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On the Ampleness of Positive CR Line Bundles
over Levi-flat Manifolds

by

Masanori Adachi

Abstract

We give an example of a compact Levi-flat CR 3-manifold with a positive-along-leaves
CR line bundle which is not ample with respect to transversely infinitely differentiable
CR sections. This example shows that we cannot improve the regularity of the Kodaira
type embedding theorem for compact Levi-flat CR manifolds obtained by Ohsawa and
Sibony.
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§1. Introduction

We are going to study function theory on Levi-flat CR 3-manifolds, i.e., 3-manifolds

foliated by Riemann surfaces. If we view them as families of Riemann surfaces,

we can expect analogy with classical theory of Riemann surfaces, such as the

Riemann–Roch theorem. But there is a new ingredient: dynamics of the foliation.

We should face a subtle interaction between complexity of Levi foliations and exis-

tence of CR functions; and especially in the case where the Levi-flat CR 3-manifold

is realized as a real hypersurface in a complex surface, it should be reflected in

pseudoconvexity of the complement and complex geometry of the ambient space.

There are several attempts in this direction. We refer the reader to the works of

Inaba [12] and Barrett [1].

We investigate such a phenomenon in a problem relating to an analogue of

Kodaira’s embedding theorem. Ohsawa and Sibony proved the following Kodaira

type embedding theorem.
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Theorem ([17, Theorem 3], refined in [15]). Let M be a compact C∞ Levi-flat

CR manifold equipped with a C∞ CR line bundle L. Suppose L is positive along

leaves, i.e., there exists a C∞ hermitian metric on L such that the restriction

of the curvature form to each leaf is everywhere positive definite. Then, for any

κ ∈ N, L is Cκ-ample, i.e., there exists n0 ∈ N such that one can find CR sections

s0, . . . , sN of L⊗n, of class Cκ, for any n ≥ n0, such that the ratio (s0 : · · · : sN )

embeds M into CPN .

We can make the regularity κ ∈ N arbitrarily large, although we need to take

n0 sufficiently large. A natural question is whether we can improve the regularity

to κ =∞. The answer is no, in general, as the following case-study tells us.

Main Theorem. Let Σ be a compact Riemann surface, and D a holomorphic

disc bundle over Σ. Denote its associated compact C∞ Levi-flat CR manifold by

M = ∂D in the associated flat ruled surface π : X → Σ. Take a positive line

bundle L over Σ. Suppose that D has a unique non-±holomorphic harmonic sec-

tion h with rankR dh = 2 on an open dense set. Then π∗L|M is positive along

leaves, but never C∞ ample.

We can easily see that the pull-back bundle π∗L|M is positive along leaves.

Thus, this theorem states non-C∞-ampleness of such CR line bundles.

The assumption is fulfilled for the following explicit example (Example 3.2):

Let Σ be a compact Riemann surface of genus ≥ 2. Fix an identification of a univer-

sal covering Σ̃ ' D and regard π1(Σ) ' Γ < Aut(D) as a Fuchsian representation

of Σ. Take a non-trivial quasiconformal deformation of Γ, say ρ : Γ→ Aut(D). Set

D := Σ̃× D/(z, ζ) ∼ (γz, ρ(γ)ζ) for γ ∈ Γ.

Another research direction related to the analogue of Kodaira’s embedding

theorem is the problem of projective embedding of compact laminations; we can

find a similar phenomenon in the work of Fornæss and Wold [8, Theorem 5.1]

where they study compact C1 hyperbolic laminations. We also refer the reader to

related works by Gromov [10, pp. 401–402], Ghys [9, §7], Deroin [4] and Mart́ınez

Torres [13].

The organization of this paper is as follows. In §2, we introduce basic no-

tions pertaining to Levi-flat CR manifolds. In §3, we recall and refine a clas-

sification result for holomorphic disc bundles with an emphasis on Takeuchi 1-

completeness of certain holomorphic disc bundles. This notion is also known as

log δ-pseudoconvexity [2] or strong Oka property [11], and is of interest from the

viewpoint of confoliation. In §4, we state a Bochner–Hartogs type extension theo-

rem for CR sections. We give a self-contained proof for the reader’s convenience.

In §5, we prove the Main Theorem and pose some further questions.



