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Spectral Analysis of a Quantum System with a
Double Line Singular Interaction

by

Sylwia Kondej and David Krejčiř́ık

Abstract

We consider a non-relativistic quantum particle interacting with a singular potential
supported by two parallel straight lines in the plane. We locate the essential spectrum
under the hypothesis that the interaction asymptotically approaches a constant value,
and find conditions which guarantee either the existence of discrete eigenvalues or Hardy-
type inequalities. For a class of our models admitting mirror symmetry, we also establish
the existence of embedded eigenvalues and show that they turn into resonances after
introducing a small perturbation.
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§1. Introduction

The problem we study in this paper belongs to the line of research often called

singular perturbations of Schrödinger operators. Let us consider a non-relativis-

tic quantum particle confined to a semiconductor structure Σ ⊂ R3. Suppose the

particle has a possibility of tunnelling, so the whole R3 forms the configuration

space. On the other hand, if the device Σ is narrow in a sense, we can make an

idealization and assume that Σ is a set of lower dimension, for example, a surface,

a curve or dots in R3. Consequently, we come to the model of quantum systems

with potential interaction supported by a null set. The interaction can vary on Σ;

let a function V : Σ→ R denote the potential strength. Then the Hamiltonian of
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such a quantum system can be symbolically written as

(1.1) −∆ + V δ(· − Σ),

where−∆ denotes the Laplace operator in L2(R3) and δ is the Dirac delta function.

In view of singular interactions with translational symmetry, it also makes sense

to consider one- and two-dimensional analogues of (1.1).

There are a lot of papers devoted to analysing the relation between the ge-

ometry of Σ and spectral properties of the Hamiltonian with delta interactions of

constant strength [6, 11, 12, 13, 15, 16]; we also refer to the monographs [2, 3]

with many references. Delta-type potentials supported on infinite curves and sur-

faces are used in particular for mathematical modelling of leaky quantum wires

and graphs [9, 4].

The simplest known model belonging to the class described by (1.1) is given

by N quantum dots in one dimension [2, Chap. I.3, II.2]. Then Σ := {xi}N−1
i=0 and

V (xi) := −αi ∈ R. For one point interaction (i.e. N = 1, α0 =: α) the system

has one negative eigenvalue −α2/4 if, and only if, α is positive. In the case of two

point interactions of equal strength (i.e. N = 2, α0 = α1 =: α) at distance 2a from

each other, there is one negative eigenvalue ξ0 if, and only if, 0 < αa ≤ 1 or two

eigenvalues ξ0 < ξ1 whenever αa > 1.

The problem we discuss in this paper can be considered as a generalization

of the two quantum dots in two respects. First, our model is two-dimensional,

with the set Σ being one-dimensional. Second, the generalized geometry enables

us to consider potentials V of variable strength. More specifically, we consider the

singular set Σ composed of two infinite lines

(1.2) Σ := Σ− ∪ Σ+ with Σ± := R× {±a}

in R2 and

(1.3) V (x) :=

{
−α+ V+(x) if x ∈ Σ+,

−α+ V−(x) if x ∈ Σ−,

with V± : Σ± → R and α > 0. In the physical setting described above, the negative

part −α of V models the confinement of the particle to Σ, while V± can be thought

of as a perturbation.

Our first aim is to find a self-adjoint realization in L2(R2) of (1.1) with (1.2)–

(1.3). We will apply the form-sum method and the resulting operator will be called

Hα,V+,V− . Note that the delta potential in our model does not vanish at infinity

even if V± do (just because α is assumed to be positive). This means that we may

expect that the essential spectrum of Hα,V+,V− will differ from the spectrum of the
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free Hamiltonian in R2. In our setting, the role of the unperturbed Hamiltonian is

played by Hα,0,0.

For the unperturbed Hamiltonian, translational symmetry allows us to de-

compose the operator as follows:

(1.4) Hα,0,0 ' (−∆R)⊗ 1 + 1⊗ (−∆R
α) on L2(R)⊗ L2(R),

where −∆R is the free one-dimensional Hamiltonian and −∆R
α governs the afore-

mentioned one-dimensional system with two point interactions. The non-negative

semi-axis is the spectrum of −∆R. On the other hand, as already mentioned, the

spectrum of −∆R
α is

σ(−∆R
α) = σdisc(−∆R

α) ∪ [0,∞),

with the negative eigenvalues (cf. Lemma 2.3 and Figure 1)

σdisc(−∆R
α) =

{
{ξ0} if 0 < αa ≤ 1,

{ξ0, ξ1} if αa > 1,

(the discrete spectrum is empty in the other situations, which are excluded here

by the assumption α > 0). Recalling the ordering ξ0 < ξ1 (if the latter eigenvalue

exists), we conclude that (irrespective of the value of αa)

(1.5) σ(Hα,0,0) = σess(Hα,0,0) = [ξ0,∞).

The main results of the paper can be formulated as follows.

• Definition of the Hamiltonian and its resolvent. The definition of the Hamiltonian

Hα,V+,V− by use of the form-sum method is given in Section 2. We also derive a

Krein-like formula for the resolvent of Hα,V+,V− as a tool for further discussion.

• Essential spectrum. In Section 3 we find a weak condition guaranteeing the

stability of the essential spectrum of Hα,V+,V− with respect to Hα,0,0. We show

that if V± vanish at infinity then

(1.6) σess(Hα,V+,V−) = σess(Hα,0,0) = [ξ0,∞).

The strategy of our proof is as follows. Using a Neumann bracketing argument

together with the minimax principle, we get inf σess(Hα,V+,V−) ≥ ξ0. The opposite

inclusion σess(Hα,V+,V−) ⊇ [ξ0,∞) is obtained by applying the Weyl criterion

adapted to sesquilinear forms.

• Discrete and embedded eigenvalues. The point spectrum is investigated in Sec-

tion 4. We show that the bottom of the spectrum of Hα,V+,V− starts below ξ0
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provided that the sum V+ + V− is negative in an integral sense. Assuming addi-

tionally that V± vanish at infinity and combining this with the previous result on

the essential spectrum, we therefore obtain

(1.7) σdisc(Hα,V+,V−) 6= ∅.

The proof is based on finding a suitable test function in the variational definition

of the spectral threshold. We also find conditions which guarantee the existence of

embedded eigenvalues in the system with mirror symmetry, i.e. when V+ = V−.

• Hardy inequalities. The case of repulsive singular potentials, i.e. V± ≥ 0, is

studied in Section 5. In order to quantify the repulsive character of the singular

potential, we derive Hardy-type inequalities

(1.8) Hα,V+,V− − ξ0 ≥ %

in the form sense, where % : R → [0,∞) is not identically zero. The functional

inequality (1.8) is useful in the study of spectral stability of Hα,V+,V− ; indeed,

it determines a class of potentials which can be added to our system without

producing any spectrum below ξ0.

• Resonances. Finally, in Section 6 we show that breaking the mirror symmetry

by introducing a “perturbant” function Vp on one of the lines, for example

V+ = V0 + εVp, V− = V0,

leads to resonances. These resonances are localized near the original embedded

eigenvalues νk appearing when ε = 0. More precisely, they are determined by

poles of the resolvent which take the form

zk = νk + µk(ε) + iυk(ε),

where µk(ε) = akε + O(ε2) with ak corresponding to the first order perturbation

term and υk(ε) = bkO(ε2) where bk < 0 establishes the Fermi golden rule.

Let us conclude this introductory section by pointing out some special no-

tations frequently used throughout the paper. We abbreviate L2 := L2(R2) and

L2
± := L2(R × {±a}). We also briefly write Wn,2 := Wn,2(R2) for the corre-

sponding Sobolev spaces. The inner product and norm in L2 are denoted by (·, ·)
and ‖ · ‖, respectively. Given a self-adjoint operator H, the symbols σι(H) with

ι ∈ {ess, ac, sc,p,disc} denote, respectively, the essential, absolutely continuous,

singularly continuous, point and discrete spectrum of H. We use the symbol 1 to

denote the identity operators acting in various Hilbert spaces.
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§2. The Hamiltonian and its resolvent

Let V+ and V− be two real-valued functions from L∞(R). Given a positive num-

ber a, we also denote by V+ and V− the functions V+⊗ 1 and V−⊗ 1 on R×{+a}
and R× {−a}, respectively. Finally, let α be a positive constant.

