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On the Field-theoreticity of Homomorphisms
between the Multiplicative Groups of Number

Fields

by

Yuichiro Hoshi

Abstract

We discuss the field-theoreticity of homomorphisms between the multiplicative groups of
number fields. We prove that, for instance, for a given isomorphism between the mul-
tiplicative groups of number fields, either the isomorphism or its multiplicative inverse
arises from an isomorphism of fields if and only if the given isomorphism is SPU-preserving
(i.e., roughly speaking, preserves the subgroups of principal units with respect to various
nonarchimedean primes).
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Introduction

In the present paper, we discuss the field-theoreticity of homomorphisms between

the multiplicative groups of fields. Let us consider the following problem:

For a homomorphism α : ◦k× → •k× between the multiplicative groups

of fields ◦k and •k, when does α arise from a homomorphism of fields
◦k → •k? In other words, when is the additive structure of ◦k compatible

with the additive structure of •k relative to α?

At a more philosophical level:

How can one understand the additive structure of a field in the language

of the multiplicative structure of the field?
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Now let us recall the following consequence of Uchida’s lemma (reviewed in

[1, Proposition 1.3]) that is implicit in the argument of [7, Lemmas 8–11] (cf. also

[5, Lemma 4.7]):

For � ∈ {◦, •}, let �k be an algebraically closed field and �C a projective

smooth curve over �k. Write �K for the function field of �C, and �Ccl

for the set of closed points of �C. For each �x ∈ �Ccl, write O�C,�x ⊆ �K

for the local ring of �C at �x, m�C,�x ⊆ O�C,�x for the maximal ideal of

O�C,�x, and ord�x : �K× → Z for the valuation of �K given by mapping

f ∈ �K× to the order of f at �x ∈ �C. (Thus, one verifies easily that

1 + m�C,�x ⊆ Ker(ord�x) = O×�C,�x ⊆
�K×.) Let

α : ◦K×
∼→ •K×

be an isomorphism between the multiplicative groups of ◦K, •K. Then

α arises from an isomorphism of fields ◦K
∼−→ •K if and only if there

exists a bijection φ : •Ccl ∼−→ ◦Ccl such that, for all •x ∈ •Ccl and ◦x :=

φ(•x) ∈ ◦Ccl, we have ord◦x = ord•x◦α and 1+m◦C,◦x = α−1(1+m•C,•x).

Moreover, the issue of recovering the additive structure not only for isomorphisms

(as in the above result) but also for suitable homomorphisms between the mul-

tiplicative groups of function fields has been intensively studied by M. Säıdi and

A. Tamagawa in, for instance, [3, §4] and [4, §5] (cf. Remark 3.3.1).

In the present paper, we discuss an analogue for number fields of the above

result. In the remainder of this paper, let Primes be the set of all prime num-

bers, � ∈ {◦, •}, �k a number field (i.e., a finite extension of Q), �o ⊆ �k the

ring of integers of �k, �V the set of maximal ideals of �o (i.e., the set of nonar-

chimedean primes of �k), and �Q ⊆ �k the (uniquely determined) subfield of �k

that is isomorphic to Q. For �p ∈ �V, write �o�p for the localization of �o at �p,

c(�p) for the residue characteristic of �p (thus, we have a map c : �V → Primes),

and ord�p : �k× � Z for the (uniquely determined) surjective valuation of �k

associated to �p (cf. Definition 1.1). Let

α : ◦k× → •k×

be a homomorphism of multiplicative groups.

Theorem A. The following conditions are equivalent:

(1) The homomorphism α arises from a homomorphism of fields ◦k → •k.

(2) The homomorphism α is CPU-preserving (i.e., there is a map φ : •V → ◦V
such that c(•p) = c(φ(•p)) for every •p ∈ •V, and moreover the inclusion
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1+◦p◦o◦p ⊆ α−1(1+•p•o•p), where ◦p := φ(•p) ∈ ◦V, holds for all but finitely

many •p ∈ •V—cf. Definition 1.3(ii)), and there exists an x ∈ Q× \ Z× such

that the “x” in ◦k maps, via α, to the “x” in •k.

(3) The homomorphism α is PU-preserving (i.e., there exists a map φ : •V → ◦V
such that the inclusion 1 + ◦p◦o◦p ⊆ α−1(1 + •p•o•p), where ◦p := φ(•p) ∈
◦V, holds for all but finitely many •p ∈ •V—cf. Definition 1.3(i)), and the

restriction ◦Q× → •k× of α to ◦Q× ⊆ ◦k× arises from a homomorphism

of fields ◦Q→ •k.

By concentrating on surjections, we obtain the following result (cf. Corol-

lary 3.2).

Theorem B. Suppose that the homomorphism α is surjective. Then either α

or the composite (−)−1 ◦ α (i.e., the surjection ◦k× � •k× obtained by mapping

x ∈ ◦k× to α(x)−1 ∈ •k×) arises from an isomorphism of fields ◦k
∼−→ •k if and

only if the surjection α is SPU-preserving (i.e., there exists a map φ : •V → ◦V
such that the equality 1 + ◦p◦o◦p = α−1(1 + •p•o•p), where ◦p := φ(•p) ∈ ◦V, holds

for all but finitely many •p ∈ •V—cf. Definition 1.3(i)).