Ampleness of Positive CR Line Bundles 155

§2. Levi-flat CR manifolds

Let us recall basic notions briefly. For simplicity, we assume that all manifolds and

bundles are at least C∞-smooth.

§2.1. In terms of foliation

A C∞ Levi-flat CR manifold is a triple (M,F , J) where M is a C∞ manifold, F is a

C∞ foliation on M of real codimension one, and J is a C∞ section of End(TF) that

induces a complex structure on each leaf, i.e., J2 = −Id and the set of smooth sec-

tions of T 1,0 := Ker(J− i Id) ⊂ C⊗TF ⊂ C⊗TM is closed under the Lie bracket.

The foliation F is referred to as the Levi foliation of the Levi-flat CR manifold M .

The simplest example, which provides the local structure of Levi-flat CR

manifolds, is M = Cn−1 × R where F is given by its leaves {Cn−1 × {t}}t∈R and

J is induced from the standard complex structure of Cn−1. Any C∞ Levi-flat CR

manifold can be constructed by gluing some open subsets of Cn−1 × R together

using leafwise holomorphic C∞ maps.

We say a function f : M → C is a CR function if it is leafwise holomorphic.

§2.2. In terms of CR geometry

We will investigate Levi-flat CR manifolds in complex manifolds. The terminology

of CR geometry is suitable for this purpose.

A CR manifold (of hypersurface type) is a pair (M,T 1,0) where M is a C∞

manifold of dimension 2n−1, and T 1,0 is a subbundle of C⊗TM of C-rank n−1 that

satisfies T 1,0∩T 1,0 = 0 and the set of smooth sections of T 1,0 is closed under the Lie

bracket. This notion models a real hypersurface M in an n-dimensional complex

manifold (X,JX); for such M we can put T 1,0 := T 1,0X ∩ CTM ' (the maximal

JX -invariant subspace of TM). Moreover, if the real hypersurface M is given by

a C∞ defining function r, i.e., r : M ⊂ U → R with M = {z ∈ U | r(z) = 0} and

dr 6= 0 on M , we have T 1,0 = Ker ∂r ⊂ T 1,0X.

We can redefine a C∞ Levi-flat CR manifold as a C∞ CR manifold (M,T 1,0)

such that the set of smooth sections of T 1,0 +T 1,0 is closed under the Lie bracket.

The Levi foliation F is recovered by integrating the distribution (T 1,0+T 1,0)∩TM .

In the case that M is located in a complex manifold X with defining function r,

M is Levi-flat if and only if the Levi form i∂∂r|T 1,0 is 0 as a quadratic form. This

is the classical definition of Levi-flat real hypersurface.

We say a function f : M → C is a CR function if it is annihilated by all

vectors of T 0,1 := T 1,0. If M = {r = 0} ⊂ X and f is C1, this is equivalent to

saying that ∂f̃ is proportional to ∂r on M where f̃ is any C1 extension of f onto

a neighborhood of M . In particular, the restriction of any holomorphic function
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defined near M is CR. In the Levi-flat case, this definition agrees with the one

given before.

Remark 2.1. Only a few examples are known of compact Levi-flat real hypersur-

faces. For instance, we cannot find such a compact real hypersurface in Cn (n ≥ 2)

since there is a strictly plurisubharmonic function
∑n
i=1 |zi|2, whose restriction to

each Levi leaf gives a strictly subharmonic function, and the maximum principle

forbids this. The same reasoning implies that no compact Levi-flat real hypersur-

face exists in Stein manifolds. A famous still open conjecture is the non-existence

of compact C∞ Levi-flat real hypersurfaces in CP2.

§2.3. CR line bundles

Let L be a C∞ CR line bundle over a Levi-flat CR manifold M , that is, a C∞

C-vector bundle of C-rank 1 that possesses a trivialization cover whose transition

functions are CR. Let h be a C∞ hermitian metric on L. We can find a connection

on L that is equal to the Chern connection on (L|N,h) along any leaf N . We

denote by Θh the curvature 2-form of the restricted connection along TF , that is,

Θh = −∂z∂z log h(z, t) where (z, t) : M ⊃ U → Cn−1×R is any foliated chart. We

say L is positive along leaves if there exists a hermitian metric h on L such that

iΘh(ζ, ζ) > 0 for any non-zero ζ ∈ T 1,0. If M is three-dimensional, the existence

of a positive-along-leaves CR line bundle over M is equivalent to the tautness of

its Levi foliation (cf. [13, Lemma 1]).

