Positive Radial Solutions for Singular Quasilinear Elliptic Equations in a Ball

by

Dang Dinh Hai

Abstract

We establish the existence of positive radial solutions for the boundary value problems

$$
\begin{cases}\n-\Delta_p u = \lambda f(u) & \text{in } B, \\
u = 0 & \text{on } \partial B,\n\end{cases}
$$

where $\Delta_p u = \text{div}(|\nabla u|^{p-2} \nabla u)$, $p \geq 2$, B is the open unit ball \mathbb{R}^N , λ is a positive parameter, and $f : (0, \infty) \to \mathbb{R}$ is p-superlinear at ∞ and is allowed to be singular at 0.

2010 Mathematics Subject Classification: 35J75, 35J92. Keywords: p-superlinear, singular, p-Laplace, positive solutions.

§1. Introduction

In this paper, we study the existence of positive radial solutions for the boundary value problem

(1.1)
$$
\begin{cases} -\Delta_p u = \lambda f(u) & \text{in } B, \\ u = 0 & \text{on } \partial B, \end{cases}
$$

where $\Delta_p u = \text{div}(|\nabla u|^{p-2} \nabla u)$, $p \ge 2$, B is the open unit ball $\mathbb{R}^N, N > 1$, λ is a positive parameter, and $f:(0,\infty)\to\mathbb{R}$.

Thus we shall consider the ODE problem

(1.2)
$$
\begin{cases} -(r^{N-1}\phi(u'))' = \lambda r^{N-1}f(u), & 0 < r < 1, \\ u'(0) = 0, & u(1) = 0, \end{cases}
$$

where $\phi(z) = |z|^{p-2}z$.

e-mail: dang@math.msstate.edu

c 2014 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.

Communicated by H. Okamoto. Received June 27, 2013. Revised November 24, 2013.

D. D. Hai: Department of Mathematics and Statistics, Mississippi State University, Mississippi State, MS 39762, USA;

There is a vast literature on problem (1.1) when f is nonsingular. In the semilinear case, i.e. $p = 2$, problem (1.1) on a general domain has a long history and has been studied extensively (see e.g. [\[Am2,](#page-20-0) [Li\]](#page-21-1) and the references therein). The quasilinear case, i.e. $p > 1$, has received much attention during the past two decades (see e.g. [\[GMS,](#page-20-1) [LS1,](#page-21-2) [LS2\]](#page-21-3)). In the case when f is nonsingular and p-superlinear at ∞ , i.e., $\lim_{u\to\infty} f(u)/u^{p-1} = \infty$, such problems have been investigated in [\[ANZ,](#page-20-2) [Am1,](#page-20-3) [AAB,](#page-20-4) [DLN,](#page-20-5) [GS,](#page-21-4) [SW\]](#page-21-5) for $p = 2$, and in [\[AAP,](#page-20-6) [DMS,](#page-20-7) [DSS,](#page-20-8) [GMS,](#page-20-1) [HS,](#page-21-6) [HSS\]](#page-21-7) for $p > 1$. We are motivated here by the results in [\[AAP,](#page-20-6) [GMS,](#page-20-1) [HS\]](#page-21-6) concerning the existence of positive solutions to [\(1.2\)](#page-0-2) when f is p-superlinear, $p > 1$. In [\[AAP,](#page-20-6) Theorem 4.6, assuming that $f \in C^1[0,\infty)$, $f(0) < 0$, and there exist constants $\beta > 0$ and $\alpha \in (p, p^*)$, where $p^* = Np / \max(N - p, 0)$, such that

$$
\lim_{u \to \infty} \frac{f(u)}{u^{\alpha - 1}} = \beta,
$$

the authors showed that [\(1.2\)](#page-0-2) has a positive solution for $\lambda > 0$ small and there exists a connected set of positive solutions of (1.1) bifurcating from infinity at $\lambda = 0$. The result in [\[AAP\]](#page-20-6) was extended in [\[HS,](#page-21-6) Theorems 2.1, 2.2] to include more general nonlinearities and to cover the case when $f(0) > 0$. We refer to [\[GMS\]](#page-20-1) for related results in the case when $f(0) = 0$.

Problems of the type [\(1.1\)](#page-0-1) with $p = 2$ and $f(u)$ singular at $u = 0$ arise in the theory of heat conduction in electrical conducting materials, as discussed in [\[FM\]](#page-20-9). The model example of this case is

(1.3)
$$
\begin{cases} -\Delta u = A/u^{\alpha} + \gamma u^{q} & \text{in } B, \\ u = 0 & \text{on } \partial B, \end{cases}
$$

where A, γ, α, q are nonnegative constants with $\alpha \in (0, 1), q > 0, A \neq 0$. Note that when $\gamma \neq 0$, this problem can be reduced to [\(1.1\)](#page-0-1) with $f(u) = Au^{-\alpha} + u^{p}$ and $\lambda = \gamma^{(1+\alpha)/(q+\alpha)}$ via the transformation $v = \gamma^{1/(q+\alpha)}u$.

When $A < 0$ and $q < 1$, the existence of a positive solution to [\(1.3\)](#page-1-0) for γ large was established in $[SY, Zh]$ $[SY, Zh]$ $[SY, Zh]$. The case when $A > 0$ was discussed in $[CRT, FM, LM]$ $[CRT, FM, LM]$ $[CRT, FM, LM]$ $[CRT, FM, LM]$ $[CRT, FM, LM]$ for $\gamma = 0$, and in [\[SY,](#page-21-8) [St\]](#page-21-11) for $\gamma > 0$ and $p \in (0,1)$. For $A > 0, \gamma > 0$ and $q \ge 1$, it was established in [\[CP\]](#page-20-11) that there exists a constant $\tilde{\lambda} > 0$ such that [\(1.3\)](#page-1-0) has a positive solution for $\lambda < \tilde{\lambda}$ and no solution for $\lambda > \tilde{\lambda}$. The case when $f(u)$ is bounded away from 0 and $\lim_{u\to\infty} f(u)/u^q \in (0,\infty)$ for some $q \in (1,2^*)$, was considered in [\[HKS\]](#page-21-12), in which the authors showed the existence of a constant $\tilde{\lambda} > 0$ such that [\(1.1\)](#page-0-1) with $p = 2$ has at least two positive radial solutions for $\lambda < \tilde{\lambda}$, at least one for $\lambda = \lambda$, and none for $\lambda > \lambda$.

In this paper, we are interested in positive radial solutions of the problem [\(1.1\)](#page-0-1) for $p > 2$ when f is p-superlinear at ∞ and is allowed to be singular at 0. We shall consider both cases when $\lim_{u\to 0^+} f(u) > 0$ and $\lim_{u\to 0^+} f(u) < 0$. Problems of this kind appear in the the study of chemical reactions, thin films, and non-Newtonian fluids [\[AA,](#page-20-12) [Di,](#page-20-13) [DHM,](#page-20-14) [DMO,](#page-20-15) [HM\]](#page-21-13). Our results provide extensions of the results in [\[AAP,](#page-20-6) [HS\]](#page-21-6) to the singular case, and the results in [\[HKS\]](#page-21-12) to the case $p > 2$ with more general nonlinearities $f(u)$. In particular, the existence result in Theorem 2.1 below deals with the situation when f is p-superlinear at ∞ and $\lim_{u\to 0^+} f(u) = -\infty$, which occurs in some chemical reactions (see [\[Di,](#page-20-13) [DHM,](#page-20-14) [DMO\]](#page-20-15)) and has not been considered in the literature to our knowledge.

To be more precise, we shall prove in the case $\lim_{u\to 0^+} f(u) < 0$ that problem [\(1.2\)](#page-0-2) has a positive, decreasing solution u_λ for λ small, and $u_\lambda \to \infty$ uniformly on compact subsets of [0, 1) as $\lambda \to 0$.

In the case $\lim_{u\to 0^+} f(u) > 0$, we show the existence of a positive number λ^* such that [\(1.2\)](#page-0-2) has at least two positive solutions for $\lambda < \lambda^*$, at least one for $\lambda = \lambda^*$, and none for $\lambda > \lambda^*$.

In particular, our results when applied to the model cases

(1.4)
$$
\begin{cases} -\Delta_p u = \lambda (-1/u^{\alpha} + u^q (\ln(1+u))^r) & \text{in } B, \\ u = 0 & \text{on } \partial B, \end{cases}
$$

and

(1.5)
$$
\begin{cases} -\Delta_p u = \lambda (1/u^{\alpha} + u^q (\ln(1+u))^r) & \text{in } B, \\ u = 0 & \text{on } \partial B, \end{cases}
$$

where $\alpha \in [0,1)$, $r \geq 0$, $q \in (p-1, p^* - 1)$, give the existence of a positive radial solution to [\(1.4\)](#page-2-0) for λ small, and the existence of a constant $\lambda^* > 0$ such that [\(1.5\)](#page-2-1) has at least two positive radial solutions for $\lambda < \lambda^*$, at least one for $\lambda = \lambda^*$, and none for $\lambda > \lambda^*$.

