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Some Remarks on the Semipositivity Theorems

by

Osamu Fujino, Taro Fujisawa, Morihiko Saito

Abstract

We show that the dualizing sheaves of reduced simple normal crossings pairs have a
canonical weight filtration in a compatible way with the one on the corresponding mixed
Hodge modules by calculating the extension classes between the dualizing sheaves of
smooth varieties. Using the weight spectral sequence of mixed Hodge modules, we then
reduce the semipositivity theorem for the higher direct images of dualizing sheaves to
the smooth case where the assertion is well known. This may be used to simplify some
constructions in a recent paper of Y. Kawamata. We also give a simple proof of the
semipositivity theorem for admissible variations of mixed Hodge structure in [FF] by
using the theories of Cattani, Kaplan, Schmid, Steenbrink, and Zucker. This generalizes
Kawamata’s classical result in the pure case.
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Introduction

Let (X,D) be a reduced simple normal crossing pair (i.e., (X,D) is Zariski-locally

isomorphic to (X ′, X ′ ∩D′) with X ′, D′ reduced simple normal crossing divisors

on a smooth variety Y having no common irreducible components and such that

their union is a normal crossing divisor). For k > 0, set

X [k] := {x ∈ X | multxX ≥ k}∼,
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where Z∼ denotes the normalization of Z for an algebraic variety Z. Then X [k]

is the disjoint union of the intersections of k irreducible components of X, and

is smooth. (There is a shift of the index k by 1 compared with [Kaw3]. There is

no shift of the one in [De2], [SZ] although different notation is used.) We have a

reduced simple normal crossing divisor D[k] ⊂ X [k] defined by the pull-back of D

by the natural morphism X [k] → X. For l ≥ 0, set

D[k,l] := {x ∈ X [k] | multxD
[k] ≥ l}∼.

Note that D[k,0] = X [k], and our D[k,l] is contained in X [k−1],[l] of [Kaw3] which

is much larger in general (and there is a shift of indices as noted above).

Let U = X \ D with j : U ↪→ X the natural inclusion. Set n = dimX. Let

DQU be the dual of the constant sheaf QU in the derived category Db
c(X,Q).

Since j is an affine immersion, j!QU [n] and its dual Rj∗DQU [−n] are perverse

sheaves [BBD], and they naturally underlie mixed Hodge modules (see [Sa1], [Sa2]).

These are denoted respectively by j!Qh,U [n] and j∗DQh,U [−n] in this paper. Set

ωX(D) := ωX ⊗OX
OX(D) where ωX is the (algebraic) dualizing sheaf on X. We

have the following.

Theorem 1. In the above notation, ωX(D) is naturally identified with the first

non-zero piece of the Hodge filtration of the underlying filtered right D-module

of j∗DQh,U [−n]. Moreover the weight filtration W of j∗DQh,U [−n] induces a

canonical weight filtration W on ωX(D) such that

GrWq ωX(D) =
⊕

k+l=n+q+1

ωD[k,l] .

Note that −q coincides with dimD[k,l], which is equal to n+1−k−l. (Here the

direct image under the morphism D[k,l] → X is omitted to simplify the notation.)

In case X is smooth, the weight filtration W on ωX(D) coincides with the one on

ΩnX(logD) in [De2] up to shift by n (see also [Fn1]). Note that the first non-zero

piece of the Hodge filtration of the underlying filtered right D-module is globally

well-defined even if X is not globally embeddable into a smooth variety (see (1.1)

below). We can show that the weight filtration W on ωX(D) coincides with the

one constructed in [Kaw3] since our proof implies the uniqueness of the filtration

(see Remarks 2.4 below).

For a projective morphism f : X → Y , we have the weight spectral sequence

of mixed Hodge modules on Y

E−q,i+q1 = Hif∗GrWq (j∗DQh,U [−n])⇒ Hif∗(j∗DQh,U [−n]),

degenerating at E2 (see [Sa2]). The restriction of the cohomological direct image

of mixed Hodge modules to the first non-zero piece of the Hodge filtration is
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given by the sheaf-theoretic direct image (see (1.1.3) below). Combining these with

Theorem 1 and using the transformation between left and right DY -modules as in

(1.2.7) below, we then get the following corollary (which is a slight generalization

of the formula (5.4) in [Kaw3]):

Corollary 1. With the notation of Theorem 1, let f : X → Y be a projective

morphism of complex algebraic varieties with Y smooth. There is the weight spectral

sequence

FE
−q,i+q
1 =

⊕
k+l=n+q+1

Rif∗ωD[k,l]/Y ⇒ Rif∗ωX/Y (D),

degenerating at E2, and its E1-differential d1 splits so that the FE
−q,i+q
2 are direct

factors of FE
−q,i+q
1 .

The last assertion follows from semisimplicity of polarizable Hodge modules.

(The latter property comes from semisimplicity of polarizable variations of pure

Hodge structures since polarizable Hodge modules are uniquely determined by

their generic variations of Hodge structure.) The above spectral sequence coincides

with the one in [Kaw3] obtained under some additional hypotheses as in Corollary 2

below. However, its construction using the residue complex (loc. cit.) seems rather

complicated, and moreover the topological dualizing complex DQU is not used

there so that the definition of the rational structure is quite technical. Here the

theories of perverse sheaves [BBD, e.g., pp. 80–81] and mixed Hodge modules can

be used to simplify some arguments (see Remarks 2.4 below).

By Corollary 1, the proof of the following semipositivity theorem for the sheaf

Rif∗ωX/Y (D) in [FF] can be reduced to the case of X smooth and D empty, where

the assertion has been studied by many people (see also [Fn1]–[Fn3], [Ft], [Kaw1],

[Kaw2], [Kaw4], [Ko1]–[Ko5], [Na]).

Corollary 2 ([FF], [Kaw3]). With the notation of Corollary 1, assume Y is com-

plete, every D[k,l] is dominant over Y , and there is a normal crossing divisor Σ

on Y such that the restrictions of the Rr−i(fj)!QU to the complement Y ′ are lo-

cally constant and moreover their local monodromies around Σ are unipotent where

r = dimX − dimY . Then Rif∗ωX/Y (D) is locally free and semipositive.

Here a locally free sheaf L on a smooth complete variety Y is called semi-

positive if for any morphism g from a smooth complete curve to Y , any quotient

line bundle (i.e., invertible sheaf) of g∗L has non-negative degree (see for instance

[Ft], [Kaw1]). In Corollary 2, it is not necessary to assume that the divisor on Y

has simple normal crossings since this is not needed in Theorems 2 and 3 below.
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Using the above weight spectral sequence together with the generalization of

Poincaré duality to mixed Hodge modules, we also get a proof of the following

assertion of [FF] (see 3.3 below):

Theorem 2 ([FF]). With the notation of Corollary 2, assume the hypotheses there

except for the completeness of Y and the unipotence of the local monodromies. Then

Rif∗ωX/Y (D) coincides with the canonical Deligne extension of the first non-zero

piece of the Hodge filtration of the dual variation of mixed Hodge structure of

Rr−i(fj)!QU |Y ′ if Rif∗ωX/Y (D) does not vanish.

Here the canonical extension of the Hodge filtration is defined by taking the

intersection of the open direct image with the canonical Deligne extension of the

ambient locally free sheaf with an integrable logarithmic connection where the

eigenvalues of the residues are contained in (−1, 0] (see [De1]). This is closely

related to the compatibility of the Hodge filtration F with the filtration V of

Kashiwara [Kas1] and Malgrange [Ma] (see [Sa1, Proposition 3.2.2(i)] and also 3.2

below). We also explain a direct proof of Theorem 2 using the theory of du Bois

singularities without using Theorem 1 (see 3.5 below). Note that Theorem 2 is well-

known in case X is smooth and D = ∅ (see [Ko2], [Na], and also [Sa4, 3.1.1–2]).

The proof of Theorem 2 given in [FF] uses a generalization of the argument in

[Na] to the mixed case.

