Positive Radial Solutions for Singular Quasilinear Elliptic Equations in a Ball

by

Dang Dinh HAI

Abstract

We establish the existence of positive radial solutions for the boundary value problems

$$\begin{cases} -\Delta_p u = \lambda f(u) & \text{in } B, \\ u = 0 & \text{on } \partial B, \end{cases}$$

where $\Delta_p u = \operatorname{div}(|\nabla u|^{p-2} \nabla u), p \ge 2, B$ is the open unit ball \mathbb{R}^N, λ is a positive parameter, and $f: (0, \infty) \to \mathbb{R}$ is *p*-superlinear at ∞ and is allowed to be singular at 0.

2010 Mathematics Subject Classification: 35J75, 35J92. Keywords: p-superlinear, singular, p-Laplace, positive solutions.

§1. Introduction

In this paper, we study the existence of positive radial solutions for the boundary value problem

(1.1)
$$\begin{cases} -\Delta_p u = \lambda f(u) & \text{in } B, \\ u = 0 & \text{on } \partial B, \end{cases}$$

where $\Delta_p u = \operatorname{div}(|\nabla u|^{p-2}\nabla u), p \ge 2, B$ is the open unit ball $\mathbb{R}^N, N > 1, \lambda$ is a positive parameter, and $f:(0,\infty) \to \mathbb{R}$.

Thus we shall consider the ODE problem

(1.2)
$$\begin{cases} -(r^{N-1}\phi(u'))' = \lambda r^{N-1}f(u), & 0 < r < 1, \\ u'(0) = 0, & u(1) = 0, \end{cases}$$

where $\phi(z) = |z|^{p-2}z$.

Communicated by H. Okamoto. Received June 27, 2013. Revised November 24, 2013.

e-mail: dang@math.msstate.edu

C 2014 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.

D. D. Hai: Department of Mathematics and Statistics, Mississippi State University, Mississippi State, MS 39762, USA;

There is a vast literature on problem (1.1) when f is nonsingular. In the semilinear case, i.e. p = 2, problem (1.1) on a general domain has a long history and has been studied extensively (see e.g. [Am2, Li] and the references therein). The quasilinear case, i.e. p > 1, has received much attention during the past two decades (see e.g. [GMS, LS1, LS2]). In the case when f is nonsingular and p-superlinear at ∞ , i.e., $\lim_{u\to\infty} f(u)/u^{p-1} = \infty$, such problems have been investigated in [ANZ, Am1, AAB, DLN, GS, SW] for p = 2, and in [AAP, DMS, DSS, GMS, HS, HSS] for p > 1. We are motivated here by the results in [AAP, GMS, HS] concerning the existence of positive solutions to (1.2) when f is p-superlinear, p > 1. In [AAP, Theorem 4.6], assuming that $f \in C^1[0,\infty), f(0) < 0$, and there exist constants $\beta > 0$ and $\alpha \in (p, p^*)$, where $p^* = Np/\max(N - p, 0)$, such that

$$\lim_{u \to \infty} \frac{f(u)}{u^{\alpha - 1}} = \beta,$$

the authors showed that (1.2) has a positive solution for $\lambda > 0$ small and there exists a connected set of positive solutions of (1.1) bifurcating from infinity at $\lambda = 0$. The result in [AAP] was extended in [HS, Theorems 2.1, 2.2] to include more general nonlinearities and to cover the case when f(0) > 0. We refer to [GMS] for related results in the case when f(0) = 0.

Problems of the type (1.1) with p = 2 and f(u) singular at u = 0 arise in the theory of heat conduction in electrical conducting materials, as discussed in [FM]. The model example of this case is

(1.3)
$$\begin{cases} -\Delta u = A/u^{\alpha} + \gamma u^{q} & \text{in } B, \\ u = 0 & \text{on } \partial B, \end{cases}$$

where A, γ, α, q are nonnegative constants with $\alpha \in (0, 1), q > 0, A \neq 0$. Note that when $\gamma \neq 0$, this problem can be reduced to (1.1) with $f(u) = Au^{-\alpha} + u^p$ and $\lambda = \gamma^{(1+\alpha)/(q+\alpha)}$ via the transformation $v = \gamma^{1/(q+\alpha)}u$.

When A < 0 and q < 1, the existence of a positive solution to (1.3) for γ large was established in [SY, Zh]. The case when A > 0 was discussed in [CRT, FM, LM] for $\gamma = 0$, and in [SY, St] for $\gamma > 0$ and $p \in (0, 1)$. For $A > 0, \gamma > 0$ and $q \ge 1$, it was established in [CP] that there exists a constant $\tilde{\lambda} > 0$ such that (1.3) has a positive solution for $\lambda < \tilde{\lambda}$ and no solution for $\lambda > \tilde{\lambda}$. The case when f(u)is bounded away from 0 and $\lim_{u\to\infty} f(u)/u^q \in (0,\infty)$ for some $q \in (1, 2^*)$, was considered in [HKS], in which the authors showed the existence of a constant $\tilde{\lambda} > 0$ such that (1.1) with p = 2 has at least two positive radial solutions for $\lambda < \tilde{\lambda}$, at least one for $\lambda = \tilde{\lambda}$, and none for $\lambda > \tilde{\lambda}$.

In this paper, we are interested in positive radial solutions of the problem (1.1) for $p \ge 2$ when f is p-superlinear at ∞ and is allowed to be singular at 0. We

shall consider both cases when $\lim_{u\to 0^+} f(u) > 0$ and $\lim_{u\to 0^+} f(u) < 0$. Problems of this kind appear in the the study of chemical reactions, thin films, and non-Newtonian fluids [AA, Di, DHM, DMO, HM]. Our results provide extensions of the results in [AAP, HS] to the singular case, and the results in [HKS] to the case $p \ge 2$ with more general nonlinearities f(u). In particular, the existence result in Theorem 2.1 below deals with the situation when f is p-superlinear at ∞ and $\lim_{u\to 0^+} f(u) = -\infty$, which occurs in some chemical reactions (see [Di, DHM, DMO]) and has not been considered in the literature to our knowledge.

To be more precise, we shall prove in the case $\lim_{u\to 0^+} f(u) < 0$ that problem (1.2) has a positive, decreasing solution u_{λ} for λ small, and $u_{\lambda} \to \infty$ uniformly on compact subsets of [0, 1) as $\lambda \to 0$.

In the case $\lim_{u\to 0^+} f(u) > 0$, we show the existence of a positive number λ^* such that (1.2) has at least two positive solutions for $\lambda < \lambda^*$, at least one for $\lambda = \lambda^*$, and none for $\lambda > \lambda^*$.

In particular, our results when applied to the model cases

(1.4)
$$\begin{cases} -\Delta_p u = \lambda (-1/u^{\alpha} + u^q (\ln(1+u))^r) & \text{in } B, \\ u = 0 & \text{on } \partial B, \end{cases}$$

and

(1.5)
$$\begin{cases} -\Delta_p u = \lambda (1/u^{\alpha} + u^q (\ln(1+u))^r) & \text{in } B, \\ u = 0 & \text{on } \partial B, \end{cases}$$

where $\alpha \in [0,1)$, $r \geq 0, q \in (p-1, p^*-1)$, give the existence of a positive radial solution to (1.4) for λ small, and the existence of a constant $\lambda^* > 0$ such that (1.5) has at least two positive radial solutions for $\lambda < \lambda^*$, at least one for $\lambda = \lambda^*$, and none for $\lambda > \lambda^*$.

Our proofs depend on degree theory and sup- and supersolutions approach as in [HS]. However, the proofs in [HS] do not carry over to the singular case since the compact operator introduced in [HS] is not defined on C[0, 1] in that case. To overcome this, we come up with a modified problem whose solutions are fixed points of a compact operator in C[0, 1] and then show that these solutions are in fact positive solutions of the original problem.