Our proofs depend on degree theory and sup- and supersolutions approach as in [\[HS\]](#page-21-6). However, the proofs in [\[HS\]](#page-21-6) do not carry over to the singular case since the compact operator introduced in $[HS]$ is not defined on $C[0, 1]$ in that case. To overcome this, we come up with a modified problem whose solutions are fixed points of a compact operator in $C[0, 1]$ and then show that these solutions are in fact positive solutions of the original problem.

§2. Main results

We shall make the following assumptions:

 $(A.1)$ $f:(0,\infty)\rightarrow\mathbb{R}$ is continuous and

$$
\lim_{x \to \infty} \frac{f(x)}{x^{p-1}} = \infty.
$$

(A.2) N
$$
\liminf_{x \to \infty} \frac{F(x)}{xf(x)} > \max\left(\frac{N}{p} - 1, 0\right)
$$
, where $F(x) = \int_0^x f(t) dt$.

(A.3) There exists a constant $\alpha \in [0,1)$ such that

$$
\limsup_{x \to 0^+} x^{\alpha} |f(x)| < \infty.
$$

(A.4) $f > 0$ on $(0, \infty)$ and there exist constants $B > 0$ and $\beta \in [0, 1)$ such that

$$
\lim_{x \to 0^+} x^{\beta} f(x) = B.
$$

By a positive solution of [\(1.2\)](#page-0-2), we mean a function $u \in C^1[0,1]$ with $u > 0$ on $[0,1)$ that satisfies [\(1.2\)](#page-0-2).

Our main results are:

Theorem 2.1. Let (A.1)–(A.3) hold. Then there exists a constant $\lambda_0 > 0$ such that [\(1.2\)](#page-0-2) has a positive, decreasing solution u_{λ} for $\lambda \in (0, \lambda_0)$ with $||u_{\lambda}||_{\infty} \to \infty$ as $\lambda \to 0$. Furthermore, there exists a function $L : \mathbb{R}^+ \to \mathbb{R}$ with $\lim_{d\to\infty} L(d) = \infty$ such that

$$
u_{\lambda}(r) \ge L(\|u_{\lambda}\|_{\infty})(1-r) \quad \text{ for } r \in [0,1).
$$

Theorem 2.2. Let $(A.1)$ – $(A.4)$ hold. Then there exists a positive constant λ^* such that [\(1.2\)](#page-0-2) has at least two positive solutions for $\lambda \in (0, \lambda^*)$, at least one for $\lambda = \lambda^*$, and none for $\lambda > \lambda^*$.

Remark 2.3. (i) Theorems [2.1](#page-3-0) and [2.2](#page-3-1) extend Theorems 2.1 and 3.1 of [\[HS\]](#page-21-6), and Theorem 4.6 of [\[AAP\]](#page-20-6), to the singular case. Theorem [2.2](#page-3-1) with $p = 2$ extends Theorem 1 of [\[HKS\]](#page-21-12) to nonlinearities $f(u)$ that do not behave like u^q at ∞ .

(ii) When f is nonsingular, condition $(A.2)$ is satisfied under the following assumption introduced in [\[GMS\]](#page-20-1):

 $(A.2)$ ['] There exists a constant $\theta \in (0, 1)$ such that

$$
N \liminf_{x \to \infty} \frac{F(\theta x)}{x f_s(x)} > \max\left(\frac{N}{p} - 1, 0\right), \quad \text{where} \quad f_s(x) = \sup_{0 \le t \le x} f(t).
$$

It was shown in [\[GMS\]](#page-20-1) that when f is nondecreasing, $(A.2)'$ is equivalent to the following condition given in [\[TH\]](#page-21-14):

(A) There exists a constant $\theta \in (0, 1)$ such that

$$
NF(\theta x) - \frac{N-p}{p}xf(x) \ge 0 \quad \text{ for } x \text{ large.}
$$

§3. Preliminary results

Let $\psi(r) = 1 - r$. The following lemma is an extension of Lemma 2.2 of [\[HS\]](#page-21-6) to the singular case.

Lemma 3.1. Let ζ be a nonnegative number and let u be the solution of

(3.1)
$$
\begin{cases} -(r^{N-1}\phi(u'))' = \lambda r^{N-1}k(r), & 0 < r < 1, \\ u'(0) = 0, & u(1) = \zeta, \end{cases}
$$

where $k \ge -m\psi^{-\alpha}$ on $(0,1)$ for some constants $m > 0$, $\alpha \in (0,1)$. Then

- (i) $u' \leq \phi^{-1}(\lambda m_1)$,
- (ii) $u(t) \ge u(s) \phi^{-1}(\lambda m_1)$ for $0 \le t \le s \le 1$,
- (iii) $t^{N-1}\phi(u'(t)) \geq s^{N-1}\phi(u'(s)) \lambda m_1$ for $0 \leq t \leq s \leq 1$, where $m_1 =$ $m(1-\alpha)^{-1}$.

Proof. Let u be a solution of (3.1) . By integrating, we obtain

$$
u'(r) = -\phi^{-1}\left(\frac{\lambda}{r^{N-1}} \int_0^r \tau^{N-1} k(\tau) d\tau\right) \leq \phi^{-1}\left(\frac{\lambda m}{r^{N-1}} \int_0^r \tau^{N-1} \psi^{-\alpha} d\tau\right)
$$

$$
\leq \phi^{-1}\left(\lambda m \int_0^r \psi^{-\alpha} d\tau\right) \leq \phi^{-1}(\lambda m_1)
$$

for $r \in (0, 1)$, i.e. (i) holds. Integrating this inequality on (t, s) , $t < s$, gives

$$
u(s) - u(t) \le \phi^{-1}(\lambda m_1)(s - t),
$$

which implies (ii). Finally, integrating the equation in (3.1) on (t, s) , we obtain (iii). \Box

Lemma 3.2 ([\[HW\]](#page-21-15)). Let $q > 1$. Then there exists a constant $\nu \in (0,1)$ such that for each $g \in L^q(0,1)$, the problem

$$
\begin{cases}\n-(r^{N-1}\phi(u'))' = r^{N-1}g, & 0 < r < 1, \\
u'(0) = 0, & u(1) = 0,\n\end{cases}
$$

has a unique solution $u \equiv Tg \in C^{1,\nu}[0,1]$. Furthermore, there exists a constant $C > 0$ independent of g such that

$$
|u|_{1,\nu} \leq C ||g||_q^{1/(p-1)},
$$

and the operator $T: L^q(0,1) \to C^1[0,1]$ is compact.

Define

(3.2)
$$
g(x) = \begin{cases} f(x) & \text{if } 0 < x \le 1, \\ f(1) & \text{if } x > 1, \end{cases}
$$

(3.3)
$$
h(x) = \begin{cases} 0 & \text{if } 0 < x \le 1, \\ f(x) - f(1) & \text{if } x > 1, \end{cases}
$$

and $h(x) = 0$ if $x \le 0$. Then h is continuous, bounded below on R and $f = g + h$ on $(0, \infty)$. Using $(A.2)$, it is easily seen that

(3.4)
$$
N \liminf_{x \to \infty} \frac{H(x)}{xh(x)} > \max\left(\frac{N}{p} - 1, 0\right),
$$

where $H(x) = \int_0^x h(t) dt$.

Lemma 3.3. (i) There exist positive constants C, C_1, a, δ with

$$
N/p > a > N/p - 1
$$

such that

$$
CH(x)^{a/N} \le x, \quad h(x) \le C_1 H(x)^{1-a/N}
$$

and

$$
NH(x) - axh(x) \ge \delta H(x)
$$

for $x \gg 1$.

(ii) For each $\theta \in (0,1)$, there exists a constant b_{θ} such that

$$
H(\theta x) \ge b_{\theta}H(x)
$$

for $x \gg 1$. Furthermore, $b_{\theta} \rightarrow 1$ as $\theta \rightarrow 1$.

Proof. In view of (3.4) , there exist positive constants a, \tilde{a} such that

$$
N \liminf_{x \to \infty} \frac{H(x)}{xh(x)} > \tilde{a} > a > \max\left(\frac{N}{p} - 1, 0\right).
$$

Hence

(3.5)
$$
H(x) \ge \frac{\tilde{a}}{N} x h(x) \quad \text{for } x \gg 1,
$$

which implies

$$
NH(x) - axh(x) \ge N\left(1 - \frac{a}{\tilde{a}}\right)H(x)
$$

$$
H'(x) \le \frac{N}{ax}H(x)
$$

and

for $x \gg 1$. Solving this differential inequality gives

$$
H(x) \le C_0 x^{N/a} \quad \text{for } x \gg 1,
$$

and so $x \ge (H(x)/C_0)^{a/N}$ for $x \gg 1$. Note that $p < N/a$ since $\lim_{x \to \infty} H(x)/x^p$ $=\infty$. Hence λ

$$
h(x) \le \frac{NH(x)}{ax} \le C_1 H(x)^{1-a/N}
$$

for $x \gg 1$ and (i) follows. Next, fix $\theta \in (0, 1)$. By (3.5) ,

$$
\int_{\theta x}^{x} h(t) dt = \int_{\theta x}^{x} \frac{th(t)}{t} dt \le \frac{N}{\theta ax} \int_{\theta x}^{x} H(t) dt \le \frac{N(1-\theta)}{\theta a} H(x)
$$

for $x \gg 1$, where we have used the fact that $H(x)$ is increasing for large x. Hence

$$
H(\theta x) = H(x) - \int_{\theta x}^{x} h(t) dt \ge b_{\theta} H(x)
$$

1, where $b_{\theta} = 1 - \frac{N(1-\theta)}{\theta a}$.

