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Positive Radial Solutions for Singular Quasilinear
Elliptic Equations in a Ball

by

Dang Dinh Hai

Abstract

We establish the existence of positive radial solutions for the boundary value problems{
−∆pu = λf(u) in B,
u = 0 on ∂B,

where ∆pu = div(|∇u|p−2∇u), p ≥ 2, B is the open unit ball RN , λ is a positive param-
eter, and f : (0,∞)→ R is p-superlinear at ∞ and is allowed to be singular at 0.
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§1. Introduction

In this paper, we study the existence of positive radial solutions for the boundary

value problem

(1.1)

{
−∆pu = λf(u) in B,

u = 0 on ∂B,

where ∆pu = div(|∇u|p−2∇u), p ≥ 2, B is the open unit ball RN , N > 1, λ is a

positive parameter, and f : (0,∞)→ R.

Thus we shall consider the ODE problem

(1.2)

{
−(rN−1φ(u′))′ = λrN−1f(u), 0 < r < 1,

u′(0) = 0, u(1) = 0,

where φ(z) = |z|p−2z.
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There is a vast literature on problem (1.1) when f is nonsingular. In the

semilinear case, i.e. p = 2, problem (1.1) on a general domain has a long history and

has been studied extensively (see e.g. [Am2, Li] and the references therein). The

quasilinear case, i.e. p > 1, has received much attention during the past two decades

(see e.g. [GMS, LS1, LS2]). In the case when f is nonsingular and p-superlinear at

∞, i.e., limu→∞ f(u)/up−1 = ∞, such problems have been investigated in [ANZ,

Am1, AAB, DLN, GS, SW] for p = 2, and in [AAP, DMS, DSS, GMS, HS, HSS]

for p > 1. We are motivated here by the results in [AAP, GMS, HS] concerning the

existence of positive solutions to (1.2) when f is p-superlinear, p > 1. In [AAP,

Theorem 4.6], assuming that f ∈ C1[0,∞), f(0) < 0, and there exist constants

β > 0 and α ∈ (p, p∗), where p∗ = Np/max(N − p, 0), such that

lim
u→∞

f(u)

uα−1
= β,

the authors showed that (1.2) has a positive solution for λ > 0 small and there

exists a connected set of positive solutions of (1.1) bifurcating from infinity at

λ = 0. The result in [AAP] was extended in [HS, Theorems 2.1, 2.2] to include

more general nonlinearities and to cover the case when f(0) > 0. We refer to

[GMS] for related results in the case when f(0) = 0.

Problems of the type (1.1) with p = 2 and f(u) singular at u = 0 arise in the

theory of heat conduction in electrical conducting materials, as discussed in [FM].

The model example of this case is

(1.3)

{
−∆u = A/uα + γuq in B,

u = 0 on ∂B,

where A, γ, α, q are nonnegative constants with α ∈ (0, 1), q > 0, A 6= 0. Note that

when γ 6= 0, this problem can be reduced to (1.1) with f(u) = Au−α + up and

λ = γ(1+α)/(q+α) via the transformation v = γ1/(q+α)u.

When A < 0 and q < 1, the existence of a positive solution to (1.3) for γ large

was established in [SY, Zh]. The case when A > 0 was discussed in [CRT, FM, LM]

for γ = 0, and in [SY, St] for γ > 0 and p ∈ (0, 1). For A > 0, γ > 0 and q ≥ 1,

it was established in [CP] that there exists a constant λ̃ > 0 such that (1.3) has

a positive solution for λ < λ̃ and no solution for λ > λ̃. The case when f(u)

is bounded away from 0 and limu→∞ f(u)/uq ∈ (0,∞) for some q ∈ (1, 2∗), was

considered in [HKS], in which the authors showed the existence of a constant λ̃ > 0

such that (1.1) with p = 2 has at least two positive radial solutions for λ < λ̃, at

least one for λ = λ̃, and none for λ > λ̃.

In this paper, we are interested in positive radial solutions of the problem

(1.1) for p ≥ 2 when f is p-superlinear at∞ and is allowed to be singular at 0. We
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shall consider both cases when limu→0+ f(u) > 0 and limu→0+ f(u) < 0. Problems

of this kind appear in the the study of chemical reactions, thin films, and non-

Newtonian fluids [AA, Di, DHM, DMO, HM]. Our results provide extensions of

the results in [AAP, HS] to the singular case, and the results in [HKS] to the case

p ≥ 2 with more general nonlinearities f(u). In particular, the existence result

in Theorem 2.1 below deals with the situation when f is p-superlinear at ∞ and

limu→0+ f(u) = −∞, which occurs in some chemical reactions (see [Di, DHM,

DMO]) and has not been considered in the literature to our knowledge.

To be more precise, we shall prove in the case limu→0+ f(u) < 0 that problem

(1.2) has a positive, decreasing solution uλ for λ small, and uλ →∞ uniformly on

compact subsets of [0, 1) as λ→ 0.

In the case limu→0+ f(u) > 0, we show the existence of a positive number

λ∗ such that (1.2) has at least two positive solutions for λ < λ∗, at least one for

λ = λ∗, and none for λ > λ∗.

In particular, our results when applied to the model cases

(1.4)

{
−∆pu = λ(−1/uα + uq(ln(1 + u))r) in B,

u = 0 on ∂B,

and

(1.5)

{
−∆pu = λ(1/uα + uq(ln(1 + u))r) in B,

u = 0 on ∂B,

where α ∈ [0, 1), r ≥ 0, q ∈ (p − 1, p∗ − 1), give the existence of a positive radial

solution to (1.4) for λ small, and the existence of a constant λ∗ > 0 such that (1.5)

has at least two positive radial solutions for λ < λ∗, at least one for λ = λ∗, and

none for λ > λ∗.

