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Motivic Milnor Fibers and Jordan Normal Forms
of Milnor Monodromies

by

Yutaka Matsui and Kiyoshi Takeuchi

Abstract

By calculating the equivariant mixed Hodge numbers of motivic Milnor fibers introduced
by Denef–Loeser, we obtain explicit formulas for the Jordan normal forms of Milnor mon-
odromies. The numbers of the Jordan blocks will be described by the Newton polyhedron
of the polynomial.
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§1. Introduction

In this paper, by using motivic Milnor fibers introduced by Denef–Loeser [4], [5],

we obtain explicit formulas for the Jordan normal forms of Milnor monodromies.

Let f(x) =
∑
v∈Zn+

avx
v ∈ C[x1, . . . , xn] be a polynomial on Cn such that the

hypersurface f−1(0) = {x ∈ Cn | f(x) = 0} has an isolated singular point at

0 ∈ Cn. Then by a fundamental theorem of Milnor [18], the Milnor fiber F0 of f

at 0 ∈ Cn has the homotopy type of a bouquet of (n − 1)-spheres. In particular,

we have Hj(F0;C) ' 0 (j 6= 0, n− 1). Denote by

Φn−1,0 : Hn−1(F0;C)
∼−→ Hn−1(F0;C)

the (n − 1)-th Milnor monodromy of f at 0 ∈ Cn. By the theory of monodromy

zeta functions due to A’Campo [1], Varchenko [27] and others, the eigenvalues of

Φn−1,0 are fairly well-understood. See Oka’s book [20] for an excellent exposition.
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However to the best of our knowledge, it seems that the Jordan normal form of

Φn−1,0 is not fully understood yet. In this paper, we give a combinatorial descrip-

tion of the Jordan normal form of Φn−1,0 by using motivic Milnor fibers (for a

computer algorithm via Brieskorn lattices, see e.g. Schulze [24]) in the case where

f is convenient and non-degenerate at 0 ∈ Cn (see Definitions 4.1 and 4.2).

From now on, let us assume also that f is convenient and non-degenerate at

0 ∈ Cn. Note that the second condition is satisfied by generic polynomials f , if

the Newton polyhedron is fixed. Then we can describe the Jordan normal form of

Φn−1,0 very explicitly as follows. We call the convex hull of
⋃
v∈supp(f){v + Rn+}

in Rn+ the Newton polyhedron of f and denote it by Γ+(f). Let q1, . . . , ql (resp.

γ1, . . . , γl′) be the 0-dimensional (resp. 1-dimensional) faces of Γ+(f) such that

qi ∈ Int(Rn+) (resp. the relative interior rel.int(γi) of γi is contained in Int(Rn+)).

For each qi (resp. γi), denote by di > 0 (resp. ei > 0) its lattice distance dist(qi, 0)

(resp. dist(γi, 0)) from the origin 0 ∈ Rn. For 1 ≤ i ≤ l′, let ∆i be the convex hull

of {0} t γi in Rn. Then for λ ∈ C \ {1} and 1 ≤ i ≤ l′ such that λei = 1 we set

n(λ)i = ]{v ∈ Zn ∩ rel.int(∆i) | ht(v, γi) = k}
+ ]{v ∈ Zn ∩ rel.int(∆i) | ht(v, γi) = ei − k},

where k is the minimal positive integer satisfying λ = ζkei (ζei := exp(2π
√
−1/ei))

and for v ∈ Zn ∩ rel.int(∆i) we denote by ht(v, γi) the lattice height of v from the

base γi of ∆i. Then in Section 4 we prove the following result. Recall that by the

monodromy theorem the sizes of such Jordan blocks are bounded by n.

Theorem 1.1. Assume that f is convenient and non-degenerate at 0 ∈ Cn. Then

for any λ ∈ C∗ \ {1} we have:

(i) The number of Jordan blocks for the eigenvalue λ with the maximal possible

size n in Φn−1,0 : Hn−1(F0;C)
∼−→ Hn−1(F0;C) is equal to ]{qi | λdi = 1}.

(ii) The number of Jordan blocks for the eigenvalue λ with size n− 1 in Φn−1,0 is

equal to
∑
i:λei=1 n(λ)i.

For the results concerning lower sizes, see Theorem 4.6. Namely the Jordan

blocks for the eigenvalues λ 6= 1 in the monodromy Φn−1,0 are determined by the

lattice distances of the faces of Γ+(f) from the origin 0 ∈ Rn. The monodromy

theorem asserts also that the sizes of the Jordan blocks for the eigenvalue 1 in

Φn−1,0 are bounded by n − 1. In this case, we have the following result. Denote

by Πf the number of lattice points on the 1-skeleton of ∂Γ+(f) ∩ Int(Rn+). For

a compact face γ ≺ Γ+(f), denote by l∗(γ) the number of lattice points on the

relative interior rel.int(γ) of γ.
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Theorem 1.2. In the situation of Theorem 1.1 we have:

(i) (van Doorn–Steenbrink [6]) The number of Jordan blocks for the eigenvalue 1

with the maximal possible size n− 1 in Φn−1,0 is Πf .

(ii) The number of Jordan blocks for the eigenvalue 1 with size n− 2 in Φn−1,0 is

equal to 2
∑
γ l
∗(γ), where γ ranges through the compact faces of Γ+(f) such

that dim γ = 2 and rel.int(γ) ⊂ Int(Rn+). In particular, this number is even.

Note that Theorem 1.2(i) was obtained by van Doorn–Steenbrink [6] us-

ing different methods. Roughly speaking, the nilpotent part for the eigenvalue 1

in the monodromy Φn−1,0 is determined by the convexity of the hypersurface

∂Γ+(f)∩ Int(Rn+). Thus Theorems 1.1 and 1.2 generalize the well-known fact that

the monodromies of quasi-homogeneous polynomials are semisimple. In fact, by

our results in Sections 2 and 4 a general algorithm for computing all the spectral

pairs of the Milnor fiber F0 is obtained. This in particular implies that we can com-

pute the Jordan normal form of Φn−1,0 completely. Note that the spectrum of F0

obtained by Saito [23] and Varchenko–Khovanskĭı [28] is not enough to deduce the

Jordan normal form. Moreover, if any compact face of Γ+(f) is prime (see Defini-

tion 2.9) we obtain also a closed formula for the Jordan normal form. See Section 4

for the details. Combining our results with those in Melle-Hernández–Torrelli–Veys

[17], we can also eliminate some candidate poles of topological zeta functions.