§4. Abstract setting and a priori estimates

Let $\lambda > 0$. For $v \in C[0,1]$, define $S_{\lambda}v = \lambda (g(\max(v,\psi)) + h(v))$, where g and h are defined by [\(3.2\)](#page-5-2) and [\(3.3\)](#page-5-3) respectively. By (A.3), there exists a constant $c_0 > 0$ such that

$$
|g(x)| \le \frac{c_0}{x^{\alpha}} + |f(1)|
$$
 for all $x > 0$.

In particular,

for $x \gg$

(4.1)
$$
|g(\max(v,\psi))| \leq \frac{c_1}{\psi^{\alpha}},
$$

where $c_1 = c_0 + |f(1)|$. This, together with the Lebesgue Dominated Convergence Theorem, implies that $S_{\lambda}: C[0,1] \to L^q(0,1)$ is continuous and maps bounded sets into bounded sets, where $1 < q < 1/\alpha$.

Let $A_{\lambda}v = u$, where u is the solution of

(4.2)
$$
\begin{cases} -(r^{N-1}\phi(u'))' = \lambda r^{N-1}(g(\max(v,\psi)) + h(v)), & 0 < r < 1, \\ u'(0) = 0, & u(1) = 0. \end{cases}
$$

Since $A_{\lambda} = T \circ S_{\lambda}$, where T is defined in Lemma [3.2,](#page-4-1) it follows that $A_{\lambda} : C[0,1] \rightarrow$ $C[0, 1]$ is a compact operator.

Lemma 4.1. There exists a constant $\bar{\lambda} > 0$ such that for each $\lambda \in (0, \bar{\lambda})$, there exists a positive constant r_{λ} with $\lim_{\lambda\to 0} r_{\lambda} = \infty$ such that

$$
u = \theta A_{\lambda} u, \, \theta \in (0, 1) \Rightarrow \|u\|_{\infty} \neq r_{\lambda}.
$$

Proof. Let u satisfy $u = \theta A_\lambda u$ for some $\theta \in (0, 1)$. Then

$$
u(r) = \theta \int_r^1 \phi^{-1} \left(\frac{\lambda}{s^{N-1}} \int_0^s \tau^{N-1} (g(\max(u,\psi)) + h(u)) d\tau \right) ds,
$$

which, together with (4.1) , implies

$$
|u(r)| \leq \int_r^1 \phi^{-1} \left(\frac{\lambda}{s^{N-1}} \int_0^s \tau^{N-1} \left(\frac{c_1}{\psi^{\alpha}} + h_s(\|u\|_{\infty}) \right) d\tau \right) ds
$$

$$
\leq \phi^{-1} (\lambda c_2 + \lambda h_s(\|u\|_{\infty}))
$$

for $r \in (0, 1)$, where $c_2 = c_1(1 - \alpha)^{-1}$ and $h_s(t) = \sup_{x \in [0, t]} |h(x)|$. Hence

(4.3)
$$
\phi(\|u\|_{\infty}) \leq \lambda(c_2 + h_s(\|u\|_{\infty})).
$$

Let $\bar{\lambda} = \frac{1}{2(c_2 + h_s(1))}$ and $\lambda \in (0, \bar{\lambda})$. Then

$$
c_2 + h_s(1) = \frac{1}{2\overline{\lambda}} < \frac{1}{2\lambda}.
$$

Since $\lim_{x\to\infty} \frac{c_2+h_s(x)}{\phi(x)} = \infty$, there exists a constant $r_\lambda > 1$ such that

(4.4)
$$
\frac{c_2 + h_s(r_\lambda)}{\phi(r_\lambda)} = \frac{1}{2\lambda}.
$$

Clearly $\lim_{\lambda\to 0} r_{\lambda} = \infty$, and from [\(4.3\)](#page-7-0) and [\(4.4\)](#page-7-1), we see that $||u||_{\infty} \neq r_{\lambda}$. \Box

Lemma 4.2. For each $\lambda > 0$, there exists a constant $\zeta_{\lambda} > 0$ such that

$$
u = A_{\lambda}u + \zeta, \, \zeta \ge 0 \ \Rightarrow \ \zeta \le \zeta_{\lambda}.
$$

Proof. Let u satisfy $u = A_{\lambda}u + \zeta$, where $\zeta \ge 0$ and $\lambda > 0$. Then

$$
\begin{cases}\n-(r^{N-1}|u'|^{p-2}u')' = \lambda r^{N-1}(g(\max(u,\psi)) + h(u)), & 0 < r < 1, \\
u'(0) = 0, & u(1) = \zeta.\n\end{cases}
$$

Let $\lambda_1 > 0$ be the first eigenvalue of $-\Delta_p$ on the unit ball with Dirichlet boundary conditions, and let ϕ_1 be the corresponding normalized positive radial eigenfunction, i.e. $\|\phi_1\|_{\infty} = 1, \phi_1 > 0$ in $[0, 1)$, and

$$
\label{eq:4.1} \left\{ \begin{aligned} &-(r^{N-1}|\phi_1'|^{p-2}\phi_1')'=\lambda_1 r^{N-1}\phi_1^{p-1}, \quad 0 < r < 1, \\ &\phi_1'(0)=0, \quad \phi_1(1)=0. \end{aligned} \right.
$$

Since there exists a constant $m > 0$ such that

$$
g(\max(v,\psi)) + h(v) \ge -\frac{c_1}{\psi^{\alpha}} + h(v) \ge -\frac{m}{\psi^{\alpha}}
$$

for all $v \in C[0, 1]$, Lemma [3.1\(](#page-4-2)ii) implies

$$
u(r) \ge \zeta - \phi^{-1}(\lambda m_1)
$$
, where $m_1 = m(1 - \alpha)^{-1}$.

Choose ζ_{λ} so that $\zeta_{\lambda} > \max\{2\phi^{-1}(\lambda m_1), 2\}$ and

$$
\frac{f(x)}{x^{p-1}} > \frac{2\lambda_1}{\lambda} \quad \text{for } x > \frac{\zeta_\lambda}{2}.
$$

We claim that $\zeta \leq \zeta_{\lambda}$. Suppose $\zeta > \zeta_{\lambda}$ and let $\tilde{u} = u - \zeta$. Since

$$
u(r) \ge \zeta_{\lambda}/2 > \psi
$$
 for $r \in (0,1)$,

it follows that

$$
\begin{cases}\n-(r^{N-1}|\tilde{u}'|^{p-2}\tilde{u}')' = \lambda r^{N-1}f(u) \ge 2\lambda_1 r^{N-1}(\tilde{u}+\zeta)^{p-1} & \text{in } (0,1), \\
\tilde{u}'(0) = 0, \quad \tilde{u}(1) = 0.\n\end{cases}
$$

By the strong maximum principle, $\tilde{u} > 0$ in [0, 1) and $\tilde{u}'(1) < 0$. Let c be largest such that $\tilde{u} \geq c\phi_1$ in [0, 1]. Then $c > 0$ and

$$
-(r^{N-1}|\tilde{u}'|^{p-2}\tilde{u}')' \ge 2\lambda_1 r^{N-1} (c\phi_1)^{p-1} \text{ in } (0,1),
$$

and the weak comparison principle implies $\tilde{u} \geq 2^{1/(p-1)}c\phi_1$ in [0, 1), a contradiction with the choice of c. Thus $\zeta \leq \zeta_{\lambda}$, as claimed. \Box

Lemma 4.3. Let $\lambda < \overline{\lambda}$ and let u satisfy

 $u = A_{\lambda}u + \zeta$

for some $\zeta \geq 0$. Then there exists a positive constant $C_{\overline{\lambda}}$ such that

 $||u||_{\infty} = u(0)$ whenever $||u||_{\infty} > C_{\overline{\lambda}}$.