As corollaries of Theorem A, we also prove the following results, that may be

regarded as analogues of Uchida’s lemma for number fields (cf. Theorem 3.1 and

Corollary 3.3).

Theorem C. The homomorphism α arises from a homomorphism of fields
◦k → •k if and only if there exists a map φ : •V → ◦V over Primes relative to c (i.e.,

c(•p) = c(φ(•p)) for every •p ∈ •V) such that, for •p ∈ •V, if ◦p := φ(•p) ∈ ◦V,

then

ord◦p = ord•p ◦ α
for infinitely many •p ∈ •V, and

1 + ◦p◦o◦p ⊆ α−1(1 + •p•o•p)

for all but finitely many •p ∈ •V.

Theorem D. Suppose that the homomorphism α is surjective. Then it arises

from an isomorphism of fields ◦k
∼−→ •k if and only if there exists φ : •V → ◦V

such that, for •p ∈ •V, if ◦p := φ(•p) ∈ ◦V, then

1 + ◦p◦o◦p = α−1(1 + •p•o•p)

for all but finitely many •p ∈ •V, and there exist a maximal ideal •p ∈ •V of •o

and a positive integer n such that

n · ord◦p = ord•p ◦ α.
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§1. PU-preserving homomorphisms

In this section, we define and discuss the notion of a PU-preserving homomorphism

(cf. Definition 1.3(i) below). Throughout, we use the notation specified in the

Introduction before the statement of Theorem A. Moreover, let k be a number

field ; we shall use similar notation o ⊆ k, V for objects associated to k.

Definition 1.1. Let p ∈ V be a maximal ideal of o.

(i) We shall write op for the localization of o at p,

κ(p) := o/p
∼−→ op/pop

for the residue field of o at p, and

c(p) := char(κ(p))

for the characteristic of κ(p). Thus, we have a map

c : V → Primes.

(ii) We shall write

ordp : k× � Z
for the (uniquely determined) surjective valuation of k associated to p. Thus, one

verifies easily that the kernel Ker(ordp) ⊆ k× coincides with the group o×p ⊆ k×

of invertible elements of op (cf. (i)), i.e.,

Ker(ordp) = o×p ⊆ k×.

Moreover, we have a natural exact sequence of abelian groups

1→ 1 + pop → Ker(ordp)→ κ(p)× → 1 .

Remark 1.1.1. By the map c (cf. Definition 1.1(i)), let us identify Primes with

the “V” that occurs in the case where we take the “k” to be a number field that

is isomorphic to the field of rational numbers (e.g., �Q).

Definition 1.2. Let φ : •V → ◦V be a map of sets. Then we shall say that φ

is characteristic-compatible if φ is a map over Primes (relative to c—cf. Defini-

tion 1.1(i)), i.e., the diagram

•V φ−−−−→ ◦V

c

y yc

Primes Primes

commutes.
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Remark 1.2.1. One verifies easily that if φ : •V → ◦V is characteristic-compatible

then it is finite-to-one, i.e., the inverse image of any element of ◦V is finite.

Definition 1.3. Let α : ◦k× → •k× be a homomorphism of groups.

(i) Let φ : •V → ◦V be a map of sets. Then we shall say that the homomor-

phism α is (φ-)PU-preserving (“principal-unit-preserving”) [respectively, (φ-)SPU-

preserving (“strictly principal-unit-preserving”)] if the inclusion 1 + ◦p◦o◦p ⊆
α−1(1 + •p•o•p) [respectively, the equality 1 + ◦p◦o◦p = α−1(1 + •p•o•p)], where
◦p := φ(•p) ∈ ◦V, holds for all but finitely many •p ∈ •V. If, in this situation,

for some •p ∈ •V, the inclusion 1 + ◦p◦o◦p ⊆ α−1(1 + •p•o•p) [respectively, the

equality 1 + ◦p◦o◦p = α−1(1 + •p•o•p)] does not hold, then we shall say that •p is

PU-exceptional [respectively, SPU-exceptional ] for (α, φ).

(ii) We shall say that the homomorphism α is CPU-preserving (“character-

istic-compatibly principal-unit-preserving”) if α is φ-PU-preserving for some

characteristic-compatible map φ : •V → ◦V.

Remark 1.3.1. In the notation of Definition 1.3, one verifies easily that if α is

φ-PU-preserving, and c(•p) = c(φ(•p)) for all but finitely many •p ∈ •V, then—

after replacing φ by a suitable extension (to a map •V → ◦V) of the restriction

of φ to the subset of •V consisting of •p ∈ •V such that c(•p) = c(φ(•p))—α is

CPU-preserving.

