Publ. RIMS Kyoto Univ. 50 (2014), 19-84
DOI 10.4171/PRIMS/124

On a WKB-Theoretic Transformation for a
Completely Integrable System near a Degenerate
Point where Two Turning Points Coalesce

by

Sampei HIROSE

Abstract

We discuss the exact WKB analysis for a completely integrable system in two variables
with a large parameter. Using a WKB-theoretic transformation, we study the behavior
of the system near a degenerate point where two turning points coalesce.
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81. Introduction

In this paper, we study the exact WKB analysis for a completely integrable system
(a holonomic system) in two variables with a large parameter 1 > 0:

1 0 _,
n 17@2P($lax2an>\lla P(331,$2777) :Zn LPn<.’I,‘17.CL‘2),
(1 1) 81‘1 n>0
' 4 0 . —-n
167.’,52\11 = Q(xth?n)\II? Q(xhl"zﬂ]) = ZTI Qn($17$2),
n>0

where P, (21, 22) and Qy,(x1,22) (n =0,1,2,...) are 3 x 3 matrices with holomor-
phic entries.

As in the case of ordinary differential equations, the Stokes geometry (i.e.,
turning points and Stokes surfaces) is an important ingredient of the exact WKB
analysis for completely integrable systems. In [H], we discussed the Stokes geom-
etry for two concrete completely integrable systems: the Pearcey system and the
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(1,4) hypergeometric system. For example, the Pearcey system is a completely
integrable system of the form

0
7’]_137([/ == PO(-T17x2>\Il’
(1.2) 5
N =0 ={Qo(z1,32) + 1 'Qu(z1,72)} P,
31‘2
where
0 1 0
5) %
1. Py = 1 =R+ = S0
( 3) 0 0 0 ) QO 0 + 3 ’ Ql 81‘1

—$1/4 —1‘2/2 0

This system is obtained from the system of partial differential equations

83 56‘228 1 3
(axi;»+2"ax1+4")w_0’

0 0?
(150~ 33 )* o

satisfied by the Pearcey integral ([P])

(1.4)

(1.5) S /exp{n(t4 + ot + 21t)} dt,
through the transformation
(4
0
3 -1
(1.6) ¥ = exp (7762> K Oz
0z?

As discussed in [H], the point (z1,z2) = (0,0) plays a crucial role in the global
study of the Stokes geometry for the Pearcey system (1.2)—(1.3). In fact, it is a
degenerate point where the characteristic equation

T2 T
1.7 3422 b
(L.7) &+ 9 &1+ 1
of the first equation
83 T2 o 0 1 3
1.8 R R g S 1 -0
(18) (8x§+27]8$1+4n>¢

of (1.4) has a triple root. Furthermore, at (z1,22) = (0,0) we observe a phe-
nomenon that two turning points z; = 7()(x5) and 1 = 73 () of (1.8) of
different types for zo # 0 (ie., 1 = 7 (xy) (i = 1,2) are points where (1.7)
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has a double root and, further, their types are different in the sense that pairs of
roots merging at 21 = 7(9)(25) are different while sharing only one common root)
coalesce at 1 = 0 when x5 tends to 0. This degeneracy is related to the fact that a
new Stokes curve of (1.8) discussed by Berk et al. [BNR] is included in the Stokes
surface for the Pearcey system and plays a central role in the global study of the
Stokes geometry for the Pearcey system (1.2)—(1.3).

As shown in [H], similar results also hold for the (1,4) hypergeometric system.
Thus, in this paper, we study the behavior of a general completely integrable
system (1.1) in two variables with 3 X 3 matrix coefficients near a degenerate point
where two turning points of different types coalesce.

The main theorem of this paper is as follows: We consider a completely in-
tegrable system (1.1) near (x1,z2) = (0,0), where two turning points of different
types coalesce. Here we assume that P,(x1,z2) and Q,(21,22) (n = 0,1,2,...)
are 3 x 3 matrices with holomorphic entries in D,, = {(z1,22) € C?%; |z;| < po}

satisfying
(1.9) [Pnll po,p05 [|@nllpg,00 < Ca™nl
with some norm || - ||,,.0, (see (2.3), (2.4) for the precise definition) and some

positive constants C' and a. As we will see later (cf. (2.8)), we may assume tr Py =
tr Qo = 0 without loss of generality. Then, letting as(x) and as(x) be holomorphic
functions defined by det(&; — Po()) = & + aa(x)&1 + az(z), we may assume that
asz(x) and ag(x) satisfy

(i) a2(0) = a3(0) =0,
since the characteristic equation & + as(7)&; + az(xr) = 0 is expected to have

a triple root at a degenerate point where two turning points of different types
coalesce. In addition, we suppose

.., Oas
(ii) 87331(0) # 0.
8a2 8a2
- (0) +—(0)
(iii) det gwl ‘3372 £0.
gas 0) ﬂ(g)
o0x1 ( 0xo

(In fact, under these assumptions, we can show that two turning points of different
types coalesce at (z1,x2) = (0,0).) Then there exists a WKB-theoretic transfor-
mation

(1.10) U(z1,w2,n) = T(x1, 72,0V (T1(21, 22), T2(21,72),7),

(1.11) T(x1,22,m) = Y 0 "Tul(w1,72)
n>0
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near (r1,x2) = (0,0) transforming the completely integrable system (1.1) into
the Pearcey system (1.2)—(1.3). That is, if ¥(z1, z2,7) is a solution of (1.1), then
(T, %2,m) defined by (1.10)(1.11) is a solution of the Pearcey system (1.2)—
(1.3) with the independent variable (Zi,T2). Here (Zy(x1,x2),Za(x1,x2)) is a
biholomorphic coordinate transformation near (z1,2z2) = (0,0) and T, (z1,z2)
(n = 0,1,2,...) are 3 x 3 matrices with holomorphic entries in D, for some

0 < p < po satisfying
(1.12) ITallp. < Carn!

with some positive constants C and a.

We explain the meaning of the assumptions (ii) and (iii). First, (ii) (together
with (1)) means that Py and @ satisfy a relation similar to the second relation of
(1.3) near (z1,z2) = (0,0). To be more specific, there exist holomorphic functions
bi(z1,z2) (k=0,1,2) near (z1,22) = (0,0) such that

(1.13) Qo = ba(w1,2) P§ + by (1, 29) Py + bo (1, 72)

(cf. Lemma 2.4). Furthermore, by using this relation we can verify that the set of
turning points for the completely integrable system (1.1) is given by the zeros of the
discriminant (with respect to &1) of the characteristic equation det(§; — Py(x1, z2))
of Py(x1,x2) (cf. Proposition 2.6). We can also confirm that (ii) automatically fol-
lows from (i) and (iii) by using the compatibility condition (see Proposition 2.9).
Next, (iii) means that the set of turning points for (1.1) is analytically equiva-
lent to the set of turning points for the Pearcey system {27x% + 8x3 = 0} near
(z1,22) = (0,0). The claim of the main theorem is that, under these geomet-
ric assumptions, the completely integrable system (1.1) is transformed into the
Pearcey system (1.2)—(1.3) by a WKB-theoretic transformation near a degener-
ate point where two turning points of different types coalesce. In particular, near
such a point, the Stokes geometry for (1.1) is analytically equivalent to the Stokes
geometry for the Pearcey system (1.2)—(1.3) by the coordinate transformation
(Z1(x1,22), To(21, 2)) in the main theorem.

The WKB-theoretic transformation (1.10)—(1.11) is, as a formal transforma-
tion, the same as the one that Wasow [W1], [W2] used to transform a system of
ordinary differential equations
(1.14) n*%\p =P(z,n)¥, Plx,n) =Y n "Py(z)

n>0
into a canonical form. Aoki-Kawai-Takei [AKT] first used this type of transfor-
mation in the framework of the exact WKB analysis, that is, in connection with
the Borel resummation method with respect to the large parameter 7. In [AKT],
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they considered a WKB-theoretic transformation for a second-order linear ordi-
nary differential equation

(1.15) (o -0 v =0

dz?

near a turning point and showed that (1.15) can be transformed into the Airy
equation near a simple turning point by a WKB-theoretic transformation, the
transformation acts analytically on Borel transformed WKB solutions, and several
properties (for example, the connection formula on Stokes curves) of the Borel sum
of WKB solutions can be obtained from these facts. In this paper, motivated by [T],
we employ the WKB-theoretic transformation (1.10)—(1.11) for the analysis of a
completely integrable system (1.1) in two variables. In particular, the estimate
(1.12) guarantees that T'(x1,x2,n) acts analytically on the Borel transform of a
WKB solution W.

The paper is organized as follows: In Section 2, we explain the precise state-
ment of the main theorem and discuss a generalization of the main theorem to
completely integrable systems in two variables with m X m matrix coefficients.
Furthermore, we give some remarks on the main theorem in Subsection 2.1. In
particular, we show an important property of the set of turning points and the
Stokes surface for (1.1). The lemmas proved in Subsection 2.1 play an important
role throughout the paper. In Subsection 2.2, we give a proof of the generalization
of the main theorem to completely integrable systems with m x m matrix coeffi-
cients by using the main theorem. Then in Section 3 we consider some examples to
which the main theorem is applicable. We discuss the (1,4) hypergeometric system
in Subsection 3.1 and the (2,3) hypergeometric system in Subsection 3.2. In Sec-
tions 4 and 5, we give a proof of the main theorem. We construct a WKB-theoretic
transformation in Section 4 and prove the estimate (1.12) for it in Section 5.

82. Main theorem

In this section, we first consider the completely integrable system

L0

T g = Pl Plan) =3 0" Pa(o),
(2.1) 5 n20
777167!@2\1/:@(1:771)\117 Q(xﬂ?) :gninQn(x)a

where P, (z) and Q,(z) are 3 x 3 matrices with holomorphic entries in D,, = {z =
(z1,22) € C?; |z < po} for some py > 0 and satisfy an estimate

(2'2) HPTLHPO,PO’ ”QnHPomo < Cann' (n 2 0)
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with some positive constants C' and «. Here for a matrix A(z) = (a;;(x)) with
holomorphic entries in D, (0 < p1,p2 < po) we define

(2.3) [Allp1po = sup  [JA(@)],

lz1]1<p1,|z2|<p2
(2.4) [A@)[| = las;(x)].
i,

Note that the system satisfies the compatibility condition

_, 0P _10Q
198 10
(2.5) [P, Q] +n o5 " By 0.
As a consequence we have
(2.6) [Po, Qo] =0,
OPy  0Qo
(2.7) [P1, Qo] + [Po, Q1] + P 0.

Without loss of generality we may assume that

(28) tr P() = tr Qo =0.
In fact, taking the trace of (2.5), we obtain

oP  0Q
2.9 tr{ =——=— | =0.
( ) r(@xg 811)

In particular, tr(Py(x)dx; + Qo(x)dxs) is a closed one-form. Then, by a gauge
transformation ¥ = exp{n [ tr(Py(z)dz1 + Qo(x)dx2)/3}®, (2.1) is transformed
into

tr Py (z)

0
-1 Y _ Wiy
n 81,1@ (P(x,n) 3 )<I>7

77‘18%2 = (Q(xm) - uQ;@))Q

Our main theorem is the following

(2.10)

Theorem 2.1. Let as(xz) and az(x) be holomorphic functions defined by the rela-
tion det(&1 — Po(x)) = & + az(x)&1 + as(x). Suppose that

(i) a2(0) = a3(0) = 0.

.. 8a3
(ii) 87331(0) # 0.
Oa Oa
| @ 5 ©
(iii) det Das Day # 0.

22,0 5,0
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Then there exist a sufficiently small positive constant 0 < p < po, holomorphic
functions z;(z) (¢ = 1,2) in D,, and an infinite sequence {T),(x)}n>0 of 3 x 3
matrices with the following properties:

Z1(0) = Z2(0) = 0.

Z(z) = (z1(x), Z2(x)) is a biholomorphic map from D, to (D,).

Every entry of T, (z) is holomorphic in D, and detTy(z) #0 (x € D,,).

T.(z) (n > 0) satisfy

(2.11) Tl < Can!

with some positive constants C and a.

e The formal transformation

(212) W) =T(@n¥@@),n,  T(n) =3 0 "Tul)
n>0

transforms (2.1) into the system

0
Nl = P(xn)\Il Pxn Zn

074
(2.13) 5 n=0
'S5 =V =Q@ ¥, Q@Fn) => n"Qu),
n>0
where Po(%) and Qn(%) are given as follows:
N 0 1 0 N
(2.14) B=| o 0 1|, PB,=0 (n>1),
—T1/4 —T2/2 0
~ T ~ R ~
(2.15) Q=P+2, Q=== Qu=0 (n>2).
3 3x1

Note that (2.13) is equivalent to the Pearcey system

(2.16)

through the transformation

QZa
_ =2 -1 9 =
(2.17) \Ilexp<7)x62> T Y
02 ~

072

We also call (2.13) the Pearcey system in this paper.
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We next consider a generalization of Theorem 2.1 to a completely integrable
system in two variables with m x m matrix coefficients:

0
87‘1’ P(i’???)‘l’ Pl“ﬁ ;n"nx,

(2.18) 9
U= Q(z,m¥, Q(x,n) ZW "Qn(

0xo
n>0

where P,(z) and Q,(z) are m x m matrices with holomorphic entries in D,, =
{z = (z1,22) € C?; |zj] < po} for some py > 0 and satisfy

(2.19) 1Pl o000+ 1@nllpo,po < Ca™nl (0 = 0)
with some positive constants C and «.

Theorem 2.2. Suppose that D(x,&) = det(&1 — Po(x)) satisfies the following
conditions:

(i) The equation D(0,&1) = 0 has a triple root &5, that is,

o 0D 9?°D 93D
(220) D(ngl) - 8751(0751) 851 ( 51) v 851 (0 51) 7é
.. 0D N
(ii") 87:1(0’51) # 0.
oD 9D
- 0 0
(iii") det an]}) 855 # 0.

021061 022081/ |(4.6,)=(0,¢1)

Then there exist a sufficiently small positive constant 0 < p < pg and an infinite
sequence {T(z)}n>0 of m x m matrices with the following properties:

e Every entry Ty (x) is holomorphic in D, and detTi(z) # 0 (x € D,,).
o T*(x) (n>0) satisfy

(2.21) 1T llp.p < C* (%) n!

with some positive constants C* and a*.
e The formal transformation

(2.22) U =T"x,n)¥", T*(:,C, n) = Z n_nT;(x)
n>0

transforms (2.18) into the system
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a * * * —n *
n 181‘1\11 =P($777)‘I’7 277 Pn
(2.23) P =
872\1/* Q*(x,mW*, Q*(z,m) =Y 0 "Qh(x)
n>0

where PX(x) and Q% (z) are block-diagonal matrices,

*(1) @ (g
(221) Pra) = <Pn (z) *(2)(96))’ Q;@);( n o (z) Q*(g)($)>,

P,f(l)(x)7QZ(1)(x) (resp., P*(Q)( ),QZ(Q) (z)) are 3 x 3 matrices (resp., (m — 3) x
(m — 3) matrices), and all coefficients Pﬁm(x) and QZ(J)(:E) (j = 1,2, n =
0,1,2,...) are holomorphic in D, and satisfy

(2.25) 1P Q5 0 < C*(@)" 0l (j = 1,2)
with some positive constants C* and &*. Furthermore
pr) _ *(2)
(226)  det(&—P5 " (@))] ey =0 detE P57 (@), 61— 0.er) F O-

o The subsystem

0
—17\11*(1) — P*(l) z, \Irk(l)7 P*(l .1' —nP*(l)
. o (,) 1) ;077
( . ) _1i\1}*(1) — Q*(l)(iﬂ ,'7)\1/*(1) Q*(l) m ,'7 Zn—nQ*(l)
81’2 ) )

n>0

of (2.23) can be transformed into the Pearcey system (2.13) near x = 0 in the
sense of Theorem 2.1.