This paper is organized as follows. In Section 2, we introduce some general-

izations of the results of Danilov–Khovanskĭı [3] obtained in [16]. From them we

obtain a general algorithm for computing the equivariant mixed Hodge numbers of

non-degenerate toric hypersurfaces. In Section 3, we recall some basic definitions

and results on motivic Milnor fibers introduced by Denef–Loeser [4], [5]. Then in

Section 4, by rewriting them in terms of the Newton polyhedron Γ+(f) with the help

of the results in Section 2 and [16], we prove various combinatorial formulas for the

Jordan normal form of the Milnor monodromy Φn−1,0. Although our proof for the

eigenvalue 1 in this paper is very different from the one in [16], our results in Section 4

are completely parallel to those for monodromies at infinity obtained in [16]. We

thus find a striking symmetry between local and global. For other Hodge-theoretical

approaches to monodromies at infinity, see e.g. [9], [21] and [22]. Finally, let us men-

tion that in [7] the results of this paper for the other eigenvalues λ 6= 1 have already

been generalized to the monodromies over complete intersection subvarieties in Cn.

§2. Preliminary notions and results

In this section, we recall the results of [16, Section 2] which will be used in this

paper. They are slight generalizations of the results in Danilov–Khovanskĭı [3].
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Definition 2.1. Let g(x) =
∑
v∈Zn avx

v (av ∈ C) be a Laurent polynomial

on (C∗)n.

(i) We call the convex hull of supp(g) := {v ∈ Zn | av 6= 0} ⊂ Zn in Rn the

Newton polytope of g and denote it by NP(g).

(ii) For u ∈ (Rn)∗, we set Γ(g;u) := {v ∈ NP(g) | 〈u, v〉 = minw∈NP(g)〈u,w〉}.
(iii) For u ∈ (Rn)∗, we define the u-part of g by gu(x) :=

∑
v∈Γ(g;u) avx

v.

Definition 2.2 ([11]). Let g be a Laurent polynomial on (C∗)n. Then we say that

the hypersurface Z∗ = {x ∈ (C∗)n | g(x) = 0} of (C∗)n is non-degenerate if for

any u ∈ (Rn)∗ the hypersurface {x ∈ (C∗)n | gu(x) = 0} is smooth and reduced.

In what follows, we fix an element τ = (τ1, . . . , τn) ∈ T := (C∗)n and let g

be a Laurent polynomial on (C∗)n such that Z∗ = {x ∈ (C∗)n | g(x) = 0} is

non-degenerate and invariant by the automorphism lτ : (C∗)n ∼−→
τ×

(C∗)n induced

by multiplication by τ . Set ∆ = NP(g) and for simplicity assume that dim ∆ = n.

Then there exists β ∈ C such that l∗τg = g ◦ lτ = βg. This implies that for any

vertex v of ∆ = NP(g) we have τv = τv1
1 · · · τvnn = β. Moreover by the condition

dim ∆ = n we see that τ1, . . . , τn are roots of unity. For p, q ≥ 0 and k ≥ 0, let

hp,q(Hk
c (Z∗;C)) be the mixed Hodge number of Hk

c (Z∗;C) and set

ep,q(Z∗) =
∑
k

(−1)khp,q(Hk
c (Z∗;C))

as in [3]. The above automorphism of (C∗)n induces a morphism of mixed Hodge

structures l∗τ : Hk
c (Z∗;C)

∼−→ Hk
c (Z∗;C) and hence C-linear automorphisms of the

(p, q)-parts Hk
c (Z∗;C)p,q of Hk

c (Z∗;C). For α ∈ C, let hp,q(Hk
c (Z∗;C))α be the

dimension of the α-eigenspace Hk
c (Z∗;C)p,qα of this automorphism of Hk

c (Z∗;C)p,q

and set

ep,q(Z∗)α =
∑
k

(−1)khp,q(Hk
c (Z∗;C))α.

We call ep,q(Z∗)α the equivariant mixed Hodge numbers of Z∗. Since lrτ = idZ∗ for

some r � 0, these numbers are zero unless α is a root of unity. Obviously,

ep,q(Z∗) =
∑
α∈C

ep,q(Z∗)α, ep,q(Z∗)α = eq,p(Z∗)α.

In this setting, along the lines of Danilov–Khovanskĭı [3] we can give an algorithm

for computing these numbers ep,q(Z∗)α as follows. First of all, as in [3, Section 3]

we have the following result.
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Proposition 2.3 ([16, Proposition 2.6]). For p, q ≥ 0 such that p+ q > n− 1, we

have

ep,q(Z∗)α =

(−1)n+p+1

(
n

p+ 1

)
(α = 1 and p = q),

0 (otherwise)

(we use the convention
(
a
b

)
= 0 (0 ≤ a < b) for binomial coefficients).

For a vertex w of ∆, consider the translated polytope ∆w := ∆−w such that

0 ≺ ∆w and τv = 1 for any vertex v of ∆w. Then for α ∈ C and k ≥ 0 set

l∗(k∆)α = ]{v ∈ Int(k∆w) ∩ Zn | τv = α} ∈ Z+ := Z≥0.

We can easily see that these numbers l∗(k∆)α do not depend on the choice of the

vertex w of ∆. We define a formal power series Pα(∆; t) =
∑
i≥0 ϕα,i(∆)ti by

Pα(∆; t) = (1− t)n+1
{∑
k≥0

l∗(k∆)αt
k
}
.

Then we can easily show that Pα(∆; t) is actually a polynomial as in [3, Section 4.4].

Theorem 2.4 ([16, Theorem 2.7]). In the situation as above, we have

∑
q

ep,q(Z∗)α =

(−1)p+n+1

(
n

p+ 1

)
+ (−1)n+1ϕα,n−p(∆) (α = 1),

(−1)n+1ϕα,n−p(∆) (α 6= 1).