Lemma 1.4. Let ι : ◦k → •k be a homomorphism of fields. Write ι× : ◦k× →
•k× for the homomorphism induced by ι, and Vι : •V → ◦V for the (necessarily

surjective and characteristic-compatible) map obtained by mapping •p ∈ •V
to ι−1(•p) ∩ ◦o ∈ ◦V. Then, for every •p ∈ •V,

1 + Vι(•p)◦oVι(•p) = (ι×)−1(1 + •p•o•p).

In particular, ι× is Vι-SPU-preserving and CPU-preserving.

Proof. This follows immediately from the various definitions involved.

Lemma 1.5. Let α : ◦k× → •k× be a homomorphism of groups, φ : •V → ◦V
a map of sets, and •p ∈ •V. Write ◦p := φ(•p) ∈ ◦V.

(i) Suppose that α is φ-PU-preserving, and •p is not PU-exceptional for

(α, φ). Then Ker(ord◦p) ⊆ α−1(Ker(ord•p)). In particular, α determines ho-

momorphisms of groups

Ker(ord◦p)/(1 + ◦p◦o◦p) (' κ(◦p)×)→ Ker(ord•p)/(1 + •p•o•p) (' κ(•p)×);
◦k×/Ker(ord◦p) (' Z)→ •k×/Ker(ord•p) (' Z).
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(ii) Suppose that α is φ-SPU-preserving, and •p is not SPU-exceptional

for (α, φ). Suppose, moreover, that α is surjective. Then the two displayed

homomorphisms of (i) are isomorphisms. Moreover, α is CPU-preserving.

Proof. Assertion (i) follows immediately from the (easily verified) fact that, for

each � ∈ {◦, •}, the subgroup Ker(ord�p)/(1 + �p�o�p) ⊆ �k×/(1 + �p�o�p)

coincides with the maximal torsion subgroup of �k×/(1 + �p�o�p).

Next, we verify (ii). The assertion that the two displayed homomorphisms

of (i) are isomorphisms follows immediately from the various definitions involved,

together with the (easily verified) fact that every surjective endomorphism of Z
is an isomorphism. The assertion that α is CPU-preserving follows immediately

from Remark 1.3.1, together with the fact that if κ(◦p)× is isomorphic to κ(•p)×,

then c(◦p) = c(•p).

Lemma 1.6. Let φ : •V → ◦V be a map of sets and α, β : ◦k× → •k× homo-

morphisms of groups. Suppose that α and β are φ-PU-preserving. Then the

homomorphism α · β : ◦k× → •k× (mapping x ∈ ◦k× to α(x) · β(x) ∈ •k×) is

φ-PU-preserving.

Proof. This follows immediately from the various definitions involved.

Remark 1.6.1. In the situation of Lemma 1.6:

(i) In general, the product of two φ-SPU-preserving homomorphisms is not

φ-SPU-preserving. Indeed, although the identity automorphism idQ× of Q× is

idPrimes-SPU-preserving (cf. Remark 1.1.1), the product of two idQ× ’s (which maps

x ∈ Q× to x2 ∈ Q×) is not idPrimes-SPU-preserving.

(ii) Moreover, in general, the product of CPU-preserving homomorphisms is

not CPU-preserving. Indeed, suppose that k is Galois over Q. Then it follows

from Lemma 1.4 that the automorphism g× of k× determined by an element

g ∈ Gal(k/Q) of Gal(k/Q) is CPU-preserving. Write Nm for the product of all

such automorphisms g×. (Thus, Nm is the composite of the norm map k× → Q×

and the natural inclusion Q× ↪→ k×.) Assume that the difference δ : k× → k×

of Nm and the endomorphism of k× given by mapping x ∈ k× to x[k:Q] ∈ k×

is CPU-preserving. Then one verifies immediately that the restriction of δ to the

subgroup Q× ⊆ k× is trivial. Thus, it follows immediately from Proposition 2.4(i)

below that we obtain a contradiction.

Definition 1.7. Let φ : •V → ◦V be a map of sets. Then we shall write

Hom(◦k×, •k×)
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for the (abelian) group of all group homomorphisms ◦k× → •k×, and

Homφ-PU(◦k×, •k×) ⊆ Hom(◦k×, •k×)

for the subgroup (cf. Lemma 1.6) of φ-PU-preserving homomorphisms ◦k× → •k×.

Lemma 1.8. Let φ : •V → ◦V be a map of sets. Then the homomorphism of

groups

Homφ-PU(◦k×, •k×)→ Hom(◦Q×, •k×)

induced by the natural inclusion ◦Q× ↪→ ◦k× factors through the subgroup

Hom(c◦φ)-PU(◦Q×, •k×) ⊆ Hom(◦Q×, •k×) (cf. Remark 1.1.1). In particular, we

obtain a homomorphism of groups

Homφ-PU(◦k×, •k×)→ Hom(c◦φ)-PU(◦Q×, •k×).

Proof. This follows immediately from the various definitions involved.

§2. Field-theoreticity for certain PU-preserving homomorphisms

In this section, we prove the field-theoreticity of certain PU-preserving homomor-

phisms (cf. Theorem 2.5 below). We maintain the notation of §1.

