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On Nuclearity of C∗-algebras of Fell Bundles over
Étale Groupoids

by

Takuya Takeishi

Abstract

We show the nuclearity of the reduced C∗-algebra of a Fell bundle over an étale amenable
groupoid, whose fibers over the unit space are all nuclear. We introduce the (minimal)
tensor product of a Fell bundle and a C∗-algebra in order to show the uniqueness of
tensor product norms.
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§1. Introduction

It is well-known that groupoid C∗-algebras can realize most of C∗-algebras related

to dynamical systems—group C∗-algebras, graph algebras, uniform Roe algebras

and so on. In particular, C∗-algebras related to discrete dynamical systems can

be represented by étale groupoids. On the other hand, the crossed product asso-

ciated with a group action on a (non-commutative) C∗-algebra is an important

construction which is not included above. The Fell bundle over groupoids is a uni-

fied construction of groupoid C∗-algebras and crossed products. Hence Fell bundle

C∗-algebras contain many important constructions of C∗-algebras.

There is a principle that the amenability of groups, dynamical systems or

groupoids corresponds to the nuclearity of C∗-algebras. For example, the following

theorem is well-known (see e.g. [2]):

Theorem 1.1. The following hold:

(i) An étale locally compact Hausdorff groupoid G is amenable if and only if C∗r (G)

is nuclear.
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(ii) If an amenable discrete group Γ acts on a nuclear C∗-algebra A, then the

crossed product Aor Γ is nuclear.

In this paper, we show that if E is a Fell bundle over an amenable étale locally

compact Hausdorff groupoid such that every fiber over the unit space is nuclear,

then C∗r (E) is also nuclear (Theorem 4.1). In particular, Theorem 1.1 is included

in Theorem 4.1, except for the “only if” implication of (i).

In the case of discrete groups, Quigg [13, Corollary 2.17] has already proved

this theorem, and there is also an unpublished paper of Abadie-Vicens [1] related

to this theorem. Abadie-Vicens uses the method of tensor products of Fell bun-

dles (over groups), while Quigg’s proof relies on the correspondence between Fell

bundles and coactions, and a duality theorem for cocrossed products. The proof

in this paper is fairly close to the one of Abadie-Vicens, but simpler and based on

the method in Brown–Ozawa’s book [2].

In connection with this topic, Sims and Williams [17] recently studied when

full and reduced Fell bundle C∗-algebras coincide.

§2. Preliminaries

First, we fix some terminology and notation. A groupoid G is said to be topological

if it has a topology which makes the source map, the range map, the multiplication

map, and the inverse map continuous. Let G be a topological groupoid. An open

set S ⊂ G is called a bisection if the source and range maps on S are open maps

which are homeomorphisms onto their images. A topological groupoid G is said

to be étale if it has an open base consisting of bisections. Throughout this paper,

groupoids are always assumed to be étale, locally compact and Hausdorff.

Let us explain the definition of amenability of étale groupoids, which is a

crucial assumption of Theorem 4.1 (cf. [2, Section 5.6]).

Definition 2.1. LetG be an étale locally compact Hausdorff groupoid. A function

h : G → C is positive definite if for every x ∈ G(0) and any finite set F ⊂ Gx the

matrix [h(αβ−1)]α,β∈F is positive in the matrix algebra M|F |(C).

Definition 2.2. An étale locally compact Hausdorff groupoid G is amenable if it

has a net {hi} of compactly supported continuous positive definite functions which

converges to 1 uniformly on compact subsets of G, and satisfies supγ∈G |hi(γ)| ≤ 1

for every i.

Note that a compactly supported continuous function h on G is positive def-

inite if and only if it is positive in the reduced C∗-algebra of G. This follows
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from the fact that C∗r (G) can be represented faithfully on
⊕

x∈G(0) `2(Gx) (see [2,

Section 5.6]).

For tensor products, the usual notation ⊗ denotes the minimal tensor product,

and the algebraic tensor product is denoted by �.

We use the term “Hilbert C∗-bimodule” in the following sense:

Definition 2.3. Let A,B be C∗-algebras. An A-B-bimodule V is said to be a

Hilbert A-B-bimodule if:

(i) V is a left Hilbert A-module and a right Hilbert B-module.

(ii) 〈ax, y〉r = 〈x, a∗y〉r and l〈x, yb〉 = l〈xb∗, y〉 for all a ∈ A, b ∈ B and x, y ∈ V .

(iii) l〈x, y〉z = x〈y, z〉r for all x, y, z ∈ V .

Here l〈 , 〉 and 〈 , 〉r denote theA-valued andB-valued inner products, respectively.

Hilbert C∗-bimodules with a fullness condition are called imprimitivity bi-

modules. For the details about such bimodules, see the book of Raeburn and

Williams [14, Chapter 3]. Note that some (but not all) properties of imprimitivity

bimodules in [14] are true for Hilbert C∗-bimodules. We will tacitly use such prop-

erties. Specifically, the norms of a Hilbert C∗-bimodule induced by the left and

right inner products coincide (cf. [14, Proposition 3.11]); pre-Hilbert C∗-bimodules

can be completed (cf. [14, Proposition 3.12]); and the exterior tensor product of

Hilbert C∗-bimodules can be defined (cf. [14, Proposition 3.36]).

§2.1. Fell bundles

If X is a topological space and p : E → X is a bundle, the fiber over x ∈ X is

denoted by Ex. All Banach spaces are tacitly assumed to be complex. For the

definition of Banach bundles, see the book of Fell and Doran [6, Chapter II, Defi-

nition 13.4]. We assume that all Banach bundles are continuous, i.e., the function

e 7→ ‖e‖ is continuous. This assumption is natural, but note that some authors

assume only upper semicontinuity for Fell bundles (cf. [11],[12]).

