
Publ. RIMS Kyoto Univ. 50 (2014), 383–409
DOI 10.4171/PRIMS/138

An Explicit Formula
for the Generic Number

of Dormant Indigenous Bundles

by

Yasuhiro Wakabayashi

Abstract

A dormant indigenous bundle is an integrable P1-bundle on a proper hyperbolic curve
of positive characteristic satisfying certain conditions. Dormant indigenous bundles were
introduced and studied in p-adic Teichmüller theory developed by S. Mochizuki. Kirti
Joshi proposed a conjecture concerning an explicit formula for the degree over the moduli
stack of curves of the moduli stack classifying dormant indigenous bundles. In this paper,
we give a proof for this conjecture.
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Introduction

Let

M
Zzz...

g,Fp

be the moduli stack classifying proper smooth curves of genus g > 1 over Fp :=

Z/pZ together with a dormant indigenous bundle (cf. the notation “Zzz...”!). It
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is known (cf. Theorem 3.3) thatMZzz...

g,Fp
is represented by a smooth, geometrically

connected Deligne–Mumford stack over Fp of dimension 3g − 3. Moreover, if we

denote by Mg,Fp the moduli stack classifying proper smooth curves of genus g

over Fp, then the natural projection MZzz...

g,Fp
→Mg,Fp

is finite, faithfully flat, and

generically étale. The main theorem of the present paper, which was conjectured

by Kirti Joshi, asserts that if p > 2(g − 1), then the degree degMg,Fp
(MZzz...

g,Fp
) of

MZzz...

g,Fp
over Mg,Fp

may be calculated as follows:

Theorem A (= Corollary 5.4).

degMg,Fp
(M

Zzz...

g,Fp
) =

pg−1

22g−1
·
p−1∑
θ=1

1

sin2g−2(π·θ
p

) .
Here, recall that an indigenous bundle on a proper smooth curve X is a

P1-bundle on X together with a connection which has certain properties (cf. Defi-

nition 2.1). The notion of an indigenous bundle was originally introduced and stud-

ied by Gunning in the context of compact hyperbolic Riemann surfaces (cf. [10,

p. 69]). One may think of an indigenous bundle as an algebraic object encoding

uniformization data for X. It may be interpreted as a projective structure, i.e., a

maximal atlas consisting of coordinate charts on X such that the transition func-

tions are expressed as Möbius transformations. Also, various equivalent mathemat-

ical objects, including certain kinds of differential operators (related to Schwarzian

equations) of kernel functions, have been studied by many mathematicians.

In the present paper, we focus on indigenous bundles in positive characteristic.

Just as in the case of the theory over C, one may define the notion of an indigenous

bundle and the moduli space classifying indigenous bundles. Various properties of

such objects were first discussed in the context of the p-adic Teichmüller the-

ory developed by S. Mochizuki (cf. [29], [30]). (From a different point of view,

Y. Ihara developed, e.g. in [14], [15], a theory of Schwarzian equations in arith-

metic context.) One of the key ingredients in the development of this theory is the

study of the p-curvature of indigenous bundles in characteristic p. Recall that the

p-curvature of a connection may be thought of as the obstruction to the compati-

bility of p-power structures that appear in certain associated spaces of infinitesimal

(i.e., “Lie”) symmetries. We say that an indigenous bundle is dormant (cf. Defini-

tion 3.1) if its p-curvature vanishes identically. This condition implies, in particular,

the existence of “sufficiently many” horizontal sections locally in the Zariski topol-

ogy. Moreover, a dormant indigenous bundle corresponds, in a certain sense, to

a certain type of rank 2 semistable bundle. Such bundles have been studied in a

different context (cf. §6.1). This sort of phenomenon is peculiar to the theory of

indigenous bundles in positive characteristic.
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In this context, one natural question is the following:

Can one calculate explicitly the number of dormant indigenous bundles on

a general curve?

Since (as discussed above) MZzz...

g,Fp
is finite, faithfully flat, and generically étale

over Mg,Fp
, resolving this question reduces to the explicit computation of

degMg,Fp
(MZzz...

g,Fp
).

In the case of g = 2, S. Mochizuki [30, Chap. V, Corollary 3.7], H. Lange–

C. Pauly [23, Theorem 2], and B. Osserman [33, Theorem 1.2] verified (by applying

different methods) that

degM2,Fp
(M

Zzz...

2,Fp
) =

1

24
· (p3 − p).

For arbitrary g, Kirti Joshi conjectured, with his amazing insight, an explicit

description, as asserted in Theorem A, of the value degMg,Fp
(MZzz...

g,Fp
). (In fact,

Joshi has proposed, in a personal communication to the author, a somewhat more

general conjecture. In the present paper, however, we shall restrict our attention

to a certain special case.) The goal of the present paper is to verify the case r = 2

of this conjecture of Joshi.

Our discussion follows, to a substantial extent, the ideas in [18], as well as

in personal communication of the author with Kirti Joshi. Indeed, some of our

results are mild generalizations of the results of [18] on rank 2 opers to the case of

families of curves over quite general base schemes. (Such relative formulations are

necessary in the theory of the present paper, in order to consider deformations of

various types of data.) For example, our Lemma 4.1 corresponds to [18, Theorem

3.1.6] (or [19, p. 627]; [35, Lemma 2.1]); Lemma 4.2 corresponds to [18, Theorem

5.4.1]; and Proposition 4.3 corresponds to [18, Proposition 5.4.2]. Moreover, the

insight concerning the connection with the formula of Holla (cf. Theorem 5.1),

which is a special case of the Vafa–Intriligator formula, is due to Joshi.

On the other hand, the new ideas introduced in the present paper may be

summarized as follows. First, we verify the vanishing of obstructions to deforma-

tion to characteristic zero of a certain Quot-scheme that is related to MZzz...

g,Fp
(cf.

Proposition 4.3, Lemma 4.4, and the discussion in the proof of Theorem 5.2). Then

we relate degMg,Fp
(MZzz...

g,Fp
) to the degree of the result of base-changing this Quot-

scheme to C by applying the formula of Holla (cf. Theorem 5.1, proof of Theorem

5.2) directly.

Finally, F. Liu and B. Osserman have shown (cf. [25, Theorem 2.1]) that

degMg,Fp
(MZzz...

g,Fp
) may expressed as a polynomial with respect to the characteristic

of the base field. This was done by applying Ehrhart’s theory concerning the
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cardinality of the set of lattice points inside a polytope. In §6, we shall discuss the

relation between this result and our main theorem.

§1. Preliminaries

1.1. Throughout this paper, we fix an odd prime number p.

1.2. We shall denote by (Set) the category of (small) sets. If S is a Deligne–

Mumford stack, then we shall denote by (Sch)S the category of schemes over S.

1.3. If S is a scheme and F an OS-module, then we shall denote by F∨ its dual

sheaf, i.e., F∨ := HomOS
(F ,OS). If f : T → S is a finite flat scheme over a

connected scheme S, then we shall denote by degS(T ) the degree of T over S, i.e.,

the rank of the locally free OS-module f∗OT .

1.4. If S is a scheme (or more generally, a Deligne–Mumford stack), then we

define a curve over S to be a geometrically connected and flat (relative) scheme

f : X → S of relative dimension 1. Denote by ΩX/S the sheaf of 1-differentials

of X over S, and by TX/S the dual sheaf of ΩX/S (i.e., the sheaf of derivations

of X over S). We shall say that a proper smooth curve f : X → S is of genus g if

the direct image f∗ΩX/S is locally free of constant rank g.