By Proposition 2.3 and Theorem 2.4 we can now calculate the numbers

ep,q(Z∗)α on the non-degenerate hypersurface Z∗ ⊂ (C∗)n for any α ∈ C as in

[3, Section 5.2]. Indeed for a projective toric compactification X of (C∗)n such

that the closure Z∗ of Z∗ in X is smooth, the variety Z∗ is smooth projective and

hence there exists a perfect pairing

Hp,q(Z∗;C)α ×Hn−1−p,n−1−q(Z∗;C)α−1 → C

for any p, q ≥ 0 and α ∈ C∗ (see e.g. [29, Section 5.3.2]). Therefore, we obtain

equalities ep,q(Z∗)α = en−1−p,n−1−q(Z∗)α−1 which are necessary to proceed with

the algorithm in [3, Section 5.2]. We also have the following analogue of [3, Propo-

sition 5.8].

Proposition 2.5 ([16, Proposition 2.8]). For any α ∈ C and p > 0 we have

ep,0(Z∗)α = e0,p(Z∗)α = (−1)n−1
∑
Γ≺∆

dim Γ=p+1

l∗(Γ)α,
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where for a vertex w of Γ we set

l∗(Γ)α = ]{v ∈ Int(Γ− w) ∩ Zn | τv = α}.

The following result is an analogue of [3, Corollary 5.10]. For α ∈ C, denote

by Π(∆)α the number of lattice points v = (v1, . . . , vn) on the 1-skeleton of ∆w =

∆− w such that τv = α, where w is a vertex of ∆.

Proposition 2.6 ([16, Proposition 2.9]). In the situation as above, for any α∈C∗

we have

e0,0(Z∗)α =

{
(−1)n−1(Π(∆)1 − 1) (α = 1),

(−1)n−1Π(∆)α−1 (α 6= 1).

For a vertex w of ∆, we define a closed convex cone Con(∆, w) by Con(∆, w) =

{r · (v − w) | r ∈ R+, v ∈ ∆} ⊂ Rn.

Definition 2.7 ([3]). Let ∆ and ∆′ be two n-dimensional integral polytopes in

(Rn,Zn). We denote by som(∆) (resp. som(∆′)) the set of vertices of ∆ (resp. ∆′).

Then we say that ∆′ majorizes ∆ if there exists a map Ψ: som(∆′) → som(∆)

such that Con(∆,Ψ(w)) ⊂ Con(∆′, w) for any vertex w of ∆′. For a face Γ of ∆′

we define the face Ψ(Γ) of ∆ to be the convex hull of the points {Ψ(w)}w∈som(Γ).

For an integral polytope ∆ in (Rn,Zn), we denote by X∆ the toric variety

associated with the dual fan of ∆ (see e.g. Fulton [8] and Oda [19]). Recall that if

∆′ majorizes ∆ there exists a natural morphism X∆′ → X∆.

Proposition 2.8 ([16, Proposition 2.12]). Let ∆ and Z∗∆ = Z∗ with an action

of lτ be as above. Assume that an n-dimensional integral polytope ∆′ in (Rn,Zn)

majorizes ∆ via the map Ψ: som(∆′) → som(∆). Then for the closure Z∗ of Z∗

in X∆′ we have

(2.1)
∑
q

ep,q(Z∗)1 =
∑

Γ≺∆′

(−1)dim Γ+p+1

{(
dim Γ

p+ 1

)
−
(

bΓ
p+ 1

)}

+
∑

Γ≺∆′

(−1)dim Γ+1

min{bΓ,p}∑
i=0

(
bΓ
i

)
(−1)iϕ1,dim Ψ(Γ)−p+i(Ψ(Γ)),

where for Γ ≺ ∆′ we set bΓ = dim Γ− dim Ψ(Γ).

Definition 2.9. Let ∆ be an n-dimensional integral polytope in (Rn,Zn).

(i) ([3, Section 2.3]) We say that ∆ is prime if for any vertex w of ∆ the cone

Con(∆, w) is generated by a basis of Rn.
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(ii) ([16, Definition 2.10]) We say that ∆ is pseudo-prime if for any 1-dimensional

face γ ≺ ∆ the number of 2-dimensional faces γ′ ≺ ∆ such that γ ≺ γ′ is

n− 1.

By definition, prime polytopes are pseudo-prime. Moreover any face of a

pseudo-prime polytope is again pseudo-prime.

For α ∈ C \ {1} and a face Γ ≺ ∆, set ϕ̃α(Γ) =
∑dim Γ
i=0 ϕα,i(Γ). Then as in [3,

Section 5.5 and Theorem 5.6] we obtain the following result.

Proposition 2.10 ([16, Corollary 2.15]). Assume that ∆ = NP(g) is pseudo-

prime. Then for any α ∈ C \ {1} and r ≥ 0, we have∑
p+q=r

ep,q(Z∗)α = (−1)n+r
∑
Γ≺∆

dim Γ=r+1

{∑
Γ′≺Γ

(−1)dim Γ′ ϕ̃α(Γ′)
}
.

The following lemma will be used later.

Lemma 2.11. Let γ be a d-dimensional prime polytope. Then for any 0 ≤ p ≤ d
we have

(2.2)
∑
Γ≺γ

(−1)dim Γ

(
dim Γ

p

)
=
∑
Γ≺γ

(−1)d+dim Γ

(
dim Γ

d− p

)
.

Proof. For a polytope ∆, denote the number of j-dimensional faces of ∆ by f∆,j

and set f∆,−1 = 1. Let γ∨ be the dual polytope of γ. Then γ∨ is simplicial and

we have fγ∨,j = fγ,d−1−j for any 0 ≤ j ≤ d. Hence (2.2) follows from the Dehn-

Sommerville equations (see e.g. [25]) for simplicial polytopes.

§3. Motivic Milnor fibers

In [4] and [5] Denef and Loeser introduced motivic Milnor fibers. In this section,

we recall their definition and basic properties. Let f ∈ C[x1, . . . , xn] be a polyno-

mial such that the hypersurface f−1(0) = {x ∈ Cn | f(x) = 0} has an isolated

singular point at 0 ∈ Cn. Then by a fundamental theorem of Milnor [18], for the

Milnor fiber F0 of f at 0 we have Hj(F0;C) ' 0 (j 6= 0, n − 1). Denote by

Φn−1,0 : Hn−1(F0;C)
∼−→ Hn−1(F0;C) the (n − 1)-th Milnor monodromy of f at

0 ∈ Cn. Let π : X → Cn be an embedded resolution of f−1(0) such that π−1(0) and

π−1(f−1(0)) are normal crossing divisors in X. Let D1, . . . , Dm be the irreducible

components of π−1(0) and denote by Z the proper transform of f−1(0) in X. For

1 ≤ i ≤ m denote by ai > 0 the order of the zero of g := f ◦ π along Di. For a

non-empty subset I ⊂ {1, . . . ,m} we set dI = gcd (ai)i∈I > 0, DI =
⋂
i∈I Di and

D◦I = DI \
{(⋃

i/∈I

Di

)
∪ Z

}
⊂ X.
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Moreover we set

Z◦I =
{
DI \

(⋃
i/∈I

Di

)}
∩ Z ⊂ X.