Definition 2.4 (cf. [10]). LetG be a groupoid and p : E → G be a Banach bundle.

Set E(2) = {(e1, e2) ∈ E × E | (p(e1), p(e2)) ∈ G(2)}. Then p : E → G is a Fell

bundle if G has the following two structure maps:

(i) An associative and continuous multiplication map E(2) → E, (e1, e2) 7→ e1e2,

which is submultiplicative with respect to the norms on the fibers, and satisfies

p(e1e2) = p(e1)p(e2).

(ii) A conjugate-linear and antimultiplicative continuous involution E→E, e 7→e∗,
which satisfies p(e∗) = p(e)−1, the C∗-condition for norms, and e∗e ≥ 0 in

Es(e) for every e ∈ E.



254 T. Takeishi

Note that the condition e∗e ≥ 0 makes sense since all fibers over the unit

space G(0) are C∗-algebras by the previous assumptions. The restriction of E over

G(0) is denoted by E(0). From the above remark, E(0) is a continuous bundle of

C∗-algebras over G(0) (we use the term “continuous bundle of C∗-algebras” in the

sense of Kirchberg–Wassermann [8]). The fiber Eγ over γ ∈ G is a Hilbert Er(γ)-

Es(γ)-bimodule. Henceforth, we omit the projection p and simply say that E is a

Fell bundle.

Let E be a Fell bundle over a groupoid G. We denote by Γc(E) the space of

compactly supported sections, with multiplication and involution defined by

f ∗ g(γ) =
∑
γ=αβ

f(α)g(β), f∗(γ) = f(γ−1)∗

for f, g ∈ Γc(E). We want to complete the ∗-algebra Γc(E) to produce a reduced

Fell bundle C∗-algebra C∗r (E). If G = G(0), then just complete Γc(E) in the sup-

norm. In this case C∗r (E) = Γ0(E), the algebra of continuous sections of E which

vanish at infinity. In the general case, there is a unique C∗-completion C∗r (E)

of Γc(E), containing Γ0(E(0)), such that the natural restriction map Γc(E) →
Γc(E

(0)) extends to a faithful conditional expectation C∗r (E)→ Γ0(E(0)).

We can construct C∗r (E) explicitly as follows. Consider the right action of

Γc(E
(0)) on Γc(E) and the right inner product 〈f, g〉 = P (f∗g) for f, g ∈ Γc(E),

where P : Γc(E) → Γc(E
(0)) is the restriction map. Taking completion, we have

the right Hilbert Γ0(E(0))-module L2(E). Left multiplication gives a faithful repre-

sentation of Γc(E) on L2(E), and we define C∗r (E) to be the closure of the image of

this representation in B(L2(E)). In this case, P defines a projection of B(L2(E)),

and the conditional expectation of C∗r (E) onto Γ0(E(0)) is given by f 7→ PfP .

By definition, Fell bundles over (locally compact) groups are original Fell

bundles in the sense of [7]. See [10] for the details on Fell bundles.

§2.2. Construction of bundles

In this section, we introduce a basic technique to construct bundles. When one

constructs a Fell bundle E over a groupoid G from the given fibers {Eγ}γ∈G, one

can specify continuous sections of E instead of topologizing E =
∐
γ Eγ directly.

The proof of the following proposition is based on [7, Chapter VIII, 2.4].

Proposition 2.5. Let G be a groupoid. Let E =
∐
γ Eγ be an untopologized Fell

bundle over G, i.e., every Eγ is a Banach space and E has multiplication and

involution satisfying the axioms in Definition 2.4 except continuity. Let A0 be a

∗-algebra of compactly supported sections of E. Assume that:

(i) {f(γ) | f ∈ A0} is dense in Eγ for any γ ∈ G.

(ii) G 3 γ 7→ ‖f(γ)‖ is continuous for any f ∈ A0.
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Then there exists a unique topology of E which makes E a Fell bundle and all

sections in A0 continuous.

Proof. By [6, Chapter II, Theorem 13.18], E has a unique Banach bundle structure

which makes all sections in A0 continuous. We have to show the continuity of

multiplication and involution of E. We will consider multiplication; the proof for

involution is almost the same. Let {ai} and {bi} be two nets in E such that

(ai, bi) ∈ E(2) and (ai, bi) converges to (a, b) ∈ E(2). It suffices to show that aibi
converges to ab.

If a = 0, then ‖aibi‖ ≤ ‖ai‖‖bi‖ → 0 and hence aibi converges to 0 = ab;

the same holds if b = 0. Thus we may assume a, b 6= 0. Let αi = p(ai), α = p(a),

βi = p(bi), and β = p(b), where p : E → G is the canonical projection. Then

(αi, βi), (α, β) ∈ G(2), and (αi, βi) converges to (α, β). Let ε > 0. By assump-

tion (i), there exist f, g ∈ A0 such that

‖f(α)− a‖ < ε/‖b‖ and ‖g(β)− b‖ < ε/‖f(α)‖.

Since A0 is closed under the convolution product, f ∗g is a continuous section. Let

α ∈ S1 ⊂ T1 and β ∈ S2 ⊂ T2 be bisections of open neighborhoods of α and β.

Set S = S1S2 and T = T1T2. Take a continuous function ϕ : G → C such that

ϕ ≡ 1 on S and ϕ ≡ 0 off T . Then h(γ) = ϕ(γ)f ∗ g(γ) is a continuous section

of E by the continuity of scalar multiplication. We have h(αβ) = f(α)g(β), and

h(αiβi) = f(αi)g(βi) for large i.