§2.1. The self-adjoint realization of the Hamiltonian

Let us consider the quadratic form

Eα,V+,V− [ψ] :=

∫
R2

|∇ψ|2 +

∫
R×{+a}

(V+ − α)|I+ψ|2 +

∫
R×{−a}

(V− − α)|I−ψ|2,

D(Eα,V+,V−) := W 1,2.

Here I± are the trace operators associated with the Sobolev embedding W 1,2 ↪→
L2
±. The corresponding sesquilinear form will be denoted by Eα,V+,V−(·, ·).

The form Eα,V+,V− is clearly densely defined and symmetric. Moreover, the

boundary integrals can be shown to be a relatively bounded perturbation of the

form E0,0,0 with relative bound less than 1. This is a consequence of the bounded-

ness of V± and the following result.

Lemma 2.1. For every ψ ∈W 1,2 and ε ∈ (0, 1), we have

(2.9) ‖I±ψ‖2L2
±
≤ 1

ε
‖ψ‖2L2 + ε‖∂2ψ‖2L2 .

Proof. For every ε ∈ (0, 1) and ψ ∈ C∞0 (R2), we have the bound

|ψ(x1,±a)|2 =

∫ ±a
−∞

∂2|ψ|2(x1, x2) dx2 = 2<
∫ ±a
−∞

ψ(x1, x2)∂2ψ(x1, x2) dx2

≤ 1

ε

∫
R
|ψ(x1, x2)|2 dx2 + ε

∫
R
|∂2ψ(x1, x2)|2 dx2.

Integrating over x1, we therefore get (2.9) for ψ ∈ C∞0 (R2). By density, the in-

equality extends to W 1,2.

Remark 2.2 (Relation to the generalized Kato class). Inequality (2.9) repre-

sents a quantification of the embedding W 1,2 ↪→ L2
±. If the support of the singular

potential has a more complicated geometry we can derive a generalization of (2.9).

Consider a Radon measure µ on R2 with support on a C1 curve (finite or in-

finite) without self-intersections and “near-self-intersections” (see [5, Sec. 4] for

precise assumptions). Such a measure belongs to the generalized Kato class (cf. [5,

Thm. 4.1]), and consequently for any a > 0 there exists b > 0 such that∫
R2

|ψ|2 dµ ≤ b‖ψ‖2L2 + a‖∇ψ‖2L2 for every ψ ∈W 1,2.
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Since E0,0,0 is clearly closed and non-negative (it is in fact associated with

the free Hamiltonian in R2), it follows from the KLMN theorem [25, Thm. X.17]

together with Lemma 2.1 that Eα,V+,V− is closed and bounded from below. Conse-

quently, there exists a unique bounded-from-below self-adjoint operator Hα,V+,V−

in L2 which is associated with Eα,V+,V− . (Notice that the sign of α plays no role

in the definition of Hα,V+,V− .)

Finally, let us note that Hα,V+,V− is indeed a natural realization of the formal

expression (1.1) with (1.2)–(1.3). As a matter of fact, our form Eα,V+,V− repre-

sents a closed extension of the form associated with the expression (1.1) initially

considered as acting on smooth functions rapidly decaying at the infinity of R2.

§2.2. The transverse Hamiltonian

Recall the decomposition (1.4) for the unperturbed Hamiltonian Hα,0,0. Here the

“transverse” operator −∆R
α is associated with the form

εα[φ] :=

∫
R
|φ′|2 − α|φ(+a)|2 − α|φ(−a)|2, D(εα) := W 1,2(R).

Note that the boundary values have a meaning in view of the embedding W 1,2(R)

↪→ C0(R). It is easy to verify that D(−∆R
α) consists of all functions ψ ∈W 1,2(R)∩

W 2,2(R \ {−a,+a}) satisfying the interface conditions

(2.10) ψ′(±a+ 0)− ψ′(±a− 0) = −αψ(±a),

where ψ′(a ± 0) := limε→0+ ψ′(a ± ε), and that −∆R
αψ = −ψ′′ on R \ {−a,+a}.

An alternative way of introducing −∆R
α is via extension theory [2, Chap. II.2].

Due to [2, Thm. 2.1.3], we have σess(−∆R
α) = σac(−∆R

α) = [0,∞). The struc-

ture of the discrete spectrum depends on the value of αa.

Lemma 2.3. The operator −∆R
α has exactly two negative eigenvalues if αa > 1

and exactly one negative eigenvalue if 0 < αa ≤ 1.

Proof. Let κ > 0. Solving the eigenvalue problem −ψ′′ = −κ2ψ on R\{−a,+a} in

terms of exponential functions decaying at infinity and using the continuity of ψ

and (2.10), it is straightforward to see that the algebraic equation

(2.11)
α2

4
e−4κa =

(
κ− α

2

)2

represents a sufficient and necessary condition for −κ2 ∈ σp(−∆R
α). (Alternatively,

one could directly use [2, eq. (2.1.33)].) Clearly, equation (2.11) is equivalent to
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g1(κ)− g2(κ) = 0 with

(2.12) g1(κ) :=
α

2
e−2κa and g2(κ) :=

∣∣∣∣κ− α

2

∣∣∣∣.
Since the exponential function g1 is positive and decreasing and g2 is increasing

in (α/2,∞) with g2(α/2) = 0, there exists exactly one solution κ0 > α/2 of (2.11)

for any α > 0. Since g1 is strictly convex and g1(0) = g2(0), and since the graph

of g2 is a straight line for κ ∈ (0, α/2) with g′2(0) = −1, the existence of another

(at most one) solution κ1 ∈ (0, α/2) is determined by the derivative of g1 at 0.

Obviously, g′1(0) ≥ −1 if, and only if, αa ≤ 1. We set ξ0 := −κ2
0 and ξ1 := −κ2

1 (if

the latter value exists).

0.5 1.0 1.5 2.0
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Figure 1. Emergence of the discrete eigenvalues ξ0, ξ1 of −∆R
α from the essential

spectrum as α increases for a = 1.

We refer to Figure 1 for the dependence of the discrete spectrum on αa.

The eigenfunctions corresponding to ξ0 and ξ1 will be denoted by φ0 and φ1,

respectively. For notational purposes, it will become convenient to introduce the

index set

(2.13) N :=

{
{0} if αa ≤ 1,

{0, 1} if αa > 1.

Due to the symmetry of the system, φ0 is even and φ1 is odd. Moreover, φ0 can

be chosen positive [2, Thm. 2.1.3].
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§2.3. A lower-bound Hamiltonian

In this subsection we derive an auxiliary result we shall use several times. It is

based on an idea used in a similar context in [17].

Taking into account the structure of Eα,V+,V− , let us define

(2.14) λ̃(v+, v−) := inf
φ∈W 1,2(R)\{0}

εα[φ] + v+|φ(+a)|2 + v−|φ(−a)|2

‖φ‖2L2(R)

− ξ0

for any real constants v+ and v−. The number λ̃(v+, v−) is the lowest eigenvalue

of the operator (1.1) on L2(R) shifted by ξ0, subject to two point interactions of

strength v+ − α and v− − α and at distance 2a from each other.

It is clear that λ̃(v+, v−) is a continuous and non-decreasing function of

both v+ and v−. The symmetry relation λ̃(v+, v−) = λ̃(v−, v+) holds true. As-

sume that both v± are non-negative. Then by the variational definition of ξ0, we

have λ̃(v+, v−) ≥ 0 and λ̃(0, 0) = 0. For our purposes, it is important to point

out that λ̃(v+, v−) is positive whenever at least one of the arguments is. Indeed,

if λ̃(v+, v−) = 0 and v+ > 0 or v− > 0, then we deduce from (2.14) that the min-

imum is achieved by the eigenfunction φ0 of −∆R
α corresponding to ξ0 and that

φ0(a) = 0 or φ0(−a) = 0. Since φ0 is positive, the latter leads to a contradiction.

If V+ and V− are real-valued functions, then λ̃ gives rise to a function λ :

R2 → R via setting

(2.15) λ(x) := λ̃(V+(x1), V−(x1)).

It follows from the properties of λ̃ that if V± are non-negative and V− or V+ is non-

trivial (i.e., non-zero on a measurable set of positive Lebesgue measure), then λ is

a non-trivial non-negative function.

In any case, using Fubini’s theorem, we get a fundamental lower bound for

our form Eα,V+,V− .

Lemma 2.4. For every ψ ∈W 1,2, we have

(2.16) Eα,V+,V− [ψ]− ξ0‖ψ‖2L2 ≥
∫
R2

|∂1ψ|2 +

∫
R2

λ|ψ|2.