Then, as in [5, Section 3.3], we can construct an unramified Galois covering D̃◦I →
D◦I of D◦I as follows. First, for a point p ∈ D◦I we take an affine open neighborhood

W ⊂ X \{(
⋃
i/∈I Di)∪Z} of p on which there exist regular functions ξi (i ∈ I) such

thatDi∩W = {ξi = 0} for any i ∈ I. Then onW we have g = f◦π = g1,W (g2,W )dI ,

where we set g1,W = g
∏
i∈I ξ

−ai
i and g2,W =

∏
i∈I ξ

ai/dI
i . Note that g1,W is a unit

on W and g2,W : W → C is a regular function. It is easy to see that D◦I is covered

by such affine open subsets W . Then as in [5, Section 3.3] by gluing the varieties

(3.1) D̃◦I,W = {(t, z) ∈ C∗ × (D◦I ∩W ) | tdI = (g1,W )−1(z)}

together as described below, we obtain the variety D̃◦I over D◦I . If W ′ is another

such open subset and g = g1,W ′(g2,W ′)
dI is the decomposition of g on it, we glue

D̃◦I,W and D̃◦I,W ′ together by the morphism (t, z) 7→ (g2,W ′(z)(g2,W )−1(z) · t, z)
defined over W ∩W ′.

Now for d ∈ Z>0, let µd ' Z/Zd be the multiplicative group consisting of

the d-roots in C. We denote by µ̂ the projective limit lim←−d µd of the projective

system {µi}i≥1 with morphisms µid → µi given by t 7→ td. Then the unramified

Galois covering D̃◦I of D◦I admits a natural µdI -action defined by assigning the au-

tomorphism (t, z) 7→ (ζdI t, z) of D̃◦I to the generator ζdI := exp(2π
√
−1/dI) ∈ µdI .

Thus the variety D̃◦I is equipped with a good µ̂-action in the sense of Denef–Loeser

[5, Section 2.4]. Note that also the variety Z◦I is equipped with the trivial good

µ̂-action. Following the notations in [5], denote byMµ̂
C the ring obtained from the

Grothendieck ring Kµ̂
0 (VarC) of varieties over C with good µ̂-actions by inverting

the Lefschetz motive L ' C ∈ Kµ̂
0 (VarC). Recall that L ∈ Kµ̂

0 (VarC) is endowed

with the trivial action of µ̂.

Definition 3.1 (Denef and Loeser [4], [5]). We define the motivic Milnor fiber

Sf,0 ∈Mµ̂
C of f at 0 ∈ Cn by

(3.2) Sf,0 =
∑
I 6=∅

{(1− L)]I−1[D̃◦I ] + (1− L)]I [Z◦I ]} ∈ Mµ̂
C.

As in [5, Sections 3.1.2 and 3.1.3], we denote by HSmon the abelian category

of Hodge structures with a quasi-unipotent endomorphism. Let K0(HSmon) be its

Grothendieck ring. Then as in [5], to the cohomology groups Hj(F0;C) and the

semisimple parts of their monodromy automorphisms, we can naturally associate

an element

[Hf ] ∈ K0(HSmon).
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To describe it in terms of Sf,0 ∈Mµ̂
C, let

χh : Mµ̂
C → K0(HSmon)

be the Hodge characteristic morphism defined in [5] which associates to a variety

Z with a good µd-action the Hodge structure

χh([Z]) =
∑
j∈Z

(−1)j [Hj
c (Z;Q)] ∈ K0(HSmon)

with the action induced by z 7→ exp(2π
√
−1/d)z (z ∈ Z) on Z. Then we have the

following fundamental result.

Theorem 3.2 (Denef–Loeser [4, Theorem 4.2.1]). In the Grothendieck group

K0(HSmon), we have

[Hf ] = χh(Sf,0).

This theorem was proved by using the functoriality of Saito’s mixed Hodge

modules (see e.g. [10, Section 8.3] for a quick review of this subject).

For [Hf ] ∈ K0(HSmon) also the following result due to Steenbrink [26] is

fundamental.

Theorem 3.3 (Steenbrink [26]). In the situation as above, we have:

(i) Let λ ∈ C∗ \ {1}. Then ep,q([Hf ])λ = 0 for (p, q) /∈ [0, n − 1] × [0, n − 1].

Moreover for (p, q) ∈ [0, n− 1]× [0, n− 1] we have

ep,q([Hf ])λ = en−1−q,n−1−p([Hf ])λ.

(ii) We have ep,q([Hf ])1 = 0 for (p, q) /∈ {(0, 0)} t ([1, n − 1] × [1, n − 1]) and

e0,0([Hf ])1 = 1. Moreover for (p, q) ∈ [1, n− 1]× [1, n− 1] we have

ep,q([Hf ])1 = en−q,n−p([Hf ])1.

We can check these symmetries of ep,q([Hf ])λ by calculating χh(Sf,0) ∈
K0(HSmon) explicitly by our methods (see Section 4) in many cases. Since the

weights of [Hf ] ∈ K0(HSmon) are defined by the monodromy filtration, we have

the following result.

Theorem 3.4. In the situation as above, we have:

(i) Let λ ∈ C∗ \ {1} and k ≥ 1. Then the number of Jordan blocks for the eigen-

value λ with sizes ≥ k in Φn−1,0 : Hn−1(F0;C)
∼−→ Hn−1(F0;C) is equal to

(−1)n−1
∑

p+q=n−2+k,n−1+k

ep,q(χh(Sf,0))λ.
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(ii) For k ≥ 1, the number of Jordan blocks for the eigenvalue 1 with sizes ≥ k in

Φn−1,0 is equal to

(−1)n−1
∑

p+q=n−1+k,n+k

ep,q(χh(Sf,0))1.

