
Publ. RIMS Kyoto Univ. 49 (2013), 861–891
DOI 10.4171/PRIMS/122

Resolution of Nonsingularities for
Mumford Curves

by

Emmanuel Lepage

Abstract

Given a Mumford curve X over Qp, we show that for every semistable model X of X
and every closed point x of this semistable model, there exists a finite étale cover Y of
X such that every semistable model of Y over X has a vertical component above x. We
then give applications of this to the tempered fundamental group. In particular, we prove
that two punctured Tate curves Qp with isomorphic tempered fundamental groups are
isomorphic over Qp.
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Introduction

In this article, given a hyperbolic curve X over Qp, we are interested in finding a

finite étale cover Y of this curve such that the stable reduction of the cover has

irreducible components lying over the smooth locus of the stable reduction of X.

Such techniques of resolution of nonsingularities are often used in anabelian geom-

etry. We will apply our results to an anabelian study of the tempered fundamental

group.

In [13, Th. 0.2], A. Tamagawa proved that for every hyperbolic curve X =

X \D and every closed point x of the stable reduction of X, there exists a finite

étale cover Y and an irreducible component y of the stable reduction of Y lying

above x. We would like to generalize this to all the semistable reductions ofX: given

a semistable model X of X and a closed point x of the special fiber Xs of X, is there

a finite étale cover Y and an irreducible component y of the minimal semistable

model Y of Y above X such that y lies above x? To give an example of anabelian

motivation for this kind of resolution of nonsingularities, as shown by F. Pop and
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J. Stix in [12, Cor. 41], if X0 is a geometrically connected hyperbolic curve over

a finite extension K of Qp such that X0,Qp
satisfies this kind of resolution of

nonsingularities, then every section of πalg
1 (X0) → Gal(Qp/K) has its image in a

decomposition group of a unique valuative point. In this article, we will prove that

this resolution of nonsingularities is satisfied by Mumford curves.

First, let us translate this into an analytic setting. Let Xan be the Berkovich

space of X. Given a semistable model X of X, there is a reduction map πX :

Xan → Xs. If ηy is the generic point of an irreducible component of Y, the subset

π−1
Y (ηy) ⊂ Y an reduces to a single point. We denote by V (Y) the set of points of

Y an whose image under πY is a generic point. Therefore our question reduces to

the following: is there a Y and an element of V (Y) which is mapped to π−1
X (x)?

Since V (Y) contains V (Y ) := V (Y0) where Y0 is the stable model of Y and π−1
X (x)

is a nonempty open subset of Xan, it is enough to show that the union Ṽ (X) of

the images of V (Y ) in Xan, where Y runs over all finite étale covers of X, is dense

in Xan.

Theorem 0.1 (Th. 2.7). Let X be a hyperbolic Mumford curve. Then Ṽ (X) is

dense in Xan.

As a consequence, by considering the étale locus of a map to P1, one finds

that any curve over Qp has a dense open subset which satisfies this resolution of

nonsingularities.

To prove Theorem 0.1, we will study µpn-torsors of X. Projective systems

of µpn -torsors of X are classified by H1(X,Zp(1)). Let c be an element of

H1(X,Zp(1)). Let x be a Cp-point of X. There is a small rigid neighborhood

D of x in XCp isomorphic to a disk and a morphism f : D → Gm, i.e. an element

f ∈ O∗(D), such that the restriction of c to D is the pullback of the canonical

element of H1(Gm,Zp(1)). Let Yn → X be the µpn -torsor induced by c. For n

large enough, there is a smallest closed disk Dn of D centered at x such that

Yn|Dn → Xn|Dn is a nontrivial cover. Then the behavior of the restriction of Yn
to the Berkovich generic point xn of Dn for n large enough only depends on the

ramification index e of f : D → Gm at x. More precisely, if yn is a preimage

of xn in Yn, the extension H(yn)/H(xn) of complete residue fields induces an ex-

tension k(yn)/k(xn) of their reductions in characteristic p. This extension is an

Artin–Schreier extension: k(xn) is isomorphic to Fp(X) and k(yn) is isomorphic

to k(xn)[Y ]/(Y p − Y −Xe). The general study of Artin–Schreier extensions tells

us that if e is not a power of p, then k(yn) is not a rational extension of Fp.

This implies that yn ⊂ V (Yn) and xn ∈ Ṽ (X), and therefore x lies in the closure

of Ṽ (X).
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Hodge–Tate theory yields a canonical decomposition H1(X,Zp(1)) ⊗Zp Cp

= H1(XCp , OXCp
)(1) ⊕ H0(XCp ,ΩXCp

). Let us consider the induced map p :

H1(X,Zp(1)) → H0(XCp ,ΩXCp
). If c ∈ H1(X,Zp(1)) The restriction of p(c) to

D is df
f . When X is a Mumford curve over Qp, the image of p lies in H0(X,ΩX).

Let Ω ⊂ P1 be the universal topological cover of X. If x ∈ Ω(Qp), one can find

a rational function f with neither poles nor zeroes in Ω such that df
f has a zero

at x with multiplicity m such that m + 1 is not a power of p. Let cf be the

pullback of the canonical element of H1(Gm,Zp(1)) along f : Ω → Gm, and let

xn ∈ Ω be defined as previously. Then for the topology of uniform convergence on

every compact subset of O∗(D), we will approximate f by elements of
⋃
X′ Θ(X ′),

where X ′ runs over finite topological pointed covers of X, and Θ(X ′) is the set of

theta functions of X ′. Using this, one can construct for every n a finite topological

cover X ′ of X and a µpn -torsor Y → X ′ such that the preimage in Y of the image

in X ′ of xn lies in V (Y ). Therefore x ∈ Ṽ (X). Since XQp
is dense in Xan, one

gets the density of Ṽ (X).

In a second part, we use the resolution of nonsingularities to study the tem-

pered fundamental group. We show the following:

Theorem 0.2 (Th. 3.10). Let X1 and X2 be two Mumford curves over Qp. Given

an isomorphism between their tempered fundamental groups, there is a canonical

homeomorphism between their Berkovich spaces.

The strategy is the following. For every semistable model of a curve X, there

is a retraction from X
an

to the graph of this semistable reduction. One gets a map

from X
an

to the projective limit of the graphs of the semistable reductions, which

is a homeomorphism. If X is a Mumford curve, by resolution of nonsingularities,

semistable models of the form Y/G, where Y runs over finite Galois cover of X, Y
is the stable model of Y and G = Gal(Y/X), are cofinal among semistable models

of X. However, a theorem of S. Mochizuki tells us that one can recover the graph

of the stable reduction from the tempered fundamental group ([11, Cor. 3.11]).

Therefore if Y1 is a finite Galois cover of X1, and Y2 is the corresponding finite

Galois cover given by the isomorphism of tempered fundamental groups, then the

graph GY1
of Y1 is canonically isomorphic to the graph GY2

of Y2, and one gets a

similar isomorphism after quotienting by Gal(Y1/X1) ' Gal(Y2/X2). The problem

is to recover from the tempered fundamental group the transition maps between

the geometric realisation of the different graphs.

At the end of the article, we will be interested in the anabelianness of the

tempered fundamental group for punctured Tate curves:
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Theorem 0.3 (Th. 4.1). Let q1, q2 ∈ Qp be such that |q1|, |q2| < 1. Assume there

is an isomorphism ψ between the tempered fundamental groups of (Gm/q
Z
1 ) \ {1}

and (Gm/q
Z
2 ) \ {1}. Then there exists σ ∈ Gal(Qp/Qp) such that q2 = σ(q1).

However, the proof of this result does not give any particular element of

Gal(Qp/Qp).

Let Ωi = Gm \ {qni }n∈Z and Xi = Ωi/q
Z
i . According to Theorem 0.2, the

isomorphism of tempered fundamental groups induces a homeomorphism ψ̄ :

Gan
m → Gan

m which maps qn1 to qn2 for every n ∈ Z.

Elements of O∗(Ωi) correspond, up to a scalar, to a current on the semitree Ti
of Ωi. Since ψ induces an isomorphism T1 ' T2, one gets a group isomorphism

α : O∗(Ω1)→ O∗(Ω2). The crucial point will be to show that for every f ∈ O∗(Ω1)

and z ∈ Gm(C), the multiplicity of df
f at z coincides with the multiplicity of

dα(f)
α(f) at ψ̄(z). By density of Z in Zp, one also gets a similar result for Zp-linear

combinations of differential 1-forms like df
f . Once one knows this, one can build,

for every n ∈ N, an element f ∈ O∗(Ω1) such that df
f (1) = qn1 and dα(f)

α(f) (1) = qn2 :

one then deduces that for every P ∈ Zp[X], P (q1) = 0 if and only if P (q2) = 0.

§1. Berkovich geometry of curves

In the following, K = Cp, and k is its residue field, which is isomorphic to Fp.

The norm will be chosen so that |p| = p−1, and the valuation so that v(p) = 1. All

valued fields will have valuations with values in R≥0.

If X is an algebraic variety over K, one can associate to X a topological

set Xan with a continuous map φ : Xan → X defined in the following way.

A point of Xan is an equivalence class of morphisms SpecK ′ → X over SpecK

where K ′ is a complete valued extension of K. Two morphisms SpecK ′ → X and

SpecK ′′ → X are equivalent if there exists a common valued extension L of K ′

and K ′′ such that

SpecL //

��

SpecK ′′

��
SpecK ′ // X

commutes. In fact, for any x ∈ Xan, there is a unique smallest such complete

valued field defining x, denoted by H(x) and called the completed residue field

of x. We denote by k(x) the residue field of H(x) and by val(x) ⊂ R>0 the group

of values of H(x). Forgetting the valuation, one gets points Spec(K)→ X from the

same equivalence class of points; this defines a point of X, hence a map Xan → X.

If U = SpecA is an affine open subset of X, then every x ∈ φ−1(U) defines a
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seminorm | |x on A. The topology on φ−1(U) is defined to be the coarsest such

that x 7→ |f |x is continuous for every f ∈ A.

The space Xan is locally compact, and even compact if X is proper. In fact

Xan is more than just a topological space: it can be enriched into a K-analytic

space, as defined by Berkovich in [2].

Points of A1,an are of four different types and are described in the following

way:

• A closed ball B = B(a, r) ⊂ Cp of center a and radius r defines a point b = ba,r
of A1,an, called the Gauss point of B, by

|f |b = sup
x∈B
|f(x)| = max

i∈N
|ai|ri if f =

∑
i∈N

aiX
i.