The above result shows that Hα,V+,V− − ξ0 is bounded from below by the

one-dimensional Schrödinger operator

(−∆R + λ)⊗ 1 on L2(R)⊗ L2(R).

§2.4. The Krein-like resolvent formula

The first auxiliary step is to reconstruct the resolvent of the unperturbed Hamil-

tonian, i.e. Rα(z) := (Hα,0,0 − z)−1 for z ∈ C \ [ξ0,∞). Once we have Rα(z) we
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introduce potentials V± and build a Krein-like resolvent of Hα,V+,V− as a pertur-

bation of Rα(·). To do this, we will follow the treatment by Posilicano [22].

2.4.1. The resolvent of the unperturbed Hamiltonian. As above, ξj , with

j ∈ N , stand for the discrete eigenvalues of −∆R
α, and φj denote the corresponding

eigenfunctions. Recall that the essential spectrum of −∆R
α is purely absolutely

continuous. Let ER
α(·) stand for the spectral resolution of−∆R

α corresponding to the

continuous spectrum and let Pα,j , with j ∈ N , denote the eigen-projector Pα,j =

φj(φj , ·). Analogously, ER(·) denotes the spectral resolution of −∆R. Using (1.4),

one gets

Rα(z) =
∑
j∈N

∫
R+

(β+ξj−z)−1 dER(β)⊗Pα,j+
∫
R2

+

(β+β′−z)−1 dER(β)⊗ dER
α(β′),

where z ∈ C \ [ξ0,∞). This implies the decomposition

Rα(z) = Rdα(z) +Rcα(z),

where the Rια(z), with ι ∈ {d, c}, act on a separated variable function f(x) =

f1(x1)f2(x2) as

Rdα(z)f(x) =
∑
j∈N

1√
2π

∫
R

dp1
f̂1(p1)eip1x1

p2
1 + ξj − z

φj(x2)(φj , f2)L2(R),

Rcα(z)f =

∫
R2

+

1

β + β′ − z
dER(β)f1 ⊗ dER

α(β′)f2,

with f̂1 denoting the Fourier transform of f1. Set τ2
j (z) := z − ξj . In the following

we assume that z is taken from the first sheet of the domain of z 7→ τj(z), i.e.

=τj(z) > 0.

Using the standard representation of the Green function of the one-dimen-

sional Laplace operator,

(−∆R − k2)−1(x1, y1) =
1

2π

∫
R

eip(x1−y1)

p2 − k2
dp =

i

2

eik|x1−y1|

k
,

we conclude that Rdα(z) :=
∑
j∈N R

j,d
α (z) where the Rj,dα (z) are integral operators

with kernels

Gj,dα (z;x, y) =
i

2

eiτj(z)|x1−y1|

τj(z)
φj(x2)φj(y2).(2.17)

Moreover

(2.18) Rcα(z)f =
i

2

∫
R2

∫
R

eiτ(p,z)|x1−y1|

τ(p, z)
ψ(p, x2)ψ(p, y2)f1(y1)f2(y2) dy1 dy2 dp,
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where τ2(p, z) = z − p2, =τ(p, z) > 0 and ψ(p, x2) stands for the generalized

eigenfunction of −∆R
α discussed in [2, Chap. II.2.4]. To be fully specific, ψ(p, x2)

can be obtained from eq. (2.4.1) of [2, Chap. II] multiplying it by 1
2π ; see also [2,

Appendix E, eq. (E.5)].

The resolvent of Hα,0,0 can also be written in a Krein-like form. We start with

the resolvent of the free system R0(z) = (H0,0,0−z)−1, z ∈ C\ [0,∞). By means of

the embeddings I± : W 1,2 ↪→ L2
± and their adjoints I∗± : L2

± ↪→W−1,2, we define

R̂0,±(z) := I±R0(z) : L2 → L2
±, Ř0,±(z) := R0(z)I∗± : L2

± → L2.

Finally, the “bilateral” embeddings take the forms

R0,ij(z) := IiR0(z)I∗j : L2(R× {ja})→ L2(R× {ia}), i, j ∈ {+,−}.

Let Γ0,α(z) denote the operator-valued matrix acting in L2
+ ⊕ L2

− as

Γ0,α(z) :=

(
−α−1 0

0 −α−1

)
+

(
R0,++(z) R0,+−(z)

R0,−+(z) R0,−−(z)

)
.

Note that the continuity of Ii : W 1,2 ↪→ L2
i , i ∈ {+,−}, implies the continuity

of the adjoint embedding I∗i : L2
i ↪→W−1,2. Therefore

(2.19) Ran Ř0,i(z) ⊂W 1,2.

Moreover, since Ran I∗i ∩ L2 = {0}, we obtain

(2.20) Ran Ř0,i(z) ∩W 2,2 = {0}.

Theorem 2.5. Let z ∈ C \ [ξ0,∞) be such that the operator Γ0,α(z) is invertible

with bounded inverse. Then the resolvent Rα(z) is given by

(2.21) Rα(z) = R0(z)−
∑

i,j∈{+,−}

Ř0,i(z)Γ0,α(z)−1
ij R̂0,j(z),

where the Γ0,α(z)−1
ij are the matrix elements of the inverse of Γ0,α(z).

Proof. In view of (2.19), the operator Rα(z) defined by (2.21) satisfies RanRα(z)

⊂ W 1,2. Assume ψ ∈ W 1,2 and φ ∈ L2. Using E0,0,0(ψ,R0(z)φ)− z(ψ,R0(z)φ) =

(ψ, φ), we get

Eα,0,0(ψ,Rα(z)φ
)
− z
(
ψ,Rα(z)φ) = (ψ, φ)

−
∑

i∈{+,−}

α
(
ψ, R̂0,i(z)φ

)
L2
i

−
∑

i,j∈{+,−}

(
ψ,Γ0,α(z)−1

ij R̂0,j(z)φ
)
L2
i

+
∑

i,j,k∈{+,−}

α
(
ψ,R0,ij(z)Γ0,α(z)−1

jk R̂0,k(z)φ
)
L2
i

,
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where we use the embedding W 1,2 ↪→ L2
i for ψ in all expressions with scalar

product in L2
i . Applying the identity

(ψ, R̂0,i(z)φ)L2
i

=
∑

j,k∈{+,−}

(
ψ,Γ0,α(z)ikΓ0,α(z)−1

kj R̂0,j(z)φ
)
L2
i

and using the explicit form of Γ0,α(z)ij , one obtains

(2.22) Eα,0,0(ψ,Rα(z)φ)− z(ψ,Rα(z)φ) = (ψ, φ).

Moreover, note that Rα(z) is invertible. Indeed, employing (2.21) and (2.20)

we conclude that each f ∈ RanRα(z) is a direct sum f = f1 +̇ f2 where f1 ∈
RanR0(z) and f2 ∈ W 1,2 \W 2,2. This implies KerRα = {0} and together with

(2.22) completes the proof.

2.4.2. The Krein-like formula for the resolvent of Hα,V+,V− . Relying on

(2.21) and (2.19), we can determine analogous embedding operators as in the

previous section but now instead of R0(z) we consider Rα(z). Namely, define

R̂α,±(z) := I±Rα(z) : L2 → L2
±, Řα,±(z) := Rα(z)I∗± : L2

± → L2 and Rα,ij(z) :=

IiRα(z)I∗j : L2
j → L2

i where i, j ∈ {+,−}.
For any bounded function V , set V 1/2 := sgn(V )|V |1/2. Define the operator-

valued matrix

B(z) :=

(
|V+|1/2Rα,++(z)V

1/2
+ |V+|1/2Rα,+−(z)V

1/2
−

|V−|1/2Rα,−+(z)V
1/2
+ |V−|1/2Rα,−−(z)V

1/2
−

)

acting on L2
+ ⊕ L2

−.

Theorem 2.6. Let z ∈ C \ σ(Hα,V+,V−) be such that the operator 1 + B(z) is

invertible with bounded inverse. Then

(2.23) Rα,V+,V−(z) = Rα(z)−
∑

i,j∈{+,−}

Řα,i(z)V
1/2
i [1 +B(z)]−1

ij |Vj |
1/2R̂α,j(z)

determines the resolvent of Hα,V+,V− ; here [1 + B(z)]−1
ij stand for the operator

valued matrix elements of [1 +B(z)]−1.

Proof. Combining (2.21) and (2.19) and using the definition of Rα,V+,V−(z) given

by (2.23) we have Ran Řα,i(z) ⊂W 1,2 and consequently RanRα,V+,V−(z) ⊂W 1,2.