Concerning [Kaw3], it is not shown there that the associated variation of

mixed Hodge structure is an admissible one, nor that Rif∗ωX/Y (D) coincides

with the canonical extension as is stated in [Kaw3, remark after Theorem 1.1].

In fact, for the proof of semipositivity, it is sufficient to show this coincidence

only for the E1-term of the above spectral sequence which is related to variations

of pure Hodge structure (since semipositivity is stable by extensions and direct

factors in the category of locally free sheaves on Y ). Here it is enough to assume

the unipotence of the local monodromies only for the E2-term, and not for the

E1-term, as long as the argument as in the proof of [Kaw1, Theorem 5] is used

(although Corollary 2 does not hold without assuming the unipotence of the local

monodromies even in case X is smooth and D = ∅; see [FF]). Hence the hypothesis

in [Kaw3, Theorem 1.1] can be weakened as in our Corollary 2 (unless a geometric

argument as in the proof of [Fn2, Theorem 5.4] is used there).

The proof of Corollary 2 is reduced in our paper by using Theorem 2 to the

following semipositivity theorem for the Hodge filtration of admissible variations

of mixed Hodge structure in the sense of [Kas2], [SZ].

Theorem 3 ([FF]). Let Y be a smooth complete complex algebraic variety, and

E be a normal crossing divisor on it. Let (M,F ) be a filtered vector bundle on Y .

Assume its restriction to the complement of E underlies an admissible variation
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of mixed R-Hodge structure whose local monodromies around E are unipotent, and

(M,F ) is the Deligne extension of (M,F )|Y \E. Let p0 be the maximal integer with

F pM 6= 0. Then F p0M is semipositive.

This is a generalization of a theorem of S. Zucker [Zu] in the curve case, which

uses a formula for the curvature due to P. Griffiths [Gr]. The proof of Theorem 3

in the mixed case is easily reduced to the pure case by using the admissibility of

the variation (see 4.5 below), and moreover the latter case is enough for the proof

of Corollary 2 as is explained above. To simplify the argument, it is important to

proceed by induction on dimY , and not on the dimension of the stratum strictly

containing the image of the curve.

Essentially the same idea was already used in the proof of [Kaw1, Theorem 5].

Note, however, that the admissibility of the variation of mixed Hodge structure is

essential also for the inductive argument there (unlike the case of [Kaw3, Theo-

rem 1.1]), although it was obtained as a corollary of the multi-variable SL2-orbit

theorem in [CKS] which was written after [Kaw1]; see also Remark 4.6(i) below.

(Some remarks related to papers of Kawamata may be found in Remarks 2.4, 4.4,

and 4.6.)

Note finally that the main theorems in this paper also hold in the analytic

case (see Remark 4.7 below).

This paper is organized as follows. In Section 1 we review some basic facts

of the theory of mixed Hodge modules. In Section 2 we prove Theorem 1 by

calculating the extension classes. In Section 3 we give a proof of Theorem 2 using

Theorem 1 together with another proof using the theory of du Bois singularities.

In Section 4 we give a simple proof of Theorem 3 by using [CK], [CKS], [Sch], [Zu]

(without using mixed Hodge modules).

§1. Dualizing sheaves and mixed Hodge modules

In this section we review some basic facts of the theory of mixed Hodge modules.

Here we use algebraic coherent sheaves and algebraic D-modules.

1.1. First non-zero piece of the Hodge filtration. Let (M,F ) be the un-

derlying filtered D-module of a mixed Hodge module M on a complex algebraic

variety X. This is represented by a system of filtered right D-modules (MU↪→V , F )

for closed immersions U ↪→ V where U is an open subvariety of X and V is

a smooth variety, and they satisfy a certain compatibility condition (see [Sa1,

2.1.20] and [Sa2, 2.1]). If X is globally embeddable into a smooth variety, e.g., if

X is projective, then we may assume U = X. Set

(1.1.1) p(M) = p(M,F ) := min{p ∈ Z | FpMU↪→V 6= 0 for some U ↪→ V }.
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Then Fp(M)MU↪→V is independent of V , and depends only on (M,F ) and U .

Indeed, the direct image of a filtered right DV -module (MV , F ) under a closed

immersion i : V ↪→ V ′ of smooth varieties of codimension r is locally given by

(1.1.2) i∗(MV , F ) = (MV [ξ], F ) with Fp(MV [ξ]) =
∑
ν∈Nr

Fp−|ν|MV ξ
ν ,

where MV [ξ] := MV [ξ1, . . . , ξr] with ξ := ∂/∂xi if (x1, . . . , xm) is a local coordinate

system of V ′ with V =
⋂
i≤r{xi = 0}. (More precisely, the direct image of rightDV -

modules under i : V ↪→ V ′ is defined by the tensor product with OV ⊗OV ′ DV ′ .)
Using the compatibility condition, we can verify that they give a globally well-

defined OX -module which will be denoted by

Fp(M)(M) or Fp(M)(M,F ).

Here we have to use right D-modules to get a globally well-defined O-module (and

we need [Sa1, Lemma 3.2.6] to show that Fp(M)MU↪→V is an OU -module).

Let f : X → Y be a projective morphism of complex algebraic varieties. By

the definition of the cohomological direct image of filtered D-modules Hjf∗, we

get

(1.1.3) Rjf∗Fp(M)M = Fp(M)Hjf∗(M,F ) = Fp(M)(H
jf∗M).

See also [Sa4]. Here we have p(Hjf∗M) ≥ p(M), and the middle and last terms

of (1.1.3) are defined to be zero in case p(Hjf∗M) > p(M). For the proof of

(1.1.3) we may assume X,Y are smooth since the assertion is local on Y and

f is projective. Using the factorization of f into the composition of the closed

immersion X ↪→ X × Y and the projection X × Y → Y , the assertion is reduced

to the projection case. Here the direct image is defined by using the relative de

Rham complex DRX×Y/Y (M,F ) with j-th component given by

(1.1.4)
∧−j

ΘX ⊗OX
(M,F [−j]) (j ≤ 0),

where (F [−j])p := Fp+j (and pr−11 is omitted before ΘX and OX). So the first

isomorphism of (1.1.3) follows. For the last isomorphism of (1.1.3) we use the fact

that the cohomological direct image functor of filtered D-modules Hjf∗ is compat-

ible with the cohomological direct image functor of mixed Hodge modules Hjf∗.

(This is not completely trivial since the direct image of mixed Hodge modules f∗
is defined by using Beilinson’s resolution.)

Note that (1.1.3) is a special case of the isomorphisms

(1.1.5) Rjf∗GrFp DR(M) = Hj GrFp DR(f∗(M,F )) = Hj GrFp DR(f∗(M)),
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which follows from the isomorphism f∗DR(M,F ) = DR(f∗(M,F )) (see [Sa1,

2.3.7]).

1.2. Dualizing sheaves. Let Y be a smooth complex variety of dimension

m. Then (ωY , F ) is the underlying filtered right DY -module of the mixed Hodge

module

(1.2.1) DQh,Y [−m] = (Qh,Y [m])(m),

which is pure with weight −m. Here F on ωY is defined by

(1.2.2) GrFp ωY = 0 (p 6= 0),

so that

(1.2.3) p(DQh,Y [−m]) = 0, F0(DQh,Y [−m]) = ωY .

On the other hand, (ΩmY , F ) is the underlying filtered right DY -module of

Qh,Y [m] which is pure with weight m. Here F on ΩmY is defined by

(1.2.4) GrFp ΩmY = 0 (p 6= −m),

so that

(1.2.5) p(Qh,Y [m]) = −m, F−m(Qh,Y [m]) = ΩmY ,

and

(1.2.6) (ωY , F ) = (ΩmY , F )(m).

This is compatible with (1.2.1).

Note that (ΩmY , F ) is used for the transformation between filtered left and

right D-modules in [Sa1], [Sa2]; it is defined by associating the following filtered

right DY -module to a filtered left DY -modules (M,F ):

(1.2.7) (ΩmY , F )⊗OY
(M,F ).

