−1(L2 ⊗ Λ̃2(MC−1(L1 ⊗ Sym2(MC−1(L0)))))),

where Λ̃2 is defined as follows. Notice first that Lj (j = 0, . . . , 3) are self-dual

unitary local systems. According to Remark 3.1.3 and to Corollary 1.4.1 for the

computation of the rank, MC−1(L0) is a symplectic irreducible variation of Hodge
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structure of rank two, and then Sym2(MC−1(L0)) and L1 ⊗ Sym2(MC−1(L0))

are orthogonal irreducible variations of Hodge structure of rank three (see

the proof of Theorem 4.2.1 for the argument concerning irreducibility). Then

MC−1(L1 ⊗ Sym2(MC−1(L0))) is a symplectic irreducible variation of Hodge

structure of rank four.

Now, any symplectic irreducible variation of Hodge structure V of rank four

having Sp4-monodromy has the property that the exterior square Λ2(V ) is the

direct sum of a rank-one variation E (given by the symplectic form) and a varia-

tion Λ̃2(V ) of rank five (this construction establishes the exceptional isomorphism

Sp4 ' SO5). We will explain below that the local monodromy of Λ̃2(V ) at x3 is

maximally unipotent. Since we a priori know that Λ̃2(V ) is semisimple, being a

direct summand of V ⊗ V , it is therefore irreducible.

It is proved in [8] that the local monodromy of H at x1, . . . , x4 is given by

J(2)⊕ J(3)⊕ J(2), 13 ⊕−J(2)⊕−J(2), J(2)⊕−J(3)⊕ J(2), −17,

respectively.

If L0, L1, L2, L3 denote the unitary variations of complex Hodge structure

(with trivial Hodge filtration F 0Lj = Lj , F
1Lj = 0) underlying L0,L1,L2,L3,

then one obtains a rank-seven variation of polarized complex Hodge structure

H = MC−1(L3 ⊗MC−1(L2 ⊗ Λ̃2(MC−1(L1 ⊗ Sym2(MC−1(L0))))))

whose underlying local system is H . It will be clear from the computation that

each local system which MC−1 is applied to has scalar monodromy − Id at x4.

Theorem 4.2.1. The variation of polarized Hodge structure H has the following

local and global Hodge data:

p 1 2 3 4 5 6 7

hp 1 1 1 1 1 1 1

µpx1,1,0
0 1 0 0 0 0 1

µpx1,1,1
0 0 0 0 1 0 0

µpx2,−1,1 0 0 1 0 0 1 0

µpx3,−1,3 0 0 0 0 1 0 0

µpx3,1,0
0 1 0 0 0 0 1

δp −1 −1 −2 −1 −2 −1 0
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We will need the following lemma:

Lemma 4.2.2. Let (E,∇, F •E) be the filtered flat bundle underlying a polarizable

variation of complex Hodge structure on P1 r {0, 1,∞}. Set x1 = 0, x2 = 1,

x3 =∞. Assume the following:

(1) (E,∇) is irreducible,

(2) rkE = 3,

(3) the monodromy at each singular point is maximally unipotent.

Then the canonically extended Hodge bundles Hp have degree δp(E) as follows:

δ2(E) = 1, δ1(E) = 0, δ0(E) = −1.

Proof. The local data must be as follows (up to a shift of the filtration) because

of the assumption on the local monodromies:

(1) hp(E) = 1 for p = 0, 1, 2 and hp(E) = 0 otherwise,

(2) for i = 1, 2, µ2
xi,1,1 = 1 and all other µpxi,λ,` are zero, hence µ2

xi,1 = µ1
xi,1 = 1,

and all other µpxi,λ are zero,

(3) ν2
x3,1,2 = 1 and all other νpx3,λ,`

are zero, hence ν2
x3,1,prim = 1, and all other

νpx3,1,prim are zero.

We have dimH1(P1, j∗E )=
∑3
i=1 µxi−2 rkE = 0. Therefore, according to (2.3.3∗),

0 = h3H1(P1, j∗E ) = δ2(E)− ν2
x3,1,prim(E) = δ2(E)− 1,

0 = h2H1(P1, j∗E ) = δ1(E)− δ2(E)− h2(E) + µ2
x1,1 + µ2

x2,1 = δ1(E)− δ2(E) + 1,

0 = h1H1(P1, j∗E ) = δ0(E)− δ1(E)− h1(E) + µ1
x1,1 + µ1

x2,1 = δ0(E)− δ1(E) + 1,

0 = h0H1(P1, j∗E ) = −δ0(E)− h0(E) = −δ0(E)− 1.