Denote Υ(z)ij := [1 +B(z)]−1
ij and assume ψ ∈W 1,2 and φ ∈ L2. Employing

the identity Eα,0,0(ψ,Rα(z)φ)− z(ψ,Rα(z)φ) = (ψ, φ) we get
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Eα,V+,V−(ψ,Rα,V+,V−(z)φ)− z(ψ,Rα,V+,V−(z)φ) = (ψ, φ)

+
∑

i∈{+,−}

(ψ, ViR̂α,i(z)φ)L2
i
−

∑
i,j∈{+,−}

(
ψ, V

1/2
i Υ(z)ij |Vj |1/2R̂α,j(z)φ

)
L2
i

−
∑

i,j,k∈{+,−}

(
ψ, ViRα,ij(z)V

1/2
j Υ(z)jk|Vk|1/2R̂α,k(z)φ

)
L2
i

.

Furthermore, writing

(ψ, ViR̂α,i(z)φ)L2
i

=
∑

j,k∈{+,−}

(
ψ, V

1/2
i Υ(z)−1

ik Υ(z)kj |Vj |1/2R̂α,j(z)φ
)
L2
i

and using the explicit form of Υ(z)ij , one obtains

Eα,V+,V−

(
ψ,Rα,V+,V−(z)φ

)
− z
(
ψ,Rα,V+,V−(z)φ

)
= (ψ, φ).

Repeating the same argument as in the proof Theorem 2.5, we conclude that

Rα,V+,V−(z) is invertible.

The resolvent formula derived in the above theorem can be written in a short,

more familiar form. To this end it is convenient to write V1/2 = V
1/2
+ ⊕ V 1/2

− (and

analogously for |V|1/2) and introduce R̂α(z) : L2 → L2
+⊕L2

− defined by R̂α(z)ψ =

R̂α,+(z)ψ ⊕ R̂α,−(z)ψ and Řα(z) : L2
+ ⊕ L2

− → L2 defined by Řα(z)(f+ ⊕ f−) =

Řα,+(z)f+ + Řα,−(z)f−. With these notations, identity (2.23) reads

(2.24) Rα,V+,V−(z) = Rα(z)− Řα(z)V1/2[1 +B(z)]−1|V|1/2R̂α(z).

Note that (2.24) gives the Krein-like resolvent studied by Posilicano [22, 23].

(To be fully specific we identify the embedding η introduced in [22] with W 1,2 ↪→
L2(R× {+a}, |V+|1/2dx)⊕ L2(R× {−a}, |V−|1/2dx).) Furthermore, redefining all

the embeddings introduced above by means of η, we get the resolvent formula

derived in [22, Thm. 2.1]. Applying the results of [23], we get

z ∈ ρ(Hα) ∩ ρ(Hα,V+,V−) ⇔ z ∈ ρ(1 +B(z))

and

(2.25) z ∈ σp(Hα,V+,V−) ⇔ Ker(1 +B(z)) 6= {0}.

2.4.3. The system with mirror symmetry. Let us consider a system with

mirror symmetry, i.e.

(2.26) V+ = V0 = V−,

where V0 : R → R is a given function. For this case we use a special notation,

Hα,V0
:= Hα,V0,V0

. Using (2.23), we can reconstruct the resolvent Rα,V0
(z) :=

(Hα,V0 − z)−1.
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Now, we introduce a “slight” perturbation of the symmetry taking

V+ = V + Vε, where Vε := εVp, ε > 0,(2.27)

V− = V,

where the “perturbant” Vp is a function from L∞(R). In the following we abbre-

viate Hα;ε := Hα,V+Vε,V .

Considering the system governed by Hα,V0
as a starting point, we construct

the resolvent Rα;ε of Hα;ε,

(2.28) Rα;ε(z) = Rα,V0(z)− Řα,+(z)V 1/2
ε Γ(z)−1|Vε|1/2R̂α,+(z)

where

(2.29) Γ(z) := 1 + |Vε|1/2Rα,V0(z)V 1/2
ε

and Rα,V0 acts as Rα,V0,V0 but maps L2
+ to L2

+. The proof of (2.28) can be obtained

by repeating the arguments of the proof of Theorem 2.6.

§3. The essential spectrum

The spectrum of the unperturbed Hamiltonian Hα,0,0 is given by (1.4). In the fol-

lowing we show that the essential spectrum (1.5) is stable under perturbations V±
which vanish at infinity in the following sense:

(3.30) lim
L→∞

ess sup
R\[−L,L]

|V±| = 0.

Theorem 3.1 (Essential spectrum). Assume (3.30) holds. Then

σess(Hα,V+,V−) = [ξ0,∞).

We prove this theorem in two steps.

§3.1. A lower bound for the essential spectrum threshold

First, we show that the threshold of the essential spectrum does not descend below

the energy ξ0.

Lemma 3.2. Assume (3.30) holds. Then

inf σess(Hα,V+,V−) ≥ ξ0.

Proof. Given a number L > a, let HN denote the operator Hα,V+,V− with a

supplementary Neumann condition imposed on the lines {±L} × R and segments

(−L,L) × {±L}. It is conventionally introduced as the operator associated with

the quadratic form EN which acts in the same way as Eα,V+,V− but has a larger
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domain, D(EN ) :=
⊕4

k=0W
1,2(Ωk), where Ωk are the connected components of R2

divided by the curves where the Neumann condition is imposed:

Ω0 := (−L,L)2,
Ω1 := (−L,L)× (−∞,−L), Ω3 := (−∞,−L)× R,
Ω2 := (−L,L)× (L,∞), Ω4 := (L,∞)× R.

We have the decomposition HN =
⊕4

k=0H
N
k , where HN

k are the operators asso-

ciated on L2(Ωk) with the quadratic forms

ENk [ψ] :=

∫
Ωk

|∇ψ|2 +

∫
(R×{+a})∩Ωk

(V+ − α)|I+ψ|2

+

∫
(R×{−a})∩Ωk

(V− − α)|I−ψ|2,

D(ENk ) := W 1,2(Ωk).

Since Hα,V+,V− ≥ HN and the spectrum ofHN
0 is purely discrete, the minimax

principle gives the estimate

inf σess(Hα,V+,V−) ≥ min
k∈{1,...,4}

{inf σess(H
N
k )} ≥ min

k∈{1,...,4}
{inf σ(HN

k )}.

It is easy to see that the spectra of HN
1 and HN

2 coincide with the non-negative

semi-axis [0,∞). Hence, it remains to analyze the bottoms of the spectra of HN
3

and HN
4 . Using analogous arguments to those leading to Lemma 2.4, we have the

lower bound (k ∈ {3, 4})

ENk [ψ]− ξ0‖ψ‖2L2(Ωk) ≥
∫

Ωk

|∂1ψ|2 +

∫
Ωk

λ|ψ|2 ≥ ess inf
Ωk

λ ‖ψ‖2L2(Ωk).

Consequently,

inf σess(Hα,V+,V−) ≥ min
{

0, ξ0 + min
{

ess inf
Ω3

λ, ess inf
Ω4

λ
}}

.

Now, since V± vanish at infinity, the same is true for the function λ. Hence, for

every ε, there exists L such that for a.e. |x1| > L (x2 ∈ R), we have |λ(x)| < ε.

Consequently, if ε < |ξ0|,
inf σess(Hα,V+,V−) ≥ ξ0 − ε.

The claim then follows by the fact that ε can be chosen arbitrarily small.

§3.2. The opposite inclusion

Lemma 3.3. Assume (3.30) holds. Then

σess(Hα,V+,V−) ⊇ [ξ0,∞).

Proof. Our proof is based on the Weyl criterion adapted to quadratic forms in [7]

and applied to quantum waveguides in [21]. By this general characterization of
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essential spectrum and since the set [ξ0,∞) has no isolated points, it is enough to

find for every ξ ∈ [ξ0,∞) a sequence {ψn}∞n=1 ⊆ D(Eα,V+,V−) such that

(i) ∀n ∈ N \ {0}, ‖ψn‖L2 = 1,

(ii) ‖(Hα,V+,V− − ξ)ψn‖−1 −−−−→
n→∞

0.