The point ba,r is said to be of type 1 if r = 0, of type 2 if r ∈ pQ, and of

type 3 otherwise. The pairs (a, r) and (a′, r′) define the same point if and only

if B(a, r) = B(a′, r′), i.e. r = r′ and |a− a′| ≤ r.
• A decreasing family E = (Bi)i∈I of balls with empty intersection defines a point

by

|f |E = inf
i∈I
|f |bi ,

where bi is the Gauss point of Bi. Such a point is said to be of type 4.

If r ∈ pQ and a ∈ Cp are such that |a| = r, then |X/a|ba,r = 1 and k(ba,r) =

k(X/a).

The classification by type of points can be generalized to curves in such a way

that it is preserved by finite morphisms. A point x is:

• of type 1 if H(x) = Cp;

• of type 2 if degtr k(x)/Fp = 1;

• of type 3 if val(x) 6= pQ;

• of type 4 otherwise (i.e. H(x)/Cp is an immediate extension).

If x is of type 2, we denote by gk(x) the genus of the proper Fp-curve whose field

of fractions is k(x).

Let X be a proper and smooth K-curve. The topological space X is a quasi-

polyhedron in the sense of [2, Def. 4.1.1]: there exists a base of open subsets U

such that:

• U \ U is finite;

• U is countable at infinity;

• for every x 6= y ∈ U , there exists a unique subset [x, y] ⊂ U that is homeomor-

phic to [0, 1] with endpoints x and y.
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A quasipolyhedron that satisfies these three properties is said to be simply con-

nected.

If X is a curve, the set of points of type different from 2 is totally disconnected.

Therefore, on every nonconstant path, there exist infinitely many points of type 2.

The topological universal cover X∞ is a simply connected quasipolyhedron.

Therefore any subset I of X∞ is contained in a smallest connected subset Conv(I)

=
⋃

(x,y)∈I2 [x, y]. If I, J are closed connected subsets of X∞, we denote [I, J ] =⋂
(x,y)∈I×J [x, y]. This set is homeomorphic to [0, 1] if I ∩ J = ∅ and I ∩ [I, J ] and

J ∩ [I, J ] each reduce to a point. If x ∈ X∞ and I is a closed subset of X∞,

we denote by rI(x) the unique element of [x, I] ∩ I. The map rI : X∞ → I is a

continuous retraction of the embedding I → X∞.

Let X be a semistable model. There is a specialization map πX : Xan → Xk
defined in the following way. If x ∈ Xan, the morphism SpecH(x)→ X extends to

a morphism SpecOH(x) → X by properness of X → SpecOK , hence to a morphism

Spec k(x)→ Xk; the image of this morphism is πX (x). This specialization map is

anticontinuous: the preimage of a closed subset is an open subset.

If z is the generic point of an irreducible component of Xk, then z is of codi-

mension 1 in X and thus OX ,z is a valuation ring. The completion of FracOX ,z
defines a point bz of Xan which is the unique element of π−1

X (z). We denote by

V (X ) ⊂ Xan the set of such bz, and by V (X )∞ its preimage in X∞.

One has Xan \ V (X ) =
∐
π−1
X (x) where x runs through closed points of Xk,

and π−1
X (x) is open by anticontinuity of πX . In particular, if z, z′ ∈ Xan are such

that πX (z) 6= πX (z′), then every path joining z to z′ meets V (X ).

We denote S(X )∞ = Conv(V (X )∞) and let r∞X be the retraction r∞X : X∞ →
S(X )∞ of the embedding ι∞X : S(X )∞ → X∞. Since V (X )∞ is Gal(X∞/X)-

invariant, S(X )∞ is also Gal(X∞/X)-invariant and r∞X is Gal(X∞/X)-equivari-

ant. We denote by S(X ) the image of S(X )∞ in Xan; it is called the skeleton of X .

We denote by rX the retraction Xan → S(X ) induced by r∞X . The space S(X ) is

compact and the inclusion map ιX : S(X ) → Xan is a homotopy equivalence. In

fact S(X ) is characterized by the fact that it is the smallest subset S of Xan that

contains V (X ) and is such that S → Xan is a homotopy equivalence.

If z is a node of Xk, then π−1(z) is an open annulus. It contains a unique

closed connected subset Sz homeomorphic to R. More precisely, if one chooses

an isomorphism of analytic spaces π−1(z) ' {z ∈ A1,an | r0 < |T |z < 1}, then

Sz = {b0,r | r0 < r < 1} (in particular the points of type 2 of Sz can be identified

with Q∩ (r0, 1)). If z is a closed point of the smooth locus of Xk, then π−1(z) is an

open disk. Since, for every point b of type 2 of disks and annuli, k(b) is a rational
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extension of k, one finds that if x ∈ Xan is a point of type 2 such that gk(x) 6= 0,

then x ∈ V (X ).

One recovers S(X ) as the union of V (X ) and of Sz for every node z of Xk.

One deduces that S(X ) is homeomorphic to the dual graph GX of Xk. Similarly

S(X )∞ is homeomorphic to the universal cover TX of GX .

If X1 → X2 is a morphism of proper and smooth K-curves and X1 → X2 is

an extension to semistable OK-models, then

Xan
1

//

��

X1,k

��
Xan

2
// X2,k

is commutative.

Assume now that X1 → X2 is a morphism of semistable models of the same

curve X. If z1 is the generic point of an irreducible component of X1,k which maps

to the generic point z2 of an irreducible component of X2,k, the previous diagram

tells us that bz1 = bz2 . Since X1 → X2 is surjective, one gets V (X2) ⊂ V (X1) ⊂
S(X1). Since S(X2) is the smallest subset of Xan that contains V (X2) and is such

that S(X2) → Xan is a homotopy equivalence, one finds that S(X2) ⊂ S(X1).

Similarly, V (X2)∞ ⊂ V (X1)∞ and S(X2)∞ ⊂ S(X1)∞.

Therefore, for every x ∈ Xan, [x, S(X1)] ⊂ [x, S(X2)], and thus ιX1
rX1

(x) ∈
[x, S(X2)]. This implies that rX2ιX1rX1 = rX2 . Therefore, the maps rX1/X2

:=

rX2
ιX1

: S(X1) → S(X2) are compatible with composition and (S(X ))X is a pro-

jective system of topological spaces. The maps (rX ) induce a continuous map

rX : Xan → lim←−
X
S(X ).

Proposition 1.1. The map rX is a homeomorphism.

Proof. Since Xan is compact, the surjectivity of rX follows from the surjectivity

of each rX .

Let x 6= x′ be such that rX0
(x) = rX0

(x′) where X0 is the minimal model

of X. Let U be a simply connected open neighborhood of rX0
(x) in S(X0), and

V = r−1
X0

(U). Since V is a simply connected quasipolyhedron, there is a minimal

connected subset [x, x′] ⊂ V containing x and x′. It is homeomorphic to [0, 1] and

has a natural order that makes x the smallest element. Let x1 < x2 ∈ [x, x′] be

points of type 2.

Since xi is of type 2, V \{xi} has infinitely many components. Since Qp-points

are dense in Xan one can find zi,1, zi,2, zi,3 ∈ V ∩ X(Qp) lying in different con-

nected components of Xan \ {xi}. Let X be the stable model of the marked curve
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(X, {zij}i=1,2;j=1,2,3. Since πX (zi,1) 6= πX (zi,2), one has S(X ) ∩ [zi,1, zi,2] 6= ∅ and

therefore rX (zi,1) ∈ [zi,1, zi,2].

Therefore, replacing zi,2 by zy,3, one finds that rX (zi,1) ∈ [zi,1, zi,2]∩ [zi,1, zi,3]

= [zi,1, xi] and similarly rX (zi,2) ∈ [zi,2, xi]. Since S(X ) is connected and intersects

[zi,1, xi] and [zi,2, xi], it follows that xi ∈ S(X ). Therefore, in [x, x′], one has

rX (x) ≤ x1 < x2 ≥ rX (x′), which proves the injectivity of rX .

Since Xan is compact and lim←−X S(X ) is Hausdorff, rX is a homeomorphism.

Let X1 → X2 be a morphism of semistable models of X. Let z be a node of

X2,k. We will use the notation

(1) Az,X1
:= V (X1) ∩ Sz.

If one chooses an orientation of Sz ' R, then Az,X1
becomes an ordered set. We

denote Az =
⋃
X1
Az,X1

⊂ Sz.

§2. Resolution of nonsingularities

§2.1. Definition

If X = X \D is a hyperbolic curve over K, we denote by V (X) the subset V (X )

of X
an

(it is also a subset of Xan since all of its points are of type 2), where (X ,D)

is the stable model of (X,D), and we also denote by GX the dual graph of X k
and by TX its universal cover.

Let X = X \D be a hyperbolic curve over K. Let Xan
(2) ⊂ X

an be the subset

of type 2 points.

Let Ṽ (X) be the set of points x of Xan such that there exists a finite étale

cover f : Y → X and y ∈ V (Y ) such that f(y) = x. If x ∈ Ṽ (X), then Y can be

chosen to be Galois, so that in particular f−1(x) ⊂ V (Y ), since V (Y ) is Galois

equivariant. Let V (X) be the closure of Ṽ (X) in X. If f : Y → X is a finite étale

cover, then Ṽ (Y ) = f−1(Ṽ (X)) and V (Y ) = f−1(V (X)). One has Ṽ (X) ⊂ Xan
(2).

Definition 2.1. We say that X satisfies resolution of nonsingularities if

Ṽ (X) = Xan
(2).

Proposition 2.2. Let X = X \D be a curve. The following are equivalent:

(i) Ṽ (X) = Xan
(2);

(ii) V (X) = X
an

;

(iii) X(K) ⊂ V (X).
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Proof. (i)⇒(ii). Points of type 2 are dense in Xan.

(ii)⇒(iii) is obvious.

(iii)⇒(i). Let x ∈ X(2). Then Xan \ {x} has infinitely many components and

they are open in Xan. Since X(K) is dense in Xan, each of these components inter-

sects Ṽ (X). Let x1, x2, x3 ∈ Ṽ (X) lie in different connected components S1, S2, S3

of Xan \ {x}. Let f : Y → X be a finite cover such that there is yi over xi lying in

S(Y ) for i = 1, 2, 3. Up to replacing Y by a Galois closure, one can assume that

Y → X is Galois. Since the image T of S(Y ) in Xan is connected and x1x2 ∈ T ,

one has x ∈ T . Since S(Y ) ⊂ Y an is Gal(Y/X)-invariant, S(Y ) = f−1(T ). Let

y ∈ f−1(x). For any neighborhood U of x, U ∩ T ∩ Si 6= ∅. Thus for any neigh-

borhood V of y small enough (for example, such that f−1(x) ∩ V = {y}), the

set V ∩ S(Y ) \ {y} has at least three connected components. Thus y ∈ V (Y ) and

x ∈ Ṽ (X).