§2. Main results

We shall make the following assumptions:

(A.1) $f: (0, \infty) \to \mathbb{R}$ is continuous and

$$\lim_{x \to \infty} \frac{f(x)}{x^{p-1}} = \infty.$$

(A.2)
$$N \liminf_{x \to \infty} \frac{F(x)}{xf(x)} > \max\left(\frac{N}{p} - 1, 0\right)$$
, where $F(x) = \int_0^x f(t) dt$

(A.3) There exists a constant $\alpha \in [0, 1)$ such that

$$\limsup_{x \to 0^+} x^{\alpha} |f(x)| < \infty.$$

(A.4) f > 0 on $(0, \infty)$ and there exist constants B > 0 and $\beta \in [0, 1)$ such that

$$\lim_{x \to 0^+} x^\beta f(x) = B$$

By a positive solution of (1.2), we mean a function $u \in C^1[0, 1]$ with u > 0 on [0, 1) that satisfies (1.2).

Our main results are:

Theorem 2.1. Let (A.1)–(A.3) hold. Then there exists a constant $\lambda_0 > 0$ such that (1.2) has a positive, decreasing solution u_{λ} for $\lambda \in (0, \lambda_0)$ with $||u_{\lambda}||_{\infty} \to \infty$ as $\lambda \to 0$. Furthermore, there exists a function $L : \mathbb{R}^+ \to \mathbb{R}$ with $\lim_{d\to\infty} L(d) = \infty$ such that

$$u_{\lambda}(r) \ge L(\|u_{\lambda}\|_{\infty})(1-r) \quad \text{for } r \in [0,1).$$

Theorem 2.2. Let (A.1)–(A.4) hold. Then there exists a positive constant λ^* such that (1.2) has at least two positive solutions for $\lambda \in (0, \lambda^*)$, at least one for $\lambda = \lambda^*$, and none for $\lambda > \lambda^*$.

Remark 2.3. (i) Theorems 2.1 and 2.2 extend Theorems 2.1 and 3.1 of [HS], and Theorem 4.6 of [AAP], to the singular case. Theorem 2.2 with p = 2 extends Theorem 1 of [HKS] to nonlinearities f(u) that do not behave like u^q at ∞ .

(ii) When f is nonsingular, condition (A.2) is satisfied under the following assumption introduced in [GMS]:

(A.2)' There exists a constant $\theta \in (0,1)$ such that

$$N\liminf_{x\to\infty}\frac{F(\theta x)}{xf_s(x)} > \max\left(\frac{N}{p} - 1, 0\right), \quad \text{where} \quad f_s(x) = \sup_{0 \le t \le x} f(t).$$

It was shown in [GMS] that when f is nondecreasing, (A.2)' is equivalent to the following condition given in [TH]:

(A) There exists a constant $\theta \in (0, 1)$ such that

$$NF(\theta x) - \frac{N-p}{p}xf(x) \ge 0$$
 for x large

§3. Preliminary results

Let $\psi(r) = 1 - r$. The following lemma is an extension of Lemma 2.2 of [HS] to the singular case.

Lemma 3.1. Let ζ be a nonnegative number and let u be the solution of

(3.1)
$$\begin{cases} -(r^{N-1}\phi(u'))' = \lambda r^{N-1}k(r), & 0 < r < 1, \\ u'(0) = 0, & u(1) = \zeta, \end{cases}$$

where $k \geq -m\psi^{-\alpha}$ on (0,1) for some constants m > 0, $\alpha \in (0,1)$. Then

- (i) $u' \leq \phi^{-1}(\lambda m_1)$,
- (ii) $u(t) \ge u(s) \phi^{-1}(\lambda m_1)$ for $0 \le t \le s \le 1$,
- (iii) $t^{N-1}\phi(u'(t)) \ge s^{N-1}\phi(u'(s)) \lambda m_1$ for $0 \le t \le s \le 1$, where $m_1 = m(1-\alpha)^{-1}$.

Proof. Let u be a solution of (3.1). By integrating, we obtain

$$u'(r) = -\phi^{-1} \left(\frac{\lambda}{r^{N-1}} \int_0^r \tau^{N-1} k(\tau) \, d\tau \right) \le \phi^{-1} \left(\frac{\lambda m}{r^{N-1}} \int_0^r \tau^{N-1} \psi^{-\alpha} \, d\tau \right)$$
$$\le \phi^{-1} \left(\lambda m \int_0^r \psi^{-\alpha} d\tau \right) \le \phi^{-1} (\lambda m_1)$$

for $r \in (0, 1)$, i.e. (i) holds. Integrating this inequality on (t, s), t < s, gives

$$u(s) - u(t) \le \phi^{-1}(\lambda m_1)(s - t),$$

which implies (ii). Finally, integrating the equation in (3.1) on (t, s), we obtain (iii).

Lemma 3.2 ([HW]). Let q > 1. Then there exists a constant $\nu \in (0, 1)$ such that for each $g \in L^q(0, 1)$, the problem

$$\begin{cases} -(r^{N-1}\phi(u'))' = r^{N-1}g, & 0 < r < 1, \\ u'(0) = 0, & u(1) = 0, \end{cases}$$

has a unique solution $u \equiv Tg \in C^{1,\nu}[0,1]$. Furthermore, there exists a constant C > 0 independent of g such that

$$|u|_{1,\nu} \le C ||g||_q^{1/(p-1)},$$

and the operator $T: L^q(0,1) \to C^1[0,1]$ is compact.

Define

(3.2)
$$g(x) = \begin{cases} f(x) & \text{if } 0 < x \le 1, \\ f(1) & \text{if } x > 1, \end{cases}$$

(3.3)
$$h(x) = \begin{cases} 0 & \text{if } 0 < x \le 1, \\ f(x) - f(1) & \text{if } x > 1, \end{cases}$$

and h(x) = 0 if $x \leq 0$. Then h is continuous, bounded below on \mathbb{R} and f = g + h on $(0, \infty)$. Using (A.2), it is easily seen that

(3.4)
$$N\liminf_{x\to\infty}\frac{H(x)}{xh(x)} > \max\left(\frac{N}{p} - 1, 0\right),$$

where $H(x) = \int_0^x h(t) dt$.

Lemma 3.3. (i) There exist positive constants C, C_1, a, δ with

$$N/p > a > N/p - 1$$

 $such\ that$

$$CH(x)^{a/N} \le x, \quad h(x) \le C_1 H(x)^{1-a/N}$$

and

$$NH(x) - axh(x) \ge \delta H(x)$$

for $x \gg 1$.

(ii) For each $\theta \in (0,1)$, there exists a constant b_{θ} such that

$$H(\theta x) \ge b_{\theta} H(x)$$

for $x \gg 1$. Furthermore, $b_{\theta} \to 1$ as $\theta \to 1$.

Proof. In view of (3.4), there exist positive constants a, \tilde{a} such that

$$N \liminf_{x \to \infty} \frac{H(x)}{xh(x)} > \tilde{a} > a > \max\left(\frac{N}{p} - 1, 0\right).$$

Hence

(3.5)
$$H(x) \ge \frac{\tilde{a}}{N} x h(x) \quad \text{for } x \gg 1,$$

which implies

$$NH(x) - axh(x) \ge N\left(1 - \frac{a}{\tilde{a}}\right)H(x)$$

 $H'(x) \le \frac{N}{ax}H(x)$

and

for $x \gg 1$. Solving this differential inequality gives

$$H(x) \le C_0 x^{N/a} \quad \text{for } x \gg 1,$$

and so $x \ge (H(x)/C_0)^{a/N}$ for $x \gg 1$. Note that p < N/a since $\lim_{x\to\infty} H(x)/x^p = \infty$. Hence

$$h(x) \le \frac{NH(x)}{ax} \le C_1 H(x)^{1-a/N}$$

for $x \gg 1$ and (i) follows. Next, fix $\theta \in (0, 1)$. By (3.5),

$$\int_{\theta x}^{x} h(t) \, dt = \int_{\theta x}^{x} \frac{th(t)}{t} \, dt \le \frac{N}{\theta a x} \int_{\theta x}^{x} H(t) \, dt \le \frac{N(1-\theta)}{\theta a} H(x)$$

for $x \gg 1$, where we have used the fact that H(x) is increasing for large x. Hence

$$H(\theta x) = H(x) - \int_{\theta x}^{x} h(t) dt \ge b_{\theta} H(x)$$

for $x \gg 1$, where $b_{\theta} = 1 - \frac{N(1-\theta)}{\theta a}$.

