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Ulam Problem for the Sine Addition Formula in
Hyperfunctions

by
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Abstract

We solve the Ulam problem for the sine addition formula in the spaces of Schwartz distri-
butions and Gelfand hyperfunctions with respect to bounded distributions and bounded
hyperfunctions.
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§1. Introduction

In 1950, Laurent Schwartz introduced the theory of distributions in his monograph

Théorie des distributions [33]. In this book Schwartz systematizes the theory of

generalized functions, basing it on the theory of linear topological spaces, relates

all the earlier approaches, and obtains many important results. After his elegant

theory appeared, many important concepts and results on the classical spaces

of functions have been generalized to the space of distributions. For example,

positive functions and positive-definite functions have been generalized to positive

distributions and positive-definite distributions, respectively, and it was shown that

every positive distribution is a positive measure [22, p. 38] and every positive-

definite distribution is the Fourier transform of a positive measure µ such that∫
(1 + |x|)−p dµ < ∞ for some p ≥ 0 [21, p. 157], which is called the Bochner–

Schwartz theorem and is a natural generalization of the famous Bochner theorem

Communicated by H. Okamoto. Received May 26, 2013. Revised August 22, 2013, and September
21, 2013.

J. Chung: Department of Mathematics, Kunsan National University,
Kunsan 573-701, Republic of Korea;
e-mail: jychung@kunsan.ac.kr
D. Kim: Department of Mathematics, Seoul National University,
Seoul 151-747, Republic of Korea;
e-mail: dhkim@snu.ac.kr

c© 2014 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.



228 J. Chung and D. Kim

stating that every positive-definite function is the Fourier transform of a positive

finite measure. For other examples, the Paley–Wiener theorem has been generalized

to the Paley–Wiener–Schwartz theorem which characterizes the distributions with

bounded supports [22, p. 181].

The main purpose of this paper is to prove the Hyers–Ulam type stability for

the sine functional equation

f(x+ y)− f(x)g(y)− g(x)f(y) = 0

in Schwartz distributions and Gelfand hyperfunctions. The Ulam problem for func-

tional equations goes back to 1940 when S. M. Ulam proposed the following [36]:

Let f be a mapping from a group G1 to a metric group G2 with metric d(·, ·)
such that

d(f(xy), f(x)f(y)) ≤ ε for all x, y ∈ G1.

Then does there exist a group homomorphism h and δε > 0 such that

d(f(x), h(x)) ≤ δε for all x ∈ G1?

This problem was solved affirmatively by D. H. Hyers under the assumption

that G2 is a Banach space (see Hyers [23], Hyers–Isac–Rassias [24]). In 1949–

1951, this result was generalized by T. Aoki [2] and D. G. Bourgin [6, 7]. Since

then Ulam problems for many other functional equations have been investigated

[17–19,25,27–32]. Among the many results obtained, L. Székelyhidi developed an

idea of using invariant subspaces of functions defined on a group or semigroup

in connection with the Ulam problem for sine functional equations [34, 35]. As

a direct consequence of the elegant results of Székelyhidi, it was shown that if

f, g : Rn → C satisfy

|f(x+ y)− f(x)g(y)− g(x)f(y)| ≤M, x, y ∈ Rn,(1.1)

for some M > 0, then either there exist λ1, λ2 ∈ C, not both zero, and N > 0

such that

(1.2) |λ1f(x)− λ2g(x)| ≤ N

for all x ∈ Rn, or else

(1.3) f(x+ y)− f(x)g(y)− g(x)f(y) = 0

for all x, y ∈ Rn. Furthermore, the functions f and g satisfying both (1.1) and

(1.2) were investigated.

As a generalization of (1.1), it is very natural to consider

f(x+ y)− f(x)g(y)− g(x)f(y) ∈ L∞(R2n),(1.4)
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where f and g are Lebesgue measurable functions and L∞(R2n) is the space of

all bounded measurable functions defined in R2n. Note that (1.4) means that

the inequality (1.1) holds almost everywhere. In [8–12], some stability problems

for several functional equations including the condition (1.4) were considered in

various spaces of generalized functions including Schwartz distributions. In [10–12],

for example, replacing f and g by distributions u and v in (1.4) we have considered

the condition

u ◦ S − u⊗ v − v ⊗ u ∈ L∞(R2n),(1.5)

where S(x, y) = x + y, x, y ∈ Rn, and ◦ and ⊗ denote the pullback and the

tensor product of generalized functions, respectively. The condition (1.5) is not

formulated purely in the language of generalized functions because the differences

are assumed to be classical bounded measurable functions; all the previous results

in [10–12] have formulations as in (1.5).

Schwartz [33] generalized the space L∞(Rn) of bounded measurable functions

to the space D′L∞(Rn) of bounded distributions. Taking this into account, it is

natural to consider the following stability condition for the sine functional equation

in distributions and hyperfunctions u, v with respect to bounded distributions and

bounded hyperfunctions:

u ◦ S − u⊗ v − v ⊗ u ∈ D′L∞(R2n) [resp. A′L∞(R2n)],(1.6)

where D′L∞(R2n) and A′L∞(R2n) are the spaces of bounded distributions and

bounded hyperfunctions respectively, and S, ◦, ⊗ are as in (1.5). For some re-

lated results in Schwartz distributions, we refer the reader to [3–5,8,9,22,33]. The

main tools of our proof are based on structure theorems for generalized functions

(see Lemmas 4.3 and 4.4 below) and the heat kernel method initiated by T. Mat-

suzawa [26], which represents generalized functions as initial values of solutions of

the heat equation with appropriate growth conditions [13–16,26] (see Lemmas 4.1

and 4.2). Making use of the heat kernel method we convert (1.6) to the following

classical stability statement: there exist C,N, d > 0 [resp. for every ε > 0 there

exist Cε > 0] such that

(1.7) |ũ(x+ y, t+ s)− ũ(x, t)ṽ(y, s)− ṽ(x, t)ũ(y, s)|

≤ C
(

1

t
+

1

s

)N
+ d [resp. Cεe

ε(1/t+1/s)]

for all x, y ∈ Rn and t, s > 0, where ũ, ṽ : Rn × (0,∞) → C are the solutions

of the heat equation corresponding to u, v respectively, which are introduced in

Section 4. In Section 2, we consider the stability (1.7) and combining this result
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with the heat kernel method we prove the stability (1.6) in Section 4. Also, as

direct consequences of our result we obtain the stability (1.5) and the following

L∞-version of the stability for the sine functional equation:

‖f(x+ y)− f(x)g(y)− g(x)f(y)‖L∞(R2n) ≤ C,(1.8)

where f, g : Rn → C are Lebesgue measurable functions satisfying the following

growth condition: for every ε > 0 there exists Cε > 0 such that

|f(x)| ≤ Cεeε|x|
2

for all x ∈ Rn.