§2.1. Some remarks on Theorem 2.1

In this subsection, we make some remarks on Theorem 2.1. Let us begin with the
following lemmas, which play an important role throughout this paper.

Lemma 2.3. Let as(z) and as(x) be holomorphic functions defined by the condi-
tion det(é1 — Po(x)) = & + aa(x)é1 + az(x). Suppose that:

(i) GQ(O) = a3(0) =0.

.., Oa
(i) 522(0) #0.

Then there exists a 3 x 3 matriz Tt (x) with the following properties:

e Every entry of T'(z) is holomorphic near x = 0 and det TT(0) # 0.
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0 1 0
o (T7(2)) ' Po(@)TT(x)=| 0 0o 1
—az(z) —az(z) O

Proof. Since Py(0)® = 0 by the assumption, there exists a constant matrix 7' f €
GL(3;C) such that (T))~1Py(0)T} is one of the following:

0 0 0 010 010
Case1: [0 0 O, Case2: [0 0 0], Case3: |0 0 1
0 0 0 0 0 0 0 0 0

Case 1. Let p;(z) (i = 1,2,3) be C3-valued functions defined by (T})~*Py(x)T] =
(p1(z),p2(x), p3(x)). Then p;(0) =0 (i =1,2,3) and

8&3 0
)= - det P
. (0) oz det O(x)’m:O
_ Op1 9p2 3 ) —
= det((%c1 (O),0,0) det (O, A (O),O> det <0,0, o, (0) ] =0.
This contradicts the assumption.
Case 2. Let p;(z) be as in Case 1. Then p;(0) =0 (i =1, 3) and
6@3 0
371’1(0) = _871‘1 det PO(:L.)LE:O
8p1 5p2 ap3
= — _— —_ d _— —_ —_—
et 520152000 = det (0. 222(0),0 ) — et 0.p2(0), 520)
=0.

This contradicts the assumption.

Hence (Tf)’lPO(O)TlJr must be of the form of Case 3. We next define a 3 x 3
matrix TQJf () with holomorphic entries near x = 0 as follows:
(1,0,0)
(2.28) Ty(x) = | (1,0,0)(T]) " Py()T]
(1,0,0)(T]) " Po(w)*T]
Since (T]) 1Py (0)T} is as in Case 3, T} (0) is the identity matrix. Hence T (z) is
invertible near x = 0. Furthermore, we have
(1,0,0)(T{) " Po(w)T{
T (@)(T]) ' Po(@)T] = | (1,0,0)(T]) " Po()*T}

Py
(1,0,0)(T]) "' Py ()T
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(1707O)(Tli)ilP()('I)TlJr

0 1 0
= 0 0 1|T@).
—az(z) —az(z) O
Therefore T7(z) = TlJrT;r (x)~! has the properties of Lemma 2.3. O

Using this lemma, we prove

Lemma 2.4. Under the assumptions of Lemma 2.3, there exist unique holomor-
phic functions by (x) (k=0,1,2) near x = 0 such that

(2.29) Qo = ba(x)PZ + by (x) Py + bo(z).

Proof. Since [Py, Qo] = 0 from the compatibility condition, we have
[(TH) T RT", (T1) 7' QuTT] = (T1) 7! [Po, Qo] T = 0,

where TT = T'f(z) is given by Lemma 2.3. We denote by bg(z) (resp., by (), ba(z))

the (1,1) (resp., (1,2), (1,3)) entry of TT(2)"1Qo(x)T(x) and consider the matrix

(2.30) (T (Qo — ba(z) P§ — b1 () Py — bo(x))T".

For this matrix, we have

(231 (@Y7 R (T TH(Qo — ba(a)PY — ba(w) P — bo(a) T'] =0,

and the (1,1), (1,2) and (1,3) entries of (2.30) are all zero. Thanks to this fact
and Lemma 2.3, the (1,1) (resp., (1,2), (1, 3)) entry of the left-hand side of (2.31)
is the (2,1) (resp., (2,2), (2,3)) entry of (2.30), and hence the (2,1), (2,2) and
(2,3) entries of (2.30) are all zero. By the same argument, we can verify that the
(3,1), (3,2) and (3,3) entries of (2.30) are also zero. Thus we have proved that
(2.30) is the zero matrix.

We next prove the uniqueness of bi(z) (k =0, 1,2). If holomorphic functions
be(z) (k=0,1,2) near = 0 satisfy

by () P2 + by () Py + bo(z) = 0,
then
(2.32) by () (TH Py + by (2)(TH) T PyT + by () = 0.

By the choice of TT(x), the (1,1), (1,2) and (1, 3) entries of the left-hand side of
(2.32) are bo(z), by (z) and by(x), respectively. Therefore by(xz) =0 (k = 0,1,2).
This means the uniqueness of by (x) (k = 0,1, 2). O
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Note that, by the definition of as(x) and as(z), Py satisfies the following
relation:

(2.33) P} + ag(x) Py + as(z) = 0.

Similarly, for ]30 we have

T

4:0.

(2.34) B3+ %150 +

We now discuss the Stokes geometry for the system (2.1) near z = 0, using
Theorem 2.1. First, let us recall the definition of a turning point for the system
(2.1). Let & ; (i=1, 2, 3) be the three roots of the algebraic equation det(&; —Py(z))
=&} 4 az(x)&1 + as(x) = 0. In view of Lemma 2.4, by(2)€3 ; + b1 (2)&1,s + bo(x) is
a root of the algebraic equation of det(£2 — Qo(z)) = 0. Hence, we label the three
roots of the algebraic equation det(é2 — Qo(z)) = 0 as follows:

(2.35) Lo =bo(2)&7; + br(2)&ayi +bo(z)  (i=1,2,3).

Definition 2.5. A point ¢ € C? is called a turning point for the system (2.1) if
there exist ¢,i' € {1,2,3} (i # i’) such that

(2.36) §,i(c) = &rire),  &aile) = &2, (c).
Proposition 2.6. The set of turning points of the system (2.1) is
(2.37) {z; 27az(x)? + 4az(x)® = 0}.
Proof. By (2.35), the condition (2.36) is equivalent to

51,1‘(0) = 51,1" (C)

Hence a turning point for the system (2.1) is a point where the algebraic equation
& + az(2)&1 + az(z) = 0 has a multiple root, that is, a zero of the discriminant of
£ + as(z)&1 + az(z) = 0. This completes the proof. O

Remark 2.7. Under the assumptions of Theorem 2.1, the set of turning points
(2.37) is transformed into the set of turning points of the Pearcey system {z; 2727+
823 = 0} by the coordinate transformation z(z) = (4az(z),2az(x)) near x = 0. In
particular, the set of turning points (2.37) has a cusp at « = 0.

We have the following relations between ax(x) and by (x) as a consequence of
the compatibility condition.
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Lemma 2.8. Suppose that the compatibility condition (2.5) is satisfied. Then

0
(2[)2@2 - 3b0) = 0

dxy

Oas Oag das Obsy 0by
(2.38) 81‘2 _2b28 o b187x1+3871 3+28

8@3 8a3 8b1 ab()

=) L
8332 161‘1 38%‘1 3 8%‘1

Proof. The transformation ¥ = T (z2)¥ with TT(z) given by Lemma 2.3 trans-
forms (2.1) into

— Q3.

0
-1 gt = pt o Pi( "Pi(x
o (z,) ¥, Pl(z,n) z;n
(2.39) P 20
=0T = QN ()T, QT (z,m) =) n"Qf(2)
8332
n>0
where
oTt
(2.40) Pl(a,n) = (T Pz, )T" =~ H(TT) 75—,
X1
t ty—1 i1ty 9T
(2.41) Q' (w,m) = (T") " Qz,n)T" —n " (T") By
In particular,
0 1 0 bo by by
(242) Pi=1 0 0 1|, Q}=|-boas —byas+bo by
—a3 —az 0 71)1@3 —b2a3 - b1a2 7b2a2 + bo

in view of Lemmas 2.3 and 2.4. Since the system (2.1) satisfies the compatibility
condition, the system (2.39) also satisfies the compatibility condition

oPt 0Qf

Pt of -1z .

[P1, Q" + Oz m dxy =0
In particular,
(2.43) [FJ, Qi) =0,

or] Q)

T Qi+ 1Pl Q)+ 20 — Z<o

(2.44) [Pl ’ QO] + [PO ’ Ql] T Oxo oy 0

For k = 0,1, 2, we have

tr{(P)* ([P, Qf] + [P, Q1]))
tr{(P))* P QY — (P)"QLP]} + tr{(P))F Pi Q] — (P))* Qi P}
= tr[(P))"Pl,Qf] + t [P, (P))*Q]] = 0
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in view of (2.43). Hence

oPl  0Q}
(2.45) tr{(PJ)’“(axz - (&)} =0

for £ = 0,1,2. On the other hand, using (2.42), we obtain by straightforward
computations

oPl o B)
(246) tI‘{ ( D2 a§f> } ai(?bg&g — 3b0),

(2.47)
oPl  0Q das das day _Ob ob
I 0 2 on
“"{Po(axg ax1>} G, T Mgy, Thig,, +35, wt g a
(2.48)
oPl  aQ} da da Oby )
)2 Yo _ 3 a3 - _
tr{(PO) (&Tz o > } = 8x2 + b1 a1 + 38 1&3 + 2as 911 (bo bgag).
Using (2.45)—(2.48), we obtain (2.38). O

Proposition 2.9. Assumption (ii) of Theorem 2.1 follows from assumptions (i)
and (iii).

Proof. This proposition is verified by using the compatibility condition for the
system (2.1). If (Qas/dx1)(0) = 0, then (Qaz/0x2)(0) # 0 in view of (iii). Using

this relation and (i), we get (2.38) by similar arguments to those in the proofs of
Lemmas 2.3, 2.4 and 2.8. By (i) and (2.38), we find

Oas Oas Oas Oas Oay
. 87@(0) G -—(0) - 87:1(0) 252(0)3761(0) + 51(0)37%(0)
et 8a3 8a3 = det 8a3 8a3
87;1(0) 87;2(0) 87:1(0) b1(0)a71(0)
— ay0)( 2% (o) o
- 2 3x1 e
This contradicts (iii). Thus (das/dx1)(0) # 0, that is, (ii) holds. O
Remark 2.10. By Proposition 2.9, the assumptions of Theorem 2.1 are equiva-
lent to
(i') a2(0) = a3(0) = 0.
Oa da
7 (0 52(0)
(ii') det ! 2 #0.
das 0 %(0)
6.231 8.132
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Remark 2.11. By Remark 2.7, we find that

(i) a2(0) = as(0) =0,
(ii") {x; 27a3(x)? + 4az(x)® = 0} can be transformed into {z; 2727 4+ 825 = 0} by
some coordinate transformation z : C2 — C2 near x = 0,

are necessary conditions for (i) and (ii’) of Remark 2.10 to hold. Furthermore,
we can prove that (i) and (ii”) are necessary and sufficient conditions for (i')
and (ii).

We now see that the Stokes geometry for (2.1) can be transformed into the
Stokes geometry for the Pearcey system near x = 0 by the coordinate transforma-
tion Z(x) given by Theorem 2.1.

Lemma 2.12. Let Z(x) be the coordinate transformation given by Theorem 2.1.
Let & (%) (i =1,2,3) be the roots of

T

(249) det(§ — Ro(@) = (&) + Z& + 7 =0,
and let él(i) be the roots of det(gg - @0(5)), that is,
(2.50) €2,:(T) = (£14(2))* + %
Then
614(2) = Ei(F@) 5.7 + &.u(F@) 57
(2.51) v :
§2,i(2) = f1,i(x(x))a—2 + 52,1‘(30(33))872
satisfy

(252)  det(&—Po(x)) = & +az(x)er+as(z) =0, & = ba(x)&+b1 (x)&1+bo ().
Conversely, any solution of (2.52) is given by (2.51).
Using this lemma, we have

Proposition 2.13. A point ¢ € D, is a turning point of the system (2.1) if and
only if Z(c) is a turning point of the Pearcey system (2.13).

The proof of Lemma 2.12 and Proposition 2.13 is given in Subsection 4.1.
Finally, we consider the Stokes surface for the system (2.1).
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Lemma 2.14. Fori=1,2,3, we have

082  O&1;
(2.53) 0.~ Ore
Proof. For simplicity, &; ; and & ; are denoted in the proof by &; and &3, respec-
tively. We show the lemma near a point z € C? which satisfies 3¢; (x)? +az(z) # 0,
that is, outside the set of turning points for the system.
Taking the partial derivative of & + az(z)&1 + az(z) = 0 with respect to the
variable x; and x5, we obtain

861 8a2 8&3
2 — — —_—
(2.54) (3¢7 + ag)axl + 8z1£1 + 0, 0,

851 8(12 aa3

2 _— JE— _ =
(2.55) (3&1 + a2)8x2 + pr &+ 02s 0.

Since 3¢ ()2 + aa(x) # 0, it suffices to prove that (0&/0z1)(x) also satisfies

Using (2.35), (2.54) and Lemma 2.8, we obtain

852 3a2 8a3
2 0g2 | Oaz oas
(3¢ + a2)8m1 + 0xo ft 0xo

= (35%“‘2){(25251 +b1)gill+gﬁff+gf;&+§2}+gzzgl+gzz

= (—2bggzj—2§izla2+3gzz)§f
+(_2b2gzj_blgz—?)gzjag—Qgiag—i—gZ)&
+(—b1gzj—3§$a3+gz?a2+gzz> —0. -

Note that Lemma 2.14 guarantees that &; ;dz; + §2;dxs is a closed 1-form.
Based on this fact, the Stokes surface for (2.1) is defined as follows:

Definition 2.15. Let ¢ € C? be a turning point which satisfies (2.36). A Stokes
surface for the system (2.1) emanating from x = ¢ is a real 3-dimensional surface

defined by

(2.56) i‘s/u{(fu dry + &2, dw2) — (&1, doy + &a,i0 da2) } = 0.
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By using the coordinate transformation Z(x) of Theorem 2.1, we have

Proposition 2.16. Let xq be a point in D,. Then
T Z(z) _ ~ _ ~
(2.57) / (5171‘ dzry + &2, dxy) = / (5171' dz, + 2,4 dzs).
Zo E(IO)
In particular, a point x € D, is in the Stokes surface for the system (2.1) if and
only if Z(x) is in the Stokes surface for the Pearcey system (2.13).

Proposition 2.16 is an immediate consequence of Lemma 2.12 and Proposition
2.13.