§4. Abstract setting and a priori estimates

Let $\lambda > 0$. For $v \in C[0, 1]$, define $S_{\lambda}v = \lambda (g(\max(v, \psi)) + h(v))$, where g and h are defined by (3.2) and (3.3) respectively. By (A.3), there exists a constant $c_0 > 0$ such that

$$|g(x)| \le \frac{c_0}{x^{\alpha}} + |f(1)|$$
 for all $x > 0$.

In particular,

(4.1)
$$|g(\max(v,\psi))| \le \frac{c_1}{\psi^{\alpha}},$$

where $c_1 = c_0 + |f(1)|$. This, together with the Lebesgue Dominated Convergence Theorem, implies that $S_{\lambda} : C[0,1] \to L^q(0,1)$ is continuous and maps bounded sets into bounded sets, where $1 < q < 1/\alpha$.

Let $A_{\lambda}v = u$, where u is the solution of

(4.2)
$$\begin{cases} -(r^{N-1}\phi(u'))' = \lambda r^{N-1}(g(\max(v,\psi)) + h(v)), & 0 < r < 1, \\ u'(0) = 0, & u(1) = 0. \end{cases}$$

Since $A_{\lambda} = T \circ S_{\lambda}$, where T is defined in Lemma 3.2, it follows that $A_{\lambda} : C[0, 1] \to C[0, 1]$ is a compact operator.

Lemma 4.1. There exists a constant $\overline{\lambda} > 0$ such that for each $\lambda \in (0, \overline{\lambda})$, there exists a positive constant r_{λ} with $\lim_{\lambda \to 0} r_{\lambda} = \infty$ such that

$$u = \theta A_{\lambda} u, \ \theta \in (0, 1) \Rightarrow \|u\|_{\infty} \neq r_{\lambda}.$$

Proof. Let u satisfy $u = \theta A_{\lambda} u$ for some $\theta \in (0, 1)$. Then

$$u(r) = \theta \int_r^1 \phi^{-1} \left(\frac{\lambda}{s^{N-1}} \int_0^s \tau^{N-1} (g(\max(u, \psi)) + h(u)) \, d\tau \right) ds,$$

which, together with (4.1), implies

$$\begin{aligned} |u(r)| &\leq \int_r^1 \phi^{-1} \left(\frac{\lambda}{s^{N-1}} \int_0^s \tau^{N-1} \left(\frac{c_1}{\psi^{\alpha}} + h_s(||u||_{\infty}) \right) d\tau \right) ds \\ &\leq \phi^{-1} (\lambda c_2 + \lambda h_s(||u||_{\infty})) \end{aligned}$$

for $r \in (0, 1)$, where $c_2 = c_1(1 - \alpha)^{-1}$ and $h_s(t) = \sup_{x \in [0, t]} |h(x)|$. Hence

(4.3)
$$\phi(\|u\|_{\infty}) \le \lambda(c_2 + h_s(\|u\|_{\infty})).$$

Let $\bar{\lambda} = \frac{1}{2(c_2+h_s(1))}$ and $\lambda \in (0, \bar{\lambda})$. Then

$$c_2 + h_s(1) = \frac{1}{2\bar{\lambda}} < \frac{1}{2\lambda}.$$

Since $\lim_{x\to\infty} \frac{c_2+h_s(x)}{\phi(x)} = \infty$, there exists a constant $r_{\lambda} > 1$ such that

(4.4)
$$\frac{c_2 + h_s(r_\lambda)}{\phi(r_\lambda)} = \frac{1}{2\lambda}.$$

Clearly $\lim_{\lambda \to 0} r_{\lambda} = \infty$, and from (4.3) and (4.4), we see that $||u||_{\infty} \neq r_{\lambda}$. \Box

Lemma 4.2. For each $\lambda > 0$, there exists a constant $\zeta_{\lambda} > 0$ such that

$$u = A_{\lambda}u + \zeta, \ \zeta \ge 0 \ \Rightarrow \ \zeta \le \zeta_{\lambda}.$$

Proof. Let u satisfy $u = A_{\lambda}u + \zeta$, where $\zeta \ge 0$ and $\lambda > 0$. Then

$$\begin{cases} -(r^{N-1}|u'|^{p-2}u')' = \lambda r^{N-1}(g(\max(u,\psi)) + h(u)), & 0 < r < 1, \\ u'(0) = 0, & u(1) = \zeta. \end{cases}$$

Let $\lambda_1 > 0$ be the first eigenvalue of $-\Delta_p$ on the unit ball with Dirichlet boundary conditions, and let ϕ_1 be the corresponding normalized positive radial eigenfunction, i.e. $\|\phi_1\|_{\infty} = 1$, $\phi_1 > 0$ in [0, 1), and

$$\begin{cases} -(r^{N-1}|\phi_1'|^{p-2}\phi_1')' = \lambda_1 r^{N-1}\phi_1^{p-1}, & 0 < r < 1, \\ \phi_1'(0) = 0, & \phi_1(1) = 0. \end{cases}$$

Since there exists a constant m > 0 such that

$$g(\max(v,\psi)) + h(v) \ge -\frac{c_1}{\psi^{\alpha}} + h(v) \ge -\frac{m}{\psi^{\alpha}}$$

for all $v \in C[0, 1]$, Lemma 3.1(ii) implies

$$u(r) \ge \zeta - \phi^{-1}(\lambda m_1)$$
, where $m_1 = m(1-\alpha)^{-1}$.

Choose ζ_{λ} so that $\zeta_{\lambda} > \max\{2\phi^{-1}(\lambda m_1), 2\}$ and

$$\frac{f(x)}{x^{p-1}} > \frac{2\lambda_1}{\lambda} \quad \text{ for } x > \frac{\zeta_\lambda}{2}.$$

We claim that $\zeta \leq \zeta_{\lambda}$. Suppose $\zeta > \zeta_{\lambda}$ and let $\tilde{u} = u - \zeta$. Since

$$u(r) \ge \zeta_{\lambda}/2 > \psi$$
 for $r \in (0, 1)$,

it follows that

$$\begin{cases} -(r^{N-1}|\tilde{u}'|^{p-2}\tilde{u}')' = \lambda r^{N-1}f(u) \ge 2\lambda_1 r^{N-1}(\tilde{u}+\zeta)^{p-1} & \text{in } (0,1), \\ \tilde{u}'(0) = 0, \quad \tilde{u}(1) = 0. \end{cases}$$

By the strong maximum principle, $\tilde{u} > 0$ in [0, 1) and $\tilde{u}'(1) < 0$. Let c be largest such that $\tilde{u} \ge c\phi_1$ in [0, 1). Then c > 0 and

$$-(r^{N-1}|\tilde{u}'|^{p-2}\tilde{u}')' \ge 2\lambda_1 r^{N-1} (c\phi_1)^{p-1} \quad \text{in } (0,1),$$

and the weak comparison principle implies $\tilde{u} \geq 2^{1/(p-1)}c\phi_1$ in [0, 1), a contradiction with the choice of c. Thus $\zeta \leq \zeta_{\lambda}$, as claimed.

Lemma 4.3. Let $\lambda < \overline{\lambda}$ and let u satisfy

 $u = A_{\lambda}u + \zeta$

for some $\zeta \geq 0$. Then there exists a positive constant $C_{\bar{\lambda}}$ such that

 $||u||_{\infty} = u(0) \quad whenever \; ||u||_{\infty} > C_{\bar{\lambda}}.$

Proof. Suppose $||u||_{\infty} \equiv d = |u(r_1)|$ for some $r_1 \in (0, 1)$. By Lemma 3.1(ii),

$$u(r_1) \ge -\phi^{-1}(\lambda m_1),$$

and so $u(r_1) > 0$ if $d > 2\phi^{-1}(\bar{\lambda}m_1)$. For such d,

$$(r) \ge u(r_1) - \phi^{-1}(\bar{\lambda}m_1) \ge d/2$$

for $r \in (0, r_1)$. By integrating and using (4.1), we obtain

$$-u'(r) = \phi^{-1} \left(\frac{\lambda}{r^{N-1}} \left(\int_0^r \tau^{N-1} (g(\max(u, \psi)) + h(u)) d\tau \right) \right)$$

$$\geq \phi^{-1} \left(\frac{\lambda}{r^{N-1}} \int_0^r \tau^{N-1} \left(-\frac{c_1}{\psi^{\alpha}} + h(u) \right) d\tau \right)$$

$$\geq \phi^{-1} \left(\lambda r \left\{ -\frac{c_1}{1-\alpha} + \frac{1}{N} h_i \left(\frac{d}{2} \right) \right\} \right) > 0$$

for $r \in (0, r_1)$, where $h_i(t) = \inf_{x \ge t} h(x)$, provided that $d \gg 1$. Here we have used the fact that

$$r^{-N} \int_0^r \frac{\tau^{N-1}}{(1-\tau)^{\alpha}} d\tau \le (1-\alpha)^{-1}$$

for $r \in (0,1)$, and $h_i(t) \to \infty$ as $t \to \infty$. Thus u is decreasing on $(0, r_1)$ and so $u(0) > u(r_1)$, a contradiction.