§2. Stability problem in the classical sense

Let f, g : G × (0,∞) → C with 〈G,+〉 an Abelian group. Throughout this paper

N denotes a fixed nonnegative real number. We consider the following stability

statements involving functional inequalities:

There exist C > 0 and d > 0 such that

|f(x+ y, t+ s)− f(x, t)g(y, s)− g(x, t)f(y, s)| ≤ C
(

1

t
+

1

s

)N
+ d(2.1)

for all x, y ∈ G and t, s > 0;

for every ε > 0 there exists Cε > 0 such that

|f(x+ y, t+ s)− f(x, t)g(y, s)− g(x, t)f(y, s)| ≤ Cεeε(1/t+1/s)(2.2)

for all x, y ∈ G and t, s > 0.

From now on, a function A from a semigroup 〈S,+〉 to the field C of complex

numbers is said to be additive if A(x + y) = A(x) + A(y) for all x, y ∈ S, and

m : S → C is said to be an exponential function provided m(x + y) = m(x)m(y)

for all x, y ∈ S.

We introduce the following conditions on f : G× (0,∞)→ C and N :

There exist C > 0 and d > 0 such that

|f(x, t)| ≤ Ct−N + d, ∀x ∈ G, t > 0;
(2.3)

for every ε > 0, there exists Cε > 0 such that

|f(x, t)| ≤ Cεeε/t, ∀x ∈ G, t > 0.
(2.4)
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Lemma 2.1 ([1, p. 212]). All solutions f, g : G × (0,∞) → C of the functional

equation

(2.5) f(x+ y, t+ s)− f(x, t)g(y, s)− g(x, t)f(y, s) = 0, x, y ∈ G, t, s > 0,

are given by one of the following:

(i) f = 0 and g is arbitrary,

(ii) f(x, t) = 1
2λm(x, t) and g(x, t) = 1

2m(x, t), where λ ∈ C and m is a nonzero

exponential function,

(iii) g(x, t) = m(x, t) and f(x, t) = A(x, t)m(x, t), where A is a nonzero additive

function and m is a nonzero exponential function,

(iv) f(x, t) = 1
2λ (m∗(x, t)−m∗∗(x, t)) and g(x, t) = 1

2 (m∗(x, t)+m∗∗(x, t)), where

λ ∈ C and m∗, m∗∗ are nonzero exponential functions.

Using the idea in [24, p. 104] we obtain the following.

Lemma 2.2. Let f, g : G × (0,∞) → C satisfy the following condition for some

N ≥ 0: for each y ∈ G and s > 0 there exist positive constants C = C(y, s) and

d = d(y, s) [resp. for each y ∈ G, s > 0 and ε > 0 there exists a positive constant

Cε = Cε(y, s) ] such that

(2.6) |f(x+ y, t+ s)− f(x, t)g(y, s)| ≤ Ct−N + d [resp. Cεe
ε/t ]

for all x ∈ G and t > 0. Then either f satisfies (2.3) [resp. (2.4)] or g is an

exponential function.

Proof. Suppose that g is not exponential. Then there exist y0, z0∈G and s0, r0>0

such that g(y0 + z0, s0 + r0) 6= g(y0, s0)g(z0, r0). Now, we can write

f(x+ y0 + z0, t+ s0 + r0)− f(x+ y0, t+ s0)g(z0, r0)

= f(x+ y0 + z0, t+ s0 + r0)− f(x, t)g(y0 + z0, s0 + r0)

− g(z0, r0)
(
f(x+ y0, t+ s0)− f(x, t)g(y0, s0)

)
+ f(x, t)

(
g(y0 + z0, s0 + r0)− g(y0, s0)g(z0, r0)

)
,

and hence

f(x, t) =
(
g(y0 + z0, s0 + r0)− g(y0, s0)g(z0, r0)

)−1
(2.7)

×
(
f(x+ y0 + z0, t+ s0 + r0)− f(x+ y0, t+ s0)g(z0, r0)

− f(x+ y0 + z0, t+ s0 + r0) + f(x, t)g(y0 + z0, s0 + r0)

+ g(z0, r0)
(
f(x+ y0, t+ s0)− f(x, t)g(y0, s0)

))
.
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It follows from (2.6) and (2.7) that there exist positive constants C1, C2, C3, d1, d2,

d3, C
′ and d′ [resp. for every ε > 0 there exists a positive constant C ′ε] such that

|f(x, t)| ≤ C1(t+ s0)−N + d1 + C2t
−N + d2 + C3t

−N + d3

≤ C ′t−N + d′ [resp. C ′εe
ε/t ]

for all x ∈ G and t > 0.

Lemma 2.3. Let g : G× (0,∞)→ C be a nonzero exponential function satisfying

(2.3) [resp. (2.4)]. Then g can be written in the form

g(x, t) = m1(x)m2(t),

where m1 is an exponential function on G satisfying |m1(x)| = 1 for all x ∈ G and

m2 is an exponential function on (0,∞) satisfying 0 < |m2(t)| ≤ 1 for all t > 0.

Proof. Assume that g(x0, t0) = 0 for some x0 ∈ G and t0 > 0. Then, for given

x ∈ G and t > 0, choosing a positive integer k such that kt > t0 we have

[g(x, t)]k = g(kx, kt) = g(kx− x0, kt− t0)g(x0, t0) = 0.

Thus, g(x, t) 6= 0 for all x ∈ G and t > 0. Let

m(x, t) = g(x, t)g(0, t)−1.

Then

m(x, t) = g(x, t)g(0, t)−1 = g(x, t+ s)g(0, s)−1g(0, t)−1 = g(x, s)g(0, s)−1

= m(x, s).

Hence, m is independent of t > 0 and we can write m(x, t) =: m1(x). Now,

m1(x+y) = g(x+y, 2t)g(0, 2t)−1 = m(x, t)g(0, t)−1g(y, t)g(0, t)−1 = m1(x)m1(y).

Thus, m1 is an exponential function and we can write

g(x, t) = m1(x)g(0, t) =: m1(x)m2(t),

where m1 is an exponential function on G and m2 is an exponential function on

(0,∞). It follows from (2.3) [resp. (2.4)] that m1 is bounded and m2 satisfies

(2.8) |m2(t)| ≤ Ct−N + d [resp. Cεe
ε/t]

for all t > 0. If there exists x0 ∈ G such that |m1(x0)| > 1 or |m1(x0)| < 1, then

for all integers k we have |m1(kx0)| = |m1(x0)|k → ∞ as k → ∞ or k → −∞.

Thus, |m1(x)| = 1 for all x ∈ G. Similarly, if |m2(t0)| > 1 for some t0 > 0, then for

all integers k we have |m2(kt0)| = |m2(t0)|k → ∞ as k → ∞, which contradicts

the inequality (2.8).
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Lemma 2.4. Let g be a nonzero exponential function satisfying (2.3) [resp. (2.4)].

