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On Congruences of Galois Representations of
Number Fields

by

Yoshiyasu Ozeki and Yuichiro Taguchi

Abstract

We give a criterion for two `-adic Galois representations of an algebraic number field to
be isomorphic when restricted to a decomposition group, in terms of global representa-
tions modulo `. This is applied to prove a generalization of a conjecture of Rasmussen–
Tamagawa [23] under a semistability condition, extending some results [20] of one of
the authors. It is also applied to prove a congruence result on the Fourier coefficients of
modular forms.
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§1. Introduction

Let K be an algebraic number field, by which we mean a finite extension of Q, and

let GK = Gal(K̄/K) denote its absolute Galois group, where K̄ is a fixed algebraic

closure of K. If v is a finite place of K, we choose an extension of v to K̄ and

denote by Gv (resp. Iv) the decomposition (resp. inertia) group of v in GK . For

an `-adic representation V of GK , where ` is any prime number, we denote by Vv
its restriction to Gv. Motivated by a finiteness conjecture on Abelian varieties of

Rasmussen and Tamagawa [23] and related works [20], [24], we prove in this paper

the following type of theorems: If the prime ` is sufficiently large (with respect to

K, v and the type of the `-adic representations under consideration), then for any

place u lying above ` and for any representations V and V ′ satisfying a certain set
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of conditions, we have the following implication:

Vu ≡ss V
′
u (mod `) and Vv ≡ss V

′
v (mod `) ⇒ Vv 'ss V

′
v .

Here, we write Vv ≡ss V
′
v (mod `) if, for a choice of Gv-stable Z`-lattices T and

T ′ in V and V ′ respectively, T/`T and T ′/`T ′ have isomorphic semisimplifications

(T/`T )ss and (T ′/`T ′)ss as F`-linear representations of Gv (this definition does not

depend on the choice of the lattices). We also write Vv 'ss V
′
v if their semisimpli-

fications are isomorphic as Q`-linear representations of Gv. See Theorem 3.1 for

the precise statement of our main theorem and §3 for the details of “a certain set

of conditions”. Roughly speaking, the conditions are:

– V comes from algebraic geometry, and

– V is semistable at v.

Furthermore, the “type” of V has to be specified (in particular, bounds are given of

the Hodge–Tate weights and of the ramification index needed to acquire semista-

bility at u). It is important to note that, while imposing an “artificial” bound b on

the Hodge–Tate weights of one of the {V, V ′} (say, V ), we only assume a rather

loose and natural bound (`−2)/e2 of the Hodge–Tate weights of the other one V ′,

where e is the absolute ramification index of extensions of Ku over which V and V ′

respectively become semistable at u.

Our method of proof is, as in [20, §3.3] and [24, Lemma 3.9], to recover the

characteristic polynomial of the Frobenius at v from its reduction modulo ` using

the bound of the coefficients, which follows in our case from the condition imposed

at u with the help of the theorems of Caruso [5] and Caruso–Savitt [6] (see Thm.

2.6 below). Thus, our proof is obtained by combining certain deep facts in p-adic

Hodge theory.

If we remove the semistability condition at v, we still obtain the coincidence

of the set of Weil weights of V and V ′ at v; this version, stated as Theorem 3.2, is

often enough for applications.

Examples of V as above include the Q`-linear dual of the `-adic étale coho-

mology group Hr
et(XK̄ ,Q`) of a smooth proper variety X (in this paper, a variety

means a separated scheme of finite type over a field) over K with semistable reduc-

tion at v (cf. Prop. 2.8). For such representations, we derive in §4 several corollaries

of Theorem 3.2 in the spirit of the Rasmussen–Tamagawa conjecture. For instance,

we prove the following as a special case of Corollary 4.4:

Theorem 1.1. For any integers b, n ≥ 1, for any prime number ` >
(

n
[n/2]

)
2nb+1,

for any odd integer r with 1 ≤ r ≤ b, and for any smooth proper variety X over Q
which has r-th Betti number ≤ n, has good reduction outside ` and has semistable

reduction at `, the Galois representation on Hr
et(XK̄ ,Q`) is not “residually Borel”,
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meaning that, for any GQ-stable Z`-lattice T in Hr
et(XK̄ ,Q`), the image of GQ in

GLF`(T/`T ) is not contained in a Borel subgroup.

Here, [n/2] denotes the largest integer not exceeding n/2.

In fact, we also consider `-adic representations with coefficients. Let E be

another algebraic number field, λ a finite place of E with residue characteristic `,

and Eλ the completion of E at λ. Our main theorems 3.1, 3.2, 3.4 and 3.5 are

stated for Eλ-linear representations V and V ′. In Theorems 3.1 and 3.2, where we

assume Vu ≡ss V
′
u (modλ) and Vv ≡ss V

′
v (modλ), the constant C giving a lower

bound for the primes ` depends on the coefficient field E. If we assume, however,

Vv ≡ss V
′
v (mod `) rather than (mod λ), we can eliminate this dependence. This

variant, stated as Theorem 3.4, is particularly useful in certain applications. For

instance, we can prove the following theorem on the congruence of the Fourier

coefficients of modular forms:

Theorem 1.2. Let k be either 1 or an even integer ≥ 2. Then for any odd square-

free integer N ≥ 1 and any modular cuspidal normalized Hecke eigenform f on

Γ0(N) of weight k with Fourier expansion
∑∞
n=1 anq

n, congruences of the form

ap ≡ pi + pj (mod `) for all but finitely many primes p - `N

cannot hold if ` > 22k.

Note that, for each k, there are infinitely many N and f as above. See Theorem

5.1 for a more general statement including the case of Γ1(N).

In §2, we recall various notions of weights of `-adic Galois representations and

give some preliminary results needed in later sections. In §3, we state precisely our

main theorems together with the conditions for the Galois representations V , and

give their proofs. §4 contains some applications of Theorem 3.2 to étale cohomology

groups, and §5 contains the above mentioned results on the congruence of the

Fourier coefficients of modular forms.