§2.2. Derivation of Theorem 2.2 from Theorem 2.1

In this subsection, we give the proof of Theorem 2.2.

By assumption (i*) and using the arguments of [W1, Chapter VII], [W2,
Chapter II] and [T], we can verify that there exist a sufficiently small positive
constant 0 < p < po and an infinite series of m xm matrices {T;5(x)},>0 satisfying:

e Every entry of T} (x) is holomorphic in D, and det T (z) # 0 (x € D,,).
o Tx(x) (n > 0) satisty
(2.58) T3 1lp.p < C*(a%)"n!

with some positive constants C* and o*.
e The formal transformation

(2.59) U =T (o), T (wm) =Y 0 "T; (),
n>0
transforms the first equation of (2.18) into

- 0 * * * * —n p*
n>0

where P¥(x) is a block-diagonal matrix,

*(1) 2
(2.61) P)(z) = (Pn (@) P*(2)(x)>’

Pﬁ(l)(x) is a 3x 3 matrix, Pﬁ(2)(m) is an (m—3) x (m—3) matrix, and all coeflicients
Pﬁ(l)(x) and P;(2) (x) are holomorphic in D, and satisfy

(2.62) 1P; P p < CH@)"nl - (j =1,2)

with some positive constants C* and o*.



36 S. HIROSE

o DW(z, &) =det(& — PFY(2)) and D® (2, ) = det(& — P;P (2)) satisty

(2.63) D(z,&) = DW(2,£)DP(z, &),

W exy . ODW 9?DM) 03D
(2.64) D'V(0,&)) = €, ——(0,&7) = o2 —5—(0,&7) =0, e —5(0,&7) #0,
(2.65) D®)(0,£1) #0.

(The proof of the estimates (2.58), (2.62) is provided in [T].)
Furthermore, by using the argument of [T], the second equation of (2.18) can
be transformed by (2.59) into

— a * * * * —n )k
(2.66) U 1372‘1’ =Q (x,mMV¥*,  Q*(z,m) =D 1"Qxx)
n>0
where Q7 (x) is a block-diagonal matrix,
*(1) (.'I,')
2.67 r)=|("*" ,
(2:67) Qi) ( 2®w>

QZ(D(:U) is a 3 x 3 matrix, Q52 () is an (m — 3) x (m — 3) matrix, and (after
changing p, C* and &* if necessary) all coefficients Qﬁ(l)(:v) and Q:L(Q) (x) are
holomorphic in D, and satisfy

(2.68) 1@l < C* (@)™t (j = 1,2).

Thus what remains to be proved is the last claim of Theorem 2.2 for the
completely integrable system

0

—1 \IJ*(l) — P*(l) z, \Il*(l)’ P* 1) .13 —TLP*(l)
pr (z,m) n) n§>0n

(269) -1 9 lI/*(l) _ Q*(l)(x )\I/*(l) Q*(l) I —nQ*(l)
D = 1 ) ) E n

n>0

Let aj(z) (k =1,2,3) be holomorphic functions near = 0 defined by

(270)  DW(x,&) = det(&, — Py (x))
= (& — &)+ af(@) (& — )2+ ap(x) (& — &) + aj(2).

Then, by (2.64), aj(z) (k = 1,2, 3) satisfy

(2.71) at(0) = 0.
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Using (2.63), (2.64) and (2.70), we have

oD _oDW oD

i *y . 2 * (2) * (1) A *
(272) 81‘1 (07 51) 6.131 (07 51 )D (Oa 51) + D (0, 51) 8.13‘1 (0> gl)
= 95(0)p)0,6)).
T
Hence, by assumption (ii*) and (2.65), we find
Oa}
2. .
(2.73) 5040
On the other hand, using (2.63), (2.64), (2.70) and
9?DM o Oas
8£Cj8£1 (0’ 51) - axj (0)7
we have
oD oD a3 (0) Oaj (0)
Oxy O0xa NG 2 oy 0xo
det 2D 22D = D' (0,£7)* det %(0) %(0)
811851 ({91’2851 (z,61)=(0,£}) 81‘1 8$2

Hence, by assumption (iii*) and (2.65),

oas oas
oz, 0 5,0
Oas Oas
7, 0 5,0

(2.74) det £0.

The gauge transformation ¥*() =exp{n [* tr(PJ(l) () dzq +Q6(1) (z) dao)/3} @+
transforms (2.69) into

*(1)
1 0 (I)*(l) — (P*(l)(l',n) . tI'PO (:15)>‘I)*(1)7

nt—
(275) 8;1 t Q*?()l)( )
-1 9 Hx(1) — *(1) _ T W) gr(1)
U Q™ (x,m) 3

Let a3(x) and a3(x) be holomorphic functions defined by

*(1)
defer - (B0 - D) ayoe + ao)

Then
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Hence, by (2.71), (2.73) and (2.74),

. ) o §2m>%%@
a5(0) =a5(0) =0, S 2(0)#0, det| ool s £0.
o L) (o)
Oxl 81'2

That is, (2.75) satisfies assumptions (i)—(iii) of Theorem 2.1. Thus the system
(2.69) can be transformed into the Pearcey system near = = 0 thanks to Theorem
2.1. This completes the proof of Theorem 2.2.

§3. Examples
§3.1. The (1,4) hypergeometric system

Let us consider the system

2w = Ry,
8:1;‘1
(3.1) D )
n 87@\1/ = (Qo(z) + 1~ Q1(2))Y,
2£C2/9 1 0
PQ = 0 2552/9 1 ,
(3.2) a/3  —x1/3 —4x9/9
4 2 8 0P,
=P2— —goPy+ -2y — —a2 = —
Qo = Fy gT2fo+ g7 — 577, (@ N
where « is a complex constant. This system is equivalent to the following holonomic
system:
o3 2 0? 1 5,0 o g
T S = _Z =0
(3.3) (8:1::;’ + 3x2n3x% T oz, 3" )w ’

0 0?
= = =0
(77 8%2 Gx% > ,(/} ’
which belongs to the class of hypergeometric systems of two variables studied in
[OK]. Note that (3.3) has the following solution:

(3.4) I /exp{n(t3 + 2ot? + 21 t) 1AL

7

Since the system (3.3) and its solution (3.4) are determined by the partition “(1,4)
of the natural number 5, we call (3.1) the (1,4) hypergeometric system. In what
follows, we assume «a # 0.
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We first study the turning points for the (1,4) hypergeometric system. Let &
(resp., &2) be an eigenvalue of Py (resp., Qo). Then

(3.5) det(&1 — Po(x)) = & + az(2)&1 + az(z) = 0,
_1 4 o _ 16 5 2 _ @
(3.6) az(z) = 3%1 = 5%, as(z) = mog%2 ~ gr¥1%2 = 3,
4 2 8
(3.7) & =& - §$251 +gT- 871363

In view of (3.7) we find that a turning point for the (1,4) hypergeometric system
is given by a zero of the discriminant 27a3(z)? + 4az(z)? of (3.5). A singular point
of the set of turning points for the (1,4) hypergeometric system is given by

as(z) = az(x) =0,
that is,
T = (34/3a2/3e4ﬂﬁ(j—1)/3, _%/3@1/%%@(3'—1)/3) =¢ (j=1,2,3).
Furthermore,

%(Cj) = 374/32BeATVEIG0/3 4

8x1
3a2 8@2
——(cj) 5 (c))
01 Oz 2 oa/3 2/3 any=I(-1)/3
det 8(13(') 8&3() = 81(3 a“’’e )750.
5$1 € 8902 K

Hence in a sufficiently small neighborhood of z = ¢; (j = 1,2,3) the (1,4) hyper-
geometric system can be transformed into the Pearcey system.

§3.2. The (2,3) hypergeometric system

Next we consider the system

0
W = (Ro(e) P ()Y,
(3.8) 81
U= v
T oz, Qo(z)¥,
x1/6 1 0 0 0 0
Py = 0 /6 1 , Pi=1|0 0 01,
(3.9) x2/2 /2 —x1/3 0 —-1/2 0
2 x x? 2«
- “p2,. 2 p 71 27
QO xIo 0 + 31’2 0 91’2 3%2’

where « is a complex constant. This system is equivalent to the holonomic system
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03 xy 0? —a+nt , 0 To 4
<am§+2”ax§+2 o 27 )Y

<8m18x2 - )d} - 0,

which also belongs to the class of hypergeometric systems in two variables studied
in [OK]. Since (3.10) has the solution

(3.10)

(3.11) T /exp{n(t2 + it + ao /)1 dt

and it is determined by the partition “(2,3)” of the natural number 5, we call (3.8)

the (2, 3) hypergeometric system. In what follows, we assume z3 # 0 and « # 0.
Similarly to the preceding subsection we study the turning points for the (2, 3)

hypergeometric system. Let & (resp., &) be an eigenvalue of Py (resp., Qo). Then

(3.12) det(&1 — Po(z)) = & + aa(z)é1 + as(x),
2 3
_ o« ) — L1 AT T2
(3.13) wE)=—p -3 s@={Egta T
2 T x? 20
14 _ 2 m, o m 20
(3 ) 52 $2€1 + 31‘2 ! 9£E2 3582

Thanks to (3.14) a turning point for the (2,3) hypergeometric system is given by
a zero of the discriminant 27az(z)? + 4az () of (3.12). A singular point of the set
of turning points for the (2,3) hypergeometric system is given by

as(z) = az(x) =0,

that is,

Since

das 87551(%) 87;102(%) _ m

(07
87‘%1<Ci) = —E 7é 0, det 60,3 7é 0

in a sufficiently small neighborhood of = ¢4 the (2,3) hypergeometric system
can be transformed into the Pearcey system.

84. Construction of the transformation

In this section, we discuss the construction of z(z) and {7}, (z) }»n>0. The estimate
(2.11) for T),(z) will be verified in Section 5.
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Suppose that the system (2.13) is obtained from (2.1) through the transfor-
mation

U(z,n) = T(x,m)(@(@),n), #(w)=@(2),F(), T@mn) =) n"T()

n>0
Then Z;(z) (¢ = 1,2) and T'(z,n) should satisfy
0T ~ 0To ~ 0T
T(Ep 4 222 < _pr
(3331 + 8 X1 ) +77 81‘1 ’
8.’171 8$2 1 oT
T\ —P+ —= — =0T
(81‘2 + 8 i) ) +T] 8502 Q ’
that is,
To (gxlpo 072 Qo) PoTo,
T
ox 8x
Ty <81P0 2Qo) = QoTo,
8331 8332 8Tn 1
T} P i
2o i)+ = 20 |
(n>1
071 = 0To ~ 3Tn 1

84.1. Construction of the transformation, I

In this subsection, we prove

Proposition 4.1. Let az(x) and az(x) be holomorphic functions defined by
det(&1 — Po(x)) = & + az(2)&1 + az(x). Suppose that

(i) Cé 2(0) = a3(0) = 0.

(ii) T( ) #0.
8a2 80,2
-—(0) =—(0)

(iii) det gz; gz; £ 0.
a71(0) 872(0)

Then there exist a sufficiently small positive constant 0 < p < pg, holomorphic
functions Z;(z) (i =1,2) in D,, and a 3 x 3 matriz To(z) such that:

L %1(0) = .%2(0) =0.
o () = (Z1(x),Z2(x)) is a biholomorphic map from D, to T(D,).
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o FEvery entry of To(z) is holomorphic in D, and detTy(z) #0 (x € D,).
o The transformation

(4'1) ‘I’(»’Uﬂ?) :TO(I)‘I’@(@W)

transforms (2.1) into

B B n
n 1371‘11=P(x,77)\1’, P(@,m) =Y n "Pu@),
(4.2) n20

10 =~ = o~ S e~
sV = Q@Y Q@) = > 0 Qn(@),
n>0
where
0 1 0 ~
(43) Py = 0 0 11, Qo =Fy + ER
—T1/4 —T2/2 0

Here P,(z) and Q,(z) are 3 x 3 matrices with holomorphic entries in D,, and
(4.4) [Ballp,ps @nllp,p < Calnl (n 2 0)
with some positive constants C and Q.

Since the system (4.2) is obtained from (2.1) through the transformation (4.1),
Z;(z) (i = 1,2) and Ty(z) should satisfy

OF1 5 | O ~ oT,
To<le+xQ >+77_10:PT0,

oxy oy O0z1
0T1 ~ 0T ~ 10Ty
To (83;2 P+ 76372 ) +n Do = QT()v
that is,
o 0Ty ~
1o £P0+ IZQO = RyTo,
81'1 axl
(4.5) oT OT
1 2~ \
To (&EQPO 82Q0> = QoTo,
0T1 ~ 0Ty ~ oT,
Ty ﬂPl mng + =2 = Py,
(4 6) 8x1 (91‘1 6x1
’ 851 852 ~ 6TO _
To ((’hgpl Dy Q1> + e Q1 Ty,
TO (gml-ﬁn ng Qn> = PnTO,
(4.7) o (n>2)
To ! P, 2 Qn = QnTO7
8$2 81‘2
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We first show

Lemma 4.2. Z;(z) (i = 1,2) satisfy the following system of nonlinear partial
differential equations:

~9 ~ 2 ~ ~ ~ ~ 2
Ty (0%2)\" 35 0% 0T, T (0% _
12 (8331) 1M 0z, 01 2 \ 0z +a2(z) =0,
B (0m)' B (05 R0
16 6l‘1 108 8331 3331

Ty 0% (072’ 071\’ 0%
48 1tz ¢ 9%z 1) 92 -
( ) + 8 8:01 8;101 &Tl 31’1 +a3($) 07
0T Ty 0F1 0T 97\ o7
pre b2<””>{‘3 921 021 4 (w) } +ou@)g

Ty 01 \? | T (0% O7o
c’?:rg_bQ(x){<8x1) 6(8x1)}+b1(x)8m1'

Proof. Tt follows from (4.3) and the first equation of (4.5) that

072 2 ﬂwlﬁwxz@wz),
1

011
Using this relation, (2.33) and (2.34), we have

0= (Pg) + GQ(.’E)PO + (Lg(l'))TO

~ 3
T0<3x2p0+0flpo waf?) +as(e )T()(awpﬁ@flpo mzfm)

(4.9) PTy = T0<

ox 15) it 3 8%‘1 ox 15) T 3 81‘1
+ az(2)To

_p | E2 (022 7, 001 (072" T2 (0%, 0T, O
=To [{ 12 (6331) 1" 83:1 <3x1> 2 <(‘3x1 8561 + az(x)ﬁx PO
~9 ~ 2 A~
T5 011 (0T 0T\~ 012 0Ty 0Ty | =
T2 001 (972 oz g
+ {12 8£81 (8x1) (8%1) 8%1 2 (91'1 +G2(I)8x1 0
n x% + z3 0o T 071 3 _ T1Z2 01 [ 0o
Oz A1 8 Oz \ Oz

+ aQ(x)x—; g—ij + a3(x)H.