§3. Holomorphic disc bundles in flat ruled surfaces

We recall a classification result for holomorphic disc bundles, which are associated

with a standard example of Levi-flat CR 3-manifolds, and supplement some results

about pseudoconvexity of these spaces.

§3.1. Holomorphic disc bundles

We begin by recalling a construction of holomorphic disc bundles. Let Σ be a

compact Riemann surface. A holomorphic fiber bundle over Σ with fiber D :=

{ζ ∈ C | |ζ| < 1} is called a holomorphic disc bundle over Σ. It can be easily

seen that holomorphic trivializations form a flat trivializing cover, i.e., all of the

transition functions are locally constant.

Hence, any holomorphic disc bundle D can be obtained by the suspension

construction: we can find a group homomorphism ρ : π1(Σ) → Aut(D), called a

holonomy homomorphism, giving a bundle isomorphism

D ' Σ×ρ D := Σ̃× D/(z, ζ) ∼ (γz, ρ(γ)ζ) for γ ∈ π1(Σ)

where Σ̃ is a universal covering of Σ. We denote this disc bundle by Dρ.
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The group Aut(D) of biholomorphisms of D consists of all Möbius transfor-

mations preserving D, acting on the Riemann sphere CP1 and fixing the unit circle

∂D. Thus, a holomorphic disc bundle is canonically embedded in its associated flat

ruled surface, say π : Xρ := Σ×ρ CP1 → Σ, and the boundary of Dρ in Xρ, a flat

circle bundle, becomes a compact Cω Levi-flat CR 3-manifold, say Mρ := Σ×ρ ∂D.

Note that Dρ → X \ Dρ, (z, ζ) 7→ (z, 1/ζ), is an anti-biholomorphism, which we

call conjugation.

§3.2. Classification

Now we state a classification result for holomorphic disc bundles by means of

harmonic sections, which is based on the works of Diederich and Ohsawa [5], [6].

Theorem 3.1. Let D be a holomorphic disc bundle over a compact Riemann sur-

face Σ and M its associated Levi-flat CR 3-manifold. Then one of the following

cases occurs:

(i) D admits a unique non-holomorphic harmonic section h with rankR dh = 2

on an open dense set.

(ii) D admits a unique locally non-constant holomorphic section.

(iii) D admits a unique harmonic section h with rankR dh = 1 on an open dense

set.

(iv) M admits one or two locally constant section(s).

(v) D admits a locally constant section.

Here a section is said to be harmonic if it can be lifted to a ρ-equivariant

harmonic map h̃ : Σ̃ → D where D is equipped with the Poincaré metric; and a

section is said to be locally constant if it is locally constant in the (flat) trivializing

coordinates.

Proof of Theorem 3.1. By [5, Theorem 2], there exists either a harmonic section h

of D, or a locally constant section of M . In the latter case, by examining possible

holonomy homomorphisms, we find that there are at most two locally constant

sections, which is case (iv) (cf. [6, Proposition 1.1]).

Now we suppose the former case, the existence of h. By applying a theorem

of Sampson [18, Theorem 3] to the lift of h, we find that rankR dh is constant on

an open dense subset of Σ. If the rank is zero or one, we have case (v) or (iii)

respectively. The remaining case, where the rank is two, is classified into (ii) or (i)

depending on whether h is holomorphic or not.

Example 3.2. We describe examples of each case in terms of the holonomy ho-

momorphism.
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(i) Let Σ be of genus ≥ 2. Fix an identification Σ̃ ' D and regard π1(Σ) '
Γ < Aut(D) as a Fuchsian representation of Σ. Take a non-trivial quasicon-

formal deformation of Γ, say ρ : Γ → Aut(D). Then Dρ is as in case (i). The

unique harmonic section corresponds to the graph of the unique harmonic

diffeomorphism Σ = D/Γ→ D/ρ(Γ).