§2. Weights

We use the same notations K,E, u, v, λ, . . . as in the Introduction. In addition, we

use the following notations: Gk denotes the absolute Galois group of a field k; for

a finite place v of K, we denote by Kv the completion of K at v, and identify its

absolute Galois group Gal(K̄v/Kv) with a decomposition group Gv of v; kv denotes

the residue field of v and qv its order; OE and OEλ denote respectively the integer

rings of E and Eλ, and fλ the absolute residue degree [kλ : F`] of λ; e(K ′u′/Ku)

denotes the ramification index of a finite extension K ′u′/Ku of discrete valuation

fields.
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§2.1. Weil weights

Let v be a place of K lying above ` and let V be a Q`-linear representation

of Gv. Choose a lift σv ∈ Gv of the qv-th power Frobenius Frobv ∈ Gkv and let

P (T ) = det(T −σv |V ) be the characteristic polynomial of σv acting on V . Recall

that an algebraic integer α is said to be a q-Weil integer of weight w if |ι(α)| = qw/2

for any field embedding ι : Q̄ ↪→ C, where | · | denotes the absolute value of C.

Definition 2.1. We say that V is of type (W) at v if all the roots of P (T ) are

qv-Weil integers. If this is the case, we call the weights of the roots of P (T ) the

Weil weights of V at v, and denote by Wv(V ) the multi-set consisting of them.

This definition does not depend on the choice of the Frobenius lift σv. Also,

the multi-set Wv(V ) is unchanged under a finite extension of the base field Kv.

For example, if X is a proper smooth variety over Kv, then the Q`-linear dual

V = Hr
et(XK̄v ,Q`)

∗ of the r-th `-adic étale cohomology group of XK̄v := X⊗Kv K̄v

is of type (W). This is known from [9] if X has good reduction at v, from [22] and

[25] if X has semistable reduction at v, and the general case is reduced to the

semistable case by de Jong’s alteration [7] (cf. [1, proof of Prop. 6.3.2] or [20, proof

of Prop. 3.3]).

Now suppose V is an Eλ-linear representation of Gv. We say that the rep-

resentation V is semistable at v if the inertia subgroup Iv acts unipotently on V

(or equivalently, trivially on the semisimplification V ss of V as an Eλ[Gv]-module;

here, we include the case where the action of Iv on V is trivial). In general, any V

is potentially semistable in the sense that the action of Iv on V is quasi-unipotent

([33, Appendix]); thus there exists a finite extension K ′v′/Kv such that the re-

striction of V to GK′
v′

is semistable. Hence we can consider the characteristic

polynomial P ′(T ) = det(T − Frobv′ |V ss) of the Frobenius Frobv′ at v′ acting on

the Eλ-vector space V ss. Note that the characteristic polynomial taken with V ss

viewed as a Q`-vector space is the product of the conjugates of this P ′(T ) (cf. [3,

Chap. 8, §12, Prop. 7]; here, a conjugate of a polynomial in Eλ[T ] means the result

of the coefficientwise application of a σ ∈ HomQ`(Eλ, Q̄`).)

Definition 2.2. An Eλ-linear representation V of Gv is said to be E-integral at v

if, for any finite extension K ′v′/Kv for which the inertia action on V is unipotent,

the characteristic polynomial P ′(T ) defined as above has coefficients in OE .

Note that an E-integral representation of type (W) at v has Weil weights ≥ 0

at v.

For example, if X is a proper smooth variety over Kv, then the Q`-linear dual

V = Hr
et(XK̄v ,Q`)

∗ of the r-th `-adic étale cohomology group of XK̄v := X⊗Kv K̄v
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is conjectured to be Q-integral (cf. [29, C4]). This conjecture is known to be true

under the assumption of the existence of the Künneth projector ([25, Cor. 0.6(1)]).

We note here that, by the next lemma, there are totally ramified extensions

among the finite extensions K ′v′/Kv as above (so that, when we want to compare

the characteristic polynomials P ′(T ) for different V ’s, we can use a K ′v′ with

residue degree 1):

Lemma 2.3. If L/Kv is a finite Galois extension, then there exists a totally ram-

ified subextension L′/Kv of L/Kv such that L = L′L0, where L0 is the maximal

unramified subextension of L/Kv.

Proof. If L/Kv is abelian, this is a consequence of local class field theory (e.g.

[17, Th. 7.1]). Suppose L/Kv is non-abelian. Let σ be a lift in Gal(L/Kv) of the

Frobenius in Gal(L0/Kv), and set H := 〈σ〉. Then we have H ( Gal(L0/Kv),

and the extension LH/Kv is a non-trivial totally ramified subextension of L/Kv.

Repeating this process with L/Kv replaced by L/LH , we are reduced to the case

of abelian L/Kv.

This lemma will be used in the proofs of Lemmas 3.6, 3.7 and the main

theorems.

§2.2. Hodge–Tate weights

Recall that u is a finite place of K lying above `. A Q`-linear representation V of Gu
is said (cf. [12, §3.7]) to be of Hodge–Tate type of Hodge–Tate weights h1, . . . , hn,

where n = dimQ`(V ) and hi are integers, if V ⊗Q` C` ' C`(h1)⊕ · · · ⊕ C`(hn) as

C`-semilinear Gu-representations, where C`(h) denotes the h-th Tate twist of the

completion C` of a fixed algebraic closure Q̄` of Q`. If this is the case, let HTu(V )

denote the multi-set of Hodge–Tate weights of V . Note that, by definition (or

the well-definedness) of Hodge–Tate weights, HTu(V ) is unchanged under a finite

extension of the base field Ku.