If X is a curve over Qp, then X(Qp) is dense in X(Cp), thus X satisfies

resolution of nonsingularities if and only if X(Qp) ⊂ V (X).

If Y → X is a morphism of hyperbolic curves over Qp, and X is a semistable

model of X, then there exists a minimal semistable model Y of Y above X
(Y is the stable marked hull of the normalization of X in K(Y ), in the sense

of [10, Cor. 2.20]).

Proposition 2.3. Let X be a Qp-curve which satisfies resolution of nonsingular-

ities. Let X be a semistable model of X and let x be a closed point of Xk. There

exists a finite cover Y → X such that Yk has a vertical component above x, where

Y is the minimal semistable model of Y above X .

Proof. Let πX : X
an → Xk be the specialization map. Since x is closed, π−1

X (x) is

open, and therefore contains a point x̃ of type 2. Let Y be a cover of X and let

ỹ ∈ V (Y ) be above x̃. Then, for the stable model Y0 of Y , ỹ specializes via πY0

to a generic point of Y0,k. Therefore, ỹ specializes to a generic point for every

semistable model of Y , in particular for Y. Then y := πY(ỹ) is mapped to x, and

therefore the closure of y is a vertical component above x.

§2.2. Splitting points of torsors

The map Gm
( )n−−→ Gm defines a µn-torsor over Gm. The corresponding element

of H1(Gm, µn) is denoted by ccan,n.

Let D be a disk centered at 0 and let f : D → Gm be a nonconstant morphism.

Let cn = f∗ccan,pn ∈ H1(D,µpn). Let Yn → D be the corresponding µpn-torsor.

Let f(X) =
∑
k≥0 akX

k be the power series of f . Let e0(f) = inf{k ≥ 1 |
ak 6= 0} be the ramification index of f at 0.
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Let r0(cn) = inf{r > 0 | Yn is not split above b0,r} when it exists. Then Yn is

trivial above D(0, r0(cn)−) (otherwise it could be extended to a nontrivial finite

cover of P1).

Let yn ∈ Yn be above xn = b0,r0(cn). The cover Yn → D induces a morphism

H(xn)→ H(yn) of complete valued fields. Let k(xn)→ k(yn) be the morphism of

their residue fields.

We want to study the asymptotic behavior of r0(cn) as n→∞, and the field

k(yn).

Proposition 2.4. Their exists C such that r0(cn) = Cp−n/e0(f) for n large

enough. Moreove, for n large enough, [k(yn) : k(xn)] = [H(yn) : H(xn)] = p,

and k(yn) is isomorphic to k(X)[T ]/(T p − T −Xe0(f)).

Proof. Up to multiplying f by a constant, one can assume f(0) = 1. LetN = e0(f).

Up to replacing D by a smaller disk, one can assume that
∑
k≥N akX

k has an Nth

root t, so that f = 1 + tN . Moreover up to replacing D by a smaller disk, one can

assume that t induces an isomorphism t : D → D0 where D0 is also a disk centered

at 0. Since t maps b0,r to b0,λr where λ is a constant, it is enough to prove the

result for ft−1. One can thus assume that f = 1 +XN .

Then fn−1 := f1/pn−1

=
∑
k bkX

Nk where bk =
(

1/pn−1

k

)
and

vp(bk) = −k(n− 1)− vp(k!).

The series f1/pn−1

is convergent on the disk of radius p−(n−1+ 1
p−1 )/N . By replacing

n− 1 by n, one finds that r0(cn) ≥ λn := p−(n+ 1
p−1 )/N . Let 1 + y ∈ O(Yn) be the

pnth root of f such that y(0) = 0. Then y satisfies the equation

(2)

p∑
k=1

(
p

k

)
yk =

∑
k≥1

bkX
Nk.

Let b = b0,λn ∈ D. Let b′ be above b in Yn and let b′′ be the image of b′ in Yn−1.

Since λn−1 > λn, the torsor cn−1 is split at b′′, and moreover [H(b′) : H(b)] =

[H(b′) : H(b′′)]|p and H(b) = H(b′)/((1 + y)p − fn−1).

At b, one has |b1XN |b = | 1
pn−1 t

N |b = p−
p
p−1 , and all the other terms in the

right member of (2) have smaller norms: |bktNk|b = p−
kp
p−1 +vp(k!) < p−k ≤ p−

p
p−1

for every k ≥ 2. In particular∣∣∣ p∑
k=1

(
p

k

)
yk
∣∣∣
b′

=
∣∣∣∑
k≥1

bkX
Nk
∣∣∣
b

= p−
p
p−1 .

If |y|b′ < p−
1
p−1 , then |

(
p
k

)
yk|b′ = p−1|yk| < p−

p
p−1 if 1 ≤ k < p and |

(
p
k

)
yk|b′ =

|y|p < p−
1
p−1 if k = p, which is impossible since |

∑p
k=1

(
p
k

)
yk|b′ = p−

p
p−1 . If |y|b′ >
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p−
1
p−1 , then |

(
p
k

)
yk|b′ < |yp| for every 1 ≤ k < p and therefore |

∑p
k=1

(
p
k

)
yk|b′ =

|yp| > p−
p
p−1 , which is impossible. Therefore, |y|b′ = p−

1
p−1 . Hence |py| = |yp| =

p−
p
p−1 and |

(
p
k

)
yk|b′ < p−

p
p−1 for every 2 ≤ k ≤ p− 1.

Therefore, in the ring {a ∈ H(b′) | |a| ≤ p−
p
p−1 }/{a ∈ H(b′) | |a| < p−

p
p−1 },

equation (2) becomes py + yp = XN/pn−1.

Let z = y/a1 ∈ H(b′) and u = X/a2 ∈ H(b) ⊂ H(b′) where ap−1
1 = −p and

aN2 = pn−1ap1. One has |z|b′ = |u|b′ = 1 and k(b) = k(ū). Let z̄ and ū be the classes

of z and u in k(b′). Equation (2) induces in k(b′) the equality

z̄p − z̄ = ūN .

Therefore k(b)[z̄] ⊂ k(b′) is a nontrivial extension of k(b). Since [H(b′) : H(b)] | p,
one finds that [H(b′) : H(b)] = p, b = xn, and k(b′) = k(b)[z̄] is the desired

Artin–Schreier extension of k(b) (because k(b) = k(ū)).

If one writes e0(f) = pmd where d is prime to p, the genus of the Artin–

Schreier curve T p − T = Xe0(f) is g = (d − 1)(p − 1)/2 (cf. [6, §2.2, eq. (8)]).

In particular, if e0(f) is not a power of p, then, for n large enough, k(yn) is not

isomorphic to k(X), so that if Yn is an analytic domain of a curve Ỹn, one must

have yn ∈ V (Ỹn). It should be noticed that e0(f) = ord0

(
df
f

)
+ 1, where ord0 ω

denotes the x-adic valuation of df
fdX ∈ Cp[[X]].

§2.3. Resolution of nonsingularities for Mumford curves

In this subsection we show that Mumford curves over Qp satisfy resolution of

nonsingularities.

A proper curve X over Qp is a Mumford curve if the following equivalent

properties are satisfied:

• all normalized irreducible components of its stable reduction are isomorphic

to P1;

• Xan is locally isomorphic to P1,an.

The universal topological covering Ω of Xan for a Mumford curve X is an open

subset of P1,an. More precisely there is a Schottky subgroup Γ of PGL2(Cp), i.e.

a free finitely generated discrete subgroup of PGL2(Cp), such that Ω = P1,an \ L
where L is the closure of the set of Cp-points stabilized by some nontrivial element

of Γ. The points of L are of type 1, i.e. are Cp-points. Then X is p-adic analytically

uniformized as

Xan = Ω/Γ,

and Γ = πtop
1 (X).
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Lemma 2.5. Let I be an infinite subset of K0, where K0 ⊂ K is a finite extension

of Qp. Let x ∈ Qp be a point not belonging to I. Let E =
{
k ∈ N | ∃a ∈ Q

(I)
p , k =

ordx
(∑

i∈I
ai
X−i

)}
and un = #(E ∩ [0, n]). Then the sequence (un/n)n does not go

to 0 as n→∞.

Proof. Up to replacing K0 by K0[x] and i by i+x for every i ∈ I, one can assume

x = 0. Let V be the Qp-vector subspace of K0[[X]] generated by
(

1
X−i

)
i∈I . Let

C = [K0 : Qp].

Let Vn be the image of the Qp-linear map φn : V → K0[[X]]/Xn. One has

n ∈ E if and only if Ker(φn) ( Ker(φn−1). Therefore

• dimQp Vn = dimQp Vn−1 if n /∈ E;

• dimQp Vn ≤ C + dimQp Vn−1.

Hence dimQp Vn ≤ Cun. However, the morphism fn : Vn ⊗Qp K → K[[X]]/Xn is

surjective. Indeed, let i1, . . . , in be n different elements of I and let P ∈ K[[X]]/Xn.

Let P be a representative of P in K[X]. Let R be the remainder of division of

P
∏n
k=1(X − ik) by Xn. Then, since deg(R) < n,

R∏
k(X − ik)

=
∑
k

ak
X − ik

for some (ak)k in Kn, and, since
∏
k(X − ik) is invertible in K[[X]],

P = fn

(∑
k

1

X − ik
⊗ ai

)
,

which proves that fn is surjective. Therefore dimQp Vn = dimK Vn⊗QpK ≥ n and

un/n ≥ 1/C.

Let I be an infinite subset of K0, where K0 ⊂ K is a finite extension of Qp.

Let x ∈ Qp. Lemma 2.5 shows that there exists (ai) ∈ Q
(I)
p such that if g =

∑ ai
X−i

then ordx(g)+1 is not a power of p. Up to multiplying all the ai by pmaxi∈I(−vp(ai)),

one can assume ai ∈ Zp. Let I0 ⊂ I be the support of the family (ai)i∈I .

For i ∈ I0 and n ≥ 0, let ai,n ∈ Z be such that vp(ai,n − ai) ≥ n.

Let

fn =
∏
i∈I0

(
X − i
x− i

)ai,n
: P1 \ I0 → Gm.

Let D = {z ∈ Gm | |X − x|z < mini∈I0 |x − i|}. The sequence (fn) is uniformly

convergent on every affinoid subset of D and defines over D a morphism f :

D → Gm and f ′/f = g over D.
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Let cn : Yn → P1 \ I0 be the µpn -torsor over P1 \ I0 obtained by pulling back

along fn the canonical torsor (note that cn only depends on ai and not on ai,n).