(ii) Let Σ and Γ be as above, and ρ = Id: Γ → Γ ⊂ Aut(D). Then Dρ is as in

case (ii). Its associated holomorphic section is obtained by the quotient of the

diagonal set ∆ ⊂ Σ̃× D = D× D.

(iii) Let ρ be a homomorphism from π1(Σ) to a subgroup of Aut(D) generated by

hyperbolic elements with a common axis and an elliptic element of order two

which reverses the axis. Then Dρ is as in case (iii). The image of the unique

harmonic section corresponds to the axis.

(iv) Let ρ be a homomorphism from π1(Σ) to an abelian subgroup of Aut(D)

that consists of all parabolic (resp. hyperbolic) elements with common fixed

point(s) on ∂D. Then Dρ is as in case (iv). The locally constant section(s)

correspond(s) to the suspension of the fixed point(s).

(v) Let ρ be a homomorphism from π1(Σ) to an abelian subgroup of Aut(D) that

consists of elliptic elements with a common fixed point in D, which is just

isomorphic to the group of rotations U(1). Then Dρ is as in case (v). The

suspension of the fixed point gives a locally constant section.

Note that for cases (iii)–(v), the descriptions above characterize the cases, respec-

tively.

§3.3. Pseudoconvexity

Dynamical complexity of Levi foliations of flat circle bundles is directly encoded

in their holonomy homomorphisms. On the other hand, it is indirectly reflected

in pseudoconvexity of the holomorphic disc bundles bounded by the flat circle

bundles.

Known facts on the pseudoconvexity of a holomorphic disc bundle, say D,

over a compact Riemann surface are summarized as follows:

• In all cases, D is weakly 1-complete ([5, Theorem 1]).

• In cases (i)–(iv), D is 1-convex; it is in particular Stein if and only if (i), (iii) or

(iv) holds ([1, Theorem 2]).

• In cases (i) and (ii), D is Takeuchi 1-convex ([6, Proposition 1.6]1).

We will give a supplementary result for case (i) using the following notion.

1Its proof seems to contain some errors.
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Definition 3.3 (Takeuchi q-complete space). Let X be a complex manifold of di-

mension n, and D a relatively compact domain in X with C2 boundary. Then D

is said to be Takeuchi q-complete if there exists a C2 defining function r of ∂D

defined on a neighborhood of D = {z | r(z) < 0} such that, with respect to a

hermitian metric on X, at least n−q+1 eigenvalues of the Levi form of − log(−r)
are greater than 1 on the entire D.

This notion originates in the work of Takeuchi [19] who showed that any

proper locally pseudoconvex domain in CPn has this property for q = 1. Although

it has already had other names, log δ-pseudoconvexity in [2], and the strong Oka

condition in [11], we name it again for consistency with the terms like q-convexity

and q-completeness, and Takeuchi q-convexity in [6].

Takeuchi 1-completeness not only implies that the domain is Stein, but also

that it behaves as if it lied in complex Euclidean space:

Theorem 3.4 ([16, Theorem 1.1]). Let D be a Takeuchi 1-complete domain with

defining function r. Then −i∂∂ log(−r) gives a complete Kähler metric on D, and

it follows that −(−r)t0 with sufficiently small t0 > 0 becomes a strictly plurisub-

harmonic bounded exhaustion function on D, i.e., D is hyperconvex.

Remark 3.5. From the viewpoint of confoliation [7, Corollary 1.1.10], we can

translate any question on strong pseudoconvexity of the complement of a Levi-

flat real hypersurface into one on approximation of the Levi foliation by contact

structures. For example, suppose a compact Levi-flat real hypersurface M has a

Takeuchi 1-convex complement with defining function r. For small positive ε, the

level sets {r = −ε} are diffeomorphic to M and possess contact structures induced

from the strictly pseudoconvex CR structures. Thus, the family of level sets defines

a “uniform” contact deformation of the Levi foliation. Here “uniform” means that

convergence to the foliation is exactly of the same order on the entire M .

§3.4. Takeuchi 1-complete case

Proposition 3.6. Let D be a holomorphic disc bundle over a compact Riemann

surface Σ with a uniquely determined non-holomorphic harmonic section h with

rankR dh = 2 on an open dense set. Then D is Takeuchi 1-complete in its associated

ruled surface X.