This transformation is also expressed by choosing local coordinates y1, . . . , ym of Y

and using the anti-involution ∗ of DY defined by

(1.2.8) (PQ)∗ = Q∗P ∗, (∂/∂yi)
∗ = −∂/∂yi, g∗ = g for g ∈ OY .

Here ΩmY is trivialized by using dy1 ∧ · · · ∧ dym. This expression follows from the

definition of the action of DY on the right D-module ΩmY , as is well-known.

1.3. Extension groups. Let X be a smooth complex variety, and Y be a smooth

closed subvariety of X with i : Y ↪→ X the natural inclusion. Set c = codimYX.
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Then

(1.3.1) Ext1X(ωY , ωX) = Ext1Y (ωY , i
!ωX) = Ext1−cY (ωY , ωY ).

Let D denote the dualizing functor in the bounded derived category of coherent

sheaves. This commutes with the direct image i∗ by Grothendieck duality. We have

D(OX [dimX]) = ωX , D(OY [dimY ]) = ωY ,

and the above extension groups are canonically isomorphic to

(1.3.2) Ext1−cX (OX ,OY ) = Ext1−cY (i∗OX ,OY ) = Ext1−cY (OY ,OY ).

If c = 1, there are canonical elements e∗X,Y and eX,Y (up to a sign) respectively

in the first term of (1.3.1) and (1.3.2). They are dual to each other (up to a sign),

and correspond respectively to the short exact sequences

0→ OX(−Y )→ OX → OY → 0,(1.3.3)

0→ ωX → ωX(Y )
res−−→ ωY → 0,(1.3.4)

where “res” is the residue morphism. Here some sign may occur since (1.3.3) cor-

responds to the distinguished triangle in the derived category of coherent sheaves

(1.3.5) OY [dimY ]→ OX(−Y )[dimX]→ OX [dimX]
+1−−→,

where +1 over the last arrow means that the next complex, which is omitted to

simplify the notation, is shifted by +1.

We have a similar calculation of extension groups with OX [n] and ωX replaced

by the constant sheaf QX [n] and its dual DQX [−n], where n := dimX. This can

be extended to the case of the mixed Hodge modules. Setting U := X \ Y with

j : U ↪→ X the natural inclusion, we get short exact sequences of mixed Hodge

modules which are dual to each other:

0→ Qh,Y [n− 1]→ j!Qh,U [n]→ Qh,X [n]→ 0,(1.3.6)

0→ DQh,X [−n]→ j∗DQh,U [−n]→ DQh,Y [1− n]→ 0.(1.3.7)

Note that we get (1.3.4) by restricting (1.3.7) to the first non-zero piece of

the Hodge filtration, i.e., we have, in the notation of 1.1,

p(DQh,X [−n]) = p(j∗DQh,U [−n]) = p(DQh,Y [1− n]) = 0,

and the short exact sequence (1.3.4) can be identified with

(1.3.8) 0→ F0(DQh,X [−n])→ F0(j∗DQh,U [−n])→ F0(DQh,Y [1− n])→ 0.



Some Remarks on the Semipositivity Theorems 93

This shows that the extension class between the mixed Hodge modules is

compatible with the corresponding one between the dualizing sheaves by restricting

to F0.

§2. Proof of Theorem 1

In this section we prove Theorem 1 by calculating the extension classes. Here we

use algebraic coherent sheaves and algebraic D-modules.

2.1. Dualizing sheaves of simple normal crossing varieties. Let X be a

simple normal crossing variety with X [k] as in the introduction. There is a Čech

complex

C•X := [OX[1] → OX[2] → · · · ] with CkX := OX[k+1] ,

together with a natural quasi-isomorphism

(2.1.1) OX
∼−→ C•X ,

by choosing an order of the set of irreducible components of X. Set n = dimX.

Let W be the increasing filtration on C•X [n] defined by the truncations σ≥−k in

[De2] so that

(2.1.2) GrWk (C•X [n]) = OX[n+1−k] [k] (k ∈ [0, n]).

Here dimX [n+1−k] = k. Then W induces the dual (decreasing) filtration W on

ωX = D(OX [n]) = D(C•X [n]),

satisfying

(2.1.3) GrkW ωX = ωX[n+1−k] (k ∈ [0, n]).

We have a similar construction with OX [n] and ωX replaced by the constant

sheaf QX [n] and its dual DQX [−n], where we get filtrations of perverse sheaves

since the shifted Čech complex endowed with the truncations σ≥−k defines a fil-

tration of perverse sheaves (see [BBD]). This can be extended to the case of the

mixed Hodge modules Qh,X [n] and DQh,X [−n] where we get filtrations of mixed

Hodge modules.

2.2. Dualizing sheaves of reduced simple normal crossing pairs. Let

(X,D) be a reduced simple normal crossing pair, and X [k], D[k], D[k,l] be as

in the introduction. Since D[k] is a simple normal crossing divisor on X [k] for each

k > 0, there is a Čech complex

C•X[k],D[k] := [OX[k] → OD[k,1] → · · · ] with ClX[k],D[k] := OD[k,l] ,
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together with a natural quasi-isomorphism

(2.2.1) OX[k](−D[k])
∼−→ C•X[k],D[k] .

These give a complex C•X,D with

CqX,D :=
⊕

dimD[k,l]=q

OD[k,l] ,

where k > 0 and l ≥ 0. This can be constructed by using the orientation sheaf in

[De2], and this sheaf can be trivialized by choosing an order of the set of irreducible

components of D[k]. However, we might get some complicated signs here unless

(X,D) globally comes from a pair of simple normal crossing divisors on a smooth

variety, since it is unclear whether there are always (partial) orderings of the sets

of irreducible components of the D[k], compatible with inclusions between them.

(In particular, it is not clear if we can always get a co-semisimplicial complex.)

We have moreover a natural quasi-isomorphism

(2.2.2) OX(−D)
∼−→ C•X,D.

We then get a finite increasing filtration W on C•X,D[n] with

(2.2.3) GrWq (C•X,D[n]) =
⊕

dimD[k,l]=q

OD[k,l] [q] (q ∈ [0, n]).

This induces a decreasing filtration W on

ωX(D) = D(OX(−D)[n]) = D(C•X,D[n])

such that

(2.2.4) GrqW ωX(D) =
⊕

dimD[k,l]=q

ωD[k,l] (q ∈ [0, n]).

The above argument can be carried out for the corresponding mixed Hodge

modules by replacing OX(−D)[n] and ωX(D) with j!Qh,U [n] and j∗DQh,U [−n] as

in the last remarks of 1.3 and 2.1. Here the shifted Čech complex endowed with

the truncations σ≥−k becomes a mixed Hodge module with weight filtration W .

We then get decompositions of pure Hodge modules on X

GrWq (j!Qh,U [n]) =
⊕

dimD[k,l]=q

Qh,D[k,l] [q] (q ∈ [0, n]),(2.2.5)

GrW−q(j∗DQh,U [−n]) =
⊕

dimD[k,l]=q

DQh,D[k,l] [−q] (q ∈ [0, n]),(2.2.6)

which are dual to each other. Here W q = W−q and GrqW = GrW−q as usual.
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We can now prove the following theorem which implies Theorem 1 in the

introduction.

2.3. Theorem. In the notation of the introduction and 1.1, we have

p(j∗DQh,U [−n]) = 0

and there is a canonical filtered isomorphism of OX-modules

(2.3.1) F0(j∗DQh,U [−n],W ) = (ωX(D),W ).

Proof. The first assertion follows from (2.2.6). Set

(A,W ) = (ωX(D),W ), (B,W ) = F0(j∗DQh,U [−n],W ).

After passing to the graded pieces GrqW , we have the following canonical isomor-

phisms by (2.2.4), (2.2.6) and (1.2.3):

(2.3.2) GrqW A = GrqW B (q ∈ [0, n]).

By induction on q, we show the following canonical isomorphisms lifting (2.3.2):

(2.3.3) (W qA,W ) = (W qB,W ) (q ∈ [0, n]).