Suppose that f, g : G× (0,∞)→ C satisfy (2.1) [resp. (2.2)]. Then

g(x, t) = m1(x)m2(t),

f(x, t) = l(x)m1(x)m2(t) + 2f(0, t/2)g(0, t/2)m1(x) +R(x, t),

where m1 and m2 are exponential functions on G and (0,∞) respectively such that

|m1(x)| = 1 for all x ∈ G and 0 < |m2(t)| ≤ 1 for all t > 0, l(x) is an additive

function on G, and R is a function satisfying (2.3) [resp. (2.4)].

Proof. Dividing both sides of (2.1) [resp. (2.2)] by g(x+ y, t+ s), setting h(x, t) =

f(x, t)g(x, t)−1 and using Lemma 2.3 we have

|h(x+ y, t+ s)− h(x, t)− h(y, s)|

≤
(
C

(
1

t
+

1

s

)N
+ d

)
|m1(x)m1(y)m2(t)m2(s)|−1

≤
(
C

(
1

t
+

1

s

)N
+ d

)
|m2(t)m2(s)|−1

[resp. Cεe
ε(1/t+1/s)|m2(t)m2(s)|−1 ]

for all x, y ∈ G and t, s > 0. Thus,

(2.9) |h(x+ y, t+ s)− h(x, t)− h(y, s)| ≤ ψ(t, s)

for all x, y ∈ G and t, s > 0, where

ψ(t, s) =

(
C

(
1

t
+

1

s

)N
+ d

)
|m2(t)m2(s)|−1(2.10)

[resp. Cεe
ε(1/t+1/s)|m2(t)m2(s)|−1].

Replacing s by t and putting y = 0 in (2.9) we obtain

(2.11) |h(x, 2t)− h(x, t)− h(0, t)| ≤ ψ(t, t)

for all x ∈ G and t > 0. Replacing t by s and putting x = 0 in (2.9) we have

(2.12) |h(y, 2s)− h(0, s)− h(y, s)| ≤ ψ(s, s)

for all y ∈ G and s > 0. Using the triangle inequality together with (2.9), (2.11)

and (2.12) we find that

(2.13) |h(x+ y, t+ s)− h(x, 2t)− h(y, 2s) + h(0, t) + h(0, s)|
≤ ψ(t, s) + ψ(t, t) + ψ(s, s)
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for all x, y ∈ G and t, s > 0. Replacing y by x and s by t in (2.13) yields

(2.14) |h(2x, 2t)− 2h(x, 2t) + 2h(0, t)| ≤ 3ψ(t, t)

for all x ∈ G and t > 0. Fixing t > 0, replacing x by 2k−1x in (2.14) and dividing

the result by 2k we have

(2.15) |2−kh(2kx, 2t)− 2−k+1h(2k−1x, 2t) + 2−k+1h(0, t)| ≤ 3 · 2−kψ(t, t)

for all x ∈ G. For given positive integers n,m, putting k = n, n + 1, . . . , n + m

in (2.15), summing up the results and using the triangle inequality, we can see

that An(x, t) := 2−nh(2nx, 2t), n = 1, 2, . . . , is a Cauchy sequence and A(x, t) :=

limn→∞An(x, t) exists. Replacing x, y by 2nx, 2ny respectively in (2.13), dividing

by 2n and letting n→∞ we have

(2.16) A(x+ y, t+ s)−A(x, 2t)−A(y, 2s) = 0

for all x, y ∈ G and t, s > 0. Letting x = y = 0 and replacing t, s by t/2 in (2.16)

we get A(0, t) = 0 for all t > 0. Thus, putting y = 0 in (2.16) we have

(2.17) A(x, 2t) = A(x, t+ s) = A(x, s+ t) = A(x, 2s)

for all x ∈ G and t, s > 0. It follows from (2.17) that A(x, t) is independent of

t > 0 and is an additive function of x ∈ G, which we denote by l(x). Using the

triangle inequality together with (2.15) for k = 1, . . . , n and letting n→∞ gives

(2.18) |l(x)− h(x, 2t) + 2h(0, t)| ≤ 3ψ(t, t)

for all x ∈ G and t > 0. Replacing t by t/2 in (2.18) and multiplying the result by

|g(x, t)| we obtain

|f(x, t)− l(x)g(x, t)− 2f(0, t/2)g(0, t/2)m1(x)|

≤ 3C(4N t−N + d)|m2(t/2)|−2|g(x, t)| = (C ′t−N + d′)|g(0, t)|−1|g(x, t)|
= (C ′t−N + d′)|m1(x)|−1 = C ′t−N + d′ [resp. C ′εe

4ε/t].

Letting R(x, t) := f(x, t)− l(x)g(x, t)− 2f(0, t/2)g(0, t/2)m1(x) we complete the

proof.

Lemma 2.5. Suppose that f, g : G× (0,∞)→ C satisfy (2.1) [resp. (2.2)]. Then

either

(2.19) f(x+ y, t+ s)− f(x, t)g(y, s)− g(x, t)f(y, s) = 0

for all x, y ∈ G and t, s > 0, or else there exist λ1, λ2 ∈ C, not both zero, such that

λ1f(x, t)− λ2g(x, t) satisfies (2.3) [resp. (2.4)].
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Proof. Assume that λ1f(x, t)−λ2g(x, t) satisfies (2.3) [resp. (2.4)] only when λ1 =

λ2 = 0. Now, it suffices to prove that f, g satisfy (2.19). Let

(2.20) F (x, y, t, s) = f(x+ y, t+ s)− f(x, t)g(y, s)− g(x, t)f(y, s).

Choosing y1 and s1 with f(y1, s1) 6= 0 we have

(2.21) g(x, t) = k1f(x, t) + k2f(x+ y1, t+ s1)− k2F (x, y1, t, s1),

where k1 = − g(y1,s1)
f(y1,s1)

and k2 = 1
f(y1,s1)

. From (2.20) and (2.21) we find that

(2.22) f
(
(x+ y) + z, (t+ s) + r)

)
= f(x+y, t+s)g(z, r) +g(x+y, t+s)f(z, r) +F (x+y, z, t+s, r)

= f(x+y, t+s)g(z, r)

+
(
k1f(x+y, t+s) +k2f(x+y+y1, t+s+s1)−k2F (x+y, y1, t+s, s1)

)
f(z, r)

+F (x+y, z, t+s, r)

=
(
f(x, t)g(y, s) +g(x, t)f(y, s) +F (x, y, t, s)

)
g(z, r)

+k1
(
f(x, t)g(y, s) +g(x, t)f(y, s) +F (x, y, t, s)

)
f(z, r)

+k2
(
f(x, t)g(y+y1, s+s1) +g(x, t)f(y+y1, s+s1)

+F (x, y+y1, t, s+s1)−F (x+y, y1, t+s, s1)
)
f(z, r)

+F (x+y, z, t+s, r),

and also

(2.23) f(x+ (y + z), t+ (s+ r))

= f(x, t)g(y + z, s+ r) + g(x, t)f(y + z, s+ r) + F (x, y + z, t, s+ r).