Since f and g are continuous, we have

‖f(αi)− ai‖ < ε/‖bi‖ and ‖g(βi)− bi‖ < ε/‖f(αi)‖

for large i. Then

‖aibi − h(αiβi)‖ = ‖aibi − f(αi)g(βi)‖ ≤ 2ε,

and also

‖ab− h(αβ)‖ ≤ 2ε.

Hence, aibi converges to ab by [6, Chapter II, Proposition 13.12].

§2.3. Tensor products of continuous bundles of C∗-algebras over

locally compact spaces

In this section, we summarize some known results on the tensor product of a

continuous bundle of C∗-algebras over a locally compact space with a fixed C∗-

algebra.
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Definition 2.6. Let E be a continuous bundle of C∗-algebras over a locally com-

pact Hausdorff space X, and let A be a C∗-algebra. Consider the untopologized

bundle E ⊗ A =
∐
x∈X Ex ⊗ A over X. Then E ⊗ A is said to be a continuous

bundle if

x ∈ X 7→
∥∥∥ n∑
i=1

fi(x)⊗ ai
∥∥∥

min

is continuous for every f1, . . . , fn ∈ Γc(E) and a1, . . . , an ∈ A.

If E,F are continuous bundles of C∗-algebras over X and Y , we can consider

the notion of continuity of the bundle E⊗F over X ×Y in the same way. We can

see that the above definition is actually a special case, by considering Fell bundles

over a single point. However, we need only tensor products with fixed C∗-algebras.

If E ⊗ A is a continuous bundle, then one can define a genuine continuous

bundle of C∗-algebras over X by specifying that every element of Γc(E)�A defines

a continuous section. In this case, we continue to denote by E ⊗A the continuous

bundle of C∗-algebras topologized in the above way. Unfortunately, E ⊗ A is not

always continuous. For example, if A is a non-exact C∗-algebra, then one can

construct a continuous bundle of C∗-algebras E over N̂ such that E ⊗ A is not

continuous, where N̂ is the one-point compactification of N (cf. [8, Section 4]). The

continuity of the tensor product is a hard problem and was studied by Kirchberg

and Wassermann [8]. However, this problem does not occur when every fiber is a

nuclear C∗-algebra.

See [8] for the details of the proof of the following propositions:

Proposition 2.7. If E⊗A is a continuous bundle, then Γ0(E⊗A) = Γ0(E)⊗A.

Proof. By using Proposition 2.5 we can translate the definition of continuous

bundles of C∗-algebras in the sense of Definition 2.4 to that of Kirchberg–Wasser-

mann [8]. Then we can see that the cross-section algebras in the two definitions

are the same by the uniqueness part of Proposition 2.5.

Proposition 2.8 (cf. [8, Section 2]). Let E be a continuous bundle of C∗-algebras

over a locally compact Hausdorff space X such that Ex is nuclear for every x ∈ X.

Then E ⊗A is a continuous bundle for any C∗-algebra A.

Proof. Let E ⊗max A be the bundle of C∗-algebras whose fibers are Ex ⊗max A.

In general, E ⊗max A is an upper semicontinuous bundle and E ⊗ A is a lower

semicontinuous bundle for any E and A. If E has nuclear fibers, then E⊗max and

E ⊗A coincide by definition. Hence it is a continuous bundle.

Proposition 2.9. If Ex is nuclear for every x ∈ X, then Γ0(E) is nuclear.
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Proof. If A is a C∗-algebra, then

Γ0(E)⊗max A = Γ0(E ⊗max A) = Γ0(E ⊗A) = Γ0(E)⊗A

since every fiber of E is nuclear. Hence Γ0(E) is nuclear.

§3. Tensor products of Fell bundles with C∗-algebras

Let E be a Fell bundle over a groupoid G, and A be a C∗-algebra. Assume that

E(0) ⊗A is a continuous bundle. We will define the tensor product E ⊗A.

Let γ ∈ G and x = s(γ), y = r(γ). Then Eγ is a Hilbert Ey-Ex-bimodule.

We regard A as an imprimitive A-A-bimodule in the obvious way. Let (E⊗A)γ =

Eγ ⊗ A, where Eγ ⊗ A is the exterior tensor product of Hilbert C∗-bimodules

(cf. [14, Chapter 3]). Then (E ⊗ A)γ is a Hilbert (Ey ⊗ A)-(Ex ⊗ A)-bimodule

endowed with the inner products

〈e1 ⊗ a1, e2 ⊗ a2〉r = e∗1e2 ⊗ a∗1a2, l〈e1 ⊗ a1, e2 ⊗ a2〉 = e1e
∗
2 ⊗ a1a

∗
2,

for e1, e2 ∈ Eγ and a1, a2 ∈ A.

Next, we define multiplication and involution on E⊗A =
∐
γ∈G(E⊗A)γ . Let

E �A =
∐
γ∈G(E �A)γ and define multiplication and an involution on E �A by

(e1 ⊗ a1)(e2 ⊗ a2) = e1e2 ⊗ a1a2, (e⊗ a)∗ = e∗ ⊗ a∗,

for (e1, e2) ∈ E(2), e ∈ E and a1, a2, a ∈ A. For s, t ∈ (E �A)γ , we have

〈s, t〉r = s∗t and l〈s, t〉 = st∗.

Lemma 3.1 (cf. [1, Proposition 3.8]). If s, t ∈ E�A are composable, then ‖st‖ ≤
‖s‖ ‖t‖.

Proof. We have ‖st‖2 = ‖t∗s∗st‖ = ‖〈t, (s∗s)t〉r‖ ≤ ‖t‖ ‖(s∗s)t‖ ≤ ‖t‖2‖s‖2.