1.5. Let S be a scheme over a field k, X a smooth scheme over S, G an algebraic

group over k, and g the Lie algebra of G. Suppose that π : E → X is a G-torsor

over X. Then we may associate to π a short exact sequence

0→ ad(E)→ T̃E/S
αE→ TX/S → 0,

where ad(E) := E ×G g denotes the adjoint bundle associated to the G-torsor E ,

and T̃E/S denotes the subsheaf (π∗TE/S)G of G-invariant sections of π∗TE/S . An

S-connection on E is a split injection ∇ : TX/S → T̃E/S of the above short exact

sequence (i.e., αE ◦ ∇ = id). If X is of relative dimension 1 over S, then any

such S-connection is necessarily integrable, i.e., compatible with the Lie bracket

structures on TX/S and T̃E/S = (π∗TE/S)G.

Assume that G is a closed subgroup of GLn for n ≥ 1. Then the notion of

an S-connection defined here may be identified with the usual definition of an S-

connection on the associated vector bundle E×G (O⊕nX ) (cf. [20, Lemma 2.2.3]; [21,

p. 178, (1.0)]). In this situation, we shall not distinguish between these definitions.

If V is a vector bundle on X equipped with an S-connection, then we denote

by V∇ the sheaf of horizontal sections in V (i.e., the kernel of the S-connection

V → V ⊗ ΩX/S).
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1.6. Let S be a scheme of characteristic p (cf. §1.1) and f : X → S a scheme

over S. The Frobenius twist of X over S is the base-change X(1) of the S-scheme X

via the absolute Frobenius morphism FS : S → S of S. Denote by f (1) : X(1) → S

the structure morphism of the Frobenius twist of X over S. The relative Frobenius

morphism of X over S is the unique morphism FX/S : X → X(1) over S that fits

into a commutative diagram of the form

X
FX/S−−−−→ X(1) −−−−→ X

f

y f(1)

y f

y
S

id−−−−→ S −−−−→ S

where the upper (respectively, lower) composite is the absolute Frobenius mor-

phism of X (respectively, S). If f : X → S is smooth, geometrically connected and

of relative dimension n, then the relative Frobenius morphism FX/S : X → X(1)

is finite and faithfully flat of degree pn. In particular, the OX(1)-module FX/S∗OX
is locally free of rank pn.

§2. Indigenous bundles

In this section, we recall the notion of an indigenous bundle on a curve. Much of

the content of this section is implicit in [29].

First, we discuss the definition of an indigenous bundle on a curve (cf. [8,

p. 104]; [29, Chap. I, Definition 2.2]). Fix a scheme S of characteristic p (cf. §1.1)

and a proper smooth curve f : X → S of genus g > 1 (cf. §1.2).

Definition 2.1. (i) Let P~ = (P,∇) be a pair consisting of a PGL2-torsor P
over X and an (integrable) S-connection ∇ on P. We shall say that P~ is

an indigenous bundle on X/S if there exists a globally defined section σ of

the associated P1-bundle P1
P := P ×PGL2 P1 which has a nowhere vanishing

derivative with respect to the connection ∇. We shall refer to σ as the Hodge

section of P~ (cf. Remark 2.1.1(i)).

(ii) Let P~
1 = (P1,∇1) and P~

2 = (P2,∇2) be indigenous bundles on X/S. An iso-

morphism from P~
1 to P~

2 is an isomorphism P1
∼→ P2 of PGL2-torsors over X

that is compatible with the respective connections (cf. Remark 2.1.1(iii)).

Remark 2.1.1. Let P~ = (P,∇) be an indigenous bundle on X/S.

(i) The Hodge section σ of P~ is uniquely determined by the condition that

σ have a nowhere vanishing derivative with respect to ∇ (cf. [29, Chap. I,

Proposition 2.4]).
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(ii) The underlying PGL2-torsors of any two indigenous bundles on X/S are

isomorphic (cf. [29, Chap. I, Proposition 2.5]). If there is a spin structure L =

(L, ηL) on X/S (cf. Definition 2.2), then the P1-bundle P1
P is isomorphic to the

projectivization of an L-bundle F as in Definition 2.3(i), and the subbundle

L ⊆ F (cf. Definition 2.3(i)) induces the Hodge section σ (cf. Proposition 2.4).

(iii) If two indigenous bundles on X/S are isomorphic, then the isomorphism be-

tween them is unique. In particular, an indigenous bundle has no nontrivial

automorphisms (cf. §1.1; [29, Chap. I, Theorem 2.8]).

Next, we consider a certain class of rank 2 vector bundles with an integrable

connection (cf. Definition 2.3(ii)) associated to a specific choice of a spin structure

(cf. Definition 2.2). In particular, we show (cf. Proposition 2.4) that such objects

correspond to indigenous bundles bijectively. We recall from, e.g., [17, p. 25] the

following:

Definition 2.2. A spin structure on X/S is a pair

L := (L, ηL)

consisting of an invertible sheaf L on X and an isomorphism ηL : ΩX/S
∼→ L⊗2.

A spin curve is a pair

(Y/S,L)

consisting of a proper smooth curve Y/S of genus g > 1 and a spin structure L
on Y/S.

Remark 2.2.1. (i) X/S necessarily admits, at least étale locally on S, a spin

structure. Indeed, let us denote by PicdX/S the relative Picard scheme of X/S

classifying the set of (equivalence classes, relative to the equivalence relation

determined by tensoring with a line bundle pulled back from the base S, of)

degree d invertible sheaves on X. Then the morphism

Picg−1X/S → Pic2g−2X/S : [L] 7→ [L⊗2]

given by multiplication by 2 is finite and étale (cf. §1.1). Thus, the S-rational

point of Pic2g−2X/S classifying the equivalence class [ΩX/S ] lifts, étale locally, to

a point of Picg−1X/S .

(ii) Let L = (L, ηL) be a spin structure on X/S and T an S-scheme. Then by

pulling back the structures L, ηL via the natural projection X ×S T → X,

we obtain a spin structure on the curve X ×S T over T , which, by abuse of

notation, we shall also denote by L.

In the following, let us fix a spin structure L = (L, ηL) on X/S.
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Definition 2.3. (i) An L-bundle on X/S is an extension, in the category of

OX -modules,

0→ L → F → L∨ → 0

of L∨ by L whose restriction to each fiber over S is nontrivial (cf. Remark

2.3.1(i)). We shall regard the underlying rank 2 vector bundle associated to

an L-bundle as being equipped with a 2-step decreasing filtration {F i}2i=0,

defined as follows:

F2 := 0 ⊆ F1 := Im(L) ⊆ F0 := F .

(ii) An L-indigenous vector bundle on X/S is a triple

F~ := (F ,∇, {F1}2i=0)

consisting of an L-bundle (F , {F i}2i=0) on X/S and an S-connection ∇ : F →
F ⊗ ΩX/S (cf. §1.5) satisfying the following two conditions:

(1) If we equip OX with the trivial connection and the determinant bundle

det(F) with the natural connection induced by ∇, then the natural com-

posite isomorphism

det(F)
∼→ L⊗L∨ ∼→ OX

is horizontal.

(2) The composite

L ∇|L→ F ⊗ ΩX/S � L∨ ⊗ ΩX/S

of the restriction ∇|L of ∇ to L (⊆ F) and the morphism F ⊗ ΩX/S �
L∨ ⊗ ΩX/S induced by the quotient F � L∨ is an isomorphism. This

composite is often referred to as the Kodaira–Spencer map.

(iii) Let F~
1 = (F1,∇1, {F1

1}2i=0) and F~
2 = (F2,∇2, {F1

2}2i=0) be L-indigenous

bundles on X/S. Then an isomorphism from F~
1 to F~

2 is an isomorphism

F1
∼→ F2 of OX -modules that is compatible with the respective connections

and filtrations and induces the identity morphism of OX (relative to the

respective natural composite isomorphisms discussed in (i)) upon taking de-

terminants.