From (2.22) and (2.23) we deduce that

(2.24) f(x, t)
(
g(y, s)g(z, r) + k1g(y, s)f(z, r) + k2g(y + y1, s + s1)f(z, r) − g(y + z, s + r)

)
+ g(x, t)

(
f(y, s)g(z, r) + k1f(y, s)f(z, r) + k2f(y + y1, s + s1)f(z, r) − f(y + z, s + r)

)
= F (x, y + z, t, s + r) − F (x + y, z, t + s, r) − F (x, y, t, s)g(z, r) − k1F (x, y, t, s)f(z, r)

− k2
(
F (x, y + y1, t, s + s1) − F (x + y, y1, t + s, s1)

)
f(z, r).

Fixing y, z, s, r in (2.24), and using (2.1) and (2.20), we find that∣∣F (x, y+ z, t, s+ r)−F (x+y, z, t+ s, r)−F (x, y, t, s)g(z, r)−k1F (x, y, t, s)f(z, r)

− k2
(
F (x, y + y1, t, s+ s1)− F (x+ y, y1, t+ s, s1)

)
f(z, r)

∣∣
≤ 2C

(
1

t
+

1

r

)N
+ 2d+C1

(
1

t
+

1

s

)N
+ d1 +C2

(
1

t
+

1

s 1

)N
+ d2 ≤ C ′t−N + d′,

where C ′ = 2N (2C+C1 +C2), d′ = 2N (2Cr−N +C1s
−N +C2s

−N
1 ) + 2d+d1 +d2.
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Similarly, using (2.2) we find that for every ε > 0 there exists Cε > 0 such that∣∣F (x, y+ z, t, s+ r)−F (x+y, z, t+ s, r)−F (x, y, t, s)g(z, r)−k1F (x, y, t, s)f(z, r)

− k2
(
F (x, y + y1, t, s+ s1)− F (x+ y, y1, t+ s, s1)

)
f(z, r)

∣∣
≤ 2Cεe

ε(1/t+1/r) + C1Cεe
ε(1/t+1/s) + C2Cεe

ε(1/t+1/s1) ≤ C ′εeε/t,

where C ′ε = Cε(2e
ε/r + C1e

ε/s + C2e
ε/s1).

Thus, by the assumption that λ1f(x, t)− λ2g(x, t) satisfies (2.3) [resp. (2.4)]

only when λ1 = λ2 = 0 we have

g(y, s)g(z, r) + k1g(y, s)f(z, r) + k2g(y + y1, s+ s1)f(z, r)− g(y + z, s+ r)

= f(y, s)g(z, r) + k1f(y, s)f(z, r) + k2f(y+ y1, s+ s1)f(z, r)− f(y+ z, s+ r) = 0.

Hence

(2.25) F (x, y + z, t, s+ r)− F (x+ y, z, t+ s, r)

=
(
k1F (x, y, t, s) + k2F (x, y + y1, t, s+ s1)− k2F (x+ y, y1, t+ s, s1)

)
f(z, r)

+ F (x, y, t, s)g(z, r).

Now, if we fix x, y, t, s, the left hand side of (2.25) satisfies (2.3) [resp. (2.4)] as a

function of z and r. From the right hand side of (2.25), using the assumption that

λ1f(x, t) − λ2g(x, t) satisfies (2.3) [resp. (2.4)] only when λ1 = λ2 = 0 it follows

that F ≡ 0.

Theorem 2.6. Let f, g : G × (0,∞) → C satisfy (2.1) [resp. (2.2)]. Then (f, g)

satisfies one of the following:

(i) f = 0 and g is arbitrary,

(ii) both f and g satisfy (2.3) [resp. (2.4)],

(iii) f(x, t) = 1
2λ (m(x, t)−R(x, t)) and g(x, t) = 1

2 (m(x, t)+R(x, t)), where λ ∈ C,

m is a nonzero exponential function and R is a function satisfying (2.3) [resp.

(2.4)].

(iv) we have

g(x, t) = m1(x)m2(t),

f(x, t) = l(x)m1(x)m2(t) + 2f(0, t/2)g(0, t/2)m1(x) +R(x, t),

where m1 and m2 are exponential functions on G and (0,∞) respectively such

that |m1(x)| = 1 for all x ∈ G and 0 < |m2(t)| ≤ 1 for all t > 0, l(x) is an

additive function on G, and R is a function satisfying (2.3) [resp. (2.4)],

(v) g(x, t) = m(x, t) and f(x, t) = A(x, t)m(x, t), where m is a nonzero exponen-

tial function and A is a nonzero additive function,
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(vi) f(x, t) = 1
2λ (m∗(x, t)−m∗∗(x, t)) and g(x, t) = 1

2 (m∗(x, t)+m∗∗(x, t)), where

λ ∈ C, and m∗ and m∗∗ are nonzero exponential functions.

Proof. In view of Lemma 2.5, we first assume that the equation (2.19) holds. Then

Lemma 2.1 shows that the solutions of the sine functional equation (2.19) satisfy

one of the cases (i), (iii) with R ≡ 0, (v) or (vi). It remains to consider the case

when there exist λ1, λ2 ∈ C, not both zero, such that λ1f(x, t)−λ2g(x, t) satisfies

(2.3) [resp. (2.4)].

First, suppose that f (6= 0) satisfies (2.3) [resp. (2.4)]. Choosing y0 ∈ G and

s0 > 0 such that f(y0, s0) 6= 0, dividing both sides of (2.1) by |f(y0, s0)| and using

the triangle inequality we have

|g(x, t)| ≤ 1

|f(y0, s0)|

(
|f(x+ y0, t+ s0)|+ |f(x, t)g(y0, s0)|+ C

(
1

t
+

1

s0

)N
+ d

)
≤ C1(t+ s0)−N + d1 + C2t

−N + d2 + C3

(
1

t
+

1

s 0

)N
+ d3 ≤ C ′t−N + d′

for all x ∈ G and t > 0 and for some positive constants C1, C2, C3, d1, d2, d3, C
′

and d′. Similarly, if f, g satisfy (2.2) we can show that for every ε > 0 there exists

C ′ε > 0 such that

|g(x, t)| ≤ C ′εeε/t

for all x ∈ G and t > 0. Thus, we obtain case (ii).