Proof. Suppose $||u||_{\infty} \equiv d = |u(r_1)|$ for some $r_1 \in (0, 1)$. By Lemma [3.1\(](#page-4-2)ii),

$$
u(r_1) \geq -\phi^{-1}(\lambda m_1),
$$

and so $u(r_1) > 0$ if $d > 2\phi^{-1}(\bar{\lambda}m_1)$. For such d,

$$
u(r) \ge u(r_1) - \phi^{-1}(\bar{\lambda}m_1) \ge d/2
$$

for $r \in (0, r_1)$. By integrating and using (4.1) , we obtain

$$
-u'(r) = \phi^{-1}\left(\frac{\lambda}{r^{N-1}}\left(\int_0^r \tau^{N-1}(g(\max(u,\psi)) + h(u)\right)d\tau\right)
$$

\n
$$
\geq \phi^{-1}\left(\frac{\lambda}{r^{N-1}}\int_0^r \tau^{N-1}\left(-\frac{c_1}{\psi^{\alpha}} + h(u)\right)d\tau\right)
$$

\n
$$
\geq \phi^{-1}\left(\lambda r\left\{-\frac{c_1}{1-\alpha} + \frac{1}{N}h_i\left(\frac{d}{2}\right)\right\}\right) > 0
$$

for $r \in (0, r_1)$, where $h_i(t) = \inf_{x \geq t} h(x)$, provided that $d \gg 1$. Here we have used the fact that λ^T

$$
r^{-N} \int_0^r \frac{\tau^{N-1}}{(1-\tau)^{\alpha}} d\tau \le (1-\alpha)^{-1}
$$

for $r \in (0, 1)$, and $h_i(t) \to \infty$ as $t \to \infty$. Thus u is decreasing on $(0, r_1)$ and so $u(0) > u(r_1)$, a contradiction. \Box

Lemma 4.4. Let $\lambda < \overline{\lambda}$ and $\zeta_0 > 0$. Suppose u satisfies

$$
u = A_{\lambda}u + \zeta
$$

for some $0 \le \zeta \le \zeta_0$. Then:

(i) There exists a function $L : \mathbb{R}^+ \to \mathbb{R}$ depending on ζ_0 and $\bar{\lambda}$ with $\lim_{d\to\infty} L(d)$ $=\infty$ such that

$$
u(r) \ge L(||u||_{\infty})(1-r) \quad \text{ for } r \in (0,1).
$$

- (ii) There exists a constant $\bar{R} > 0$ depending on ζ_0 and $\bar{\lambda}$ such that u is decreasing on $(0, 1)$ if $||u||_{\infty} > \bar{R}$.
- (iii) If $\lambda > \lambda > 0$ then there exists a constant $R > 0$ depending on $\lambda, \overline{\lambda}, \zeta_0$ such that $||u||_{\infty} < R$.

Proof. Note that

(4.5)
$$
\begin{cases} -(r^{N-1}|u'|^{p-2}u')' = \lambda r^{N-1}(g(\max(u,\psi)) + h(u)), & 0 < r < 1, \\ u'(0) = 0, & u(1) = \zeta. \end{cases}
$$

Multiplying the equation in (4.5) by ru' gives

(4.6)
$$
\left(r^N\left(1-\frac{1}{p}\right)|u'|^p + \lambda r^N H(u)\right)' = -\lambda r^N g(\max(u,\psi))u' + \lambda r^{N-1}NH(u) + r^{N-1}\left(1-\frac{N}{p}\right)|u'|^p.
$$

Next, multiplying the equation in (4.5) by au, where a is given by Lemma [3.3\(](#page-5-4)i), we obtain

(4.7)
$$
(ar^{N-1}|u'|^{p-2}u'u)' = -\lambda ar^{N-1}g(\max(u,\psi))u - \lambda r^{N-1}auh(u) + r^{N-1}a|u'|^{p}.
$$

Adding (4.6) and (4.7) yields

(4.8)
$$
\psi'(r) = r^{N-1} \left(a + 1 - \frac{N}{p} \right) |u'|^p + \lambda r^{N-1} (NH(u) - auh(u)) - \lambda r^N g(\max(u, \psi))u' - \lambda ar^{N-1} g(\max(u, \psi))u,
$$

where $\psi(r) = r^N(1 - 1/p)|u'|^p + \lambda r^N H(u) + ar^{N-1}|u'|^{p-2}u'u$.

In what follows, we shall denote by K_i , $i = 0, 1, \ldots$, positive constants independent of u.

By Lemma [3.3\(](#page-5-4)i), there exist constants $\delta, K_0 > 0$ such that

(4.9)
$$
NH(x) - axh(x) \geq \delta H(x) - K_0
$$

for all $x \in \mathbb{R}$. Hence

(4.10)
$$
\psi'(r) \geq \lambda \delta r^{N-1} H(u) - \lambda r^N g(\max(u, \psi)) u' - \lambda a r^{N-1} g(\max(u, \psi)) u - \lambda K_0
$$

for $r \in (0, 1)$. In view of Lemma [3.3\(](#page-5-4)ii), there exists $\theta \in (0, 1)$ such that

(4.11) H(θx) ≥ (1/2)H(x) for x 1.

Suppose $||u||_{\infty} = d \gg 1$. Then Lemma 4.3 implies $||u||_{\infty} = u(0)$. Let $\bar{\theta} \in (\theta, 1)$ and $r_0 \in (0,1)$ be such that $u(r_0) = \bar{\theta}d$. Note that r_0 exists since $u(0) > \bar{\theta}d$ and $u(1) = \zeta \leq \zeta_0 < \bar{\theta}d$ for large d.

By Lemma 3.1 (ii),

(4.12)
$$
u(r) \ge u(r_0) - \phi^{-1}(\bar{\lambda}m_1) \ge \theta d
$$

for $r < r_0$. From [\(4.11\)](#page-10-0) and [\(4.12\)](#page-10-1), for $r > r_0$ we obtain

(4.13)
$$
\lambda \delta \int_0^r s^{N-1} H(u) ds \ge \lambda \delta \int_0^{r_0} s^{N-1} H(u) ds - \lambda K_1
$$

$$
\ge \frac{\lambda \delta r_0^N}{N} H(\theta d) - \lambda K_1
$$

$$
\ge \frac{\lambda \delta r_0^N}{2N} H(d) - \lambda K_1.
$$

Integrating [\(4.10\)](#page-10-2) on $(0, r)$, where $r \in (r_0, 1)$, and using [\(4.13\)](#page-10-3), we obtain

(4.14)
$$
\psi(r) \ge \frac{\lambda \delta r_0^N}{2N} H(d) - \lambda \int_0^r s^N g(\max(u, \psi)) u' ds - \lambda a \int_0^r s^{N-1} g(\max(u, \psi)) u ds - \lambda K_1.
$$

Since $p \geq 2$, it follows from Lemma [3.1\(](#page-4-2)i) that there exists a positive constant C_0 depending on $\bar{\lambda}$ such that

$$
(4.15) \t\t u' \ge \phi(u') - C_0
$$

in $(0, 1)$, which together with (4.1) implies

$$
(4.16) \t-\lambda \int_0^r s^N g(\max(u,\psi))u'ds
$$

\t= $-\lambda \int_0^r s^N \left(g(\max(u,\psi)) + \frac{c_1}{\psi^{\alpha}} \right) (u' - \phi^{-1}(\lambda m_1)) ds + \lambda c_1 \int_0^r \frac{s^N u'}{\psi^{\alpha}} ds$
\t $- \lambda \phi^{-1}(\lambda m_1) \int_0^r s^N \left(g(\max(u,\psi)) + \frac{c_1}{\psi^{\alpha}} \right) ds$
\t $\geq \lambda c_1 \int_0^r \frac{s^N(\phi(u') - C_0)}{\psi^{\alpha}} ds - \lambda \phi^{-1}(\lambda m_1) \int_0^r s^N \left(g(\max(u,\psi)) + \frac{c_1}{\psi^{\alpha}} \right) ds$
\t $\geq \lambda c_1 \int_0^r \frac{s^N \phi(u')}{\psi^{\alpha}} ds - K_2.$

By Lemma $3.1(iii)$ $3.1(iii)$,

$$
\int_0^r \frac{s^N \phi(u')}{\psi^\alpha} ds \ge (r^{N-1} \phi(u'(r)) - \lambda m_1) \left(\int_0^r \frac{s}{\psi^\alpha} ds \right).
$$

From this and (4.16) , we get

$$
(4.17) \qquad -\lambda \int_0^r s^N g(\max(u,\psi))u' ds \geq \lambda c_1 \left(\int_0^r \frac{s}{\psi^\alpha} ds\right) r^{N-1} \phi(u'(r)) - K_3.
$$

Next, using Lemma $3.1(ii)$ $3.1(ii)$, (4.1) , and integration by parts, we obtain

$$
(4.18) \t -\lambda a \int_0^r s^{N-1} g(\max(u,\psi))u \, ds
$$

\n
$$
= -\lambda a \int_0^r s^{N-1} \left(g(\max(u,\psi)) + \frac{c_1}{\psi^{\alpha}} \right) (u + \phi^{-1}(\lambda m_1)) \, ds
$$

\n
$$
+ \lambda a c_1 \int_0^r \frac{s^{N-1} u}{\psi^{\alpha}} \, ds + \lambda a \phi^{-1}(\lambda m_1) \int_0^r s^{N-1} \left(g(\max(u,\psi)) + \frac{c_1}{\psi^{\alpha}} \right) \, ds
$$

\n
$$
\geq -\lambda a c_1 \int_0^r \frac{s^{N-1} u}{\psi^{\alpha}} \, ds - K_4
$$

\n
$$
= -\lambda a c_1 \left(\int_0^r \frac{s^{N-1}}{\psi^{\alpha}} \, d\tau \right) u(r) + \lambda a c_1 \int_0^r \left(\int_0^s \frac{\tau^{N-1}}{\psi^{\alpha}} \, d\tau \right) u' \, ds - K_4.
$$