The symbol ‖ · ‖−1 denotes the norm in D(Eα,V+,V−)∗, the dual of D(Eα,V+,V−)

equipped with the norm

‖ψ‖+1 :=
√
Eα,V+,V− [ψ] + (1 + C0)‖ψ‖2L2 ,

where C0 denotes any positive constant such that Hα,V+,V− +C0 is a non-negative

operator. We choose the constant C0 sufficiently large, so that ‖ · ‖+1 is equivalent

to the usual norm in W 1,2. This is possible in view of the boundedness of V± and

Lemma 2.1.

Let n ∈ N \ {0}. Given k ∈ R, we set ξ := ξ0 + k2. Recall that the function φ0

denotes the ground state of −∆R
α corresponding to ξ0. Since the interactions V±

vanish at infinity, good candidates for the sequence ψn seem to be plane waves in

the x1-direction “localized at infinity” and modulated by φ0 in the x2-direction.

More precisely,

ψn(x) := ϕn(x1)φ0(x2)eikx1 ,

where ϕn(x1) := n−1/2ϕ(x1/n − n) with ϕ being a non-zero C∞ function with

compact support in (−1, 1). Note that suppϕn ⊂ (n2 − n, n2 + n). Clearly, ψn ∈
W 1,2 = D(Eα,V+,V−). To satisfy (i), we assume that both φ0 and ϕ have L2(R)

norm 1. It remains to verify condition (ii).

By the definition of the dual norm, we have

‖(Hα,V+,V− − ξ)ψn‖−1 = sup
η∈W 1,2\{0}

|Eα,V+,V−(η, ψn)− ξ(η, ψn)L2 |
‖η‖+1

.

An explicit computation using integration by parts yields

Eα,V+,V−(η, ψn)− ξ(η, ψn)L2

= (η, [−ϕ̈n − 2ikϕ̇n]φ0e
ikx1)L2 +

∫
R×{a}

V+I+(ηψn) +

∫
R×{−a}

V−I−(ηψn).

Using the Schwarz inequality and the normalization of φ0, we get the estimates

|(η, [−ϕ̈n − 2ikϕ̇n]φ0e
ikx1)L2 | ≤ ‖η‖L2(‖ϕ̈n‖L2(R) + 2|k| ‖ϕ̇n‖L2(R)),∣∣∣∣∫

R×{±a}
V±I±(ηψn)

∣∣∣∣ ≤ ‖I±η‖L2
±
‖V±ϕn‖L2(R)|φ0(±a)|.
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By the choice of C0 and Lemma 2.1, both ‖η‖L2 and ‖I±η‖L2
±

can be bounded

by a constant times ‖η‖+1. Hence, there is a constant C, depending on a, α, k,

‖V+‖∞ and ‖V−‖∞, such that

‖(Hα,V+,V− − ξ)ψn‖−1

≤ C
(
‖ϕ̈n‖L2(R) + ‖ϕ̇n‖L2(R) + ‖V+ϕn‖L2(R) + ‖V−ϕn‖L2(R)

)
.

The first two norms on the right hand side tend to zero as n→∞ because

‖ϕ̇n‖L2(R) = n−1‖ϕ̇‖L2(R), ‖ϕ̈n‖L2(R) = n−2‖ϕ̈‖L2(R).

The remaining terms tend to zero because of the estimate

‖V±ϕn‖L2(R) ≤ ess sup
suppϕn

|V±|,

in which we have employed the normalization of ϕn, and the fact that inf suppϕn
tends to infinity as n→∞.

§4. The point spectrum

In this section we study the existence of eigenvalues corresponding to bound states.

We will be interested in the discrete spectrum as well as in embedded eigenvalues.

§4.1. The discrete spectrum

In the following we establish a condition which guarantees the existence of discrete

eigenvalues outside the essential spectrum.

Theorem 4.1 (Discrete spectrum). Assume that V− + V+ ∈ L1(R) and∫
R

(V− + V+)(x) dx < 0.

Then

inf σ(Hα,V+,V−) < ξ0.

Consequently, if in addition V± vanish at infinity, then Hα,V+,V− has an isolated

eigenvalue of finite multiplicity below ξ0, i.e. (1.7) holds.

Proof. The proof is based on a variational argument. Our aim is to find a test

function ψ ∈W 1,2 such that

Q[ψ] := Eα,V+,V− [ψ]− ξ0‖ψ‖2L2(R2) < 0.

For any n ∈ N \ {0}, we set

ψn(x) := ϕn(x1)φ0(x2),
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where φ0 is, as before, a positive eigenfunction of −∆R
α, normalized to 1 in L2(R),

and

(4.31) ϕn(x1) :=


1 if |x1| ≤ n,
2n− |x1|

n
if n ≤ |x1| ≤ 2n,

0 otherwise.

Obviously, ψn ∈W 1,2. Using εα[φ0] = ξ0‖φ0‖2L2(R) and the fact that φ0 is even, it

is easy to check the identity

Q[ψn] =

∫
R
|ϕ′n|2 + |φ0(a)|2

∫
R

(V− + V+)|ϕn|2.

As n→∞, the first term on the right hand side tends to zero, while the second con-

verges (by the dominated convergence theorem) to a multiple of
∫
R(V−+V+) < 0.

Hence, Q[ψn] is negative for n sufficiently large.

Remark 4.2. The integrability of V+ +V− is just a technical assumption in The-

orem 4.1. It is clear from the proof that it is only important to ensure that the

quantity ∫
R
(V− + V+)|ϕn|2

becomes negative as n → ∞, the value −∞ for the limit being admissible in

principle. For instance, one can alternatively assume that V+ + V− is non-trivial

and non-positive on Ω0 for the present proof to work.

§4.2. Embedded eigenvalues

The aim of this section is to show that the system with mirror symmetry (cf. Sec-

tion 2.4.3) has embedded eigenvalues under certain assumptions. For V0 ∈ L∞(R)

vanishing at infinity, we consider the Hamiltonian Hα,V0
≡ Hα,V0,V0

. Recall that

the essential spectrum of Hα,V0 is given by (1.6).

We simultaneously consider an auxiliary operator HD
α,V0

on L2(R×R+), which

acts as Hα,V0
on R×R+, subject to Dirichlet boundary conditions on R× {0}. It

is introduced as the operator on L2(R× R+) associated with the form

EDα,V0
[ψ] :=

∫
R×R+

|∇ψ|2 +

∫
R×{a}

(V0 − α)|I+ψ|2,

D(EDα,V0
) := W 1,2

0 (R× R+),

where we keep the same notation I+ for the embedding I+ : W 1,2
0 (R×R+) ↪→ L2

+.

Since V0 vanishes at infinity, it can be shown in the same way as in Section 3 that

σess(H
D
α,V ) = [µ0,∞),
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where µ0 ∈ (ξ0, 0] is the spectral threshold of the one-dimensional operator hDα on

L2(R+) associated with the form

εDα [φ] :=

∫
R+

|φ′|2 − α|φ(a)|2, D(εDα ) := W 1,2
0 (R+).

Proposition 4.3. One has σess(h
D
α ) = [0,∞) and

σdisc(hDα ) =

{
{ξ1} if αa > 1,

∅ if αa ≤ 1.

Consequently,

(4.32) µ0 =

{
ξ1 if αa > 1,

0 if αa ≤ 1.

Proof. By the methods of Section 3, it is easy to see that the essential spectrum

of hDα is the non-negative semi-axis. Note that the existence of a negative eigenvalue

of hDα is equivalent to the existence of an eigenfunction of −∆R
α corresponding to a

negative eigenvalue and vanishing on R×{0}. The latter holds if, and only if, the

operator −∆R
α has an odd eigenfunction φ1, i.e. αa > 1. This means that hDα has a

negative eigenvalue which is ξ1 if, and only if, αa > 1; otherwise σdisc(hDα ) = ∅.

Theorem 4.4 (Embedded eigenvalues). Let V0 vanish at infinity. Assume that

HD
α,V0

has a (discrete) eigenvalue ν below µ0. Then ν is an eigenvalue of Hα,V0
.

More specifically, if ν ≥ ξ0 (respectively, ν < ξ0), then ν is an embedded (respec-

tively, discrete) eigenvalue of Hα,V0
.

Proof. Let ψ be an eigenfunction of HD
α,V0

corresponding to ν. By mirror symme-

try, the odd extension of ψ to R2 is an eigenfunction of Hα,V0
corresponding to the

same value ν. The rest follows from the fact that the essential spectrum of HD
α,V0

is strictly contained in the essential spectrum of Hα,V0 .

The following result makes Theorem 4.4 non-void.