Secondly, suppose that neither f nor g satisfies (2.3) [resp. (2.4)]. In this case

we must have λ1 6= 0 and λ2 6= 0. Thus, we can write

(2.26) g(x, t) = λf(x, t) +R(x, t)

for some λ (6= 0) ∈ C and a function R satisfying (2.3) [resp. (2.4)]. Putting (2.26)

in (2.1), using the triangle inequality and fixing y and s we have

|f(x+ y, t+ s)− f(x, t)(R(y, s) + 2λf(y, s))| ≤ |f(y, s)R(x, t)|+C

(
1

t
+

1

s

)N
+ d

≤ C ′t−N + d′ [resp. C ′εe
ε/t ]

for all x ∈ G and t > 0 and for some positive constants C ′ and d′ [resp. for every

ε > 0 there exists a positive constant C ′ε]. Applying Lemma 2.2, we obtain

(2.27) R(y, s) + 2λf(y, s) = m(y, s)

for all y ∈ G and s > 0, where m is an exponential function on G× (0,∞). Thus,

case (iii) follows immediately from (2.26) and (2.27).
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Finally, suppose that f does not satisfy (2.3) [resp. (2.4)] and g satisfies (2.3)

[resp. (2.4)]. Then we must have g 6= 0. In view of (2.1) [resp. (2.2)], for each

y ∈ G and s > 0, f(x+y, t+s)−f(x, t)g(y, s) satisfies (2.3) [resp. (2.4)]. Thus, by

Lemma 2.2, g is an exponential function. Using Lemma 2.4 we get case (iv).

Corollary 2.7. Let f, g : Rn × (0,∞) → C be continuous functions satisfying

(2.1) [resp. (2.2)]. Then f, g satisfy one of the following:

(i) f = 0 and g is arbitrary,

(ii) both f and g satisfy (2.3) [resp. (2.4)],

(iii) f(x, t)= 1
2λ (ec·x+bt−R(x, t)) and g(x, t)= 1

2 (ec·x+bt +R(x, t)), where λ, b∈C,

c ∈ Cn and R is a function satisfying (2.3) [resp. (2.4)],

(iv) g(x, t) = eic·x+bt and f(x, t) = a·xeic·x+bt+2f(0, t/2)eic·x+
1
2 bt+R(x, t), where

c ∈ Rn, a ∈ Cn, b ∈ C, and R is a function satisfying (2.3) [resp. (2.4)],

(v) g(x, t) = ec·x+bt and f(x, t) = (a ·x+dt)ec·x+bt, where a, c ∈ Cn and b, d ∈ C,

(vi) f(x, t) = 1
2λ (ec1·x+b1t− ec2·x+b2t) and g(x, t) = 1

2 (ec1·x+b1t− ec2·x+b2t), where

λ, b1, b2 ∈ C and c1, c2 ∈ Cn.

Proof. It follows from the continuity of f and g that the exponential functions

m,m∗,m∗∗ and the additive function A in (iii)–(vi) of Theorem 2.6 are continuous.

Also, in view of the proof of Lemma 2.4, the additive function l(x) in (iv) of

Theorem 2.6 is continuous since it is the uniform limit of a sequence of continuous

functions. Now, it is well known that the continuous solutions A : Rn×(0,∞)→ C
of the Cauchy functional equation

A(x+ y, t+ s) = A(x, t) +A(y, s)

are of the form A(x, t) = c·x+bt, and the continuous solutions m : Rn×(0,∞)→ C
of the exponential functional equation

m(x+ y, t+ s) = m(x, t)m(y, s)

are of the form m(x, t) = ec·x+bt for some c ∈ Cn, b ∈ C. If, in particular, m

satisfies (2.3) [resp. (2.4)], then c = ia for some a ∈ Rn and <b < 0. Thus, cases

(i)–(vi) follow immediately from (i)–(vi) of Theorem 2.6, respectively.

§3. Bounded distributions and hyperfunctions

We first introduce the spaces S ′ of Schwartz tempered distributions and G′ of

Gelfand hyperfunctions (see [20–22,26,33] for more details). We use the notations

|α| = α1 + · · · + αn, α! = α1! · · ·αn!, |x| =
√
x21 + · · ·+ x2n, xα = xα1

1 · · ·xαn
n and
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∂α = ∂α1
1 · · · ∂αn

n , for x = (x1, . . . , xn) ∈ Rn, α = (α1, . . . , αn) ∈ Nn0 , where N0 is

the set of nonnegative integers and ∂j = ∂/∂xj .

Definition 3.1 ([33]). We denote by S or S(Rn) the Schwartz space of all in-

finitely differentiable functions ϕ on Rn such that

(3.1) ‖ϕ‖α,β = sup
x
|xα∂βϕ(x)| <∞

for all α, β ∈ Nn0 , equipped with the topology defined by the seminorms ‖ · ‖α,β .

The elements of S are called rapidly decreasing functions and the elements of the

dual space S ′ are tempered distributions.

Definition 3.2 ([20,21]). We denote by G or G(Rn) the Gelfand space of all in-

finitely differentiable functions ϕ in Rn such that

‖ϕ‖h,k = sup
x∈Rn, α,β∈Nn

0

|xα∂βϕ(x)|
h|α|k|β|α!1/2β!1/2

<∞

for some h, k > 0. We say that ϕj → 0 as j → ∞ if ‖ϕj‖h,k → 0 as j → ∞ for

some h, k; we denote by G′ the strong dual space of G and call its elements Gelfand

hyperfunctions.

As a generalization of the space L∞ of bounded measurable functions,

L. Schwartz introduced the space D′L∞ of bounded distributions as a subspace

of tempered distributions.

Definition 3.3 ([33]). We denote by DL1(Rn) the space of smooth functions

on Rn such that ∂αϕ ∈ L1(Rn) for all α ∈ Nn0 , equipped with the topology defined

by the countable family of seminorms

‖ϕ‖m =
∑
|α|≤m

‖∂αϕ‖L1 , m ∈ N0.

We denote by D′L∞ the strong dual space of DL1 and call its elements bounded

distributions.

Generalizing bounded distributions, the space A′L∞ of bounded hyperfunc-

tions has been introduced as a subspace of G′.

Definition 3.4 ([16]). We denote by AL1 the space of smooth functions ϕ on Rn

satisfying

‖ϕ‖h = sup
α

‖∂αϕ‖L1

h|α|α!
<∞
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for some constant h > 0. We say that ϕj → 0 in AL1 as j → ∞ if there is a

positive constant h such that

‖ϕj‖h → 0 as j →∞.

We denote by A′L∞ the strong dual space of AL1 .

It is well known that the following topological inclusions hold:

G ↪→ S ↪→ DL1 , D′L∞ ↪→ S ′ ↪→ G′,
G ↪→ AL1 ↪→ DL1 , D′L∞ ↪→ A′L∞ ↪→ G′.

It is known that the space G(Rn) consists of all infinitely differentiable func-

tions ϕ on Rn which can be extended to an entire function on Cn satisfying

(3.2) |ϕ(x+ iy)| ≤ C exp(−a|x|2 + b|y|2), x, y ∈ Rn,

for some a, b, C > 0 (see [20]).

Definition 3.5. Let uj ∈ G′(Rnj ) for j = 1, 2. Then the tensor product u1 ⊗ u2
of u1 and u2, defined by

〈u1 ⊗ u2, ϕ(x1, x2)〉 = 〈u1, 〈u2, ϕ(x1, x2)〉〉

for ϕ(x1, x2) ∈ G(Rn1 × Rn2), belongs to G′(Rn1 × Rn2).