From (4.15) and Lemma $3.1(i)$ $3.1(i)$ & (iii),

$$
(4.19) \int_0^r \left(\int_0^s \frac{\tau^{N-1}}{\psi^{\alpha}} d\tau\right) u' ds
$$

=
$$
\int_0^r \left(\int_0^s \frac{\tau^{N-1}}{\psi^{\alpha}} d\tau\right) (u' - \phi^{-1}(\lambda m_1)) ds + \phi^{-1}(\lambda m_1) \int_0^r \left(\int_0^s \frac{\tau^{N-1}}{\psi^{\alpha}} d\tau\right) ds
$$

$$
\geq \int_0^r \left(\int_0^s \frac{d\tau}{\psi^{\alpha}}\right) s^{N-1} (u' - \phi^{-1}(\lambda m_1)) ds \geq r^{N-1} \phi(u'(r)) \int_0^r \left(\int_0^s \frac{d\tau}{\psi^{\alpha}}\right) ds - K_5.
$$

Combining (4.18) and (4.19) gives

(4.20)
$$
-\lambda a \int_0^r s^{N-1} g(\max(u,\psi))u \, ds \ge -\lambda a c_1 \left(\int_0^r \frac{s^{N-1}}{\psi^{\alpha}} ds\right) u(r) + \lambda a c_1 \left(\int_0^r \left(\int_0^s \frac{d\tau}{\psi^{\alpha}}\right) ds\right) r^{N-1} \phi(u'(r)) - K_6.
$$

We shall need an estimate on r_0 . By Lemma [3.3\(](#page-5-4)i),

$$
(4.21) \qquad -u'(r) = \phi^{-1}\left(\frac{\lambda}{r^{N-1}}\left(\int_0^r \tau^{N-1}(g(\max(u,\psi)) + h(u))\right)d\tau\right)
$$

$$
\leq \phi^{-1}\left(\frac{\lambda}{r^{N-1}}\left(\int_0^r \tau^{N-1}\left(\frac{c_1}{\psi^{\alpha}} + C_1 H(u)^{1-a/N} + K_7\right)d\tau\right)\right)
$$

$$
\leq (2\lambda C_1 H(d)^{1-a/N}r))^{1/(p-1)}
$$

for $r \in (0, 1)$. Integrating this inequality on $(0, r_0)$ and using Lemma [3.3\(](#page-5-4)i), we get $C(1-\bar{\theta})H(d)^{a/N} \leq (1-\bar{\theta})d \leq ((p-1)/p)(2\lambda C_1)^{1/(p-1)}H(d)^{(1-a/N)1/(p-1)}r_0^{p/(p-1)},$

which implies

(4.22)
$$
r_0 \geq \frac{K_8}{\lambda^{1/p}} H(d)^{a/N-1/p}.
$$

Next, integrating (4.21) on $(0, 1)$ gives

$$
d \le \zeta_0 + K_9 \lambda^{1/(p-1)} H(d)^{(1-a/N)/(p-1)},
$$

and therefore, if $d \geq 2\zeta_0$,

$$
CH(d)^{a/N} \le d \le 2K_9 \lambda^{1/(p-1)} H(d)^{(1-a/N)/(p-1)},
$$

which implies

$$
\lambda \ge K_{10} H(d)^{ap/N-1}.
$$

If $N \geq p$ then it follows from (4.22) that

$$
(4.24) \qquad \lambda r_0^N H(d) \ge \lambda^{1-N/p} K_8^N H(d)^{a+1-N/p} \ge \bar{\lambda}^{1-N/p} K_8^N H(d)^{a+1-N/p},
$$

while if $N < p$, we deduce from (4.22) and (4.23) that

(4.25)
$$
\lambda r_0^N H(d) \ge \lambda^{1-N/p} K_8^N H(d)^{a+1-N/p}
$$

$$
\ge (K_{10} H(d)^{ap/N-1})^{1-N/p} K_8^N H(d)^{a+1-N/p}
$$

$$
= K_{11} H(d)^{ap/N}.
$$

Combining [\(4.14\)](#page-10-5), [\(4.17\)](#page-11-3), [\(4.20\)](#page-12-3), [\(4.24\)](#page-12-4), and [\(4.25\)](#page-12-5), we get

$$
\psi(r) \ge K_{12}H_1(d) + \lambda c_1 \left(\int_0^r \frac{s}{\psi^{\alpha}} ds \right) r^{N-1} \phi(u'(r)) - \lambda a c_1 \left(\int_0^r \frac{s^{N-1}}{\psi^{\alpha}} ds \right) u(r)
$$

$$
+ \lambda a c_1 \left(\int_0^r \left(\int_0^s \frac{d\tau}{\psi^{\alpha}} \right) ds \right) r^{N-1} \phi(u'(r)) - K_{13}
$$

for $r \in (r_0, 1)$, where $H_1(d) = H(d)^\gamma$, $\gamma = a + 1 - N/p$ if $N \ge p$, and $\gamma = ap/N$ if $N < p$.

Let $k > 0$ be such that $\tilde{H}(x) \equiv H(x) + kx$ is increasing on R. Since we have $\lim_{x\to\infty} H(x)/x^p = \infty$, there exist constants k_1 and K_{14} such that

$$
\psi(r) - \lambda c_1 \left(\int_0^r \frac{s}{\psi^{\alpha}} ds \right) r^{N-1} \phi(u'(r)) + \lambda a c_1 \left(\int_0^r \frac{s^{N-1}}{\psi^{\alpha}} ds \right) u(r)
$$

$$
- \lambda a c_1 \left(\int_0^r \left(\int_0^s \frac{d\tau}{\psi^{\alpha}} \right) ds \right) r^{N-1} \phi(u'(r)) \le k_1 \tilde{H}(|u(r)| + |u'(r)|) + K_{14}
$$

for $r \in (r_0, 1)$. Consequently,

$$
|u(r)| + |u'(r)| \ge \tilde{H}^{-1}\bigg(\frac{K_{12}H_1(d) - K_{14}}{k_1}\bigg).
$$

By Lemma [3.1,](#page-4-2)

$$
|u| + |u'| \le u - u' + 4\phi^{-1}(\bar{\lambda}m_1),
$$

and so

$$
-u' + u \ge H_2(d) \quad \text{on } (r_0, 1),
$$

where $H_2(d) = \tilde{H}^{-1}(\frac{K_{12}H_1(d)-K_{14}}{k_1}) - 4\phi^{-1}(\bar{\lambda}m_1)$. Note that $H_2(d) \to \infty$ as $d \to \infty$. Solving the above differential inequality, we get

$$
u(r) \ge e^{r-1}\zeta + e^r \left(\int_r^1 e^{-s} ds\right) H_2(d) \ge \frac{H_2(d)}{e}(1-r)
$$

for $r > r_0$ and $d \gg 1$, while [\(4.12\)](#page-10-1) holds for $r \le r_0$ and $d \gg 1$. On the other hand, if $d < d_0$ for some $d_0 > 0$ then it follows from the integral formula for u' that $||u'||_{\infty} < D_0$, where D_0 depends on d_0 and $\overline{\lambda}$. Hence

$$
u(r) = \zeta - \int_r^1 u' \ge -D_0(1-r) \quad \text{for } r \in (0,1).
$$

Hence (i) follows.

(ii) Let h_0 be a positive constant such that $h(x) \geq -h_0$ for all $x \in \mathbb{R}$, and let $\tilde{R} > 2\phi^{-1}(\bar{\lambda}m_1)$ be large enough so that

$$
h_i(\tilde{R}) > N2^{N+2}(c_1(1-\alpha)^{-1} + h_0),
$$

where $h_i(t) = \inf_{x \geq t} h_i(x)$, and c_1 is given by [\(4.1\)](#page-6-0). Choose $\bar{R} > 0$ so that

$$
L(z) > 4\tilde{R} \quad \text{ for } z \ge \bar{R}.
$$

Suppose $||u||_{\infty} > \overline{R}$. Then, by part (i),

$$
\frac{u(1/2)}{2} \ge \frac{1}{4}L(\|u\|_{\infty}) > \tilde{R}.
$$

Since

(4.26)
$$
-\phi(u'(r)) \geq \frac{\lambda}{r^{N-1}} \int_0^r \tau^{N-1} \left(-\frac{c_1}{\psi^{\alpha}} + h(u)\right) d\tau
$$

and

$$
u(\tau) \ge u(1/2) - \phi^{-1}(\bar{\lambda}m_1) \ge \frac{u(1/2)}{2}
$$

for $\tau \leq 1/2$, it follows that

$$
\int_0^r \tau^{N-1} \left(-\frac{c_1}{\psi^{\alpha}} + h(u) \right) d\tau \ge \frac{r^N}{N} \left(h_i \left(\frac{u(1/2)}{2} \right) - Nc_1 (1 - \alpha)^{-1} - h_0 \right) \ge \frac{r^N}{2N} h_i \left(\frac{u(1/2)}{2} \right) > 0
$$

for $r \leq 1/2$. Hence $u' < 0$ on $(0, 1/2]$. For $r > 1/2$,

$$
(4.27) \qquad \int_0^r \tau^{N-1} \left(-\frac{c_1}{\psi^{\alpha}} + h(u) \right) d\tau = \int_0^{1/2} \tau^{N-1} \left(-\frac{c_1}{\psi^{\alpha}} + h(u) \right) d\tau + \int_{1/2}^r \tau^{N-1} \left(-\frac{c_1}{\psi^{\alpha}} + h(u) \right) d\tau \ge \frac{1}{2^{N+1}N} h_i \left(\frac{u(1/2)}{2} \right) - c_1 (1 - \alpha) - h_0 > \frac{1}{2^{N+2}N} h_i \left(\frac{u(1/2)}{2} \right),
$$

and (ii) follows.