Remark 2.3.1. (i) X/S always admits an L-bundle. Moreover, any two L-

bundles on X/S are isomorphic Zariski locally on S. Indeed, since f :

X → S is of relative dimension 1, the Leray–Serre spectral sequence

Hp(S,Rqf∗ΩX/S) ⇒ Hp+q(X, f∗ΩX/S) associated to the morphism f :

X → S yields an exact sequence

0→ H1(S, f∗ΩX/S)→ Ext1(L∨,L)→ H0(S,R1f∗ΩX/S)→ H2(S, f∗ΩX/S),
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where the set Ext1(L∨,L) (∼= H1(X,ΩX/S)) corresponds to the set of ex-

tension classes of L∨ by L. In particular, if S is an affine scheme, then

the set of nontrivial extension classes corresponds bijectively to the set

H0(S,OS) \ {0} ⊆ H0(S,OS) ∼= H0(S,R1f∗ΩX/S).

Also, since the degree of the line bundle L on each fiber over S is positive it

follows immediately that the structure of L-bundle on the underlying rank 2

vector bundle of an L-bundle is unique.

(ii) If two L-indigenous vector bundles on X/S are isomorphic, then the isomor-

phism between them is unique up to multiplication by an element of Γ(S,OS)

whose square is equal to 1 (i.e., ±1 if S is connected). In particular, the group

of automorphisms of an L-indigenous vector bundle may be identified with the

group of elements of Γ(S,OS) whose square is 1. (Indeed, these facts follow

from an argument similar to that in [29, Chap. I, proof of Theorem 2.8].)

(iii) One may define, in an evident fashion, the pull-back of an L-indigenous vector

bundle on X/S with respect to a morphism of schemes S′ → S; this notion of

pull-back is compatible, in the evident sense, with composites S′′ → S′ → S.

Let F~ = (F ,∇, {F i}2i=0) be an L-indigenous vector bundle on X/S. By a

change of structure group via the natural map SL2 → PGL2, one may construct,

from (F ,∇), a PGL2-torsor PF together with an S-connection∇PF . Moreover, the

subbundle L (⊆ F) determines a globally defined section σ of the associated P1-

bundle P1
F := PF ×PGL2 P1 on X. One may verify easily from the condition given

in Definition 2.3(ii)(2) that P~ := (PF ,∇PF ) is an indigenous bundle on X/S,

whose Hodge section is given by σ (cf. Definition 2.1(i)). Then (cf. [29, Chap. I,

Proposition 2.6]) we have:

Proposition 2.4. If (X/S,L) is a spin curve, then the assignment F~ 7→ P~

discussed above determines a functor from the groupoid of L-indigenous vector

bundles on X/S to the groupoid of indigenous bundles on X/S. Moreover, this

functor induces a bijective correspondence between the set of isomorphism classes

of L-indigenous vector bundles on X/S (cf. Remark 2.3.1(ii)) and the set of iso-

morphism classes of indigenous bundles on X/S (cf. Remark 2.1.1(iii)). Finally,

this correspondence is functorial with respect to S (cf. Remark 2.3.1(iii)).

Proof. The construction of a functor as asserted is routine. The stated (bijective)

correspondence follows from [29, Chap. I, Proposition 2.6]. (Here, we note that

Proposition 2.6 in [29] states only that an indigenous bundle determines an in-

digenous vector bundle (cf. [29, Chap. I, Definition 2.2]) up to tensor product with

a line bundle together with a connection whose square is trivial. But one may

eliminate that indeterminacy by the condition that the underlying vector bundle
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be an L-bundle.) The functoriality with respect to S follows immediately from the

construction of the assignment F~ 7→ P~ (cf. Remark 2.3.1(iii)).

§3. Dormant indigenous bundles

In this section, we recall the notion of a dormant indigenous bundle and discuss

various related moduli functors.

Let S be a scheme over a field k of characteristic p (cf. §1.1) and f : X → S

a proper smooth curve of genus g > 1. Denote by X(1) the Frobenius twist of X

over S and FX/S : X → X(1) the relative Frobenius morphism of X over S (cf.

§1.6).

First, we recall the definition of the p-curvature map. Let us fix an algebraic

group G over k and denote by g the Lie algebra of G. Let (π : E → X,∇ :

TX/S → T̃E/S) be a pair consisting of a G-torsor E over X and an S-connection ∇
on E , i.e., a section of the natural quotient αE : (π∗TE/S)G =: T̃E/S → TX/S (cf.

§1.5). If ∂ is a derivation corresponding to a local section ∂ of TX/S (respectively,

T̃E := (π∗TE/S)G), then we shall denote by ∂[p] the p-th iterate of ∂, which is

also a derivation corresponding to a local section of TX/S (respectively, T̃E). Since

αE(∂
[p]) = (αE(∂))[p] for any local section of TX/S , the image of the p-linear map

from TX/S to T̃E/S defined by assigning ∂ 7→ ∇(∂[p]) − (∇(∂))[p] is contained in

ad(E) (= ker(αE)). Thus, we obtain an OX -linear morphism

ψ(E,∇) : T ⊗pX/S → ad(E)

determined by assigning

∂⊗p 7→ ∇(∂[p])− (∇(∂))[p].

We shall refer to ψ(E,∇) as the p-curvature map of (E ,∇).

If U is a vector bundle on X(1), then we may define an S-connection (cf.

§1.5; [21, p. 178, (1.0)])

∇can
U : F ∗X/SU → F ∗X/SU ⊗ ΩX/S

on the pull-back F ∗X/SU of U , which is uniquely determined by the condition that

the sections of the subsheaf F−1X/S(U) be horizontal. It is easily verified that the

p-curvature map of (F ∗X/SU ,∇
can
U ) vanishes identically on X (cf. Remark 3.0.1(i)).

Remark 3.0.1. Assume that G is a closed subgroup of GLn for n ≥ 1 (cf. §1.5).

Let (E ,∇) be a pair consisting of a G-torsor E over X and an S-connection ∇ on E .

Write V for the vector bundle on X associated to E , and ∇V for the S-connection

on V induced by ∇.



392 Y. Wakabayashi

(i) The p-curvature map ψ(E,∇) of (E ,∇) is compatible, in the evident sense,

with the classical p-curvature map (cf., e.g., [21, p. 190]) of (V,∇V). In this

situation, we shall not distinguish between these definitions of the p-curvature

map.

(ii) The sheaf V∇ of horizontal sections in V may be considered as anOX(1)-module

via the underlying homeomorphism of the relative Frobenius morphism FX/S :

X → X(1). Thus, we have a natural horizontal morphism

ν(V,∇V) : (F ∗X/SV
∇,∇can

V∇)→ (V,∇V)

of OX -modules. It is known (cf. [21, Theorem 5.1]) that the p-curvature map

of (V,∇V) vanishes identically on X if and only if ν(V,∇V) is an isomorphism.

In particular, the assignment V 7→ (F ∗X/SV,∇
can
V∇) determines an equivalence,

which is compatible with the formation of tensor products (hence also sym-

metric and exterior products), between the category of vector bundles on X(1)

and the category of vector bundles on X equipped with an S-connection whose

p-curvature vanishes identically.

Definition 3.1. We shall say that an indigenous bundle P~ = (P,∇) (respec-

tively, an L-indigenous vector bundle F~ = (F ,∇, {F i}2i=0)) on X/S is dormant

if the p-curvature map of (P,∇) (respectively, (F ,∇)) vanishes identically on X.