§4. Stability in distributions and hyperfunctions

In this section we consider the Hyers–Ulam stability for the sine functional equa-

tion in the space of distributions and hyperfunctions,

u ◦ S − u⊗ v − v ⊗ u ∈ D′L∞(R2n) [resp. A′L∞(R2n)],(4.1)

where ⊗ denotes the tensor product of generalized functions, S(x, y) = x + y for

x, y ∈ Rn, and the pullback u ◦ S is defined by

〈u ◦ S, ϕ(x, y)〉 =

〈
u,

∫
ϕ(x− y, y) dy

〉
, ϕ ∈ G(R2n).

In view of Definition 3.2, it is easy to see that if ϕj(x, y) ∈ G(R2n) is a sequence

such that ϕj → 0 in G(Rn) as j → ∞, then
∫
ϕj(x − y, y) dy → 0 in G(Rn) as

j →∞. Thus, u ◦ S ∈ G′(R2n).

For the proof of our theorems we employ the n-dimensional heat kernel Et(x)

given by

Et(x) = (4πt)−n/2 exp(−|x|2/4t), t > 0.



Sine Addition Formula in Hyperfunctions 241

In view of (3.2), we can see that the heat kernel Et belongs to the Gelfand space

G(Rn) for each t > 0. Thus, for each u ∈ G′(Rn), the convolution (u ∗ Et)(x) :=

〈uy, Et(x− y)〉 is well defined. We call (u ∗Et)(x) the Gauss transform of u. From

now on we denote by ũ(x, t) the Gauss transform of u. It is well known that ũ(x, t)

is a smooth solution of the heat equation such that ũ(·, t) → u in the weak∗

topology as t→ 0+, i.e.,

〈u, ϕ〉 = lim
t→0+

∫
ũ(x, t)ϕ(x) dx

for all ϕ ∈ G.

Example. Let u(x) = xα, α ∈ Nn0 , v(x) = ec·x, w(x) = a · xec·x, a = (a1, . . . , an),

c = (c1, . . . , cn) ∈ Cn. Then u, v, w ∈ G′(Rn) and simple calculations show that

ũ(x, t) = [ξα ∗ Et(ξ)](x) = α!
∑

0≤2γ≤α

t|γ|xα−2γ

γ!(α− 2γ)!
,

ṽ(x, t) = [ec·ξ ∗ Et(ξ)](x) = ec·x+(c21+···+c
2
n)t,

w̃(x, t) = [a · ξ ec·ξ ∗ Et(ξ)](x) = (a · x+ 2a · ct)ec·x+(c21+···+c
2
n)t.

The proof of Theorem 2.3 of [15] works even when p =∞, i.e., we obtain the

following.

Lemma 4.1 ([15]). The Gauss transform ũ(x, t) := (u ∗E)(x, t) of u ∈ D′L∞(Rn)

is a smooth solution of the heat equation (∆− ∂/∂t)ũ = 0 satisfying:

(i) There exist constants C > 0 and N ≥ 0 such that

(4.2) |ũ(x, t)| ≤ Ct−N for all x ∈ Rn and t > 0.

(ii) ũ(·, t)→ u as t→ 0+ in the sense that for every ϕ ∈ DL1 ,

〈u, ϕ〉 = lim
t→0+

∫
ũ(x, t)ϕ(x) dx.

Conversely, every smooth solution ũ(x, t) of the heat equation satisfying the

estimate (4.2) can be uniquely expressed as ũ(x, t) = (u ∗ E)(x, t) for some

u ∈ D′L∞(Rn).

The following lemma is a special case of Theorem 3.5 of [16] when p = ∞
(in [16], the space A′L∞(Rn) is denoted by BL∞(Rn)).

Lemma 4.2 ([16]). The Gauss transform ũ(x, t) := (u ∗E)(x, t) of u ∈ A′L∞(Rn)

is a smooth solution of the heat equation (∆− ∂/∂t)ũ = 0 satisfying:
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(i) For every ε > 0 there exists a constant Cε > 0 such that

(4.3) |ũ(x, t)| ≤ Cεeε/t for all x ∈ Rn, t > 0.

(ii) ũ(·, t)→ u as t→ 0+ in the sense that for every ϕ ∈ AL1 ,

〈u, ϕ〉 = lim
t→0+

∫
ũ(x, t)ϕ(x) dx.

Conversely, every smooth solution ũ of the heat equation satisfying (4.3) can be

uniquely expressed as ũ(x, t) = (u ∗ E)(x, t) for some u ∈ A′L∞(Rn).

The following structure theorem for bounded distributions is well known. We

refer the reader to [33, Theorem 25 in Chapter 6].

Lemma 4.3. Every u ∈ D′L∞(Rn) can be expressed as

(4.4) u =
∑
|α|≤p

∂αfα

for some p ∈ N0 where fα ∈ L∞(Rn) for all |α| ≤ p. The equality (4.4) implies

that

〈u, ϕ〉 =
∑
|α|≤p

(−1)|α|
∫
fα(x)∂αϕ(x) dx

for all ϕ ∈ DL1 .

As a special case of Theorem 3.4 of [16] when p =∞ we obtain the following.

Lemma 4.4 ([16]). Every u ∈ A′L∞(Rn) can be expressed as

(4.5) u =
( ∞∑
k=0

ak∆k
)
g + h

where ∆ denotes the Laplacian, g, h are bounded continuous functions on Rn

and ak, k = 0, 1, 2, . . . , satisfy the following estimates: for every L > 0 there

exists C > 0 such that

|ak| ≤ CLk/k!2

for all k = 0, 1, 2, . . . .

The following properties of the heat kernel will be useful; they can be found

in [26]. Here we give a slightly modified proof.

Proposition 4.5 ([26]). For each t > 0, Et(·) is an entire function and the fol-

lowing estimate holds: there exists C > 0 such that for all x ∈ Rn and t > 0,

(4.6) |∂αxEt(x)| ≤ C |α|t−(n+|α|)/2α!1/2 exp(−|x|2/8t).



Sine Addition Formula in Hyperfunctions 243

Also for all x ∈ Rn and t, s > 0,

(4.7) (Et ∗ Es)(x) :=

∫
Et(x− y)Es(y)dy = Et+s(x).

Proof. The equality (4.7) is proved by the well-known calculation which we omit.

We prove (4.6) for n = 1. By the Cauchy integral formula we have

(4.8)
dk

dxk
Et(x) =

k!

2πi

∫
Cr

Et(z)

(z − x)k+1
dz,

where Cr is the circle of radius r with center at z = x. Using (4.8) and the triangle

inequality we obtain

|∂kEt(x)| ≤ k!√
4πt rk

sup
z∈Cr

|exp(−z2/4t)|(4.9)

≤ k!√
4πt rk

sup
0≤θ≤2π

exp

(
−(x+ r cos θ)2 + r2 sin2 θ

4t

)
≤ k!√

4πt rk
exp

(− 1
2x

2 + r2

4t

)
=

k!√
4πt rk

exp

(
r2

4t

)
exp

(
−x

2

8t

)
.