Proof of Theorem 4.2.1. From Proposition 1.3.5 one derives that MC−1(L0) is

a variation of rank 2 whose local monodromy at x1, x2, x3 is indecomposable

unipotent and is the scalar matrix −12 at ∞. Since h0(L0) = 1, δ0(L0) = −2

and µ0
xi,−1(L0) = 1 (and all other Hodge data are zero), formula (2.3.5∗) gives

h0 MC−1(L0) = h1 MC−1(L0) = 1.

Recall that, for a variation of polarized Hodge structure (V, F •V,∇, k), V ⊗V ,

Sym2 V and Λ2V also underlie such a variation and, setting gr
p/2
F V = 0 if p/2 6∈ Z,

we have natural isomorphisms

grpF (V ⊗ V ) '
⊕

j+k=p

(grjF V ⊗ grkF V ),

grpF (Sym2 V ) '
⊕
j<k
j+k=p

(grjF V ⊗ grkF V )⊕ Sym2(gr
p/2
F V ),
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grpF (Λ2V ) '
⊕
j<k
j+k=p

(grjF V ⊗ grkF V )⊕ Λ2(gr
p/2
F V ).(4.2.3)

We will use these formulas when rk grkF V = 1 for all k, so that we will replace

Sym2(gr
p/2
F V ) by gr

p/2
F V and Λ2(gr

p/2
F V ) by 0.

It follows that the symmetric square Sym2(MC−1(L0)) is a variation of rank 3

whose local monodromy at x1, x2, x3 is easily seen to be indecomposable unipotent

(and identity at ∞). It is irreducible (a rank-one sub or quotient local system

would come from a rank-one sub or quotient local system of MC−1(L0) by the

diagonal embedding, according to the form of the local monodromies). It follows

from Lemma 4.2.2 (by shifting the singularities 0, 1,∞ to x1, x2, x3, respectively),

that

δ2(Sym2(MC−1(L0))) = 1, δ1(Sym2(MC−1(L0))) = 0,

δ0(Sym2(MC−1(L0))) = −1.

The local Hodge data of L1 ⊗ Sym2(MC−1(L0)) are as follows:

h0 = h1 = h2 = 1, µ2
xi,1,1 = 1 (i = 1, 2), µ2

x3,−1,2 = 1,

and all other µpxi,λ,`’s vanish, according to (2.2.12)–(2.2.14). By Proposition 2.3.2,

the Hodge degrees of L1 ⊗ Sym2(MC−1(L0)) are

δ2 = 0, δ1 = −1, δ0 = −2.

Set V = MC−1(L1 ⊗ Sym2(MC−1(L0)). By Theorem 3.1.2(1) and (2.3.5∗),
we have

hp(V ) = δp−1 − δp − hp +

r∑
i=1

(νp−1
xi,6=1 + µpxi,1).

Hence hp(V ) = 1 for p = 0, 1, 2, 3. By Proposition 1.3.5, the local monodromy at

x1, x2, x3, x4 of V is

12 ⊕−J(2), 12 ⊕−J(2), J(4), −14.

By Theorem 3.1.2(2), the local Hodge data of V are as follows: For i = 1, 2 we have

µ2
xi,−1,1 = 1 and 0 else, so from Remark 2.2.10 we obtain ν0

xi,1,0 = ν3
xi,1,0 = 1, and

µ3
x3,1,2 = 1 and 0 else. Using Theorem 3.1.2(3), one obtains the following global

Hodge data δp = δp(V ):

(4.2.4) δ0 = −1, δ1 = −2, δ2 = −1, δ3 = 0.

Let us now consider Λ̃2V , which has rank 5. We will need a specific argument

to compute its local and global Hodge data. From (4.2.3) we obtain isomorphisms
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over P1 r {x1, . . . , x4}:

(4.2.5) grpF (Λ2V ) '


grjF (V )⊗ grkF (V ) for


p 6= 3,

0 ≤ j < k ≤ 3,

j + k = p,

(gr1
F (V )⊗ gr2

F (V ))⊕ (gr0
F (V )⊗ gr3

F (V )) for p = 3.