Next, we shall define a certain class of dormant indigenous bundles, which

we shall refer to as dormant ordinary. Let P~ = (P,∇) be a dormant indigenous

bundle on X/S. Denote by

ad(P~) := (ad(P),∇ad)

the pair consisting of the adjoint bundle ad(P) associated to P and the S-connec-

tion ∇ad on ad(P) naturally induced by ∇. Let us consider the first relative de

Rham cohomology sheaf H1
dR(ad(P~)), that is,

H1
dR(ad(P~)) := R1f∗(ad(P)⊗ Ω•X/S),

where ad(P)⊗ Ω•X/S denotes the complex

· · · → 0→ ad(P)
∇ad−−→ ad(P)⊗ ΩX/S → 0→ · · ·

concentrated in degrees 0 and 1. Recall (cf. [29, Chap. I, Theorem 2.8]) that there

is a natural exact sequence

0→ f∗(Ω
⊗2
X/S)→ H1

dR(ad(P~))→ R1f∗(TX/S)→ 0.
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On the other hand, the natural inclusion ad(P)∇ ↪→ ad(P) of the subsheaf of

horizontal sections induces a morphism of OS-modules

R1f∗(ad(P)∇)→ H1
dR(ad(P~)).

Thus, by composing this morphism with the right-hand surjection in the above

short exact sequence, we obtain a morphism

γP~ : R1f∗(ad(P)∇)→ R1f∗(TX/S)

of OS-modules.

Definition 3.2. We shall say that an indigenous bundle P~ is dormant ordinary

if P~ is dormant and γP~ is an isomorphism.

Next, let us introduce notations for various moduli functors classifying the

objects discussed above. Let Mg,Fp
be the moduli stack of proper smooth curves

of genus g > 1 over Fp. Denote by

Sg,Fp
: (Sch)Mg,Fp

→ (Set)

(cf. [29, Chap. I, discussion preceding Lemma 3.2]) the set-valued functor on

(Sch)Mg,Fp
(cf. §1.2) which, to any Mg,Fp

-scheme T classifying a curve Y/T , as-

signs the set of isomorphism classes of indigenous bundles on Y/T . Also, denote

by

M
Zzz...

g,Fp
(resp.,}M

Zzz...

g,Fp
)

the subfunctor of Sg,Fp
classifying the set of isomorphism classes of dormant in-

digenous bundles (resp., dormant ordinary indigenous bundles). By forgetting the

datum of an indigenous bundle, we obtain natural transformations

Sg,Fp
→Mg,Fp

, M
Zzz...

g,Fp
→Mg,Fp

.

Next, if (X/S,L) is a spin curve, then we shall denote by

M
Zzz...

X/S,L : (Sch)S → (Set)

the set-valued functor on (Sch)S which, to any S-scheme T , assigns the set of

isomorphism classes of dormant L-indigenous bundles on the curve X×S T over T .

It follows from Proposition 2.4 that there is a natural isomorphism of functors on

(Sch)S
M

Zzz...

X/S,L
∼→M

Zzz...

g,Fp
×Mg,Fp

S,

whereMZzz...

g,Fp
×Mg,Fp

S denotes the fiber product of the natural projectionMZzz...

g,Fp
→

Mg,Fp and the classifying morphism S →Mg,Fp of X/S.
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Next, we quote a result from p-adic Teichmüller theory due to S. Mochizuki

concerning the moduli stacks (which are in fact schemes, relatively speaking, over

Mg,Fp) that represent the functors discussed above. Here, we wish to emphasize

the importance of the open density of the dormant ordinary locus. As we shall see

in Proposition 4.2 and its proof, the properties stated in the following Theorem

3.3 enable us to relate a numerical calculation in characteristic zero to the degree

of certain moduli spaces of interest in positive characteristic.

Theorem 3.3. The functor Sg,Fp is represented by a relative affine space over

Mg,Fp
of relative dimension 3g − 3. The functor MZzz...

g,Fp
is represented by a closed

substack of Sg,Fp
which is finite and faithfully flat overMg,Fp

, and which is smooth

and geometrically irreducible over Fp. The functor }MZzz...

g,Fp
is an open dense sub-

stack of MZzz...

g,Fp
and coincides with the étale locus of MZzz...

g,Fp
over Mg,Fp .

Proof. The assertion follows from [29, Chap. I, Corollary 2.9]; [30, Lemma 2.7];

[30, Chap. II, Theorem 2.8 (and its proof)].

In particular, it follows that it makes sense to speak of the degree

degMg,Fp
(M

Zzz...

g,Fp
)

of MZzz...

g,Fp
over Mg,Fp

. The generic étaleness of MZzz...

g,Fp
over Mg,Fp

implies that if

X is a sufficiently generic proper smooth curve of genus g over an algebraically

closed field of characteristic p, then the number of dormant indigenous bundles

on X is exactly degMg,Fp
(MZzz...

g,Fp
). As we explained in the Introduction, our main

interest is the explicit computation of degMg,Fp
(MZzz...

g,Fp
).

§4. Quot-schemes

To calculate degMg,Fp
(MZzz...

g,Fp
), it will be necessary to relateMZzz...

g,Fp
to certain Quot-

schemes. Here, to prepare for the discussion in §5 below, we introduce notions for

Quot-schemes in arbitrary characteristic.

Let T be a noetherian scheme, Y a proper smooth curve over T of genus g > 1

and E a vector bundle on Y . Denote by

Q2,0
E/Y/T : (Sch)T → (Set)

the functor which to any f : T ′ → T associates the set of isomorphism classes of

injective morphisms of coherent OY×TT ′ -modules

i : F → ET ′ ,
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where ET ′ denotes the pull-back of E via the projection Y ×T T ′ → Y , such

that the quotient ET ′/i(F) is flat over T ′ (which, since Y/T is smooth of relative

dimension 1, implies that F is locally free), and F is of rank 2 and degree 0. It

is known (cf. [7, Chap. 5, Theorem 5.14]) that Q2,0
E/Y/T is represented by a proper

scheme over T .

Now let (X/S,L = (L, ηL)) be a spin curve of characteristic p and denote,

for simplicity, the relative Frobenius morphism FX/S : X → X(1) by F . In the

following discussion, we consider the Quot-scheme

Q2,0
F∗(L∨)/X(1)/S

in the case where the data “(Y/T, E)” is taken to be (X(1)/S, F∗(L∨)). If we

denote by ĩ : F̃ → (F∗(L∨))Q2,0

F∗(L∨)/X(1)/S

the tautological injective morphism of

sheaves on X(1)×SQ2,0
F∗(L∨)/X(1)/S

, then the determinant bundle det(F̃) :=
∧2

(F̃)

determines a classifying morphism

det : Q2,0
F∗(L∨)/X(1)/S

→ Pic0X(1)/S

(cf. Remark 2.2.1(i)) classifying the set of equivalence classes of degree 0 line

bundles on X(1)/S. We shall denote by

Q2,O
F∗(L∨)/X(1)/S

the scheme-theoretic inverse image, via det, of the identity section of Pic0X(1)/S .

Next, we discuss a relationship between MZzz...

X/S,L and Q2,O
F∗(L∨)/X(1)/S

. To this

end, we introduce a certain filtered vector bundle with connection as follows. Let

us consider the rank p vector bundle

AL := F ∗F∗(L∨)

on X (cf. §1.6), which has the canonical S-connection

∇can
F∗(L∨)

(cf. the discussion preceding Remark 3.0.1). By using this connection, we may

define a p-step decreasing filtration {AiL}
p
i=0 on AL as follows:

A0
L := AL,

A1
L := ker(AL

q
� L∨),

AjL := ker(Aj−1L
∇can

F∗(L∨)
|
Aj−1
L−−−−−−−−−→ AL ⊗ ΩX/S � AL/Aj−1L ⊗ ΩX/S)
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(j = 2, . . . , p), where AL (= F ∗F∗(L∨))
q
� L∨ denotes the natural quotient de-

termined by the adjunction relation “F ∗(−) a F∗(−)” (i.e., “the functor F ∗(−) is

left adjoint to the functor F∗(−)”).