Our proofs depend on degree theory and sup- and supersolutions approach as

in [HS]. However, the proofs in [HS] do not carry over to the singular case since

the compact operator introduced in [HS] is not defined on C[0, 1] in that case.

To overcome this, we come up with a modified problem whose solutions are fixed

points of a compact operator in C[0, 1] and then show that these solutions are in

fact positive solutions of the original problem.

§2. Main results

We shall make the following assumptions:

(A.1) f : (0,∞)→ R is continuous and

lim
x→∞

f(x)

xp−1
=∞.
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(A.2) N lim inf
x→∞

F (x)

xf(x)
> max

(
N

p
− 1, 0

)
, where F (x) =

∫ x

0

f(t) dt.

(A.3) There exists a constant α ∈ [0, 1) such that

lim sup
x→0+

xα|f(x)| <∞.

(A.4) f > 0 on (0,∞) and there exist constants B > 0 and β ∈ [0, 1) such that

lim
x→0+

xβf(x) = B.

By a positive solution of (1.2), we mean a function u ∈ C1[0, 1] with u > 0 on [0, 1)

that satisfies (1.2).

Our main results are:

Theorem 2.1. Let (A.1)–(A.3) hold. Then there exists a constant λ0 > 0 such

that (1.2) has a positive, decreasing solution uλ for λ ∈ (0, λ0) with ‖uλ‖∞ →∞ as

λ → 0. Furthermore, there exists a function L : R+ → R with limd→∞ L(d) = ∞
such that

uλ(r) ≥ L(‖uλ‖∞)(1− r) for r ∈ [0, 1).

Theorem 2.2. Let (A.1)–(A.4) hold. Then there exists a positive constant λ∗ such

that (1.2) has at least two positive solutions for λ ∈ (0, λ∗), at least one for λ = λ∗,

and none for λ > λ∗.

Remark 2.3. (i) Theorems 2.1 and 2.2 extend Theorems 2.1 and 3.1 of [HS],

and Theorem 4.6 of [AAP], to the singular case. Theorem 2.2 with p = 2 extends

Theorem 1 of [HKS] to nonlinearities f(u) that do not behave like uq at ∞.

(ii) When f is nonsingular, condition (A.2) is satisfied under the following

assumption introduced in [GMS]:

(A.2)′ There exists a constant θ ∈ (0, 1) such that

N lim inf
x→∞

F (θx)

xfs(x)
> max

(
N

p
− 1, 0

)
, where fs(x) = sup

0≤t≤x
f(t).

It was shown in [GMS] that when f is nondecreasing, (A.2)′ is equivalent to the

following condition given in [TH]:

(A) There exists a constant θ ∈ (0, 1) such that

NF (θx)− N − p
p

xf(x) ≥ 0 for x large.
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§3. Preliminary results

Let ψ(r) = 1 − r. The following lemma is an extension of Lemma 2.2 of [HS] to

the singular case.

Lemma 3.1. Let ζ be a nonnegative number and let u be the solution of

(3.1)

{
−(rN−1φ(u′))′ = λrN−1k(r), 0 < r < 1,

u′(0) = 0, u(1) = ζ,

where k ≥ −mψ−α on (0, 1) for some constants m > 0, α ∈ (0, 1). Then

(i) u′ ≤ φ−1(λm1),

(ii) u(t) ≥ u(s)− φ−1(λm1) for 0 ≤ t ≤ s ≤ 1,

(iii) tN−1φ(u′(t)) ≥ sN−1φ(u′(s)) − λm1 for 0 ≤ t ≤ s ≤ 1, where m1 =

m(1− α)−1.

Proof. Let u be a solution of (3.1). By integrating, we obtain

u′(r) =−φ−1

(
λ

rN−1

∫ r

0

τN−1k(τ) dτ

)
≤ φ−1

(
λm

rN−1

∫ r

0

τN−1ψ−α dτ

)
≤ φ−1

(
λm

∫ r

0

ψ−αdτ

)
≤ φ−1(λm1)

for r ∈ (0, 1), i.e. (i) holds. Integrating this inequality on (t, s), t < s, gives

u(s)− u(t) ≤ φ−1(λm1)(s− t),

which implies (ii). Finally, integrating the equation in (3.1) on (t, s), we obtain (iii).

Lemma 3.2 ([HW]). Let q > 1. Then there exists a constant ν ∈ (0, 1) such that

for each g ∈ Lq(0, 1), the problem{
−(rN−1φ(u′))′ = rN−1g, 0 < r < 1,

u′(0) = 0, u(1) = 0,

has a unique solution u ≡ Tg ∈ C1,ν [0, 1]. Furthermore, there exists a constant

C > 0 independent of g such that

|u|1,ν ≤ C‖g‖1/(p−1)
q ,

and the operator T : Lq(0, 1)→ C1[0, 1] is compact.



346 D. D. Hai

Define

g(x) =

{
f(x) if 0 < x ≤ 1,

f(1) if x > 1,
(3.2)

h(x) =

{
0 if 0 < x ≤ 1,

f(x)− f(1) if x > 1,
(3.3)

and h(x) = 0 if x ≤ 0. Then h is continuous, bounded below on R and f = g + h

on (0,∞). Using (A.2), it is easily seen that

(3.4) N lim inf
x→∞

H(x)

xh(x)
> max

(
N

p
− 1, 0

)
,

where H(x) =
∫ x

0
h(t) dt.

Lemma 3.3. (i) There exist positive constants C,C1, a, δ with

N/p > a > N/p− 1

such that

CH(x)a/N ≤ x, h(x) ≤ C1H(x)1−a/N

and

NH(x)− axh(x) ≥ δH(x)

for x� 1.