The restriction of cn to D is also the pullback of the canonical torsor along f .

According to Proposition 2.4, there is a point yn ∈ Yn such that gk(yn) ≥ 1

and cn(yn)→ x.

One gets the following result:

Proposition 2.6. Let I be an infinite subset of a finite extension of Qp. For

every x ∈ Qp, there is a finite subset I0 ⊂ I \ {x} and a Zp(1)-torsor c = (cn :

Yn → P1 \ I0) of P1 \ I0 and for every n ≥ 1 a point yn ∈ Yn such that gk(yn) ≥ 1

and cn(yn)→ x.

Theorem 2.7. Let X be a Mumford curve over Qp. Then X satisfies resolution

of nonsingularities.

Proof. Let x ∈ X(Qp). According to Proposition 2.2, it is enough to show that

x ∈ V (X).

Let Ω = P1,an \ L be the topological universal cover of X, and let Γ =

Gal(Ω/X) ⊂ PGL2(Cp). Let z be a point of Ω above x. One can assume that

Γ ⊂ PGL2(K0), where K0 is a finite extension of Qp. Let g ∈ Γ and t ∈ L∩P1(Qp)

a point that is not fixed by g. Up to replacing K0 by a finite extension, one can

assume t ∈ K0. Let I = {gn(t)}n∈Z ⊂ K0. According to Proposition 2.6, there

exists a finite subset I0 of I and a Zp(1)-torsor (cn : Yn → P1 \ I0) of P1 \ I0 and

a point yn of Yn such that gkyn ≥ 1 and zn := cn(yn) → z. Let xn be the image

of zn in X. Fix n. We will show that xn ∈ Ṽ (X). Let ε be small enough so that

the canonical µpn -torsor of Gm is split at b1,ε. Let f ∈ O∗(P1 \ I0) be such that

cn = f∗µpn .

Lemma 2.8. Let f ∈ O∗(Ω). There exists a family (fΓ′)Γ′ of elements of O∗(Ω),

where Γ′ runs through the filtered set of subgroups of Γ of finite index, such that:

• for every g ∈ Γ′, fΓ′◦g
fΓ′

is a constant function, i.e. fΓ′ is a theta function of X/Γ′;

• (fΓ′)Γ′ converges uniformly to f on every affinoid domain of Ω.

Proof. The subgroup of O∗(Ω) generated by the constants and functions of the

form z−a
z−b , where a and b are the zeros of a nontrivial element of Γ, is dense in

O∗(Ω). Therefore one can assume that f = z−a
z−b and that the subgroup H of

elements of Γ fixing a and b is nontrivial. Let z0 ∈ Ω(Cp). Then

fΓ′ = f(z0)
∏

g∈(H∩Γ′)\Γ′

f(g(z))

f(g(z0))

has the desired properties.
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Apply Lemma 2.8 to f ; let (fΓ′) be as in the lemma. In particular, there exists

a subgroup Γ′ of finite index of Γ such that |fΓ′/f − 1|zn < ε. Let c′ = f∗Γ′µpn :

Y ′ → Ω. Then cn − c′ is split at zn. Therefore cn and c′ are isomorphic above zn
and there is y′ ∈ Y ′ above zn such that gky′n

≥ 1. Since fΓ′ is a theta function of

Ω/Γ′, there exists a µpn -torsor c′′ : Y ′′ → Ω/Γ′ such that c′ = p∗c′′ where p is the

topological cover Ω → Ω/Γ′. Since Y ′ → Y ′′ is a topological cover, the image y′′

of y′ in Y ′′ is in V (Y ′′). Since Y ′′ → X is a finite cover and maps y′′ to xn, one

has xn ∈ Ṽ (X). Therefore x ∈ V (X).

Since P1 \ {0, 1,∞} and punctured Tate curves have finite étale covers that

are nonempty Zariski open subsets of Mumford curves, they also satisfy reso-

lution of nonsingularities. For every smooth connected curve X over Qp, there

exists a nonempty Zariski open subset U ⊂ X and a finite étale cover U → V =

P1 \ {x1, . . . , xn} with n ≥ 3. Since P1 \ {x1, . . . , xn} satisfies resolution of non-

singularities, so does U . Indeed, if u ∈ Uan is a point of type 2 and v is its image

in V , let Y → V be a finite étale cover such that v is in the image of V (Y ). Up

to replacing Y by a bigger cover, one can assume that Y is Galois over V , so that

every preimage of v is in V (Y ), and there is a morphism Y → U of V -covers; u is

then in the image of V (Y ). The same argument also works for Cp-curves.

Corollary 2.9. Every Qp-curve (resp. Cp-curve) has a Zariski dense open subset

which satisfies resolution of nonsingularities.

§3. Resolution of nonsingularities and anabelian tempered geometry

§3.1. Tempered fundamental group

Let K be a complete nonarchimedean field. A morphism f : S′ → S of K-analytic

spaces is said to be an étale cover if S is covered by open subsets U such that

f−1(U) =
∐
Vj and Vj → U is étale finite ([5]).

For example, finite étale covers, also called algebraic covers, and covers in the

usual topological sense for the Berkovich topology, also called topological covers,

are étale covers.

Then, André defines tempered covers as follows:

Definition 3.1 ([1, Def. 2.1.1]). An étale cover S′ → S is tempered if it is a quo-

tient of the composition of a topological cover T ′ → T and of a finite étale cover

T → S.

This is equivalent to saying that the cover becomes a topological cover after

pullback along some finite étale cover.
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We denote by Covtemp(X) (resp. Covalg(X), Covtop(X)) the category of tem-

pered covers (resp. algebraic covers, topological covers) of X (with the obvious

morphisms).

A geometric point of a K-manifold X is a morphism of Berkovich spaces

M(Ω)→ X where Ω is an algebraically closed complete isometric extension of K.

Let x̄ be a geometric point of X. Then one has a functor

Fx̄ : Covtemp(X)→ Set

which maps a cover S → X to the set Sx̄. If x̄ and x̄′ are two geometric points,

then Fx̄ and Fx̄′ are (noncanonically) isomorphic ([5, Prop. 2.9]).

A functor F : Covtemp(X)→ Set is said to be a fiber functor if it is isomorphic

to Fx̄ for some (and therefore every) geometric point x̄ of X.

Proposition 3.2. A fiber functor of Covtemp(X) is pro-representable.

If F is a fiber functor of Covtemp(X), a pointed tempered cover of X is a couple

(S, s) where S is a tempered cover of X and s ∈ F (S). A pro-tempered cover X̃

of X is called universal if FX̃ := Hom(X̃, ) is a fiber functor of Covtemp(X).

The tempered fundamental group of X pointed at a fiber functor F is

πtemp
1 (X,F ) = AutF.

The tempered fundamental group of X pointed at a universal pro-tempered cover X̃

is

πtemp
1 (X, X̃) = Aut X̃ = AutFX̃ .

The tempered fundamental group of X pointed at a geometric point x̄ is

πtemp
1 (X, x̄) = πtemp

1 (X,Fx̄).

When X is a smooth algebraic K-variety, Covtemp(Xan) and πtemp
1 (Xan, F ) will

also be denoted simply by Covtemp(X) and πtemp
1 (X,F ).

By considering the stabilizers (StabF (S)(s))(S,s) as a basis of open subgroups of

πtemp
1 (X,F ), the latter becomes a topological group. It is a pro-discrete topological

group.

If X is algebraic, and if K is of characteristic zero and has only countably

many finite extensions in a fixed algebraic closure K, then πtemp
1 (X,F ) has a

countable fundamental system of neighborhoods of 1 and all its discrete quotient

groups are finitely generated ([1, Prop. 2.1.7]).

Thus, as usual, the tempered fundamental group depends on the basepoint

only up to inner automorphism (this topological group, considered up to conjuga-

tion, will sometimes be denoted simply by πtemp
1 (X)).
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The full subcategory of tempered covers S for which Fx̄(S) is finite is equiv-

alent to Covalg(S), hence

̂πtemp
1 (X, x̄) = πalg

1 (X, x̄)

(here and in what follows, ̂ denotes profinite completion).

For any morphism X → Y , the pullback defines a functor Covtemp(Y ) →
Covtemp(X). If x̄ is a geometric point of X with image ȳ in Y , this gives rise to a

continuous homomorphism

πtemp
1 (X, x̄)→ πtemp

1 (Y, ȳ)

(hence an outer morphism πtemp
1 (X)→ πtemp

1 (Y )).

One has the analog of the usual Galois correspondence:

Theorem 3.3 ([1, Th. 1.4.5]). A fiber functor F induces an equivalence of

categories between the category of tempered covers of X and the category

πtemp
1 (X,F )- Set of discrete sets endowed with an action of πtemp

1 (X,F ) that fac-

torizes through a finite quotient.

If S is a finite Galois cover of X, its universal topological cover S∞ is still Ga-

lois and every connected tempered cover is dominated by such a Galois tempered

cover.

Let x̄ be a geometric point of X. Let “lim←−I”(Si, si) be a pointed universal

pro-finite cover of X. Let (S∞i , s
∞
i ) be the pointed universal topological cover of

(Si, si). Then “lim←−I”S
∞
i is a universal pro-tempered cover of X.

If S = “lim←−”Si is a pro-tempered cover of X, we denote by |S| the topological

space lim←−Si.
Let (X,D) be a marked curve. Let X = X \D. If S is a tempered cover of X,

it extends uniquely, and functorially in Y , to a ramified cover S → X ([1, Th.

III.2.1.11]). If S = “lim←−Si” is a pro-tempered cover of X, we denote by |S|c the

topological space lim←−Si. Any morphism S → S′ of pro-tempered covers induces a

continuous map |S|c → |S′|c. In particular, if X̃ is a universal pro-tempered cover

of X, then πtemp
1 (X, X̃) = Aut X̃ acts on |X̃|c.

Let P be the set of prime numbers and let L be a subset of P. We define

an L-integer to be a integer which is a product of elements of L. We write (p′)

for P \ {p}.
An L-tempered cover S of X is a tempered cover such that there exists a

finite étale Galois cover Y → X of index an L-integer such that S ×X Y → Y is a

topological cover. We denote by Covtemp(X)L the category of L-tempered covers.

If F is a fiber functor of Covtemp(X), we denote by πtemp
1 (X,F )L the topological
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group of automorphisms of F|Covtemp(X)L . If X̃ is a universal pro-tempered cover

of X, we define X̃L = “lim←−X̃→Y ”Y where Y runs over X̃-pointed L-tempered

covers.