Hence, by the same reasoning as in the proof of Lemma 2.4, we get

%o (T2 (072 axl 0o To [071\° B
(4.10) 8;161{ <8x1> 4" Yoxy Oz 2 <8x1> +axl@)p =0,

0% 0% 0% 0Ty To 071\ B
(4.11) 8I1{ <8w1> 4 87187:1 - <8$1> +a2(m)} =0,
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o (B)(E) (@) 2am ()

16 27 8.1‘1 4 81‘1 8 8%‘1 8.131
% % + az(z) = 0.
Here, if (071 /021)(0) and (0Z2/0x1)(0) simultaneously vanish, then (dag/dx1)(0)
= 0 by the assumption a2(0) = 0 and (4.12). This contradicts the assumption,
that is, (021/0x1) # 0 or (0Z2/0x1) # 0 holds near x = 0. Hence we get the first
equation of (4.8) by (4.10) and (4.11). Furthermore, using the first equation of
(4.8) and (4.12), we obtain the second equation of (4.8).

Next, using (2.29), (2.34) and (4.9), we obtain
QoTo = (ba(2) Py + by (x) Py + bo(x))Tp

+ az(z)

851 2 %2 8552 2 a-%2 >
=T i 2222 2\ p?
(o (32) -2} o]
Ty 07, 0Ty T (072 \> 071 ~
* {b“x){‘samﬁw(am) }“’1“%]%

72 (07:\° T 0% 0%, To 0o
b ] e b — —+b .
+ |: 2(99){ 9 <8a;1) 2 (9301 81‘1}+ 1(%) 3 8%‘1 + o(fﬂ):|>
On the other hand, the left-hand side of this equation can be expressed as
0%y ~o  0T1~ = T2 0Ty
4.13 To=Ty| =—P;+ —FP+——
( ) QO 0 0<8$2 0 * 8332 O+ 3 8:102

in view of (4.3) and the second equation of (4.5). Hence, we get

Oty 01 \* | T (072’ 9o
(4.14) Oy —52(95){<axl> +6<€)xl> }+b1(x)8901’

071 To 0T 0Ty T (0F2° 071
(4.15) bQ(x){38m(%4<8m) }+bl(x)am1,

Ty OF 7 (05:\° T 011 01 Ty 0%
416) — —=b> 222 - T 2 b1(z)—=— =— + bo(z).
( ) 3 8:172 2(x){ 9 (8:01) 2 81‘1 8£E1}+ 1(1.) 3 8171 + 0(1’)
Thus we get the third and the fourth equations of (4.8).

Finally, we show that (4.16) follows from (4.8). Using the fourth equation of
(4.8), we find that (4.16) is equivalent to

~9 ~ 2 ~ ~ ~ ~ ~ 2
Ty (0F2\" T 0% 08, T (0%, _
(417) bQ(x){ 18 <6l‘1> 2 63:1 81‘1 3 (8l‘1 + bo(l’) =0
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On the other hand, Lemmas 2.3 and 2.4 imply

(4.18) 0= trQo = tr(ba(x)P? + by (x) Py + bo(0))
— txlby (&) {(T1) " BT 4 by (2)(T1) " R TT + b (0)]
= —2by(z)az(x) + 3bo(x).

Hence (4.17) is equivalent also to

=2 ~\2 ~ a~ o~ - N
Tp (002" _ 31 0Ty 0%y Ty (0137 2 _
b2<x){18 (3331) 2 Oxp Ox1 3 (3!171 + 3“2(55) =0.

This relation exactly coincides with the first equation of (4.8). O

In what follows we discuss the existence of a holomorphic solution
(Z1(x), T2(x)) of (4.8) near x = 0.

Let F (resp., G) denote the left-hand side of the first (resp., second) equation
of (4.8). We first prove

Lemma 4.3. Let us consider a system of ordinary differential equations

Fla,—0 =0,
(4.19) l22=0
G‘IQIO = 07

obtained by restricting FF = 0 and G = 0 to xo = 0. Then this system has a

holomorphic solution (Z1(x1,0),T2(x1,0)) near x1 = 0 satisfying

071
87551(0) 7 0.

In the proof we use the following Briot—Bouquet type theorem for a system

(4.20) 71(0) =0, F2(0) =0,

of ordinary differential equations, established by Kaneko and Ohyama [KO].

Theorem 4.4. Let h(t,u,v) and k(t,u,v) be holomorphic functions near (t,u,v)
= 0 satisfying
e 1(0) =k(0)=0.

e For any non-negative integer n,

Oh oh
n-— %(0) —%(O)
(4.21) det ok ok # 0.

E e )

Then the system of ordinary differential equations

td—u = h(t,u,v),
(4.22) dt
t@ = k(t,u,v)
dt k) )

has a holomorphic solution (u(t),v(t)) near t = 0 satisfying u(0) = v(0) = 0.
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Proof of Lemma 4.5. Let Y (1), Y (1), Z(x1) and Z(z1) be holomorphic functions
defined by
Tilag=0 =Y =21Y, Tolpy—0=2Z =11Z.

By the assumption a2(0) = a3(0) = 0, we have

— n _ n
a2|m2:o— E a2 nTq, a3|12:0— E az nly .

n>1 n>1

Using these symbols, we can write (4.19) as

S 5 1~ 3= T1 5 _

f(.’IIl,Y, Za}/a.7Z1) = _§ZY12_ZYY3-Z1+éZQZl2+Za'2,nx? 1 = 0’
n>1

~ 1~ . ~ -~
(4.23) %mKZHZn?jgﬁ+%ﬁﬁ&+%wmﬁ
. 2

Tl P Ty ~
+1—éYQZf+ﬁ%Z3Zi”+Za3,nx?‘l
n>1

=0,

where Y7 = dY/dxy and Z; = dZ/ dx;.
First, by the assumption (dasg/dz1)(0) = as1 # 0, a solution of

{f(O,p,q,p,Q) =0,
9(0,p,¢,p,q) =0
is given by
2a
= (4az )4 #0 = 2
p (a3,1) 7& ) q 5(@3,1)1/2

Using this fact, we have

or or
oy, 07 9 5
det 99 0 =167 # 0.

o 024, (x1,Y,Z,Y1,21)=(0,p,q4,0,q)

Then, thanks to the implicit function theorem, we can rewrite (4.23) as

(424) {Y1 = H(z,Y,Z),

Z1 = K(!El,i}7 Z)

with some holomorphic functions H(xl,f/, Z), K(xl,f’,Z) near (xl,f’,f) =
(0,p,q). Introducing new unknown functions ¥ = Y —p and Z = Z — ¢, we
further rewrite (4.24) as



A WKB-THEORETIC TRANSFORMATION 47

ay - - o
x :H(‘rlvp—’_yvq—’_z)_p_yzH(xlvyvz)v

d1‘1

(4.25) i
xldl’ :K(gjl,p—f—f/,q—l—é)—q—ézI/(\'(xlﬂf/\"E),

1

where ﬁ(ml, }/}, 2) and IA((xh 37, 2) are holomorphic functions near (z1, 1?, 2) =0.
Substituting these relations into (4.23), we have

= OH 4 o0H

H(0) =0, ==, ~(0) =0,
©=0. =SO)=-3 =0

. 0K 2¢ 0K 5

KO :O7 :——7 P —
(0) 7 =5, 370 ="3

This condition means that (4.25) satisfies the assumptions of Theorem 4.4.
Hence, applying Theorem 4.4, we find that (4.25) has a holomorphic solution
(Y(21), Z(z1)) with Y(0) = Z(0) = 0, that is, (4.19) has a holomorphic solution
(T1(x1,0),Z2(x1,0)) near 1 = 0. The construction of the solution also satisfies

T1(21,0) = 21(p+ O(21)),  T2(1,0) = 21(q + O(21)),
that is, (4.20) holds. O
For this solution (z1(z1,0),Z2(z1,0)), we have

Lemma 4.5. Let (71(z1,0),7Z2(z1,0)) be the holomorphic solution of (4.19) near
x1 = 0 obtained in Lemma 4.3. Then the initial value problem

0T Ty 0F1 0T2 T (0727 o7
87:62 _b2(x){_ 3 8961 81’1 B 4 <8x1) }+b1(x)8x1’

~ ~ \ 2 ~ ~ \ 2 o~
(4.26) % = bz(x){ @2) +2 @fj) } + bl(x)g%f,
Tilpo—0 = Ti(21,0) (1 =1,2)
has a holomorphic solution near x = 0.
This lemma is an immediate consequence of the Cauchy-Kowalevski theorem.

Lemma 4.6. The holomorphic solution (Z1(x),Z2(x)) given by Lemma 4.5 satis-

fies
(4.27) F=G=0.

Proof. For simplicity, in this proof F'|(z, z,)=(# (2),72(=)) a0d G|z, 52)= (31 (2),5())
are denoted by F' and G, respectively. We prove that F' and G satisfy the system
of partial differential equations
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OF _ 9y, 9G 44 08 3 500
(4 28) 8302 ox X1 (9.1‘1 81‘1 8331
’ 1 b 2 0b
9G _y 9G L 9 pp guyisig 2% o

O Or1 3 " 01 01 3 0xq

Using the definition of F' and G, we have

poay [T (N5 (0RO | (3 0R 0n) o
8351 2) 0x1 4\ 0x1 /) Ox; 4 183:1 283:1 0z?

+ (.’EQ 652 3 8551) 8252

6 871_1%87;1 Tx%a
(G — ag)
(703, (9%.\° T (0T 10T\ 11 (03 [97)"
-Fam@) w6 @) =) (52) )
o0 T13s (0T2\° 72 071 02 0°%
() (@) e
i) A s d Y
16" 0z 0x, 4 Oxp 01 6 \ 0y 0z’
)= (- 3%%>8w1+{@<6%>21(%>2}%
63:2 4 Oxq Ox1 ) Oxo 6 \ 011 2\ 011 Oxo
N ﬂxlaxh a&) %7 <~a@ 8x1> %%,
47 Oz 1 2 0m, 81:18362 6 Ox1 1t Yo, ) 0x101y

G mag = (L0510 B 00 (03) "\ 0B
8.732 3 8 8331 81‘1 8 8331 81‘1 8.732
8$1 81'1 8$1 3 31'1 8x1 8.%2
o7, TiFs (0F,\° 72 0% 0%, 0%
*{”(axl) 78 (axl> *3 021 021 f 0210
16 61‘1 36 8331 4 6.231 8$1 6 (9%‘1 8$16Z‘2
Here, by (4.26), we find
Vi O [T 0T 05 (052
63?18.%’2 o 81’1 3 6331 8331 6:51
.”EQ ({952 8 551 7 81'1 <8x2> 52 851 82.%2 %1 8%2 6252}

”2(“””){‘3 931 027 1200 \0m) 3 0w 02 2 om 08
8()1 8 b 821E1

* o g Tz
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2%y Oby 07 \2 Ty (0722
= 7(%) - 4+ = ===
8$18$2 81‘1 8l‘1 6 8.T1
0T, 0271 1/073\° Ty 079 0% by 0% 027y
+b2(””){2azl 7 +6<ax1 3 001 022 ) om P, TG

Then, using these relations, we can confirm by a straightforward computation that

o 0

o (F = a2) = 2y 5-—(G — a3) = by 5 —(F — a)
o o o !

—322(G —a3) — 2= (F —ay) =0,
(4.29) g Om g dm T
Y _ _ = - _ 2
81'2 (G ({;bg) bl X1 (G2 azg) 3b2 (91'1 (F a2)
38I1 (G a3) 3 8371 (F )

In view of (2.38) and (4.18), (4.28) immediately follows from (4.29).
On the other hand, by the construction of (z1(z), Z2(z)),

(4.30) Flyy=0 = Glzy=0 = 0.

Hence, by the uniqueness of solutions for the initial value problem (4.28) and
(4.30), we obtain (4.27). O

We have thus confirmed that the system (4.8) has a holomorphic solution
(Z1(x), T2(x)) near = 0. This solution has the following properties.

Lemma 4.7. Let (z1(x),Z2(x)) be the solution given by the above argument. Then

o 1(0) = 75(0) = 0.

o The Jacobian

07

0z,

—(x) H—(x)
sl () = det | Pt 02
aTCl (z) 671;2 (z)

of Z(x) = (T1(x),T2(x)) is non-zero near x = 0.

Proof. By Lemma 2.8 and the assumption a3(0) = a3(0) = 0, we find

das das Oas 8@3 Oas
. e (0) s (0) B 8751(0) 21’2(0)671 (0) + b1 (0)87581 (0)
et 8(13 8&3 = det 8a3 8a3
87:101(0) 87@(0) 87&(0) b1(0)37$1(0)

= —2b,(0) <ng(0))2.
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Hence, using the assumptions of Proposition 4.1, we get

b2(0) # 0.
It follows from the third and the fourth equations of (4.8) and (4.20) that

~ - - 2 ~
gi;(o) 62(0){ x2§0)%(0)gij(o> 1;0) (gZ(O)> }+b1(0)22(0)
=005 0),

g%(()) = bg(o){ (gz (0)>2 + sz() (gij (0))2} + bl(O)g%(O)

— by(0) (ggm)) O 520,

We thus obtain s
0T,
J51(0) = b (0) [ Z£1(0 0,
51(0) = b0 (522(0))
that is, |Jz|(z) is non-zero near x = 0. O

Next, we construct Tp(x) which satisfies (4.5).

Lemma 4.8. There exists a 3 X 3 matriz To(z) with holomorphic entries which
is invertible near x = 0 and satisfies

(4.31) T (gxi 4 9% QO) — BTh.

Proof. Using (2.34), (4.3) and the first and the second equations of (4.8), we have
8331 8$2 851 =~ 81‘2
(8 o Q0> + a(z) (3331 Qo) + as(z)
81‘2 8.131 1‘2 8:7?2 3 8332 61‘1 .132 63&‘2
P} P, — 2P+ 2R
(8%1 0+8 X1 0+ 8301) +CL2($) 8 X1 0 0+ +Cl3( )

dr; 03 Dy 3 Ory
072 \> 3. 0%y (0T2\° Ty (071 0%, 072 =
{ <ax1> 1 axl> (ax1> axl“ﬂx)axl}%
(9.’171 83:2 2
12 31‘1 8561
=0.

+

3_ (011 0o T2 0T, 3 071 ) =
4 (8131) 6$1 2(821?1) -‘r(lz(!L‘) 81‘1 }PO
3

072\ Ty (071 \° Tids 0% (0%  as(z) . 9%
+ 16 27) (81'1) B 4 <8$1) B 8 8951 (81'1> + 3 x28$1+a3(x)
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Then, by the same argument as in the proof of Lemma 2.3, we can find a 3 x 3
invertible matrix 7'f(x) with holomorphic entries near = 0 which satisfies

~ ~ 0 1 0

"".i. —1 61:1 = 3172 ~ "".i.
(T7) e Lot 5 ~Qo T = 0 0 1
! ! —as —ag 0

If we set Ty(z) = T (2)Tt(x) =1, where T (x) is the 3 x 3 matrix given by Lemma
2.3, then Ty(z) has the desired properties. O

Furthermore, we have

Lemma 4.9.