(ii) For each θ ∈ (0, 1), there exists a constant bθ such that

H(θx) ≥ bθH(x)

for x� 1. Furthermore, bθ → 1 as θ → 1.

Proof. In view of (3.4), there exist positive constants a, ã such that

N lim inf
x→∞

H(x)

xh(x)
> ã > a > max

(
N

p
− 1, 0

)
.

Hence

(3.5) H(x) ≥ ã

N
xh(x) for x� 1,

which implies

NH(x)− axh(x) ≥ N
(

1− a

ã

)
H(x)

and

H ′(x) ≤ N

ax
H(x)
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for x� 1. Solving this differential inequality gives

H(x) ≤ C0x
N/a for x� 1,

and so x ≥ (H(x)/C0)a/N for x � 1. Note that p < N/a since limx→∞H(x)/xp

=∞. Hence

h(x) ≤ NH(x)

ax
≤ C1H(x)1−a/N

for x� 1 and (i) follows. Next, fix θ ∈ (0, 1). By (3.5),∫ x

θx

h(t) dt =

∫ x

θx

th(t)

t
dt ≤ N

θax

∫ x

θx

H(t) dt ≤ N(1− θ)
θa

H(x)

for x� 1, where we have used the fact that H(x) is increasing for large x. Hence

H(θx) = H(x)−
∫ x

θx

h(t) dt ≥ bθH(x)

for x� 1, where bθ = 1− N(1−θ)
θa .

§4. Abstract setting and a priori estimates

Let λ > 0. For v ∈ C[0, 1], define Sλv = λ (g(max(v, ψ)) + h(v)), where g and h

are defined by (3.2) and (3.3) respectively. By (A.3), there exists a constant c0 > 0

such that

|g(x)| ≤ c0
xα

+ |f(1)| for all x > 0.

In particular,

(4.1) |g(max(v, ψ))| ≤ c1
ψα

,

where c1 = c0 + |f(1)|. This, together with the Lebesgue Dominated Convergence

Theorem, implies that Sλ : C[0, 1] → Lq(0, 1) is continuous and maps bounded

sets into bounded sets, where 1 < q < 1/α.

Let Aλv = u, where u is the solution of

(4.2)

{
−(rN−1φ(u′))′ = λrN−1(g(max(v, ψ)) + h(v)), 0 < r < 1,

u′(0) = 0, u(1) = 0.

Since Aλ = T ◦Sλ, where T is defined in Lemma 3.2, it follows that Aλ : C[0, 1]→
C[0, 1] is a compact operator.

Lemma 4.1. There exists a constant λ̄ > 0 such that for each λ ∈ (0, λ̄), there

exists a positive constant rλ with limλ→0 rλ =∞ such that

u = θAλu, θ ∈ (0, 1) ⇒ ‖u‖∞ 6= rλ.
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Proof. Let u satisfy u = θAλu for some θ ∈ (0, 1). Then

u(r) = θ

∫ 1

r

φ−1

(
λ

sN−1

∫ s

0

τN−1(g(max(u, ψ)) + h(u)) dτ

)
ds,

which, together with (4.1), implies

|u(r)| ≤
∫ 1

r

φ−1

(
λ

sN−1

∫ s

0

τN−1

(
c1
ψα

+ hs(‖u‖∞)

)
dτ

)
ds

≤ φ−1(λc2 + λhs(‖u‖∞))

for r ∈ (0, 1), where c2 = c1(1− α)−1 and hs(t) = supx∈[0,t] |h(x)|.
Hence

(4.3) φ(‖u‖∞) ≤ λ(c2 + hs(‖u‖∞)).

Let λ̄ = 1
2(c2+hs(1)) and λ ∈ (0, λ̄). Then

c2 + hs(1) =
1

2λ̄
<

1

2λ
.

Since limx→∞
c2+hs(x)
φ(x) =∞, there exists a constant rλ > 1 such that

(4.4)
c2 + hs(rλ)

φ(rλ)
=

1

2λ
.

Clearly limλ→0 rλ =∞, and from (4.3) and (4.4), we see that ‖u‖∞ 6= rλ.

Lemma 4.2. For each λ > 0, there exists a constant ζλ > 0 such that

u = Aλu+ ζ, ζ ≥ 0 ⇒ ζ ≤ ζλ.

Proof. Let u satisfy u = Aλu+ ζ, where ζ ≥ 0 and λ > 0. Then{
−(rN−1|u′|p−2u′)′ = λrN−1(g(max(u, ψ)) + h(u)), 0 < r < 1,

u′(0) = 0, u(1) = ζ.

Let λ1 > 0 be the first eigenvalue of −∆p on the unit ball with Dirichlet boundary

conditions, and let φ1 be the corresponding normalized positive radial eigenfunc-

tion, i.e. ‖φ1‖∞ = 1, φ1 > 0 in [0, 1), and{
−(rN−1|φ′1|p−2φ′1)′ = λ1r

N−1φp−1
1 , 0 < r < 1,

φ′1(0) = 0, φ1(1) = 0.

Since there exists a constant m > 0 such that

g(max(v, ψ)) + h(v) ≥ − c1
ψα

+ h(v) ≥ − m

ψα
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for all v ∈ C[0, 1], Lemma 3.1(ii) implies

u(r) ≥ ζ − φ−1(λm1), where m1 = m(1− α)−1.

Choose ζλ so that ζλ > max{2φ−1(λm1), 2} and

f(x)

xp−1
>

2λ1

λ
for x >

ζλ
2
.

We claim that ζ ≤ ζλ. Suppose ζ > ζλ and let ũ = u− ζ.