Locally at xi (i = 1, . . . , 4), let ei0, . . . , e
i
3 be a basis of the canonical ex-

tension V 0 of V lifting a basis ẽi0, . . . , ẽ
i
3 of V 0/V 1 such that ẽik induces a basis

of the rank-one vector space grkF (V 0/V 1). We will use below the identification

ψxi,−1(V ) = gr
1/2
V (V ) instead of gr

−1/2
V (V ) (this is equivalent, even from the point

of view of the Hodge filtration, according to the definitions in §2.2). Hence, locally,

we have a basis of Λ2(V )−∞ given by (the anti-symmetrization of)

vi1 = ei0⊗ ei1, vi2 = ei0⊗ ei2, vi3 = ei1⊗ ei2, v′i3 = ei0⊗ ei3, vi4 = ei1⊗ ei3, vi5 = ei2⊗ ei3.

At x3, we can choose ẽ3 such that t∂tẽ
3
j = ẽ3

j−1, which implies the following

properties (locally at x3):

• the local monodromy of Λ̃2V is J(5), with basis v3
5 , v

3
4 , v
′3
3 + v3

3 , 2v
3
2 , 2v

3
1 , and the

direct summand E of rank one corresponding to the symplectic form has basis

v′33 − v3
3 ,

• µ5
x3,1,3(Λ̃2V ) = 1 and all other µpx3,λ,`

vanish,

• formula (4.2.5) extends to a similar formula for the local Hodge bundles

grpF V
0(Λ2V ),

and then, over P1 r {x1, . . . , x4},

• E = gr3
F E,

• h1(Λ̃2V ) = · · · = h5(Λ̃2V ) = 1.

Let us now consider the local situation at xi, i = 1, 2. From our compu-

tation of µpxi,−1,`(V ), we can choose the basis ẽi so that the nilpotent oper-

ator t∂t − 1/2 : ψxi,−1(V ) → ψxi,−1(V ) acts as ẽi2 7→ ẽi1 7→ 0. We also have

t∂tẽ
i
0 = t∂tẽ

i
3 = 0. Therefore, the corresponding operator t∂t−1/2 on ψxi,−1(Λ2V )

acts as ṽi2 7→ ṽi1 7→ 0 and ṽi5 7→ ṽi4 7→ 0. In a similar way one checks that vi3 belongs

to V 1(Λ2V ), while v′i3 belongs to V 0(Λ2V ). We also note that E = gr3
F E (seen

above) is generated by some combination of vi3 and v′i3 . Moreover,

• the local monodromy of Λ̃2V is −J(2)⊕−J(2)⊕ 1,

• the local Hodge data are µ2
xi,−1,1(Λ̃2V ) = µ5

xi,−1,1(Λ̃2V ) = 1 and all other µpxi,λ,`
vanish,
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• the first line (p 6= 3) of (4.2.5) extends locally at xi as it is to the Hodge bundles

grp V 0(Λ2V ), while the second line extends as

gr3
F V

0(Λ2V ) = x−1(gr1
F (V 0)⊗ gr2

F (V 0))⊕ (gr0
F (V 0)⊗ gr3

F (V 0)),

where x is a local coordinate at xi.

Lastly, at x4, ṽ1, . . . , ṽ5 form a basis of gr1
V (Λ2V ). We conclude that

• the local monodromy of Λ̃2V is 15,

• µx4 = 0,

• formula (4.2.5) extends to a similar formula for the local Hodge bundles

grpF V
1(Λ2V ) = x grpF V

0(Λ2V ).

We can now compute the degree of grpF V
0(Λ2V ) by using the local shift

information comparing this bundle with grjF gr0
V (V )⊗ grkF gr0

V (V ). We find

grj+kF V 0(Λ2V ) = (grjF (V 0)⊗ grkF (V 0))(1) if j + k 6= 3 (shift at x4),

gr3
F V

0(Λ2V ) = (gr1
F (V 0)⊗ gr2

F (V 0))(3)⊕ (gr0
F (V 0)⊗ gr3

F (V 0))(1)

(shift at x1, x2, x4).

Taking now into account (4.2.4) we find, for p = 1, . . . , 5 respectively,

δp(Λ2V ) = −2,−1, 0,−1, 0.

We have δp(Λ̃2V ) = δp(Λ2V ) for p 6= 3. On the other hand, E = gr3
F E is a direct

summand of gr3
F (Λ2V ) ' O2

P1 by the previous degree computation. It follows that

both E and gr3
F (Λ̃2V ) are isomorphic to OP1 and δ3(Λ̃2V ) = 0.

We can now continue the computation as in §4.1 in order to obtain the desired

table.