The right hand side of (4.9) attains its minimum at r =
√

2kt. Thus, (4.9) reduces

to

|∂kEt(x)| ≤ (e/2)k/2√
4π

k!1/2t−(1+k)/2 exp

(
−x

2

8t

)
.

The general case is proved in the same manner.

Now, we state and prove the main theorems.

Theorem 4.6. Let u, v ∈ G′(Rn). Then (u, v) satisfies (4.1) if and only if (u, v)

satisfies one of the following:

(i) u = 0 and v is arbitrary,

(ii) u and v are bounded distributions [resp. bounded hyperfunctions],

(iii) u = 1
2λ (ec·x − w0) and v = 1

2 (ec·x + w0) for some c ∈ Cn, λ ∈ C and

w0 ∈ D′L∞(Rn) [resp. A′L∞(Rn)],

(iv) u = a · x eic·x + w0 and v = eic·x for some a ∈ Cn, c ∈ Rn and w0 ∈
D′L∞(Rn) [resp. A′L∞(Rn)],

(v) u = a · x ec·x and v = ec·x for some a, c ∈ Cn,

(vi) u = 1
2λ (ec1·x− ec2·x) and v = 1

2 (ec1·x+ ec2·x) for some c1, c2 ∈ Cn and λ ∈ C.
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Proof. We first obtain the following inequality from (4.1): there exist C, d > 0

[resp. for every ε > 0 there exists Cε > 0] such that

(4.10) |ũ(x+ y, t+ s)− ũ(x, t)ṽ(y, s)− ṽ(x, t)ũ(y, s)|

≤ C
(

1

t
+

1

s

)N
+ d [resp. Cεe

ε(1/t+1/s)],

where ũ, ṽ are the Gauss transforms of u, v, respectively, given in Lemma 4.1.

Convolving with the tensor product Et(x)Es(y) of the n-dimensional heat

kernels on the left hand side of (4.1), in view of the semigroup property (Et∗Es)(x)

= Et+s(x) of the heat kernel we have

(4.11) [(u ◦ S) ∗ (Et(ξ)Es(η))](x, y) =

〈
uξ,

∫
Et(x− ξ + η)Es(y − η) dη

〉
= 〈uξ, (Et ∗ Es)(x+ y − ξ)〉 = ũ(x+ y, t+ s).

Similarly,

[(u⊗ v) ∗ (Et(ξ)Es(η))](x, y) = ũ(x, t)ṽ(y, s),(4.12)

[(v ⊗ u) ∗ (Et(ξ)Es(η))](x, y) = ṽ(x, t)ũ(y, s),

where ũ(x, t), ṽ(x, t) are the Gauss transforms of u, v, respectively.

Let w := u ◦ S − u⊗ v− v⊗ u. Then w ∈ D′L∞(R2n) [resp. A′L∞(R2n)]. First,

we suppose that w ∈ D′L∞(R2n). Using (4.4) and (4.6) we have

|[w ∗ (Et(ξ)Es(η))](x, y)| ≤
∑
|α|≤p

|[∂αfα ∗ (Et(ξ)Es(η))](x, y)|

≤
∑
|α|≤p

|[fα ∗ ∂αξ,η(Et(ξ)Es(η))](x, y)| ≤
∑
|α|≤p

‖fα‖L∞‖∂αξ,η(Et(ξ)Es(η))‖L1

≤ C1

∑
|β|+|γ|≤p

‖∂βξ Et(ξ)‖L1‖∂γηEs(η)‖L1

≤ C2

∑
|β|+|γ|≤p

t−(n+|β|)/2s−(n+|γ|)/2 ≤ C
(

1

t
+

1

s

)N
+ d,

where N = n+ p/2 and the constants C and d depend only on p.

Secondly, we suppose that w ∈ A′L∞(R2n). Then using (4.6) we have

‖∆k(Et(ξ)Es(η))‖L1 ≤
∑
|α|=k

k!

α!
‖∂2α(Et(ξ)Es(η))‖L1

≤
∑

|β|+|γ|=k

k!

β!γ!
‖∂2βξ Et(ξ)‖L1‖∂2γη Es(η)‖L1
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≤
∑

|β|+|γ|=k

k!(2β)!1/2(2γ)!1/2M2k

β! γ!
t−n/2−|β|s−n/2−|γ|

≤
∑

|β|+|γ|=k

k!(2M)2kt−n/2−|β|s−n/2−|γ| ≤ k!(2
√
nM)2k (1/t+ 1/s)

n+k
.

Now, by the structure (4.5) of bounded hyperfunctions together with the growth

condition on ak, k = 0, 1, 2, . . . , we have

|[w ∗ (Et(ξ)Es(η))](x, y)|

≤
∞∑
k=0

‖ak(∆kg) ∗ (Et(ξ)Es(η))‖L∞ + ‖h ∗ (Et(ξ)Es(η))‖L∞

≤ ‖g‖L∞

∞∑
k=0

‖ak∆k(Et(ξ)Es(η))‖L1 + ‖h‖L∞‖Et(ξ)Es(η)‖L1

≤ C1

∞∑
k=0

1

k!
(4nM2L)k (1/t+ 1/s)

n+k
+ ‖h‖L∞

≤ C2

∞∑
k=0

1

k!
εk (1/t+ 1/s)

n+k
+ ‖h‖L∞ ≤ Cε eε(1/t+1/s),

where L is taken so that 4nM2L < ε and the constant Cε depends only on w and ε.

Thus, we have the inequality (4.10). Replacing f by ũ, g by ṽ and using Corollary

2.7, we obtain one of the following:

(I) ũ = 0 and ṽ is arbitrary,

(II) both ũ and ṽ satisfy (2.3) [resp. (2.4)],

(III) ũ(x, t) = 1
2λ (ec·x+bt − R(x, t)) and ṽ(x, t) = 1

2 (ec·x+bt + R(x, t)), where

λ, b ∈ C, c ∈ Cn and R is a function satisfying (2.3) [resp. (2.4)],

(IV) ṽ(x, t) = eic·x+bt and ũ(x, t) = a·xeic·x+bt+2ũ(0, t/2)eic·x+
1
2 bt+R(x, t) where

c ∈ Rn, a ∈ Cn, d ∈ C, and R is a function satisfying (2.3) [resp. (2.4)],

(V) ṽ(x, t) = ec·x+bt and ũ(x, t) = (a ·x+dt)ec·x+bt where a, c ∈ Cn and b, d ∈ C,

(VI) ũ(x, t) = 1
2λ (ec1·x+b1t−ec2·x+b2t) and ṽ(x, t) = 1

2 (ec1·x+b1t−ec2·x+b2t), where

λ, b1, b2 ∈ C and c1, c2 ∈ Cn.