Proposition 4.5. Assume αa > 1. Suppose V0 ∈ L1(R) vanishes at infinity and∫
R V0(x) dx < 0. Then σdisc(HD

α,V0
) 6= ∅.

Proof. It follows from Proposition 4.3 that, under the condition αa > 1, hDα has a

negative eigenvalue ξ1 with eigenfunction φ1 (restricted to R×R+). Then the claim

follows by using the test function ψ(x) := ϕn(x1)φ1(x2), where ϕn is introduced

in (4.31), as in the proof of Theorem 4.1.
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Finally, to ensure the existence of embedded eigenvalues by Theorem 4.4, it

remains to verify that the discrete eigenvalue ν of HD
α,V0

(which exists under the

hypotheses of Proposition 4.5) can be made larger than or equal to ξ0. However,

this happens, for instance, in the weak-coupling regime.

Corollary 4.6. Assume aα > 1. Suppose V0 ∈ L1(R) vanishes at infinity and∫
R V0(x) dx < 0. Then there exists ε > 0 such that Hα,εV0

has an embedded eigen-

value in [ξ0, µ0).

§5. Hardy inequalities

In this section we study the case when V+ and V− are non-negative. It is easy to

see that in this situation the spectrum does not start below ξ0. The purpose of this

subsection is to show that a stronger result holds in the present setting. We derive

a functional, Hardy-type inequality for Hα,V+,V− with non-trivial non-negative V+

and V−, quantifying the repulsive character of the line interactions in this case.

The Hardy-type inequality follows immediately from Lemma 2.4. Indeed, ne-

glecting the kinetic term in (2.16), we arrive at

Theorem 5.1 (Local Hardy inequality). Assume that V± are non-negative and

that V− or V+ is non-trivial. Then

Hα,V+,V− − ξ0 ≥ λ

in the sense of quadratic forms, where λ is a non-trivial and non-negative function

(cf. (2.15)).

This Hardy inequality is called local since it reflects the local behaviour of the

functions V±. In particular, if V± are compactly supported then λ is compactly

supported as a function of the first variable.

In any case, a global Hardy inequality follows by applying the classical Hardy

inequality.

Theorem 5.2 (Global Hardy inequality). Assume that V± are non-negative, and

that there exists x0
1 ∈ R and positive numbers V0 and R such that

∀x1 ∈ (x0
1 −R, x0

1 +R), V+(x1) ≥ V0 or V−(x1) ≥ V0.

Then

Hα,V+,V− − ξ0 ≥ cρ with ρ(x) :=
1

1 + (x1 − x0
1)2

in the sense of quadratic forms. Here the constant c depends on V0, R and a.
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Proof. The proof follows the strategy developed in [8, Sec. 3.3] to establish a

similar global Hardy inequality in curved waveguides. For clarity of exposition, we

divide the proof into several steps. Denote I := (x0
1 −R, x0

1 +R).

Step 1. The main ingredient in the proof is the classical one-dimensional Hardy

inequality

(5.33) ∀φ ∈W 1,2
0 (R+),

∫
R+

|φ′(x)|2 dx ≥ 1

4

∫
R+

|φ(x)|2

x2
dx.

We apply it in our case as follows. Let us define an auxiliary function η : R → R
by η(x1) := |x1−x0

1|/R if |x1−x0
1| < R and by setting it equal to 1 otherwise; we

keep the same notation η for the function x 7→ η(x1) on R2. For any ψ ∈ C∞0 (R2),

let us write ψ = ηψ + (1 − η)ψ. Applying the classical Hardy inequality to the

function ηψ and using Fubini’s theorem we get∫
R2

ρ|ψ|2 ≤ 2

∫
R2

|ηψ|2

(x1 − x0
1)2

+ 2

∫
R2

|(1− η)ψ|2(5.34)

≤ 16

∫
R2

|∂1η|2|ψ|2 + 16

∫
R2

|η|2|∂1ψ|2 + 2

∫
I×R
|ψ|2

≤ 16

∫
R2

|∂1ψ|2 + (2 + 16/R2)

∫
I×R
|ψ|2.

By density, the inequality extends to all ψ ∈W 1,2 = D(Eα,V+,V−).

Step 2. By Theorem 5.1, we have

(5.35) Eα,V+,V− [ψ]− ξ0‖ψ‖2L2 ≥ ess inf
I×R

λ

∫
I×R
|ψ|2 ≥ λ0

∫
I×R
|ψ|2

for every ψ ∈ D(Eα,V+,V−), where λ0 := λ̃(V0, 0) = λ̃(0, V0). Of course, λ0 is a

positive number under the stated hypotheses.

On the other hand, neglecting the non-negative potential term in (2.16), we

have

(5.36) Eα,V+,V− [ψ]− ξ0‖ψ‖2L2 ≥
∫
R2

|∂1ψ|2

for every ψ ∈ D(Eα,V+,V−).

Step 3. Interpolating between the bounds (5.35) and (5.36), and using (5.34) in

the latter, we arrive at

Eα,V+,V− [ψ]− ξ0‖ψ‖2L2 ≥
ε

16

∫
R2

ρ|ψ|2 +

[
(1− ε)λ0 − ε

(
1

8
+

1

R2

)]∫
I×R
|ψ|2

for every ψ ∈ D(Eα,V+,V−) and ε ∈ (0, 1). It is clear that the right hand side of this

inequality can be made non-negative by choosing ε sufficiently small. Choosing ε
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such that the expression in the square brackets vanishes, the inequality yields the

claim of the theorem with

c :=
λ0/16

λ0 + 1/8 + 1/R2
.

It remains to observe that λ0 depends on V0 and a through the definition

(2.14).

As a direct consequence of Theorem 5.2, we get

Corollary 5.3. Assume the hypotheses of Theorem 5.2. Let W be the operator

in L2 of multiplication by any bounded function w for which there exists a positive

constant C such that |w(x)| ≤ C|x1|−2 for a.e. x ∈ R2. Then there exists ε0 > 0

such that for every ε < ε0,

inf σ(Hα,V+,V− + εW ) ≥ ξ0.

Assume that V± vanish at infinity. Since also the potential W of the corollary

is bounded and vanishes at infinity, it is easy to see that the essential spectrum

is not changed, i.e., σess(Hα,V+,V− + εW ) = [ξ0,∞), independently of the value

of ε and irrespective of the signs of V±. It follows from the corollary that a certain

critical value of ε is needed in order to generate discrete spectrum of Hα,V+,V− +εW

if the Hardy inequality for Hα,V+,V− exists. On the other hand, it is easy to see

that Hα,0,0 + εW has eigenvalues below ξ0 for arbitrarily small ε provided that W

is non-trivial and non-positive.

§6. Resonances induced by broken symmetry

As already stated (cf. Corollary 4.6), the Hamiltonian Hα,V0
of the system with

mirror symmetry (2.26) admits embedded eigenvalues. In the following we show

that breaking this symmetry by (2.27) will turn the eigenvalues into resonances.

The strategy we employ here is as follows. Our first aim is to show that the

operator-valued function z 7→ Rα;ε(z) has a second sheet analytic continuation in

the following sense: for any f, g ∈ C0(R2) the operator fRα;ε(z)g can be analyti-

cally continued to the lower half-plane as a bounded operator in L2. Such a contin-

uation will be denoted by RII
α;ε(·) ≡ RII

α;ε,f,g(·). Of course, the above formulation

implies that the function z 7→ (f,Rα;ε(z)g) has a second sheet continuation. The

analogous definition will be employed for the second sheet continuation of Rα(·).
To recover resonances in the system governed by Hα;ε, we look for poles of RII

α;ε(·).
These poles are defined by the condition

(6.37) Ker ΓII (z) 6= {0}, =z < 0,

where ΓII (·) is the second sheet continuation of the analytic operator valued-

function z 7→ Γ(z). Our aim is to find z satisfying (6.37).
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§6.1. The second sheet continuation of Γ(·)

Henceforth we assume

(6.38) V±eC|x| ∈ L∞(R) for some C > 0.

The first auxiliary statement is contained in the following lemma.

Lemma 6.1. Suppose (6.38) holds. Then for any i, j ∈ {+,−} and z ∈ C\[ξ0,∞)

the operator |Vi|1/2Rα,ij(z)V
1/2
j is Hilbert–Schmidt. Consequently, so is B(z).

Proof. Using (2.21) we have

|Vi|1/2Rα,ij(z)V
1/2
j

= |Vi|1/2R0,ij(z)V
1/2
j︸ ︷︷ ︸

A1

−
∑

k,l∈{+,−}

|Vi|1/2R0,ik(z)︸ ︷︷ ︸
A2

Γ0,α(z)−1
kl R0,lj(z)V

1/2
j︸ ︷︷ ︸

A3

.