Oy

Proof. Using (2.29), (2.34), (4.3), the third and the fourth equations of (4.8), (4.9)
and (4.16), we obtain

(4.32) Ty (8fl Po+ a@éo) = QoTo.
8.132
QoTo = (ba(z)P§ + b1 (z) Py + bo(z)) Ty

Or1 " Oxy
0T1\2 Ty (079 \> 072 =
0([1)2(96){(3561) "% (3301) }+b1(x)5$1} 0

Ty 07, 0Ty Ty (072 \> 071 ~

+ {bz(:c){g 871‘1 87551 — 4(3331> }+b1(x)6961]P0

~9 ~ 2 ~ ~ ~ ~
Ty (0%\" 21 0% 0%, | | bi(z) 0T,
* |:b2(x){ 9 <8x1) 2 8$1 3331 } + 3 x285€1 +b0($)

130 + — $> + bo(x)TO

0xo ox 3 0xa
0r1 ~  0Ts
=To( 22P + 222
0(8x2 o + 92y Qo) O

Using these lemmas, we now prove Proposition 4.1.

Proof of Proposition 4.1. Let (Z1(x),Z2(x)) be a holomorphic solution of (4.8)
constructed in Lemmas 4.3-4.7, and let Ty(z) be a 3 x 3 invertible matrix with
holomorphic entries given in Lemmas 4.8 and 4.9. Let us define 3 x 3 matrices
P, () and Qy(z) by
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0T, ox 0T,
= (1J3T0) " 22 (PTy — 22 ) — o2 QiTo— 2 8,
(4 33) 3 xl 8%1 axg
. = (|J5|To)~ 67 9 0n P — 9Ty
07\ 0a T Oxa) O\ U0 0x ) [
— (sl (G2, amQQn)Jb,
(4.34) (n>2).
(-1 (PP, 0%
@ = (1) (5200 - 527, )

Then there exists a positive constant p > 0 such that all the required properties
in Proposition 4.1 except for the estimate (4.4) are satisfied.

We finally prove estimate (4.4). Since (0Z;/0z;)(z) (4,5 = 1,2), To(z),
(|J5](2)To(z)) ™Y, Pi(z) (i = 0,1) and Qy(z) (i = 0,1) are holomorphic in D,,
we have
0z;
837j

’ HTOHMH ||(|JE|TO)71||pypv ||Pi||p7m ||Qi||p7p SCT
PP

with some positive constant C'T. Here we define |f|,, ,, for a holomorphic function
f(z) in D,, (0 < p1,p2 < po) as follows:

|f|/?1,P2 = sup ‘f(:t)|

lz1|<p1, Jwa|<p2
Then, if we define positive constants C and & by
C = max{CT,2(C")3C}, @&=max{l,0a},
the estimate (4.4) does really hold. In fact,
1Pollp.p: [ Qollop < CT<Cy 1 Pallp s 1Qully < €T < C,
and it follows from (4.34) that

1Pl 1@

Finally, we prove Lemma 2.12 and Proposition 2.13 by using the construction
of Z(x).

Proof of Lemma 2.12. For sjmplicity7 &1,i(z), &2,i(x), 51 ;i(z) and §2 :(T) are denoted
by &1 (z), &2(x), £&1(Z) and &(T), respectively. Combining (2.49), (2.50) and (2.51)
with (4.8), (4.12) and (4.16), we have

51(9:)3 + as(2)é1(z) + az(x)
7 ~ o~ 3
—{aGEn32 + @) 5 + 252

851 28%2 IEQ 8:c2

ra@{@E G+ @E@) G + 3 5 b+ a

L, <2(ChH3Camn! < Catn!  forn > 2. O
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73 (03’ 3 0% (0% Ty (07, 0% O%a )~ .
<2 2 1 2 T2 1 OT2 Ory _
{ 12 <3$1) 1" Yoa, <(’)x1) (8951) o, + as(z) o, }(51(55(@))
r3 071 (0 3 (0T,\ 9Ty Ty (01 0T\ + -
{12 8171 (3x1> xl(ax) ) 6:c1 Jraz(w)ax1 &1(z(z))

83;1 4 81'1 8 8:51 Bxl

az(z) .. 0% B
+ 23 872+a3( )} 0,
ba()€1(2)? + b1 ()& () + bo(w)
—b2<x>{£l<x( ))23 (& (@ >>)2§zj+§2gzj}

6]}1 2 352 332 8$2

u@{EE + @@ 5 + 2 52
_ {b(x){(iﬂ) ﬁg@i) bt | @)’
T O N TP LA e

~9 ~ 2
Ty (05:\" 31 031 0| | bi(2) 0T
+ |:b2(l‘){ 9 (a$1> 2 8%1 81'1}—1— 3 8%1 +b0( )

= SR EE) + g G + 2 o
= IUUE (3(a)) + %sx () = &a(a). =
T2

Proof of Proposition 2.13. Using (2.51), we have
(&1i(@) — & (2), &2,i(@) — &2, (2)) @(m) @(x)
= (47 (@) — 10 (7)), 2O — B Go)) | F1 02
ey Sa)
T i)

Hence, by the definition of turning points and Lemma 4.7, we immediately obtain
Proposition 2.13. O

84.2. Construction of the transformation, II

As a consequence of the argument of the previous subsection, we may assume that
the completely integrable system in question has the form
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0

1 yg=p v, P( Py (
U (2,m) (z,m) Z%n
(4.35) 5 n
N5V = QY Q) =) 0" Qn(w)
T2
n>0
Here
0 1 0 N
P=| o 0 1|, Q=P2+2

3
7331/4 7172/2 0

and P, (x) and Q,(x) are 3 x 3 matrices with holomorphic entries in D, satisfying
HPTLHPOJ'O’ HQTLHPO,PO < Ca™n! (n 2 O)

with some positive constants C and «.
In this subsection, we prove

Proposition 4.10. There exist a sufficiently small positive constant 0 < p < po
and 3 x 3 matrices Ty(x), T1(x) with the following properties:

o FEvery entry of To(x) and T1(x) is holomorphic in D, and det Ty(z)#0 (x€D,).
e The transformation

(4'36) “Ij(xvn) = T(%ﬁ)‘f’(%n)a T(:L‘J?) = T()(:E) + 77_1T1($)7

transforms (4.35) into

0L = Pla, ¥, Pl = > T Pa(a),

d, >0
(4.37) P .
nlax‘lf Q,m¥, Qz,m) =Y n"Qu(x
n>0
where
~ ~ ~ ~ 0P,
(4.38) Po=PRy, Pi=0, Qo=P:+2 Q=22
3 X

and P, (z) and @n(x) are 3 x 3 matrices with holomorphic entries in D, satisfying
(4.39) [Pallpps 1@nllp,p < Ca™nl (n = 0)
with some positive constants C and a.

Since the system (4.37) is obtained from (4.35) through the transformation
(4.36), T(x,n) should satisfy the relation

TP + n‘la—T = PT,
833‘1
oT
TQ+n'—— =QT,
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that is,

Py, To] =0,

[QOa TO] = Oa

oT,

[Py, Th]) = — — P\Ty,

(4.41) %{}1 op
_ Yio g0

[Qo, Th] = B2, +Tp Ry @170,

oT; ~

8—1 +ToPs — PyTy — P Ty = 0,
(4.42) a? N op

=1 +ToQ2 — Q210 + T170 — Q1711 =0,

(9332 83;1

TyPy — PuTo + T Pyy — Py Ty = 0,
(4.43) (n > 3).

ToQn — QuTo +T1Qpn1 — Qn_1T1 =0,

First, by [To, Py] = 0 and the same argument as in the proof of Lemma 2.4,
we find that

(444) TO = 6072($)Pg + Co,l(x)PO + Co,o(x)

with some holomorphic functions cg x(x) (k = 0,1,2) near z = 0. Note that Tp(x)
then automatically satisfies [Tp, Qo] = 0 since [Py, Qo] = 0.
We next consider

oTi
[Po, T1] = 5760 - P/Ty =: Fy,
(5 5 o8
[QOaTl] = =0 + T()iO - QlTO =: F2.
8I2 8I1

For this system, we have

Lemma 4.11. If Fy and Fy satisfy

tr(FiPHY=0 (k=0,1,2),
o W(FPH) =0 )
Fy = PyFy + F1 Py,

then the system (4.45) has a solution T;.

Proof. Let T1(x) be a 3 x 3 matrix with holomorphic entries near x = 0 defined
by

T, =AFy, + A°FyPy, A=

o = O
= o O
o O O
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Then, by the explicit calculation of matrix entries, we find

0 0 0
[P, Th] = Fy — Oa: 0 0
tr(Fy P2) + ?2 tr(Fy) tr(FLPy) tr(Fy)

Hence, using tr(F1PY) = 0 (k = 0,1,2), we find that Ty(x) satisfies the first
equation of (4.45). Furthermore, using Fy = PyFy + F1 Py, we obtain

[Qo, T1] = [P3,Th] = P{Ty — T\ P§ = Py[Po, T1] + [Po, T1]Py = PoFy + F1 Py = Fh.
O
In what follows, we try to determine the matrix T of the form (4.44) so that

the relations (4.46) are satisfied.

Sublemma 4.12. There exist holomorphic functions di(x) (k = 0,1,2) near

x = 0 which satisfy
oP, 5
(4.47) Q1 — e PoPy — PLPy = da(z) Py + di(z)Po + do().

Proof. Using the compatibility condition for the system (4.35) and the explicit
form of Py and Qq, we have

OP, 0P,
Po,Q1 — 75— — (PoPy + PLRy) | = [Py, Q1 — 5= | — [Po, PoPy + P1 ]
o0x1 O0x1
Py 0Qo
= |F, _—— — — Pl =0.
[Po, Q1] + 02, D2y [Qo, P1]
Then, by the same argument as in the proof of Lemma 2.4, we get (4.47). O

Using this sublemma, we find

Lemma 4.13. The relation (4.46) implies that (co,0(x),co1(x),co2(x)) satisfies
the system of partial differential equations

9 €0,0
(31’1 +4$2P(’)T)67$1 Co,1
Co,2
€0,0
(4.48) = {diag(0, =1, —2) +z1e0(x) — dex () Po —der (2) P33T | co |
€o,2
9 €0,0 P €0,0 €0,0
By | 01 | = 2R gy [ o [ H@@F @) Rt dofa)” | o |
Co,2 €0,2 €0,2

) )
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where AT designates the transposed matriz of A, diag(a1,as,as3) is a diagonal
matriz whose (i,1) entry is a;, and ey (z) = tr(P PY) (k = 0,1,2). Conversely, if
(co,0(x),co1(x),co2(x)) is a holomorphic solution of (4.48), then (4.46) holds.

Proof. First, we consider
tr(FPY) =0 (k=0,1,2).

By the explicit form of Py, we have

0P,

tr(Py) =0, tr(Pg) = —ao, tr<8331> =0,

tr(Pogi)> =0, tr(ngi)) = —i.

It follows from these relations that

(4.49)

660,2 86070
8.131 6l‘1

3 Oc Oc 1 =z T
(4.51)  tr(F1Pp) = i 8:312 — T2 8:2711 - < —261(@—;60(33))00,2

—ea(x)co,1 —er(x)co,o,

l’g 800 2 3 800 1 800 0 ] T
= — : : 7762(.%) - Zel(x) 0,2

(450) tI‘(Fl) = —X2 —62(1’)0072—61(%)6071 —60(1’)0070,

4.52) tr(FiP?)="=2 Sp 01 _
( 5) I'( ! 0) 2 8l‘1 41'1 81‘1 2 8%‘1

1 =z z
- (4 - ?261(1:) - 4160(9:)> co1 —e2(x)co,0-

If we multiply (4.50) (resp., (4.51), (4.52)) by z1 (resp., —4, —4), we get the first
equation of (4.48).
Next, we consider

(4.53) F, = ByF, + P .

Using (4.47), we find that this relation is equivalent to

oTy oP, 0Ty 0Ty
4.54 — — | —Py— — —PF,
( ) 6:62 |: 0 (9£E1:| 03331 (91’1 0
0P
= F2+Q1T0_87.7}1T0 —Po(F1+P1T0)—(F1+P1T0)PO
ap() 2

=|Q1 - T PoPy — PLPy | To = (d2(z) Py + di(x) Po + do())To.

Note that
P, P,

(4.55) 0R 0P p



58 S. HIROSE

by the explicit form of P,. Hence, as
T

- :L'2
4. P34+ 2P

=0,

the left-hand side of (4.54) becomes

wsn 2[5, 2] g2 i,

= (e 2 Jre e (G gt G rs (G 5 502
s (22 sy (200520
+co71(a:)<gfz — Qgi)Po)

— (Gnz 0Bt ) pp 4 (G2 45, G02 _p000 Yy (00, 21 Bt

On the other hand, in view of (4.56), we can rewrite the right-hand side of (4.54)
as

(458) (dz(!L‘)POQ + d1 (,’L‘)Po + do(l‘))Tg

= { (do(x) - ;dz(ﬁﬁ)) o2 +di(z)coq + dz(df)Co,o}Po2

T

+ {(—J;le(x) - ﬁdg(ﬂ;))Co,z + (do(x) - ;dz(fﬂ))Co,l + dl(l“)co,O}PO

n {(—Zldl(w)> con + <—Zld2(x))co}1 + do(x)co,o}.

Comparing (4.57) and (4.58), we obtain

ac dc x
63(3),22 -2 8;);1 = (do(x) — ;dQ(ZL'))COQ =+ d1 (SC)COJ + dz(l')Co’o,

dc dc de T T T
0.1 + Z2 0.2 _ 2 9,0 = <22d1(17) — 1d2($)>6072 + (do(l’) — ;dg(l’))COJ

0xo 0x1 Oxq 4
+d1($)60707
0¢co,0 Jrﬂaco,z — (T4 (2) |coz + _y (x) ) o1 +do(z)c
dua 2 0m  \ a0t Tl jaatdlr)oo

Thus we also get the second equation of (4.48).
The “converse” part is clear from the above argument. O

We now prove the existence of a holomorphic solution of the system (4.48).
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Lemma 4.14. Let

€0,0
4.59 3x1—
(4.59) g | o
€0,2
€0,0
= {diag(0, =1, =2) + z1e0(x) — e (x) Py — de1 () P3} |ap=0 | o1
€0,2

be a system of ordinary differential equations obtained by restricting the first
equation of (4.48) to xe = 0. Then (4.59) has a holomorphic solution
(co,0(x1,0),¢0,1(21,0),c0,2(x1,0)) near x1 = 0 satisfying

60’0(0) 1
(460) Co,1 (0) = —462 (0)
00’2(0) —261 (0) + 862 (0)2

In the proof of this lemma we use the following

Theorem 4.15 ([W1]). Let A(t) be an n X n matriz with holomorphic entries
near t = 0. Suppose that A(0) has no eigenvalues that differ from each other by
positive integers. Then there exists an n X n matriz B(t) with holomorphic entries
near t = 0 with B(0) = I, such that the transformation

(4.61) W = B(t)W

reduces the system of ordinary differential equations

aw
t J—

4.62 — = At
(462) = AW
to the system

(4.63) ‘Z—Vf = A(0)W.