Lemma 2.1. Let φ : •V → ◦V be a map of sets, n a positive integer, and let

x1, . . . , xn ∈ ◦k×. Suppose that the image of the composite •V φ→ ◦V c→ Primes is

of density one. Then the subset S[φ;x1, . . . , xn] ⊆ •V consisting of all maximal

ideals •p of •o that satisfy the following condition is infinite: If ◦p := φ(•p) ∈ ◦V,

then xi ∈ Ker(ord◦p) for each i ∈ {1, . . . , n}, and ]κ(◦p) = c(◦p).

Proof. One verifies immediately that, to prove Lemma 2.1, it suffices to verify

that the set of those p ∈ Primes that split completely in the finite extension ◦k/◦Q
contains a subset of Primes of positive density. The latter fact follows immediately,

by considering the Galois closure of ◦k/◦Q, from Chebotarev’s density theorem.

Lemma 2.2. For p ∈ Primes, write ordp : Q× � Z for the surjective p-adic

valuation. Let x, y ∈ Q× with y 6∈ {1,−1}. Then the subset Sx,〈y〉 ⊆ Primes

consisting of all p ∈ Primes that satisfy the following condition is infinite: x, y ∈
Ker(ordp), and the image of x in F×p is contained in the subgroup of F×p generated

by the image of y in F×p .

Proof. This follows from the proof of [2, Theorem 1]. For the reader’s convenience

(and to make it clear that the argument given in [2] works under our assumption

y 6∈ {1,−1}), we review the argument as follows:
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Since y 6∈ {1,−1}, it is immediate that, by replacing y by y−1 if necessary,

we may assume that |y| > 1. Write (x1, x2), (y1, y2) for the (uniquely determined)

pairs of nonzero rational integers such that x1Z + x2Z = Z, y1Z + y2Z = Z,

x2, y2 > 0, x = x1/x2, y = y1/y2. For each nonnegative integer n, write an :=

x1 · yn2 − x2 · yn1 . Now if an = 0 for some n, then Lemma 2.2 is immediate. Thus,

assume that an 6= 0 for every n. Next, observe that Sx,〈y〉 coincides with the set

of p ∈ Primes such that x, y ∈ Ker(ordp) but an 6∈ Ker(ordp) for some n.

To verify Lemma 2.2, assume towards a contradiction that Sx,〈y〉 is finite.

Write n0 := ](Z/(
∏
p∈Sx,〈y〉 p

ordp(a0)+1)Z)×. (One verifies easily that, for every

p ∈ Sx,〈y〉 and z ∈ Q×, if z ∈ Ker(ordp), then zn0 ≡ 1 (mod pordp(a0)+1).)

Now I claim that the following assertion holds:

Claim 2.2.A: For each nonnegative integer n and p ∈ Sx,〈y〉,

ordp(an0·n) ≤ ordp(a0).

Indeed, first observe that since y ∈ Ker(ordp), it follows that y1, y2 ∈ Ker(ordp),

which implies that yn0
1 , yn0

2 ≡ 1 (mod pordp(a0)+1) (cf. the final part of the preceding

paragraph). Thus, we conclude that

an0·n − a0 = x1 · (yn0·n
2 − 1)− x2 · (yn0·n

1 − 1) ≡ 0 (mod pordp(a0)+1),

i.e., ordp(a0) < ordp(an0·n− a0). In particular, ordp(an0·n) ≤ ordp(a0), as desired.

Next, one deduces immediately from Claim 2.2.A that |an0·n| ≤ |a0 · x1 · x2|
for sufficiently large n. Thus, since |y|n−|x| ≤ |x− yn| = |an|/|x2 · yn2 | ≤ |an|, and

1 < |y|, we obtain a contradiction.

Remark 2.2.1. If, in Lemma 2.2, one omits the assumption that y 6∈ {1,−1},
then the conclusion no longer holds. More precisely, for x ∈ Q× and y ∈ {1,−1},
the set Sx,〈y〉 is infinite if and only if (x, y) ∈ {(1, 1), (1,−1), (−1,−1)}. Indeed, the

sufficiency is immediate. To verify the necessity, observe that since 12 = (−1)2 = 1,

it follows that x2 ≡ 1 (mod p) for every p ∈ Sx,〈y〉. Thus, since Sx,〈y〉 is infinite,

we conclude that x2 = 1. In particular, since Sx,〈y〉 = {2} when (x, y) = (−1, 1),

the necessity follows.

Lemma 2.3. Let x ∈ k×. Then x ∈ Q× if and only if xc(p)−1 ∈ 1 + pop for all

but finitely many p ∈ V.

Proof. First, one verifies easily that the condition xc(p)−1 ∈ 1 + pop implies that

x ∈ Ker(ordp). Hence these conditions are equivalent , and moreover the image of

x ∈ Ker(ordp) in Ker(ordp)/(1 + pop)
∼−→ κ(p)× is annihilated by c(p) − 1, i.e.,

contained in the prime subfield (' Z/c(p)Z) of κ(p). Thus, Lemma 2.3 follows

immediately from Chebotarev’s density theorem.
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Proposition 2.4. Let φ : •V → ◦V be a map of sets.