§2.3. Tame inertia weights

Let Itame
u denote the tame inertia group of K at u (= the quotient of the inertia

group Iu at u by its maximal pro-` subgroup). A character ϕ : Itame
u → F×

`h
can

be written in the form ϕ = ψt11 · · ·ψ
th
h , where ψi are the fundamental characters

of level h ([30, §1.7]) and 0 ≤ ti ≤ ` − 1. Then we set TIu(ϕ) := {t1/e, . . . , th/e}
(as a multi-set), where e = e(Ku/Q`) is the ramification index of K/Q at u. Note

that, by [30, §1.4], TIu(ϕ) is unchanged by a “moderately” ramified extension

of Ku; precisely speaking, if K ′u′/Ku is a finite extension of ramification index

e(K ′u′/Ku) < (`− 1)/max{tj | 1 ≤ j ≤ h}, then TIu′(ϕ|Itame
u′

) = TIu(ϕ).
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Let V be a Q`-linear representation of Gu, and T a Gu-stable Z`-lattice of V .

Set T̄ := T/`T . Then its semisimplification T̄ ss (as an F`[Gu]-module) is tamely

ramified (note that its isomorphism class does not depend on the choice of T ; cf.

[32, §15.2, Thm. 32]) and the action of the tame inertia group Itame
v is described

by a sum of characters ϕi : Itame
v → F×

`hi
. Then we define TIu(V ) (as a multi-set)

to be the union of the TIu(ϕi) for all i.

§2.4. Weights of geometric Galois representations

Let V be a Q`-linear representation of GK . For any multi-set X, we write

Σ(X) :=
∑
x∈X

x

whenever the sum on the right-hand side has a meaning.

Definition 2.4. We say that V is of type (G) if it is of type (W) at v, of Hodge–

Tate type at u, and

(G) Σ(Wv(V )) = 2Σ(HTu(V )).

If this is the case, we denote this value by w(V ) and call it the total weight of V .

Note that Σ(Wv(V )) and Σ(HTu(V )) are respectively the Weil and Hodge–

Tate weights of detQ`(V ).

Typical examples of V of type (G) include the Tate twists Q`(r) for r ∈ Z
and their twists by characters of finite order; their total weights are 2r.

A priori, the notion of type (G) depends on the places v - ` and u | ` (so it

should be called, say, type (Gu,v)), but in practice (i.e., in case V comes from

algebraic geometry), it is independent of the places, as the following proposition

shows. Its proof, which is modeled on the proof of Lemma 2.1 of [26], has been

communicated to us by Yoichi Mieda, to whom we are grateful:

Proposition 2.5. Let X be a proper smooth variety over K. Let V =

Hr
et(XK̄ ,Q`)∗ be the Q`-linear dual of the r-th `-adic étale cohomology group of

XK̄ := X ⊗K K̄, and put n = dimQ`(V ). Then:

(i) det(V ) is isomorphic to the twist of Q`(nr/2) by a character ε of order at

most 2. If r is odd, then ε = 1.

(ii) V is of type (G) with respect to any finite places u | ` and v - ` of K.

Note that, in (i), the Betti number n is even if r is odd by, say, Hodge sym-

metry.
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Proof. (ii) follows from (i) and the fact that V is of type (W) (here, the fact that

V is Hodge–Tate at every place v | ` follows from [11], [35], etc.). To show (i),

consider the character ε : GK → Q×` defined by det(V )(−nr/2), where (−nr/2)

denotes the (−nr/2)-th Tate twist. If v - ` is a finite place of K where X has good

reduction, then by [9], V is Q-integral and has all Weil weights equal to r. Hence

ε(Frobv) is a Weil integer in Q of weight 0, i.e., a unit of Z. Since Frobv’s for

such v’s are dense in GK , we see that ε takes values in Z×. The second statement

of (i) follows from Corollary 3.3.5 of [34].

As the next theorem shows, we can expect in some cases the total weight w(V )

to be equal also to 2Σ(TIu(V )). We refer the reader to, e.g., [12, §5.1.4] for the

definition of semistability of an `-adic representation of Gu. Note that “semistable”

implies “Hodge–Tate”. Note also that, if a smooth proper variety X over Ku has

semistable reduction, then the `-adic cohomology group Hr
et(XK̄ ,Q`) and its Q`-

linear dual are semistable in this sense; this is a consequence of Fontaine–Jannsen’s

conjecture (Cst) ([12, Conj. 6.2.7]) proved by Tsuji [35].

Theorem 2.6. Let V be a Q`-linear semistable representation of Gu with HTu(V )

⊂ [0, b]. If e(Ku/Q`)b < `− 1, then:

(i) ([5, Thms. 1.0.3 and 1.0.5]) TIu(V ) ⊂ [0, b].

(ii) ([6, Thm. 1]) Σ(HTu(V )) = Σ(TIu(V )).

If V is not assumed to come from algebraic geometry, the equality (G) holds

in some special cases:

Lemma 2.7. Let v be a finite place of K not lying above `. If V is a Q`-linear

representation of GK which is of type (W) at v, of Hodge–Tate type at all u | `, and

such that the value of Σ(HTu(V )) is the same for all u | `, then V is of type (G).

Note that the assumption on the Hodge–Tate type is automatic if there is

only one place of K lying above `. Note also that V = Hr
et(XK̄ ,Q`)∗ satisfies the

condition of this lemma (this follows from the theory of Hodge–Tate decomposi-

tion).

Proof. By taking the determinant, we are reduced to the case dimQ`(V ) = 1. By

[28, Chap. III, §2.2, Cor.], V is unramified outside a finite set S of places. If V has

Hodge–Tate weights r at every u | `, then V (−r) has Hodge–Tate weights 0, and

by [27, §5, Cor. 1], the image of inertia at u | ` is finite. By [16, §2, Thm. 1], the

image of inertia at any place outside ` is also finite. Thus V (−r) gives rise to an

abelian extension of K which is unramified outside S and finitely ramified at all
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places. By class field theory, such an extension is finite. Hence V is isomorphic to

a twist by a finite character of Q`(r). Thus (G) holds for V .