Proof of Lemma 4.14. By the explicit form of Py, the eigenvalues of
(1/3){diag(0, —1, —2) +z1e¢(x) — 4dea(x) Py — 4ey (v) PE}T| =0 are given by 0, —1/3
and —2/3. Hence, there exists a 3 X 3 matrix B(z1) which has the properties of
Theorem 4.15. The transformation

0,0 0,0
co1 | = B(x1)| con
0,2 0,2
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transforms the system (4.59) into

e~ —~—

d Co,o 1 O O O C0,0
(464) T1—5— | Co.1 = = —462(0) -1 0 Co.1
dxl ’ 3 ’
Co,2 —4e1(0) —4e2(0) -2/ \cop
Since o
Co,0 1
o1 | = —4e2(0)
Co,2 —261(0) + 862 (0)2
is a solution of (4.64), it follows that
0,0 1
(465) Co,1 = B(iCl) —462 (0)
Co,2 —261(0) + 8es (0)2
is a solution of (4.59). Since B(0) = I, (4.65) also satisfies (4.60). O

Lemma 4.16. Let (co0(x1,0),co,1(x1,0),co2(x1,0)) be a holomorphic solution
near x1 = 0 given in Lemma 4.14. Then the initial value problem

5 0,0 5 0,0 €0,0
ol RN 2PoTale €o,1 +(d2 () P§ +dy (x) Po+do(2))" o1 | s
4.66) €o,2 €o,2 Co,2
( €0,0 o,0(21,0)
€o,1 = | co,1(1,0)
2/ |, o co,2(21,0)

has a holomorphic solution near x = 0.

This lemma is an immediate consequence of the Cauchy—Kowalevski theorem.
Furthermore, we can verify

Lemma 4.17. The holomorphic solution (coo(z),co1(z),co2(z)) given by Lem-
ma 4.16 satisfies the first equation of (4.48).

Proof. By the argument of Lemma 4.13, it suffices to prove that
Ty = CO,Q(,I)P(? + CO71(J»‘)P0 + 6070(56)

satisfies

(4.67) tr{ (?)f? - PlTO) Pé“} =0 (k=0,1,2).



A WKB-THEORETIC TRANSFORMATION 61
Let for(xz) (k=0,1,2) be holomorphic functions defined by
T
fok tf{ <80P1T0>Pé€} (k=0,1,2).
8%‘1

We will prove that (fo,0(z), fo1(x), fo,2(x)) satisfies the system of partial differen-
tial equations

a f0,0 8 f0,0 f0,0
(4.68) 52, foa :2671 Py | for | ¢+ (de(z)P3+di(x)Po+do(x)) | fou
0,2 fo2 fo,2

For k = 0,1, 2, we have

tr([P2, Qo) ToPy) = tr(PaQuTo Py — QuP2ToPy) = tr[P Ty Py, Qo] =0,
tI‘([PQ, QQ]T()P(;C) = 1’,1‘(POC22]101:)6C - Q2POTOP(;€) = tI‘[Po, QQT()POk] =0

in view of [Py, Qo] = 0 and (4.44). Furthermore, it follows from (4.47) that

tI‘([Pl, Ql]T()P(;C)

[ 0P

= tr( P, 87; + PP+ PPy + dg(x)POQ + dl(x)Po + do(x):| T0Pé€>
[ 0P, 9 ) &

= tr( | Py, 87371 + dz(I)PO + dy (I)Po + do(l’) TvF,

+tr{(P,PyP, + P?Py — PyP? — PPy P,)TyPY}

" P )

— tr( Py, 87‘1) + da(z)PE + dy (x) Py + do() TOPé“) + tr[P2To PY, Pp)
[ 0P, 9 i &

= tr Pl,aixl—FdQ(l')PO +d1(1‘)P0—|—d0(CC) TQPO .

By using these relations, the compatibility conditions, (4.47), (4.54) and (4.55),
we obtain

2
afo,o:t]r< 0Ty 3P1T _P13T0>
81'2

32618.%‘2 B 87:62 0 8%2

10 OR] . 0Ty 0Ty P,
= tr[@xl{_{TO’ axl} +P08x1 +8:c1PO+ (Ql— o, —P0P1—P1P0>T0}

+{[P2, Qo] +[Pr. Q] +[Po. Qo] - 2 }TU

8x1
0P, oT, 9O OF,
—P Ty, 222 |+ P22+ 222 P+ Qi — 22— PP — P Py | T
o0x1 Oox1  Ox1 0x1
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_, 2 tr{ (aTO —P1T0> Po} —i—tr{ (E)TO —P1T0> (da () PF +dy(z) Py +do(x))}

Oz, Oxy 01
0
=2 8@;1 +da() fo.2 +di(x) fo1+do(z) fo,0,
8f071 . 82T0 oP; Ty 0Ty 0P,
Ory tr{<8m18x2 B 0xo To—h 0xo Fo+ 0x1 - Ao 0xo
0 0P, 0Ty OT OP,
=tr|o— —|To, 5 |+ Pogo+ 2 Po+ (Qi— 5= —PoPL— PLPy | Ty { Po.
8x1 31'1 31'1 6‘:51 8%1

+{[PQaQO]+[P17Q1]+[P07Q2] - %%}TOPO

OP, T, OT, OP,
P Ty, =2 |+ P2+ 222 P+ Q1 — =2 — Py P — P Py | Ty Py
0x1 Jx1 Ox1 0x1

0Ty 0P,
L0 9Ty )
_28331 tr{(axl PlT‘())PO}

—|—tr{ (aTO — P1T0) (do(x)Pg +dy(2) P +do(CL‘)P0)}

8171
B 25f0,2 J T2 71
=25+ 1(2) fo,2 + —3d2(33)+d0($) foa+ —Zdz(x) fo,0
T
8f072 . 82To oP, Ty 2 Ty 0P, 0P,
81'2 N tI‘{ (8%18%2 B 3x2 TO_P1 8x2>P0 + 83:1 _PlTO 8%2 PO+PO 81'2
B B O P < ) Ty | 0Ty 0B Lp 2
=tr [3%{ [To, axl} +PF R +3:1:1PO+ (Ql Rr Py Py PIPO)TO}P()
0
+{[P2,Q0]+[P1,Q1]+[P07Q2}—agll}ToPoz
0P, 0T, 0T, 0P,
—P—|To, =2 |+ P24+ 2P+ Qu— 52— Py P, — P, Py | Ty Py
ory Oor, Oxq 0x1
+ (63&‘1 PlTo) (2 axl PO +2P0 8331 Po):|

I Ty ;
= 2871'1 tr{ <83’;1P1T0>P0}

+tr{ (giﬁ —P1T0> (dg(x)P§+d1(x)PO3+do(iU)P02)}

_ afo,l_ﬂ 8f0,0 T2
= —x9 o, 2 Oy +( 2d2($)+d0($)>f0,2

+ (—Zldg(a:) - %dl (»’U)) Joa+ (-Zldl (x)— ;) fo.o-

Thus we get (4.68).
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Note that the system (4.59) means fo (z) (kK = 0,1,2) vanishes on {(x1,0);
z1 # 0}. Thus, by Lemmas 4.14 and 4.16 and the holomorphy of fo x(x), we find
that

foo
(4.69) for —0.

fo2

$2=O

Hence, by the uniqueness of solutions for the initial value problem (4.68) and
(4.69), we obtain (4.67). O

We have thus obtained a holomorphic solution of (4.48) near x = 0, that is, we
have constructed a 3 x 3 matrix Tp(«) with holomorphic entries satisfying (4.46).
Using it, we now prove Proposition 4.10.

Proof of Proposition 4.10. Let To(z) be the 3 x 3 matrix thus obtained. By (4.60),
we have

det To(O) = det(co,g(O)P0(0)2 + C()J(O)P()(O) + CO,O(O)) =1.

Hence, there exists some positive constant 0 < p < pg such that Ty(z) is holomor-
phic in D, and det To(z) # 0 (z € D,,).
Next, define a 3 x 3 matrix T3 (x) by

T, =A %—PlTO + A? %—PlTO P,, A=
ox O0z1

o = O

0
0
1

o O O

Then T (x) is holomorphic in D, and it follows from the argument in the proof of
Lemma 4.11 that T3 (z) satisfies (4.41).
Furthermore, define 3 x 3 matrices P, (z) and Q,(z) as follows:

~ T
Py =Tyt <P2To +PT — 81>7

8.131
~ _ OF oT;
Qo =T, QoTo + QT — Th=— — =— ),

8%‘1 63:2
Py =Ty (PaTy — Ty Py + P Th),
(4.70) 0 (n > 3).

@n - To_l(QnTO - Tl@n—l + Qn—lTl)a

These matrices are holomorphic in D, and satisfy (4.42) and (4.43).
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Finally, we prove the estimate (4.39) for P, (z) and Q,(z). Since Tj(z) (i =
0,1), To(x)~t, Pi(z) (i =0,1,2) and Q;(z) (i = 0,1,2) are holomorphic in D,, we
have

HTinw ||T071||pyp» ||Pi||pypa ||Qi||p~ﬁ = cf
with some positive constant CT > 0. Then, if we define positive constants C and
a by
C =max{CT, C(a+1)}, @a=max{l, a, 2(C")?},

the estimate (4.39) holds. In fact, we have

||P0||p7pa HQOH/M) < ot <C,

||P1||p-,pa Hanpm = ot <Ca,

1P2llp.ps 1Q2llyp < CF < G221,
and, using the definition (4.70) of P,(z) and Q,(z) and induction on n > 3, we
obtain

1 Pallpspr [@nllp,p < (CH2(Camnl + Cam~t(n — 1)1 + Ca™ (n — 1))

< —(Ca+C+C)a"'n! < Camn). O

|

84.3. Construction of the transformation, III

Thanks to the argument so far, we may assume that the completely integrable
system in question has the form

) “n
(4.71) 5 "0
—1 —n
n a—xz‘lf=62(x,n)‘1’7 Q(z,n) =>_ 1 "Qn(x).
n>0
Here
0 1 0
OP,
472)  P=| 0 0 1|, P=0, Q=P+2 Q="
3 8:1:1

—1‘1/4 —.132/2 0
and P, (z) and Qn(z) are 3 x 3 matrices with holomorphic entries in D, satisfying
(4.73) [Ballp,ps @nllp,p < Calnl (n > 0)

with some positive constants C' and a.
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In this subsection, we prove

Proposition 4.18. There exists an infinite sequence {T),(x)}n>0 of 3x3 matrices
with the following properties:

e FEvery entry of T,,(x) is holomorphic in D, and detTy(z) #0 (x € D,).
o T, (x) satisfies

(4.74) 1Tl < Ca™n!

with some positive constants C and a.
e The formal transformation

(475) ‘1’(95777) = T(xvn)\y(xvn)a T(%“ﬂ?) = Z n_nTn(l‘),
n>0

transforms (4.71) into

0 -LG = Bl @, Plen) =3 0 Bala),

(4.76) o 20
. a . - . . - -
N ¥ = QY Q) = > 0" Qn(x),
n>0

where
Py=Py, P,=0 (n>1),
QOZQOa él :Qla ©71:0 (Tl22)

In this subsection we only discuss the construction of {7},(z)},>0. The esti-
mate (4.74) will be proved in the next section.

Since the system (4.76) is obtained from (4.71) through the transformation
(4.75), T'(x,n) should satisty

~ T
TP +n! or _ PT,
61‘1
~ oT
TQ + 77_17 = QTv
8$2
that is,
P 7Tn - Fn )
(B) {[0 =5 ),
[QOaTn] = L'n,2,
where
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Ty
F=220
1,1 (9961 )
Ty aPy
o= — Ty, ——=
1,2 axz |: 05 8I1 :| )
8T’n—l =
Fn = 5. — Pn—iﬂa
! 8%1 Z:O
1_2 (n>2).
O P,
Fn = - nfiTi Tnf s - |
2= Tt~ L it [T 0

We now discuss the construction of {T),(z)},>0 satisfying the relations (E,).
Having Lemma 4.11 in mind, we prove the following assertions (S,,) (n = 0,1,2,...)
by induction on n:

(Sn) There exist 3 x 3 matrices T;(z) for ¢ = 0,1,...,n that satisfy:

T;(z) (i =0,1,...,n) are holomorphic in D,,.
(E;) holds for j =0,1,...,n.

tr(Foi11PF) =0 (k=0,1,2).

o Frorio=PFPoFnt11+ Frp11F.

We trivially have (Sp) by setting Tp(z) = I. Let us prove (S,,) provided that (S,—1)
holds. For this purpose it suffices to construct 7,,(x) such that:

T, (z) is holomorphic in D,,.
(E,) holds.

tr(Fni11PF) =0 (k=0,1,2).
o Fuiio=RFu11+ Furi1h.

It follows from the induction hypothesis that F;, ; is holomorphic in D, and
tr(F,1P¥)=0 (k=0,1,2),
{Fn,z =FPoFh1+ FoaFo.
We now define a 3 x 3 matrix T, (x) as follows:
Tn=Th1+Tho2,
Tpi = cno2(®)Py + cn1(2) Py + cno(),
Tpo=AF, 1+ A*F, 1P,

where ¢, x(z) (k = 0,1,2) are holomorphic functions in D, which will be deter-
mined later. Then T),(x) is holomorphic in D, and satisfies

(477) [P07 Tn] = [P07 Tn,2] = F’I’L,la
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(4.78) [Qo,Tn] = [Qo, T 2] = Fr2

by the same argument as in the proof of Lemma 4.11. Hence (F,) is satisfied.
Thus, in what follows, we determine holomorphic functions ¢, x(z) (k =0, 1,2) in
D, so that

(479) {tr(FHLng) =0 (k=0,1,2),
Froyi2=PoFni11 + Fup11Fo.
Let F;{HJ and Fr];+1,2 be the 3 x 3 matrices defined by
F£+1,1 =Foy11 — 881221717
F71L+1,2 =Fot12— 6;2:271 - [ n,1s gi}

that is, Fr]:+1,1 (resp., Frt+1,2) is the part of Fj,11,1 (resp., Fy412) which is inde-
pendent of T}, ;. For these matrices, we have

Sublemma 4.19. There exist holomorphic functions g, i(x) (k= 0,1,2) in D,
which satisfy

(4.80) *F:L+1,2 + FJ+1,1P0 + POFJ+1,1 = gn2(€)B5 + gn1(2)Po + gno(2).
Proof. By the definition,

1
OTns <
F2+1,1 = on Z Pry1-:T3,
i=0

n—1
8Tn 2 aPO

FT = — — n 72'Ti Tn s .. |

12 = g ;Q +1-i15 + [ 2 aml]

Using the compatibility condition, (E;) (j =0,1,...,n—1), (4.77) and (4.78), we
have

[_Fr]:+1,2 + Fr]:+1,1P0 + POFT]:+1,17 P

oT, oT,, 0P, 0P,
= {Po, ’2} + [ 2 Qo} + P |:Tn,2a0:| - {T O}Po

,2
01'2 axl ’ 8x1 " 7({91’1

n—1 n—1 n—1 n—1

=Y PoQuir-iTi+ Y QoPuy1-iTi = Y Puy1-iTiQo+ > Qui1—iTiF

=0 =0 =0 =0
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n—2

aPO 8 Tn 1 a-Pn 1 aT
( L%r:g T :| 8.’1?18332 ; Tl Zopn ‘ .’172>

0Qo 0T, —q 20Qn s oT; T, 0F
TR0 | T . _
+ ([3$1 ’ n72:| 011027 * = or; " + Z @i |: ])