§4. Jordan normal forms of Milnor monodromies

Our methods in [16] can also be applied to the Jordan normal forms of local Milnor

monodromies. Let f ∈ C[x1, . . . , xn] be a polynomial such that the hypersurface

{x ∈ Cn | f(x) = 0} has an isolated singular point at 0 ∈ Cn.

Definition 4.1. Let f(x) =
∑
v∈Zn+

avx
v ∈ C[x1, . . . , xn] be a polynomial on Cn.

(i) We call the convex hull of
⋃
v∈supp(f){v + Rn+} in Rn+ the Newton polyhedron

of f and denote it by Γ+(f).

(ii) The union of the compact faces of Γ+(f) is called the Newton boundary of f

and denoted by Γf .

(iii) We say that f is convenient if Γ+(f) intersects the positive part of any coor-

dinate axis in Rn.

Definition 4.2 ([11]). We say that a polynomial f(x) =
∑
v∈Zn+

avx
v (av ∈ C) is

non-degenerate at 0 ∈ Cn if for any face γ ≺ Γ+(f) such that γ ⊂ Γf the complex

hypersurface {x ∈ (C∗)n | fγ(x) = 0} in (C∗)n is smooth and reduced, where we

set fγ(x) =
∑
v∈γ∩Zn+

avx
v.

Recall that generic polynomials having a fixed Newton polyhedron are non-

degenerate at 0 ∈ Cn. From now on, we always assume that f =
∑
v∈Zn+

avx
v ∈

C[x1, . . . , xn] is convenient and non-degenerate at 0 ∈ Cn. For each face γ ≺ Γ+(f)

such that γ ⊂ Γf , let dγ > 0 be the lattice distance of γ from the origin 0 ∈ Rn,

and ∆γ the convex hull of {0}tγ in Rn. Let L(∆γ) be the (dim γ+1)-dimensional

linear subspace of Rn spanned by ∆γ and consider the lattice Mγ = Zn∩L(∆γ) '
Zdim γ+1 in it. Then we set T∆γ := Spec(C[Mγ ]) ' (C∗)dim γ+1. Moreover let L(γ)

be the smallest affine linear subspace of Rn containing γ and for v ∈ Mγ define

their lattice heights ht(v, γ) ∈ Z from L(γ) in L(∆γ) so that we have ht(0, γ) =

dγ > 0. Then to the group homomorphism Mγ → C∗ defined by v 7→ ζ
−ht(v,γ)
dγ

we can naturally associate an element τγ ∈ T∆γ
. We define a Laurent polynomial

gγ =
∑
v∈Mγ

bvx
v on T∆γ by

bv =


av (v ∈ γ),

−1 (v = 0),

0 (otherwise).
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Then NP(gγ) = ∆γ , supp(gγ) ⊂ {0} t γ and the hypersurface Z∗∆γ
= {x ∈ T∆γ

|
gγ(x) = 0} is non-degenerate by [16, Proposition 5.3]. Moreover Z∗∆γ

⊂ T∆γ
is

invariant under multiplication lτγ : T∆γ

∼−→ T∆γ
by τγ , and hence we obtain an

element [Z∗∆γ
] of Mµ̂

C. Let L(γ)′ ' Rdim γ be a linear subspace of Rn such that

L(γ) = L(γ)′+w for some w ∈ Zn and set γ′ = γ−w ⊂ L(γ)′. We define a Laurent

polynomial g′γ =
∑
v∈L(γ)′∩Zn b

′
vx
v on T (γ) := Spec(C[L(γ)′ ∩Zn]) ' (C∗)dim γ by

b′v =

{
av+w (v ∈ γ′),
0 (otherwise).

Then NP(g′γ) = γ′ and the hypersurface Z∗γ = {x ∈ T (γ) | g′γ(x) = 0} is non-

degenerate. We define [Z∗γ ] ∈Mµ̂
C to be the class of the variety Z∗γ with the trivial

action of µ̂. Finally let Sγ be the minimal subset S of {1, . . . , n} such that γ ⊂
{(y1, . . . , yn) ∈ Rn | yi = 0 for any i /∈ S} ' R]S and set mγ := ]Sγ−dim γ−1 ≥ 0.

Then as in [16, Theorem 5.7] we obtain the following theorem.

Theorem 4.3. In the situation as above, we have:

(i) In the Grothendieck group K0(HSmon), we have

(4.1) χh(Sf,0) =
∑
γ⊂Γf

χh((1− L)mγ · [Z∗∆γ
]) +

∑
γ⊂Γf

dim γ≥1

χh((1− L)mγ+1 · [Z∗γ ]).

(ii) Let λ ∈ C∗ \ {1} and k ≥ 1. Then the number of Jordan blocks for the

eigenvalue λ with sizes ≥ k in Φn−1,0 : Hn−1(F0;C)
∼−→ Hn−1(F0;C) is equal

to

(−1)n−1
∑

p+q=n−2+k,n−1+k

{∑
γ⊂Γf

ep,q
(
χh((1− L)mγ · [Z∗∆γ

])
)
λ

}
.

(iii) For k ≥ 1, the number of Jordan blocks for the eigenvalue 1 with sizes ≥ k in

Φn−1,0 is equal to

(4.2) (−1)n−1
∑

p+q=n−1+k,n+k

{∑
γ⊂Γf

ep,q
(
χh
(
(1− L)mγ · [Z∗∆γ

]
))

1

+
∑
γ⊂Γf

dim γ≥1

ep,q
(
χh
(
(1− L)mγ+1 · [Z∗γ ]

))
1

}
.

Proof. Since (ii) and (iii) follow from (i) and Theorem 3.4, it suffices to prove (i).