If there are more than one place above `, the equality (G) may not hold even

for representations coming from algebraic geometry. For example, let K be an

imaginary quadratic field, E an elliptic curve overK such that EndK(E)⊗ZQ ' K,

and ` a prime number which splits in K as ` = λλ′. Let V be a one-dimensional

GK-subrepresentation of the `-adic Tate module T`(E) ⊗Z` Q` of E. Then V is

of type (W) of Weil weight 1 at any v - `, while it is of Hodge–Tate type of

Hodge–Tate weight 0 or 1 at λ.

If we do not assume the equality (G), we can in fact prove an equality which

is fairly close to (G) under a mild condition:

Proposition 2.8. Let V be a Q`-linear representation of GK and q a prime num-

ber 6= `. Assume V is of type (W) at all places v | q and of Hodge–Tate type at all

places u | `. Then∑
v|q

[Kv : Qq]Σ(Wv(V )) = 2
∑
u|`

[Ku : Q`]Σ(HTu(V )).

Proof. The induced representation Ind
GQ
GK

(V ) is a representation of GQ which is

of type (W) at q and of Hodge–Tate type at `, and hence we have

Σ(Wq(Ind
GQ
GK

(V ))) = 2Σ(HT`(Ind
GQ
GK

(V )))

by Lemma 2.7. We then observe that

Wq(Ind
GQ
GK

(V )) =
∐
v|q

[Kv : Qq]Wv(V ),

HT`(Ind
GQ
GK

(V )) =
∐
u|`

[Ku : Q`]HT`(V ),

where the multiple mX of a multi-set X by a positive integer m is defined in the

obvious manner. Indeed, we have

(Ind
GQ
GK

(V ))|Gq =
⊕
v|q

Ind
Gq
Gv

(V |Gv )

by Mackey’s formula ([32, §7.3, Prop. 22]), and

Wq(Ind
Gq
Gv

(V |Gv )) = [Kv : Qq]Wv(V |Gv )

by definition of the induced representation and by the invariance of the Weil

weights under finite extensions of the base field. Similar equalities hold for u | `
and IndG`Gu(V |Gu).
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§3. Main results

Let the notations K,E, u, v, λ, . . . be the same as before. In addition, let n and e be

fixed integers ≥ 1 and b ≥ 0 be a fixed real number. All Eλ-linear representations

V in this section are assumed to have dimension n. Assume also that e is divisible

by the absolute ramification index e(Ku/Q`) of Ku/Q`.
For the first version of our main theorem, we shall consider Eλ-linear repre-

sentations V of GK which satisfy the following:

Conditions (I).

(SSv) V is semistable at v (in the sense that the action of the inertia is unipotent;

cf. §2.1),

(Intv) V is E-integral at v in the sense of Definition 2.2,

(PSTu) V becomes semistable (in the sense of Fontaine [12, §5.1.4]) over a finite

extension K ′u′ of Ku whose absolute ramification index e(K ′u′/Q`) divides

e (hence, in particular, V is of Hodge–Tate type at u),

(HTu) V has Hodge–Tate weights HTu(V ) ⊂ [0, (`− 1)/e2], and

(Gu,v) V is of type (G) in the sense of Definition 2.4.

Our first main result is:

Theorem 3.1. For any K,E, n, b, e, v as above, there exists a constant C =

C([E : Q], n, b, e, qv) such that the following holds: For any prime number ` > C,

any places u of K and λ of E both lying above `, and any representations V and V ′

satisfying Conditions (I) with HTu(V ) ⊂ [0, b], if one has Vu ≡ss V
′
u (modλ) and

Vv ≡ss V
′
v (modλ), then one has Vv 'ss V

′
v . [In particular, if V ≡ss V

′ (modλ) as

GK-representations, then Vv 'ss V
′
v .]

The constant C can be taken explicitly to be

C := max

{
e2b+ 1,

(
2

(
n

[n/2]

)
qnbv

)[E:Q]}
,

where [x] denotes the largest integer not exceeding x.

As in the Introduction, the meaning of the notations ≡ss and 'ss is as follows:

we say Vv ≡ss V
′
v (mod λ) if, for a choice of Gv-stable OEλ -lattices T and T ′

in V and V ′ respectively, T/λT and T ′/λT ′ have isomorphic semisimplifications

(T/λT )ss and (T ′/λT ′)ss as kλ-linear representations of Gv. The notation V ≡ss V
′

(mod λ) is defined similarly with the acting group replaced by GK . We also say

Vv 'ss V
′
v if their semisimplifications are isomorphic as Eλ-linear representations

of Gv.
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To state a variant of this theorem, let Conditions (II) be Conditions (I) with

(SSv) removed; that is, we set

Conditions (II) := (Intv) + (PSTu) + (HTu) + (Gu,v).

Let Wv(V ) denote the multi-set of Weil weights of V (Def. 2.1) considered as a

Q`-linear representation of Gv.

Theorem 3.2. For K,E, n, b, e, v as above, the following holds with the same

constant C = C([E : Q], n, b, e, qv) as in Theorem 3.1: For any prime number

` > C, any places u of K and λ of E both lying above `, and any represen-

tations V and V ′ satisfying Conditions (II) with HTu(V ) ⊂ [0, b], if one has

Vu ≡ss V
′
u (modλ) and Vv ≡ss V

′
v (modλ), then one has Wv(V ) = Wv(V

′). [In

particular, if V ≡ss V
′ (modλ) as GK-representations, then Wv(V ) = Wv(V

′).]

Remark 3.3. If we consider representations of type (W) at all places v | q for a

fixed prime number q and of Hodge–Tate type at all places u | `, we can prove

versions of Theorems 3.1 and 3.2 without assuming “type (G)” but with a larger

constant

C ′ := max

{
e2b+ 1,

(
2

(
n

[n/2]

)
qnb[K:Q]/[Kv :Qq ]

)[E:Q]}
.

The proofs are basically the same as in the case of type (G) but use Proposition

2.8 instead of the equality (G) in Definition 2.4.