(i) Suppose that the image of the composite •V φ→ ◦V c→ Primes is of density

one. Then the homomorphism of groups

Homφ-PU(◦k×, •k×)→ Hom(c◦φ)-PU(◦Q×, •k×)

of Lemma 1.8 is injective.

(ii) Suppose, moreover, that the image of •V φ→ ◦V c→ Primes is cofinite. Let ◦J

be an infinite subgroup of ◦Q×. Then the homomorphism of groups

Homφ-PU(◦k×, •k×)→ Hom(◦J, •k×)

induced by the natural inclusion ◦J ↪→ ◦k× is injective.

(iii) The homomorphism of groups

HomidPrimes-PU(◦Q×, •Q×)→ Homc-PU(◦Q×, •k×)

induced by the natural inclusion •Q× ↪→ •k× is bijective.

Proof. First, we verify assertion (i). Let α : ◦k× → •k× be a φ-PU-preserving

homomorphism such that α(◦Q×) = {1}. To verify that α(◦k×) = {1}, take x ∈
◦k× and •p ∈ S[φ;x] (cf. the notation of Lemma 2.1) that is not PU-exceptional

for (α, φ) (cf. Definition 1.3(i)). Write ◦p := φ(•p) ∈ ◦V and αp : κ(◦p)× → κ(•p)×

for the homomorphism induced by α (cf. Lemma 1.5(i)). Then since ]κ(◦p) = c(◦p)

(cf. the definition of S[φ;x] in Lemma 2.1), and α(◦Q×) = {1}, one verifies easily

that αp(κ(◦p)×) = {1}, which thus implies that

α(x) (mod •p) = αp(x (mod ◦p)) = 1.

Thus, by allowing •p to vary, it follows immediately from Lemma 2.1 that α(x) = 1.

This completes the proof of (i).

Next, we verify assertion (ii). It follows from (i) that, to verify (ii), we may

assume that ◦k = ◦Q. Let α : ◦k× = ◦Q× → •k× be a φ-PU-preserving homomor-

phism such that α(◦J) = {1}. To verify that α(◦k×) = {1}, take x ∈ ◦k× = ◦Q×

and y ∈ ◦J \ (◦J ∩ {1,−1}). It follows immediately from Lemma 2.2, together

with our assumption that the image of φ : •V → ◦V = Primes is cofinite, that the

subset T ⊆ •V consisting of all maximal ideals •p of •o that satisfy the following

condition is infinite: If ◦p := φ(•p), then

• •p is not PU-exceptional for (α, φ),

• x, y ∈ Ker(ord◦p), and

• the image of x in Ker(ord◦p)/(1 + ◦po◦p) is contained in the subgroup of

Ker(ord◦p)/(1 + ◦po◦p) generated by the image of y in Ker(ord◦p)/(1 + ◦po◦p).
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Let •p ∈ T . By the definition of T , there exists an integer n such that x · yn ∈
1 + ◦po◦p. Thus, since we have assumed that α(◦J) = {1}, it follows that α(x) =

α(x · yn) ∈ 1 + •p•o•p. In particular, since T is infinite, we conclude that α(x) ∈⋂
•p∈T (1 + •p•o•p) = {1}, i.e., α(x) = 1. This completes the proof of (ii).

Finally, we verify (iii). The injectivity of the homomorphism under consider-

ation follows immediately from the injectivity of the natural inclusion •Q× ↪→
•k×. Next, to verify the surjectivity, take a c-PU-preserving homomorphism

α : ◦Q× → •k×. By Lemma 2.3, α factors through the subgroup •Q× ⊆ •k×

of •k×; thus, we obtain a homomorphism ◦Q× → •Q×. On the other hand, since α

is c-PU-preserving, one verifies immediately from Lemma 1.4 that this homomor-

phism ◦Q× → •Q× is idPrimes-PU-preserving. This completes the proof of (iii).

Remark 2.4.1. If, in Proposition 2.4(ii), one replaces our assumption that ◦J

is infinite by the assumption that ◦J is nontrivial, then the conclusion no longer

holds. Indeed, one verifies easily that the two distinct endomorphisms of Q× ob-

tained by mapping x ∈ Q× to x ∈ Q× and x3 ∈ Q×, respectively, are contained in

HomidPrimes-PU(Q×,Q×) and coincide on the nontrivial subgroup {1,−1} ⊆ Q×.

Theorem 2.5. For � ∈ {◦, •}, let �k be a number field; write �V for the set

of maximal ideals of the ring of integers of �k, and �Q ⊆ �k for the subfield of �k

that is isomorphic to Q. Let α : ◦k× → •k× be a homomorphism of groups. Then

the following conditions are equivalent:

(1) α arises from a homomorphism of fields ◦k → •k.

(2) α is CPU-preserving and there exists an x ∈ Q× \ Z× such that the “x” in
◦k maps, via α, to the “x” in •k.

(3) α is PU-preserving and the restriction ◦Q× → •k× of α to ◦Q× ⊆ ◦k×

arises from a homomorphism of fields ◦Q→ •k.