Case (i) is obvious. By Lemma 4.1, case (II) implies (ii). From (III) we have

(4.13) ṽ(x, t)− λũ(x, t) = R(x, t).

Thus, R(x, t) is a solution of the heat equation. Letting t → 0+ in (III) and

using Lemma 4.1 we have R(x, t) → w0 in the weak∗ topology for some w0 in
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D′L∞(Rn) [resp. A′L∞(Rn)], which gives case (iii). Letting t→ 0+ in (V) and (VI)

we get (v) and (vi), respectively.

Finally, we prove that (IV) implies (iv). Since ṽ(x, t) = eic·x+bt in (IV) is

a solution of the heat equation, we have b = −(c21 + · · · + c2n) := −|c|2, where

c = (c1, . . . , cn). Let

(4.14) R1(x, t) = ũ(x, t)− (a · x+ 2ia · ct)eic·x−|c|
2t.

Then R1 is a solution of the heat equation. Also from (IV) we have

(4.15) R1(x, t) = −2ia · cteic·x−|c|
2t + 2ũ(0, t/2)eic·x+

1
2 bt +R(x, t).

By the continuity of ũ, there exists M > 0 such that |ũ(0, t + 1)| ≤ M for all

t ∈ [0, 1]. Putting x = y = 0, s = 1 in (4.10), dividing the result by |ṽ(0, 1)|, and

using the triangle inequality we obtain

|ũ(0, t)| ≤ |ũ(0, t+ 1)− ũ(0, 1)e−|c|
2t|+ C(1/t+ 1)N + d

|ṽ(0, 1)|
(4.16)

≤ 2M + C(1/t+ 1)N + d

|ṽ(0, 1)|
≤ C ′t−N [resp. Cεe

ε/t]

for all t ∈ (0, 1). From (4.14)–(4.16) we can see that R1 is a solution of the heat

equation satisfying (4.2) [resp. (4.3)]. By Lemma 4.1 [resp. Lemma 4.2], there

exists w0 ∈ D′L∞(Rn) [resp. A′L∞(Rn)] such that R1 → w0 as t → 0+. Thus,

letting t→ 0+ in (IV) and using (4.15) we get (iv).

Now, we consider the stability condition (4.1) in the space of Schwartz tem-

pered distributions. Recall that the following topological inclusions hold:

G ↪→ S ↪→ DL1 , D′L∞ ↪→ S ′ ↪→ G′,
G ↪→ AL1 ↪→ DL1 , D′L∞ ↪→ A′L∞ ↪→ G′.

In view of these inclusions, if u, v ∈ S ′(Rn) it is natural to consider the condition

u ◦ S − u⊗ v − v ⊗ u ∈ D′L∞(R2n).(4.17)

Theorem 4.7. Let u, v ∈ S ′(Rn). Then (u, v) satisfies (4.17) if and only if (u, v)

satisfies one of the following:

(i) u = 0 and v is arbitrary,

(ii) u and v are bounded distributions,

(iii) u = a ·x eic·x+w0 and v = eic·x for some a ∈ Cn, c ∈ Rn and w0 ∈ D′L∞(Rn).
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Proof. It is easy to see that ec·x ∈ S ′(Rn) only when c = ia for some a ∈ Rn.

Thus, if u, v ∈ S ′(Rn), cases (iii), (vi) in Theorem 4.6 reduce to case (ii), and case

(v) is contained in (iv).

Finally, we discuss the following stability (see [11,12] for related results):

u ◦ S − u⊗ v − v ⊗ u ∈ L∞(R2n),(4.18)

where L∞(R2n) denotes the space of bounded measurable functions on R2n. For

the proof we use the following lemma instead of Lemma 4.1.

Lemma 4.8 ([37, p. 122]). Let f(x, t) be a solution of the heat equation. Then

f(x, t) satisfies

|f(x, t)| ≤M, x ∈ Rn, t ∈ (0, 1),

for some M > 0, if and only if

f(x, t) = (f0 ∗ Et)(x) =

∫
f0(y)Et(x− y) dy

for some bounded measurable function f0 defined in Rn. In particular, f(x, t) →
f0(x) for almost every x ∈ Rn as t→ 0+.

Following the approach in the proof of Theorem 4.6 we have

|ũ(x+ y, t+ s)− ũ(x, t)ṽ(y, s)− ṽ(x, t)ũ(y, s)| ≤ C,(4.19)

where ũ, ṽ are the Gauss transforms of u, v. Now, using Corollary 2.7 for N = 0

and Theorem 4.6 we obtain the following.

Theorem 4.9. Let u, v ∈ G′(Rn). Then (u, v) satisfies (4.18) if and only if (u, v)

satisfies one of the following:

(i) u = 0 and v is arbitrary,

(ii) u and v are bounded measurable functions,

(iii) u = 1
2λ (ec·x − B(x)) and v = 1

2 (ec·x + B(x)) for some c ∈ Cn, λ ∈ C and

B ∈ L∞(Rn),

(iv) u = a ·x eic·x+B(x) and v = eic·x for some a ∈ Cn, c ∈ Rn and B ∈ L∞(Rn),

(v) u = a · x ec·x and v = ec·x for some a, c ∈ Cn,

(vi) u = 1
2λ (ec1·x− ec2·x) and v = 1

2 (ec1·x+ ec2·x) for some c1, c2 ∈ Cn and λ ∈ C.

Let f be a Lebesgue measurable function on Rn satisfying the following con-

dition: for every ε > 0 there exists Cε > 0 such that

(4.20) |f(x)| ≤ Cεeε|x|
2
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for all x ∈ Rn. The function satisfying (4.20) is said to be an infra-exponential

function of order 2. It is easy to see that every infra-exponential function f of

order 2 defines an element of G′(Rn) via the correspondence

〈f, ϕ〉 =

∫
f(x)ϕ(x) dx

for ϕ ∈ G. Thus, as a direct consequence of Theorem 4.7 we obtain the following.

Theorem 4.10. Let f, g be infra-exponential functions of order 2. There exists

C > 0 such that

(4.21) ‖f(x+ y)− f(x)g(y)− g(x)f(y)‖L∞(R2n) ≤ C

if and only if f, g satisfy one of the following in the almost everywhere sense:

(i) f = 0 and g is arbitrary,

(ii) f and g are bounded measurable functions,

(iii) f(x) = 1
2λ (ec·x − B(x)) and g(x) = 1

2 (ec·x + B(x)) for some c ∈ Cn, λ ∈ C
and B ∈ L∞(Rn),

(iv) f(x) = a · x eic·x + B(x), g(x) = eic·x for some a ∈ Cn, c ∈ Rn and B ∈
L∞(Rn),

(v) f(x) = a · x ec·x and g(x) = ec·x for some a, c ∈ Cn,

(vi) f(x) = 1
2λ (ec1·x − ec2·x) and g(x) = 1

2 (ec1·x + ec2·x) for some c1, c2 ∈ Cn and

λ ∈ C.
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