B 8x 8:101 787%1
i p, [T“’] - 5

8:51 n,276 PO_ZPOQnJrl ZT +;Q0Pn+l 1L
n—2 n—2
< ZPnJrl 1Q0T+an 28T+an 7.|:7.7:|
n—11i—2
-y PnJrliQika)
=2 k=0
n—1

n—2 n—1i—

2
(Z Qn+1 zPOT ZQn z + Z Qn+1 7 z ka)

=2 k=0
B OPy  9Qo ap, Ty OB
- |:Tn,27 a Lo 8.’1?1 + |:P07 8.’131:|:| + |:[P03Tn,2] :|

8.%‘1 787.%‘1
_Z aPn % _ aanz
8I2

8131

n2
+ZP7I Z{ 178R)}

n—1

T; — > ([Po, Qui1—i] + [Proy1-i, Qo)) Ti
=0

1—1 i—

Z n+1 ’LQl k_Qn+1 [ z k)

=2

k=

2
2
8Tn L GPO n—2n+1—1
= ||~ TTI Pa n i—
[[ 0> Tn,2) — Bt 3201] +; kz;) s Qnt1—i—k|Ti
— n—2
0P,
Z [P0, Qn1—il + [Pas1-,Qo)Ti + Y Pus {Tz, 0}
— —

z_: _Z_ [Pr, Qny1—i—k) T

i=0 k=2
n—2 6P0 n—2 8P0 n—2
= |- P,_;T;, P, —_— P,_; T;
|: pars n—i 8 :|+Z nz|:z7ax1 +iz:;[nzan]z
n—2 n—2
OP,
Z|: n— 150:|T+Z n— zle]
=0 =0

Hence, by the same argument as in the proof of Lemma 2.4, we get (4.80). O
Using this lemma, we find

Lemma 4.20. The relation (4.79) implies that (cy0(x), cn,1(x), cn2(x)) satisfies
the system of partial differential equations
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o [0 Cn,0 —x1hn,0(x)
(3a;1+43;2POT)87 cna | = diag(0,—1,-2) [ cp1 |+ | 4hnai(z) |,
(481) ! Cn,2 Cn,2 4hn,2(x)
9 Cn,0 " 9 Cn,0 gn,O(x)
87172 Cn,1 = 2P0 87131 Cn,1 + gn,l(x) P
Cn,2 Cn,2 gn,?(‘r)
where

hn,O(x) = tr(F£+1,1)v hn,l(x) = tr(Fv]:+1,1P02)a hn72(x) = tr(FZ+1,1PO)~

Conversely, if (cn0(x),cn1(x), cn2(x)) is a holomorphic solution of (4.81), then
the relation (4.79) holds.

Proof. First, we consider
tr(Fo11PY) =0 (k=0,1,2).
By the relations (4.49), we obtain

8CTLQ aCnO
4.82 tr(F, - 2 4 390 4 p (),
(4.82) r(Frp11) = —22 e + s + ()
3 de, ey 1
(4.83)  tr(Fup1aPy) = —oay om? g, O 2 ha(2),

4 81‘1 2 (9$1 2
2
x5 dcp 2 dcn 1 Ocno 1
3 Ocn, : 0 e+ hy ().
2 8$1 ! 6l‘1 2 8.131 46 1 + 71(1.)
If we multiply (4.82) (resp., (4.83), (4.84)) by =1 (resp., (—4), (—4)), we get the
first equation of (4.81).

Next, we consider

(4.84)  tr(Foy1.P3) =

_3,
1

Froyi2=PFPoFhii1 + Fup1Fo.
By (4.80), this is equivalent to

0T,1  [0Py
8x2 8331 ’

a/I‘n,l 81171,1

8],‘1 (9331
== gn,Q(I)POz + gn,l(I)PO + gn,o(x).

(4.85)

F

Tn,1:| -F

By (4.55) and (4.56), we have

0T 1 0P, 0T,1 O0Tna
=l Ty, =2 — Pl - 2l p
81'2 + |: 1 8951} 0 8,’B1 (933‘1
Ocna . 0Ch1\ o Ocn 1 Ocna 0cnpo Ocno  ®1 Ocpp
= 29— )P, : 29—\ P 2oy ),
(61'2 8x1 ) 0 + 8;102 t o2 8561 81'1 o+ 81'2 + 2 8x1

Comparing the left-hand and right-hand sides of (4.85), we obtain

acn’g zacn’l
8332 8331

= gn¢2 (LU),
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8Cn71 g 8cn72 _ 23(3”70

oy T om L om I
Ocno , 1 0Ch2 (2)
— = x).
81'2 2 8m1 gn.0
Thus we also get the second equation of (4.81).
The “converse” part is clear from the above argument. O

We now prove the existence of a holomorphic solution of the system (4.81).

Lemma 4.21. Let

Cn0 Cn\0 —1hno()
(4.86) 3z1— | 1 | =diag(0,—1,-2) | cp1 | + 4hy, 1 (z)
del
Cn,2 Cn,2 4h7’b72(x) z5=0

be the system of ordinary differential equation obtained by restricting the first
equation of (4.81) to w9 0. Then (4.86) has a holomorphic solution
(en,0(21,0),¢cn1(z1,0), cn2(21,0)) near z1 = 0 satisfying

(4.87) Cn0(0) = 0.

Proof. By the method of variation of constants, we find that
1 /1
eno(x1,0) = g/ {—=x1hno(z15,0)} ds,
0

e :
cni(z1,0) = g/ {4572/3hn71(x15,0)}d5,
0

1 1
cn2(z1,0) = 5/ {4571 3hy 9(215,0)} ds
0
is a holomorphic solution of the system (4.86) satisfying (4.87). O

Lemma 4.22. Let (¢ 0(21,0),¢n1(21,0), cn2(21,0)) be a holomorphic solution
near x1 = 0 given in Lemma 4.21. Then the initial value problem

9 Cn,0 b Cn,0 gn,O(‘r)
— |1 | = 2P] — ena | + | gna(z) ],
Oxra 01

Cn,2 Cn,2 gn,Z(x)
(4.88)

Cn,0 cno(z1,0)

Cn,1 - Cn,l(xlao)

Cn,2 Z2=0 Cn,2 (xla 0)

has a holomorphic solution near x = 0.

This lemma immediately follows from the Cauchy—Kowalevski theorem.
Furthermore, we can prove
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Lemma 4.23. The holomorphic solution (¢, 0(x),cn1(2), cn2(z)) given by Lem-
ma 4.22 satisfies the first equation of (4.81).
In the proof of this lemma we use

Sublemma 4.24. For k =0,1,2, we have

(4.89) trH o (Z Pai1-i ) + 8%1 (2 Qn+17iTi> }Pﬂ

_ tr{gfl) {Pé“, ; Pnﬂ,iTl} }

Proof. By the compatibility condition, (4.72) and (E;) (j =0,1,...,n), we have
n n n+2—i
OPpy1-i | OQny1— k < k
t - T,PEY — ¢ Py, Qnioii|TiP
r{;( Oz " dxq 0 ' ; ; [Py @nevaini] Tl
n n+1—1
= tr {Z( Z Js Q"JFQ*Z-*J-}TZ' + Pn+27i[QO, ] Qn+2 1[P07 ])PO }
i=0  j=1
n n+l—
= tr( Z 52 Qna-io| TP
i=0 j=1

" T,y oP,
+tr Z{ n+2— z< ! ZQI gT +T‘7, 18 0)

=1
1—1

()

n—1n+1—1
= tf(Z Z [PjaanLinfj]TiPéC)
=0 j=2
n
OTL 1 0P, oT;—
+tr{;< n+2—1 +Pn+2 ZE 1 Qn+2 i a T )PO}

= tl"(Z Pry1-i, Q1] TPO)
=0

n—1
oT; 8 oT;
+tI‘ <Pn+1—ia +Pn+1 7 1 Qn+1 —1 >P(§c}
i=0 T2 Oz

n—1

— (D Poni @ TR)
1=0
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n—1 8T
- tr{z< n+1— 1 Qn+1 za )PO}

i=
n—1

o) x))
+tI‘{Z< n+l—1i zi_Ql n+1— lﬂ)POk}

=

n—1 n—1
aT; oT; 0P,
tl‘{§ <Pn+1 18 Qn+1 za )P0}+t{80|:P0;§ Pn+111:|}- O

=0

Proof of Lemma 4.23. By the argument of Lemma 4.20, it suffices to prove that
Tha1= Cn,g(l‘)Pg + cn1(x)Po + cno(2)
satisfies
(4.90) tr(Fpy1aPy) =0 (k=0,1,2).
Let f, x(x) (k=0,1,2) be holomorphic functions defined by
fak =tr(Foy11PF)  (k=0,1,2).

We will prove that (f, 0(x), fn,1(x), fn2(z)) satisfies the system of partial differ-
ential equations

(4.91) 0 ?LO 29 0p ?70
. 81'2 n,l - 81’1 0 n,l1
n,2 fn,2
By the second equation of (4.79), we have
tr(Fnq12) = 2tr(Frnp11FP0) = 2fn 1,
tr(Fpy12P) = 2tr(Fy11P3) = 2fn.2,
x
tr(Foy12P3) = 2t0(Fpy1 1 PY) = —w2fna — éfn,(%
that is,
tr(Fnt1,2) frno0
tr(Fn+1,2P0) =25 fn,l
tr(Fy12F5) fn,2

Hence (4.91) is equivalent to

o (P11 P} = 5o (P a P} (k= 0,1,2)

By using Sublemma 4.24, we can confirm these relations as follows:
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oF, OF 1,
a—{tr( nt1,1)} — {tr( nt12)} = tr( 5‘::2171 - 8;112)

0°T,
=t H 0120711 Ozo (Z Prg1-i Z) }
0%T, oT,, 0P,
- {89518332 T O, (Z Qn+1—iTi) + [83:1’ 8331} H

OP, 0T, 0P,
(S ) 28]} o

{tr( nt1,100)} — 7{“( n+1,2F0)}
8F‘n-‘rl 1 aF7z+1 2 aPO 8P0
= tr Py — ———=F Fn a. Fn a..
( 8$2 0 Bxl o+t +L,1 8962 +1,2 81’1

T, 9 [
= tr |:{85(,‘23$1 — 87:62 (Z Pn+17iTi) }PO
0T, oT,, 0P,
B {81‘131’2 8561 (Z QnJrl ‘ Z) |:(9.I1 ’ 6561:| }PO

0P, OPF,
B 2Py — (PoFpn+11 + Foya, 1Po)6 ﬂ

+2F 110 5—

_ (om aT, 0P, apy
- {8$1|: ZPn+l —1 Z:|—|:81L'1 am1:|P0+[P07Fn+l,l]aml}

=0
_ fOR, OT.] [0T. O oP, , 0T,
_tr{a [Po’axl] {8@ 3x1}PO} {81]30’6%1] 0
ai{tf( na11 PP} — 7{“( ni1,2P0)}
_ 3Fn+11 P2 OF 41,2 0 0
= ( D25 B Py Jan+11a (PF) — Fn+1,28x1(Po)

- H ey D (Z Poy1o )}

0T, oT, 0 2
- {8x18x2 " om (Z; QuiaiT;) + [az 8:1:] }PO

OP, OP,
+ Fog11 2Py Py + 25— P}
0x1 0z
0P, 0P,
PyF,, F, P, Py + P,
—(PoFny11+ Fogin 0)(8x1 05 1)}
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 [OPy[ L, oT, 0P dP,
tr{@scl[Po’gpnﬂ_lTl} oxy’ ax PO [PO’ n+l, 1]8951

_ JOP [ OTu]  [OTa OR] o\ [OPy o OT4]
tr{@xl{PO’aml] {81:1’8301}]30 =0 5, 0 g | =0

Thus we obtain (4.91).

The system (4.86) means that f,x(z) (K = 0,1,2) vanishes on
{(%1,0); z1 # 0}. Thus, by Lemmas 4.21 and 4.22 and the holomorphy of f, x(z),
we find that

fn,O
(4.92) frn =0.
fn,2

.’EQZO

Hence, by the uniqueness of solutions for the initial value problem (4.91) and
(4.92), we obtain (4.90). O

We have thus obtained a holomorphic solution of (4.81) near z = 0, that is,
we have constructed T),(x) satisfying (4.79).

The solution (cn,0(2), cn,1(2), cn2(z)) of (4.81) thus obtained enjoys the fol-
lowing property:

Lemma 4.25. The solution (¢, 0(x), cn1(2), cn2(x)) of the system (4.81) is holo-
morphic in D, and has the integral representation

1! _
Cn,o(x) = 5/0 {_xlhn,()(xlsa$232/3)+2x25 1/39n,0($15,x282/3)}d3»

1 1
(4.93) Cn1(x) = g/ {4572 hyy 1 (218, 225Y) + 22295 1 (215, 225%/%) } ds,
0

1 1
Cna2(x) = 5/ {4371/3hn72(x13,x282/3)+2x231/3gn72(x13,x2$2/3)}ds.
0

Proof. Using (4.81), we find that (cp0(z), cn1(), cn2(z)) satisfies

o o Cn,0 _xlhn,o(x) + 21’29”’0(:5)
{3351 pr + 209 — D2 + diag(0, 1 2)} e | = 4hy 1(x) + 222951 (x)
Cn,2 4hn’2(1') + 2xggn72(x)

Since a unique holomorphic solution of this system near x = 0 with ¢, ¢(0) =0 is
represented by the right-hand side of (4.93), we obtain the integral representation.

Furthermore, by (4.93) and the holomorphy of g, (z), hn.x(x) in D,, we also
find that (c,,0(x), cn,1(2), cn2(x)) is holomorphic in D,,. O
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This completes the proof of the assertion (S,,). In other words, our induction
on n is now completed.

§5. Estimate of the transformation

In this section we prove the estimate (4.74) of the transformation constructed in
Subsection 4.3.
Before proving the estimate, we prepare the following

Lemma 5.1. Let A(x) be a 3 x 3 matriz with holomorphic entries in D,. Suppose
that there exist a positive constant C' and an integer n > 1 such that for any

p/2 <o <p,
(5.1) Allo.o < Cnl(p— o)™

Then, for any p/2 < o < p,

(5.2) H <eCln+Dl(p—0o)™™ ' (j=1,2).

Proof. Since the proof is similar for j = 1,2, we show (5.2) only for j = 1. For
|z1], |z2| < o we have
9A 1 A(t, z2)

87561(13):277\/7 e o (t—m1)2 dt

- n+1
T 2n(p—o0)
n+1

n_|_1 2
< — Al no d9<7Am notp
< gm0 < S Al e

V=19 xg) e V=10 4o,

Hence

Haxl

0,0

IA

(1—711_1)_ Cin+)(p—o) ™t <eCn+)l(p—0o)™t O

Combining (4.73) and Lemma 5.1, we can prove

Lemma 5.2. Replacing C and « in (4.73) by new ones, we have the following
estimates for any p/2 < o < p:

2250 Qo

5.3 P o0y || 9. ) o0y || .. SC7

53 Wl |50 el |52
P 90

64 1Pl \81_ @il ‘? <Clp—o),
Lj 0,0 J llo,o
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oQn
8Zj

<Ca"2(n—1DYp—0o)™  (n>2).