By Lemma 3.1, the multiplication map (Eα � A) × (Eβ � A) → Eαβ � A

for (α, β) ∈ G(2) extends continuously to (Eα ⊗ A) × (Eβ ⊗ A) → Eαβ ⊗ A.

Therefore, multiplication extends to the whole E⊗A. Similarly, involution extends

to the whole E⊗A since involution is isometric. By the construction, E⊗A is an

untopologized Fell bundle over G as in Proposition 2.5.

Lemma 3.2. For f1, . . . , fn ∈ Γc(E) and a1, . . . , an ∈ A,

γ ∈ G 7→
∥∥∥ n∑
i=1

fi(γ)⊗ ai
∥∥∥

is a continuous function.
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Proof. It suffices to show that the above function is continuous on every bisection

of G. Let S ⊂ G be a bisection. Then for f, g ∈ Γc(E),

x ∈ s(S) 7→ f(Sx)∗g(Sx) ∈ Ex

is a continuous section of E(0). Therefore,

x ∈ s(S) 7→
∥∥∥ n∑
i,j=1

fi(Sx)∗fj(Sx)⊗ a∗i aj
∥∥∥

is continuous since E(0) ⊗ A is a continuous bundle by the assumption. Now it is

easy to see that

γ ∈ S 7→
∥∥∥ n∑
i=1

fi(γ)⊗ ai
∥∥∥ =

∥∥∥ n∑
i,j=1

fi(γ)∗fj(γ)⊗ a∗i aj
∥∥∥1/2

is continuous.

Proposition 3.3. The bundle E⊗A has a unique Fell bundle structure such that

γ 7→
n∑
i=1

fi(γ)⊗ ai ∈ (E ⊗A)γ

is a continuous section for every
∑n
i=1 fi ⊗ ai ∈ Γc(E)�A.

Proof. It can be easily seen that the usual product of Γc(E)�A coincides with the

convolution product as sections, and the usual involution with the one as sections.

Therefore, by using Lemma 3.2, we can apply Proposition 2.5 to the untopologized

Fell bundle E ⊗A.

Next, we investigate the reduced C∗-algebra of E ⊗ A. From the above con-

struction, we have (E ⊗ A)(0) = E(0) ⊗ A. Since Γ0(E(0) ⊗ A) = Γ0(E(0))⊗ A by

Proposition 2.7, Γ0(E(0)) ⊗ A is a C∗-subalgebra of C∗r (E ⊗ A) with a canonical

faithful conditional expectation P̃ : C∗r (E ⊗A)→ Γ0(E(0))⊗A.

Proposition 3.4. The C∗-algebra C∗r (E ⊗ A) is canonically isomorphic to

C∗r (E)⊗A.

Proof. Let P : C∗r (E) → Γ0(E(0)) be the canonical faithful conditional expecta-

tion. Then P ⊗ id : C∗r (E) ⊗ A → Γ0(E(0)) ⊗ A is a faithful conditional expecta-

tion. We can easily see that P̃ (f) = P ⊗ id(f) for every f ∈ Γc(E) � A. Hence

C∗r (E ⊗ A) and C∗r (E) ⊗ A are isomorphic, since these algebras are completions

of Γc(E) � A whose norms are defined by P̃ and P ⊗ id using the faithfulness

of expectations (take the completion of Γc(E) � A as a Hilbert Γ0(E(0)) ⊗ A-

bimodule using this conditional expectation, and consider representations of these

two algebras on it).
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§4. The main theorem

Theorem 4.1. Let E be a Fell bundle over an étale locally compact Hausdorff

groupoid G. If G is amenable, then the following conditions are equivalent:

(i) The C∗-algebra C∗r (E) is nuclear.

(ii) The fiber Ex is nuclear for every x ∈ G(0).

(iii) The C∗-algebra Γ0(E(0)) is nuclear.

Since there exists a canonical faithful conditional expectation from C∗r (E)

onto Γ0(E(0)), (i) implies (iii). Since Ex is a quotient of Γ0(E(0)), (iii) implies (ii).

Moreover, (ii) implies (iii) by Proposition 2.9. Therefore, (ii)⇒(i) is the only non-

trivial part of this theorem.

The proof we give here is based on the proof of [2, Theorem 5.6.18]. The

first lemma is about a general relation between positive definite functions and

contractive completely positive (c.c.p.) maps. We think it could be useful for other

purposes.

Lemma 4.2. Let E be a Fell bundle over a groupoid G, and let h be a compactly

supported continuous positive definite function on G with supγ∈G |h(γ)| ≤ 1. Then

the multiplier map

mh : Γc(E)→ Γc(E), f 7→ hf,

extends to a c.c.p. map on C∗r (E).

Proof. For x ∈ G(0), let Vx =
⊕

γ∈Gx Eγ (direct sum of right Hilbert Ex-modules)

and define a representation πx : C∗r (E)→ B(Vx) by

πx(f)
(⊕
γ∈Gx

ξγ

)
=
⊕
γ∈Gx

( ∑
β∈Gx

f(γβ−1)ξβ

)
for f ∈ Γc(E) and ξγ ∈ Eγ with

∑
γ ξ
∗
γξγ converging in Ex. Then {πx}x∈G(0) is

a faithful family of representations of C∗r (E) (cf. [10]). Similarly, λx : C∗r (G) →
B(`2(Gx)) is defined by

λx(f)ξ(γ) =
∑
β∈Gx

f(γβ−1)ξ(β)

for f ∈ Cc(G) and ξ ∈ `2(Gx).