Proof. The implication (1)⇒(2) follows immediately from Lemma 1.4, together

with the various definitions involved.

Next, we verify the implication (2)⇒(3). Suppose that condition (2) is satis-

fied. First, it follows from Lemma 1.8 that we may assume that ◦k = ◦Q. Next,

it follows from Proposition 2.4(iii) that we may assume that •k = •Q. Since the

isomorphism ◦Q× ∼−→ •Q× determined by the identity automorphism of Q× is

contained in HomidPrimes-PU(◦Q×, •Q×), the implication follows immediately from

Proposition 2.4(ii).

Finally, we verify (3)⇒(1). Suppose that (3) is satisfied. Let φ : •V → ◦V be

such that α is φ-PU-preserving. One verifies easily that it suffices to verify
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Claim 2.5.A: For x, y ∈ ◦k×, if x + y = 0 (respectively, x + y 6= 0), then

α(x) + α(y) = 0 (respectively, α(x+ y) = α(x) + α(y)).

Since the restriction α|◦Q× : ◦Q× → •k× arises from a homomorphism of fields
◦Q → •k, one verifies easily that the “−1” in ◦k× maps, via α, to the “−1”

in •k×; in particular, if x + y = 0 (i.e., y = −x), then α(x) + α(y) = 0 (i.e.,

α(y) = −α(x)). Thus, we may assume that x + y 6= 0. Now, to complete the

verification of Claim 2.5.A, we will prove

Claim 2.5.B: Let •p ∈ S[φ;x, y, x+ y] (cf. the notation of Lemma 2.1) be

such that •p is not PU-exceptional for (α, φ). Then

α(x+ y) (mod 1 + •p•o•p) = α(x) + α(y) (mod 1 + •p•o•p).

Indeed, write ◦p := φ(•p) ∈ ◦V. Since ]κ(◦p) = c(◦p), there exist xQ, yQ ∈
◦Q× such that xQ, yQ, xQ + yQ ∈ Ker(ord◦p), and the images of xQ, yQ in

Ker(ord◦p)/(1+◦p◦o◦p) coincide with the images of x, y in Ker(ord◦p)/(1+◦p◦o◦p),

respectively. Thus, the following equalities hold:

α(x+ y) (mod 1 + •p•o•p) = αp(x+ y (mod 1 + ◦p◦o◦p))

= αp(xQ + yQ (mod 1 + ◦p◦o◦p))

= α(xQ + yQ) (mod 1 + •p•o•p)

= α(xQ) + α(yQ) (mod 1 + •p•o•p)

= αp(xQ (mod 1 + ◦p◦o◦p)) + αp(yQ (mod 1 + ◦p◦o◦p))

= αp(x (mod 1 + ◦p◦o◦p)) + αp(y (mod 1 + ◦p◦o◦p))

= α(x) (mod 1 + •p•o•p) + α(y) (mod 1 + •p•o•p)

= α(x) + α(y) (mod 1 + •p•o•p)

—where we write αp : κ(◦p)× → κ(•p)× for the homomorphism induced by α

(cf. Lemma 1.5(i)); the first, third, fifth, and seventh equalities follow from the

definition of αp; the second and sixth follow from the choices of xQ, yQ; the fourth

follows from our assumption that α|◦Q× arises from a homomorphism of fields
◦Q→ •k; the eighth follows from the various definitions involved. This completes

the proof of Claim 2.5.B.

Now, by allowing •p to vary, it follows immediately from Claim 2.5.B, together

with Lemma 2.1, that Claim 2.5.A holds. This completes the proof of (3)⇒(1).

Remark 2.5.1. If, in Theorem 2.5, one replaces Q×\Z× in condition (2) by either

Q× or Q× \{1}, then the conclusion no longer holds. Indeed, the automorphism of

Q× obtained by mapping x ∈ Q× to x−1 ∈ Q× is CPU-preserving, maps −1 ∈ Q×

to −1 ∈ Q×, but does not arise from a homomorphism of fields Q→ Q.
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§3. Uchida’s lemma for number fields

In this section, we prove analogues of Uchida’s lemma reviewed in the Introduction

in the case of number fields (cf. Theorem 3.1 and Corollary 3.3 below).

Theorem 3.1. For � ∈ {◦, •}, let �k be a number field; write �o ⊆ �k for the

ring of integers of �k, and �V for the set of maximal ideals of �o. Write Primes

for the set of all prime numbers. Let α : ◦k× → •k× be a homomorphism of groups.

Then the following conditions are equivalent:

(1) α arises from a homomorphism of fields ◦k → •k.

(2) There exists a map φ : •V → ◦V over Primes (relative to, for each � ∈ {◦, •},
the map �V → Primes obtained by mapping �p ∈ �V to the residue character-

istic of �p) such that, for •p ∈ •V, if ◦p := φ(•p) ∈ ◦V, then:

(a) For � ∈ {◦, •}, if we write ord�p : �k× � Z for the (uniquely determined)

surjective valuation of �k associated to �p, then

ord◦p = ord•p ◦ α

for infinitely many •p ∈ •V.