(iii) Let $R_1 > 0$ be such that

$$
\frac{h_i(x)}{\phi(x)} > \frac{N2^{N+2p}}{\bar{\lambda}}
$$

for $x \geq R_1$. Let $R > \overline{R}$ be such that

$$
L(z) > 4R_1 \quad \text{ for } z \ge R,
$$

where \overline{R} is defined in part (ii). We claim that $||u||_{\infty} < R$. Suppose $||u||_{\infty} \geq R$.

Then, by integrating on $(1/2, 1)$ the inequality

$$
-u' \ge \phi^{-1}\bigg(\frac{\lambda}{2^{N+2}N}h_i\bigg(\frac{u(1/2)}{2}\bigg)\bigg),\,
$$

obtained from (4.26) and (4.27) , we get

$$
2u(1/2) \ge \phi^{-1}\bigg(\frac{\lambda}{2^{N+2}N}h_i\bigg(\frac{u(1/2)}{2}\bigg)\bigg),\,
$$

or, equivalently,

$$
\frac{h_i\left(\frac{u(1/2)}{2}\right)}{\phi\left(\frac{u(1/2)}{2}\right)} \le \frac{N2^{N+2p}}{\lambda} < \frac{N2^{N+2p}}{\underline{\lambda}}.
$$

This implies $u(1/2)/2 < R_1$, and since

$$
L(||u||_{\infty}) \le 2u(1/2) < 4R_1,
$$

it follows that $||u||_{\infty} < R$, a contradiction which proves the claim. This completes the proof of Lemma 4.4. \Box

§5. Proofs of the main results

Proof of Theorem [2.1.](#page-3-0) Suppose $\lambda < \overline{\lambda}$, where $\overline{\lambda}$ is defined by Lemma [4.1.](#page-6-1) In view of Lemmas [4.1,](#page-6-1) [4.2,](#page-7-2) and [4.4\(](#page-9-3)iii), it follows that

$$
\deg(I - A_{\lambda}, B(0, r_{\lambda}), 0) = 1, \quad \deg(I - A_{\lambda}, B(0, R), 0) = 0,
$$

and the excision property of the Leray–Schauder degree gives the existence of a fixed point u_{λ} of A_{λ} such that

$$
||u_\lambda||_\infty > r_\lambda.
$$

Since $r_{\lambda} \to \infty$ as $\lambda \to 0$, it follows from Lemma 4.4(i) & (ii) with $\zeta_0 = 0$ that, for λ small, u_{λ} is decreasing and

$$
u_{\lambda}(r) \ge L(||u_{\lambda}||_{\infty})(1-r) \ge \psi(r)
$$

for $r \in [0,1]$. In particular, u_{λ} is a positive solution of (1.2) for $\lambda > 0$ small and $u_{\lambda} \to \infty$ uniformly on compact subsets of [0, 1). This completes the proof of Theorem [2.1.](#page-3-0) \Box

We now turn our attention to the positone case. By $(A.1)$ and $(A.4)$, there exists a positive number κ such that

$$
f(x) \ge \kappa
$$
 for all $x > 0$.

Let $\psi_{\lambda} = c_{\lambda} \psi$, where $c_{\lambda} = (\lambda \kappa/N)^{1/(p-1)}(p-1)/p$.

For $\lambda > 0$ and $v \in C[0,1]$, let $u = \tilde{A}_{\lambda}v$ be the solution of

(5.1)
$$
\begin{cases} -(r^{N-1}\phi(u'))' = \lambda r^{N-1}(g \max(v, \psi_\lambda)) + h(v)), & 0 < r < 1, \\ u'(0) = 0, & u(1) = 0. \end{cases}
$$

Then $\tilde{A}_{\lambda}: C[0,1] \to C[0,1]$ is a compact operator and using the same arguments as above, we obtain the following results for \tilde{A}_{λ} .

Lemma 5.1. (i) Let $0 < \lambda < \lambda < \overline{\lambda}$. Then there exists a positive number $R_0 > 0$ depending on $\underline{\lambda}$ and $\overline{\lambda}$ such that any solution u_{λ} of

$$
u=\tilde{A}_\lambda u
$$

satisfies $||u||_{\infty} < R_0$. Furthermore

$$
\deg(I - \tilde{A}_{\lambda}, B(0, R_0), 0) = 0.
$$

(ii) \tilde{A}_{λ} has a fixed point for λ small.

Lemma 5.2. (i) Let u satisfy

(5.2)
$$
\begin{cases} -(r^{N-1}\phi(u'))' \ge \lambda r^{N-1}\kappa, & 0 < r < 1, \\ u'(0) = 0, & u(1) = 0. \end{cases}
$$

Then $u \ge \psi_{\lambda}$ in (0,1). In particular, u is a fixed point of \tilde{A}_{λ} if and only if u is a solution of (1.2) .

(ii) There exists a positive number $\tilde{\lambda}$ such that [\(1.2\)](#page-0-2) has no solution for $\lambda \geq \tilde{\lambda}$.

Proof. (i) Using the integral formula for u , we see that

$$
(5.3) \t u(r) \ge \int_r^1 \phi^{-1} \left(\frac{\lambda}{s^{N-1}} \int_0^s \tau^{N-1} \kappa \, d\tau \right) ds = \int_r^1 (\lambda \kappa s/N)^{1/(p-1)} \, ds
$$

$$
\ge (\lambda \kappa/N)^{1/(p-1)} ((p-1)/p)(1-r)
$$

for $r \in (0, 1)$. Consequently, if u is a solution of (1.2) then $u = \max(u, \psi_{\lambda})$ and so u is a fixed point of \tilde{A}_{λ} . Conversely, suppose $u = \tilde{A}_{\lambda}u$. Since

$$
g(\max(u, \psi_{\lambda})) + h(u) = f(\max(u, \psi_{\lambda}))
$$

if $\max(u, \psi_\lambda) \leq 1$, and

$$
g(\max(u, \psi_{\lambda})) + h(u) = f(\max(u, 1))
$$

if max $(u, \psi_{\lambda}) > 1$, it follows that $u \geq \psi_{\lambda}$ in $(0, 1)$, and so u is a positive solution of [\(1.2\)](#page-0-2).

(ii) Let u be a solution of (1.2) . Then u is decreasing and satisfies

$$
u(1/2) \ge \int_{1/2}^{1} \phi^{-1} \left(\frac{\lambda}{s^{N-1}} \int_{0}^{1/2} \tau^{N-1} f(u) d\tau \right) ds
$$

$$
\ge \frac{1}{2} \phi^{-1} \left(\frac{\lambda}{N 2^{N}} f_i(u(1/2)) \right),
$$

or

$$
\frac{f_i(u(1/2))}{\phi(u(1/2))} \le \frac{N2^{N+p-1}}{\lambda},
$$

which is a contradiction to (5.3) and the fact that $\lim_{x\to\infty} f_i(x)/\phi(x) = \infty$ if λ is sufficiently large. \Box

Let $\Lambda = \{\lambda > 0 : (1.2)$ $\Lambda = \{\lambda > 0 : (1.2)$ $\Lambda = \{\lambda > 0 : (1.2)$ has a solution and let $\lambda^* = \sup \Lambda$.

Lemma 5.3. $\lambda^* \in (0, \infty)$ and $\lambda^* \in \Lambda$.

Proof. Using Lemmas 5.1(ii) and 5.2(ii), we see that $\lambda^* \in (0, \infty)$. Let (λ_n) be a sequence in Λ such that $\lambda_n \to \lambda^*$ and let (u_n) be the corresponding solutions of [\(1.2\)](#page-0-2). By Lemma 5.1(i), $(\|u_n\|_{\infty})$ is bounded, and so there exists a constant $C > 0$ such that

$$
f(u_n) \le \frac{C}{u_n^{\alpha}} \le \frac{C}{c_{\lambda_n}^{\alpha} \psi^{\alpha}} \quad \text{in (0, 1)}
$$

for all n . From this and the formula

$$
u'_{n}(r) = -\phi^{-1}\bigg(\frac{\lambda_{n}}{r^{N-1}} \int_{0}^{r} \tau^{N-1} f(u_{n}) d\tau\bigg),
$$

we deduce that

$$
|u_n'(r)| \le \phi^{-1} \left(\frac{\lambda_n C}{c_{\lambda_n}^{\alpha} r^{N-1}} \int_0^r \frac{\tau^{N-1}}{\psi^{\alpha}} d\tau \right) \le \phi^{-1} \left(\frac{\lambda_n C}{c_{\lambda_n}^{\alpha} (1-\alpha)} \right) \le C_1
$$

for all $r \in (0,1)$ and n, where C_1 is a constant depending on $\lambda^*, C, \alpha, N, p$.