Define ι : Vx → `2(Gx)⊗ Vx by⊕
γ∈Gx

ξγ 7→
∑
γ∈Gx

δγ ⊗ ξγ .
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We can see that ι is adjointable and isometric. The adjoint map ι∗ is given by

ι∗
( ∑
α∈Gx

δα ⊗
(⊕
β∈Gx

ξα,β

))
=
⊕
α∈Gx

ξα,α

for ξα,β ∈ Eβ . Define Tx : Vx → `2(Gx)⊗ Vx by

Tx

(⊕
γ∈Gx

ξγ

)
=
∑
γ∈Gx

λx(h)1/2δγ ⊗ ξγ .

Then Tx is adjointable and contractive since Tx = (λx(h)1/2 ⊗ 1) ◦ ι. By a simple

calculation, T ∗x (1 ⊗ πx(f))Tx = πx(mh(f)) for every f ∈ Γc(E). Therefore, if one

identifies C∗r (E) with (
⊕

x πx)(C∗r (E)), the restriction of the c.c.p. map

Φ:
∏
x

B(Vx)→
∏
x

B(Vx),
∑
x

ax 7→
∑
x

T ∗x (1⊗ ax)Tx,

to C∗r (E) gives the extension of mh.

In fact, the condition that h is compactly supported is not necessary, but we

need only the case of compactly supported ones.

Let E be a Fell bundle over an amenable groupoidG such that Ex is nuclear for

every x ∈ G(0), and let A be an arbitrary C∗-algebra. Then E(0)⊗A is continuous

by Proposition 2.8.

Lemma 4.3. Let K be a compact subset of G. Then:

(i) There exists a positive constant CK > 0 such that for f1, . . . , fn ∈ Γc(E)

supported in K and a1, . . . , an ∈ A, we have∥∥∥ n∑
i=1

fi ⊗ ai
∥∥∥

max
≤ CK sup

γ∈K

∥∥∥ n∑
i=1

fi(γ)⊗ ai
∥∥∥
Eγ⊗A

.

(ii) For f1, . . . , fn ∈ Γc(E) and a1, . . . , an ∈ A, we have

sup
γ∈K

∥∥∥ n∑
i=1

fi(γ)⊗ ai
∥∥∥
Eγ⊗A

≤
∥∥∥ n∑
i=1

fi ⊗ ai
∥∥∥

min
.

Here, ‖ · ‖max and ‖ · ‖min are the maximal and minimal norms of C∗r (E)�A.

Proof. Statement (ii) follows from Proposition 3.4. Indeed, we have

sup
γ∈K

∥∥∥ n∑
i=1

fi(γ)⊗ ai
∥∥∥
Eγ⊗A

≤
∥∥∥ n∑
i=1

fi ⊗ ai
∥∥∥
∞
≤
∥∥∥ n∑
i=1

fi ⊗ ai
∥∥∥
C∗
r (E⊗A)

=
∥∥∥ n∑
i=1

fi ⊗ ai
∥∥∥

min
.

Note that the second inequality holds for general Fell bundles (see [10]).
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We now prove (i). By the usual partition of unity argument, we may assume

that K is contained in some bisection. Then f∗i fj is in Γ0(E(0)) for every i, j. Since

Γ0(E(0)) is nuclear, the restriction of the maximal tensor norm to Γ0(E(0)) � A
coincides with the minimal tensor norm, and Γ0(E(0))⊗A = Γ0(E(0)⊗A). There-

fore,∥∥∥ n∑
i=1

fi ⊗ ai
∥∥∥2

max
=
∥∥∥∑
i,j

f∗i fj ⊗ a∗i aj
∥∥∥

max
= sup
x∈G(0)

∥∥∥∑
i,j

f∗i fj(x)⊗ a∗i aj
∥∥∥

= sup
γ∈G

∥∥∥∑
i,j

fi(γ)∗fj(γ)⊗ a∗i aj
∥∥∥ = sup

γ∈G

∥∥∥∑
i

fi(γ)⊗ ai
∥∥∥2

Eγ⊗A
.

Proof of Theorem 4.1. It suffices to show that the quotient map Q : C∗r (E)⊗maxA

→ C∗r (E)⊗A is injective.

For every compact subset K of G, we denote by ΓK(E) the set of continuous

sections of E whose support is contained in K. Then ΓK(E) is complete with

respect to the sup-norm and ΓK(E) � A is a dense subspace of ΓK(E ⊗ A) with

the sup-norm topology.

Let h be a continuous positive definite function on G supported in a compact

subset K of G, and assume supγ∈G |h(γ)| ≤ 1. Then by Lemma 4.3, the inclusion

map ΓK(E)�A→ C∗r (E)�A extends to bounded injective maps ΓK(E ⊗A)→
C∗r (E) ⊗max A and ΓK(E ⊗ A) → C∗r (E) ⊗ A with closed images. Thus we can

regard ΓK(E⊗A) as a closed subspace of C∗r (E)⊗max A and of C∗r (E)⊗A. Then

the quotient map Q is injective on ΓK(E ⊗A).

By Lemma 4.2, we have the commutative diagram

C∗r (E)⊗max A

Q

��

mh⊗maxid // C∗r (E)⊗max A

Q

��
C∗r (E)⊗A mh⊗id // C∗r (E)⊗A

Let a ∈ C∗r (E) ⊗max A with Q(a) = 0. Then we have (Q ◦ (mh ⊗max id))(a) =

((mh ⊗ id) ◦Q)(a) = 0. Since the image of mh ⊗max id is contained in ΓK(E ⊗A)

and Q is injective on ΓK(E ⊗A), it follows that (mh ⊗max id)(a) = 0.