Lemma 4.4. Let $\lambda < \overline{\lambda}$ and $\zeta_0 > 0$. Suppose u satisfies

$$u = A_{\lambda}u + \zeta$$

for some $0 \leq \zeta \leq \zeta_0$. Then:

(i) There exists a function $L : \mathbb{R}^+ \to \mathbb{R}$ depending on ζ_0 and $\overline{\lambda}$ with $\lim_{d\to\infty} L(d) = \infty$ such that

$$u(r) \ge L(||u||_{\infty})(1-r) \quad for \ r \in (0,1).$$

- (ii) There exists a constant R
 > 0 depending on ζ₀ and λ
 such that u is decreasing on (0,1) if ||u||_∞ > R
 .
- (iii) If $\lambda > \underline{\lambda} > 0$ then there exists a constant R > 0 depending on $\underline{\lambda}, \overline{\lambda}, \zeta_0$ such that $\|u\|_{\infty} < R$.

Proof. Note that

(4.5)
$$\begin{cases} -(r^{N-1}|u'|^{p-2}u')' = \lambda r^{N-1}(g(\max(u,\psi)) + h(u)), & 0 < r < 1, \\ u'(0) = 0, & u(1) = \zeta. \end{cases}$$

Multiplying the equation in (4.5) by ru' gives

(4.6)
$$\left(r^{N}\left(1-\frac{1}{p}\right)|u'|^{p}+\lambda r^{N}H(u)\right)' = -\lambda r^{N}g(\max(u,\psi))u' + \lambda r^{N-1}NH(u) + r^{N-1}\left(1-\frac{N}{p}\right)|u'|^{p}$$

Next, multiplying the equation in (4.5) by au, where a is given by Lemma 3.3(i), we obtain

(4.7)
$$(ar^{N-1}|u'|^{p-2}u'u)' = -\lambda ar^{N-1}g(\max(u,\psi))u - \lambda r^{N-1}auh(u) + r^{N-1}a|u'|^{p}$$
.

Adding (4.6) and (4.7) yields

(4.8)
$$\psi'(r) = r^{N-1} \left(a + 1 - \frac{N}{p} \right) |u'|^p + \lambda r^{N-1} (NH(u) - auh(u)) - \lambda r^N g(\max(u, \psi)) u' - \lambda a r^{N-1} g(\max(u, \psi)) u,$$

where $\psi(r) = r^N (1 - 1/p) |u'|^p + \lambda r^N H(u) + a r^{N-1} |u'|^{p-2} u'u$.

In what follows, we shall denote by K_i , i = 0, 1, ..., positive constants independent of u.

By Lemma 3.3(i), there exist constants $\delta, K_0 > 0$ such that

(4.9)
$$NH(x) - axh(x) \ge \delta H(x) - K_0$$

for all $x \in \mathbb{R}$. Hence

(4.10)
$$\psi'(r) \ge \lambda \delta r^{N-1} H(u) - \lambda r^N g(\max(u, \psi)) u' - \lambda a r^{N-1} g(\max(u, \psi)) u - \lambda K_0$$

for $r \in (0, 1)$. In view of Lemma 3.3(ii), there exists $\theta \in (0, 1)$ such that

(4.11)
$$H(\theta x) \ge (1/2)H(x) \quad \text{for } x \gg 1$$

Suppose $||u||_{\infty} = d \gg 1$. Then Lemma 4.3 implies $||u||_{\infty} = u(0)$. Let $\bar{\theta} \in (\theta, 1)$ and $r_0 \in (0, 1)$ be such that $u(r_0) = \bar{\theta}d$. Note that r_0 exists since $u(0) > \bar{\theta}d$ and $u(1) = \zeta \leq \zeta_0 < \bar{\theta}d$ for large d.

By Lemma 3.1(ii),

(4.12)
$$u(r) \ge u(r_0) - \phi^{-1}(\bar{\lambda}m_1) \ge \theta d$$

for $r < r_0$. From (4.11) and (4.12), for $r > r_0$ we obtain

(4.13)
$$\lambda \delta \int_0^r s^{N-1} H(u) \, ds \ge \lambda \delta \int_0^{r_0} s^{N-1} H(u) \, ds - \lambda K_1$$
$$\ge \frac{\lambda \delta r_0^N}{N} H(\theta d) - \lambda K_1$$
$$\ge \frac{\lambda \delta r_0^N}{2N} H(d) - \lambda K_1.$$

Integrating (4.10) on (0, r), where $r \in (r_0, 1)$, and using (4.13), we obtain

(4.14)
$$\psi(r) \ge \frac{\lambda \delta r_0^N}{2N} H(d) - \lambda \int_0^r s^N g(\max(u, \psi)) u' \, ds$$
$$-\lambda a \int_0^r s^{N-1} g(\max(u, \psi)) u \, ds - \lambda K_1.$$

Since $p \ge 2$, it follows from Lemma 3.1(i) that there exists a positive constant C_0 depending on $\bar{\lambda}$ such that

$$(4.15) u' \ge \phi(u') - C_0$$

in (0, 1), which together with (4.1) implies

$$(4.16) \qquad -\lambda \int_0^r s^N g(\max(u,\psi)) u' ds$$
$$= -\lambda \int_0^r s^N \left(g(\max(u,\psi)) + \frac{c_1}{\psi^{\alpha}} \right) (u' - \phi^{-1}(\lambda m_1)) ds + \lambda c_1 \int_0^r \frac{s^N u'}{\psi^{\alpha}} ds$$
$$-\lambda \phi^{-1}(\lambda m_1) \int_0^r s^N \left(g(\max(u,\psi)) + \frac{c_1}{\psi^{\alpha}} \right) ds$$
$$\geq \lambda c_1 \int_0^r \frac{s^N(\phi(u') - C_0)}{\psi^{\alpha}} ds - \lambda \phi^{-1}(\lambda m_1) \int_0^r s^N \left(g(\max(u,\psi)) + \frac{c_1}{\psi^{\alpha}} \right) ds$$
$$\geq \lambda c_1 \int_0^r \frac{s^N \phi(u')}{\psi^{\alpha}} ds - K_2.$$

By Lemma 3.1(iii),

$$\int_0^r \frac{s^N \phi(u')}{\psi^\alpha} \, ds \ge (r^{N-1} \phi(u'(r)) - \lambda m_1) \left(\int_0^r \frac{s}{\psi^\alpha} \, ds \right).$$

From this and (4.16), we get

(4.17)
$$-\lambda \int_0^r s^N g(\max(u,\psi))u'\,ds \ge \lambda c_1 \left(\int_0^r \frac{s}{\psi^\alpha}\,ds\right) r^{N-1} \phi(u'(r)) - K_3.$$

Next, using Lemma 3.1(ii), (4.1), and integration by parts, we obtain

$$(4.18) \qquad -\lambda a \int_0^r s^{N-1} g(\max(u,\psi)) u \, ds$$
$$= -\lambda a \int_0^r s^{N-1} \left(g(\max(u,\psi)) + \frac{c_1}{\psi^{\alpha}} \right) (u + \phi^{-1}(\lambda m_1)) \, ds$$
$$+ \lambda a c_1 \int_0^r \frac{s^{N-1} u}{\psi^{\alpha}} \, ds + \lambda a \phi^{-1}(\lambda m_1) \int_0^r s^{N-1} \left(g(\max(u,\psi)) + \frac{c_1}{\psi^{\alpha}} \right) \, ds$$
$$\geq -\lambda a c_1 \int_0^r \frac{s^{N-1} u}{\psi^{\alpha}} \, ds - K_4$$
$$= -\lambda a c_1 \left(\int_0^r \frac{s^{N-1}}{\psi^{\alpha}} \, d\tau \right) u(r) + \lambda a c_1 \int_0^r \left(\int_0^s \frac{\tau^{N-1}}{\psi^{\alpha}} \, d\tau \right) u' \, ds - K_4.$$