Since

u(r) ≥ ζλ/2 > ψ for r ∈ (0, 1),

it follows that{
−(rN−1|ũ′|p−2ũ′)′ = λrN−1f(u) ≥ 2λ1r

N−1(ũ+ ζ)p−1 in (0, 1),

ũ′(0) = 0, ũ(1) = 0.

By the strong maximum principle, ũ > 0 in [0, 1) and ũ′(1) < 0. Let c be largest

such that ũ ≥ cφ1 in [0, 1). Then c > 0 and

−(rN−1|ũ′|p−2ũ′)′ ≥ 2λ1r
N−1(cφ1)p−1 in (0, 1),

and the weak comparison principle implies ũ ≥ 21/(p−1)cφ1 in [0, 1), a contradiction

with the choice of c. Thus ζ ≤ ζλ, as claimed.

Lemma 4.3. Let λ < λ̄ and let u satisfy

u = Aλu+ ζ

for some ζ ≥ 0. Then there exists a positive constant Cλ̄ such that

‖u‖∞ = u(0) whenever ‖u‖∞ > Cλ̄.

Proof. Suppose ‖u‖∞ ≡ d = |u(r1)| for some r1 ∈ (0, 1). By Lemma 3.1(ii),

u(r1) ≥ −φ−1(λm1),

and so u(r1) > 0 if d > 2φ−1(λ̄m1). For such d,

u(r) ≥ u(r1)− φ−1(λ̄m1) ≥ d/2

for r ∈ (0, r1). By integrating and using (4.1), we obtain

−u′(r) = φ−1

(
λ

rN−1

(∫ r

0

τN−1(g(max(u, ψ)) + h(u)

)
dτ

)
≥ φ−1

(
λ

rN−1

∫ r

0

τN−1

(
− c1
ψα

+ h(u)

)
dτ

)
≥ φ−1

(
λr

{
− c1

1− α
+

1

N
hi

(
d

2

)})
> 0
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for r ∈ (0, r1), where hi(t) = infx≥t h(x), provided that d� 1. Here we have used

the fact that

r−N
∫ r

0

τN−1

(1− τ)α
dτ ≤ (1− α)−1

for r ∈ (0, 1), and hi(t) → ∞ as t → ∞. Thus u is decreasing on (0, r1) and so

u(0) > u(r1), a contradiction.

Lemma 4.4. Let λ < λ̄ and ζ0 > 0. Suppose u satisfies

u = Aλu+ ζ

for some 0 ≤ ζ ≤ ζ0. Then:

(i) There exists a function L : R+ → R depending on ζ0 and λ̄ with limd→∞ L(d)

=∞ such that

u(r) ≥ L(‖u‖∞)(1− r) for r ∈ (0, 1).

(ii) There exists a constant R̄ > 0 depending on ζ0 and λ̄ such that u is decreasing

on (0, 1) if ‖u‖∞ > R̄.

(iii) If λ > λ > 0 then there exists a constant R > 0 depending on λ, λ̄, ζ0 such

that ‖u‖∞ < R.

Proof. Note that

(4.5)

{
−(rN−1|u′|p−2u′)′ = λrN−1(g(max(u, ψ)) + h(u)), 0 < r < 1,

u′(0) = 0, u(1) = ζ.

Multiplying the equation in (4.5) by ru′ gives

(4.6)

(
rN
(

1− 1

p

)
|u′|p + λrNH(u)

)′
= −λrNg(max(u, ψ))u′

+ λrN−1NH(u) + rN−1

(
1− N

p

)
|u′|p.

Next, multiplying the equation in (4.5) by au, where a is given by Lemma 3.3(i),

we obtain

(4.7) (arN−1|u′|p−2u′u)′ = −λarN−1g(max(u, ψ))u−λrN−1auh(u)+rN−1a|u′|p.

Adding (4.6) and (4.7) yields

ψ′(r) = rN−1

(
a+ 1− N

p

)
|u′|p + λrN−1(NH(u)− auh(u))(4.8)

−λrNg(max(u, ψ))u′ − λarN−1g(max(u, ψ))u,

where ψ(r) = rN (1− 1/p)|u′|p + λrNH(u) + arN−1|u′|p−2u′u.
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In what follows, we shall denote by Ki, i = 0, 1, . . . , positive constants inde-

pendent of u.

By Lemma 3.3(i), there exist constants δ,K0 > 0 such that

(4.9) NH(x)− axh(x) ≥ δH(x)−K0

for all x ∈ R. Hence

ψ′(r) ≥ λδrN−1H(u)− λrNg(max(u, ψ))u′(4.10)

− λarN−1g(max(u, ψ))u− λK0

for r ∈ (0, 1). In view of Lemma 3.3(ii), there exists θ ∈ (0, 1) such that

(4.11) H(θx) ≥ (1/2)H(x) for x� 1.

Suppose ‖u‖∞ = d � 1. Then Lemma 4.3 implies ‖u‖∞ = u(0). Let θ̄ ∈ (θ, 1)

and r0 ∈ (0, 1) be such that u(r0) = θ̄d. Note that r0 exists since u(0) > θ̄d and

u(1) = ζ ≤ ζ0 < θ̄d for large d.

By Lemma 3.1(ii),

(4.12) u(r) ≥ u(r0)− φ−1(λ̄m1) ≥ θd

for r < r0. From (4.11) and (4.12), for r > r0 we obtain

λδ

∫ r

0

sN−1H(u) ds≥ λδ
∫ r0

0

sN−1H(u) ds− λK1(4.13)

≥ λδrN0
N

H(θd)− λK1

≥ λδrN0
2N

H(d)− λK1.