Proof. Fix a finite open covering {Uν} of Σ giving trivializations of D. Set δ =

maxν supUν
|h| < 1 where the value of h is taken with respect to the trivializing

coordinate over each Uν . It suffices to find a defining function r of ∂D so that

the eigenvalues of the complex Hessian of − log(−r) in each trivializing coordinate
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(z, ζ) : π−1(Uν) → C2 are bounded from below by a positive constant, since we

can easily find a hermitian metric on X that is comparable to i(dzdz + dζdζ) by

the usual “partition of unity” argument.

We will find the desired r in the form r = r0e
−ψ where r0 is the defining

function of ∂D used in [5], and ψ : Σ → R will be determined later. Recall the

original defining function

r0(z, ζ) :=

∣∣∣∣ ζ − h(z)

1− h(z)ζ

∣∣∣∣2 − 1

where (z, ζ) is any trivializing coordinate. It is clearly well-defined since the term

inside the modulus is just a Möbius transformation that maps h(z) to 0 and the

remaining choices of the fiber coordinate are only up to rotations.

Take one of the trivializations, say (z, ζ) : π−1(Uν)→ C2. The Levi form is

i∂∂(− log(−r))

= i∂∂
(
ψ− log(1− |ζ|2)− log(1− |h|2) + 2 Re log(1−hζ)

)
=

(
ψzz + (1− |ζ|2)(|hz|2 + |hz|2) +

|ζ −h|2

1− |h|2
|hz − e2iθ(z,ζ)hz|2

)
i dz ∧ dz

|1−hζ|2(1− |h|2)

−hz
i dz ∧ dζ
(1−hζ)2

−hz
i dζ ∧ dz
(1−hζ)2

+
i dζ ∧ dζ

(1− |ζ|2)2

where θ(z, ζ) := arg(ζ − h)/(1− hζ) and all the values of h and ψ are taken at z.

We can check it by direct computation in three steps:

(i) Fix z0 ∈ U in the trivialization. Choose a temporary trivializing coordinate

(z, ζ\) with h\(z0) = 0.

(ii) Compute the Levi form on the fiber Dz0 in the (z, ζ\) coordinate. Note that

the harmonicity of h yields hzz(z0) = 0.

(iii) Pull back the form to the (z, ζ) coordinate.

Now we are going to estimate the eigenvalues of the complex Hessian. The

trace and determinant of the complex Hessian of − log(−r) are estimated as fol-

lows:

trace of the complex Hessian

=
1

(1− |ζ|2)2
+
ψzz + (1− |ζ|2)(1− |h|2)(|hz|2 + |hz|2) + |ζ − h|2|hz − e2iθhz|2

|1− hζ|2(1− |h|2)2

≤ 1

(1− |ζ|2)2
+
ψzz + (1− |ζ|2)(|hz|2 + |hz|2) + |ζ − h|2|hz − e2iθhz|2

(1− δ)4
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≤ 1

(1− |ζ|2)2
+
ψzz + (1− |ζ|2 + 2|ζ − h|2)(|hz|2 + |hz|2)

(1− δ)4

≤ 1

(1− |ζ|2)2
+
ψzz + 8(|hz|2 + |hz|2)

(1− δ)4

≤ 1

(1− |ζ|2)2
+ sup

U

ψzz + 8(|hz|2 + |hz|2)

(1− δ)4
=:

1

(1− |ζ|2)2
+ C;

determinant of the complex Hessian

=
ψzz

(1− |ζ|2)2
+

1

(1− |ζ|2)2

(
|ζ − h|2|hz − e2iθhz|2

|1− hζ|2(1− |h|2)2

)
+

1

1− |ζ|2

(
|hz|2

|1− hζ|2(1− |h|2)
+

|ζ − h|2|hz|2

|1− hζ|4(1− |h|2)

)
≥ ψzz

(1− |ζ|2)2
+
|ζ − h|2|hz − e2iθhz|2

4(1− |ζ|2)2
+

|hz|2

4(1− |ζ|2)
+
|ζ − h|2|hz|2

16(1− |ζ|2)

≥ ψzz
(1− |ζ|2)2

+
|ζ − h|2(|hz| − |hz|)2 + (1− |ζ|2)|hz|2

4(1− |ζ|2)2

≥ ψzz
(1− |ζ|2)2

+
(|ζ − h|2 + 1− |ζ|2) min{(|hz| − |hz|)2, |hz|2}

4(1− |ζ|2)2

≥ ψzz
(1− |ζ|2)2

+
(1− δ)2 min{(|hz| − |hz|)2, |hz|2}

4(1− |ζ|2)2
.