From (4.15) and Lemma 3.1(i) & (iii),

$$(4.19) \qquad \int_{0}^{r} \left(\int_{0}^{s} \frac{\tau^{N-1}}{\psi^{\alpha}} d\tau \right) u' ds \\ = \int_{0}^{r} \left(\int_{0}^{s} \frac{\tau^{N-1}}{\psi^{\alpha}} d\tau \right) (u' - \phi^{-1}(\lambda m_{1})) ds + \phi^{-1}(\lambda m_{1}) \int_{0}^{r} \left(\int_{0}^{s} \frac{\tau^{N-1}}{\psi^{\alpha}} d\tau \right) ds \\ \ge \int_{0}^{r} \left(\int_{0}^{s} \frac{d\tau}{\psi^{\alpha}} \right) s^{N-1} (u' - \phi^{-1}(\lambda m_{1})) ds \ge r^{N-1} \phi(u'(r)) \int_{0}^{r} \left(\int_{0}^{s} \frac{d\tau}{\psi^{\alpha}} \right) ds - K_{5}.$$

Combining (4.18) and (4.19) gives

$$(4.20) \qquad -\lambda a \int_0^r s^{N-1} g(\max(u,\psi)) u \, ds \ge -\lambda a c_1 \left(\int_0^r \frac{s^{N-1}}{\psi^{\alpha}} \, ds \right) u(r) + \lambda a c_1 \left(\int_0^r \left(\int_0^s \frac{d\tau}{\psi^{\alpha}} \right) \, ds \right) r^{N-1} \phi(u'(r)) - K_6$$

We shall need an estimate on r_0 . By Lemma 3.3(i),

(4.21)
$$-u'(r) = \phi^{-1} \left(\frac{\lambda}{r^{N-1}} \left(\int_0^r \tau^{N-1} (g(\max(u, \psi)) + h(u)) d\tau \right) \right) \\ \leq \phi^{-1} \left(\frac{\lambda}{r^{N-1}} \left(\int_0^r \tau^{N-1} \left(\frac{c_1}{\psi^{\alpha}} + C_1 H(u)^{1-a/N} + K_7 \right) d\tau \right) \right) \\ \leq (2\lambda C_1 H(d)^{1-a/N} r))^{1/(p-1)}$$

for $r \in (0, 1)$. Integrating this inequality on $(0, r_0)$ and using Lemma 3.3(i), we get $C(1-\bar{\theta})H(d)^{a/N} \leq (1-\bar{\theta})d \leq ((p-1)/p)(2\lambda C_1)^{1/(p-1)}H(d)^{(1-a/N)1/(p-1)}r_0^{p/(p-1)},$

which implies

(4.22)
$$r_0 \ge \frac{K_8}{\lambda^{1/p}} H(d)^{a/N-1/p}.$$

Next, integrating (4.21) on (0, 1) gives

$$d \le \zeta_0 + K_9 \lambda^{1/(p-1)} H(d)^{(1-a/N)/(p-1)}$$

and therefore, if $d \geq 2\zeta_0$,

$$CH(d)^{a/N} \le d \le 2K_9 \lambda^{1/(p-1)} H(d)^{(1-a/N)/(p-1)},$$

which implies

(4.23)
$$\lambda \ge K_{10}H(d)^{ap/N-1}.$$

If $N \ge p$ then it follows from (4.22) that

(4.24)
$$\lambda r_0^N H(d) \ge \lambda^{1-N/p} K_8^N H(d)^{a+1-N/p} \ge \bar{\lambda}^{1-N/p} K_8^N H(d)^{a+1-N/p},$$

while if N < p, we deduce from (4.22) and (4.23) that

(4.25)
$$\lambda r_0^N H(d) \ge \lambda^{1-N/p} K_8^N H(d)^{a+1-N/p} \ge (K_{10} H(d)^{ap/N-1})^{1-N/p} K_8^N H(d)^{a+1-N/p} = K_{11} H(d)^{ap/N}.$$

Combining (4.14), (4.17), (4.20), (4.24), and (4.25), we get

$$\psi(r) \ge K_{12}H_1(d) + \lambda c_1 \left(\int_0^r \frac{s}{\psi^{\alpha}} \, ds \right) r^{N-1} \phi(u'(r)) - \lambda a c_1 \left(\int_0^r \frac{s^{N-1}}{\psi^{\alpha}} \, ds \right) u(r)$$
$$+ \lambda a c_1 \left(\int_0^r \left(\int_0^s \frac{d\tau}{\psi^{\alpha}} \right) \, ds \right) r^{N-1} \phi(u'(r)) - K_{13}$$

for $r \in (r_0, 1)$, where $H_1(d) = H(d)^{\gamma}$, $\gamma = a + 1 - N/p$ if $N \ge p$, and $\gamma = ap/N$ if N < p.

Let k > 0 be such that $\tilde{H}(x) \equiv H(x) + kx$ is increasing on \mathbb{R} . Since we have $\lim_{x\to\infty} H(x)/x^p = \infty$, there exist constants k_1 and K_{14} such that

$$\psi(r) - \lambda c_1 \left(\int_0^r \frac{s}{\psi^{\alpha}} ds \right) r^{N-1} \phi(u'(r)) + \lambda a c_1 \left(\int_0^r \frac{s^{N-1}}{\psi^{\alpha}} ds \right) u(r) - \lambda a c_1 \left(\int_0^r \left(\int_0^s \frac{d\tau}{\psi^{\alpha}} \right) ds \right) r^{N-1} \phi(u'(r)) \le k_1 \tilde{H}(|u(r)| + |u'(r)|) + K_{14}$$

for $r \in (r_0, 1)$. Consequently,

$$|u(r)| + |u'(r)| \ge \tilde{H}^{-1}\left(\frac{K_{12}H_1(d) - K_{14}}{k_1}\right).$$

By Lemma 3.1,

$$|u| + |u'| \le u - u' + 4\phi^{-1}(\bar{\lambda}m_1),$$

and so

$$-u' + u \ge H_2(d)$$
 on $(r_0, 1)$,

where $H_2(d) = \tilde{H}^{-1}\left(\frac{K_{12}H_1(d)-K_{14}}{k_1}\right) - 4\phi^{-1}(\bar{\lambda}m_1)$. Note that $H_2(d) \to \infty$ as $d \to \infty$. Solving the above differential inequality, we get

$$u(r) \ge e^{r-1}\zeta + e^r \left(\int_r^1 e^{-s} \, ds\right) H_2(d) \ge \frac{H_2(d)}{e}(1-r)$$

for $r > r_0$ and $d \gg 1$, while (4.12) holds for $r \le r_0$ and $d \gg 1$. On the other hand, if $d < d_0$ for some $d_0 > 0$ then it follows from the integral formula for u' that $||u'||_{\infty} < D_0$, where D_0 depends on d_0 and $\overline{\lambda}$. Hence

$$u(r) = \zeta - \int_{r}^{1} u' \ge -D_0(1-r) \quad \text{for } r \in (0,1)$$

Hence (i) follows.

(ii) Let h_0 be a positive constant such that $h(x) \ge -h_0$ for all $x \in \mathbb{R}$, and let $\tilde{R} > 2\phi^{-1}(\bar{\lambda}m_1)$ be large enough so that

$$h_i(\tilde{R}) > N2^{N+2}(c_1(1-\alpha)^{-1} + h_0),$$

where $h_i(t) = \inf_{x \ge t} h_i(x)$, and c_1 is given by (4.1). Choose $\bar{R} > 0$ so that

$$L(z) > 4\tilde{R}$$
 for $z \ge \bar{R}$.