Integrating (4.10) on (0, r), where r ∈ (r0, 1), and using (4.13), we obtain

ψ(r)≥ λδrN0
2N

H(d)− λ
∫ r

0

sNg(max(u, ψ))u′ ds(4.14)

−λa
∫ r

0

sN−1g(max(u, ψ))u ds− λK1.

Since p ≥ 2, it follows from Lemma 3.1(i) that there exists a positive constant C0

depending on λ̄ such that

(4.15) u′ ≥ φ(u′)− C0

in (0, 1), which together with (4.1) implies
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(4.16) −λ
∫ r

0

sNg(max(u, ψ))u′ ds

= −λ
∫ r

0

sN
(
g(max(u, ψ)) +

c1
ψα

)
(u′ − φ−1(λm1)) ds+ λc1

∫ r

0

sNu′

ψα
ds

− λφ−1(λm1)

∫ r

0

sN
(
g(max(u, ψ)) +

c1
ψα

)
ds

≥ λc1
∫ r

0

sN (φ(u′)− C0)

ψα
ds− λφ−1(λm1)

∫ r

0

sN
(
g(max(u, ψ)) +

c1
ψα

)
ds

≥ λc1
∫ r

0

sNφ(u′)

ψα
ds−K2.

By Lemma 3.1(iii),∫ r

0

sNφ(u′)

ψα
ds ≥ (rN−1φ(u′(r))− λm1)

(∫ r

0

s

ψα
ds

)
.

From this and (4.16), we get

(4.17) −λ
∫ r

0

sNg(max(u, ψ))u′ ds ≥ λc1
(∫ r

0

s

ψα
ds

)
rN−1φ(u′(r))−K3.

Next, using Lemma 3.1(ii), (4.1), and integration by parts, we obtain

(4.18) −λa
∫ r

0

sN−1g(max(u, ψ))u ds

= −λa
∫ r

0

sN−1

(
g(max(u, ψ)) +

c1
ψα

)
(u+ φ−1(λm1)) ds

+ λac1

∫ r

0

sN−1u

ψα
ds+ λaφ−1(λm1)

∫ r

0

sN−1

(
g(max(u, ψ)) +

c1
ψα

)
ds

≥ −λac1
∫ r

0

sN−1u

ψα
ds−K4

= −λac1
(∫ r

0

sN−1

ψα
dτ

)
u(r) + λac1

∫ r

0

(∫ s

0

τN−1

ψα
dτ

)
u′ ds−K4.

From (4.15) and Lemma 3.1(i) & (iii),

(4.19)

∫ r

0

(∫ s

0

τN−1

ψα
dτ

)
u′ ds

=

∫ r

0

(∫ s

0

τN−1

ψα
dτ

)
(u′ − φ−1(λm1)) ds+ φ−1(λm1)

∫ r

0

(∫ s

0

τN−1

ψα
dτ

)
ds

≥
∫ r

0

(∫ s

0

dτ

ψα

)
sN−1(u′ − φ−1(λm1)) ds ≥ rN−1φ(u′(r))

∫ r

0

(∫ s

0

dτ

ψα

)
ds−K5.
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Combining (4.18) and (4.19) gives

(4.20) −λa
∫ r

0

sN−1g(max(u, ψ))u ds ≥ −λac1
(∫ r

0

sN−1

ψα
ds

)
u(r)

+ λac1

(∫ r

0

(∫ s

0

dτ

ψα

)
ds

)
rN−1φ(u′(r))−K6.

We shall need an estimate on r0. By Lemma 3.3(i),

− u′(r) = φ−1

(
λ

rN−1

(∫ r

0

τN−1(g(max(u, ψ)) + h(u)

)
dτ

)
(4.21)

≤ φ−1

(
λ

rN−1

(∫ r

0

τN−1

(
c1
ψα

+ C1H(u)1−a/N +K7

)
dτ

))
≤ (2λC1H(d)1−a/Nr))1/(p−1)

for r ∈ (0, 1). Integrating this inequality on (0, r0) and using Lemma 3.3(i), we get

C(1− θ̄)H(d)a/N ≤ (1− θ̄)d ≤ ((p−1)/p)(2λC1)1/(p−1)H(d)(1−a/N)1/(p−1)r
p/(p−1)
0 ,

which implies

(4.22) r0 ≥
K8

λ1/p
H(d)a/N−1/p.

Next, integrating (4.21) on (0, 1) gives

d ≤ ζ0 +K9λ
1/(p−1)H(d)(1−a/N)/(p−1),

and therefore, if d ≥ 2ζ0,

CH(d)a/N ≤ d ≤ 2K9λ
1/(p−1)H(d)(1−a/N)/(p−1),

which implies

(4.23) λ ≥ K10H(d)ap/N−1.

If N ≥ p then it follows from (4.22) that

(4.24) λrN0 H(d) ≥ λ1−N/pKN
8 H(d)a+1−N/p ≥ λ̄1−N/pKN

8 H(d)a+1−N/p,

while if N < p, we deduce from (4.22) and (4.23) that

λrN0 H(d)≥ λ1−N/pKN
8 H(d)a+1−N/p(4.25)

≥ (K10H(d)ap/N−1)1−N/pKN
8 H(d)a+1−N/p

=K11H(d)ap/N .
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Combining (4.14), (4.17), (4.20), (4.24), and (4.25), we get

ψ(r)≥K12H1(d) + λc1

(∫ r

0

s

ψα
ds

)
rN−1φ(u′(r))− λac1

(∫ r

0

sN−1

ψα
ds

)
u(r)

+λac1

(∫ r

0

(∫ s

0

dτ

ψα

)
ds

)
rN−1φ(u′(r))−K13

for r ∈ (r0, 1), where H1(d) = H(d)γ , γ = a+ 1−N/p if N ≥ p, and γ = ap/N if

N < p.