If L ⊂ L′, the fully faithful functor Covtemp(X)L → Covtemp(X)L
′

induces

a morphism πtemp
1 (X,F )L

′ → πtemp
1 (X,F )L, and in particular when L′ = P, one

gets a morphism πtemp
1 (X,F )→ πtemp

1 (X,F )L.

§3.2. Decomposition group of a point

Recall the following notation: if X = X \D is a hyperbolic curve, then GX is the

dual graph of the stable reduction of (X,D), and TX is the universal cover of GX .

Moreover, if G is a graph, then V (G) denotes the set of vertices of G.

Let (X,D) be a hyperbolic marked K-curve, and let X = X \D. Let X̃ be

a universal pro-tempered cover. We define X̃L = lim←−Y Y
∞ where Y runs over the

X̃-pointed finite étale covers of X of index an L-integer, and Y∞ is the X̃-pointed

universal topological cover of Y . If p /∈ L, every morphism Z → Y of X̃-pointed

finite étale covers of X of index an L-integer induces a morphism of trees TZ → TY ;

we define TL
X to be lim←−Y TY . The family of embeddings V (TY )→ Y∞ induces an

embedding V (TL
X)→ |X̃L|.

Let z = (zY )Y be an edge of TL
X . Let (Y,DY ) be the stable model of Y and let

z̃Y be the node of Yk corresponding to the image of zY in GY . Let SzY = S(Y) ∩
π−1

Y (z̃Y ), where πY is the specialization map Y
an → Yk. Then every morphism

Y → Y ′ induces a homeomorphism SzY → SzY ′ and we define Sz = lim←−Y SzY .

Then πtemp
1 (X, X̃) acts on |X̃|c. Similarly πtemp

1 (X, X̃)L acts on |X̃L|c. Let

x ∈ |X̃|c. We denote by Dx the stabilizer of x in πtemp
1 (X, X̃), and by Dx,L its

image in πtemp
1 (X, X̃)L. The group Dx,L is the stabilizer of the image of x in |X̃L|c.

The decomposition group depends only on the image of x in X up to conjugacy.

Theorem 3.4 ([11, Cor. 3.11]). If Xα and Xβ are two hyperbolic Qp-curves, then

every (outer) isomorphism γ : πtemp
1 (Xα,Cp)(p′) ' πtemp

1 (Xβ,Cp)(p′) determines,

functorially in γ, an isomorphism of graphs γ̄ : GXα ' GXβ .

More precisely, the map x 7→ Dx,(p′) identifies the vertices of T(p′)
X with the

maximal compact subgroups of πtemp
1 (X)(p′), and two vertices x, x′ of T(p′)

X are

linked by an edge if and only if Dx,(p′)∩Dx′,(p′) 6= {1}. Therefore the isomorphism

γ : πtemp
1 (Xα,Cp)(p′) ' πtemp

1 (Xβ,Cp)(p′) induces an equivariant isomorphism of

graphs T(p′)
Xα
→ T(p′)

Xβ
, which gives γ̄ by quotienting by the action of the tempered

fundamental group.
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Proposition 3.5. Let x1 6= x2 ∈ Ṽ (X̃). Then Dx1
and Dx2

are not commensu-

rable.

Proof. Let (Y, f : X̃ → Y ) be a pointed finite étale cover of X such that f(x1) 6=
f(x2) ∈ V (Y ). Then Dxi ∩ π

temp
1 (Y, X̃) = Df(x1). But the images of Df(x1) and

Df(x2) in πtemp
1 (Y, X̃)(p′) are already not commensurable.

Corollary 3.6. Let x ∈ Ṽ (X̃). Then Dx is its own normalizer.

Proof. Let g be in the normalizer of Dx. Then Dg(x) = gDxg
−1 = Dx. Since

x, g(x) ∈ Ṽ (X̃), Proposition 3.5 tells us that x = g(x), i.e. g ∈ Dx.

According to [7, Prop. 10], if D is a compact subgroup of πtemp
1 (X,X) which

is not a pro-p group, there exists x ∈ |X̃|c such that D ⊂ Dx. Moreover, a point

x ∈ |X̃|c is in Ṽ (X̃) if and only if there exists an open finite index subgroup H ⊂
πtemp

1 (X) such that the image of Dx∩H in H(p′) is noncommutative. Therefore, the

set Ṽ (X̃) can be identified with the set of conjugacy classes of maximal compact

subgroups D of πtemp
1 (X) such that the image of D∩H in H(p′) is noncommutative

for some open finite index subgroup H of πtemp
1 (X).

§3.3. Tempered theoreticness of Berkovich topology

Let (X,D) be a Qp-marked curve and let X = X \D. If Y → X is a Galois finite

étale cover and (Y,DY ) is the stable model of Y , then XY := Y/Gal(Y/X) is a

semistable model of X.

Let us say that a topological group is temp-like if it is isomorphic to the tem-

pered fundamental group of a hyperbolic curve over Qp that satisfies resolution

of nonsingularities. We will construct, for any temp-like topological group Π, a

topological space S̃(Π) endowed with a continuous action of Π. The construction

will be purely group-theoretic, so that it will be functorial with respect to iso-

morphism of topological groups. Moreover when Π = πtemp
1 (X, X̃), we will get a

πtemp
1 (X, X̃)-equivariant homeomorphism |X̃| → S̃(πtemp

1 (X, X̃)).

Let Π be a temp-like topological group. We fix an isomorphism Π '
πtemp

1 (X, X̃) (but we will take care that the construction of S̃(Π) does not depend

on this isomorphism). Then there is a smallest normal open subgroup Π∞ such that

Π/Π∞ is torsionfree. One can also see Π∞ as the closed subgroup generated by the

compact subgroups of Π. One defines the topological group Π(p′) := lim←−N Π/N∞

where N runs through open normal subgroups of Π of finite index prime to p (such

an N is also temp-like, so that N∞ is well defined). The morphism Π→ Π(p′) has

dense image. We denote by Π(p′),∞ the kernel of Π(p′) → Π/Π∞.

If H is a normal open subgroup of Π of finite index, let Ṽ (Π)H be the set

of maximal compact subgroups D of Π such that D ∩H is not commutative. Let
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Ṽ (Π) =
⋃
H Ṽ (Π)H . The group Π acts by conjugacy on Ṽ (Π) and on Ṽ (Π)H for

every H.

Recall that there is an equivariant bijection Ṽ (X̃) → Ṽ (Π) that maps x

to Dx. More precisely, if (Y, f : X̃ → Y ) is the pointed finite étale cover of X

corresponding to H, it induces a bijection {x ∈ |X̃| : f(x) ∈ V (Y )} → Ṽ (Π)H . By

quotienting by H∞, one gets a bijection V (Y )∞ → Ṽ (Π)H/H
∞, where V (Y )∞ is

the preimage of V (Y ) under the map Y∞ → Y an.

Let H ⊂ Π be a normal open subgroup of finite index. Then H is also temp-

like: it is isomorphic to πtemp
1 (Y, X̃) for some Galois finite étale cover Y of X. Let

V (H)(p′) be the set of maximal compact subgroups of H(p′). Let E(H)(p′) be the

set of pairs of elements (D,D′) of V (H)(p′) such that D ∩D′ 6= {1}. These data

define a graph G(H)(p′). Since H is normal in Π, the group Π acts on H(p′) by

conjugacy and therefore on G(H)(p′). Note that H(p′) also acts by conjugacy on

G(H)(p′) and that the actions of Π and of H(p′) coincide on H.

According to [7, Th. 6], there is a Π-equivariant isomorphism T(p′)
Y ' G(H)(p′)

that maps a vertex x to its stabilizer Dx under the action of H(p′). If e = (D,D′) ∈
E(H)(p′), we denote De := D ∩D′ ⊂ H(p′). The group De is the stabilizer of the

image of e in T(p′)
Y for the action of H(p′) on G(H)(p′).

Let

G(H) = G(H)(p′)/H(p′) and G(H)∞ = G(H)(p′)/H(p′),∞.

Then G(H) can be identified with GY , and G(H)∞ with TY .

If D ∈ Ṽ (Π)H , the image of D ∩H in H(p′) is a maximal compact subgroup,

and therefore defines an element of V (H)(p′), hence a Π-equivariant map pH :

Ṽ (Π)H → V (H)(p′).

Moreover, the induced map p∞H : Ṽ (Π)H/H
∞ → V (H)(p′)/H(p′),∞ is bijec-

tive: indeed, the diagram

Ṽ (Π)H/H
∞ //

((

V (H)(p′)/H(p′),∞

��
V (Y∞)

is commutative and the two vertical maps are bijections.

One has H∞ ⊂ Π∞ and one gets a Π-equivariant map ι
(p′)
H,Π : H(p′) → Π(p′).

Lemma 3.7. Let D ∈ V (H)(p′). The subgroup ι
(p′)
H,Π(D) ⊂ Π(p′) is either:

• an open subgroup of D1 for a unique D1 ∈ V (Π)(p′);

• an open subgroup of De for a unique e ∈ E(Π)(p′); or

• {1}.
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Let e ∈ E(H)(p′). The subgroup ι
(p′)
H,Π(De) ⊂ Π(p′) is either:

• an open subgroup of De for a unique e ∈ E(Π)(p′); or

• {1}.

Proof. Uniqueness is clear.

Since p∞H is surjective, up to conjugating D by an element of H(p′), one can

assume that D is the image of pH . Let D0 ∈ Ṽ (Π)H be a preimage of D and

let x be the corresponding point of Ṽ (X̃). Since H ∩Dx is open in Dx, ι
(p′)
H,Π(D)

is open in the image Dx,(p′) of Dx under Π → Π(p′). Let x̃ be the image of x

in X̃(p′). If x̃ ∈ V (X̃(p′)), then Dx,(p′) ∈ V (Π)(p′); if x̃ lies on an edge e of T(p′)
X ,

then Dx,(p′) = De; otherwise, the image of x in X lies in a disk and since every

prime-to-p cover of a disk is trivial, Dx,(p′) = {1}.
If e ∈ E(H)(p′), there exists ȳ ∈ |Ỹ (p′)| such that De = Dx. Up to conjugat-

ing D by an element of H(p′), one can assume that there is x ∈ |X̃| which maps

to ȳ. Let x̄ be the image of ȳ in |X̃(p′)|. Once again, ι
(p′)
H,Π(De) is open in Dx̄. Since

ȳ /∈ V (Y )(p′), one has x̄ /∈ V (X)(p′). Therefore either x̄ lies on an edge e′ of T(p′)
X

and Dx̄ = De′ , or x lies outside the image of S(X)(p′) and Dx̄ = {1}.