The constant C = C([E : Q], n, b, e, qv) above depends on the coefficient

field E. By working modulo ` rather than modulo λ, however, we can suppress

this dependence as follows:

Theorem 3.4. For any K,E, n, b, e, v as above, there exists a constant C̃ =

C̃(n, b, e, qv) such that the following holds: For any prime number ` > C̃, any

places u of K and λ of E both lying above `, and any representations V and V ′

satisfying Conditions (I) with HTu(V ) ⊂ [0, b], if one has Vu ≡ss V
′
u (modλ) and

det(T − Frobv |Vv) ≡ det(T − Frobv |V ′v) (mod `OE), then one has Vv 'ss V
′
v .

[In particular, if V ≡ss V
′ (mod `) as GK-representations, then V 'ss V

′ as G′v-

representations.]

The constant C̃ can be taken explicitly to be

C̃ := max

{
e2b+ 1, 2

(
n

[n/2]

)
qnbv

}
.

Here, the notation V ≡ss V
′ (mod `) means that T/`T and T ′/`T ′ have iso-

morphic semisimplifications (T/`T )ss and (T ′/`T ′)ss as kλ[GK ]-modules, where T

and T ′ are OE-lattices as before. Note that T/`T is a priori an (OE/`OE)[GK ]-
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module but we regard it also as a kλ[GK ]-module via the canonical ring homo-

morphism kλ → OE/`OE .

We have the following obvious variant with Conditions (II) (or the modulo `

version of Theorem 3.2):

Theorem 3.5. For any K,E, n, b, e, v as above, the following holds with the same

constant C̃ = C̃(n, b, e, qv) as above: For any prime number ` > C̃, any places u of

K and λ of E both lying above `, and any representations V and V ′ satisfying Con-

ditions (II) with HTu(V ) ⊂ [0, b], if Vu ≡ss V
′
u (modλ) and det(T − Frobv |Vv) ≡

det(T − Frobv |V ′v) (mod `OE), then Wv(V ) = Wv(V
′). [In particular, if V ≡ss

V ′ (mod `) as GK-representations, then Wv(V ) = Wv(V
′).]

The rest of this section is devoted to the proof of the theorems. We begin with

a version of the gap principle:

Lemma 3.6. Let E,n, v be as before, and let w ∈ R≥0 be given. Then there exists

a constant C1 = C1([E : Q], n, qwv ) > 0 such that, for any prime ` > C1 and for

any n-dimensional Eλ-linear representations V, V ′ of Gv which are of type (W),

E-integral at v and such that Σ(Wv(V )),Σ(Wv(V
′)) are in [0, [Eλ : Q`] · w], the

following hold:

(i) If V ≡ss V
′ (modλ) as Gv-representations, then Wv(V ) = Wv(V

′).

(ii) Assume further that V ss and (V ′)ss are unramified. If V ≡ss V
′ (modλ) as

Gv-representations, then V 'ss V
′ as Gv-representations.

The constant C1 can be taken explicitly to be

C1 :=

(
2

(
n

[n/2]

)
qw/2v

)[E:Q]

.

We also have the following modulo ` version of (ii) above, in which the constant

is independent of [E : Q]:

Lemma 3.7. Let E,n, v be as before, and let w ∈ R≥0 be given. Then there

exists a constant C̃1 = C̃1(n, qwv ) > 0 such that, for any prime ` > C1

and for any n-dimensional Eλ-linear representations V, V ′ of Gv such that

V ss, (V ′)ss are unramified and which are of type (W), E-integral at v and such

that Σ(Wv(V )),Σ(Wv(V
′)) are in [0, [Eλ : Q`] · w], the following holds: If

det(T − Frobv |V ) ≡ det(T − Frobv |V ′) (mod `OE)), then V 'ss V ′ as Gv-

representations.

The constant C̃1 can be taken explicitly to be

C̃1 := 2

(
n

[n/2]

)
qw/2v .
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As the proofs are similar, we only give a proof of Lemma 3.6.

Proof of Lemma 3.6. Choose a totally ramified extension K ′v′/Kv over which V

and V ′ become semistable (cf. Lemma 2.3). Let P (T ) = det(T − Frobv′ |V ss)

and P ′(T ) = det(T − Frobv′ | (V ′)ss) be the characteristic polynomials (taken as

Eλ-linear representations) of the Frobenius Frobv′ at v′ acting on the semisimpli-

fications V ss and (V ′)ss, respectively. By assumption, they have coefficients in OE .

By assumption on the weights, for any embedding E ↪→ C, the terms of Tn−i have

coefficients of absolute value ≤
(
n
i

)
q
w/2
v (note that Σ(Wv(V )) is the sum of the

Weil weights of V as a Q`-linear representation, and hence the sum of the Weil

weights of the roots of P (T ) is in [0, w]). Set C1 := (2 max0≤i≤n
(
n
i

)
q
w/2
v )[E:Q] =

(2
(

n
[n/2]

)
q
w/2
v )[E:Q]. Then if ` > C1, we have

V ≡ss V
′ (modλ) as Gv-representations

⇔ P (T ) ≡ P ′(T ) (modλ) ⇔ P (T ) = P ′(T ).

Here, the last equivalence follows from the next lemma. This implies that Wv(V ) =

Wv(V
′). If V ss and (V ′)ss are unramified, then they are determined by the actions

of Frobv, and hence the equality P (T ) = P ′(T ) is equivalent to V 'ss V
′.

Lemma 3.8. Let a be a non-zero integer of E, and C0 a real number > 0. If

a ≡ 0 (modλ) (resp. a ≡ 0 (mod `OE)) and |ι(a)| ≤ C0 for any embedding

ι : E ↪→ C, then ` ≤ C [E:Q]/fλ
0 (resp. ` ≤ C0).