Let us now specialize the points x1, x2, x3 to 0, 1,−1 (respectively). Note that

for each prime number ` there are lisse étale Q`-sheaves Li,`, i = 0, 1, 2, 3, of rank

one on A1
Z[1/2] r {0, 1,−1} = Spec

(
Z[ 1

2 ][x, 1
x ,

1
x−1 ,

1
x+1 ]

)
whose analytifications

have a Z-form given by Li, i = 0, 1, 2, 3 (respectively). One may construct L0,`

by considering the étale Galois cover g : X → A1
Z[1/2] r {0, 1,−1} defined by the

equation

y2 = x(x− 1)(x+ 1).

Denote the automorphism y 7→ −y of X by σ. Then the sheaf L0,` :=
1
2 (1 − σ)g∗(Q`,X) has the desired properties. The sheaves Li,` (i = 1, 2, 3) can

be constructed in the same way. Define

H` = MC−1(L3,` ⊗MC−1(L2,` ⊗ Λ̃2(MC−1(L1,` ⊗ Sym2(MC−1(L0,`)))))),
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where MC−1 is as in [12, Chap. 4 and Chap. 8]. The monodromy representation

of H`

ρ` : π1(A1
Z[1/2] r {0, 1,−1})→ GL7(Q`)

takes values in G2(Q`) × Center(GL7(Q`)). For any Q-point s of A1
Z[1/2] r

{0, 1,−1} the composition of ρ` with the map of étale fundamental groups

GQ := Gal(Q/Q) → π1(A1
Z[1/2] r {0, 1,−1}) induced by s by functoriality defines

a rank-7 Galois representation

ρs` : GQ → GL7(Q`),

the specialization of ρ` at s. A Galois representation κ : GQ → GLm(Q`) is called

potentially automorphic if there exists a finite field extension K/Q and an auto-

morphic representation π of GLm(AK) (AK denoting the adèles of K) such that

the L-functions of κ and of π match (up to finitely many factors). The following

result can hence be interpreted as a weak version of Langlands conjectures on the

automorphy of the Galois representations ρs` :

Theorem 4.2.6. For all Q-rational points s of A1
Z[1/2] r {0, 1,−1} the specializa-

tions ρs` : GQ → GL7(Q`) are potentially automorphic. In particular, the associated

partial L-function has a meromorphic continuation to the complex plane and sat-

isfies the expected functional equation.

Proof. It follows from [12, Th. 5.5.4] that for a fixed Q-rational point s 6= −1, 0, 1,

the collection of Galois representations (ρs`)` prime has the property that for p

outside a finite set of primes S, the characteristic polynomial of the Frobenius

elements at p is an element in Q[t] which is independent of `. Moreover, each

ρs` is pure of weight 8 for each Frobenius element belonging to a prime outside

S ∪ {`} (since the tensor operations preserve purity by doubling the weight and

each middle convolution step increases the weight exactly by 1). By the motivic

nature of MCχ and of tensor products, the system (ρs`)` occurs in the cohomology

of a smooth projective variety defined over Q (use equivariant desingularization

and the arguments from [7, Section 2.4]). In fact, it follows from the same argu-

ments as in [7, Section 3.3] that ρs` , inside the `-adic cohomology of the underlying

variety, is the kernel of a restriction morphism, cut further out by an algebraic

correspondence associated to an involutive automorphism. Hence, for s fixed, the

restricted Galois representations (ρs` |Gal(Q`/Q`))` are crystalline at places of good

reduction and de Rham elsewhere (this follows from the work of Faltings [9] and is

also implied by more general results of Tsuji [22]). The above can be summarized

by saying that the system (ρs`)` is weakly compatible and pure of weight 8 in the

sense of [2] and [15]. It follows inductively from Poincaré duality and from the fact
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that the weight is even that the Galois representations ρs` factor through a map

to the group of orthogonal similitudes GO7(Q`) with an even multiplier, i.e., the

system (ρs`)` is essentially selfdual in the sense of [15]. We claim that the system

is also Hodge–Tate regular, i.e., the non-vanishing Hodge–Tate numbers

dimQ` gri(ρs` ⊗BDR)Gal(Q`/Q`)

(where BDR denotes the usual de Rham ring) are all equal to 1 (cf. [2], [15]):

it follows from the de Rham comparison isomorphism (which is compatible with

tensor products, filtrations, cycle maps and Galois operation; see Faltings [9]) and

from Theorem 4.2.1 that

dimQ` gri(ρs` ⊗BDR)Gal(Q`/Q`) = dim gr−iF Hs ≤ 1,

as claimed. Taking the above properties together we conclude by applying [15,

Th. A and Cor. C].
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