We denote GΠ∞(H) = G(H)∞/Π∞. If one identifies G(H)∞ with TY ,

then GΠ∞(H) = T(XY ). The bijection p∞,−1
H induces a bijection VΠ∞(H) →

Ṽ (Π)H/Π
∞. If H ′ ⊂ H are two normal subgroups of Π, the Π-equivariant in-

jective map Ṽ (Π)H → Ṽ (Π)′H induces an injective map VΠ∞(H)→ VΠ∞(H ′).

Let e = (D1, D2) ∈ E(Π)∞. We denote

Ã
(p′)
e,H := {D ∈ V (H)(p′) | ∃ẽ ∈ E(Π)(p′), [ẽ] = e and {1} 6= ι

(p′)
H,Π(D) ⊂ Dẽ}.

The actions of H(p′),∞ and of Π∞ on V (H)(p′) stabilize Ãe,H . Let

Ae,H = (Ã
(p′)
e,H/H

(p′),∞)/Π∞.

Thus Ae,H is a subset of VΠ∞(H). An element D ⊂ Π of Ṽ (Π)H is mapped to

Ae,H by V̂ (Π)H → VΠ∞ if and only if the image of D in Π(p′) is a representative

of e. If Y → X is the pointed Galois cover corresponding to H, then Ae,H can be

identified with Az,Y , as defined in (1) where z is the node of XY corresponding

to e.

The full subgraph G(Ae,H) of GΠ∞(H) with vertices

Ae,H ∪ {iH,Π(D1), iH,Π(D2)}

is a line (indeed, the embedding |G(Ae,H)| ⊂ |TXY | ⊂ X∞ identifies |G(Ae,H)| with

Sz ' [0, 1] where z is the edge of TX corresponding to e), so that Ae,H is naturally

a totally ordered set for which D1 is the minimal element and D2 is the maximal
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one. If ē = [(D2, D1)] ∈ E(Π)∞ is the same edge of G(Π)∞ with the opposite

orientation, then there is an obvious bijection Ae,H ' Aē,H , which is decreasing.

Let H ′ ⊂ H ⊂ Π be two finite index normal subgroups of Π. The injective

map VΠ∞(H) → VΠ∞(H ′) maps Ae,H to Ae,H′ . The induced map Ae,H → Ae,H′

is increasing. Let
Ae := lim−→

H

Ae,H ,

where H runs through finite index normal subgroups of Π. By identifying Ae,H
with Az,Y , one gets an increasing bijection Ae ' Az. Since X satisfies resolution of

nonsingularities, Az can be identified with the set of points of type 2 of Sz. Thus

Ae is an ordered set which is, noncanonically, isomorphic to Q ∩ (0, 1). Let Âe be

the Dedekind completion of Ae; Âe is an ordered topological space noncanonically

isomorphic to [0, 1]. The decreasing bijections Ae,H → Aē,H are compatible and

therefore induce a homeomorphism φe : Âe → Âē. Let us denote by 0e (resp. 1e)

the minimal element of Âe. We then define the topological space

S(Π)∞ :=
(
V (Π)∞

∐
e∈E(Π)∞

Âe

)
/∼

where ∼ is generated by

∀(D,D′) ∈ E(Π)∞, D ∼ 0(D,D′), ∀e ∈ E(Π)∞ ∀x ∈ Âe, x ∼ φe(x).

Since Âe is noncanonically homeomorphic to [0, 1], S(Π)∞ is noncanonically hom-

eomorphic to the geometric realization of G(Π)∞.

If H is a finite index open normal subgroup of Π, one similarly gets a topo-

logical space S(H)∞ and the action of Π on H by conjugacy induces an action of

Π on S(H)∞.

Let ẽ ∈ E(H)(p′) and ẽ0 ∈ E(Π)(p′) be such that ι
(p′)
H,Π(Dẽ) is an open subgroup

of Dẽ0 . Let H ′ ⊂ H be an open normal subgroup of Π. Then Ãe,H′ ⊂ Ãe0,H′ as

subsets of V (H ′)(p′). This yields a map

Ae,H′ := Ãe,H′/H → Ae0,H′ := Ae0,H′ .

Since open normal subgroups of Π which are inside H are cofinal among open

normal subgroups of Π and among normal subgroups of H, by taking colimits one

gets a map
αe,e0 : Ae → Ae0 .

Lemma 3.8. There exists at most one continuous map ψH,Π : S(H)∞ → S(Π)∞

such that:

(i) if e ∈ E(H)∞ and ι
(p′)
H,Π(Dẽ) = 1, then ψH,Π is constant on Âe;

(ii) if ẽ ∈ E(H)(p′) and ẽ0 ∈ E(Π)(p′) are such that ι
(p′)
H,Π(Dẽ) is an open subgroup

of Dẽ0 , then ψH,Π|Ae = αe,e0 .
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Proof. Assume ψ and ψ′ satisfy the stated conditions. For every ẽ ∈ E(H)(p′)

such that ι
(p′)
H,Π(Dẽ) 6= 1, by (ii), ψ = ψ′ on Ae and therefore on Âe. For every

ṽ ∈ V (H)(p′) such that ι
(p′)
H,Π(Dṽ) 6= 1, there exists ẽ ∈ E(H)(p′) ending at ṽ such

that ι
(p′)
H,Π(Dṽ) 6= 1, and therefore ψ(v) = ψ(v′). Since G(Π)∞ is connected, one

can link every edge and vertex of G(Π)∞ by a finite path to a vertex such that

ι
(p′)
H,Π(Dṽ) 6= 1. Up to reducing the path one can assume that ι

(p′)
H,Π(Dẽ) = 1 for

every edge e of the path. By induction on the length of such a path, one gets

ψ = ψ′ using (i).

There is a Π-equivariant injection V (Π)(p′) → X(p′) that mapsD to the unique

x ∈ X(p′) such that D = Dx. By quotienting by Π∞, one gets a Π-equivariant

injection V (Π)∞ → X∞. Similarly, for every finite index subgroup H of Π, there

is a Π-equivariant injection V (H)∞ → Y∞, which induces by quotienting by Π∞

an injection VΠ∞(H) → X∞. If H ⊂ H ′ are two finite index normal subgroups,

the following diagram is commutative:

VΠ∞(H)

&&

// VΠ∞(H ′)

��
X∞

Let e be an edge of G(Π)∞, and let z be the corresponding node of Xk. One

gets compatible injective maps Ae,H → X∞, whose images lie in Sz, hence an

injective map fe : Ae → Sz, compatible with the reversing of edges. Since Ae is

dense in Âe, there is at most one extension of fe to a map Âe → X∞, necessarily

compatible with edges. Since X satisfies resolution of nonsingularities, the image

of Ae is exactly the set of points of type 2 in Sz. However, if X is isomorphic to

SpecOK [X,Y ]/(XY − a) in an étale neighborhood of z, then Sz can be identified

with [0, v(a)], and the set of points of type 2 of Sz is Q∩ (0, v(a)). On Ae,H iden-

tified with a finite subset of [0, v(a)], the tree structure is simply given by joining

the consecutive points. Therefore Ae → [0, v(a)] is monotone. Hence fe extends

to a unique homeomorphism f̃e : Âe → Sz that preserves the endpoints and is

compatible with the reversing of edges. By gluing these maps, one therefore gets

a continuous bijection f∞ : S(Π)∞ → S(X∞), which is a homeomorphism since

S(Π)∞ is locally compact.

Similarly, if H is a finite index open subgroup of Π, one gets a Π-equivariant

homeomorphism S(H)∞ → S(Y∞).

The composition S(H)∞ ' S(Y∞)
rXf

∞ιY−−−−−→ S(X∞) ' S(Π)∞, where f∞ is

the map Y∞ → X∞, satisfies the properties of Lemma 3.8. Therefore there exists

a unique map S(H)∞ ' S(Π)∞ with these properties.



Resolution of Nonsingularities for Mumford Curves 883

If H ′ ⊂ H are two finite index open subgroups of Π, then, since H is also

temp-like, there exists a unique map S(H ′)∞ → S(H)∞ with the properties of

Lemma 3.8 and this map is Π-equivariant by uniqueness. If H ′′ ⊂ H ′, then the

diagram

S(H ′′)∞

%%

// S(H ′)∞

��
S(H)∞

is commutative. One therefore gets a projective system (S(H)∞) and one defines

S̃(Π) = lim←−
H

S(H)∞.

The equivariant homeomorphisms induce a Π-equivariant homeomorphism

S(H)∞ → S(Y∞)

induce a Π-equivariant homeomorphism

S̃(Π)→ lim←−
Y

S(Y∞).

The maps |X̃|c → Y
∞ rY−−→ S(Y∞) are compatible and therefore induce a

Π-equivariant map |X̃|c → lim←−Y S(Y∞).

Lemma 3.9. The map |X̃|c → lim←−Y S(Y∞) is a homeomorphism.

Proof. First let us show that the map r : X
an

= |X̃|c/Π → lim←−Y S(Y∞)/Π =

lim←−Y S(XY ) is a homemorphism (the proof is similar to the proof of Prop. 1.1).

Since rXY : X
an → S(XY ) is surjective for every Y , and X

an
is compact, r is

surjective. Let x1 6= x2 ∈ X
an

; we will show that r(x1) 6= r(x2). One can assume

rX(x1) = rX(x2). Let [x1, x2] be the smallest subset of X containing x1 and x2,

endowed with the total order such that x1 < x2. Let y1 < y2 be two points of type

2 in [x1, x2] and let Y → X be a finite Galois cover such that y1, y2 ∈ V (XY ).

Then rXY (x1) < y1 < y2 < rXY (x2) in [x1, x2], which proves the injectivity of rXY
and therefore of r. Since X

an
is compact, r is a homeomorphism.

By pulling back along S(X∞)→ S(X), one finds that

r∞ : X
∞

= X
an ×S(X) S(X∞)→ lim←−

Y

S(XY )×S(X) S(X∞) = lim←−
Y

S(X∞Y )

is a homeomorphism.

Similarly, the map Y
∞ → lim←−Z S(Y∞Z ), where Z runs through Galois pointed

covers of Y (one can even restrict to Z over Y Galois over X since they are

cofinal among Galois pointed covers of Y ), is a homeomorphism for every Y Galois.
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Therefore the map

|X̃|c → lim←−
Z→Y→X

S(Y∞Z )→ lim←−
Z

S(Z∞)

is a homeomorphism (the right arrow is a homeomorphism because the full sub-

category of the category of morphisms Y → Z of pointed Galois covers over X

which consists of isomorphisms is a cofinal category).