It is well known that R0(z) is an integral operator:

R0(z)f(x) =

∫
R2

G0(z;x− w)f(w) dw, G0(z;x) =
1

2π
K0(
√
z |x|),

where K0(·) stands for the Macdonald function (cf. [1, Sec. 9.6]), =
√
z > 0. Con-

sequently, R0,ij(z) is an integral operator with kernel G0,ij(z; · − ·) defined as the

“bilateral” embedding of G0(z; · − ·) acting from L2
j to L2

i . Using the properties of

K0 (see [1, eq. (9.6.8)]), we conclude that G0(z; ·) has a logarithmic singularity at

the origin and is continuous elsewhere; moreover it exponentially decays at infinity.

This implies that G0,ij(z; ·) ∈ L2(R) and consequently |G0,ij(z; ·)|2 ∈ L1(R). Since

V± ∈ L∞(R) ∩ L1(R) we have∥∥|Vi|1/2R0,ij(z)V
1/2
j

∥∥2

HS
≤
∫
R2

|Vi(x)| |G0,ij(z;x− y)|2|Vj(y)|dxdy,

≤
∥∥Vj‖∞‖|Vi|1/2R0,ij(z)

∥∥2

HS

≤ ‖Vj‖∞‖Vi‖L1(R)

∥∥|G0,ij(z)|2
∥∥
L1(R)

,

where ‖ · ‖HS denotes the Hilbert–Schmidt norm and the last step employs

the Young inequality (cf. [25, Chap. IX.4, Ex. 1]). The above inequalities

show that A1, A2, A3 are Hilbert–Schmidt operators; note ‖R0,ij(z)V
1/2
j ‖HS =∥∥|Vj |1/2R0,ji(z)

∥∥
HS

. Moreover, since the Γ0,α(z)−1
kl are bounded, the operators

|Vi|1/2Rα,ij(z)V
1/2
j are Hilbert–Schmidt as well.

Remark 6.2. Note that to prove the above lemma we use only V± ∈ L∞(R) ∩
L1(R); the stronger assumption (6.38) will be used in the following.
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Suppose B is an open subset of [ξ0,∞) and EB denotes the spectral measure

of Hα,V+,V− . Denote Hac := {ψ ∈ L2 : B 7→ (ψ,EBψ) is absolutely continuous}.

Lemma 6.3. Suppose (6.38) holds. There is a finite set ξ ⊂ R such that:

(i) For any interval [a, b] ⊂ [ξ0, µ0] which is disjoint from E we have RanE(a,b)

⊂ Hac.

(ii) There exists a region Ω− ⊂ C− with boundary containing (ξ0, µ0) and an

operator-valued function RII
α,V+,V−

(·) analytic in Ω \ E, where Ω = C+ ∪
(ξ0, µ0) ∪ Ω−, which is the analytic continuation of Rα,V+,V−(·).

Proof. The operator Rα(·) is analytic in C \ [ξ0,∞). The Stone formula implies

that s-limε→0(Rα(λ + iε) − Rα(λ − iε)) 6= 0 for λ ∈ (ξ0, µ0). In the following we

write Rα(λ ± i0) for s-limε→0Rα(λ ± iε) and analogously for resolvents of other

operators.

Our first aim is to show that Rα(·) can be analytically continued from C+

through (ξ0, µ0) to the lower half-plane in the sense described at the beginning of

this section. Recall

(6.39) Rα(z) = Rcα(z) +Rd(z), Rd(z) =
∑
j∈N

Rj,dα (z).

Note that Rcα(z) is analytic for z ∈ C \ [0,∞) (cf. (2.18)). Furthermore, if αa > 1

then the component R1,d
α (z) of Rdα(z) is analytic for z ∈ C \ [ξ1,∞). On the other

hand, the analytic continuation of R0,d
α (·) through (ξ0,∞) is defined by the second

sheet values of τ0, i.e. =τ II0 ≤ 0. More precisely, for f, g ∈ C0(R2) the operator

fR0,d
α (·)g has a second sheet analytical continuation which is an integral operator

with kernel f(x)G0,d,II
α (z;x − y)g(y) and G0,d,II

α is defined by (2.17), with τ0 re-

placed by τ II0 . The resulting operator is denoted by R0,d,II
α (·). Consequently, we

define the second sheet continuation of Rα(z) as RII
α (z) = Rcα(z) +Rd,IIα (z) where

Rd,IIα (z) = R0,d,II
α (z) + R1,d

α (z) and z ∈ C+ ∪ (ξ0, µ0) ∪ C−. The operator RII
α (z)

is analytic bounded in L2 in the sense described at the beginning of the section.

By means of G0,d,II
α (z;x − y) we define the operator |Vi|1/2R0,d,II

α,ij (z)V
1/2
j :

L2
j → L2

i , i, j ∈ {+,−}, with∥∥|Vi|1/2R0,d,II
α,ij (z)V

1/2
j

∥∥2

HS

=
|φ0(ia)φ0(ja)|2

4|τ II0 (z)|2

∫
R2

e−C(|x1|+|y1|)e−2=τ II
0 (z)|x1−y1||hi(x1)hj(y1)|dx1 dy1,

where h± := V±eC|·| ∈ L∞(R) (cf. (6.38)). The above expression is finite if

=τ II0 (z) > −C/2. For |Vi|1/2R1,d
α,ij(z)V

1/2
j the analogous expression is always

finite because R1,d
α (z) is analytic on C+ ∪ (ξ0, µ0) ∪ C−, and =τ1(z) > 0.
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Furthermore, since |Vi|1/2Rα,ij(z)V
1/2
j for z ∈ C \ [ξ0,∞) is a Hilbert–

Schmidt operator (cf. Lemma 6.1), as also is |Vi|1/2Rd
α,ij(z)V

1/2
j , we conclude

that |Vi|1/2Rc
α,ij(z)V

1/2
j is a Hilbert–Schmidt operator with boundary values

|Vi|1/2Rc
α,ij(λ ± i0)V

1/2
j , λ ∈ (ξ0, µ0), being compact. Consequently, Bij(λ + i0),

λ ∈ (ξ0, µ0), is compact and Bij(·) has second sheet continuation BII
ij (·) =

|Vi|1/2RII
α,ij(·)V

1/2
j through (ξ0, µ0). Finally, we conclude that BII (z) is compact

for z ∈ Ω = C+ ∪ (ξ0, µ0) ∪ Ω−, where Ω− is a region in C− with boundary

containing (ξ0, µ0) and determined by the condition =τ0(z) > −C/2.

Note that the operator fŘα,i(z)V
1/2
i , where f ∈ C0(R2), has an analytic

second sheet continuation. Indeed, as the above discussion shows, the only non-

trivial component is given by fŘ0,d
α,i(z)V

1/2
i . Since its Hilbert–Schmidt norm is

‖fŘ0,d,II
α,i (z)V

1/2
i ‖2HS

=
|φ0(ia)|2

4|τ II0 (z)|2

∫
R2

∫
R

e−C|y1|e−2=τ II
0 (z)|x1−y1||f(x)|2|hi(y1)|dxdy1,

where x = (x1, x2) and hi := Vie
C|·| ∈ L∞(R) we conclude that fŘ0,d,II

α,i (z)V
1/2
i

is analytic for z ∈ Ω and bounded as an operator acting from L2
i to L2. The

analogous statement can be obtained for |Vi|1/2R̂α,i(z)f .

(i) Since the condition Ker[1+B(z)] 6= {0} determines the poles of Rα,V+,V−(·)
(cf. (2.25)), which is the resolvent of a self-adjoint operator, the former has no

solution for z ∈ C+. Combining compactness of B(z) and the analytic Fredholm

theorem (see, e.g., [24, Thm. VI.14]) with the fact that z 7→ B(z) is analytic for z ∈
C+ ∪ (ξ0, µ0), we conclude that the operator [1 +B(z)]−1 exists and it is bounded

analytic in z ∈ C+ with boundary values z = λ+ i0, provided λ ∈ (ξ0, µ0) avoids

a finite set E of real numbers; for an analogous discussion see [26, Thm. XIII.21].