Hence (u_n) is bounded in $C^1[0,1]$, and, by passing to a subsequence, we can assume that $u_n \to u_{\lambda^*}$ in $C[0, 1]$. Letting $n \to \infty$ in

$$
u_n(r) = \int_r^1 \phi^{-1} \left(\frac{\lambda_n}{s^{N-1}} \int_0^s \tau^{N-1} f(u_n) d\tau \right) ds
$$

we obtain

$$
u_{\lambda^*}(r) = \int_r^1 \phi^{-1} \left(\frac{\lambda^*}{s^{N-1}} \int_0^s \tau^{N-1} f(u_{\lambda^*}) d\tau \right) ds,
$$

i.e. u_{λ^*} is a solution of [\(1.2\)](#page-0-2) with $\lambda = \lambda^*$.

Lemma 5.4. Let $\lambda \in (0, \lambda^*)$ and let u_{λ^*} be a solution of $(1.2)_{\lambda^*}$ $(1.2)_{\lambda^*}$. Then there exists a positive number ε such that $u_{\lambda^*} + \varepsilon$ is a supersolution of $(1.2)_{\lambda}$ $(1.2)_{\lambda}$.

Proof. Let $p(x) = x^{\beta} f(x)$ and $\varepsilon_0 = 1 - \lambda/\lambda^*$. Then there exists a positive number κ_0 such that $p \ge \kappa_0$ in $(0, \infty)$. Since p is uniformly continuous on $(0, ||u_{\lambda^*}||_{\infty} + 1]$, there exists a number $\varepsilon \in (0,1)$ such that for all $x \in (0, \|u_{\lambda^*}\|_{\infty}),$

$$
|p(x) - p(x + \varepsilon)| < \varepsilon_0 \kappa_0,
$$

hence

$$
\left|\frac{p(x)}{p(x+\varepsilon)}-1\right|<\varepsilon_0,
$$

which implies

(5.4)
$$
\frac{f(x)}{f(x+\varepsilon)} = \frac{p(x)}{p(x+\varepsilon)} \left(1+\frac{\varepsilon}{x}\right)^{\beta} > 1-\varepsilon_0 = \frac{\lambda}{\lambda^*}.
$$

Consequently,

$$
-(r^{N-1}\phi(u'_{\lambda^*}))' = \lambda^* r^{N-1} f(u_{\lambda^*}) > \lambda r^{N-1} f(u_{\lambda^*} + \varepsilon) \quad \text{in } (0,1),
$$

i.e., $u_{\lambda^*} + \varepsilon$ is a supersolution of $(1.2)_{\lambda}$ $(1.2)_{\lambda}$.

Next, for each $v \in C[0,1]$, let $u = T_\lambda v$ be the solution of

$$
\begin{cases}\n-(r^{N-1}\phi(u'))' = \lambda r^{N-1}(g(\min(\max(v, \psi_{\lambda}), u_{\lambda^*} + \varepsilon)) + h(\min(v, u_{\lambda^*} + \varepsilon)),\nu'(0) = 0, \quad u(1) = 0,\n\end{cases}
$$

where ε is defined in Lemma 5.4. Then $T_{\lambda}: C[0,1] \to C[0,1]$ is a compact operator and since

$$
\psi_{\lambda} \le \min(\max(v, \psi_{\lambda}), u_{\lambda^*} + \varepsilon) \le u_{\lambda^*} + \varepsilon,
$$

it follows from (A.3) that T_{λ} is bounded.

Lemma 5.5. Every fixed point u of T_{λ} is a solution of [\(1.2\)](#page-0-2) and satisfies

$$
\psi_{\lambda} \le u \le u_{\lambda^*} + \varepsilon \quad in [0, 1].
$$

Proof. Let u be a fixed point of T_{λ} . Since $u_{\lambda^*} \geq \psi_{\lambda^*} > \psi_{\lambda}$, we have

$$
g(\min(\max(u,\psi_{\lambda}),u_{\lambda^*}+\varepsilon)))+h(\min(u,u_{\lambda^*}+\varepsilon))=g(\max(u,\psi_{\lambda}))+h(u)\geq\kappa
$$

if $u \leq u_{\lambda^*} + \varepsilon$, and

 $g(\min(\max(u, \psi_\lambda), u_{\lambda^*} + \varepsilon)) + h(\min(u, u_{\lambda^*} + \varepsilon)) = f(u_{\lambda^*} + \varepsilon) > \kappa$

if $u \geq u_{\lambda^*} + \varepsilon$. This implies $u \geq \psi_{\lambda}$ in $(0, 1)$, by Lemma 5.2(i). Suppose there exists $r_0 \in (0,1)$ such that $u(r_0) > u_{\lambda^*}(r_0) + \varepsilon$. Then there exist numbers r_1, r_2

with $0 \leq r_1 < r < r_2 < 1$ such that $u(r_2) = u_{\lambda^*}(r_2) + \varepsilon$, $u'(r_1) = u'_{\lambda^*}(r_1)$ or $u(r_1) = u_{\lambda^*}(r_1) + \varepsilon$, and $u > u_{\lambda^*} + \varepsilon$ on (r_1, r_2) .

Hence, by Lemma 5.4,

$$
-(r^{N-1}\phi(u'))' = \lambda r^{N-1} f(u_{\lambda^*} + \varepsilon) < \lambda^* r^{N-1} f(u_{\lambda^*}) = -(r^{N-1}\phi(u_{\lambda^*}'))'
$$

in (r_1, r_2) . Consequently,

$$
0 < \int_{r_1}^{r_2} (r^{N-1}(\phi(u') - \phi(u'_{\lambda^*})))'(u - (u_{\lambda^*} + \varepsilon)) dr
$$

=
$$
- \int_{r_1}^{r_2} r^{N-1}(\phi(u') - \phi(u'_{\lambda^*})) (u' - u'_{\lambda^*}) dr \leq 0,
$$

a contradiction. Thus $u \leq u_{\lambda^*} + \varepsilon$ in $(0, 1)$, which completes the proof.

Proof of Theorem [2.2.](#page-3-1) Let $\lambda \in (0, \lambda^*)$. Since $\nu \phi_1$ is a subsolution of $(1.2)_{\lambda}$ $(1.2)_{\lambda}$ if $\nu > 0$ is sufficiently small and u_{λ^*} is a supersolution of $(1.2)_{\lambda}$ $(1.2)_{\lambda}$, it follows that (1.2) has a solution u_λ such that $\nu\phi_1 \leq u_\lambda \leq u_{\lambda^*}$. We shall show that $(1.2)_{\lambda}$ $(1.2)_{\lambda}$ has a second solution. Define

$$
D = \{ u \in C[0,1] : -\varepsilon < u < u_{\lambda^*} + \varepsilon \text{ in } [0,1] \}.
$$

Then D is an open set and $u_{\lambda} \in D$. By Lemma 5.5, all fixed points of T_{λ} are in \bar{D} . Since T_{λ} is bounded,

$$
\deg(I - T_{\lambda}, B(u_{\lambda}, R), 0) = 1 \quad \text{for } R \gg 1.
$$

If there exists $u \in \partial D$ such that $u = T_\lambda u$ then u is a second solution of $(1.2)_\lambda$ $(1.2)_\lambda$. Suppose that $u \neq T_\lambda u$ for all $u \in \partial D$. Then $\deg(I - T_\lambda, D, 0)$ is defined and since T_{λ} has no fixed point in $B(u_{\lambda}, R) \setminus D$, it follows that

$$
\deg(I - T_{\lambda}, D, 0) = \deg(I - T_{\lambda}, B(u_{\lambda}, R), 0) = 1.
$$

Since $\tilde{A}_{\lambda} = T_{\lambda}$ on D, we have

$$
\deg(I - \tilde{A}_{\lambda}, D, 0) = 1,
$$

and since by Lemma 5.2(i),

$$
\deg(I-\tilde{A}_{\lambda},B(0,R_0),0)=0
$$

for some $R_0 \gg 1$, we arrive at

$$
\deg(I - \tilde{A}_{\lambda}, B(0, R_0) \setminus D, 0) = -1.
$$

Thus there exists a fixed point u of \tilde{A}_{λ} in $B(0, R_0) \setminus D$, which is a second positive solution of (1.2) . This completes the proof of Theorem [2.2.](#page-3-1) \Box

Acknowledgements

The author thanks the referee for carefully reading the manuscript and providing helpful suggestions.