Lemma 4.1. (i) For each j = 1, . . . , p− 1, the map

Aj−1L /AjL → A
j
L/A

j+1
L ⊗ ΩX/S

defined by a 7→ ∇can
F∗(L∨)(a) (a ∈ Aj−1L ), where the bars denote the images

in the respective quotients, is well-defined and determines an isomorphism of

OX-modules.

(ii) Let us identify A1
L/A2

L with L via the isomorphism

A1
L/A2

L
∼→ A0

L/A1
L ⊗ ΩX/S

∼→ L∨ ⊗ ΩX/S
∼→ L,

obtained by composing the isomorphism of (i) (i.e., the first isomorphism of the

display) with the tautological isomorphism arising from the definition of A1
L

(i.e., the second isomorphism of the display), followed by the isomorphism

determined by the given spin structure (i.e., the third isomorphism of the

display). Then the natural extension structure

0→ A1
L/A2

L → AL/A2
L → AL/A1

L → 0

determines a structure of L-bundle on AL/A2
L.

Proof. The various assertions of Lemma 4.1 follow from an argument (in the case

where S is an arbitrary scheme) similar to the argument (in the case where S =

Spec(k) for an algebraically closed field k) given in the proofs of [19, p. 627] and [35,

Lemma 2.1].

Lemma 4.2. Let g : V → F∗(L∨) be an injective morphism classified by an S-

rational point of Q2,0
F∗(L∨)/X(1)/S

and denote by {(F ∗V)i}pi=0 the filtration on the

pull-back F ∗V defined by setting

(F ∗V)i := (F ∗V) ∩ (F ∗g)−1(AiL),

where we denote by F ∗g the pull-back of g via F .

(i) The composite

F ∗V → AL � AL/A2
L

of F ∗g with the natural quotient AL � AL/A2
L is an isomorphism of OX-

modules.
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(ii) If, moreover, g corresponds to an S-rational point of Q2,O
F∗(L∨)/X(1)/S

, then the

triple

(F ∗V,∇can
V , {(F ∗V)i}2i=0),

where ∇can
V denotes the canonical connection on F ∗V (cf. the discussion pre-

ceding Remark 3.0.1), forms a dormant L-indigenous bundle on X/S.

Proof. First, we consider assertion (i). Since F ∗V and AL/A2
L are flat over S, it

suffices, by considering the various fibers over S, to verify the case where S =

Spec(k) for a field k. If we write gri := (F ∗V)i/(F ∗V)i+1 (i = 0, . . . , p−1), then it

follows immediately from the definitions that the coherent OX -module gri admits

a natural embedding gri ↪→ AiL/A
i+1
L into the subquotient AiL/A

i+1
L . Since this

subquotient is a line bundle (cf. Lemma 4.1), one verifies easily that gri is either

trivial or a line bundle. In particular, since F ∗V is of rank 2, the cardinality of the

set I := {i | gri 6= 0} is exactly 2. Next, let us observe that the pull-back F ∗g of g

via F is compatible with the respective connections ∇can
V (cf. the statement of (ii)),

∇can
F∗(L∨). Thus, it follows from Lemma 4.1(i) that gri+1 6= 0 implies gri 6= 0. But

this shows that I = {0, 1}, and hence the composite

F ∗V → AL � AL/A2
L

is an isomorphism at the generic point of X. On the other hand, observe that

deg(F ∗V) = p · deg(V) = p · 0 = 0

and

deg(AL/A2
L) = deg(AL/A1

L) + deg(A1
L/A2

L) = deg(L∨) + deg(L) = 0

(cf. Lemma 4.1(i)). Thus, by comparing the respective degrees of F ∗V and AL/A2
L,

we conclude that the above composite is an isomorphism of OX -modules. This

completes the proof of (i).

Assertion (ii) follows immediately from the definition of an L-indigenous

bundle, assertion (i), and Lemma 4.1.

By applying the above lemma, we may conclude that the moduli spaceMZzz...

X/S,L

is isomorphic to the Quot-scheme Q2,O
F∗(L∨)/X(1)/S

:

Proposition 4.3. Let (X/S,L) be a spin curve. Then there is an isomorphism of

S-schemes

Q2,O
F∗(L∨)/X(1)/S

∼→M
Zzz...

X/S,L.

Proof. The assignment

[g : V → F∗(L∨)] 7→ (F ∗V,∇can
F∗V , {(F ∗V)i}2i=0),
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discussed in Lemma 4.2, determines (by Lemma 4.2(ii)) a map

αS : Q2,O
F∗(L∨)/X(1)/S

(S)→M
Zzz...

X/S,L(S)

between the respective sets of S-rational points. By the functoriality of the con-

struction of αS with respect to S, it suffices to prove the bijectivity of αS .

The injectivity of αS follows from the observation that any element [g : V →
F∗(L∨)] ∈ Q2,O

F∗(L∨)/X(1)/S
(S) is, by adjunction, determined by the morphism

F ∗V → L∨, i.e., the natural surjection, as in Definition 2.3(i), arising from the

fact that F ∗V is an L-bundle (cf. Lemma 4.2(ii)).

Next, we consider the surjectivity of αS . Let (F ,∇, {F i}i) be a dormant L-

indigenous bundle on X/S. Consider the composite F ∗F∇ ∼→ F � L∨ of the

natural horizontal isomorphism F ∗F∇ ∼→ F (cf. Remark 3.0.1(ii)) with the natural

surjection F � F/F1 = L∨. This composite determines a morphism

gF : (F ∼=) F ∗F∇ → F ∗F∗(L∨) (=: AL)

via the adjunction relation “F ∗(−) a F∗(−)” (cf. the discussion preceding Lemma

4.1) and pull-back by F .

Next, we claim that gF is injective. Indeed, since gF is (tautologically, by

construction!) compatible with the respective surjections F � L∨, AL � L∨, we

conclude that gF (F1) ⊆ A1
L, and ker(gF ) ⊆ F1. Since gF is manifestly horizontal

(by construction), ker(gF ) is stabilized by ∇, hence contained in the kernel of the

Kodaira–Spencer map F1 → F/F1 ⊗ ΩX/S (cf. Definition 2.3(ii)(2)), which is an

isomorphism by the definition of an L-indigenous bundle (cf. Definition 2.3(ii)).

This implies that gF is injective.

Moreover, by applying a similar argument to the pull-back of gF via any

base-change over S, one concludes that gF is universally injective with respect

to base-change over S. This implies that AL/gF (F) is flat over S (cf. [26, p. 17,

Theorem 1]).

Now denote by g∇F : F∇ → F∗(L∨) the morphism obtained by restricting gF
to the respective subsheaves of horizontal sections in F , AL. Observe that the

pull-back of g∇F via F may be identified with gF , and that F ∗(F∗(L∨)/g∇F (F∇))

is naturally isomorphic to AL/gF (F). Thus, it follows from the faithful flatness

of F that g∇F is injective, and F∗(L∨)/g∇F (F∇) is flat over S. On the other hand,

since the determinant of (F ,∇) is trivial, det(F∇) is isomorphic to the trivial

OX(1)-module (cf. Remark 3.0.1(ii)). Thus, g∇F determines an S-rational point of

Q2,O
F∗(L∨)/X(1)/S

that is mapped by αS to the S-rational point of MZzz...