The assertion holds for q = n by (2.3.2) with q = n. Let q ∈ [0, n − 1], and

assume (2.3.3) holds for q + 1. Consider the extension classes

eqA ∈ Ext1(GrqW A,Grq+1
W A), eqB ∈ Ext1(GrqW B,Grq+1

W B),

associated with (W qA/W q+2A,W ) and (W qB/W q+2B,W ). These are identified

with each other under the isomorphisms (2.3.2), since the short exact sequence

(1.3.4) is identified with (1.3.8). (Note that the signs coming from the orientation

sheaf in [De2] are the same for A and B.)

Consider the short exact sequences

0→W q+2A→W q+1A→ Grq+1
W A→ 0.

We have the canonical inclusion

(2.3.4) Ext1(GrqW A,W q+1A) ↪→ Ext1(GrqW A,Grq+1
W A)

(and similarly for B), since (1.3.1) for c ≥ 2 implies

Ext1(GrqW A,W q+2A) = 0.

Consider the extension classes

e′qA ∈ Ext1(GrqW A,W q+1A), e′qB ∈ Ext1(GrqW B,W q+1B),
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associated with (W qA,W ) and (W qB,W ). These are identified with each other

under the isomorphisms (2.3.2) for q and (2.3.3) for q + 1 by the injectivity of

(2.3.4). This means that we get a commutative diagram

(2.3.5)

0 −−−−→ W q+1A −−−−→ W qA −−−−→ GrqW A −−−−→ 0∥∥∥ ∥∥∥ ∥∥∥
0 −−−−→ W q+1B −−−−→ W qB −−−−→ GrqW B −−−−→ 0

Here the middle vertical morphism is unique if we have

Hom(GrqW A,W q+1A) = 0.

But (2.2.4) implies

Hom(GriW A,GrjW A) = 0 for i < j.

So (2.3.3) holds also for q. This finishes the proof of Theorem 1.

2.4. Remarks. (i) The above proof of Theorem 1 gives the uniqueness of the fil-

tration W on ωX(D). Hence it coincides with the filtration constructed in [Kaw3]

in the absolute case by using the double complex of logarithmic de Rham com-

plexes with second differential given by residue morphisms. In [Kaw3], however,

only the components of the graded pieces of the weight filtration are given without

caring about the induced differential between them, and it seems necessary to show

that each graded piece of the double complex is isomorphic to
⊕

Z σ≥0(K•Z [1]) up

to a shift of double complexes, where K•Z is the Koszul complex associated with

the identity morphisms on the de Rham complexes of closed strata Z of a fixed

dimension, and σ≥0 is the truncation as in [De2] with respect to the differential

of the Koszul complex so that σ≥0(K•Z [1]) is quasi-isomorphic to the de Rham

complex of Z. (It is not sufficient to count the multiplicities of the de Rham com-

plexes appearing in the graded pieces of the weight filtration without calculating

the differential.)

It also seems non-trivial to construct a natural quasi-isomorphism between

ωX(D) and the highest degree part with respect to the de Rham differential of

the double complex mentioned above. With our notation, it seems necessary to

construct a canonical morphism

(2.4.1) ωX(D)→ ωX[1](D[1] + Z [1]),

where Z [1] denotes the intersection of X [1] with pull-back of the singular locus

of X. (Here the direct image by X [1] → X is omitted to simplify the notation as
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in [Kaw3].) In fact, this can be obtained by using a canonical morphism

(2.4.2) OX[1](−D[1] − Z [1])→ OX(−D).

This is easily reduced to the case D = D[1] = ∅. Analytic-locally there are coor-

dinates x1, . . . , xn+1 of an ambient smooth variety such that X is locally defined

by

g :=
∏

1≤i≤r
xi.

For the construction of (2.4.2) with D = D[1] = ∅, we may replace X [1] with one

component of it which is defined by x1 = 0. Then Z [1] is defined by

g′ :=
∏

2≤i≤r
xi,

and the desired morphism is induced by the inclusion of the ideal generated by g′

in the structure sheaf of the ambient smooth variety by dividing it by the ideal

generated by g.

(ii) For the argument in [Kaw3] (which proves Corollary 2 by showing Corol-

lary 1 in our paper), it is unnecessary to show that the resulting variation of mixed

Hodge structure is an admissible one so that the canonical extension of the Hodge

filtration is compatible with the passage to the graded pieces of the weight filtration

(see the remark before Theorem 3). However, it is possible to show its coincidence

with our variation of mixed Hodge structure by using the functor DR−1 as in the

remarks below.

(iii) Assume X is a simple normal crossing divisor on a smooth variety Y ,

and D is the restriction of a normal crossing divisor D′ on Y such that X ∪D′ is

a normal crossing divisor on Y . Set

U ′ := Y \D′, U ′′ := Y \ (X ∪D′),

with inclusions j′ : U ′ ↪→ Y , j′′ : U ′′ ↪→ Y . We have a short exact sequence of

mixed Hodge modules

(2.4.3) 0→ j′∗DQh,U ′ [−n− 1]→ j′′∗DQh,U ′′ [−n− 1]→ j∗DQh,U [−n]→ 0.

In fact, this is easy in case D′ = ∅ so that U ′ = Y , U ′′ = Y \X, and U = X. In

general, apply the functor j′∗j
′∗ to this short exact sequence for the case D′ = ∅.

The above short exact sequence corresponds to the short exact sequence of

coherent sheaves

(2.4.4) 0→ ωY (D′)→ ωY (X +D′)→ ωX(D)→ 0.
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The corresponding short exact sequence is stated after the definition of the fil-

tered complex in the absolute case in [Kaw3, Section 3]. We get the underlying

short exact sequence of filtered D-modules of the above short exact sequence of

mixed Hodge modules by applying the functor DR−1 to the short exact sequence

of [Kaw3].

(iv) Kawamata’s construction [Kaw3] in the absolute case can be interpreted

by using the theories of perverse sheaves and mixed Hodge modules as follows.

More generally, let X be a complex algebraic variety endowed with a stratifi-

cation {Sk} satisfying the following conditions: each Sk is a locally closed smooth

subvariety of X with pure dimension k such that the inclusion ik : Sk ↪→ X is an

affine morphism and

Sk \ Sk =
∐
j<k

Sj .

Let jk : X \Sk ↪→ X denote the inclusion. We have a decreasing filtration G on QX
defined by

Gk+1QX = jk!QX\Sk
so that GrkGQX = ik!QSk

.

Since Sk is smooth and ik is an affine immersion, ik!QSk
[k] is a perverse sheaf on X.

By the theory of realization functors in [BBD, 3.1], this implies an isomorphism

in the derived category of perverse sheaves

(2.4.5) QX =
[
QS0
→ i1!QS1

[1]→ i2!QS2
[2]→ · · ·

]
,

where ik!QSk
[k] is put at degree k in the target. By the same argument as in

the proof of [Sa5, Proposition 4.1] (where each stratum is assumed affine), this is

naturally lifted to an isomorphism in the derived category of mixed Hodge modules

(2.4.6) Qh,X =
[
Qh,S0

→ i1!Qh,S1
[1]→ i2!Qh,S2

[2]→ · · ·
]
.

Taking the dual, we get an isomorphism

(2.4.7)
[
· · · → i2∗DQh,S2

[−2]→ i1∗DQh,S1
[−1]→ DQh,S0

]
= DQh,X .

This corresponds to Kawamata’a complex [Kaw3] in the absolute case with D = ∅
(in our notation) where the stratification is associated with the normal crossing

variety X. In general, it is enough to apply the functor j∗j
∗ to the above complex

where j : X \D ↪→ X is the inclusion, since we get the underlying complex of bi-

filtered D-modules of the resulting complex of mixed Hodge modules by applying

the functor DR−1 to the bi-filtered complex in [Kaw3] in the absolute case. In fact,

we get the underlying bi-filtered DX -module of j∗QX\D[dimX] by applying the

functor DR−1 to the bi-filtered de Rham complex

(Ω•X(logD)[dimX];F,W ),
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if D is a normal crossing divisor on a smooth variety X with j : X \D ↪→ X as

above (see for instance [Sa5, 1.4.5]). Note that if X is smooth, then by (1.2.1) we

have

DQX [−dimX] = (QX [dimX])(dimX).