Proof. If λ | a (resp. ` | a) in OE , then by taking the norm N : E× → Q×, we have

`fλ ≤ |N(a)| (resp. `[E:Q] ≤ |N(a)|). If |ι(a)| ≤ C0, then by taking the norm (or

product over all ι), we have |N(a)| ≤ C [E:Q]
0 . The required inequality follows from

these two inequalities.

We need one more lemma:

Lemma 3.9. Let G be a profinite group and T, T ′ be free OEλ-modules on which G

acts continuously and OEλ-linearly. Let (T/λT )ss and (T/`T )ss be the semisimplifi-

cations of T/λT and T/`T as kλ[G]-modules, respectively. Let e be the ramification

index of Eλ/Q`. Then:

(i) (T/`T )ss is isomorphic to the direct sum of e copies of (T/λT )ss.

(ii) If (T/λT )ss ' (T ′/λT ′)ss, then (T/`T )ss ' (T ′/`T ′)ss.

Proof. Part (ii) follows from (i) immediately. To prove (i), consider the filtration

T/`T = T/λeT ⊃ λT/λeT ⊃ · · · ⊃ λeT/λeT = 0.
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Then “multiplication by λ” (where λ is identified with a uniformizer at λ) in-

duces isomorphisms λiT/λi+1T → λi+1T/λi+2T of the graded quotients as kλ[G]-

modules. It then follows that (T/`T )ss ' ((T/λT )ss)⊕e.

Now we can prove the theorems. We only prove Theorems 3.1 and 3.2, the

proofs of Theorems 3.4 and 3.5 being similar.

Let C = max{e2b+ 1, (2
(

n
[n/2]

)
qnbv )[E:Q]}, as in Theorem 3.1. Choose a finite

totally ramified extension (Ku)′/Ku, with absolute ramification index e2, over

which V and V ′ become semistable (cf. Lemma 2.3). If ` > C, then e2b < `−1. Take

a finite extension K ′ of K and a place u′ |u of K ′ such that the completion of K ′

at u′ is (Ku)′. By assumption, we have HTu′(V ) ⊂ [0, b]. Then by Theorem 2.6(i),

we have TIu′(V ) ⊂ [0, b]. The same holds for V ′, since TIu′(V ) = TIu′(V ′) by the

assumption Vu ≡ss V
′
u (modλ) (Note that, by Lemma 3.9, we also have Vu ≡ss

V ′u (mod `) as F`[Gu]-modules, where V and V ′ are now regarded as Q`-linear

representations, so that the definition of TIu and Theorem 2.6 are applicable).

Now we recall that V and V ′ are of type (G). By Theorem 2.6(ii), we have

Σ(TIu′(V )) = Σ(HTu′(V )) = Σ(HTu(V )) = 1
2Σ(Wv(V )),

and these are also equal to

Σ(TIu′(V ′)) = Σ(HTu′(V ′)) = Σ(HTu(V ′)) = 1
2Σ(Wv(V

′)).

Since HTu(V ) ⊂ [0, b], these are bounded by [Eλ : Q`] · nb. In particular, the

total weights Σ(Wv(V )) and Σ(Wv(V
′)) are ≤ [Eλ : Q`] · 2nb. By Lemma 3.6(i)

(resp. (ii)), the assumption Vv ≡ss V
′
v (modλ) implies that Wv(V ) = Wv(V

′)

(resp. Vv 'ss V
′
v) if ` > (2

(
n

[n/2]

)
qnbv )[E:Q].

§4. Corollaries

Here we give several corollaries of Theorem 3.2, which are motivated by a con-

jecture of Rasmussen and Tamagawa ([23]; see also [4], [20], [21] and [24]). The

conjecture says that, for a prime number ` large enough, there does not exist an

abelian variety A of a given dimension over a given number field with good re-

duction outside ` and such that the Galois representation on A[`] is Borel whose

diagonal components are powers of the modulo ` cyclotomic character. The pur-

pose of this section is to generalize such a non-existence statement for abelian

varieties to one for algebraic varieties in terms of étale cohomology groups by

applying one of our main theorems of §3. This is a sort of formalization of the

method of [20] and [24]. In these papers, the Rasmussen–Tamagawa conjecture

was proved under the assumption that the abelian varieties have semistable re-

duction everywhere. An advantage of our main results is that we can consider
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not only semistable representations associated with abelian varieties but also a

certain class of potentially semistable representations associated with algebraic

varieties.

The notations (K, E, n, b, e, v, u, `, λ, C = C([E : Q], n, b, e, qv), . . . ) are

the same as in Theorem 3.2. In this section, V = V rX will be the Eλ-linear dual

Hr
et(XK̄ , Eλ)∗ of the r-th λ-adic étale cohomology group, where X is a smooth

proper variety over K, and XK̄ denotes its base extension to K̄. We set V̄ =

V̄ rX := T/λT , choosing a GK-stable OEλ -lattice T in V , and let V̄ ss = V̄ r,ssX be its

semisimplification as a kλ[GK ]-module (the isomorphism class of V̄ r,ssX does not

depend on the choice of T ).

To state the first corollary, we make the following hypothesis on V̄ ss:

Hypothesis (H). Each simple factor W̄ of V̄ ss lifts to an Eλ-linear representation

W of GK of the form Hs
et(YK̄ , Eλ)∗ which is semistable at all u | `, and HTu(W ) ⊂

[0, `− 2], where Y is a proper smooth variety over K and s is some non-negative

integer.

Corollary 4.1. For any prime ` > C, any odd integer r with 1 ≤ r ≤ b, any

places u of K and λ of E both lying above `, and any smooth proper variety X

which has the r-th Betti number ≤ n, has potentially good reduction at v, and has

semistable reduction at u | `, if (H) is true for V̄ r,ssX , then none of the simple factors

of V̄ r,ssX are of odd dimension.