We will set ψ to have sufficiently small range so that the trace is positive, in which

situation the smaller eigenvalue λ of the complex Hessian of − log(−r) satisfies

λ =
trace

2
−
√

trace

2
− det ≥ det

trace

≥ 1

1 + C

(
ψzz +

(1− δ)2

4
min{|hz|2, (|hz| − |hz|)2}

)
.

Note that this estimate does not depend on ζ, and is sharp in the sense that the

smaller eigenvalue of the complex Hessian of − log(−r0), which corresponds to the

second term in the estimate, actually equals 0 at (z, 0) if hz(z) = 0 and tends to 0

near some points of ∂Dz if |hz(z)| = |hz(z)|, which facts can be deduced from the

explicit formula for the Levi form. This situation leads us to modify r0 with ψ

strictly subharmonic on such locus in Σ.

From Lemma 3.7 below and the assumption on the rank of dh, we can find

a non-empty relatively compact set V ⊂ Σ on which both |hz| and |hz| − |hz|
never vanish. Removing a relatively compact W ⊂ V from Σ, we obtain an open

Riemann surface Σ \W , which carries a strictly subharmonic exhaustion function

ψ0. We extend ψ0|Σ \ V to ψ1 on Σ so that it vanishes on W . We take 0 < c� 1
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for ψ := cψ1 to satisfy, in all the trivializing coordinates, ψzz(1− δ)−4 > −1, and

ψzz +
(1− δ)2

4
min{|hz|2, (|hz| − |hz|)2} > 0 on V .

Using this ψ, we have obtained the desired defining function r.

Lemma 3.7. Let D, Σ, and h be as in Proposition 3.6. Then the zero set of hz
is finite.

Proof. We have the well-defined forms |hz|(1 − |h|2)−1|dz|, |hz|(1 − |h|2)−1|dz|
and Hopf(h) := hzhz(1 − |h|2)−2dz2 on Σ. The harmonicity of h is equivalent to

holomorphicity of Hopf(h), whose zero set consists of 4(genus of Σ) − 4 points.

(Note that the assumption implies that π1(Σ) is non-abelian, thus the genus of Σ

is > 1.) Therefore the zero set of hz is also finite.

Question 1. What about cases (iii) and (iv)? We know an example in which Dρ
is Stein but not Takeuchi 1-complete ([16, Theorem 1.2]).

§4. Bochner–Hartogs type extension theorem

We will state a Bochner–Hartogs type extension theorem for CR sections of finite

regularity, which can be obtained by procedures established in [14], [2] and [3].

Here we give a simple proof for the reader’s convenience.

Theorem 4.1. Let X be a connected compact complex manifold of dimension

n ≥ 2, L a holomorphic line bundle over X, and M a C∞ compact Levi-flat real

hypersurface of X which splits X into two Takeuchi 1-complete domains, D tD′.
Then there exists κ ∈ N such that any Cκ CR section of L|M extends to a holo-

morphic section of L.

Proof. We set

N0 := min


N ∈ N

∣∣∣∣∣∣∣∣∣∣∣

iΘh0
−Ni∂∂(− log(−r)) < 0 on D,

iΘh0
−Ni∂∂(− log(−r′)) < 0 on D′,

h0: hermitian metric of L,

r (resp. r′): defining function of M

which makes D (resp. D′) Takeuchi 1-complete


.

The assumption yields N0 < ∞. Put κ := dn + 1 + N0/2e (≥ 4). Take h0, r, and

r′ to attain the minimum, and fix an arbitrary hermitian metric g0 of X.