We can show the compatibility with the differentials of the complexes by comparing

(1.3.4) and (1.3.7) at sufficiently general points of the strata.

§3. Proof of Theorem 2

In this section we give a proof of Theorem 2 using Theorem 1 together with

another proof using the theory of du Bois singularities. Here we mainly use analytic

D-modules and analytic sheaves by using GAGA (except possibly in 3.4 where

algebraic sheaves can also be used).

3.1. Filtration V of Kashiwara and Malgrange. Let M be a regular holo-

nomic left DY -module on a complex manifold Y . Let E be a smooth hypersurface

in Y . Let y (resp. ξy) be a locally defined function (resp. vector field) such that

locally

D = {y = 0}, 〈ξy, dy〉 = 1.

Let V0DY ⊂ DY be the subring generated by OY and the vector fields preserving

the ideal of E ⊂ Y . Let Σ be a subset of C containing 0 and such that the composi-

tion of the inclusion Σ ↪→ C with the exponential map: C 3 α 7→ exp(2πiα) ∈ C∗ is

bijective. There is a unique separated exhaustive filtration V of Kashiwara [Kas1]

and Malgrange [Ma] along E on M indexed by Z and satisfying the following

conditions:

(3.1.1) ξy(VkM) ⊂ Vk+1M , y(VkM) ⊂ Vk−1M (∀k),

(3.1.2) y(VkM) = Vk−1M (k < 0),

(3.1.3) VkM are coherent V0DY -modules,

(3.1.4) there is a minimal polynomial for the action of ξyy ∈ V0DY on GrVk M

such that its roots are contained in −k + Σ for any k.

These conditions are independent of the choice of y, ξy, and V exists globally

(although there is no canonical DE-module structure on GrkV M without choosing

the function y). We say that M is quasi-unipotent along E if the roots of the

minimal polynomial are rational numbers. (This condition is satisfied for mixed

Hodge modules.) In this case V can be indexed by Q by replacing k in conditions

(3.1.1–3) with rational numbers α, and condition (3.1.4) with

(3.1.5) The action of ξyy + α on GrVα M is nilpotent.
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Note that (ξyy + α)∗ = −yξy + α in case ξy = ∂/∂y (by choosing local

coordinates containing y), where ∗ is the anti-involution as in (1.2.8).

Assume M is a regular holonomic DY -module of Deligne type, i.e., there is a

simple normal crossing divisor E on Y such that M |Y \E is a locally free sheaf with

an integrable connection and M is its meromorphic extension. Assume M is quasi-

unipotent along any irreducible component El of E. Let V (l) be the V filtration

along El indexed by Q. Then the Deligne canonical extension with eigenvalues of

the residues contained in (α− 1, α] is given by

(3.1.6)
⋂
l

V
(l)
<−αM.

3.2. Compatibility with the Hodge filtration. Let (M,F ) be the underlying

filtered left DY -module of a mixed Hodge module on a smooth complex algebraic

variety Y . Let E be a smooth divisor on Y . In the notation of (3.1) the following

conditions are satisfied (see [Sa1, 3.2.1]):

y(FpVαM) = FpVα−1M (α < 0),(3.2.1)

ξy(Fp GrVα M) = Fp+1 GrVα+1M (α > −1).(3.2.2)

Let j : Y \E ↪→ Y denote the inclusion. By [Sa1, Proposition 3.2.2], condition

(3.2.1) is equivalent to

(3.2.3) FpV<0M = V<0M ∩ j∗j∗FpM.

If E is a divisor with normal crossings, (3.2.3) implies in the notation of (3.1.6)

(3.2.4) Fp

(⋂
l

V
(l)
<0M

)
=
⋂
l

V
(l)
<0M ∩ j∗j∗FpM,

where the right-hand side is the canonical extension of the Hodge filtration F by

the assertion concerning (3.1.6). Indeed, (3.2.4) follows from (3.2.3) by induction on

the number of local irreducible components. Here we have to show ⊃. We apply

(3.2.3) to a local irreducible component El of the divisor E and the inductive

hypothesis is used outside El.

If M has no non-trivial quotient DY -submodule supported on E, or equiva-

lently, we have the surjectivity of

(3.2.5) ξy : GrV−1M → GrV0 M

(see [Sa1, Proposition 3.1.8]), then (3.2.2) holds also for α = −1, i.e.,

(3.2.6) ξy(Fp GrV−1M) = Fp+1 GrV0 M.
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Indeed (3.2.5) underlies a morphism of mixed Hodge modules denoted by Var in

[Sa1, 5.1.3.4], and the latter is strictly compatible with the Hodge filtration F by

[Sa1, Proposition 5.1.14]

As a conclusion, if (3.2.5) is surjective, then for p = p(M,F ) we have

(3.2.7) Fp(M,F )M = V<0M ∩ j∗j∗Fp(M,F )M.

3.3. Proof of Theorem 2 (using Theorem 1). By duality of mixed Hodge mod-

ules (see [Sa2, 4.3.5]), there is a canonical isomorphism

(3.3.1) Hif∗(j∗DQh,U [−n]) = D(H−if∗(j!Qh,U [n])).

Here the right-hand side is the dual as a mixed Hodge module, and its restriction

over Y ′ is identified (up to certain shifts of filtrations) with the dual of the variation

of mixed Hodge structure associated with

Hr−i(fj)!QU |Y ′ .

Let (M ;F,W ) be the bi-filtered left DY -module underlying

Hif∗(j∗DQh,U [−n]).

Here the Hodge filtration F is indexed like a right D-module without taking the

shift of filtration in the transformation between left and right D-modules, i.e., the

tensor product with (ωY , F ) is used instead of (ΩmY , F ) in (1.2.7). So we have in

the notation of (1.1.1)

(3.3.2) p(M,F ) = 0.

Let V (l) denote the filtration of Kashiwara and Malgrange on M along an

irreducible component El of E. We first show

(3.3.3) F0 GrV
(l)

α M = 0 (α ≥ 0), i.e., F0M = F0V
(l)
<0M.

Indeed, (3.3.3) for α > 0 follows from (3.2.2) together with (3.3.2). For α = 0, we

have

(3.3.4) F0 GrV
(l)

0 GrWk M = 0.

This follows from [Sa4, 2.6.1] by using the weight spectral sequence in the intro-

duction, and reducing to the case where X is smooth and D = ∅, since every

stratum is dominant over Y . Here F,W, V (l) are compatible three filtrations on M

(see [Sa2, 2.2.1]). So (3.3.3) follows. (Note that the surjectivity of (3.2.5) does not

necessarily hold on Y although it holds on X by the assumption that any stratum

is dominant over Y ; see 3.5 below.)
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Let j : Y \ E ↪→ Y denote the inclusion. By (3.3.3) and (3.2.4) we get

(3.3.5) F0M = F0

(⋂
l

V
(l)
<0M

)
=
⋂
l

V
(l)
<0M ∩ j∗j∗F0M.

So the assertion follows.

3.4. Du Bois singularities. Let X be a reduced complex algebraic variety.

Let (Ω̃•X , F ) denote the filtered du Bois complex (see [dB]). It is isomorphic to

DR(Qh,X) which is obtained by applying the de Rham functor DR to the under-

lying complex of filtered D-modules of Qh,X . (Here we assume X is embeddable

into a smooth variety for simplicity since the problem is local.) In particular,

(3.4.1) GrF0 DR(Qh,X) = Gr0F Ω̃•X ,

where F p = F−p. By the definition of D for filtered differential complexes in [Sa1,

2.4.11], DR is compatible with D, and we get

(3.4.2) D GrF0 DR(Qh,X) = GrF0 DR(DQh,X) = F0DR(DQh,X),

where the last isomorphism follows from the definition of DR (see (1.1.4)) together

with

(3.4.3) p(DQh,X) = 0.