The proof is very similar to the one in Varchenko [27]. Let Σ1 be the dual fan of

Γ+(f) in Rn+ and Σ its smooth subdivision. Denote by XΣ the smooth toric variety

associated to Σ (see e.g. Fulton [8] and Oda [19]). Since the union of the cones in

Σ is Rn+, there exists a proper morphism π : XΣ → Cn. As f is convenient, we can
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construct the smooth fan Σ without subdividing the cones contained in ∂Rn+ (see

[20, Lemma (2.6), Chapter II]). Then π induces an isomorphism XΣ \ π−1(0) '
Cn \ {0}. Moreover by the non-degeneracy at 0 ∈ Cn of f , the proper transform Z

of the hypersurface {x ∈ Cn | f(x) = 0} in XΣ is smooth and intersects T -orbits

in π−1(0) transversally. Let D1, . . . , Dm be the toric divisors in π−1(0) ⊂ XΣ. For

a non-empty subset I ⊂ {1, . . . ,m} we set DI =
⋂
i∈I Di and

D◦I = DI \
{(⋃

i/∈I

Di

)
∪ Z

}
⊂ XΣ

and define its unramified Galois covering D̃◦I as in Section 3. Moreover we set

Z◦I =
{
DI \

(⋃
i/∈I

Di

)}
∩ Z ⊂ XΣ

and denote by [Z◦I ] ∈Mµ̂
C the class of the variety Z◦I with the trivial action. Then,

unlike the global object S∞f in [16], Denef–Loeser’s “local” motivic Milnor fiber

Sf,0 contains not only (1− L)]I−1[D̃◦I ] but also (1− L)]I [Z◦I ] (see Definition 3.1).

These new elements yield the second term in the right hand side of (4.1). Finally,

in the Grothendieck group K0(HSmon) we can rewrite χh(Sf,0) in terms of the

dual fan Σ1 (i.e. in terms of Γ+(f)) as in the proof of [16, Theorem 5.7(i)]. This

completes the proof.

Let q1, . . . , ql (resp. γ1, . . . , γl′) be the 0-dimensional (resp. 1-dimensional)

faces of Γ+(f) such that qi ∈ Int(Rn+) (resp. rel.int(γi) ⊂ Int(Rn+)). Here rel.int(·)
stands for the relative interior. For each qi (resp. γi), denote by di > 0 (resp. ei > 0)

the lattice distance dist(qi, 0) (resp. dist(γi, 0)) of it from the origin 0 ∈ Rn. For

1 ≤ i ≤ l′, let ∆i be the convex hull of {0} t γi in Rn. Then for λ ∈ C \ {1} and

1 ≤ i ≤ l′ such that λei = 1 we set

n(λ)i = ]{v ∈ Zn ∩ rel.int(∆i) | ht(v, γi) = k}
+ ]{v ∈ Zn ∩ rel.int(∆i) | ht(v, γi) = ei − k},

where k is the minimal positive integer satisfying λ = ζkei and for v ∈ Zn ∩
rel.int(∆i) we denote by ht(v, γi) the lattice height of v from the base γi of ∆i. As

in [16, Theorem 5.9], by using Propositions 2.5 and 2.6 and Theorem 4.3(ii), we

obtain the following theorem.

Theorem 4.4. In the situation as above, for λ ∈ C∗ \ {1}, we have:

(i) The number of Jordan blocks for the eigenvalue λ with the maximal possible

size n in Φn−1,0 is equal to ]{qi | λdi = 1}.
(ii) The number of Jordan blocks for the eigenvalue λ with size n− 1 in Φn−1,0 is

equal to
∑
i:λei=1 n(λ)i.
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Note that by Theorem 4.3 and our results in Section 2 we can always calculate

the whole Jordan normal form of Φn−1,0. Now, we shall rewrite Theorem 4.3(ii)

more explicitly in the case where any face γ ≺ Γ+(f) such that γ ⊂ Γf is prime

(see Definition 2.9(i)). Recall that by Proposition 2.3 for λ ∈ C∗ \ {1} and a face

γ ≺ Γ+(f) such that γ ⊂ Γf we have ep,q(Z∗∆γ
)λ = 0 for any p, q ≥ 0 such

that p + q > dim ∆γ − 1 = dim γ. So the non-negative integers r ≥ 0 such that∑
p+q=r e

p,q(Z∗∆γ
)λ 6= 0 are contained in the closed interval [0,dim γ] ⊂ R.

Definition 4.5. For a face γ ≺ Γ+(f) such that γ ⊂ Γf and k ≥ 1, we define a

finite subset Jγ,k ⊂ [0,dim γ] ∩ Z by

Jγ,k = {0 ≤ r ≤ dim γ | n− 2 + k ≡ r mod 2}.

For each r ∈ Jγ,k, set

dk,r =
n− 2 + k − r

2
∈ Z+.

If a face γ ≺ Γ+(f) such that γ ⊂ Γf is prime, then the polytope ∆γ is

pseudo-prime (see Definition 2.9(ii)). Then by Proposition 2.10 for λ ∈ C∗ \ {1}
and an integer r ≥ 0 such that r ∈ [0,dim γ] we have∑

p+q=r

ep,q(χh([Z∗∆γ
]))λ = (−1)dim γ+r+1

∑
Γ≺∆γ

dim Γ=r+1

{∑
Γ′≺Γ

(−1)dim Γ′ ϕ̃λ(Γ′)
}
.

For simplicity, we denote this last integer by e(γ, λ)r. Then by Theorem 4.3(ii) we

obtain the following result.

Theorem 4.6. Assume that any face γ ≺ Γ+(f) such that γ ⊂ Γf is prime. Let

λ ∈ C∗ \ {1} and k ≥ 1. Then the number of Jordan blocks for the eigenvalue λ

with sizes ≥ k in Φn−1,0 : Hn−1(F0;C)
∼−→ Hn−1(F0;C) is equal to

(−1)n−1
∑
γ⊂Γf

{ ∑
r∈Jγ,k

(−1)dk,r
(
mγ

dk,r

)
· e(γ, λ)r

+
∑

r∈Jγ,k+1

(−1)dk+1,r

(
mγ

dk+1,r

)
· e(γ, λ)r

}
,

where we used the convention
(
a
b

)
= 0 (0 ≤ a < b) for binomial coefficients.

By combining the proof of [3, Theorem 5.6] and [16, Proposition 2.14] with

Theorem 4.3(iii), if any face γ ≺ Γ+(f) such that γ ⊂ Γf is prime we can also

describe the Jordan blocks for the eigenvalue 1 in Φn−1,0 by a closed formula.

Since this result is rather involved, we omit it here.
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We can also obtain the corresponding results for the eigenvalue 1 by rewriting

Theorem 4.3(iii) more simply as follows.

Theorem 4.7. In the situation of Theorem 4.3, for k ≥ 1 the number of Jordan

blocks for the eigenvalue 1 with sizes ≥ k in Φn−1,0 is equal to

(−1)n−1
∑

p+q=n−2−k,n−1−k

{∑
γ⊂Γf

ep,q
(
χh((1− L)mγ · [Z∗∆γ

])
)

1

}
.