We denote by 〈·, ·〉g0,h0
(resp. | · |g0,h0

) the fiber metric (resp. norm) of L ⊗∧
CTX∗ determined by g0 and h0, and write dvolg0 for the volume form on X
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determined by g0. Integration with respect to these metrics is denoted by

〈〈ω, η〉〉g0,h0,D
:=

∫
D

〈ω, η〉g0,h0
dvolg0

and we write ‖ω‖2g0,h0,D
:= 〈ω, ω〉g0,h0,D. We also use the following notation for

function spaces:

• Cκ(p,q)(X,L): the space of L-valued Cκ (p, q)-forms over X.

• Cκ0,(p,q)(D,L): the space of L-valued compactly supported Cκ (p, q)-forms over D.

• L2
(p,q)(D,L; g0, h0): the space of L-valued measurable (p, q)-forms over D whose

‖ · ‖g0,h0,D norm is finite.

We will omit the subscript (p, q) when (p, q) = (0, 0).

The proof is divided into three lemmas.

Lemma 4.2. Let s be a Cκ CR section of L|M . Then we can extend s to s̃ ∈
C2(X,L) so that

(4.1) |∂s̃|0 := |∂s̃|g0,h0
= O(rκ−2) along M,

where r is any C∞ defining function of M .

Proof. First, we extend s to a Cκ section of L, still denoted by s, using a C∞

collaring M×(−ε, ε)→ X of M and a transversal cut-off function with sufficiently

small support. Since s|M is CR, we can find a Cκ−1 section of L|M , say α1, such

that ∂s = α1∂r on M . We extend α1 to a Cκ−1 section of L. Put s1 := s − α1r.

Then |∂s1|0 = |(∂s− α1∂r)− ∂α1r|0 = O(r) because ∂s1 vanishes on M and is of

class Cκ−2.

Suppose we have inductively constructed a Cκ−` extension s` of s with s` =

s − α1r − α2r
2/2 − · · · − α`r`/` and |∂s`|0 = O(r`). Write ∂s` = β`r

` with β` ∈
Cκ−(`+1)
(0,1) (X,L). We obtain 0 = ∂

2
s` = ∂β`r + ∂r ∧ β`. Thus, we can find α`+1 ∈

Cκ−(`+1)(X,L) such that β` = α`+1∂r on M . Putting s`+1 := s`−α`+1r
`+1/(`+1)

gives |∂s`+1|0 = |(β` − α`+1∂r)r
` − ∂α`+1r

`+1|0 = O(r`+1) while β` − α`+1r
` is

differentiable, which holds if κ− (`+ 1) ≥ 1.

Letting s̃ := sκ−2 completes the proof.

We will perform a correction to s̃ to obtain the desired holomorphic extension.

Once we solve the ∂-equation ∂u = ∂s̃ on X in the distribution sense with the

condition u|M = 0, we obtain the desired extension s̃ − u since holomorphic

functions are characterized as weak solutions of the Cauchy–Riemann equation.
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By Theorem 3.4, i∂∂(− log(−r)) defines a complete Kähler metric g on D,

which blows up with rate O(r−2) along M . Consider the hermitian metric h =

h0r
−N0 on L. The condition (4.1) on s̃ implies

‖∂s̃‖2g,h := ‖∂s̃‖2g,h,D

=

∫
D

|∂s̃|2g,h dvolg =

∫
D

O(r2(κ−2))O(r2)O(r−N0)O(r−2n) <∞,

i.e., ∂s̃ ∈ L2
(0,1)(D,L; g, h). We can solve ∂u = ∂s̃ on D thanks to the following L2

cohomology vanishing theorem.

Lemma 4.3. For any v ∈ L2
(0,1)(D,L; g, h) with ∂v = 0, there exists a solu-

tion u ∈ L2(D,L; g, h) of ∂u = v in the sense that there exists a sequence un ∈
C∞0 (D,L) such that un → u in L2(D,L; g, h) and ∂un → v in L2

(0,1)(D,L; g, h).

Proof. By the standard L2 method of Andreotti–Vesentini, the conclusion follows

from the estimate

‖∂u‖2g,h + ‖∂∗g,hu‖2g,h & ‖u‖2g,h

for u ∈ C∞0,(0,1)(D,L). Here we denote by ∂
∗
g,h the formal adjoint of the operator

∂ : L2(D,L; g, h)→ L2
(0,1)(D,L; g, h). Note that we have used the completeness of

g to obtain the solution not only in the sense of distributions but also in the sense

above.