The last equality can be reduced to the smooth case by using a smooth affine

stratification as in Remark 2.4(iv).

Recall that X is called du Bois if

Gr0F Ω̃•X = OX .

By the above argument, this condition is equivalent to

(3.4.4) F0DR(DQh,X) = KX ,

where KX denotes the dualizing complex of X. If X is Cohen–Macaulay, then

KX = ωX [dimX].

Let D be a locally principal reduced divisor on X with j : X \ D ↪→ X the

canonical inclusion. Assume X,D are du Bois. Then

(3.4.5) OX(−D) = GrF0 DR(j!Qh,X\D), KX(D) = F0DR(j∗DQh,X\D).

Indeed, we get the first isomorphism by comparing the following distinguished

triangle and exact sequence:

(3.4.6)
GrF0 DR(j!Qh,X\D)→ GrF0 DR(Qh,X)→ GrF0 DR(Qh,D)

+1−→,
0→ OX(−D)→ OX → OD → 0.
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The second isomorphism then follows by using duality together with (3.4.3). (See

also [Kov].)

3.5. Direct proof of Theorem 2. Let (X,D) be a reduced simple normal cross-

ing pair. It is well-known that X is du Bois by using Remark 2.4(iii) together

with the weight filtration. (See also [Kov].) As for D, there are local coordinates

x1, . . . , xn+1 in some ambient smooth variety such that we have analytic-locally

D =
{ ∏
1≤i≤r

xi = 0
}
∩
{ ∏
r<i≤m

xi = 0
}
⊂ ∆r ×∆n+1−r,

since D is locally the intersection of two divisors having no common irreducible

components and whose union is a normal crossing divisor. So D is analytic-locally

a product of two normal crossing divisors, and is du Bois.

Let g be a local defining equation of an irreducible component of E ⊂ Y . Set

g′ := f∗g. Consider the graph embeddings

ig′ : X ↪→ X × C, ig : Y ↪→ Y × C.

They are compatible with

f : X → Y, f ′ := f × id : X × C→ Y × C.

Let (M ′, F ) be the underlying filtered D-module of ig∗j∗DQh,U [−n]. By (3.4.5)

and (1.1.2) we have

(3.5.1) F0M
′ = ωX(D).

By the same argument as in 3.3 and using (1.1.3), it is enough to show

(3.5.2) F0 GrVα H
if ′∗M

′ = 0 for α ≥ 0.

Here we may assume that X is a subvariety of a smooth variety since f is projec-

tive and the assertion is local on Y . We have the commutativity of F0 GrVα with

the direct image Hif ′, since f ′∗(M
′;F, V ) is bi-strict (see [Sa1, 3.3.17] and also

Remark 3.6 below). So it is enough to show

(3.5.3) F0 GrVα M
′ = 0 for α ≥ 0.

Then the assertion is local on X. It is reduced to the case of X smooth (but

D 6= ∅) by using the surjective morphisms of the short exact sequences (2.4.3-4) in

Remark 2.4(iii). It is further reduced to the case of X smooth and D = ∅ by using

the weight filtration W . So the assertion follows from (3.2.7) (see also [Sa4]) where

the assumption on the surjectivity of (3.2.5) is satisfied since it is assumed that

every stratum is dominant over Y . This finishes the second proof of Theorem 2.
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3.6. Remark. We say that a bi-filtered complex (K;F,G) is bi-strict (see [Sa1,

1.2.2]) if we have the injectivity of the morphisms

HiFpK ↪→ HiK, HiGqK ↪→ HiK, HiFpGqK ↪→ HiK,

together with

HiFpK ∩HiGqK = HiFpGqK in HiK.

By [Sa1, Proposition 1.2.13], we then get the commutativity of the three functors

Hi, GrFp , GrGq .

In fact, let E be the filtration on Ki defined by

E−1K
i = 0, E0K

i = Im di−1, E1K
i = Ker di, E2K

i = Ki.

By [Sa1, Proposition 1.2.3(iii)], the bi-strictness of (K;F,G) is equivalent to the

condition that E,F,G on each Ki are compatible three filtrations in the sense of

[Sa1, 1.1.13].

If GqK = 0 (q � 0) and G is exhaustive, then the bi-strictness of (K;F,G)

is equivalent to the condition that (K,G) and the GrGq (K,F ) are strict (see [Sa1,

Corollary 1.2.10]). However, this does not apply to the case of the filtration V , and

we have to use the completion as in [Sa1, Lemma 3.3.2]. Note that the completion

by V is essentially the y-adic completion by condition (3.2.1) above.

§4. Proof of Theorem 3

In this section we give a simple proof of Theorem 3 by using [CK], [CKS], [Sch],

[Zu] (without using mixed Hodge modules). Here we use analytic sheaves.

4.1. Deligne extensions. Let S be a polydisk with coordinates t1, . . . , tn. Set

E :=
n⋃
j=1

{tj = 0}.

Let L be a C-local system on U := S \E with unipotent monodromies. Let M be

the Deligne extension [De1] of OU ⊗CL. Let (ui) be a basis of multivalued sections

of L. Then it corresponds to a basis (ũi) of M such that

(4.1.1) ũi|U = exp
(
−
∑
j

(log tj)Nj

)
ui,

where Nj = (2πi)−1 log Tj with Tj the monodromy around {tj = 0} (see [De1] and

also [Kaw2]). This implies that the Deligne extensions are stable by the pull-back

under ramified coverings of polydisks in the unipotent monodromy case.
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Set Z :=
⋂
i≤r{ti = 0} where r ≥ 2. Let π : S′ → S be the blow-up of S

along Z. It has local coordinates x′1, . . . , x
′
n with

π∗ti =

{
x′ix
′
r if i < r,

x′i if i ≥ r.

Substituting this into (4.1.1), we see that π∗M coincides with the Deligne extension

of the pull-back of L (see also the proof of [Kaw2, Proposition 1]).

4.2. Deligne extensions of filtered vector bundles. The above arguments

imply that the Deligne extensions of the underlying filtered vector bundles of

admissible variations of mixed Hodge structure with unipotent local monodromies

are stable by the pull-backs under ramified coverings or blow-ups as above. In fact,

this reduce to (4.1) since two filtrations of a vector bundle coincide if they coincide

on a dense Zariski-open subset. (Note, however, that a vector bundle in this paper

means a locally free sheaf of finite type, and a filtered vector bundle means that

its graded pieces are locally free.)

As a corollary, we get the following (which does not seem to be completely

trivial; see Remark 4.4(i) below).

4.3. Proposition. Let Y be a complex manifold with E a normal crossing di-

visor on it. Let M be an admissible variation of mixed Hodge structure on Y \ E
with unipotent local monodromies around E, which is admissible with respect to

Y . Let (M,F ) be the Deligne extension of the underlying filtered vector bundle

of M to Y . Let g : (∆, 0) → (Y,E) be a morphism from an open disk ∆ such

that g−1(E) = {0}. Then g∗(M,F ) coincides with the Deligne extension of the

pull-back of M by g.

Proof. We may replace Y with a smooth center blow-up of Y as in 4.1-2 (by

factorizing g). Repeating this, we may assume that the curve g(C) is non-singular

near g(0), and moreover there are local coordinates y1, . . . , yn of Y such that we

have locally

E = {y1 = 0}, g(C) =
n⋂
i=2

{yi = 0}.

So the assertion follows in case g is a closed embedding, and is reduced to (4.2)

in case g is a ramified covering over the image. This finishes the proof of Proposi-

tion 4.3.