This theorem will be deduced from Theorem 4.9 below. As in [16, Theorems

5.11 and 5.12], by using Propositions 2.5 and 2.6 and Theorem 4.7, we obtain the

following corollary. Denote by Πf the number of lattice points on the 1-skeleton of

Γf ∩ Int(Rn+). Also, for a compact face γ ≺ Γ+(f) we denote by l∗(γ) the number

of lattice points on rel.int(γ).

Corollary 4.8. In the situation as above, we have:

(i) (van Doorn–Steenbrink [6]) The number of Jordan blocks for the eigenvalue 1

with the maximal possible size n− 1 in Φn−1,0 is Πf .

(ii) The number of Jordan blocks for the eigenvalue 1 with size n− 2 in Φn−1,0 is

equal to 2
∑
γ l
∗(γ), where γ ranges through the compact faces of Γ+(f) such

that dim γ = 2 and rel.int(γ) ⊂ Int(Rn+).

Note that Corollary 4.8(i) was obtained by van Doorn–Steenbrink [6] using

different methods. Theorem 4.7 asserts that by replacing Γ+(f) with the Newton

polyhedron at infinity Γ∞(f) in [13], [15] and [16] the combinatorial description of

the local monodromy Φn−1,0 is the same as that of the global one Φ∞n−1 obtained

in [16, Theorem 5.7(iii)]. Thus we find a beautiful symmetry between local and

global. Theorem 4.7 can be deduced from the following more precise result (use

the symmetry of the numbers on the left hand side of (4.3) with respect to the

line p+ q = n− 2).

Theorem 4.9. In the situation as above, for any 0 ≤ p, q ≤ n− 2 we have

(4.3)
∑
γ⊂Γf

ep,q
(
χh((1− L)mγ [Z∗∆γ

])
)

1

=
∑
γ⊂Γf

ep+1,q+1
(
χh((1− L)mγ [Z∗∆γ

] + (1− L)mγ+1[Z∗γ ])
)

1
.

We can easily see that Theorem 4.9 follows from Proposition 4.10 below. For

[V ] ∈ K0(HSmon), let e([V ])1 =
∑∞
p,q=0 e

p,q([V ])1t
p
1t
q
2 be the generating function

of ep,q([V ])1 as in [3].
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Proposition 4.10. We have∑
γ⊂Γf

e
(
χh
(
(1− L)mγ+1([Z∗∆γ

] + [Z∗γ ])
))

1
= 1− (t1t2)n.

Now, we start proving Proposition 4.10. First, we apply Proposition 2.8 to

the case where ∆ = ∆γ for a face γ of Γ+(f) such that γ ⊂ Γf . Let γ′ be

a prime polytope in Rdim γ which majorizes γ and consider the Minkowski sum

γ′′ := γ+γ′ (resp. 2γ′′ := ∆γ+γ′) in Rdim γ (resp. Rdim γ+1). It is well-known that

any polytope has a prime polytope which majorizes it (see e.g. [2, Remark 8.3],

[3] and [19]). Then 2γ′′ is a (dim γ + 1)-dimensional truncated pyramid whose

top (resp. bottom) is γ′ (resp. γ′′) (see Figure 1 below). In particular, 2γ′′ is

prime. Since the dual fan of γ′′ coincides with that of γ′, the prime polytope γ′′

majorizes γ. Let Ψ: som(γ′′) → som(γ) be the morphism between the sets of the

vertices of γ′′ and γ. By extending Ψ to a morphism Ψ̃: som(2γ′′)→ som(∆γ) as

Ψ̃(w) =

{
Ψ(w) (w ∈ som(γ′′)),

{0} (w ∈ som(γ′)),

we see that the prime polytope 2γ′′ majorizes ∆γ .
0

00�
00

Figure 1

Proposition 4.11. For the closure Z∗∆γ
of Z∗∆γ

in X2γ′′ , we have

∑
q

ep,q(Z∗∆γ
)1 =

∑
τ≺γ′′

(−1)dim τ+p

(
dim τ

p

)
.

Proof. It suffices to rewrite Proposition 2.8 in this case. For a face Γ of 2γ′′ , we

set bΓ = dim Γ − dim Ψ̃(Γ). Note that the set of faces of 2γ′′ consists of those of

γ′ and γ′′ and side faces. Each side face of 2γ′′ is a truncated pyramid 2τ whose

bottom is τ ≺ γ′′. Since dim2τ = dim τ + 1 and b2τ = bτ for τ ≺ γ′′, we have
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∑
Γ≺2γ′′

(−1)dim Γ+p+1

{(
dim Γ

p+ 1

)
−
(

bΓ
p+ 1

)}

=
∑
τ≺γ′

(−1)dim τ+p+1

{(
dim τ

p+ 1

)
−
(

bτ
p+ 1

)}

+
∑
τ≺γ′′

(−1)dim τ+p+1

{(
dim τ

p+ 1

)
−
(

bτ
p+ 1

)}

+
∑
τ≺γ′′

(−1)dim2τ+p+1

{(
dim2τ

p+ 1

)
−
(
b2τ
p+ 1

)}

=
∑
τ≺γ′

(−1)dim τ+p+1

{(
dim τ

p+ 1

)
−
(

dim τ

p+ 1

)}

+
∑
τ≺γ′′

(−1)dim τ+p+1

{(
dim τ

p+ 1

)
−
(

bτ
p+ 1

)}

+
∑
τ≺γ′′

(−1)dim τ+1+p+1

{(
dim τ + 1

p+ 1

)
−
(

bτ
p+ 1

)}

=
∑
τ≺γ′′

(−1)dim τ+p+1

{(
dim τ

p+ 1

)
−
(

dim τ + 1

p+ 1

)}

=
∑
τ≺γ′′

(−1)dim τ+p

(
dim τ

p

)
and similarly we have∑

Γ≺2γ′′

(−1)dim Γ+1

min{bΓ,p}∑
i=0

(
bΓ
i

)
(−1)iϕ1,dim Ψ̃(Γ)−p+i(Ψ̃(Γ))

=
∑
τ≺γ′′

(−1)dim τ+1

min{bτ ,p}∑
i=0

(
bτ
i

)
(−1)i

× {ϕ1,dim Ψ(τ)−p+i(Ψ(τ))− ϕ1,dim Ψ̃(2τ )−p+i(Ψ̃(2τ ))},

where the faces τ of the top γ′ of 2γ′′ are neglected by the condition dim Ψ̃(τ) = 0.