One thus gets an equivariant homeomorphism

(3) S̃(Π)→ |X̃|c.

Let (X,D) be a Qp-marked curve and let X = X \D. If Y → X is a Galois

finite étale cover and (Y,DY ) is the stable model of Y , then XY := Y/Gal(Y/X) is

a semistable model of X and one gets a refinement φY : GY/X := GY /Gal(Y/X) =

GYs/Gal(Y/X) → GX .

If X satisfies nonresolution of singularities, the family (Y/Gal(Y/X))Y is

cofinal among semistable models of X. Thus, if e ∈ E(X), Ae = lim−→AφY ,e and

X
an → lim←−Y |GY/X |can is a homeomorphism.

Theorem 3.10. Let X1 = X1 \ D1 and X2 = X2 \ D2 be two marked curves

satisfying resolution of nonsingularities and let X̃i be a universal pro-tempered

cover of Xi. Let ψ : πtemp
1 (X1, X̃1) ' πtemp

1 (X2, X̃2) be an isomorphism. Then

there exists a unique homeomorphism ψ̄ : |X̃1|c → |X̃2|c which is πtemp
1 -equivariant

in the sense that the following diagram commutes:

πtemp
1 (X1, X̃1)× |X̃1|c //

ψ×ψ̄
��

|X̃1|c

ψ̄
��

πtemp
1 (X2, X̃2)× |X̃2|c // |X̃2|c

In particular, by quotienting by the tempered fundamental group, one gets a hom-

eomorphism

X
an

1 → X
an

2 .

Proof. First, assume ψ̄1, ψ̄2 : |X̃1|c → |X̃2|c are two πtemp
1 -equivariant homeo-

morphisms. Then, if x ∈ |X̃1|c, one has ψ(Dx) = Dψ̄1(x) = Dψ̄2(x). If x is in

Ṽ (X̃1), then there exists an open subgroup H of πtemp
1 (X1, X̃1) of finite index

such that (Dx ∩H)(p′) is not commutative. Then ψ(H) is a finite index subgroup

of πtemp
1 (X2, X̃2), and (Dψ̄1(x)∩ψ(H))(p′) and (Dψ̄2(x)∩ψ(H))(p′) are not commu-

tative. Therefore ψ̄1(x) and ψ̄2(x) are of type 2 and have the same decomposition
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group: according to Proposition 3.5, ψ̄1(x) = ψ̄2(x) for every point of Ṽ (X̃1). Since

Ṽ (X̃1) is dense in |X̃1|c, one has ψ̄1 = ψ̄2.

The morphism ψ induces an equivariant homeomorphism

S̃(πtemp
1 (X1, X̃1))→ S̃(πtemp

1 (X2, X̃2)).

One gets from (3) equivariant homeomorphisms |X̃1|c → S̃(πtemp
1 (X1, X̃1)) and

|X̃2|c → S̃(πtemp
1 (X2, X̃2)). The desired isomorphism is obtained by composition.

Proposition 3.11. Let ψa, ψb : πtemp
1 (X1, X̃1) → πtemp

1 (X2, X̃2) be two isomor-

phisms. If ψ̃a = ψ̃b, then ψa = ψb.

Proof. Let g ∈ πtemp
1 (X1, X̃1). If x1 ∈ |X̃1|, then

ψa(g)Dψ̃a(x1)ψa(g)−1 = Dψ̃a(gx1) = Dψ̃b(x1) = ψb(g)Dψ̃b(x1)ψb(g)−1(4)

= ψb(g)Dψ̃a(x1)ψb(g)−1,

which implies that g0 := ψa(g)−1ψb(g) is in the normalizer Nψa(x1) of Dψa(x1).

Since ψa is bijective, g0 ∈
⋂
x2∈X̃2

Nx2 . If x2 ∈ Ṽ (X̃2), then Nx2 = Dx2 . Therefore

g0(x2) = x2 for every x2 ∈ Ṽ (X̃2). Since X2 satisfies resolution of nonsingularities,

Ṽ (X̃2) is dense in X̃2, and thus g0(x) = x for every x ∈ X̃2. If x is of type 1, then

Dx = {1}. Therefore g0 = 1, i.e. ψa(g) = ψb(g).

In particular, if (X, X̃) is a pointed curve satisfying resolution of nonsingu-

larities, one has an injective morphism of groups Autπtemp
1 (X, X̃)→ Aut |X̃|.

§4. Tate curves

Let q1, q2 ∈ Qp be such that |q1| < 1 and |q2| < 1. Let Ei = Gm/q
Z
i and let

Xi = Ei \ {1}.
If there exists σ ∈ GQp

such that q1 = σ(q2), there is a Cp-isomorphism

X1 ' X2 ⊗Cp Cp where the base change Cp → Cp is σ. Therefore X1 and X2

are isomorphic analytic spaces over Qp and therefore have isomorphic tempered

fundamental groups. The following theorem states that the converse is also true:

Theorem 4.1. Let ψ : πtemp
1 (X1, X̃1) ' πtemp

1 (X2, X̃2) be an isomorphism. There

exists σ ∈ GQp such that q1 = σ(q2), i.e. E1 and E2 are isomorphic analytic spaces

over Qp.

Remark. The curves X1 and X2 satisfy the assumptions of Theorem 3.10, and

thus ψ induces a homeomorphism Ean
1 → Ean

2 . However, the author does not know,
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even in this situation, if this homeomorphism comes from an analytic morphism.

The author does not know how to associate to ψ a particular σ.

Proof of Theorem 4.1. Recall that |q1| = |q2| and that ψ induces a unique equiv-

ariant homeomorphism ψ̃ : |X̃1|c ' |X̃2|c. The induced homeomorphism E1 ' E2

maps X1 onto X2. Let Ωi be the universal X̃i-pointed topological cover of Xi, and

ψ̄ : |Ω1| → |Ω2| the homeomorphism induced by ψ̃.

Let Ei,l be the unique X̃i-pointed connected topological cover of Ei of de-

gree l. Let Xi,l = Xi ×Ei Ei,l. The isomorphism ψ induces an isomorphism

ψl : πtemp
1 (X1,l, X̃1)→ πtemp

1 (X2,l, X̃2), whence an isomorphism

ψl,n : H1(X2,l, µn)→ H1(X1,l, µn)

functorial in l for divisibility.

Let Gi be the semigraph of Xi and let Ti be its universal cover. Let g be the

isomorphism T1 → T2 induced by ψ. One identifies Ωi with Gm in such a way

that ψ̄(1) = 1 and ψ̄(q1) = q2. If j ∈ Z, we denote by ei,j the cuspidal edge of Ti
corresponding to qji ∈ Ωi \Ωi and by vi,j the vertex of Ti at which ei,j ends. Since

ψ̄(1) = 1 and ψ̄(q1) = q2, one has g(e1,j) = e2,j and g(v1,j) = v2,j . We denote by

e′i,j the unique oriented edge joining vi,j to vi,j+1.

All the cohomology groups will be cohomology groups for étale cohomology

in the sense of algebraic geometry or in the sense of Berkovich (one can replace

étale cohomology of Xan by étale cohomology of X thanks to [4, Thm. 3.1]). Since

Γl ' Z, one has H2(Γ, µn) = 0. Therefore the spectral sequence

Hp(Γl, H
q(Ω, µn)) ⇒ Hn(Xi,l, µn)

of the Galois étale cover Ωi → Xi,l gives us an exact sequence of cohomology

groups for Berkovich étale topology:

1→ Hom(Γl, µn)→ H1(Xi,l, µn)→ H1(Ωi, µn)Γl → 1.

The map O∗(Ωi)/O
∗(Ωni ) → H1(Ωi, µn) given by Kummer theory (see [3, Prop.

4.1.7] for the Kummer exact sequence in Berkovich étale topology) induces a mor-

phism

(O∗(Ωi)/O
∗(Ωi)

n)Γl → H1(Ωi, µn)Γl ,

which turns out to be an isomorphism (cf. [8, §1.4.2]); hence an exact sequence

1→ Hom(Γl, µn)→ H1(Xi,l, µn)→ (O∗(Ωi)/O
∗(Ωi)

n)Γl → 1.

where Γl = Gal(Ωi/Xi,l).

One can describe O∗(Ωi) in terms of currents (as done in [14] for Mumford

curves). If A is a ring, an A-current on Ti is a function c : {ei,j}j∈Zq{e′i,j}j∈Z →A
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such that for every j ∈ Z, c(e′i,j+1) = c(e′i,j) + c(ei,j+1). Let C(Ti, A) be the A-

module of A-currents on Ti. There is a natural isomorphism αi : C(Ti,Z) →
O∗(Ωi)/C

∗
p defined by

αi(c) = xc(e
′
i,0)
∏
j≥1

(
x− qji
x

)c(ei,j) ∏
j≤0

(
x− qji
qji

)c(ei,j)
.

Conversely, if f ∈ O∗(Ωi), one can compute α−1
i (f) in the following way. For every

j ∈ Z, the restriction of f to the open annulus Uj = {z ∈ P1,an | |qji | < |x|z <
|qj+1
i |} can be written in a unique way as f(x) = xmjgj(x) where mj ∈ Z and |gj |

is constant on Uj . One has α−1
i (f)(e′i,j) = mj . Similarly, the restriction of f to the

punctured open disk Vj = {z ∈ P1,an | 0 < |x − qji |z < |q
j
i |} can be written in a

unique way as f(x) = xnjfj(x) where nj ∈ Z and |fj | is constant on Vj . One has

α−1
i (f)(ei,j) = nj .

Therefore, one gets an isomorphism αi,n : O∗(Ωi)/O
∗(Ωi)

n → C(Ti,Z/nZ),

hence an exact sequence

1→ Hom(Γl, µn)→ H1(Xi,l, µn)→ C(Ti,Z/nZ)Γl → 1.

Since lim−→l
Hom(Γl, µn) = 0, it induces an isomorphism

ai : lim−→
l

H1(Xi,l, µn)→ C(Ti,Z/nZ)(Γ),

where C(Ti,Z/nZ)(Γ) is the set of Z/nZ-currents on Ti that are invariant under

some finite index subgroup of Γ.

Consider the diagram

lim−→l
H1(X2,l, µn)

f :=lim−→l
ψl,n
//

a1

��

lim−→l
H1(X1,l, µn)

a2

��
C(T2,Z/nZ)(Γ) g∗ // C(T1,Z/nZ)(Γ)

where the lower arrow is induced by g : T1 → T2.