Let hi ∈ Cc(G) be a net of compactly supported continuous positive definite

functions which converges to 1 uniformly on compact subsets of G, and satisfies

supγ∈G |hi(γ)| ≤ 1 for every i. Then mhi ⊗max id converges to idC∗
r (E)⊗maxA in the

point-norm topology. Hence, for a ∈ kerQ, we have

a = lim
i

(mhi ⊗max id)(a) = 0

by the above argument. This proves that Q is injective.
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Remark 4.4. Even when considering a non-amenable groupoid G, the C∗-algebra

C∗r (E) often happens to be nuclear for some Fell bundle E over G. For example, if a

(non-amenable) discrete group Γ acts amenably on a unital nuclear C∗-algebra A,

then the reduced crossed product A or Γ is nuclear (see [2, Section 4.3]). The

notion of amenable actions on non-commutative C∗-algebras is defined as the

existence of a net of functions valued in the base C∗-algebra with some technical

conditions. The key point is that these functions induce multiplier maps on the

crossed product.

In this connection, an approximation property for Fell bundles over discrete

groups is defined and studied by Exel [3]. This approximation property is a suf-

ficient condition for the coincidence of full and reduced Fell bundle C∗-algebras

(over groups). Exel’s approximation property also requires the existence of a net

of functions with some conditions without relevance to multiplier maps. If a group

is acting amenably on a C∗-algebra, then the semidirect product bundle has the

approximation property.

§5. Examples and applications

§5.1. Crossed products

Definition 5.1 (cf. [10]). Let q : A→ G(0) be a continuous bundle of C∗-algebras

over G(0). Define G∗A = {(γ, a) | s(γ) = q(a)}. An action of G on A is a continuous

map α : G ∗ A → A, where α(γ, a) is denoted by αγ(a), satisfying the following

conditions:

(i) q(αγ(a)) = r(γ).

(ii) αγ : As(γ) → Ar(γ) is an isomorphism of C∗-algebras.

(iii) αx(a) = a for x ∈ G(0) and a ∈ Ax.

(iv) αγ1γ2(a) = αγ1(αγ2(a)).

If there is an action α of a groupoid G on a continuous bundle A of C∗-

algebras over G(0), we can define a Fell bundle structure on G ∗ A. The topology

of G ∗A is the relative topology of the usual product topology, and the projection

p : G ∗ A → G is the projection onto the first coordinate. The norm on G ∗ A is

defined by ‖(γ, a)‖ = ‖a‖. Multiplication and involution are defined by

(γ1, a1)(γ2, a2) = (γ1γ2, αγ−1
2

(a1)a2), (γ, a)∗ = (γ−1, αγ(a∗)).

G ∗A is called a semidirect product bundle.

A semidirect product bundle is a generalization of usual crossed products by

groups to groupoids. If G = Γ is a discrete group, then Γ(0) = {e} and a continuous
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bundle of C∗-algebras over Γ(0) is just a C∗-algebra. In this case, Γc(Γ ∗ A) is

identified with the finitely supported A-valued functions on Γ, and multiplication

and involution on Γc(Γ ∗ A) coincide with those of crossed products. Therefore,

Cr(Γ ∗ A) ∼= A or Γ since both sides are completions of Γc(Γ ∗ A) characterized

by the canonical faithful expectation onto A. In the case of crossed products by

groups, Theorem 4.1 reduces to Theorem 1.1(ii).

The semidirect product bundle is certainly a proper generalization of crossed

products, but it may seem less natural that actions on bundles are used instead of

actions of C∗-algebras. Indeed, we can define crossed products by groupoids from

actions on a certain class of C∗-algebras—C0(X)-algebras (where X is the unit

space of the groupoid). Actually, we can describe actions on C0(X)-algebras in

the form of bundles, but we need upper semicontinuous Fell bundles to handle the

general case, which requires only the upper semicontinuity instead of continuity of

norms in the axioms of Banach bundles. See [11], [12] for general crossed products

and the treatment of upper semicontinuous bundles.

§5.2. Line bundles

A Fell bundle E over a groupoid is called a Fell line bundle if each fiber of E is

one-dimensional. If X is a locally compact space, then there is only one Fell line

bundle over X—the trivial one. For a groupoid G, there is a canonical one-to-one

correspondence between Fell line bundles over G and twists over G—an extended

notion of the second cohomology of groupoids. See [9], [16] for twists and [15] for

cohomologies.

Fell line bundles are related to the theory of Cartan subalgebras for C∗-

algebras. In the well-known theorem of Feldman–Moore, a von Neumann algebra

which has a Cartan subalgebra is described by an equivalence relation and a 2-

cocycle (cf. [4], [5]). In the case of C∗-algebras, equivalence relations are replaced

by topologically principal étale groupoids and 2-cocycles are replaced by twists.

Definition 5.2 (Renault, [16]). An abelian C∗-subalgebra B of a C∗-algebra A

is said to be a Cartan subalgebra if we have the following conditions:

(i) B contains an approximate unit of A.

(ii) B is a maximal abelian subalgebra of A.

(iii) The normalizer N(B) of B generates A.

(iv) There exists a faithful conditional expectation of A onto B.

Here, N(B) is the set {a ∈ A | aBa∗, a∗Ba ⊂ B}.

Renault [16] defined the notion of Cartan subalgebras for C∗-algebras and

proved a theorem analogous to the theorem of Feldman–Moore.
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Theorem 5.3 (Renault, [16]). If G is a groupoid which is locally compact Haus-

dorff, étale, topologically principal and second countable, and E is a Fell line bundle

over G, then Γ0(E(0)) = C0(G(0)) is a Cartan subalgebra of C∗r (E). Conversely,

if A is a separable C∗-algebra and B is a Cartan subalgebra of A, then there

exists a locally compact Hausdorff, étale, topologically principal, second countable

groupoid G, a Fell line bundle E over G, and an isomorphism of C∗r (E) onto A

which carries C0(G(0)) onto B. The groupoid G and the Fell line bundle E are

unique up to isomorphism.