4.4. Remarks. (i) It does not seem that Proposition 4.3 can be proved trivially

without using, for instance, an embedded desingularization of the image of the

curve as is explained above, since the image has the Puiseux expansion in case

dimY = 2, and it may have many Puiseux pairs.
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We can prove Proposition 4.3 also by calculating the residue of the pull-back of

the logarithmic connection and using the commutativity of the actions of yi∂/∂yi
in the normal crossing case. Here it is also possible to reduce the assertion to

the case of a constant local system of rank 1 by taking the graded pieces of an

appropriate filtration on the local system after restricting it to (∆∗)n ⊂ Y \E, since

the assertion is local on Y . Note that canonical Deligne extensions are stable by

extensions of locally free sheaves endowed with logarithmic integrable connections;

i.e., the middle term of a short exact sequence is a canonical Deligne extension if

the other two terms are, since only the eigenvalues of the residues matter.

(ii) Proposition 4.3 can be extended to the case of a morphism g : (X,D)→
(Y,E) where D,E are normal crossing divisors on smooth varieties X,Y such

that D ⊃ g−1(E). Indeed, it is sufficient to restrict to curves on X intersecting

D at smooth points, since this implies the coincidence outside a subvariety of

codimension 2. The assertion also follows from the second proof of Proposition 4.3

as is explained above.

4.5. Proof of Theorem 3. In this proof, we assume more generally that the

underlying local system of M is defined over a subfield A of R. (So A can be Q.)

Since semipositivity is stable by extensions of locally free sheaves on Y , we may

assume that the admissible variation M on the complement of E is pure. In case

dimY = 1, it is reduced to [Zu] by using 4.2 in the ramified covering case.

In the general case we proceed by induction on dimY , and not on the di-

mension of the stratum strictly containing g(C) (where strictly means that the

stratum is the minimal one among the strata containing g(C)). Let g : C → Y be

a morphism from a smooth complete curve. If g(C) is not contained in E, then

the pull-back of the Deligne extension by g coincides with the Deligne extension

of the pull-back of the local system by Proposition 4.3. So the assertion is reduced

to [Zu] as explained above.

We now consider the case g(C) ⊂ E. Let D be the normalization of an irre-

ducible component of E containing g(C). Let ρ : D → Y be the natural morphism.

Set

D′ := D \ ρ−1(SingE).

This is identified with a locally closed subvariety of Y . Take 0 ∈ D′. Let y be a

local defining equation of D′ ⊂ Y at 0. Let U be a sufficiently small open polydisk

around 0 ∈ Y associated with some local coordinate system containing y. Here

we may assume that U ∩ ρ(D) coincides with U ∩ D′. Set U ′ := U \ D′. This

is a product of a polydisk and a punctured disk. Set Y ′ := Y \ E. Let L be the

underlying A-local system of the variation of Hodge structure on Y ′. A multivalued

horizontal section u of LU ′ defines a holomorphic local section ũ ofMU as in (4.1.1),
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i.e.,

(4.5.1) ũ|U ′ = exp(−(log y)N)u,

where N := (2πi)−1 log T with T the local monodromy of L around D′. (Note that

(2πi)−1 corresponds to the Tate twist; see [De2].) This induces an injection

(4.5.2) ψyLU ′ ↪→MU∩D′ ,

giving an A-structure on MU∩D′ . Here ψy is the nearby cycle functor, and MU∩D′

denotes the restriction of M to U ∩ D′ as a locally free sheaf (i.e., as a vec-

tor bundle). Moreover this is compatible with the induced connection on MU∩D′

(which may depend on the choice of the local coordinate y). We also have the

induced polarization

(4.5.3) ψyLU ′ ⊗A ψyLU ′ → A(−w),

by a polarization of the variation of Hodge structure L⊗A L→ A(−w), where w

is the weight of the variation of Hodge structure.

By (4.5.1) the action of N on the left-hand side of (4.5.2) corresponds to

θy := −y∂/∂y on the right-hand side. (Here ∂/∂y may depend on the coordinate

system containing y although it is not clear from the notation.) Moreover the

action of θy on MU∩D′ coincides with the residue of the logarithmic connection up

to a sign, and is independent of the choice of the coordinates. So it will be denoted

also by N .

Let W be the finite increasing filtration on ψyLU ′ and MU∩D′ satisfying

(4.5.4)
N(WkψyLU ′) ⊂Wk−2ψyLU ′ (k ∈ Z),

Nk : GrWw+k ψyLU ′
∼−→ (GrWw−k ψyLU ′)(−k) (k > 0),

and similarly with ψyLU ′ replaced by MU∩D′ . These are compatible with the

inclusion (4.5.2). The induced polarization (4.5.3) gives a perfect pairing

GrWw+k ψyLU ′ ⊗GrWw−k ψyLU ′ → A(−w).

Combined with the isomorphism in (4.5.4), this induces a polarization on the

N -primitive part

PN GrWw+k ψyLU ′ := KerNk+1 ⊂ GrWw+k ψyLU ′ .

We thus get an A-structure together with the induced polarization on the N -prim-

itive part

PN GrWw+kMU∩D′ := KerNk+1 ⊂ GrWw+kMU∩D′ .

(Here PN GrWw+k ψyLU ′ = PN GrWw+kMU∩D′ = 0 for k < 0.)
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We can show that the A-structure and polarization on PN GrWw+kMU∩D′ are

independent of the choice of y by the same argument as in [St, 4.24]. (Indeed,

this easily follows from (4.5.1) since the action of N on the graded pieces of W

vanishes.) So they exist globally on D′. By the Lefschetz decomposition

(4.5.5) GrWk MU∩D′ =
⊕
j≥0

N j(PN GrWk+2jMU∩D′),

these give a canonical A-structure together with a global polarization on

GrWk (M,F )D′ in a compatible way with the induced connection on GrWk MD′ . Here

the latter is also well-defined since the action of N on GrWk MD′ vanishes. They

form a variation of polarized Hodge structure on D′ by [Sch], as is well-known.

Moreover, by the multi-variable SL2-orbit theorem, (MD′ ;F,W ) locally underlies

an admissible variation of mixed Hodge structure with respect to the compactifi-

cation D ⊃ D′ by taking local coordinates compatible with E (see [CK], [CKS]).

Here (M,F )D := ρ∗(M,F ) is the Deligne extension of (M,F )D′ since this holds by

forgetting F . Then GrWk (M,F )D is the Deligne extension of GrWk (M,F )D′ where

W on MD is defined by using the Deligne extension (see Remark 4.6(i) below).

So we can proceed by induction on dimY , replacing Y with D, and (M,F ) with

GrWk (M,F )D. This finishes the proof of Theorem 3.

4.6. Remarks. (i) In the above proof, the key point is the following:

(4.6.1) GrpF GrWk MD are locally free for any p, k.

This is one of the conditions for admissible variation of mixed Hodge structure in

the curve case (see [SZ]), and follows from the multi-variable SL2-orbit theorem

[CKS]. Without this property, it is not clear whether the Deligne extension of

the Hodge filtration is compatible with the passage to the graded pieces of the

weight filtration W . The last property is essential for the inductive argument in

the proof of Theorem 3. This is also the most non-trivial point in the proof of

[Kaw1, Theorem 5].

(ii) Only a sketch of the proof was provided for the case of strata with codi-

mension 1 or 2 in [Kaw1], where the structure of the induction is not very clear:

If one uses induction on dimY , then the classification by the dimension of the

stratum strictly containing the image of the curve g(C) is unnecessary, and it is

enough to consider only the two cases: g(C) ⊂ E or not. If one uses induction on

the dimension of the stratum strictly containing the image of the curve, then we

have to treat the higher codimensional case where the argument becomes much

more complicated. (In fact, this is closely related to the proof of the theorem that

admissible variations of mixed Hodge structures are mixed Hodge modules in [Sa2,

3.c], where the compatibility between the induced dualities of the nearby cycles



Some Remarks on the Semipositivity Theorems 109

for constructible sheaves and for filtered D-modules is proved in a more general

situation.)