Proof. Note first that, if s is odd, then Hs
et(YK̄ , Eλ) has even dimension by (GAGA

and) Hodge theory. Now, let W̄1, . . . , W̄k be the simple factors of V̄ ss. By (H),

each W̄i lifts to a geometric Wi with HTu(Wi) ⊂ [0, ` − 2]. If one of the Wi has

odd dimension, then it must have even weight, while V has odd weight r, since X

has potentially good reduction at v. Thus the corollary follows from Theorem 3.2

by putting V ′ := W1 ⊕ · · · ⊕Wk.

As a special case where Hypothesis (H) holds, we have:

Corollary 4.2. For any prime number ` > C, any odd integer r with 1 ≤ r ≤ b,
any places u of K and λ of E both lying above `, and any smooth proper variety X

over K which has r-th Betti number ≤ n, has potentially good reduction at v, and

has semistable reduction at u, the Galois representation on V̄ r,ssX is not the sum of

integral powers of modulo ` cyclotomic characters.

In fact, we can generalize this a bit as follows. Let χ and χ̄ denote respectively

the `-adic and modulo ` cyclotomic characters of GK .
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Corollary 4.3. Assume E contains the e2-th roots of unity. Then for any prime

number ` > C such that ` ≡ 1 (mod e2), any odd integer r with 1 ≤ r ≤ b, any

places u of K and λ of E both lying above `, and any smooth proper variety X

over K which has r-th Betti number ≤ n, has potentially good reduction at v,

and acquires semistable reduction over a finite extension K ′u′/Ku with absolute

ramification index e(K ′u′/Q`) dividing e, the Galois representation V̄ r,ssX is not the

sum of characters of GK of the form ε̄iχ̄
bi , where ε̄i : GK → k×λ are characters

unramified at u and of finite order dividing the order of the group of roots of unity

in E, and bi are integers.

Proof. Suppose X has semistable reduction over K ′u′ with e(K ′u′/Q`) | e. We may

assume e(K ′u′/Q`) = e. Suppose V̄ ss is the sum of the characters ε̄iχ̄
bi as above.

Then the action of the tame inertia group Itame
u′ at u′ on the i-th factor is via χ̄bi ,

which equals θebi , where θ is the fundamental character of Itame
u′ of level 1 ([30,

§1.8, Prop. 8]). By Theorem 2.6(i), we have ebi ≡ ci (mod `− 1) with 0 ≤ ci ≤ eb.
Since e2 | ` − 1, we have bi = b0i + `−1

e2 j with 0 ≤ b0i ≤ b and 0 ≤ j < e2.

Set κ̄ := χ̄(`−1)/e2 and let κ : GK → E×λ be its Teichmüller lift. Since the e2-th

power of κ is trivial, it takes values in E×. Similarly, the Teichmüller lift εi of ε̄i
has also values in E×. Now each character ε̄iχ̄

bi = ε̄iκ̄
jχ̄b0i lifts to the character

εiκ
jχb0i : GK → E×λ , or to the 1-dimensional Eλ-linear E-integral geometric

representation Eλ(εiκ
j) ⊗Q` Q`(b0i), where Eλ(εiκ

j) is the twist of the trivial

representation Eλ by the finite character εiκ
j , and Q`(b0i) denotes the b0i-th Tate

twist. Let V ′ be the direct sum of these representations. By Theorem 3.2, we

have Wv(V ) = Wv(V
′), but Wv(V ) = {r, . . . , r} (since X has potentially good

reduction at v) while Wv(V
′) = {2b01, . . . , 2b0n}, which is a contradiction if r is

odd.

Specializing further, we have:

Corollary 4.4. Let K = Q. Assume E contains the e2-th roots of unity. Then

for any prime number ` > C such that ` ≡ 1 (mod e2), for any odd integer r

with 1 ≤ r ≤ b, and for any smooth proper variety X over Q which has r-th Betti

number ≤ n, has good reduction outside ` and acquires semistable reduction over

a finite extension K ′u′/Q` with absolute ramification index e(K ′u′/Q`) dividing e,

the Galois representation on V̄ rX is not Borel.

Here, we say that the representation V̄ is Borel if the action of GQ is given

by upper-triangular matrices with respect to a suitable kλ-basis of V̄ .

Proof. Indeed, if it is Borel, its semisimplification is a sum of characters which

are unramified outside ` by assumption. Since the base field is Q, they are powers
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of the modulo ` cyclotomic character. Now the result follows from the previous

corollary.

§5. Congruences of modular forms

We use the same notations as in the Introduction, except that we always suppose

K = Q and write q for qv in this section. We put ϕ(N) = #(Z/NZ)× for any

positive integer N and denote by Z̄ the integer ring of Q̄. The goal of this section

is to give a proof of the following congruence result on the Fourier coefficients of

modular forms. For any integers k,N ≥ 1 and a character ε : (Z/NZ)× → C×,

let Sk(N, ε) denote the C-vector space of cusp forms of weight k, level N and

Nebentypus character ε. We denote by Nε the conductor of ε. For a normalized

Hecke eigenform f(z) =
∑∞
n=1 an(f)e2πinz ∈ Sk(N, ε), integers i, j and a prime

number `, consider the following condition on the Fourier coefficients ap(f) of f :

(Ci,j;`) ap(f) ≡ pi + pj (mod `Z̄) for all but finitely many primes p - `N.

Such congruences can be interpreted in terms of the Galois representation ρf,λ
associated with f , where λ is a place above ` of the Hecke field of f . For example,

the congruence (Ci,j;`) holds if ρf,λ ≡ss χ
i ⊕ χj (mod `), where χ is the `-adic

cyclotomic character. We say, for the moment, that a prime ` is exceptional for

f if the image of the residual representation of ρf,λ does not contain SL2(kλ) for

some λ | ` (cf. [31, §3.1] and [19, §3]). For fixed k and N , it is well known (cf. e.g.