By Ψ̃(2τ ) = ∆Ψ(τ) and Lemma 4.12 below, the last term is equal to 0.

Lemma 4.12. For any face γ of Γ+(f) such that γ ⊂ Γf , we have

(4.4) ϕ1,j+1(∆γ) = ϕ1,j(γ).

Proof. By the relation l∗((k + 1)∆γ)1 − l∗(k∆γ)1 = l∗(kγ)1 (k ≥ 0) we have

P1(∆γ ; t) = tP1(γ; t).

By comparing the coefficients of tj+1 on both sides, we obtain (4.4).
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The following proposition is a key in the proof of Proposition 4.10.

Proposition 4.13. For any face γ of Γ+(f) such that γ ⊂ Γf , we have

e(χh([Z∗∆γ
] + [Z∗γ ]))1 = (t1t2 − 1)dim γ .

Proof. It is enough to prove

(4.5) ep,q(Z∗γ)1 + ep,q(Z∗∆γ
)1 = (−1)dim γ+p

(
dim γ

p

)
· δp,q,

where δp,q is Kronecker’s delta. We consider the closure Z∗∆γ
of Z∗∆γ

in X2γ′′ . Then

by the proofs of Propositions 2.8 and 4.11 (i.e. by the decomposition of the toric

variety X2γ′′ into T -orbits), we have

(4.6) ep,q(Z∗∆γ
)1 =

∑
τ≺γ′′

{ep,q((C∗)bτ × Z∗Ψ(τ))1 + ep,q((C∗)b2τ × Z∗
Ψ̃(2τ )

)1}

=
∑
τ≺γ′′

min{bτ ,p}∑
i=0

(
bτ
i

)
(−1)i+bτ {ep−i,q−i(Z∗Ψ(τ))1 + ep−i,q−i(Z∗∆Ψ(τ)

)1}.

Let us prove (4.5) by induction on dim γ. In the case dim γ = 0, (4.5) follows

easily from Propositions 2.3 and 2.6. Assume that (4.5) holds for any σ ⊂ Γf such

that dimσ < dim γ. Then by bγ′′ = 0 and (4.6) we have

(4.7) ep,q(Z∗∆γ
)1 = ep,q(Z∗γ)1 + ep,q(Z∗∆γ

)1 + δp,q
∑
τ�γ′′

(−1)dim τ+p

(
dim τ

p

)
.

In the case p+ q > dim γ, by Proposition 2.3 we have

ep,q(Z∗∆γ
)1 = δp,q

∑
τ≺γ′′

(−1)dim τ+p

(
dim τ

p

)
.

Therefore, also in the case p+ q < dim γ, by the Poincaré duality for Z∗∆γ
(2γ′′ is

prime) and Lemma 2.11 we have

ep,q(Z∗∆γ
)1 = edim γ−p,dim γ−q(Z∗∆γ

)1 = δp,q
∑
τ≺γ′′

(−1)dim τ+dim γ−p
(

dim τ

dim γ − p

)

= δp,q
∑
τ≺γ′′

(−1)dim τ+p

(
dim τ

p

)
.

In the case p+ q = dim γ, by Proposition 4.11 and the previous results we have

ep,q(Z∗∆γ
)1 =

∑
q′

ep,q
′
(Z∗∆γ

)1 − (1− δp,q)ep,p(Z∗∆γ
)1 = δp,q

∑
τ≺γ′′

(−1)dim τ+p

(
dim τ

p

)
.

By (4.7), we obtain (4.5) for any p, q.
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Now we can finish the proof of Proposition 4.10 as follows. By Proposition

4.13, we have∑
γ⊂Γf

e
(
χh
(
(1− L)mγ+1([Z∗∆γ

] + [Z∗γ ])
))

1
=
∑
γ⊂Γf

(1− t1t2)mγ+1(t1t2 − 1)dim γ

=

n∑
l=1

(1− t1t2)l
∑
]Sγ=l

(−1)dim γ =

n∑
l=1

(1− t1t2)l
(
n

l

)
(−1)l−1 = 1− (t1t2)n.

Remark 4.14. Following the proof of [16, Theorem 5.16], we can easily give an-

other proof of the Steenbrink conjecture which was proved by Varchenko–Khovan-

skĭı [28] and Saito [23] independently. For an introduction to this conjecture, see

an excellent survey by Kulikov [12].

Remark 4.15. For a polynomial map f : Cn → C, it is well-known that there

exists a finite subset B ⊂ C such that the restriction

Cn \ f−1(B)→ C \B

of f is a locally trivial fibration. We denote by Bf the smallest such subset B ⊂ C.

For a point b ∈ Bf , take a small circle Cε(b) = {x ∈ C | |x− b| = ε} (0 < ε � 1)

around b such that Bf ∩ {x ∈ C | |x − b| ≤ ε} = {b}. Then by the restriction of

Cn \ f−1(Bf ) → C \ Bf to Cε(b) ⊂ C \ Bf we obtain a geometric monodromy

automorphism Φbf : f−1(b+ ε)
∼−→ f−1(b+ ε) and the associated linear maps

Φbj : Hj(f−1(b+ ε);C)
∼→ Hj(f−1(b+ ε);C) (j = 0, 1, . . .).

The eigenvalues of Φbj were studied in [15, Sections 3 and 4]. If f is tame at infinity,

as in [16, Section 4] we can introduce a motivic Milnor fiber Sbf ∈ M
µ̂
C along the

central fiber f−1(b) to calculate the numbers of Jordan blocks for the eigenvalues

λ 6= 1 in Φbn−1. This result can be easily obtained by using the proof of Sabbah

[22, Theorem 13.1]. It is an interesting problem to construct a motivic object to

calculate the eigenvalue 1 part of Φbn−1.

References

[1] N. A’Campo, La fonction zêta d’une monodromie, Comment. Math. Helv. 50 (1975), 233–
248. Zbl 0333.14008 MR 0371889

[2] V. I. Danilov, The geometry of toric varieties, Russian Math. Surveys 33 (1978), no. 2,
97–154. Zbl 0425.14013 MR 0495499
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