Suppose $||u||_{\infty} > \overline{R}$. Then, by part (i),

$$\frac{u(1/2)}{2} \ge \frac{1}{4}L(\|u\|_{\infty}) > \tilde{R}$$

Since

(4.26)
$$-\phi(u'(r)) \ge \frac{\lambda}{r^{N-1}} \int_0^r \tau^{N-1} \left(-\frac{c_1}{\psi^{\alpha}} + h(u) \right) d\tau$$

 $\quad \text{and} \quad$

$$u(\tau) \ge u(1/2) - \phi^{-1}(\bar{\lambda}m_1) \ge \frac{u(1/2)}{2}$$

for $\tau \leq 1/2$, it follows that

$$\int_{0}^{r} \tau^{N-1} \left(-\frac{c_{1}}{\psi^{\alpha}} + h(u) \right) d\tau \ge \frac{r^{N}}{N} \left(h_{i} \left(\frac{u(1/2)}{2} \right) - Nc_{1}(1-\alpha)^{-1} - h_{0} \right)$$
$$\ge \frac{r^{N}}{2N} h_{i} \left(\frac{u(1/2)}{2} \right) > 0$$

for $r \leq 1/2$. Hence u' < 0 on (0, 1/2]. For r > 1/2,

$$(4.27) \qquad \int_{0}^{r} \tau^{N-1} \left(-\frac{c_{1}}{\psi^{\alpha}} + h(u) \right) d\tau = \int_{0}^{1/2} \tau^{N-1} \left(-\frac{c_{1}}{\psi^{\alpha}} + h(u) \right) d\tau + \int_{1/2}^{r} \tau^{N-1} \left(-\frac{c_{1}}{\psi^{\alpha}} + h(u) \right) d\tau \geq \frac{1}{2^{N+1}N} h_{i} \left(\frac{u(1/2)}{2} \right) - c_{1}(1-\alpha) - h_{0} > \frac{1}{2^{N+2}N} h_{i} \left(\frac{u(1/2)}{2} \right),$$

and (ii) follows.

(iii) Let $R_1 > 0$ be such that

$$\frac{h_i(x)}{\phi(x)} > \frac{N2^{N+2p}}{\bar{\lambda}}$$

for $x \ge R_1$. Let $R > \overline{R}$ be such that

$$L(z) > 4R_1 \quad \text{ for } z \ge R,$$

where \bar{R} is defined in part (ii). We claim that $||u||_{\infty} < R$. Suppose $||u||_{\infty} \ge R$.

Then, by integrating on (1/2, 1) the inequality

$$-u' \ge \phi^{-1}\left(\frac{\lambda}{2^{N+2}N}h_i\left(\frac{u(1/2)}{2}\right)\right),$$

obtained from (4.26) and (4.27), we get

$$2u(1/2) \ge \phi^{-1}\left(\frac{\lambda}{2^{N+2}N}h_i\left(\frac{u(1/2)}{2}\right)\right),$$

or, equivalently,

$$\frac{h_i\left(\frac{u(1/2)}{2}\right)}{\phi\left(\frac{u(1/2)}{2}\right)} \le \frac{N2^{N+2p}}{\lambda} < \frac{N2^{N+2p}}{\underline{\lambda}}.$$

This implies $u(1/2)/2 < R_1$, and since

$$L(||u||_{\infty}) \le 2u(1/2) < 4R_1,$$

it follows that $||u||_{\infty} < R$, a contradiction which proves the claim. This completes the proof of Lemma 4.4.

§5. Proofs of the main results

Proof of Theorem 2.1. Suppose $\lambda < \overline{\lambda}$, where $\overline{\lambda}$ is defined by Lemma 4.1. In view of Lemmas 4.1, 4.2, and 4.4(iii), it follows that

$$\deg(I - A_{\lambda}, B(0, r_{\lambda}), 0) = 1, \quad \deg(I - A_{\lambda}, B(0, R), 0) = 0,$$

and the excision property of the Leray–Schauder degree gives the existence of a fixed point u_{λ} of A_{λ} such that

$$||u_{\lambda}||_{\infty} > r_{\lambda}.$$

Since $r_{\lambda} \to \infty$ as $\lambda \to 0$, it follows from Lemma 4.4(i) & (ii) with $\zeta_0 = 0$ that, for λ small, u_{λ} is decreasing and

$$u_{\lambda}(r) \ge L(\|u_{\lambda}\|_{\infty})(1-r) \ge \psi(r)$$

for $r \in [0, 1]$. In particular, u_{λ} is a positive solution of (1.2) for $\lambda > 0$ small and $u_{\lambda} \to \infty$ uniformly on compact subsets of [0, 1). This completes the proof of Theorem 2.1.

We now turn our attention to the positone case. By (A.1) and (A.4), there exists a positive number κ such that

$$f(x) \ge \kappa$$
 for all $x > 0$.

Let $\psi_{\lambda} = c_{\lambda}\psi$, where $c_{\lambda} = (\lambda \kappa/N)^{1/(p-1)}(p-1)/p$.

For $\lambda > 0$ and $v \in C[0, 1]$, let $u = \tilde{A}_{\lambda}v$ be the solution of

(5.1)
$$\begin{cases} -(r^{N-1}\phi(u'))' = \lambda r^{N-1}(g\max(v,\psi_{\lambda})) + h(v)), & 0 < r < 1, \\ u'(0) = 0, & u(1) = 0. \end{cases}$$

Then $\tilde{A}_{\lambda}: C[0,1] \to C[0,1]$ is a compact operator and using the same arguments as above, we obtain the following results for \tilde{A}_{λ} .

Lemma 5.1. (i) Let $0 < \underline{\lambda} < \lambda < \overline{\lambda}$. Then there exists a positive number $R_0 > 0$ depending on $\underline{\lambda}$ and $\overline{\lambda}$ such that any solution u_{λ} of

$$u = A_{\lambda} u$$

satisfies $||u||_{\infty} < R_0$. Furthermore

$$\deg(I - \tilde{A}_{\lambda}, B(0, R_0), 0) = 0.$$

(ii) \tilde{A}_{λ} has a fixed point for λ small.

Lemma 5.2. (i) Let u satisfy

(5.2)
$$\begin{cases} -(r^{N-1}\phi(u'))' \ge \lambda r^{N-1}\kappa, & 0 < r < 1, \\ u'(0) = 0, & u(1) = 0. \end{cases}$$

Then $u \ge \psi_{\lambda}$ in (0,1). In particular, u is a fixed point of \tilde{A}_{λ} if and only if u is a solution of (1.2).

(ii) There exists a positive number $\tilde{\lambda}$ such that (1.2) has no solution for $\lambda \geq \tilde{\lambda}$.

Proof. (i) Using the integral formula for u, we see that

(5.3)
$$u(r) \ge \int_{r}^{1} \phi^{-1} \left(\frac{\lambda}{s^{N-1}} \int_{0}^{s} \tau^{N-1} \kappa \, d\tau \right) ds = \int_{r}^{1} (\lambda \kappa s/N)^{1/(p-1)} \, ds$$
$$\ge (\lambda \kappa/N)^{1/(p-1)} ((p-1)/p)(1-r)$$

for $r \in (0, 1)$. Consequently, if u is a solution of (1.2) then $u = \max(u, \psi_{\lambda})$ and so u is a fixed point of \tilde{A}_{λ} . Conversely, suppose $u = \tilde{A}_{\lambda}u$. Since

$$g(\max(u,\psi_{\lambda})) + h(u) = f(\max(u,\psi_{\lambda}))$$

if $\max(u, \psi_{\lambda}) \leq 1$, and

$$g(\max(u, \psi_{\lambda})) + h(u) = f(\max(u, 1))$$

if $\max(u, \psi_{\lambda}) > 1$, it follows that $u \ge \psi_{\lambda}$ in (0, 1), and so u is a positive solution of (1.2).

(ii) Let u be a solution of (1.2). Then u is decreasing and satisfies

$$u(1/2) \ge \int_{1/2}^{1} \phi^{-1} \left(\frac{\lambda}{s^{N-1}} \int_{0}^{1/2} \tau^{N-1} f(u) \, d\tau \right) ds$$

$$\ge \frac{1}{2} \phi^{-1} \left(\frac{\lambda}{N2^{N}} f_{i}(u(1/2)) \right),$$

or

$$\frac{f_i(u(1/2))}{\phi(u(1/2))} \le \frac{N2^{N+p-1}}{\lambda},$$

which is a contradiction to (5.3) and the fact that $\lim_{x\to\infty} f_i(x)/\phi(x) = \infty$ if λ is sufficiently large.