References

- [ANZ] W. Allegretto, P. Nistri, and P. Zecca, Positive solutions of elliptic nonpositone problems, Differential Integral Equations 5 (1992), 95–101. [Zbl 0758.35032](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0758.35032&format=complete) [MR 1141729](http://www.ams.org/mathscinet-getitem?mr=1141729)
- [Am1] H. Amann, On the number of solutions of asymptotically superlinear two point boundary value problems, Arch. Ration. Mech. Anal. 55 (1974), 207–213. [Zbl 0294.34008](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0294.34008&format=complete) [MR 0348178](http://www.ams.org/mathscinet-getitem?mr=0348178)
- [Am2] , Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev. 18 (1976), 620–709. [Zbl 0345.47044](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0345.47044&format=complete) [MR 0415432](http://www.ams.org/mathscinet-getitem?mr=0415432)
- [AAB] A. Ambrosetti, D. Arcoya, and B. Buffoni, Positive solutions for some semipositone problems via bifurcation theory, Differential Integral Equations 7 (1994), 655–663. [Zbl 0808.35030](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0808.35030&format=complete) [MR 1270096](http://www.ams.org/mathscinet-getitem?mr=1270096)
- [AAP] A. Ambrosetti, J. Azoreno, and I. Peral, Multiplicity results for some nonlinear elliptic equations, J. Funct. Anal. 137 (1996), 219–242. [Zbl 0852.35045](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0852.35045&format=complete) [MR 1383017](http://www.ams.org/mathscinet-getitem?mr=1383017)
- [AA] C. Atkinson and K. E. Ali, Some boundary value problems for the Bingham model, J. Non-Newton. Fluid Mech. 41 (1992), 339–363. [Zbl 0747.76012](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0747.76012&format=complete)
- [CP] M. M. Coclite ans G. Palmieri, On a singular nonlinear Dirichlet problem, Comm. Partial Differential Equations 14 (1989), 1315–1327. [Zbl 0692.35047](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0692.35047&format=complete) [MR 1022988](http://www.ams.org/mathscinet-getitem?mr=1022988)
- [CRT] M. G. Crandall, P. H. Rabinowitz, and L. Tartar, On a Dirichlet problem with a singularity, Comm. Partial Differential Equations 12 (1977), 193–222. [Zbl 0362.35031](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0362.35031&format=complete) [MR 0427826](http://www.ams.org/mathscinet-getitem?mr=0427826)
- [DMS] H. Dang, R. Manásevich, and K. Schmitt, Positive radial solutions of some nonlinear partial differential equations, Math. Nachr. 186 (1997), 101–113. [Zbl :0881.34032](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an::0881.34032&format=complete) [MR 1461215](http://www.ams.org/mathscinet-getitem?mr=1461215)
- [DSS] H. Dang, K. Schmitt, and R. Shivaji, On the number of solutions of boundary value problems involving the p-Laplacian, Electronic J. Differential Equations 1996, no. 1, 9 pp.
- [DLN] D. G. DeFigueiredo, P.-L. Lions, and R. Nussbaum, A priori estimates and existence of positive solutions for semilinear elliptic equations, J. Math. Pures Appl. 61 (1982), 41–63. [Zbl 0452.35030](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0452.35030&format=complete) [MR 0664341](http://www.ams.org/mathscinet-getitem?mr=0664341)
- [Di] J. I. Díaz, Nonlinear partial differential equations and free boundaries, Pitman, London, 1985. [Zbl 0595.35100](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0595.35100&format=complete) [MR 0853732](http://www.ams.org/mathscinet-getitem?mr=0853732)
- [DHM] J. I. Díaz, J. Hernández, and F. J. Mancebo, Branches of positive and free boundary solutions for some singular quasilinear elliptic problems, J. Math. Anal. Appl. 352 (2009), 449–474. [Zbl 1173.35055](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1173.35055&format=complete) [MR 2499916](http://www.ams.org/mathscinet-getitem?mr=2499916)
- [DMO] J. I. Díaz, J. M. Morel, and l. Oswald, An elliptic equation with singular nonlinearity, Comm. Partial Differential Equations 12 (1987), 1333–1344. [Zbl 0634.35031](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0634.35031&format=complete) [MR 0912208](http://www.ams.org/mathscinet-getitem?mr=0912208)
- [FM] W. Fulks and J. S. Maybee, A singular nonlinear equation, Osaka J. Math. 12 (1960), 1–19. [Zbl 0097.30202](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0097.30202&format=complete) [MR 0123095](http://www.ams.org/mathscinet-getitem?mr=0123095)
- [GMS] M. García-Huidobro, R. Manásevich, and K. Schmitt, Positive radial solutions of quasilinear elliptic partial differential equations on a ball, Nonlinear Anal. 35 (1999), 175–190. [Zbl 0924.35047](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0924.35047&format=complete) [MR 1643232](http://www.ams.org/mathscinet-getitem?mr=1643232)

- [GS] B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations 6 (1981), 883–901. [Zbl 0462.35041](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0462.35041&format=complete) [MR 0619749](http://www.ams.org/mathscinet-getitem?mr=0619749)
- [HS] D. D. Hai and K. Schmitt, On radial solutions of quasilinear boundary value problems, in Topics in nonlinear analysis, Progr. Nonlinear Differential Equations Appl. 35, Birkhäuser, Basel, 1999, 349-361. [Zbl 0918.34027](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0918.34027&format=complete) [MR 1725577](http://www.ams.org/mathscinet-getitem?mr=1725577)
- [HSS] D. D. Hai, K. Schmitt, and R. Shivaji, Positive solutions of quasilinear boundary value problems, J. Math. Anal. Appl. 217 (1998), 672–686. [Zbl 0893.34017](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0893.34017&format=complete) [MR 1492111](http://www.ams.org/mathscinet-getitem?mr=1492111)
- [HW] D. D. Hai and J. L. Williams, Positive radial solutions for a class of quasilinear boundary value problems in a ball, Nonlinear Anal. 75 (2012), 1744–1750. [Zbl 1242.34040](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1242.34040&format=complete) [MR 2870868](http://www.ams.org/mathscinet-getitem?mr=2870868)
- [HKS] J. Hernández, J. Karátson, and P. L. Simon, Multiplicity for semilinear elliptic equations involving singular nonlinearity, Nonlinear Anal. 65 (2006), 265–283. [Zbl 05045904](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:05045904&format=complete) [MR 2228428](http://www.ams.org/mathscinet-getitem?mr=2228428)
- [HM] J. Hernández and F. J. Mancebo, Singular elliptic and parabolic equations, in Handbook of differential equations: Stationary partial differential equations, 2006, 317–400. [Zbl 05679999](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:05679999&format=complete)
- [LM] A. C. Lazer and P. J. McKenna, On a singular nonlinear elliptic boundary-value problem, Proc. Amer. Math. Soc. 111 (1991), 721–730. [Zbl 0727.35057](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0727.35057&format=complete) [MR 1037213](http://www.ams.org/mathscinet-getitem?mr=1037213)
- [LS1] V. Le and K. Schmitt, Global bifurcation in variational inequalities: Applications to obstacle and unitateral problems, Springer, New York, 1997. [Zbl 0876.49008](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0876.49008&format=complete) [MR 1438548](http://www.ams.org/mathscinet-getitem?mr=1438548)
- [LS2] , On boundary value problems for degenerate quasilinear elliptic equations and inequalities, J. Differential Equations 144 (1998), 170–218. [Zbl 0912.35069](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0912.35069&format=complete) [MR 1615056](http://www.ams.org/mathscinet-getitem?mr=1615056)
- [Li] P.-L. Lions, On the existence of positive solutions of semilinear elliptic equations, SIAM Rev. 24 (1982), 441–467. [Zbl 0511.35033](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0511.35033&format=complete) [MR 0678562](http://www.ams.org/mathscinet-getitem?mr=0678562)
- [SY] J. Shi and M. Yao, On a singular nonlinear semilinear elliptic problem, Proc. Roy. Soc. Edinburgh Sect. A 128 (1998), 1389–1401. [Zbl 0919.35044](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0919.35044&format=complete) [MR 1663988](http://www.ams.org/mathscinet-getitem?mr=1663988)
- [SW] J. Smoller and A. Wasserman, Existence of positive solutions for semilinear elliptic equations in general domains, Arch. Ration. Mech. Anal. 98 (1987), 229–249. [Zbl 0664.35029](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0664.35029&format=complete) [MR 0867725](http://www.ams.org/mathscinet-getitem?mr=0867725)
- [St] C. A. Stuart, Existence and approximation of solutions of nonlinear elliptic equations, Math. Z. 147 (1976), 53–63. [Zbl 0324.35037](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0324.35037&format=complete) [MR 0404854](http://www.ams.org/mathscinet-getitem?mr=0404854)
- [TH] F. de Thelin and A. El Hachimi, Infinitely many radially symmetric solutions for a quasilinear elliptic problem in a ball, J. Differential Equations 128 (1996), 78–102. [Zbl 0852.34021](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0852.34021&format=complete) [MR 1392397](http://www.ams.org/mathscinet-getitem?mr=1392397)
- [Zh] Z. Zhang, On a Dirichlet problem with a singular nonlinearity, J. Math. Anal. Appl. 194 (1995), 103–113. [Zbl 0834.35054](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0834.35054&format=complete) [MR 1353070](http://www.ams.org/mathscinet-getitem?mr=1353070)