(5:5)  Pullo.o » 1@nllo.o

0,0

or,
8.’£j

0,0

Proof. Since n < 2" and (p — )"~ ! < p"~! for any n > 2, we have

IPallos < Ca"™n! < Ca?a" 2n(n— 1) (p—0a)" *(p—o) "
<4Ca?p(2ap)"*(n = 1)!(p — o) "

Similarly, since n(n — 1) < 4™ and (p — 0)"~2 < p"~2 for any n > 2, we also have

|Pallo < Ca™nl < Caa™ 2n(n — 1)(n — 2)l(p — o) 2(p — o) "+
< 16Ca?(4ap)" 2 (n —2)!(p — o) "2

Hence, by Lemma 5.1, we obtain

< el6Ca?(4ap)*(n —1)(p — o)~ "F.

o,0

H O
The estimates for @, (z) and (0Q,/0z;)(z) can be obtained in a similar way. [

Furthermore, we may assume that

oty
5.6 Tillgos ||=— <C(p—o) L.
(56) il | 5 _=Cl—o)
Note that, since To(x) = I, we also have
0Ty
5.7 Tollo.ec =3 =
57) Tollee =3 |52 = .

Making use of these lemmas, we prove the estimate (4.74) for {7}, (z)}n>0. In
what follows, we may assume (by changing p if necessary) 0 < p < 27/8.

Proposition 5.3. There exist some positive constants C > C and a > « such
that for anyn > 2 and p/2 < o < p,

oT,
(933]'

(5.8) 1Tllo0 < Ca"nl(p—o) "

0,0

We prove Proposition 5.3 by induction on n. We assume that (5.8) holds up
ton — 1, that is, for any i = 2,...,n — 1 and p/2 < 0 < p we have

< Cai=2il(p— o).

0,0

(5.9) ITillo.0

or,
8xj
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Under these assumptions we prove that, for any p/2 < o < p,

oT,

(5.10) ITalloo || 75 < carnl(p—o)™"
J

0,0

(by choosing C and & suitably).
We first show

Lemma 5.4. For any p/2 < o < p, we have

(5.11)
[ Tnzllee < 2+C)(Ca~t +CCa=2+C%a " +C)a"2(n— 1)!(p — o) ™",
T, ~ ~ _ o _
(5.12) Ha 2 e2+0C)(Cat+cCcCa?+C%a "+ C)a" Pnl(p—o) "

Proof. First, we estimate F}, 1:

0T, 1
”Fn,l”o,g = H an 1Tz

0,0

n—2
aTn—l
< H Ox, + E ||Pn7i||<r’UHTi||U,U + HPanHU’UHTIHU,U + ||Pn||a,tf
0,0 =2

<Ca"3(m—-1)(p—o) "

+ S{CM“@ —i—1D)l(p— o) Y x {Ca'2il(p— o)}

+ {Era”*?’(n —Dlp—0) " x {Clp—0) 1} + caH(n —D(p—o) "
<Ca" 3 (n—1Dlp—0o) " +CCa" "“Z (n—i—1)ll

+C%a" B =2 (p—o) T+ Ccam 2 (n - 1)l(p - a) n+l
<(Ca'4cca?+cqat+0)a2(n—1l(p—a)
Hence we get
(5'13) ”Tn,Q”U,O = HAFn,l + A2Fn,1P0||a,a

<N Ao o1 Fnilloe + 18200 Falloo [ Polloo < 2+ C)l| Failloo
<@+0)(Cat+CCa?+C?at +0)a" P(n—1)(p—o) "

The estimate (5.12) can be obtained by (5.13) and Lemma 5.1. O
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Next, we estimate T}, 1 (x) and (0T}, 1/0z;)(z). For this purpose, we first prove

Lemma 5.5. Let Cy be the positive constant defined by

(5.14) €y = max{1 +2C, C?}
x {(e+2Cp)2+C)(Ca~t +CCa2 +C*a~ ' +C) + CCa~! + C* + Cal.
Then
(5.15) |9n.kloos [hn kloo < Cr1a"Pnl(p— o) ™"
forany k=0,1,2 and p/2 < o < p.

Proof. We first estimate Fn 41,1 and FJ 1,2

6Tn2 n—1
e R L
T, =
n,2
: H 0y * Z HPn+1—i||cr,o||Ti||o-,a + ”Pn”a,cr”Tl”U,a + ||Pn+1||cr,a
o,0 =2
<e2+O)(Cat+cCat+ 2%t +O)a" tl(p— o) "
n—2 »
+ 3 {Cam = i)l(p— o) "} x {Ca il (p — o))
i=2

+{Ca"2(n =l p—0) "} x {Clp—0) '} + Ca"Inl(p —0)™"
<e2+C)(Cat+coa?+ctat +O)anl(p—o)™
_ n—1
+CCa" 3 (p—0) ™D (n—i)il+C*a" 2 (n—1l(p—0)"
1=2
+Ca"2anl(p—o)™"
<{e2+C)(Ca'+0Ca2+C*a ' +C)+0Ca ' +C* + Ca}

x a"Znl(p — o)™,

n—1

T, 5 dPy
” n+1, 2”00’ H 6.232 + |: n,2, 6 :| ZQn+1 114 v
T, 8P
< H2 +2||T,.. 0
0,0 81?1 0,0
n—1

+1@nllool|Tillo.s + [1@nt1llo.0

=2
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<e+O)(Cat+CCat+ %+ O)a" Il(p—o) "
+20@2+0)(Cat +CcCa?+C?at +C)a 2 (n—1Dl(p—o) !

+3 {Ca" T = i)l(p — )"} x {CaT2il(p — o) 7

=2

+{Ca"2(n—D(p—0o) "M x {C(p—0) '} +Ca" nl(p—0o)™"

< (e + ch;") 2+0)(Ca ' +CCa2+C%a +C)a nl(p—a) "

n—1
+CCa" P (p—0)™" > (n—i)lil + C*a"(n—1)!(p— o) "
1=2
+Ca"2anl(p—o)™"
<{(e+2Cp)2+C)(Ca~t+CCa2+C*a ' +C) +CCa~t +C? + Ca}

x a"Znl(p— o)

Hence, if we define
Cl=(e+20p)2+0)(Cat +CCa~2+C*a~ ' +0) + CCa~t + C? + Ca,

we obtain

—n

IF) i alloos )4 allow < O™ 2nl(p— o)

Using these estimates, we now prove the estimates (5.15). Since the (1,1), (1,2)
and (1, 3) entries of g, 2(2)P§ + gn.1(2)Po + gn.o(x) are gn.o(x), gn1(z), gn2(z),
respectively, we get

|9nk|¢70 < ||9n2po +gn1P0+gn0||00 <= n+12+Fn+1 1P0+P0 n+1, 1”0'(7
< || +2H n+1, ool Pollos < (1"‘20)0}&” nl(p— o)™

Furthermore,

|An,0lo0 < [tr( ;£+1 Dloe < || n+1, oo < CT~”72”!(P* o)™,
|hn 1|tfff < |tr( n+l, 1P0 |UU < ||F;£+1 1PO HUU

<||F +11IIMHP0 - SGQC“" “nl(p—o) ™",
|hn 2|Ucr < |t1"( n+1,1 >|00 < || n+l, 1P0||00'

<E 1 llool Polloo < CCTanl(p — o)™

Thus the estimates (5.15) immediately follow if we define C; by (5.14). O

We next estimate ¢, x(x) (k=0,1,2).
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Lemma 5.6. Let C5 be the positive constant defined by

(5.16)  Cp =
- { , 1000 1000 6000C 6000C 1}
' 27p —8p?7 27(p/2) — 8(p/2)*" 27p—8p* 7 27(p/2) — 8(p/2)*
Then
(5.17) |en kloos O SCzi(lgmehmlm)
A TR rar AR e

forany k=0,1,2 and p/2 < o < p.
In the proof of Lemma 5.6, we need the following two sublemmas.

Sublemma 5.7. For any p/2 < 0 < p, ¢y x(z) (k=0,1,2) satisfy

g
(518) |Cn,0|a,a' S §|hn,0 0,0 + J|gn,0|a,aa
20
(5.19) leniloo < 4hniloo + 5 lgniloo,
o
(5.20) |Cn,2|0>0 < 2|hn’2|0,0 + §|gn,2 0,0+

Proof. Thanks to the integral representations (4.93) for ¢, x(x), we obtain the
following estimates for |z;| <o (j =1,2):

1t _
leno(z)| = ’3/ {—xlhmo(acl&xgsw?’) + 298 1/3gn,0(x15,ac252/3)}d5
0

1 1
= 3 / {U|hn,o(xls, 35282/3” + 205_1/3|gn70($157 96282/3)|} ds
0

IA

1 1
g / {U‘hn,0|a,o +20—871/3‘gn,0|0,0}d3
0

(o
= §|hn70|o,a + U‘gn,0|a,a7

1 1
len1(x)| = ‘3/ {4872/3}1",1(.%18,3)282/3) + 2xggml(xls,x252/3)} ds
0

IN

1 1
3 / {4872/3“?,”71(%‘18,$282/3)| + 20|gn,1(x1$,m282/3)|} ds
0

Lot
§/ {4s 2/3|hn,1|0',0+2U|gn71|0,0}d‘9
0

IN

20
- 4‘hn,1|6,0 + ?|gn,1|a’,aa
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1 1
g/ {4371/3/1”,2(3318,3:252/3)—|—2x2$1/3gn72(x15,x252/3)}ds

lena()] = \
0

IN

1 1
3/ {4571/3|hn72(x13,x232/3)|+2081/3|gn72(a?1s,x232/3)|}ds
0

1

1
3 / {45 ¥ hnsl o+ 20513\ 2o } ds
0

g
= 2‘hn,2|cf,o + §|gn,2|a,a- 0

IN

Sublemma 5.8. Let f(x) be a holomorphic function in D,. For any p/2 < 0 < p,
(5.21) sup [f(z)] = sup |f(2)].
|z1],|z2|<o |z1|=|z2|=0
Sublemma 5.8 is an immediate consequence of the maximum modulus prin-
ciple for holomorphic functions.
Using these sublemmas, we prove Lemma 5.6.

Proof of Lemma 5.6. Let R(x) be an adjugate matrix of 3z; + 4z Py, that is,

923 + 8z  —dxy73  3zimy
R(z) = 16235(P{)? — 120120 P + 922 + 825 = | —12212, 927 21123
1623 —12z179 923

Then
R(3x1 4 422 P)) = (3x1 + 4wo PR = x1(2723 + 8x3).
It follows from this relation and the first equation of (4.81) that

9 Cn,0 9 Cn,0
x1 (2723 + 8x§)8— cn1 | = R(3zy + 422 P ) — | cn1
1 c 01
n,2 Cn,2
_xlhn,O
=R —Cn,1 + 4hn,1
—2Cn’2 + 4hn$2

Furthermore, by the explicit form of R(x),
|R|s.0 <670%+ 17057

Combining these properties of R(x) with Sublemmas 5.7 and 5.8, we find

‘8671,1@ 8cn,k ‘
= sup T
axl 0,0 |z1|=|z2|=0 31'1
1 9 3 ocn k.
=  sup |——a———=| |21(272] + 8z3)————
|z1]|=|z2]|=0 $1(27$%+8(£%) ! 2 ox o0
1Rl

>~ m(‘xlhmda,o’ + |_Cn71 + 4hn,1|o,a + |_2Cn,2 + 4hn,2|a,o’)
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67+ 170
— 270 — 802

20
(oltmolo + Sl aler + 8l + 5l

2
1000
S Yo — 802 Z(|gn,i|o,o + [ iloo)
i=0

o,0 + U|gn72 |0’,0')

in view of o < p < 27/8.
On the other hand, by the second equation of (4.81), we find

2
+ Z |gn,i |a,a
0,0 1=0

2
6000C
<|\ — 1 n,ilo,o hniloo)-
(75 1) 0l + il

2

<2 Pollos Y

0,0 =0

6Cn7i

81'1

6cn,k
(91‘2

Hence we obtain the estimates (5.17) for Cy defined by (5.16).
Using Lemmas 5.5 and 5.6, we can estimate T), 1(z) and (97T,,,1/0z;)(x).

Lemma 5.9. For any p/2 < o < p, we have

(5.22) 1Tnillo.s < 6(C?+C+3)C1Ca™2nl(p — o)™,
T, o _
(5.23) H 68:5[71 < 6(3C? 420 + 3)C1Coa™ 2l (p — o) ™™,
J 0,0

Proof. Using Lemmas 5.5 and 5.6, we find

HTnJHa,U < ch,2po2 +cn1FPo + Cn,OHa,cr

< len2loollPoll3.o + leniloo | Pollo,s + 3lenolo.o
2
<(C*+C+3)C2 Y (gnilow + [Pniloo)

=0

< 6(C?* +C+3)01Coa™ *nl(p — o)™,

8Tn 1 5‘cn 2 52 3Cn i 0cn 0 0 2 0
= < =P, & : n P n15—
H 975 o0 ~ H ox; " ° " Iz o Oz e o, 0T Howy 0,
8Cn2 2 8cn1 8cn0
< : P, : Bolloo +3|——
B ‘ 8w] O'O'|| 0||07(T +‘ ax] O'O'|| 0|| 7 + 81‘] og,0
8P0 a-PO
2 n,2|o,o P o,0||l q_ mn o,0||l q_
+ 2|en 2lo,0 | Pollo, 9z w+|C o, oz, |
2
< (BC*+20+3)C2 Y (I9nilo + [hniloo)

=0
< 6(3C% 4 2C + 3)C1Coa™ nl(p — o) ™.
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Using these lemmas, we now prove Proposition 5.3.
Proof of Proposition 5.3. By Lemmas 5.4 and 5.9, we obtain

‘T ||<TU < ”Tn 1”00 + ||Tn 2”00 S Cloén 2 (p — U)_n,

aTn 1 aTn 2 N ~n—2 —
> < n ! o n
H 81)J H axﬂ 0,0 ax] 0,0 B CQa " (p U) 7
where
N C Cia\~ [~ C
Cl_( Al,’l A}é>0+<013+ 1’4),
a «a a
~ C Cos\~ [~ C
Cy = ( 21 32’2>C + (C’Q,g + 3’4>
a a a

with some positive constants C’\” (i = 1,2, j = 1,2,3,4) independent of C, &,
o, n. Take a constant a large enough so that
Chh  Ciy Cyy C
L G2 Con | Coo

a?’ o« a?

<1.

@
Then there exists a positive constant C satisfying 61, 62 < C. This completes the
proof of Proposition 5.3. O

Using Proposition 5.3, we can verify the estimate (4.74). In fact, taking o =
(3/4)p, we obtain from (5.8)

Tl 3 /4)p.(3/2)0 < CA"2nl(p/4)™" = Ca~2(4a/p)"n!.
Hence, if we define positive constants 6T, al and pt by
ct=ca2? at=4a/p, pf=3p/4,
the estimate (4.74) holds for C = Ct, & = a' and p = p.
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