Let k > 0 be such that H̃(x) ≡ H(x) + kx is increasing on R. Since we have

limx→∞H(x)/xp =∞, there exist constants k1 and K14 such that

ψ(r)− λc1
(∫ r

0

s

ψα
ds

)
rN−1φ(u′(r)) + λac1

(∫ r

0

sN−1

ψα
ds

)
u(r)

− λac1
(∫ r

0

(∫ s

0

dτ

ψα

)
ds

)
rN−1φ(u′(r)) ≤ k1H̃(|u(r)|+ |u′(r)|) +K14

for r ∈ (r0, 1). Consequently,

|u(r)|+ |u′(r)| ≥ H̃−1

(
K12H1(d)−K14

k1

)
.

By Lemma 3.1,

|u|+ |u′| ≤ u− u′ + 4φ−1(λ̄m1),

and so

−u′ + u ≥ H2(d) on (r0, 1),

where H2(d) = H̃−1
(K12H1(d)−K14

k1

)
− 4φ−1(λ̄m1). Note that H2(d) → ∞ as

d→∞. Solving the above differential inequality, we get

u(r) ≥ er−1ζ + er
(∫ 1

r

e−s ds

)
H2(d) ≥ H2(d)

e
(1− r)

for r > r0 and d� 1, while (4.12) holds for r ≤ r0 and d� 1. On the other hand,

if d < d0 for some d0 > 0 then it follows from the integral formula for u′ that

‖u′‖∞ < D0, where D0 depends on d0 and λ̄. Hence

u(r) = ζ −
∫ 1

r

u′ ≥ −D0(1− r) for r ∈ (0, 1).

Hence (i) follows.

(ii) Let h0 be a positive constant such that h(x) ≥ −h0 for all x ∈ R, and let

R̃ > 2φ−1(λ̄m1) be large enough so that

hi(R̃) > N2N+2(c1(1− α)−1 + h0),
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where hi(t) = infx≥t hi(x), and c1 is given by (4.1). Choose R̄ > 0 so that

L(z) > 4R̃ for z ≥ R̄.

Suppose ‖u‖∞ > R̄. Then, by part (i),

u(1/2)

2
≥ 1

4
L(‖u‖∞) > R̃.

Since

(4.26) −φ(u′(r)) ≥ λ

rN−1

∫ r

0

τN−1

(
− c1
ψα

+ h(u)

)
dτ

and

u(τ) ≥ u(1/2)− φ−1(λ̄m1) ≥ u(1/2)

2

for τ ≤ 1/2, it follows that∫ r

0

τN−1

(
− c1
ψα

+ h(u)

)
dτ ≥ rN

N

(
hi

(
u(1/2)

2

)
−Nc1(1− α)−1 − h0

)
≥ rN

2N
hi

(
u(1/2)

2

)
> 0

for r ≤ 1/2. Hence u′ < 0 on (0, 1/2]. For r > 1/2,∫ r

0

τN−1

(
− c1
ψα

+ h(u)

)
dτ =

∫ 1/2

0

τN−1

(
− c1
ψα

+ h(u)

)
dτ(4.27)

+

∫ r

1/2

τN−1

(
− c1
ψα

+ h(u)

)
dτ

≥ 1

2N+1N
hi

(
u(1/2)

2

)
− c1(1− α)− h0

>
1

2N+2N
hi

(
u(1/2)

2

)
,

and (ii) follows.

(iii) Let R1 > 0 be such that

hi(x)

φ(x)
>
N2N+2p

λ̄

for x ≥ R1. Let R > R̄ be such that

L(z) > 4R1 for z ≥ R,

where R̄ is defined in part (ii). We claim that ‖u‖∞ < R. Suppose ‖u‖∞ ≥ R.
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Then, by integrating on (1/2, 1) the inequality

−u′ ≥ φ−1

(
λ

2N+2N
hi

(
u(1/2)

2

))
,

obtained from (4.26) and (4.27), we get

2u(1/2) ≥ φ−1

(
λ

2N+2N
hi

(
u(1/2)

2

))
,

or, equivalently,

hi
(u(1/2)

2

)
φ
(u(1/2)

2

) ≤ N2N+2p

λ
<
N2N+2p

λ
.

This implies u(1/2)/2 < R1, and since

L(‖u‖∞) ≤ 2u(1/2) < 4R1,

it follows that ‖u‖∞ < R, a contradiction which proves the claim. This completes

the proof of Lemma 4.4.

§5. Proofs of the main results

Proof of Theorem 2.1. Suppose λ < λ̄, where λ̄ is defined by Lemma 4.1. In view

of Lemmas 4.1, 4.2, and 4.4(iii), it follows that

deg(I −Aλ, B(0, rλ), 0) = 1, deg(I −Aλ, B(0, R), 0) = 0,

and the excision property of the Leray–Schauder degree gives the existence of a

fixed point uλ of Aλ such that

‖uλ‖∞ > rλ.

Since rλ → ∞ as λ → 0, it follows from Lemma 4.4(i) & (ii) with ζ0 = 0 that,

for λ small, uλ is decreasing and

uλ(r) ≥ L(‖uλ‖∞)(1− r) ≥ ψ(r)

for r ∈ [0, 1]. In particular, uλ is a positive solution of (1.2) for λ > 0 small

and uλ → ∞ uniformly on compact subsets of [0, 1). This completes the proof of

Theorem 2.1.

We now turn our attention to the positone case. By (A.1) and (A.4), there

exists a positive number κ such that

f(x) ≥ κ for all x > 0.