In the above theorem, Fell line bundles are used to fetch some extra informa-

tion lost in the construction of groupoids. Therefore, for a groupoid G, the reduced

C∗-algebras associated to all Fell line bundles over G are expected to share some

properties. For example, the nuclearity is one of such properties (we do not have

other examples, but there should be a great deal of such properties).

Theorem 5.4. For a locally compact Hausdorff étale groupoid G, the following

conditions are equivalent:

(i) G is amenable.

(ii) C∗r (E) is nuclear for all Fell line bundles E over G.

(iii) C∗r (E) is nuclear for some Fell line bundle E over G.

Proof. Condition (i) implies (ii) by Theorem 4.1, and obviously (ii) implies (iii).

We will prove that (iii) implies (i). The proof is based on [2, Theorem 5.6.18].

Let E be a Fell bundle over G such that C∗r (E) is nuclear. By the definition of

amenability, it suffices to show that there exists a net {hi} of compactly supported

positive definite functions on G with supx∈G(0) |h(x)| ≤ 1 which converges to 1

uniformly on compact subsets of G. We will construct hi of the form hi = ζ∗i ∗ ζi
with ‖ζi‖L2(G) ≤ 1 , where

‖ζi‖L2(G) = sup
x∈G(0)

( ∑
γ∈Gx

|ζi(γ)|2
)1/2

.

Fix ε > 0 and a compact subset K of G such that K−1 = K. Note that Banach

line bundles are always “locally trivial” by [6, Remark 13.19]. Take relatively

compact bisections U1, . . . , Un, V1, . . . , Vn of G satisfying K ⊂ U1∪· · ·∪Un, Ul ⊂ Vl
and such that E is trivial over each Vl. Let Φl : E|Vl → Vl ×C be an isomorphism

of Banach bundles over Vl. Then Φl is an isomorphism as complex vector bundles

and isometric on each fiber. Let f̃l be a continuous function on G such that f̃l is

identical to 1 on Ul, 0 ≤ f̃l ≤ 1 and the support of f̃l is contained in Vl. Define a
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continuous section fl of E by

fl(γ) =

{
Φ−1
l (γ, f̃l(γ)) (γ ∈ Vl),

0γ (γ 6∈ Vl),

where 0γ is the zero element of Eγ .

Since C∗r (E) is nuclear by the assumption, there exist c.c.p. maps ψ : C∗r (E)→
Mn(C) and ϕ : Mn(C)→ C∗r (E) satisfying

‖ϕ ◦ ψ(fl)− fl‖ ≤ ε, ‖ϕ ◦ ψ(f∗l ∗ fl)− f∗l ∗ fl‖ ≤ ε

for l = 1, . . . , n. Note that f∗l ∗ fl ∈ Γc(E
(0)) and ‖f∗l ∗ fl‖ = ‖fl‖1/2∞ = 1.

Let {eij}i,j be the matrix units of Mn(C) and let b=[ϕ(eij)]
1/2
i,j ∈Mn(C∗r (E)).

Note that [ϕ(eij)]ij ≥ 0 as [eij ]ij ≥ 0 in Mn(Mn(C)). Put ηϕ =
∑
j,k ξj ⊗ ξk ⊗ bkj

∈ `2n ⊗ `2n ⊗ C∗r (E), where {ξj}nj=1 is an orthonormal basis of the n-dimensional

Hilbert space `2n (the inner product is assumed to be linear in the second variable).

We regard `2n ⊗ `2n ⊗ C∗r (E) as a right Hilbert C∗r (E)-module in the natural way.

Then 〈ηϕ, (a⊗ 1⊗ 1)ηϕ〉 = ϕ(a) for a ∈Mn(C) since

〈ηϕ, (a⊗ 1⊗ 1)ηϕ〉 =
∑
j,k,l

〈ξj , aξl〉b∗kjbkl =
∑
j,l

ajlϕ(ejl) = ϕ(a).

In particular, ‖ηϕ‖2 = ‖ϕ(1)‖ ≤ 1.

Put al = ψ(fl). Then

|(al ⊗ 1⊗ 1)ηϕ − ηϕfl|2

= |(al ⊗ 1⊗ 1)ηϕ|2 − 〈ηϕfl, (al ⊗ 1⊗ 1)ηϕ〉 − 〈(al ⊗ 1⊗ 1)ηϕ, ηϕfl〉+ |ηϕfl|2

= ϕ(a∗l al)− f∗l ϕ(al)− ϕ(a∗l )fl + f∗l fl

= (ϕ(a∗l al)− f∗l fl) + f∗l (fl − ϕ(al)) + (fl − ϕ(al))
∗fl ≤ 3ε.

Let us take η′ϕ ∈ `2n� `2n�Γc(E) satisfying ‖ηϕ− η′ϕ‖ ≤ ε and ‖η′ϕ‖ ≤ 1. We write

η′ϕ =
∑
j,k ξj ⊗ ξk ⊗ ζkj for some ζkj ∈ Γc(E). For γ ∈ G, define

η′ϕ(γ) =
∑
j,k

ξj ⊗ ξk ⊗ ζkj(γ) ∈ `2n ⊗ `2n ⊗ Eγ ,

where `2n ⊗ `2n ⊗ Eγ is considered as a right Hilbert Es(γ)-module. Since Es(γ) is

isomorphic to C, this is just an n2-dimensional Hilbert space. Put ζ(γ) = ‖η′ϕ(γ)‖.
Then ζ is a compactly supported continuous function on G with

‖ζ‖2L2(G) ≤ sup
x∈G(0)

∑
γ∈Gx

∑
k,j

‖ζkj(γ)∗ζkj(γ)‖ = sup
x∈G(0)

∥∥∥∑
k,j

∑
γ∈Gx

ζkj(γ)∗ζkj(γ)
∥∥∥

= sup
x∈G(0)

‖〈η′ϕ, η′ϕ〉(x)‖ ≤ 1.