X/S,L corre-

sponding to (F ,∇, {F i}i). This implies that αS is surjective and hence completes

the proof of Proposition 4.3.
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Next, we relateQ2,O
F∗(L∨)/X(1)/S

toQ2,0
F∗(L∨)/X(1)/S

. By pulling back line bundles

on X(1) via the relative Frobenius F : X → X(1), we obtain a morphism

Pic0X(1)/S → Pic0X/S : [N ] 7→ [F ∗N ].

We shall denote by

VerX/S

the scheme-theoretic inverse image, via this morphism, of the identity section of

Pic0X/S . It is well-known (cf. [4, exp. VII, pp. 440–443]; [28, Proposition 8.1 and

Theorem 8.2]; [27, Appendix, Lemma (1.0)]) that VerX/S is finite and faithfully

flat over S of degree pg and, moreover, étale over the points s of S such that the

fiber of X/S at s is ordinary. (Recall that the locus of Mg,Fp
classifying ordinary

curves is open and dense.) Then we have the following

Lemma 4.4. There is an isomorphism of S-schemes

Q2,O
F∗(L∨)/X(1)/S

×S VerX/S
∼→ Q2,0

F∗(L∨)/X(1)/S
.

Proof. It suffices to prove that there is a bijection between the respective sets of

S-rational points that is functorial with respect to S.

Let (g : V → F∗(L∨),N ) be an element of (Q2,O
F∗(L∨)/X(1)/S

×S VerX/S)(S). It

follows from the projection formula that the composite

gN : V ⊗N → F∗(L∨)⊗N → F∗(L∨ ⊗ F ∗N )
∼→ F∗(L∨ ⊗OX) = F∗(L∨)

determines an element of Q2,0
F∗(L∨)/X(1)/S

(S). Thus, we obtain a functorial (with

respect to S) map

γS : (Q2,O
F∗(L∨)/X(1)/S

×S VerX/S)(S)→ Q2,0
F∗(L∨)/X(1)/S

(S).

Conversely, let g : V → F∗(L∨) be an injective morphism classified by an ele-

ment of Q2,0
F∗(L∨)/X(1)/S

(S). Consider the injective morphism gdet(V)⊗(p−1)/2 , i.e.,

the morphism gN constructed above for N = det(V)⊗(p−1)/2. We observe that

det(V ⊗ det(V)⊗(p−1)/2) ∼= det(V)⊗ det(V)⊗2·
p−1
2 ∼= det(V)⊗p ∼= F ∗S(F ∗(det(V))),

where F ∗S(−) denotes the pull-back by the morphism X(1) → X obtained by base-

change of X/S via the absolute Frobenius morphism FS : S → S of S (cf. §1.6). On

the other hand, since F ∗(det(V)) ∼= (AL/A1
L)⊗(A1

L/A2
L) ∼= L∨⊗L ∼= OX (cf. Lem-

mas 4.1(ii), 4.2(i)), it follows that the determinant of V ⊗det(V)⊗(p−1)/2 is trivial.

Thus the pair (g
det(V)⊗

p−1
2
,det(V)) determines an element of (Q2,O

F∗(L∨)/X(1)/S
×S

VerX/S)(S). One verifies easily that this assignment determines an inverse to γS .

This completes the proof of Lemma 4.4.
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§5. Computation via the Vafa–Intriligator formula

By combining Proposition 4.3, Lemma 4.4, and the discussions preceding Theorem

3.3 and Lemma 4.4, we obtain the following equalities:

degMg,Fp
(M

Zzz...

g,Fp
) = degS(M

Zzz...

X/S,L) = degS(Q2,O
F∗(L∨)/X(1)/S

)

=
1

pg
· degS(Q2,0

F∗(L∨)/X(1)/S
).

Hence, to determine degMg,Fp
(MZzz...

g,Fp
), it suffices to calculate degS(Q2,0

F∗(L∨)/X(1)/S
)

(for an arbitrary spin curve (X/S,L)).

In this section, we review a numerical formula for the degree of a certain

Quot-scheme over the field C of complex numbers and relate it to the degree of

the Quot-scheme in positive characteristic.

Let C be a smooth proper curve over C of genus g > 1. If r is an integer, and

E is a vector bundle on C of rank n and degree d with 1 ≤ r ≤ n, then we define

invariants

emax(E , r) := max{deg(F) ∈ Z | F is a subbundle of E of rank r},
sr(E) := d · r − n · emax(E , r).

(Here, we recall that one verifies immediately, for instance, by considering an

embedding of E into a direct sum of n line bundles, that emax(E , r) is well-defined.)

In the following, we review some facts concerning these invariants (cf. [11];

[22]; [12]). Denote by sNn,d
C the moduli space of stable bundles on C of rank n

and degree d (cf. [22, pp. 310–311]). It is known that sNn,d
C is irreducible (cf. the

discussion at the beginning of [22, p. 311]). Thus, it makes sense to speak of a

“sufficiently general” stable bundle in sNn,d
C , i.e., a stable bundle that corresponds

to a point of the scheme sNn,d
C that lies outside some fixed closed subscheme. If E

is a sufficiently general stable bundle in sNn,d
C , then (cf. [22, pp. 310–311]) one has

sr(E) = r(n− r)(g− 1) + ε, where ε is the unique integer such that 0 ≤ ε < n and

sr(E) = r · d mod n. Also, the number ε coincides (cf. [12, pp. 121–122]) with the

dimension of every irreducible component of the Quot-scheme Qr,emax(E,r)
E/C/C (cf. §4).

If, moreover, the equality sr(E) = r(n−r)(g−1) holds (i.e., dim(Qr,emax(E,r)
E/C/C ) = 0),

then Qr,emax(E,r)
E/C/C is étale over Spec(C) (cf. [12, pp. 121–122]). Finally, under this

particular assumption, a formula for the degree of this Quot-scheme was given by

Holla as follows.

Theorem 5.1. Let C be a proper smooth curve over C of genus g > 1, and

E a sufficiently general stable bundle in sNn,d
C . Write (a, b) for the unique pair
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of integers such that d = an − b with 0 ≤ b < n. Also, suppose that sr(E) =

r(n− r)(g − 1) (equivalently, emax(E , r) = (dr − r(n− r)(g − 1))/n). Then

degC(Qr,emax(E,r)
E/C/C ) =

(−1)(r−1)(br−(g−1)r
2)/nnr(g−1)

r!

∑
ρ1,...,ρr

(
∏r
i=1 ρi)

b−g+1∏
i 6=j(ρi − ρj)g−1

,

where ρni = 1 for 1 ≤ i ≤ r and the sum is over tuples (ρ1, . . . , ρr) with ρi 6= ρj.

Proof. The assertion follows from [12, Theorem 4.2], where “k” (respectively, “r”)

corresponds to our r (respectively, n).

By applying this formula, we deduce the same kind of formula for certain

vector bundles in positive characteristic.

Theorem 5.2. Let k an algebraically closed field of characteristic p and

(X/k,L = (L, ηL)) a spin curve of genus g > 1. Suppose that X/k is sufficiently

general in Mg,Fp . (Here, we recall that Mg,Fp is irreducible (cf. [3, §5]); thus, it

makes sense to speak of a “sufficiently general” X/k, i.e., an X/k that determines

a point ofMg,Fp
that lies outside some fixed closed substack.) Then Q2,0

F∗(L∨)/X(1)/k

is finite and étale over k. If, moreover, we suppose that p > 2(g−1), then the degree

degk(Q2,0
F∗(L∨)/X(1)/k

) of Q2,0
F∗(L∨)/X(1)/k

over Spec(k) is given by

degk(Q2,0
F∗(L∨)/X(1)/k

) =
p2g−1

22g−1
·
p−1∑
θ=1

1

sin2g−2(π·θp )(
=

(−1)g−1 · p2g−1

2
·

∑
ζp=1, ζ 6=1

ζg−1

(ζ − 1)2g−2

)
.