Let ψλ = cλψ, where cλ = (λκ/N)1/(p−1)(p− 1)/p.
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For λ > 0 and v ∈ C[0, 1], let u = Ãλv be the solution of

(5.1)

{
−(rN−1φ(u′))′ = λrN−1(gmax(v, ψλ)) + h(v)), 0 < r < 1,

u′(0) = 0, u(1) = 0.

Then Ãλ : C[0, 1]→ C[0, 1] is a compact operator and using the same arguments

as above, we obtain the following results for Ãλ.

Lemma 5.1. (i) Let 0 < λ < λ < λ̄. Then there exists a positive number R0 > 0

depending on λ and λ̄ such that any solution uλ of

u = Ãλu

satisfies ‖u‖∞ < R0. Furthermore

deg(I − Ãλ, B(0, R0), 0) = 0.

(ii) Ãλ has a fixed point for λ small.

Lemma 5.2. (i) Let u satisfy

(5.2)

{
−(rN−1φ(u′))′ ≥ λrN−1κ, 0 < r < 1,

u′(0) = 0, u(1) = 0.

Then u ≥ ψλ in (0, 1). In particular, u is a fixed point of Ãλ if and only if u

is a solution of (1.2).

(ii) There exists a positive number λ̃ such that (1.2) has no solution for λ ≥ λ̃.

Proof. (i) Using the integral formula for u, we see that

u(r)≥
∫ 1

r

φ−1

(
λ

sN−1

∫ s

0

τN−1κ dτ

)
ds =

∫ 1

r

(λκs/N)1/(p−1) ds(5.3)

≥ (λκ/N)1/(p−1)((p− 1)/p)(1− r)

for r ∈ (0, 1). Consequently, if u is a solution of (1.2) then u = max(u, ψλ) and so

u is a fixed point of Ãλ. Conversely, suppose u = Ãλu. Since

g(max(u, ψλ)) + h(u) = f(max(u, ψλ))

if max(u, ψλ) ≤ 1, and

g(max(u, ψλ)) + h(u) = f(max(u, 1))

if max(u, ψλ) > 1, it follows that u ≥ ψλ in (0, 1), and so u is a positive solution

of (1.2).
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(ii) Let u be a solution of (1.2). Then u is decreasing and satisfies

u(1/2) ≥
∫ 1

1/2

φ−1

(
λ

sN−1

∫ 1/2

0

τN−1f(u) dτ

)
ds

≥ 1

2
φ−1

(
λ

N2N
fi(u(1/2))

)
,

or
fi(u(1/2)

φ(u(1/2))
≤ N2N+p−1

λ
,

which is a contradiction to (5.3) and the fact that limx→∞ fi(x)/φ(x) =∞ if λ is

sufficiently large.

Let Λ = {λ > 0 : (1.2) has a solution} and let λ∗ = sup Λ.

Lemma 5.3. λ∗ ∈ (0,∞) and λ∗ ∈ Λ.

Proof. Using Lemmas 5.1(ii) and 5.2(ii), we see that λ∗ ∈ (0,∞). Let (λn) be a

sequence in Λ such that λn → λ∗ and let (un) be the corresponding solutions of

(1.2). By Lemma 5.1(i), (‖un‖∞) is bounded, and so there exists a constant C > 0

such that

f(un) ≤ C

uαn
≤ C

cαλn
ψα

in (0, 1)

for all n. From this and the formula

u′n(r) = −φ−1

(
λn
rN−1

∫ r

0

τN−1f(un) dτ

)
,

we deduce that

|u′n(r)| ≤ φ−1

(
λnC

cαλn
rN−1

∫ r

0

τN−1

ψα
dτ

)
≤ φ−1

(
λnC

cαλn
(1− α)

)
≤ C1

for all r ∈ (0, 1) and n, where C1 is a constant depending on λ∗, C, α,N, p.

Hence (un) is bounded in C1[0, 1], and, by passing to a subsequence, we can

assume that un → uλ∗ in C[0, 1]. Letting n→∞ in

un(r) =

∫ 1

r

φ−1

(
λn
sN−1

∫ s

0

τN−1f(un) dτ

)
ds

we obtain

uλ∗(r) =

∫ 1

r

φ−1

(
λ∗

sN−1

∫ s

0

τN−1f(uλ∗) dτ

)
ds,

i.e. uλ∗ is a solution of (1.2) with λ = λ∗.
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Lemma 5.4. Let λ ∈ (0, λ∗) and let uλ∗ be a solution of (1.2)λ∗ . Then there exists

a positive number ε such that uλ∗ + ε is a supersolution of (1.2)λ.

Proof. Let p(x) = xβf(x) and ε0 = 1−λ/λ∗. Then there exists a positive number

κ0 such that p ≥ κ0 in (0,∞). Since p is uniformly continuous on (0, ‖uλ∗‖∞ + 1],

there exists a number ε ∈ (0, 1) such that for all x ∈ (0, ‖uλ∗‖∞],

|p(x)− p(x+ ε)| < ε0κ0,

hence ∣∣∣∣ p(x)

p(x+ ε)
− 1

∣∣∣∣ < ε0,

which implies

(5.4)
f(x)

f(x+ ε)
=

p(x)

p(x+ ε)

(
1 +

ε

x

)β
> 1− ε0 =

λ

λ∗
.

Consequently,

−(rN−1φ(u′λ∗))′ = λ∗rN−1f(uλ∗) > λrN−1f(uλ∗ + ε) in (0, 1),

i.e., uλ∗ + ε is a supersolution of (1.2)λ.