The following lemma shows that this diagram is commutative up to a constant

in (Z/nZ)∗ (cf. [8, Prop. 13] for a similar result for Mumford curves of genus greater

than 2).

Proposition 4.2. There exists a unique α ∈ (Z/nZ)∗ such that a2f = αg∗a1.

Proof. Let f̃ = a2fa
−1
1 . We have to show that there exists λ ∈ (Z/nZ)∗ such that

for every c ∈ C(T2,Z/nZ)(Γ) and every edge e of T1, f̃(c)(e) = λc(g(e)).
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Let j ∈ Z. According to [9, Lem. 4.2], a finite cover of X1,l is ramified at e1,j

if and only if the corresponding cover of X2,l is unramified at e2,j . Therefore

f̃(c)(e1,j) = 0 if and only if c(e2,j) = 0. Therefore there exists λj ∈ (Z/nZ)∗

such that f̃(c)(e1,j) = λjc(e2,j) for every c ∈ C(T2,Z/nZ)(Γ). Let l be a positive

integer. Let j ∈ Z and let cj be the Γl-invariant current defined by

cj(e1,k) =


1 if k = j mod l,

−1 if k = j + 1 mod l,

0 otherwise,

cj(e
′
1,k) =

{
0 if k ∈ [j + 1, j + l − 1] mod l,

1 if k = j mod l.

If l is large enough (for example if l ≥ 2 + 2(vp(n) + 2)/|q1| according to [9, Cor.

4.10]), the µn-torsor corresponding to cj is split at v1,j+d(l+1)/2e. Therefore, the

µn-torsor corresponding to f̃(ce) is split at v2,j+d(l+1)/2e, which implies, according

to [9, Prop. 4.11], that f̃(cj) is zero at all the edges ending at v2,j+d(l+1)/2e. Then

f̃(cj)(e2,j) = λj , f̃(cj)(e2,j+1) = λj+1, f̃(cj)(e2,k) = 0 for all k 6= j, j + 1 mod l,

and is zero for some noncuspidal edge between v2,j+1 and v2,j+l. Therefore f̃(cj) =

λjg
∗(cj) and λj = λj+1. Thus λj does not depend on j, and we simply denote it

by λ. The group of Γl-equivariant currents is generated by (cj)j∈[0,2l−1] so that

f̃(c) = λg∗(c) for every current c, which ends the proof.

Let Ai be the multiplicative group of nonzero meromorphic functions on Gm

with no poles and no zeroes on Ωi ⊂ Gm. Let Bi ⊂ Ai be the subgroup of Ai
consisting of all functions for which 1 is neither a pole nor a zero. Let A′i ⊂ Ω1(Ωi)

be the group of regular differentials on Gm with no poles on Ωi.

The map d log ◦ αi : C(Ti,Z) → A′i can be extended by linearity to a map

δi : C(Ti,Zp)→ A′i defined by

δi(c) = c(e′i,0)
dx

x
+
∑
j≥1

c(ei,j)

(
dx

x− qji
− dx

x

)
+
∑
j≤0

c(ei,j)
dx

x− qji
.

If z ∈ Gm(Cp) and ω ∈ A′i, we denote by ordz(ω) ∈ Z≥−1 the (x−z)-adic valuation

of ω
dx ∈

1
x−zCp[[x− z]].

Lemma 4.3. Let c be in C(T1,Zp), and let z ∈ Gm(Cp). Assume that ψ̄(z) is

also of type 1, i.e. ψ̄(z) ∈ Gm(Cp). Then ordz(δ1(c)) = ordψ̄(z)(δ2(g∗(c))).

Proof. Let J = {j ∈ Z | C(e1,j) 6= 0}. For z = qj1 with j ∈ J , one has ψ̄(qj1) = qj2
and thus ordqj1

(δ1(c)) = ordqj2
(δ2(g∗(c))) = −1. One can thus assume that z ∈

Gm(Cp) \ {qj1}j∈J and therefore ordz(δ1(c)), ordψ̄(z)(δ2(g∗(c))) ≥ 0.
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Let cn ∈ C(T1,Z)(Γ) be such that |cn(e1,j)− c(e1,j)|, |cn(e′1,j)− c(e′1,j)| ≤ p−n

if −|j|∞ logp |q1| ≤ n+ p/(p− 1).

Then δ1(cn) → δ1(c) on every affinoid subspace of Gm \ {qj1}j∈J . Similarly

δ2(g∗(cn))→ δ2(g∗(c)) on every affinoid subspace of Gm \ {qj2}j∈J . Therefore

ordz(δ1(c)) ≥ m ⇔ ∀ε > 0 ∃N ∀n ≥ N,
∑

z′∈D(z,ε)

ordz′(δ1(cn)) ≥ m.

Therefore it is enough to prove the lemma for every cn. Assume c ∈ C(T1,Z)(Γ).

Let N be such that c ∈ C(T1,Z)ΓN . The isomorphism ψ induces an isomorphism

ψN : πtemp
1 (X1,N )→ πtemp

1 (X2,N ).

Consider the image Y1 of c under the map

C(T1,Z)→ O∗(Ω1)→ H1(Ω1,Zp(1)),

and let Y1,n be the induced µpn -torsor on Ω1; it extends to an unramified µpn -

torsor of Ω1 \{qj1}j∈J . Let z1,n be the point of Ω1 such that Y1,n is not split at z1,n

but is split on [z, z1,n). Consider the image Y2 of g∗(c) under the map C(T2,Z)→
O∗(Ω2)→ H1(Ω2,Zp(1)), let Y2,n be the induced µpn -torsor on Ω2, and let z2,n be

the point of Ω2 such that Y2,n is not split at z2,n but is split on [ψ̄(z), z2,n). Since c

is ΓN -invariant, Yi,n is in the image of Hom(πtemp
1 (Xi,N ), µpn) = H1(Xi,N , µpn)→

H1(Ωi, µpn). For every preimage βi of Yi,n in Hom(πtemp
1 (Xi,N ), µpn), Yi,n is split

at a point z′ ∈ Gm if and only if Dz′ ⊂ Kerβi, where Dz′ is a decomposition group

of z′ in πtemp
1 (Xi,N ). According to Proposition 4.2, there exists α ∈ (Z/pnZ)∗

such that, if β1 is a preimage of Y1,n in Hom(πtemp
1 (X1,N ), µpn), then αβ1ψ

−1
N is a

preimage of Y2,n in Hom(πtemp
1 (X2,N ), µpn). Since Ker(αβ1ψ

−1
N ) = ψ(Kerβ1) and

Dψ̄(z′) = ψN (Dz′), one finds that Y1,N is split at z′ if and only if Y2,N is split at

ψ̄(z′), and therefore z2,n = ψ̄(z1,n).

Let c0 ∈ C(T1,Z)Γ be defined by c0(e1,i) = 0 and c0(e′1,i) = 1 for every

i ∈ Z. Then α1(c0)(x) = x and α2(g∗c0)(x) = x. Let φ1,n (resp. φ2,n) be a

preimage of c0 mod pn (resp. g∗c0 mod pn) by the map Hom(πtemp
1 (X1, X̃1), µpn) =

H1(X1, µpn) → C(T1, µpn)Γ (resp. Hom(πtemp
1 (X2, X̃2), µpn) = H1(X2, µpn) →

C(T2, µpn)Γ). Let z′1,n= bz,|z|p−n−1/(p−1) ∈Gm and z′2,n= b
ψ̄(z),|ψ̄(z)|p−n−

1
p−1
∈Gm.

According to [9, Lem. 4.2], z′1,n is characterized in Gm by the fact that ccan,pn is not

split at z′1,n but is split above [z, z′1,n). Therefore z′1,n is also characterized by the

fact that Dz′1,n
* Kerφ1,n and Dz′ ⊂ Kerφ1,n for every z′ ∈ [z, z′1,n). Similarly,

z′2,n is characterized by the fact that Dz′2,n
* Kerφ2,n and Dz′ ⊂ Kerφ2,n for

every z′ ∈ [z, z′2,n). According to 4.2, one can choose φ2,n to be αφ1,nψ
−1, so

that Kerφ2,n = ψ(Kerφ1,n). Therefore, since ψ̄ is compatible with decomposition

groups, z′2,n = ψ̄(z′1,n).
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Using Proposition 2.4, one gets

ordz(δ1(c)) + 1 = lim
n

1

n
inf{m | z′1,m ∈ [z, z1,n]}

= lim
n

1

n
inf{m | ψ̄(z′1,m) ∈ [ψ̄(z), ψ̄(z1,n)]}

= lim
n

1

n
inf{m | z′2,m ∈ [ψ̄(z), z2,n]} = ordψ̄(z)(δ2(g∗c)) + 1.

Let µ : N>0 → {−1, 0, 1} be the Möbius function. Let n ≥ 1. Let cn ∈
C(T1,Z) be defined by

• cn(e1,j) = 0 if j ≤ 0;

• cn(e′1,j) = 0 if j ≤ 0;

• cn(e1,j) = µ(j/n) if j ≥ 1 and j = 0 mod n;

• cn(e1,j) = 0 if j ≥ 1 and j 6= 0 mod n;

• cn(e′1,j) =
∑bj/nc
k=1 µ(k) if j ≥ 1.

The associated differentials are:

δ1(cn) =
∑
j≥1

µ(j)

(
1

x− qnj1

− 1

)
dx, δ2(g∗(cn)) =

∑
j≥1

µ(j)

(
1

x− qnj2

− 1

)
dx.

By evaluating δ1(cn) and δ2(g∗(cn)) at 1 in Cpdx, one gets

δ1(cn)(1) =
∑
j≥1

µ(j)
qjn1

1− qjn1
dx =

∑
j≥1

∑
k≥1

µ(j)qkjn1 dx =
∑
d≥1

∑
j|d

µ(j)qdn1 dx = qn1 dx,

and similarly δ2(g∗(cn))(1)=qn2 dx. Let c0 be defined by c0(e1,j)=0 and c0(e1,j)=1.

Then δ1(c0) = δ2(g∗(c0)) = dx
x and δ1(c0)(1) = δ2(g∗(c0))(1) = dx.

If P =
∑
n≥0 anX

n ∈ Zp[X], let cP =
∑
n 6=0 ancn ∈ C(T1,Zp), so that

δ1(cP )(1) = P (q1)dx and δ2(g∗(cP ))(1) = P (q2)dx.

According to Lemma 4.3, δ1(cP )(1) = 0 if and only if δ2(g∗(cP ))(1) = 0.

Therefore P (q1) = 0 if and only if P (q2) = 0 for every P ∈ Zp[X], which implies

the result.
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