Another minor problem in the proof of [Kaw1, Theorem 5] is that the defini-

tion of the induced polarization on the graded pieces of the weight filtration was

not very precise. In fact, we have to use a local coordinate for this, and then prove

the independence from the choice of the coordinate as is well-known. A similar re-

mark applies to the A-structure of the variation. (It is possible, however, to avoid

the use of the local coordinate for the construction of the A-structure in the proof

of Theorem 3, if one uses the Lefschetz decomposition (4.5.5) together with the

fact that N is globally well-defined on MD′ . Indeed, we have

GrWw−k(KerN) = Nk(PN GrWw+kMD′) ⊂ GrWw−kMD′ ,

and there is a well-defined A-structure on the left-hand side given by

GrWw−k(i′∗j′∗L), where i : D′ ↪→ Y and j′ : Y \ E ↪→ Y are natural inclusions.

It seems that we have to use the coordinate y for the proof of the compatibility

between the dualities of local systems and filtered vector bundles via (4.5.1).)

(iii) It is possible to prove Theorem 3 without showing that the A-structure

and the polarization are independent of the choice of a local coordinate if one uses

a Zariski-local defining function of the divisor ρ(D) ⊂ Y . Indeed, take a function

on a Zariski-open subset V of Y which defines ρ(D) ∩ V in V . We then get an

A-structure and a polarization on GrWk (M,F )|D′∩V by the same argument as in

the proof. We can show that they naturally extend over D′ by using [Sch] for the

non-degenerate degeneration case (i.e., Ni = 0 for any i). Here the A-local system

extends since the associated C-local system does by the compatibility with the

induced connection on GrWk MD′ . (It is also possible to replace (Y,E) by using

Remark 4.4(ii).)

(iv) There is a notion of a mixed Hodge module of geometric origin. This can

be obtained by applying the standard cohomological functors Hif∗, H
if!, H

if∗,

Hif !, D, �, etc., to Ah,pt, and taking direct sums and subquotients in the category

of mixed Hodge modules. One can show that each graded piece of a mixed Hodge

module of geometric origin on Y is isomorphic to a direct sum of direct factors of

certain cohomological direct images of the constant sheaves Ah,Xj
under projective

morphisms fj : Xj → Y where the Xj are smooth. (This follows, for instance, from

[Sa6, Proposition 7.2] together with the calculation of the vanishing cycles with

unipotent monodromy in the normal crossing case [Sa1] which gives the direct

factors appearing in the decomposition theorem.) Using this, one can show that

the restriction to a curve of a pure Hodge module of geometric origin can also be

written in a similar way. (Here it seems also possible to proceed by induction on

dimY assuming that the inverse image of a Zariski-open subset of each irreducible
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component of E ⊂ Y is a relatively simple normal crossing divisor over the image.)

This may be used to reduce the semipositivity theorem for admissible variations

of mixed Hodge structure of geometric origin to [Ft]. (Note that we can decrease

the degree i of the higher direct image Rif∗ωX/Y as in [Ko2, Corollary 2.24].)

(v) It is easy to see that Theorem 3 does not hold without the assumption on

the unipotence of the local monodromies as is remarked in [FF]. (In fact, let Y be

a P1-bundle over P1 having two disjoint sections with self-intersection numbers 2

and −2. Take the direct image of the constant sheaf under a double covering

f : X → Y which is ramified only along the two sections.)

4.7. Remark. The main theorems in this paper are also valid in the analytic case

where f : X → Y is a proper Kähler morphism, Y is a complex manifold, and

(X,D) is a reduced simple normal crossing analytic pair. The latter means that

(X,D) is locally isomorphic to (X ′, X ′ ∩ D′) with X ′, D′ reduced divisors on a

complex manifold having no common irreducible components and such that their

union is a normal crossing divisor, and moreover the global irreducible components

of X,D are smooth. As for the Kähler condition, it is enough to assume that each

global irreducible component of X is Kähler (or more generally, for each global

irreducible component of X, there is a second cohomology class with R-coefficients

which is represented locally over Y by a Kähler form).

Since Theorem 1 concerns only the dualizing sheaf and the first non-zero piece

of the Hodge filtration of a mixed Hodge module on X, the assertion is essentially

local on X by using the canonical isomorphism between the two sheaves defined

on the smooth part of X. (In fact, this generic isomorphism is uniquely extended

to an isomorphism of the whole sheaves by the calculation of extension groups

in 1.3.) Then Theorems 2 and 3 and Corollaries 1 and 2 hold where Y is assumed

compact in Theorem 3 and Corollary 2. We use [Sa3, Theorem 0.5] for the direct

images of the constant sheaves by proper Kähler morphisms. (Note that its proof

does not use [Sa3, (0.10)]).
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102 (1983), 243–267. Zbl 0528.32007 MR 0737934

[Na] N. Nakayama, Hodge filtrations and the higher direct images of canonical sheaves, Invent.
Math. 85 (1986), 217–221. Zbl 0592.14006 MR 0842055

[Sa1] M. Saito, Modules de Hodge polarisables, Publ. RIMS Kyoto Univ. 24 (1988), 849–995.
Zbl 0691.14007 MR 1000123

[Sa2] , Mixed Hodge modules, Publ. RIMS Kyoto Univ. 26 (1990), 221–333.
Zbl 0727.14004 MR 1047415

[Sa3] , Decomposition theorem for proper Kähler morphisms, Tohoku Math. J. (2) 42
(1990), 127–147. Zbl 0699.14009 MR 1053945

[Sa4] , On Kollár’s conjecture, in Several complex variables and complex geometry
(Santa Cruz, 1989), Proc. Sympos. Pure Math. 52, Part 2, Amer. Math. Soc., Providence,
RI, 1991, 509–517. Zbl 0776.14001 MR 1128566

[Sa5] , Mixed Hodge complexes on algebraic varieties, Math. Ann. 316 (2000), 283–331.
Zbl 0976.14011 MR 1741272

[Sa6] , On the formalism of mixed sheaves, arXiv:math/0611597.

[Sch] W. Schmid, Variation of Hodge structure: the singularities of the period mapping, Invent.
Math. 22 (1973), 211–319. Zbl 0278.14003 MR 0382272

[St] J. H. M. Steenbrink, Limits of Hodge structures, Invent. Math. 31 (1975/76), 229–257.
Zbl 0303.14002 MR 0429885

[SZ] J. H. M. Steenbrink and S. Zucker, Variation of mixed Hodge structure, I, Invent. Math.
80 (1985), 489–542. Zbl 0626.14007 MR 0791673

[Zu] S. Zucker, Remarks on a theorem of Fujita, J. Math. Soc. Japan 34 (1982), 47–54.
Zbl 0503.14002 MR 0639804

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0605.14014&format=complete
http://www.ams.org/mathscinet-getitem?mr=0847955
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0659.14024&format=complete
http://www.ams.org/mathscinet-getitem?mr=0946244
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0684.14002&format=complete
http://www.ams.org/mathscinet-getitem?mr=1064874
http://www.ams.org/mathscinet-getitem?mr=2359346
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1218.14021&format=complete
http://www.ams.org/mathscinet-getitem?mr=2784747
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0528.32007&format=complete
http://www.ams.org/mathscinet-getitem?mr=0737934
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0592.14006&format=complete
http://www.ams.org/mathscinet-getitem?mr=0842055
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0691.14007&format=complete
http://www.ams.org/mathscinet-getitem?mr=1000123
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0727.14004&format=complete
http://www.ams.org/mathscinet-getitem?mr=1047415
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0699.14009&format=complete
http://www.ams.org/mathscinet-getitem?mr=1053945
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0776.14001&format=complete
http://www.ams.org/mathscinet-getitem?mr=1128566
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0976.14011&format=complete
http://www.ams.org/mathscinet-getitem?mr=1741272
http://arxiv.org/abs/math/0611597
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0278.14003&format=complete
http://www.ams.org/mathscinet-getitem?mr=0382272
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0303.14002&format=complete
http://www.ams.org/mathscinet-getitem?mr=0429885
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0626.14007&format=complete
http://www.ams.org/mathscinet-getitem?mr=0791673
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0503.14002&format=complete
http://www.ams.org/mathscinet-getitem?mr=0639804

	Dualizing sheaves and mixed Hodge modules
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	References