Proof. Suppose that X is an ordinary (cf. the discussion preceding Lemma 4.4)

proper smooth curve over k classified by a k-rational point of Mg,Fp
which lies

in the complement of the image of MZzz...

g,Fp
\ }MZzz...

g,Fp
via the natural projection

MZzz...

g,Fp
→Mg,Fp

(cf. Theorem 3.3 and the discussion preceding it). Then it follows

from Theorem 3.3, Proposition 4.3, and Lemma 4.4 that Q2,0
F∗(L∨)/X(1)/k

is finite

and étale over k.

Next, we determine degk(Q2,0
F∗(L∨)/X(1)/k

). Denote by W the ring of Witt

vectors with coefficients in k, and K the fraction field of W . Since dim(X(1)) = 1,

which implies that H2(XF ,Ω
∨
X(1)) = 0, it follows from well-known generalities of

deformation theory that X(1) may be lifted to a smooth proper curve X
(1)
W over

W of genus g. In a similar vein, the fact that H2(X(1), EndO
X(1)

(F∗(L∨))) = 0

implies that F∗(L∨) may be lifted to a vector bundle E on X
(1)
W .
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Now let η be a k-rational point of Q2,0
F∗(L∨)/X(1)/k

classifying an injective mor-

phism i : F → F∗(L∨). The tangent space to Q2,0
F∗(L∨)/X(1)/k

at η may be naturally

identified with the k-vector space HomO
X(1)

(F , F∗(L∨)/i(F)), and the obstruc-

tion to lifting η to any first order thickening of Spec(k) is given by an element

of Ext1O
X(1)

(F , F∗(L∨)/i(F)). On the other hand, since, as was observed above,

Q2,0
F∗(L∨)/X(1)/k

is étale over Spec(k), we have HomO
X(1)

(F , F∗(L∨)/i(F)) = 0,

and hence Ext1O
X(1)

(F , F∗(L∨)/i(F)) = 0 by Lemma 5.3 below. This implies that

η may be lifted to a W -rational point of Q2,0

E/X(1)
W /W

, and hence Q2,0

E/X(1)
W /W

is finite

and étale over W by Lemma 5.3 and the vanishing of HomO
X(1)

(F , F∗(L∨)/i(F)).

Now a routine argument shows that K may be supposed to be a subfield of C.

Denote by X
(1)
C the base-change of X

(1)
W via the morphism Spec(C) → Spec(W )

induced by the composite embedding W ↪→ K ↪→ C, and EC the pull-back of E via

the natural morphism X
(1)
C → X

(1)
W . Thus, we obtain

degk(Q2,0
F∗(L∨)/Xk/k

) = degW (Q2,0

E/X(1)
W /W

) = degC(Q2,0

EC/X(1)
C /C

).

To prove the required formula, we calculate degC(Q2,0

EC/X(1)
C /C

) by applying Theo-

rem 5.1.

By [35, Theorem 2.2], F∗(L∨) is stable. Since the degree of EC coincides

with the degree of F∗(L∨), we have deg(EC) = (p − 2)(g − 1) (cf. the proof of

Lemma 5.3). On the other hand, one verifies easily from the definition of stability

and the properness of Quot-schemes (cf. [7, Theorem 5.14]) that EC is a stable

vector bundle. Next, let us observe that Q2,0

EC/X(1)
C /C

is zero-dimensional (cf. the

discussion above), which, by the discussion preceding Theorem 5.1, implies that

s2(EC) = 2(p − 2)(g − 1). Thus, by choosing the deformation E of F∗(L∨) appro-

priately, we may assume, without loss of generality, that EC is sufficiently general

in sN p,(p−2)(g−1)
X

(1)
C

for Theorem 5.1 to hold. Now we compute (cf. the discussion

preceding Theorem 5.1):

emax(EC, 2) =
1

p
· (degC(EC) · 2− s2(EC))

=
1

p
· ((p− 2)(g − 1) · 2− 2 · (p− 2)(g − 1)) = 0.

If, moreover, we write (a, b) for the unique pair of integers such that degC(EC) =

p · a − b with 0 ≤ b < p, then the hypothesis p > 2(g − 1) implies that a = g − 1

and b = 2(g − 1). Thus, by applying Theorem 5.1 in the case where the data

“(C,V, n, d, r, a, b, emax(V, r))”
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is taken to be

(X
(1)
C , EC, p, (g − 1)(p− 2), 2, g − 1, 2(g − 1), 0),

we obtain

degC(Q2,0

EC/X(1)
C /C

) =
(−1)(2−1)(2(g−1)2−(g−1)2

2)/pp2(g−1)

2!
·
∑
ρ1,ρ2

(
∏2
i=1 ρi)

2(g−1)−g+1∏
i 6=j(ρi−ρj)g−1

=
(−1)g−1 ·p2g−1

2
·
∑

ζp=1,ζ 6=1

ζg−1

(ζ−1)2g−2

=
p2g−1

2g
·
∑

ζp=1, ζ 6=1

1(
1− ζ+ζ−1

2

)g−1 =
p2g−1

22g−1
·
p−1∑
θ=1

1

sin2g−2(π·θ
p

) .
This completes the proof of the required equality.

The following lemma was used in the proof of Theorem 5.2.

Lemma 5.3. Let k be a field of characteristic p, (X/k,L := (L, ηL)) a spin curve,

and i : F → F∗(L∨) an injective morphism classified by a k-rational point of

Q2,0
F∗(L∨)/X(1)/k

. Write G := F∗(L∨)/i(F). Then G is a vector bundle on X(1), and

dimk(HomO
X(1)

(F ,G)) = dimk(Ext1O
X(1)

(F ,G)).

Proof. First, we verify that G is a vector bundle. Since F : X → X(1) is faithfully

flat, it suffices to verify that the pull-back F ∗G is a vector bundle on X. Recall

(cf. Lemma 4.2(i)) that the composite F ∗F → AL(= F ∗F∗(L∨))→ AL/A2
L of the

pull-back of i with the natural surjection AL → AL/A2
L is an isomorphism. This

implies easily that the natural composite A2
L → AL → F ∗G is an isomorphism,

and hence F ∗G is a vector bundle, as desired.

Next we consider the asserted equality. Since the morphism F : X → X(1) is

finite, well-known cohomological generalities yield the equality χ(F∗(L∨)) = χ(L∨)

of Euler characteristics. Thus, it follows from the Riemann–Roch theorem that

deg(F∗(L∨)) = χ(F∗(L∨))− rk(F∗(L∨))(1− g)

= χ(L∨)− p(1− g) = (p− 2)(g − 1),

and since rk(HomO
X(1)

(F ,G)) = 2(p− 2),

deg(HomO
X(1)

(F ,G)) = 2 · deg(G)− (p− 2) · deg(F)

= 2 · deg(F∗(L∨))− 0 = 2(p− 2)(g − 1).



404 Y. Wakabayashi

Finally, by applying the Riemann–Roch theorem again, we obtain

dimk(HomO
X(1)

(F ,G))− dimk(Ext1O
X(1)

(F ,G))

= deg(HomO
X(1)

(F ,G)) + rk(HomO
X(1)

(F ,G))(1− g)

= 2(p− 2)(g − 1) + 2(p− 2)(1− g) = 0.

Thus, we deduce the main result of the present paper.

Corollary 5.4. Suppose that p > 2(g − 1). Then

degMg,Fp
(M

Zzz...

g,Fp
) =

pg−1

22g−1
·
p−1∑
θ=1

1

sin2g−2(π·θ
p

)
=

(−1)g−1 · pg−1

2
·

∑
ζp=1, ζ 6=1

ζg−1

(ζ − 1)2g−2
.