(b) For � ∈ {◦, •}, if we write �o�p ⊆ �k for the localization of �o at the

maximal ideal �p ⊆ �o, then

1 + ◦p◦o◦p ⊆ α−1(1 + •p•o•p)

for all but finitely many •p ∈ •V.

Proof. The implication (1)⇒(2) follows immediately from Lemma 1.4, together

with the well-known fact that the finite extension •k/◦k (determined by the homo-

morphism of fields ◦k → •k) is unramified at all but finitely many nonarchimedean

primes.

Next, we verify (2)⇒(1). Suppose that condition (2) is satisfied. Now since α

is CPU-preserving (cf. condition (b)), it follows from the equivalence (1)⇔(2) of

Theorem 2.5 that it suffices to verify

Claim 3.1.A: There exists an x ∈ Q× \ Z× such that the “x” in ◦k maps,

via α, to the “x” in •k.

Now since α is CPU-preserving (cf. (b)), it follows immediately from Lemma 1.8,

together with the well-known fact that the finite extension ◦k/◦Q is unramified at

all but finitely many nonarchimedean primes, that, to verify Claim 3.1.A, we may

assume that ◦k = ◦Q. Next, again since α is CPU-preserving, it follows immedi-

ately from Proposition 2.4(iii) that we may assume that •k = •Q. In particular,
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one verifies immediately from Remark 1.1.1 that φ is the identity automorphism

of Primes.

Let S(b) be a cofinite subset of Primes such that the displayed inclusion of (b)

holds for •p ∈ S(b), and S(a),(b) an infinite subset of S(b) such that the displayed

equality of (a) holds for •p ∈ S(a),(b). Then it follows immediately from Lem-

ma 1.5(i) that, for each •p ∈ S(b), there exists a uniquely determined, not neces-

sarily positive integer n•p such that

n•p · ord◦p = ord•p ◦ α.

(Thus, if •p ∈ S(a),(b), then n•p = 1.)

For � ∈ {◦, •} and �p ∈ �V, write J�p (' Z) ⊆ �k× for the subgroup of �k×

generated by the (element of �k× = �Q× corresponding to the) residue charac-

teristic c(�p) (i.e., J�p = “c(�p)Z”). Then the various inclusions J�p ↪→ �k× and

the inclusion �k×tor ↪→ �k× (where we write �k×tor ⊆ �k× for the maximal tor-

sion subgroup of �k×, i.e., �k× =“{1,−1}”) determine an isomorphism of abelian

groups
�k×tor ⊕

( ⊕
�p∈�V

J�p

)
∼→ �k×.

Write β : ◦k× → •k× for the homomorphism defined as follows (cf. the above

displayed isomorphism):

• β maps −1 ∈ ◦k× to −1 ∈ •k×.

• If •p 6∈ S(b), then β maps c(φ(•p)) ∈ ◦k× to c(•p) ∈ •k×.

• If •p ∈ S(b), then β maps c(φ(•p)) ∈ ◦k× to c(•p)n•p ∈ •k× (concerning n•p, we

refer to the final part of the preceding paragraph).

Write, moreover, γ := α · β−1 : ◦k× → •k×. Then one verifies immediately from

the definition of β, together with the various definitions involved, that

(i) the composite

◦k×
γ−→ •k×

⊕
•p∈S(b)

ord•p

−−−−−−−−−−→
⊕
•p∈S(b)

Z

is trivial, i.e., γ factors through the kernel •k×tor ⊕
(⊕

•p6∈S(b)
J•p
)
⊆ •k× of⊕

•p∈S(b)
ord•p, and moreover

(ii) Ker(γ) ⊆ ◦k× coincides with the subgroup of ◦k× consisting of all x ∈ ◦k×

such that α(x) = β(x).

Now let us observe that the kernel discussed in (i) is of finite rank, and

S(a),(b) is infinite. Thus, by considering the composite of the natural inclusion⊕
•p∈S(a),(b)

Jφ(•p) ↪→ ◦k× and γ, we conclude from (i), (ii), together with the var-
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ious definitions involved, that there exists a nontorsion x ∈ (
⊕
•p∈S(a),(b)

Jφ(•p) ⊆)
◦k× such that α(x) = x. This completes the proof of Claim 3.1.A, hence also of

Theorem 3.1.

Corollary 3.2. For � ∈ {◦, •}, let �k be a number field. Let α : ◦k× � •k× be

a surjective group homomorphism. Then either α or the composite (−)−1◦α (i.e.,

the surjection ◦k× � •k× obtained by mapping x ∈ ◦k× to α(x)−1 ∈ •k×) arises

from an isomorphism of fields ◦k
∼−→ •k if and only if α is SPU-preserving.

Proof. The necessity follows from Lemma 1.4. Next, we verify the sufficiency.

Suppose that α is SPU-preserving. Then from Lemma 1.5(ii), either α or (−)−1 ◦α
satisfies condition (2) of Theorem 3.1. In particular, the sufficiency follows from

Theorem 3.1.