Let $\Lambda = \{\lambda > 0 : (1.2) \text{ has a solution}\}\ \text{and let } \lambda^* = \sup \Lambda.$

Lemma 5.3. $\lambda^* \in (0,\infty)$ and $\lambda^* \in \Lambda$.

Proof. Using Lemmas 5.1(ii) and 5.2(ii), we see that $\lambda^* \in (0, \infty)$. Let (λ_n) be a sequence in Λ such that $\lambda_n \to \lambda^*$ and let (u_n) be the corresponding solutions of (1.2). By Lemma 5.1(i), $(||u_n||_{\infty})$ is bounded, and so there exists a constant C > 0 such that

$$f(u_n) \le \frac{C}{u_n^{\alpha}} \le \frac{C}{c_{\lambda_n}^{\alpha} \psi^{\alpha}}$$
 in $(0, 1)$

for all n. From this and the formula

$$u'_{n}(r) = -\phi^{-1}\left(\frac{\lambda_{n}}{r^{N-1}}\int_{0}^{r}\tau^{N-1}f(u_{n})\,d\tau\right),$$

we deduce that

$$|u_n'(r)| \le \phi^{-1} \left(\frac{\lambda_n C}{c_{\lambda_n}^{\alpha} r^{N-1}} \int_0^r \frac{\tau^{N-1}}{\psi^{\alpha}} d\tau \right) \le \phi^{-1} \left(\frac{\lambda_n C}{c_{\lambda_n}^{\alpha} (1-\alpha)} \right) \le C_1$$

for all $r \in (0,1)$ and n, where C_1 is a constant depending on $\lambda^*, C, \alpha, N, p$.

Hence (u_n) is bounded in $C^1[0,1]$, and, by passing to a subsequence, we can assume that $u_n \to u_{\lambda^*}$ in C[0,1]. Letting $n \to \infty$ in

$$u_n(r) = \int_r^1 \phi^{-1} \left(\frac{\lambda_n}{s^{N-1}} \int_0^s \tau^{N-1} f(u_n) \, d\tau \right) ds$$

we obtain

$$u_{\lambda^*}(r) = \int_r^1 \phi^{-1} \left(\frac{\lambda^*}{s^{N-1}} \int_0^s \tau^{N-1} f(u_{\lambda^*}) \, d\tau \right) ds,$$

i.e. u_{λ^*} is a solution of (1.2) with $\lambda = \lambda^*$.

Lemma 5.4. Let $\lambda \in (0, \lambda^*)$ and let u_{λ^*} be a solution of $(1.2)_{\lambda^*}$. Then there exists a positive number ε such that $u_{\lambda^*} + \varepsilon$ is a supersolution of $(1.2)_{\lambda}$.

Proof. Let $p(x) = x^{\beta} f(x)$ and $\varepsilon_0 = 1 - \lambda/\lambda^*$. Then there exists a positive number κ_0 such that $p \ge \kappa_0$ in $(0, \infty)$. Since p is uniformly continuous on $(0, ||u_{\lambda^*}||_{\infty} + 1]$, there exists a number $\varepsilon \in (0, 1)$ such that for all $x \in (0, ||u_{\lambda^*}||_{\infty}]$,

$$|p(x) - p(x + \varepsilon)| < \varepsilon_0 \kappa_0,$$

hence

$$\left|\frac{p(x)}{p(x+\varepsilon)} - 1\right| < \varepsilon_0$$

0

which implies

(5.4)
$$\frac{f(x)}{f(x+\varepsilon)} = \frac{p(x)}{p(x+\varepsilon)} \left(1 + \frac{\varepsilon}{x}\right)^{\rho} > 1 - \varepsilon_0 = \frac{\lambda}{\lambda^*}.$$

Consequently,

$$-(r^{N-1}\phi(u'_{\lambda^*}))' = \lambda^* r^{N-1} f(u_{\lambda^*}) > \lambda r^{N-1} f(u_{\lambda^*} + \varepsilon) \quad \text{in } (0,1),$$

i.e., $u_{\lambda^*} + \varepsilon$ is a supersolution of $(1.2)_{\lambda}$.

Next, for each $v \in C[0, 1]$, let $u = T_{\lambda}v$ be the solution of

$$\begin{cases} -(r^{N-1}\phi(u'))' = \lambda r^{N-1}(g(\min(\max(v,\psi_{\lambda}),u_{\lambda^*}+\varepsilon)) + h(\min(v,u_{\lambda^*}+\varepsilon)), \\ u'(0) = 0, \quad u(1) = 0, \end{cases}$$

where ε is defined in Lemma 5.4. Then $T_{\lambda} : C[0,1] \to C[0,1]$ is a compact operator and since

$$\psi_{\lambda} \leq \min(\max(v, \psi_{\lambda}), u_{\lambda^*} + \varepsilon) \leq u_{\lambda^*} + \varepsilon,$$

it follows from (A.3) that T_{λ} is bounded.

Lemma 5.5. Every fixed point u of T_{λ} is a solution of (1.2) and satisfies

$$\psi_{\lambda} \le u \le u_{\lambda^*} + \varepsilon \quad in \ [0,1].$$

Proof. Let u be a fixed point of T_{λ} . Since $u_{\lambda^*} \ge \psi_{\lambda^*} > \psi_{\lambda}$, we have

 $g(\min(\max(u,\psi_{\lambda}),u_{\lambda^{*}}+\varepsilon))) + h(\min(u,u_{\lambda^{*}}+\varepsilon)) = g(\max(u,\psi_{\lambda})) + h(u) \ge \kappa$

if $u \leq u_{\lambda^*} + \varepsilon$, and

 $g(\min(\max(u,\psi_{\lambda}),u_{\lambda^*}+\varepsilon))) + h(\min(u,u_{\lambda^*}+\varepsilon)) = f(u_{\lambda^*}+\varepsilon) \ge \kappa$

if $u \ge u_{\lambda^*} + \varepsilon$. This implies $u \ge \psi_{\lambda}$ in (0,1), by Lemma 5.2(i). Suppose there exists $r_0 \in (0,1)$ such that $u(r_0) > u_{\lambda^*}(r_0) + \varepsilon$. Then there exist numbers r_1, r_2

with $0 \le r_1 < r < r_2 < 1$ such that $u(r_2) = u_{\lambda^*}(r_2) + \varepsilon$, $u'(r_1) = u'_{\lambda^*}(r_1)$ or $u(r_1) = u_{\lambda^*}(r_1) + \varepsilon$, and $u > u_{\lambda^*} + \varepsilon$ on (r_1, r_2) .

Hence, by Lemma 5.4,

$$-(r^{N-1}\phi(u'))' = \lambda r^{N-1} f(u_{\lambda^*} + \varepsilon) < \lambda^* r^{N-1} f(u_{\lambda^*}) = -(r^{N-1}\phi(u'_{\lambda^*}))'$$

in (r_1, r_2) . Consequently,

$$0 < \int_{r_1}^{r_2} (r^{N-1}(\phi(u') - \phi(u'_{\lambda^*})))'(u - (u_{\lambda^*} + \varepsilon)) dr$$

= $-\int_{r_1}^{r_2} r^{N-1}(\phi(u') - \phi(u'_{\lambda^*}))(u' - u'_{\lambda^*}) dr \le 0,$

a contradiction. Thus $u \leq u_{\lambda^*} + \varepsilon$ in (0, 1), which completes the proof.