Note that the equality on the first line is valid since Ex is one-dimensional.
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Hence, all we have to show is that supγ∈K |1 − ζ∗ ∗ ζ(γ)| is small. First, we

have ‖f∗l ∗ fl − ϕ(ψ(fl)
∗ψ(fl))‖ ≤ 4ε since

f∗l ∗ fl ≈2ε ϕ ◦ ψ(fl)
∗ϕ ◦ ψ(fl) ≤ ϕ(ψ(fl)

∗ψ(fl)) ≤ ϕ ◦ ψ(f∗l ∗ fl) ≈ε f∗l ∗ fl.

Hence

f∗l ∗ fl ≈4ε ϕ(a∗l al) = 〈(al ⊗ 1⊗ 1)ηϕ, (al ⊗ 1⊗ 1)ηϕ〉
≈√3ε 〈(al ⊗ 1⊗ 1)ηϕ, ηϕfl〉 ≈2ε 〈(al ⊗ 1⊗ 1)η′ϕ, η

′
ϕfl〉.

Fix 1 ≤ l ≤ n and γ ∈ Ul. Put x = s(γ). Since |fl(γ)|2 is a positive element of

norm 1, we have f∗l ∗fl(x) = |fl(γ)|2 = 1, where 1 is the unit of the C∗-algebra Ex
(which is isomorphic to C). In addition, for β ∈ Gx,

η′ϕfl(β) =
∑
α∈Gx

η′ϕ(βα−1)fl(α) = η′ϕ(βγ−1)fl(γ).

Hence, ‖η′ϕfl(β)‖ ≤ ‖η′ϕ(βγ−1)‖.
Finally, we have

1 = ‖f∗l ∗ fl(x)‖ ≈ ‖〈(al ⊗ 1⊗ 1)η′ϕ, η
′
ϕfl〉(x)‖

=
∥∥∥ ∑
β∈Gx

〈(al ⊗ 1⊗ 1)η′ϕ(β), η′ϕfl(β)〉
∥∥∥ ≤ ∑

β∈Gx

‖η′ϕ(β)‖ ‖η′ϕfl(β)‖

≤
∑
β∈Gx

‖η′ϕ(β)‖ ‖η′ϕ(βγ−1)‖ = ζ∗ ∗ ζ(γ−1) ≤ 1,

and therefore 1 ≈ ζ∗ ∗ ζ(γ−1). This leads to the conclusion, since K−1 = K and

the error in the above does not depend on γ.

For the case of discrete groups, exactness is also shared by C∗-algebras of Fell

line bundles.

Proposition 5.5. For a discrete group Γ, the following conditions are equivalent:

(i) Γ is exact.

(ii) C∗r (E) is exact for all Fell line bundles E over Γ.

(iii) C∗r (E) is exact for some Fell line bundle E over Γ.

Proof. First, we will prove (i) implies (ii). Assume Γ is exact and take an amenable

action on a compact space X. Let G = Γ ∗ X be the associated transformation

groupoid. If q : E → Γ is a Fell bundle, then we can define a Fell bundle over G,

denoted by E ∗X, as follows. The space E ∗X equals E×X as a topological space,

and the projection p : E∗X → G is defined by p(e, x) = (q(e), x) for (e, x) ∈ E∗X.
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Multiplication and involution are defined by (e1, q(e2)x)(e2, x) = (e1e2, x) and

(e, x)∗ = (e∗, q(e)x). The norm on E is defined by ‖(e, x)‖ = ‖e‖. We can easily

check that E ∗X is actually a Fell bundle.

Let E be a line bundle over Γ. Then E ∗X is a line bundle over the amenable

étale groupoid G, and hence C∗r (E ∗X) is nuclear by Theorem 5.4. The exactness

of C∗r (E) follows since we can embed C∗r (E) into C∗r (E ∗X). Indeed, for f ∈ Γc(E)

define a section f̃ of E ∗X by f̃(g, x) = (f(g), x) for (g, x) ∈ Γ ∗X. Clearly f̃ is

a compactly supported continuous section of E ∗X, and we can see that the map

f 7→ f̃ defines an isometric ∗-homomorphism C∗r (E)→ C∗r (E ∗X).

Next, we will show (iii) implies (i). Let q : E → Γ be a Fell line bundle such

that C∗r (E) is exact. Let Ē be the conjugate bundle of E, i.e., Ēg = Eg−1 for

g ∈ Γ. The element of Ēg corresponding to e ∈ Eg−1 will be denoted by ē. Then

C∗r (Ē) equals C∗r (E)op and hence it is exact. We do not give the details, but we

can define the tensor product bundle E ⊗ Ē on Γ×Γ as in Section 3. The fiber of

the bundle E ⊗ Ē over (g, h) ∈ Γ× Γ is Eg ⊗Eh, and C∗r (E ⊗ Ē) is isomorphic to

C∗r (E)⊗ C∗r (E)op. Let ∆ be the diagonal subgroup of Γ× Γ, which is isomorphic

to Γ. Then the restriction of E⊗Ē over ∆ is isomorphic to the trivial bundle Γ×C
over Γ. The isomorphism is given by

(E ⊗ Ē)|∆ → ∆× C, e⊗ f̄ 7→ (q(e), ef),

where the fiber of E over the unit is identified with C. Hence the subalgebra

C∗r ((E⊗Ē)|∆) of C∗r (E⊗Ē) is isomorphic to C∗r (Γ). Therefore, C∗r (Γ) is exact.
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