[31, Thm. 10] and [18, Introduction]) that there are only finitely many exceptional

primes, and a fortiori finitely many primes ` for which (Ci,j;`) holds for some i, j

and f ∈ Sk(N, ε). Until recently, however, the situation has not been very clear

when we let k and N vary; as for recent works, see [15] for the case of modular

Abelian varieties (i.e., the case of weight k = 2) and [2] for the case of modular

forms on Γ0(N) with fixed level N . In this vein, we show the following by using

Theorem 3.4:

Theorem 5.1. Fix a prime number q. For any integer k ≥ 1, any prime

` > 4q2(k−1), any integer N such that q - N and `2 -N , any character ε :

(Z/NZ)× → C× with ` - ϕ(Nε), and any normalized Hecke eigenform f ∈ Sk(N, ε),

we have the following:

(i) The condition (Ci,j;`) can hold only if i ≡ j ≡ (k − 1)/2 (mod `− 1).

(ii) The condition (Ci,j;`) holds for no i and j if either k = 1, k is even, or ` - N .

We begin by proving a lemma. For any f as in the theorem, we denote by

E = Qf the field obtained by adjoining all Fourier coefficients of f to Q, which is
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a finite extension of Q. We regard ε as a character with values in O×E . Denote by ε̄

(resp. ε̄λ) the composite (Z/NZ)×
ε→ O×E

mod `−−−→ (OE/`OE)× (resp. (Z/NZ)×
ε→

O×E
modλ−−−−→ (OE/λOE)×). Let

ρf,λ : GQ → GLEλ(Vf,λ)

be the 2-dimensional Eλ-linear representation of GQ associated with f by Deligne

[8] and Deligne–Serre [10]. Thus if p - `N , then Vf,λ is unramified at p and one has

det(T − Frobp |Vf,λ) = T 2 − ap(f)T + ε(p)pk−1.

In particular, it is E-integral at p in the sense of Definition 2.2. One has Wp(Vf,λ) =

{(k − 1)/2, . . . , (k − 1)/2} (with multiplicity 2[Eλ : Q`]). It is crystalline (resp.

semistable) at ` if ` - N (resp. `2 - N).

Lemma 5.2. Suppose ` > 2. Let k,N ≥ 1 be two integers. Let ε : (Z/NZ)× → C×

be a character such that ` - ϕ(Nε). Suppose that a normalized Hecke eigenform

f ∈ Sk(N, ε) satisfies the condition (Ci,j;`) for some i, j. Then ε̄ has values in the

canonical image of F×` in (OE/`OE)×. Moreover, the following holds:

(i) ε̄(x (mod N)) = xi+j−(k−1) (mod `) for any x prime to N .

(ii) If ` - N , then i+ j ≡ k − 1 (mod `− 1) and ε̄ = 1.

Proof. By assumption, we have Tr(Frobp|Vf,λ) ≡ pi + pj (mod `OE) for all but

finitely many p - `N . In particular,

(5.1) ρf,λ ≡ss χ
i ⊕ χj (modλ)

as kλ-linear representations of GQ (this holds because ` > 2 = dim ρf,λ; see, e.g.,

[21, Lemma 2.10]), and then we also have ε(p)pk−1 ≡ pi+j (mod λ). Hence we see

that

(5.2) ε̄λ(x (modN)) = xi+j−(k−1) (modλ)

for any λ | ` and any integer x prime to N .

(i) Since the kernel of the projection (OE/`OE)× →
∏
λ|`(OE/λOE)× has

`-power order, if ` - ϕ(Nε), then the homomorphism
∏
λ|` ε̄λ : (Z/NZ)× →∏

λ|`(OE/λOE)× lifts uniquely to a homomorphism (Z/NZ)× → (OE/`OE)×,

which is ε̄. According to (5.2), it is given by

(5.3) ε̄(x (modN)) = xi+j−(k−1) (mod `OE)

for any integer x prime to N .
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(ii) Suppose ` - N . Then (5.3) must hold for x = `, which is possible only if

i+ j ≡ k − 1 (mod `− 1). In particular, we obtain ε̄ = 1.

Proof of Theorem 5.1. (i) Suppose ` -ϕ(N) and `2 - N . Then ρf,λ is semistable

at `. By assumption, we have Tr(Frobq|Vf,λ) ≡ qi + qj (mod `OE). Combining

this with Lemma 5.2(i), we obtain det(T −Frobq |Vf,λ) ≡ det(T −Frobq |χi⊕χj)
(mod `OE). We also have the congruence (5.1). Therefore, if ` > 4q2(k−1), it

follows from Theorem 3.4 (applied with V ′ = χi
′ ⊕ χj′ , where i′, j′ are integers in

[0, `− 2] such that i′ ≡ i, j′ ≡ j (mod `− 1)) that ρf,λ 'ss χ
i′ ⊕ χj′ as Eλ-linear

representations of the decomposition group Gq of q. Looking at the Weil weights,

we obtain i ≡ j ≡ (k − 1)/2 (mod `− 1).

(ii) If k is even, then the impossibility of (Ci,j;`) follows from (i).

If k = 1 and the congruence condition (Ci,j;`) holds, then (i) together with

(5.1) implies that ρ̄f,λ := ρf,λ (mod λ) is unipotent and, in particular, Im(ρ̄f,λ)

is an `-group. On the other hand, if k = 1, then by [10], Im(ρf,λ) is finite and

its image in PGL2(OEλ) is either dihedral, A4, S4 or A5. Since the kernel of the

reduction map GL2(OEλ) → GL2(kλ) is pro-`, the representation ρ̄f,λ cannot be

unipotent if ` ≥ 3.

Finally, assume ` - N . Then ρf,λ is crystalline at `, and thus the Fontaine–

Laffaille theory (cf. [13, Thm. 5.3(iii)]) implies that the tame inertia weights and

the Hodge–Tate weights of ρf,λ coincide with each other. Hence it follows from (5.1)

that {i, j} ≡ {0, k−1} (mod `−1). Since ` > k, we obtain {(k−1)/2, (k−1)/2} =

{0, k − 1}, which is impossible unless k = 1.
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