Next, for each v ∈ C[0, 1], let u = Tλv be the solution of{
−(rN−1φ(u′))′ = λrN−1(g(min(max(v, ψλ), uλ∗ + ε)) + h(min(v, uλ∗ + ε)),

u′(0) = 0, u(1) = 0,

where ε is defined in Lemma 5.4. Then Tλ : C[0, 1]→ C[0, 1] is a compact operator

and since

ψλ ≤ min(max(v, ψλ), uλ∗ + ε) ≤ uλ∗ + ε,

it follows from (A.3) that Tλ is bounded.

Lemma 5.5. Every fixed point u of Tλ is a solution of (1.2) and satisfies

ψλ ≤ u ≤ uλ∗ + ε in [0, 1].

Proof. Let u be a fixed point of Tλ. Since uλ∗ ≥ ψλ∗ > ψλ, we have

g(min(max(u, ψλ), uλ∗ + ε))) + h(min(u, uλ∗ + ε)) = g(max(u, ψλ)) + h(u) ≥ κ

if u ≤ uλ∗ + ε, and

g(min(max(u, ψλ), uλ∗ + ε))) + h(min(u, uλ∗ + ε)) = f(uλ∗ + ε) ≥ κ

if u ≥ uλ∗ + ε. This implies u ≥ ψλ in (0, 1), by Lemma 5.2(i). Suppose there

exists r0 ∈ (0, 1) such that u(r0) > uλ∗(r0) + ε. Then there exist numbers r1, r2
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with 0 ≤ r1 < r < r2 < 1 such that u(r2) = uλ∗(r2) + ε, u′(r1) = u′λ∗(r1) or

u(r1) = uλ∗(r1) + ε, and u > uλ∗ + ε on (r1, r2).

Hence, by Lemma 5.4,

−(rN−1φ(u′))′ = λrN−1f(uλ∗ + ε) < λ∗rN−1f(uλ∗) = −(rN−1φ(u′λ∗))′

in (r1, r2). Consequently,

0<

∫ r2

r1

(rN−1(φ(u′)− φ(u′λ∗)))′(u− (uλ∗ + ε)) dr

=−
∫ r2

r1

rN−1(φ(u′)− φ(u′λ∗))(u′ − u′λ∗) dr ≤ 0,

a contradiction. Thus u ≤ uλ∗ + ε in (0, 1), which completes the proof.

Proof of Theorem 2.2. Let λ ∈ (0, λ∗). Since νφ1 is a subsolution of (1.2)λ if ν > 0

is sufficiently small and uλ∗ is a supersolution of (1.2)λ, it follows that (1.2) has

a solution uλ such that νφ1 ≤ uλ ≤ uλ∗ . We shall show that (1.2)λ has a second

solution. Define

D= {u ∈ C[0, 1] : −ε < u < uλ∗ + ε in [0, 1]}.

Then D is an open set and uλ ∈ D. By Lemma 5.5, all fixed points of Tλ are in

D̄. Since Tλ is bounded,

deg(I − Tλ, B(uλ, R), 0) = 1 for R� 1.

If there exists u ∈ ∂D such that u = Tλu then u is a second solution of (1.2)λ.

Suppose that u 6= Tλu for all u ∈ ∂D. Then deg(I − Tλ, D, 0) is defined and since

Tλ has no fixed point in B(uλ, R) \D, it follows that

deg(I − Tλ, D, 0) = deg(I − Tλ, B(uλ, R), 0) = 1.

Since Ãλ = Tλ on D, we have

deg(I − Ãλ, D, 0) = 1,

and since by Lemma 5.2(i),

deg(I − Ãλ, B(0, R0), 0) = 0

for some R0 � 1, we arrive at

deg(I − Ãλ, B(0, R0) \D, 0) = −1.

Thus there exists a fixed point u of Ãλ in B(0, R0) \D, which is a second positive

solution of (1.2). This completes the proof of Theorem 2.2.
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[GMS] M. Garćıa-Huidobro, R. Manásevich, and K. Schmitt, Positive radial solutions of quasi-
linear elliptic partial differential equations on a ball, Nonlinear Anal. 35 (1999), 175–190.
Zbl 0924.35047 MR 1643232

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0758.35032&format=complete
http://www.ams.org/mathscinet-getitem?mr=1141729
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0294.34008&format=complete
http://www.ams.org/mathscinet-getitem?mr=0348178
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0345.47044&format=complete
http://www.ams.org/mathscinet-getitem?mr=0415432
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0808.35030&format=complete
http://www.ams.org/mathscinet-getitem?mr=1270096
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0852.35045&format=complete
http://www.ams.org/mathscinet-getitem?mr=1383017
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0747.76012&format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0692.35047&format=complete
http://www.ams.org/mathscinet-getitem?mr=1022988
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0362.35031&format=complete
http://www.ams.org/mathscinet-getitem?mr=0427826
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an::0881.34032&format=complete
http://www.ams.org/mathscinet-getitem?mr=1461215
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0452.35030&format=complete
http://www.ams.org/mathscinet-getitem?mr=0664341
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0595.35100&format=complete
http://www.ams.org/mathscinet-getitem?mr=0853732
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1173.35055&format=complete
http://www.ams.org/mathscinet-getitem?mr=2499916
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0634.35031&format=complete
http://www.ams.org/mathscinet-getitem?mr=0912208
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0097.30202&format=complete
http://www.ams.org/mathscinet-getitem?mr=0123095
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0924.35047&format=complete
http://www.ams.org/mathscinet-getitem?mr=1643232


362 D. D. Hai

[GS] B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic
equations, Comm. Partial Differential Equations 6 (1981), 883–901. Zbl 0462.35041
MR 0619749

[HS] D. D. Hai and K. Schmitt, On radial solutions of quasilinear boundary value prob-
lems, in Topics in nonlinear analysis, Progr. Nonlinear Differential Equations Appl. 35,
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