Proof. Let us fix a spin curve (X/k,L) for which Theorem 5.2 holds. Then it

follows from Theorem 5.2 and the discussion at the beginning of §5 that

degMg,Fp
(M

Zzz...

g,Fp
) =

1

pg
· degC(Q2,0

F∗(L∨)/X(1)/k
) =

pg−1

22g−1
·
p−1∑
θ=1

1

sin2g−2(π·θ
p

)
=

(−1)g−1 · pg−1

2
·

∑
ζp=1, ζ 6=1

ζg−1

(ζ − 1)2g−2
.

§6. Relation to other results

Finally, we discuss some topics related to the main result of the present paper.

6.1. Let k be an algebraically closed field of characteristic p and X a proper

smooth curve over k of genus g with p > 2(g − 1). Denote by F : X → X(1) the

relative Frobenius morphism. Let E be an indecomposable vector bundle on X of

rank 2 and degree 0. If E admits a rank one subbundle of positive degree, then it

follows from the definition of semistability that E is not semistable. On the other

hand, since E is indecomposable, the computation of suitable Ext1 groups via Serre

duality shows that the degree of any rank one subbundle of E is at most g − 1.

We shall say that E is maximally unstable if it admits a rank one subbundle of

degree g − 1 (> 0). Let us denote by B the set of isomorphism classes of rank 2

semistable bundles V on X(1) such that det(V) ∼= OX and F ∗V is indecomposable

and maximally unstable. Then it is well-known (cf., e.g., [32, Proposition 4.2]) that

there is a natural 22g-to-1 correspondence between B and the set of isomorphism
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classes of dormant indigenous bundles on X/k. Thus, Corollary 5.4 of the present

paper enables us to calculate the cardinality of B, i.e., to conclude that

]B = 2 · pg−1 ·
p−1∑
θ=1

1

sin2g−2(π·θ
p

) .
In the case where g = 2, this result is consistent with the result obtained in [23,

p. 180, Theorem 2].

6.2. F. Liu and B. Osserman have shown (cf. [25, Theorem 2.1]) that

degMg,Fp
(MZzz...

g,Fp
) may be expressed as a polynomial with respect to the char-

acteristic p of degree 3g − 3 (e.g., degM2,Fp
(MZzz...

2,Fp
) = 1

24 · (p
3 − p), as referred to

in the Introduction). In fact, this result may also be obtained as a consequence

of Corollary 5.4. This may not be apparent at first glance, but nevertheless may

be verified by applying either of the following two different (but, closely related)

arguments.

(1) Let C be a connected compact Riemann surface of genus g > 1. Then the mod-

uli space of S-equivalence classes (cf. [13, Definition 1.5.3]) of rank 2 semistable

bundles on C with trivial determinant,

ssN 2,O
C ,

may be represented by a projective algebraic variety of dimension 3g−3 (cf. [34,

Theorem 8.1]; [1, p. 18]; [31, Introduction]), and Pic(ssN 2,O
C ) ∼= Z · [L] for a

certain ample line bundle L (cf. [5, p. 55, Theorem B]; [1, p. 19, Theorem 1];

[1, p. 21, discussion at the beginning of §4]). The Verlinde formula, introduced

in [37] and proved, e.g., in [6, Theorem 4.2], implies that, for k = 0, 1, . . . , we

have

dimC(H0(ssN 2,O
C ,L⊗k)) =

(k + 2)g−1

2g−1
·
k+1∑
θ=1

1

sin2g−2( π·θ
k+2

)
(cf. [1, p. 24, Corollary]). Thus, for sufficiently large k, the value at k of

the Hilbert polynomial HilbL(t) ∈ Q[t] of L coincides with the RHS of the

above equality. On the other hand, Corollary 5.4 shows that for an odd

prime p, the value at k = p − 2 of this RHS divided by 2g coincides with

degMg,Fp
(MZzz...

g,Fp
). Thus, degMg,Fp

(MZzz...

g,Fp
) (for sufficiently large p) may be

expressed as HilbL(p − 2) for a suitable polynomial HilbL(t) ∈ Q[t] of degree

3g − 3 (= dim(ssN 2,O
C )).
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(2) Another approach yields a more concrete expression for degMg,Fp
(MZzz...

g,Fp
). For

a pair of positive integers (n, k), we set

V (n, k) :=

k−1∑
θ=1

1

sin2n
(
π·θ
k

) .
Then it follows from [38, Theorem 1(i), (ii) and proof of Theorem 1(iii)] that

V (n, k) = −Resx=0

[
k · cot(kx)

sin2n(x)
dx

]
,

where Resx=0(f) denotes the residue of f at x = 0. Thus, V (n, k) may be

computed by considering the relation 1
sin2(x)

= 1 + cot2(x) and the coefficient

of the Laurent expansion (cf. [38, proof of Theorem 1(iii)])

cot(x) =
1

x
+

∞∑
j=1

(−1)j22jB2j

(2j)!
x2j−1

where B2j denotes the (2j)-th Bernoulli number, i.e.,

w

ew − 1
= 1− w

2
+

∞∑
j=1

B2j

(2j)!
w2j .

In particular, an explicit computation shows that V (n, k) may be expressed as

a polynomial of degree 2n with respect to k. Thus, degMg,Fp
(MZzz...

g,Fp
) (equal

to pg−1

22g−1 ·V (g− 1, p) by Corollary 5.4) may be expressed as a polynomial with

respect to p of degree 2(g − 1) + (g − 1) = 3g − 3. Moreover, by applying the

above discussion, we obtain the following explicit expressions:

degM2,Fp
(M

Zzz...

2,Fp
) =

1

24
· (p3 − p),

degM3,Fp
(M

Zzz...

3,Fp
) =

1

1440
· (p6 + 10p4 − 11p2),

degM4,Fp
(M

Zzz...

4,Fp
) =

1

120960
· (2p9 + 21p7 + 168p5 − 191p3),

degM5,Fp
(M

Zzz...

5,Fp
) =

1

7257600
· (3p12 + 40p10 + 294p8 + 2160p6 − 2497p4),

degM6,Fp
(M

Zzz...

6,Fp
) =

1

2048
·
(

2

93555
p15 +

1

2835
p13 +

26

8505
p11 +

164

8505
p9

+
128

945
p7 − 14797

93555
p5
)
,
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degM7,Fp
(M

Zzz...

7,Fp
) =

1

8192
·
(

1382

638512875
p18 +

4

93555
p16 +

31

70875
p14

+
556

178605
p12 +

3832

212625
p10 +

256

2079
p8 − 92427157

638512875
p6
)
,

degM8,Fp
(M

Zzz...

8,Fp
) =

1

32768
p7 ·

(
4

18243225
p14 +

1382

273648375
p12 +

4

66825
p10

+
311

637875
p8 +

1184

382725
p6 +

1888

111375
p4 +

1024

9009
p2

− 36740617

273648375

)
,

degM9,Fp
(M

Zzz...

9,Fp
) =

1

131072
p8 ·

(
3617

162820783125
p16 +

32

54729675
p14

+
226648

28733079375
p12 +

2144

29469825
p10 +

4946

9568125
p8

+
268864

88409475
p6 +

17067584

1064188125
p4 +

2048

19305
p2

− 61430943169

488462349375

)
,

degM10,Fp
(M

Zzz...

10,Fp
) =

1

524288
p9 ·

(
87734

38979295480125
p18 +

3617

54273594375
p16

+
92

91216125
p14 +

2092348

201131555625
p12 +

4042

49116375
p10

+
18716

35083125
p8 +

119654944

40226311125
p6 +

16229632

1064188125
p4

+
32768

328185
p2 − 23133945892303

194896477400625

)
.
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