Moreover, the operator |f |Rα(λ + iε)|f |, f ∈ C0(R2), is uniformly bounded for

0 < ε < 1 and λ ∈ (ξ0, µ0). The operators |f |Řα,i(z)V 1/2
i and |Vi|1/2R̂α,i(z)|f | are

uniformly bounded as well. Combining the above statements with the resolvent

formula (2.23), we come to the conclusion that, for any f ∈ C0(R2), the function

|f |Rα,V+,V−(z)|f | = |f |Rα(z)|f |

−
∑

i,j∈{+,−}

(|f |Řα,i(z)V 1/2
i )[1 +B(z)]−1

ij (|Vj |1/2R̂α,j(z)|f |)

is uniformly bounded with respect to z = λ+iε, 0 < ε < 1, λ ∈ [a, b]. Furthermore,

since

|(g,Rα,V+,V−(z)g)| ≤
∥∥|g|1/2∥∥2∥∥|g|1/2Rα,V+,V−(z)|g|1/2

∥∥
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for any g ∈ C0(R2), the assumption of [26, Thm. XIII.19] is fulfilled, which yields

the claim. (Note that in the last expression the same notation ‖ · ‖ was used for

the operator norm and for the norm of a function.)

(ii) Using again the Fredholm theorem and the compactness of BII (·), we find

that the operator [1 + BII (z)]−1 exists and it is bounded analytic in Ω \ E . For

z ∈ Ω \ E we construct RII
α,V+,V−

(z) as

RII
α,V+,V−

(z) = RII
α (z)− ŘII

α (z)V1/2[1 +BII (z)]−1|V|1/2R̂II
α (z)

(cf. (2.24)), where ŘII
α (z)V1/2 and R̂II

α (z)|V|1/2 are the second sheet continuations

already discussed.

Corollary 6.4. σsc(Hα,V+,V−) ∩ [ξ0, µ0] = ∅.

Proof. It follows from the previous theorem that σsc(Hα,V+,V−) ∩ [ξ0, µ0] ⊂ E is a

finite set; this implies the claim.

With no danger of confusion, we employ the notation λ 7→ E(λ) for the

spectral resolution of Hα,V0 for λ ∈ [ξ0,∞)\E . Then the operator Rα,V0(z) admits

the decomposition

(6.40) Rα,V0
(z) =

N∑
i=1

1

νi − z
Pi +

∫
[ξ0,∞)

dE(λ)

λ− z
,

where {νi}Ni=1 = σp(Hα,V0
), Pi = ωi(ωi, ·), and ωi are the corresponding eigenvec-

tors. From the definition of E(·) and Corollary 6.4, we conclude that (ξ0, µ0) 3
λ 7→ E(λ) projects onto Hac. Given f, g ∈ L2, let us denote by F (·)f,g the Radon–

Nikodym derivative of (ξ0, µ0) 3 λ 7→ (f,E(λ)g). The limit of z = γ + iε as ε→ 0

with γ ∈ (ξ0, µ0) \ E and f, g ∈ C0(R2) takes the form

(f,Rα,V0(γ + i0)g) =

N∑
i=1

1

νi − γ
(f, ωi)(ωi, g) + P

∫
[ξ0,µ0)

Ff,g(λ) dλ

λ− γ
(6.41)

+

∫ ∞
µ0

d(f,E(λ)g)

λ− γ
+ πiFf,g(γ),

where P denotes principal value. By the edge-of-the-wedge theorem (cf. [27]), we

get

(6.42) (f,Rα,V0
(γ + i0)g) = (f,RII

α,V0
(γ − i0)g), f, g ∈ C0(R2),

where RII
α,V0

(·) denotes the second sheet continuation of Rα,V0
(·) given in

Lemma 6.3. The operator Rα,V0(·) is the resolvent of the mirror symmetry system.
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Now we introduce the potential Vε = εVp living on R×{+a}. By means of RII
α,V0

(z)

we determine

(6.43) ΓII (z) = 1 + |Vε|1/2RII
α,V0

(z)V 1/2
ε , z ∈ Ω \ E ,

where the last term is the analytic second sheet continuation of the operator

|Vε|1/2Rα,V0(z)V
1/2
ε : L2

+ → L2
+.

§6.2. Zeros of ΓII (·); the Fermi golden rule

Henceforth we assume that the set of embedded eigenvalues of Hα,V0 is not empty

(this is true, for instance, under the hypotheses of Corollary 4.6). Then there exists

an integer k0 ≤ N such that for all i ≥ k0 we have νi ∈ (ξ0, µ0). Given k ≥ k0,

define

(6.44) Ak(z) := Rα,V0(z)− 1

νk − z
Pk.

Analogously we define AII
k (z) replacing Rα,V0

(z) in (6.44) by RII
α,V0

(z).

The main result of this section is the following theorem.

Theorem 6.5. Suppose (6.38) holds. Assume that νk ∈ (ξ0, µ0) is an embedded

eigenvalue of Hα,V0
. Then the resolvent of Hα;ε has a pole zk satisfying

zk = νk + ε(ωk, Vpωk)L2
+

+ ε2 (Γr + iΓi) +O(ε3) as ε→ 0,

where

Γr := −
∑

i∈{1,...,N}\k

1

νi − νk
|(ωk, Vpωi)L2

+
|2 − P

∫
[ξ0,∞)

d(ωk, VpE(λ)Vpωk)L2
+

λ− νk
,

Γi := −πF+(νk) with F+(νk) :=
d

dν
(ωk, VpE(ν)Vpωk)L2

+

∣∣∣∣
ν=νk

.

(Here the functions ωk are understood as embeddings into L2
+. Similarly, E(·) is a

family of operators acting from L2
+ to L2

+.)

Proof. Note that the function z 7→ (f,AII
k (z)g), f, g ∈ C0(R2), is analytic in

a neighbourhood M of νk. Furthermore, for ε small enough, say ε ≤ ε0, where

ε0 > 0, the operator Gε,k(z) := 1 + |Vε|1/2AII
k (z)V

1/2
ε is invertible. We define the

function ηk : [0, ε0)×M → C by

ηk(ε, z) := z − νk −
(
ωk, V

1/2
ε Gε,k(z)−1|Vε|1/2ωk

)
L2

+

.
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Suppose z ∈ M \ νk. A straightforward calculation using (6.43) and (6.44) shows

that φ ∈ Ker ΓII (z) if, and only if,

φ+
1

νk − z
(ωk, V

1/2
ε φ)Gε,k(z)−1|Vε|1/2ωk = 0.

This means that Ker ΓII (z) 6= {0} if, and only if, z is a solution of

(6.45) ηk(ε, z) = 0.

After expanding Gε,k(z)−1 with respect to ε, the function η(ε, z) reads

(6.46) ηk(ε, z) = z − νk − ε(ωk, Vpωk)L2
+

+ ε2(ωk, VpA
II
k (z)Vpωk)L2

+
+O(ε3).

The function ηk is analytic in z ∈M and it is C1 in both variables. It is clear that

ηk(0, νk) = 0 and ∂zηk(0, νk) = 1. Applying the implicit function theorem to (6.45)

and using (6.46), we find that there exists an open neighbourhood U0 ⊂ R+ of zero

and a unique function zk : U0 → C of ε given by

zk = νk + ε(ωk, Vpωk)L2
+
− ε2(ωk, VpA

II
k (νk − i0)Vpωk)L2

+
+O(ε3),

and being a zero of ΓII (·). Employing (6.44), (6.41) and (6.42), we get the state-

ment of the theorem.

The above results can be summarized as follows. Suppose the mirror symmetry

system (2.26) has an embedded eigenvalue ν. Once we break the symmetry by

introducing the “perturbant” Vε = εVp, the pole of the resolvent shifts from the

spectrum and makes the second sheet continuation a pole of the resolvent. The

imaginary component of the pole is related to the resonance width Γw := −2=zk =

O(ε2). This means that for ε small the resonance is physically essential. Employing

the lowest order perturbation in ε, we can write

Γw ≈ 2π
d(ωk, VpE(λ)Vpωk)L2

+

dλ

∣∣∣∣
λ=νk

ε2.

This gives the Fermi golden rule. Moreover, Γ−1
w determines the life time of the

resonance state.

Remark 6.6. Resonance phenomena induced by broken symmetry were studied

in [13, 20]. However, in the models analyzed there, the singular potentials are con-

stants and the broken symmetry has a rather geometrical character. The methods

derived in this paper essentially differ from the technics applied in [13, 20]. Finally,

let us mention that the resonance phenomena and the decay law were recently re-

viewed in [10]. Systems with singular potentials were considered as examples of

solvable models.
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