Proof of Theorem 2.2. Let $\lambda \in (0, \lambda^*)$. Since $\nu \phi_1$ is a subsolution of $(1.2)_{\lambda}$ if $\nu > 0$ is sufficiently small and u_{λ^*} is a supersolution of $(1.2)_{\lambda}$, it follows that (1.2) has a solution u_{λ} such that $\nu \phi_1 \leq u_{\lambda} \leq u_{\lambda^*}$. We shall show that $(1.2)_{\lambda}$ has a second solution. Define

$$D = \{ u \in C[0,1] : -\varepsilon < u < u_{\lambda^*} + \varepsilon \text{ in } [0,1] \}.$$

Then D is an open set and $u_{\lambda} \in D$. By Lemma 5.5, all fixed points of T_{λ} are in \overline{D} . Since T_{λ} is bounded,

$$\deg(I - T_{\lambda}, B(u_{\lambda}, R), 0) = 1 \quad \text{for } R \gg 1.$$

If there exists $u \in \partial D$ such that $u = T_{\lambda}u$ then u is a second solution of $(1.2)_{\lambda}$. Suppose that $u \neq T_{\lambda}u$ for all $u \in \partial D$. Then $\deg(I - T_{\lambda}, D, 0)$ is defined and since T_{λ} has no fixed point in $B(u_{\lambda}, R) \setminus D$, it follows that

$$\deg(I - T_{\lambda}, D, 0) = \deg(I - T_{\lambda}, B(u_{\lambda}, R), 0) = 1$$

Since $\tilde{A}_{\lambda} = T_{\lambda}$ on D, we have

$$\deg(I - \tilde{A}_{\lambda}, D, 0) = 1,$$

and since by Lemma 5.2(i),

$$\deg(I - \tilde{A}_{\lambda}, B(0, R_0), 0) = 0$$

for some $R_0 \gg 1$, we arrive at

$$\deg(I - \tilde{A}_{\lambda}, B(0, R_0) \setminus D, 0) = -1.$$

Thus there exists a fixed point u of \tilde{A}_{λ} in $B(0, R_0) \setminus D$, which is a second positive solution of (1.2). This completes the proof of Theorem 2.2.

360

Acknowledgements

The author thanks the referee for carefully reading the manuscript and providing helpful suggestions.

References

- [ANZ] W. Allegretto, P. Nistri, and P. Zecca, Positive solutions of elliptic nonpositone problems, Differential Integral Equations 5 (1992), 95–101. Zbl 0758.35032 MR 1141729
- [Am1] H. Amann, On the number of solutions of asymptotically superlinear two point boundary value problems, Arch. Ration. Mech. Anal. 55 (1974), 207–213. Zbl 0294.34008 MR 0348178
- [Am2] _____, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev. 18 (1976), 620–709. Zbl 0345.47044 MR 0415432
- [AAB] A. Ambrosetti, D. Arcoya, and B. Buffoni, Positive solutions for some semipositone problems via bifurcation theory, Differential Integral Equations 7 (1994), 655–663. Zbl 0808.35030 MR 1270096
- [AAP] A. Ambrosetti, J. Azoreno, and I. Peral, Multiplicity results for some nonlinear elliptic equations, J. Funct. Anal. 137 (1996), 219–242. Zbl 0852.35045 MR 1383017
- [AA] C. Atkinson and K. E. Ali, Some boundary value problems for the Bingham model, J. Non-Newton. Fluid Mech. 41 (1992), 339–363. Zbl 0747.76012
- [CP] M. M. Coclite ans G. Palmieri, On a singular nonlinear Dirichlet problem, Comm. Partial Differential Equations 14 (1989), 1315–1327. Zbl 0692.35047 MR 1022988
- [CRT] M. G. Crandall, P. H. Rabinowitz, and L. Tartar, On a Dirichlet problem with a singularity, Comm. Partial Differential Equations 12 (1977), 193–222. Zbl 0362.35031 MR 0427826
- [DMS] H. Dang, R. Manásevich, and K. Schmitt, Positive radial solutions of some nonlinear partial differential equations, Math. Nachr. 186 (1997), 101–113. Zbl :0881.34032 MR 1461215
- [DSS] H. Dang, K. Schmitt, and R. Shivaji, On the number of solutions of boundary value problems involving the *p*-Laplacian, Electronic J. Differential Equations 1996, no. 1, 9 pp.
- [DLN] D. G. DeFigueiredo, P.-L. Lions, and R. Nussbaum, A priori estimates and existence of positive solutions for semilinear elliptic equations, J. Math. Pures Appl. 61 (1982), 41–63. Zbl 0452.35030 MR 0664341
- [Di] J. I. Díaz, Nonlinear partial differential equations and free boundaries, Pitman, London, 1985. Zbl 0595.35100 MR 0853732
- [DHM] J. I. Díaz, J. Hernández, and F. J. Mancebo, Branches of positive and free boundary solutions for some singular quasilinear elliptic problems, J. Math. Anal. Appl. 352 (2009), 449–474. Zbl 1173.35055 MR 2499916
- [DMO] J. I. Díaz, J. M. Morel, and I. Oswald, An elliptic equation with singular nonlinearity, Comm. Partial Differential Equations 12 (1987), 1333–1344. Zbl 0634.35031 MR 0912208
- [FM] W. Fulks and J. S. Maybee, A singular nonlinear equation, Osaka J. Math. 12 (1960), 1–19. Zbl 0097.30202 MR 0123095
- [GMS] M. García-Huidobro, R. Manásevich, and K. Schmitt, Positive radial solutions of quasilinear elliptic partial differential equations on a ball, Nonlinear Anal. 35 (1999), 175–190. Zbl 0924.35047 MR 1643232

- [GS] B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations 6 (1981), 883–901. Zbl 0462.35041 MR 0619749
- [HS] D. D. Hai and K. Schmitt, On radial solutions of quasilinear boundary value problems, in *Topics in nonlinear analysis*, Progr. Nonlinear Differential Equations Appl. 35, Birkhäuser, Basel, 1999, 349–361. Zbl 0918.34027 MR 1725577
- [HSS] D. D. Hai, K. Schmitt, and R. Shivaji, Positive solutions of quasilinear boundary value problems, J. Math. Anal. Appl. 217 (1998), 672–686. Zbl 0893.34017 MR 1492111
- [HW] D. D. Hai and J. L. Williams, Positive radial solutions for a class of quasilinear boundary value problems in a ball, Nonlinear Anal. 75 (2012), 1744–1750. Zbl 1242.34040 MR 2870868
- [HKS] J. Hernández, J. Karátson, and P. L. Simon, Multiplicity for semilinear elliptic equations involving singular nonlinearity, Nonlinear Anal. 65 (2006), 265–283. Zbl 05045904 MR 2228428
- [HM] J. Hernández and F. J. Mancebo, Singular elliptic and parabolic equations, in Handbook of differential equations: Stationary partial differential equations, 2006, 317–400. Zbl 05679999
- [LM] A. C. Lazer and P. J. McKenna, On a singular nonlinear elliptic boundary-value problem, Proc. Amer. Math. Soc. 111 (1991), 721–730. Zbl 0727.35057 MR 1037213
- [LS1] V. Le and K. Schmitt, Global bifurcation in variational inequalities: Applications to obstacle and unitateral problems, Springer, New York, 1997. Zbl 0876.49008 MR 1438548
- [LS2] _____, On boundary value problems for degenerate quasilinear elliptic equations and inequalities, J. Differential Equations **144** (1998), 170–218. Zbl 0912.35069 MR 1615056
- [Li] P.-L. Lions, On the existence of positive solutions of semilinear elliptic equations, SIAM Rev. 24 (1982), 441–467. Zbl 0511.35033 MR 0678562
- [SY] J. Shi and M. Yao, On a singular nonlinear semilinear elliptic problem, Proc. Roy. Soc. Edinburgh Sect. A 128 (1998), 1389–1401. Zbl 0919.35044 MR 1663988
- [SW] J. Smoller and A. Wasserman, Existence of positive solutions for semilinear elliptic equations in general domains, Arch. Ration. Mech. Anal. 98 (1987), 229–249. Zbl 0664.35029 MR 0867725
- [St] C. A. Stuart, Existence and approximation of solutions of nonlinear elliptic equations, Math. Z. 147 (1976), 53–63. Zbl 0324.35037 MR 0404854
- [TH] F. de Thelin and A. El Hachimi, Infinitely many radially symmetric solutions for a quasilinear elliptic problem in a ball, J. Differential Equations 128 (1996), 78–102. Zbl 0852.34021 MR 1392397
- [Zh] Z. Zhang, On a Dirichlet problem with a singular nonlinearity, J. Math. Anal. Appl. 194 (1995), 103–113. Zbl 0834.35054 MR 1353070