Corollary 3.3. For � ∈ {◦, •}, let �k be a number field; write �o ⊆ �k for the

ring of integers of �k, and �V for the set of maximal ideals of �o Let α : ◦k× � •k×

be a surjective group homomorphism. Then the following conditions are equiva-

lent:

(1) α arises from an isomorphism of fields ◦k
∼−→ •k.

(2) There exists a map φ : •V → ◦V such that, for •p ∈ •V, if ◦p := φ(•p) ∈ ◦V,

then:

(a) For � ∈ {◦, •}, if we write ord�p : �k× � Z for the (uniquely determined)

surjective valuation of �k associated to �p, then there exist a maximal

ideal •p ∈ •V of •o and a positive integer n such that

n · ord◦p = ord•p ◦ α.

(b) For � ∈ {◦, •}, if we write �o�p for the localization of �o at the maximal

ideal �p ⊆ �o, then

1 + ◦p◦o◦p = α−1(1 + •p•o•p)

for all but finitely many •p ∈ •V.

Proof. This follows immediately from Corollary 3.2, together with the various

definitions involved.

Remark 3.3.1. (i) The issue of recovering the additive structure in the case of

function fields has been intensively studied by M. Säıdi and A. Tamagawa (cf.,

e.g., [3, §4] and [4, §5]). Moreover, they considered not only isomorphisms (as

in Uchida’s lemma—cf. Introduction) but also suitable homomorphisms between

multiplicative groups. In particular, the main results of the present paper may
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also be regarded as analogues in the case of number fields of the results of Säıdi–

Tamagawa.

(ii) One may think that the proofs of the main results of the present paper

are similar to the proof of Uchida’s lemma, as well as to the proofs of the results

of Säıdi–Tamagawa discussed in (i) (cf., e.g., [4, Proposition 5.3]). Both the proofs

consist of the following two steps:

(1) We first prove that the homomorphism under consideration between the

multiplicative groups of the given global fields is compatible with the additive

structures of the residue fields at various primes involved.

(2) By considering residue classes at various primes and applying the compat-

ibility of (1), we conclude that the homomorphism under consideration between

the multiplicative groups of the global fields is compatible with their additive

structures.

(iii) In the case of function fields, the behaviors of minimal functions or func-

tions with unique poles are discussed in order to perform step (1) of (ii) (cf. [3,

§4]; [4, §5]; [7, §3]). On the other hand, in the case of number fields, to perform

step (1) of (ii), the behaviors of elements of Q× \ Z× are discussed (cf. the proof

of Theorem 2.5).

Remark 3.3.2. (i) Let us recall that Uchida’s lemma (cf. Introduction), as well

as the results of Säıdi–Tamagawa discussed in Remark 3.3.1(i) (cf., e.g., [4, Propo-

sition 5.3]), were studied in the context of anabelian geometry. More precisely,

in [7], Uchida’s lemma was studied in order to prove that

(∗) every continuous isomorphism between the absolute Galois groups of the func-

tion fields of curves over finite fields arises from an isomorphism between the

original function fields.

Here, we note that an analogue of (∗) for number fields was already proved (cf. [6]).

(ii) On the other hand, one may find some essential differences between the

proof (given in [7]) of (∗) and the proof (in [6]) of its analogue for number fields.

For instance, although the proof in the case of function fields is in a “mono-

anabelian fashion” or “algorithmic”, the proof in the case of number fields is in a

“bi-anabelian fashion” or not “algorithmic” (cf., e.g., [1, Introduction and Remarks

1.9.5, 1.9.8]).

(iii) Now let us recall the outline of the proof of (∗) given in [7].

(1) First, we prove that a continuous isomorphism between the absolute Ga-

lois groups of the function fields of curves over finite fields determines a bijection

between the sets of decomposition subgroups associated to primes.
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(2) Next, by means of the bijection of (1), together with class field theory,

we prove that the continuous isomorphism under consideration determines an iso-

morphism between the multiplicative groups of the original function fields which

satisfies the condition (involving ord�x and 1+m�C,�x) in the statement of Uchida’s

lemma reviewed in the Introduction.

(3) Finally, by applying Uchida’s lemma, we conclude that the isomorphism

between the multiplicative groups of (2) determines an isomorphism between the

function fields.

Here, we note that an analogue of (1) for number fields has been proved by

J. Neukirch. Moreover, the main results of the present paper may be regarded as

an analogue in the case of number fields of (3).

(iv) However, by the difficulty arising from the archimedean portions in the

idele groups of number fields, at the time of this writing, the author is not able

to prove an analogue of (2) for (arbitrary) number fields. In particular, the author

is not able to obtain a proof similar to the proof in [7] of an analogue of (∗) for

(arbitrary) number fields.

(v) On the other hand, if the number field under consideration is a subfield of

an imaginary quadratic field, then one can prove immediately an analogue of (2)

from the finiteness (i.e., compactness) of the group of units in the ring of integers.

Thus, by means of the result of J. Neukirch, together with the main results of

the present paper (cf. the final part of (iii)), one can obtain a proof similar to the

proof given in [7] of an analogue of (∗) for such number fields. We leave the routine

details to the interested reader.
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