By the Nakano inequality, we achieve the estimate as follows:

‖∂u‖2g,h + ‖∂∗g,hu‖2g,h & 〈〈[iΘh,Λ]u, u〉〉g,h = −〈〈iΘhu, Lu〉〉g,h

& −min

{
sum of the (n− 1) eigenvalues of iΘh

with respect to g

}
‖u‖2g,h.

The eigenvalues of iΘh with respect to g tend to −N0 near M . It follows that RHS

& ‖u‖2g,h.

Performing the same procedure on D′, we obtain a section u of L|DtD′ with

∂u = ∂s̃ on DtD′ in the sense above. Consider the zero extension of u on X, still

denoted by u. The following lemma completes the proof of Theorem 4.1.

Lemma 4.4. ∂u = ∂s̃ on X in the sense of distribution.

Proof. Let un ∈ C∞0 (D tD′, L) ⊂ C∞(X,L) be the approximation of u found in

Lemma 4.3. Since L2(D,L; g0, h0) ↪→ L2(D,L; g, h) is continuous, we have un → u

in L2(D tD′, L; g0, h0) ' L2(X,L; g0, h0).
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Take a test function φ ∈ C∞(X,L). Denote by ∂
∗
0 the formal adjoint of the

operator ∂ : L2(X,L; g0, h0)→ L2
(0,1)(X,L; g0, h0). Then

〈〈∂u− ∂s̃, φ〉〉g0,h0,X
= 〈〈u, ∂∗0φ〉〉g0,h0,X

− 〈〈∂s̃, φ〉〉g0,h0,X

= lim
n→∞

〈〈un, ∂
∗
0φ〉〉g0,h0,X

− 〈〈∂s̃, φ〉〉g0,h0,X

= lim
n→∞

〈〈un, ∂
∗
0φ〉〉g0,h0,DtD′ − 〈〈∂s̃, φ〉〉g0,h0,DtD′

= lim
n→∞

〈〈∂un − ∂s̃, φ〉〉g0,h0,DtD′ = 0.

Corollary 4.5. Suppose X, L, M , and κ are as in Theorem 4.1. Then all Cκ CR

sections of L|M are automatically of class C∞, and they form a finite-dimensional

vector space.

We will use the following form of Theorem 4.1 in the proof of the Main

Theorem.

Corollary 4.6. Suppose X, L and M are as in Theorem 4.1. Then any C∞ CR

section of L|M extends to a holomorphic section of L.

§5. Proof of the Main Theorem

From Proposition 3.6, D is Takeuchi 1-complete. The harmonic section of X \D is

obtained by conjugating the harmonic section of D. Thus, X \ D is also Takeuchi

1-complete. Hence, Corollary 4.6 implies that for any n ≥ 1, all C∞ CR sections

of (π∗L|M)⊗n extend to holomorphic sections of (π∗L)⊗n.

On the other hand, π∗ : H0(Σ, L⊗n) → H0(X, (π∗L)⊗n) gives an isomor-

phism. We can give a trivializing cover of (π∗L)⊗n by pulling back that of L, and

the sections should be constant along any fiber π−1(p) ' CP1 in these trivializa-

tions. Hence it is impossible for the sections in H0(X, (π∗L)⊗n) to separate points

in the same fiber for any n. Therefore, we cannot make a projective embedding by

any ratio of those sections.

We conclude this paper with further questions.

Question 2. Can one prove the Main Theorem intrinsically, i.e., without consid-

ering the natural Stein filling?

Question 3. Let M be a compact Levi-flat CR manifold, and L a CR line bundle

over M . We define the threshold regularity κ(M,L) to be the minimal κ ∈ N∪{∞},
if exists, so that the Cκ CR sections of L form a finite-dimensional vector space. In

the situation illustrated in the Main Theorem, the proof of Theorem 4.1 indicates
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that κ(M, (π∗L|M)⊗n) is well-defined and κ(M, (π∗L|M)⊗n) = O(n) as n → ∞.

On the other hand, Ohsawa–Sibony’s projective embedding theorem implies that

κ(M, (π∗L|M)⊗n) → ∞ as n → ∞. Can we read off any dynamical property of

the Levi foliation from the asymptotic behavior of κ(M, (π∗L|M)⊗n)?
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